#### *Revised* Final Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill

Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

> November 29, 2016 Revised February 13, 2017 Project No. 118064-RVAAP-34

Revised and Updated by: U.S. Army Corps of Engineers Louisville District 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared for: National Guard Bureau Army National Guard (ARNG-ILE Cleanup) 111 South George Mason Drive Arlington, Virginia 22204-1373

Originally Prepared by: Shaw Environmental & Infrastructure, Inc. (A CB&I Company) 150 Royall Street Canton, Massachusetts 02021

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                  | Form Approved<br>OMB No. 0704-0188                                                                          |                                                                          |                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The public reporting burden for this collection or<br>gathering and maintaining the data needed, and<br>information, including suggestions for reducing to<br>1215 Jefferson Davis Highway, Suite 1204, Arl<br>penalty for failing to comply with a collection of<br><b>PLEASE DO NOT RETURN YOUR FO</b> | of information<br>completing and<br>he burden, to<br>ington, VA 2<br>nformation if<br><b>RM TO TH</b> | is estimated to average 1 hour<br>d reviewing the collection of info<br>Department of Defense, Washin<br>2202-4302. Respondents shou<br>it does not display a currently val<br>IE ABOVE ADDRESS. | per response, incl<br>rmation. Send com<br>ngton Headquarters<br>Id be aware that no<br>Iid OMB control nur | luding the tir<br>ments regard<br>Services, Di<br>otwithstandir<br>mber. | ne for reviewing instructions, searching existing data sources,<br>ling this burden estimate or any other aspect of this collection of<br>rectorate for Information Operations and Reports (0704-0188),<br>Ig any other provision of law, no person shall be subject to any |
| 1. REPORT DATE (DD-MM-YYYY)                                                                                                                                                                                                                                                                              | 2. REPC                                                                                               | DRT TYPE                                                                                                                                                                                         |                                                                                                             |                                                                          | 3. DATES COVERED (From - To)                                                                                                                                                                                                                                                |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                    | -                                                                                                     |                                                                                                                                                                                                  |                                                                                                             | 5a. COI                                                                  | NTRACT NUMBER                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             | 5b. GR/                                                                  | ANT NUMBER                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             | 5c. PRC                                                                  | OGRAM ELEMENT NUMBER                                                                                                                                                                                                                                                        |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             | 5d. PRC                                                                  | JJECT NUMBER                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             | 5e. TAS                                                                  | SK NUMBER                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             | 5f. WO                                                                   | rk unit number                                                                                                                                                                                                                                                              |
| 7. PERFORMING ORGANIZATION N                                                                                                                                                                                                                                                                             | ame(s) an                                                                                             | ND ADDRESS(ES)                                                                                                                                                                                   |                                                                                                             |                                                                          | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                                                                                                                                                                                 |
| 9. SPONSORING/MONITORING AGE                                                                                                                                                                                                                                                                             | NCY NAM                                                                                               | E(S) AND ADDRESS(ES)                                                                                                                                                                             |                                                                                                             |                                                                          | 10. SPONSOR/MONITOR'S ACRONYM(S)                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             |                                                                          | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                                                                                                                                                                                                                                   |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                             |
| 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                             |
| 14. ABSTRACT                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                  |                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                             |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                        | _                                                                                                     |                                                                                                                                                                                                  |                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                             |
| 16. SECURITY CLASSIFICATION OF                                                                                                                                                                                                                                                                           |                                                                                                       | 17. LIMITATION OF<br>ABSTRACT                                                                                                                                                                    | 18. NUMBER<br>OF                                                                                            | 19a. NAI                                                                 | ME OF RESPONSIBLE PERSON                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                                                                                                                                  | PAGES                                                                                                       | 19b. TEL                                                                 | EPHONE NUMBER (Include area code)                                                                                                                                                                                                                                           |

