

Unclassified / FOUO

EX-SITU CONDUCTIVE SOIL THERMAL REMEDIATION

- Remediation project conducted at Camp James A. Garfield (CJAG)/former RVAAP from 2020 to 2021.
- Five separate Load Lines where remediated to achieve Commercial/Industrial Use which is inclusive of military training.
- 24 different excavations were completed.
- Contaminants of Concern included explosives, Polycyclic-Aromatic Hydrocarbons (PAHs), PCBs, and metals.
- Approximately 2,528 cubic yards of soil was excavated and thermally treated.
- A total of 88 cubic yards of metals impacted soils were disposed of off-site as non-hazardous waste.
- Approximately 400 tons of concrete was demolished and recycled off site.

- Total square footage excavated was 47,646 sqft. or 1.09 acres.
- Remedial activities lasted approximately 5 months starting in October 2020 with field activities completed in February 2021. Currently, completing the Remedial Action Completion Report.
- Soil was treated between 3-12 days. Approximately 525 cubic yards per cell
- The average soil temperature achieved was from 479 to 634 degrees Fahrenheit.
- One composite soil sample was collected for each 150 CY of treated soil for verification.
- Excavation confirmation samples consisted of ISM sample methodology, and consisted of between 30 to 50 aliquots. 311 ISM excavation soil samples were collected to confirm completion of the excavations.
- Treated soil was used as backfill in the excavations which were then graded/seeded.

Unclassified / FOUO

COSTS

- SA/R for the Louisville US Army Corps of Engineers was \$100,000 (for oversight).
- Contractor cost to prepare the Remedial Design document, perform the Remedial Action, and prepare the Remedial Action Completion Report was \$ 2.082 million.
 - Cost per cubic yard of soil including all reports, mobilization, demobilization and reclamation \$823/cubic yard.
 - Approximately 70,000 gallons of propane was used for thermal treatment and to run generators for the mobile offices. The Propane was \$1.92/gallon =\$134,400.
 - Local contractors were used for propane supply, to provide seed mix and restroom facilities, for grading and seeding activities, for food and lodging for the field contractors.

Two Treatment Units Up and Running

Unclassified / FOUO

Moving End Wall of Treatment Unit

Building the Soil Pile for Treatment

Unclassified / FOUO

Haul Truck

Unclassified / FOUO

Excavation Wall Sampling Grid

Unclassified / FOUO

Excavation Wall Sampling Grid

Unclassified / FOUO

Restored Excavation Site

Unclassified / FOUO

PROs

- Reuse of treated soils, no backfill purchase costs, less trucking costs.
 - To haul soil to landfill and bring in backfill would have had to use 253 truck loads at 20 cubic yards each.
- Soil not heated too high to prevent regrowth of vegetation.
- System has no moving parts, i.e. no mechanical break downs.
- Verification sampling of treated soil happens in treatment chamber so if additional treatment is needed easy to reheat.
- No screening of soil prior to treatment. Rocks, vegetation, concrete, and gravel can go through the treatment process.
- Off gasses are passed through an after burner system no emissions.
- Zero reject of materials regardless of moisture content or soil type.
- All weather operations.
- No landfill liability for treated soils reused

CONs

- Large area required for setup of treatment system- approximately 2 acres.
- Large amount of fuel required to heat the soils
- Treatment system is not mobile- soil must be brought to the system.
- Soils are not placed back into the same excavations that they originated from.
- Cannot treat metals contaminated soils