### PLACEHOLDER FOR THE OHIO EPA APPROVAL LETTER

#### **DISCLAIMER STATEMENT**

This report is a work prepared for the United States Government by Shaw Environmental & Infrastructure, Inc. and updated/revised by the United States Army Corps of Engineers, Louisville District. In no event, shall either the United States Government or the United States Army Corps of Engineers have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

#### STATEMENT OF INDEPENDENT TECHNICAL REVIEW\*

The United States Army Corps of Engineers, Louisville District (USACE) has updated and finalized this *Final Draft Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill* from the Draft Report originally completed by Shaw Environmental & Infrastructure, Inc. February 2013. Notice is hereby given that an independent technical review (ITR) has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principals and procedures, utilizing justified and valid assumptions was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with the law and existing United States Army Corps of Engineers policy.

\*The Contractors that prepared the 2013 February Draft included a signed Independent Technical Review (ITR) with signatures. Since the United States Army Corps of Engineers, Louisville District (USACE) revised and updated the document, the Contractor did not review revisions or updates made by USACE; therefore, their 2013 February ITR has been removed from this Final document.

#### Revised Final Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill

Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

> November 29, 2016 Revised February 13, 2017 Project No. 118064-RVAAP-34

Revised and Updated by: U.S. Army Corps of Engineers Louisville District 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Prepared for: National Guard Bureau Army National Guard (ARNG-ILE Cleanup) 111 South George Mason Drive Arlington, Virginia 22204-1373

Originally Prepared by: Shaw Environmental & Infrastructure, Inc. (A CB&I Company) 150 Royall Street Canton, Massachusetts 02021

#### **Document Distribution**

Revised Final Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill

|                                                                 | Number of       | Number of                |
|-----------------------------------------------------------------|-----------------|--------------------------|
| Name/Organization                                               | Printed Copies  | <b>Electronic Copies</b> |
| Project Manager, Ohio EPA, NEDO-DERR:<br>Attention: Bob Princic | 1               | 3                        |
| Bob Princic, Ohio EPA, NEDO-DERR                                | Email transmitt | al letter only           |
| Kelly Kaletsky, Ohio EPA, Central Office-<br>DERR               | 1               | 1                        |
| Rod Beals, Manager, Ohio EPA, NEDO-<br>DERR                     | Email transmitt | al letter only           |
| Mark Leeper, ARNG-ILE Cleanup                                   | 0               | 1                        |
| Kevin Sedlak, ARNG, Camp Ravenna                                | Email transmitt | al letter only           |
| Katie Tait, OHARNG, Camp Ravenna                                |                 |                          |
| Craig Coombs, USACE, Louisville District                        | Email transmitt | al letter only           |
| Angela Schmidt, USACE, Louisville District                      | 1               | 1                        |
| Gail Harris, VSC, Camp Ravenna,<br>Administrative Records       | 2               | 2                        |

ARNG—Army National Guard

DERR—Division of Environmental Response and Revitalization

NEDO—Northeast District Office

ILE—Installation, Logistics, and Environment

OHARNG—Ohio Army National Guard

RVAAP—Former Ravenna Army Ammunition Plant

VSC—Vista Sciences Corporation

# **Table of Contents**

| Exec | cutive Summary                                           | xiii                |
|------|----------------------------------------------------------|---------------------|
|      | ES.1 AOC Description                                     | xiv                 |
|      | ES.2 Summary of Previous Investigations                  | XV                  |
|      | ES.3 Summary of Remedial Investigation Activities        | xvi                 |
|      | ES.4 Summary of Nature and Extent of Contamination       | xvi                 |
|      | ES.5 Summary of Contaminant Fate and Transport           | xviii               |
|      | ES.6 Summary of Human Health Risk Assessment             | xviii               |
|      | ES.7 Summary of Ecological Risk Assessment               | xxiv                |
|      | ES.8 Remedial Investigation Recommendations              | XXV                 |
| 1.0  | Project Description                                      | 1-1                 |
|      | 1.1 Introduction                                         |                     |
|      | 1.2 Purpose                                              |                     |
|      | 1.3 Scope                                                |                     |
|      | 1.4 Report Organization                                  |                     |
|      | 1.5 General Facility Description                         |                     |
|      | 1.5.1 RVAAP Operational History and Mission              |                     |
|      | 1.5.2 Current Status                                     |                     |
|      | 1.6 Sand Creek Disposal Road Landfill Site Description   |                     |
|      | 1.6.1 Operational History                                |                     |
|      | 1.6.2 Previous Investigations and Removal Actions        |                     |
|      | 1.7 DGM Survey                                           |                     |
|      | 1.8 Preliminary Evaluation for COPCs                     |                     |
|      | 1.8.1 Summary of 2003 Removal Action Sampling Activities |                     |
|      | 1.8.2 Summary of 2003 FWBWQS Sampling Activities         |                     |
|      | 1.8.3 Screening Process for Preliminary COPCs            |                     |
| 2.0  | Physical Characteristics                                 |                     |
|      | 2.1 Physiographic Setting                                |                     |
|      | 2.1 Climate                                              |                     |
|      | 2.2 Surface Features and Site Topography                 |                     |
|      | 2.3 Geology                                              |                     |
|      | 2.3.1 Regional Geology                                   |                     |
|      | 2.3.2 Sand Creek Disposal Road Landfill Geology          |                     |
|      | 2.4 Hydrogeology                                         |                     |
|      | 2.4.1 Regional Hydrogeology                              |                     |
|      | 2.4.2 Sand Creek Disposal Road Landfill Hydrogeology     |                     |
|      | 2.5 Demography and Land Use                              |                     |
|      | 2.6 Potential Receptors                                  | <b></b>             |
|      | 2.6.1 Human Receptors                                    |                     |
|      | 2.6.2 Ecological Receptors                               |                     |
|      | 2.7 r remninary Conceptual Site Wodel                    | <b>4-11</b>         |
|      | 2.7.1 Sullace Solls                                      |                     |
|      | 2.7.2 Subsultace Solis                                   | ······ 2-12<br>2 12 |
|      | 2.7.3 Scufficilt                                         | ······ 2-15<br>2 12 |
|      | 2.7.4 Surface water                                      | ····· 2-15<br>2 14  |
| 30   | Study Area Investigation                                 | 2 1                 |
| 5.0  | 3 1 Data Evaluation for Dravious Investigations          | ······3-1<br>2 1    |
|      | 3.1 Data Evaluation for Frevious mivesugations           | ····· J-1<br>2 2    |
|      | J.4 BUI I AVE DUIL VII AL AVELI I LAUVII                 | J-4                 |

|     | 3.2.1 Sampling Approach                                       |              |
|-----|---------------------------------------------------------------|--------------|
|     | 3.2.2 Discrete VOC Surface Soil Samples                       |              |
|     | 3.3 Sediment Characterization                                 |              |
|     | 3.3.1 Sampling Approach                                       |              |
|     | 3.3.2 Discrete VOC Sediment Sample                            |              |
|     | 3.4 Subsurface Soil Characterization                          |              |
|     | 3.4.1 Sampling Approach                                       |              |
|     | 3.4.2 Discrete VOC Subsurface Soil Samples                    |              |
|     | 3.5 Deviations from the Work Plan                             |              |
|     | 3.6 Analytical Program Overview                               |              |
|     | 3.6.1 Field Analyses                                          |              |
|     | 3.6.2 Laboratory Analyses                                     |              |
|     | 3.6.3 Data Review, Validation, and Quality Assessment         |              |
|     | 3.7 Munitions and Explosives of Concern Avoidance             |              |
| 4.0 | Nature and Extent of Contamination                            |              |
|     | 4.1 Data Evaluation Method                                    |              |
|     | 4.1.1 Definition of Aggregates                                | 4-1          |
|     | 4.1.2 Data Review, Validation, and Quality Assessment Results |              |
|     | 4.1.3 Data Reduction and Screening                            |              |
|     | 4.1.4 Data Presentation                                       |              |
|     | 4.1.5 Data Use Evaluation                                     |              |
|     | 4.2 Contaminant Nature and Extent in Surface Soil             |              |
|     | 4.2.1 Explosives and Propellants                              | 4-7          |
|     | 4.2.2 Inorganics                                              |              |
|     | 4.2.3 SVOCs                                                   |              |
|     | 4.2.4 VOCs, Pesticides, PCBs, Total Cyanide, and Asbestos     | 4-10         |
|     | 4.3 Contaminant Nature and Extent in Subsurface Soil          |              |
|     | 4.3.1 Explosives and Propellants                              | 4-11         |
|     | 4.3.2 Inorganics                                              | 4-11         |
|     | 4.3.3 SVOCs                                                   |              |
|     | 4.3.4 Pesticides and PCBs                                     |              |
|     | 4.3.5 VOCs and Total Cyanide                                  | 4-13         |
|     | 4.4 Contaminant Nature and Extent in Sediment                 |              |
|     | 4.4.1 Explosives and Propellants                              |              |
|     | 4.4.2 Inorganics                                              |              |
|     | 4.4.3 SVOCs                                                   |              |
|     | 4.4.4 Pesticides and PCBs                                     |              |
|     | 4.4.5 VOCs and Total Cyanide                                  |              |
|     | 4.4.6 Asbestos                                                |              |
|     | 4.4.7 Nutrient Parameters                                     | 4-17         |
|     | 4.5 Contaminant Nature and Extent in Surface Water            | <b>4-1</b> 7 |
|     | 4.5.1 Explosives and Propellants                              |              |
|     | 4.5.2 Inorganics                                              |              |
|     | 4.5.3 SVUCs                                                   |              |
|     | 4.5.4 Other Analyses                                          | 4-18         |
|     | 4.5.5 Nutrient Parameters                                     |              |
|     | 4.0 Summary of Nature and Extent of Contamination             | 4-19         |
|     | 4.0.1  Surface Soll                                           |              |
|     | 4.0.2 Subsurface Solls                                        |              |
|     | 4.0.5 Seument                                                 |              |
|     | 4.0.4 Surface water                                           |              |

| 5.0          | Contaminant Fate and Transport                               | 5-1                                    |
|--------------|--------------------------------------------------------------|----------------------------------------|
|              | 5.1 Identification of SRCs                                   | 5-2                                    |
|              | 5.1.1 Physical and Chemical Properties of SRCs               | 5-2                                    |
|              | 5.1.2 Chemical Properties Affecting Fate and Transport       | 5-3                                    |
|              | 5.1.3 Media Properties Affecting Fate and Transport          | 5-5                                    |
|              | 5.2 Biodegradation                                           | 5-5                                    |
|              | 5.3 Transformation of Explosives                             | 5-6                                    |
|              | 5.4 Conceptual Model for Fate and Transport                  | 5-7                                    |
|              | 5.5 Contamination Sources                                    | 5-7                                    |
|              | 5.6 Hydrogeologic Setting                                    | 5-8                                    |
|              | 5.6.1 Contaminant Release Mechanism and Migration Pathways   | 5-9                                    |
|              | 5.6.2 Water Budget                                           | 5-10                                   |
|              | 5.6.3 Natural Attenuation of SRCs                            | 5-11                                   |
|              | 5.7 Soil Leachability Analysis                               | 5-12                                   |
|              | 5.8 Soil Screening Analysis                                  | 5-12                                   |
|              | 5.8.1 Development of Initial CMCOPCs                         | 5-12                                   |
|              | 5.8.2 Refinement of Initial CMCOPCs                          | 5-13                                   |
|              | 5.8.3 Limitations and Assumptions of Soil Screening Analysis | 5-15                                   |
|              | 5.9 Fate and Transport Modeling.                             | 5-15                                   |
|              | 5.9.1 Travel Time Analysis                                   | 5-15                                   |
|              | 5.9.2 SESOIL Modeling                                        | 5-17                                   |
|              | 5.10 Uncertainties Analysis                                  | 5-20                                   |
|              | 5.11 Summary of Fate and Transport                           | 5-21                                   |
| 6.0          | Human Health Risk Assessment                                 |                                        |
|              | 6.1 Data Used in the Human Health Risk Assessment            |                                        |
|              | 6.2 Human Receptors and Land Use                             |                                        |
|              | 6.3 Selection of COPCs                                       |                                        |
|              | 6.3.1 COPCs in Surface Soil and Deep Surface Soil            |                                        |
|              | 6.3.2 COPCs in Subsurface Soil                               |                                        |
|              | 6.3.3 COPCs in Sediment                                      |                                        |
|              | 6.3.4 COPCs in Surface Water                                 |                                        |
|              | 6.4 Selection of COCs                                        |                                        |
|              | 6.4.1 Process                                                |                                        |
|              | 6.4.2 Identification of Cleanup Goals                        | 6-10                                   |
|              | 6.4.3 EPC Development                                        | 6-11                                   |
|              | 6.4.4 Comparison of EPCs to Cleanup Goals                    | 6-12                                   |
|              | 6.4.5 COCs in Surface Soil and Deep Surface Soil             | 6-12                                   |
|              | 6.4.6 COCs in Subsurface Soil                                | 6-14                                   |
|              | 6 4 7 COCs in Sediment                                       | 6-15                                   |
|              | 6.4.8 COCs in Surface Water                                  | 6-15                                   |
|              | 6.5 Conclusions of the HHRA and Discussion                   | 6-16                                   |
|              | 6.5.1 Surface Soil Summary                                   | 6-16                                   |
|              | 6.5.2 Subsurface Soil Summary                                |                                        |
|              | 6 5 3 Sediment Summary                                       |                                        |
|              | 6.5.4 Surface Water Summary                                  |                                        |
|              | 6.5.5 Conclusions                                            |                                        |
|              | 6 6 Uncertainty Analysis                                     | ۲۵-۱۵<br>۲۵-۱۹                         |
| 70           | Screening I aval Fealogical Rick Assassment                  |                                        |
| / <b>.</b> U | 7.1 Seene and Objectives                                     | ······/-1<br>7 1                       |
|              | 7.1 Scope alle Objectives                                    | ······································ |
|              | 7.2 I I UDICHI F UI IIIUIAUUII                               |                                        |

|     | 7.2.1 Ecological Site Description                                      | 7-2  |
|-----|------------------------------------------------------------------------|------|
|     | 7.2.2 Selection of COPECs                                              | 7-5  |
|     | 7.2.3 Ecological Conceptual Site Model                                 | 7-12 |
|     | 7.2.4 Ecological Receptors                                             | 7-14 |
|     | 7.2.5 Ecological Endpoint (Assessment and Measurement) Identification  | 7-20 |
|     | 7.2.6 Level II Screen Weight of Evidence Discussion                    | 7-23 |
|     | 7.2.7 Level II Screen Recommendations                                  | 7-27 |
|     | 7.3 Level III Baseline Evaluation                                      | 7-27 |
|     | 7.3.1 Exposure Assessment                                              | 7-28 |
|     | 7.3.2 Exposure Analysis                                                | 7-28 |
|     | 7.3.3 Toxicity Assessment                                              | 7-34 |
|     | 7.3.4 Uncertainty Analysis                                             | 7-36 |
|     | 7.3.5 Level III Baseline Conclusions and Recommendations               | 7-38 |
| 8.0 | Summary of Conclusions                                                 | 8-1  |
|     | 8.1 Summary of Data Used in the Remedial Investigation                 | 8-1  |
|     | 8.2 Summary of Nature and Extent of Contamination                      | 8-2  |
|     | 8.3 Contaminant Fate and Transport Summary                             | 8-3  |
|     | 8.4 Human Health Risk Assessment Summary                               | 8-3  |
|     | 8.5 Summary of Ecological Risk Assessment                              | 8-7  |
|     | 8.6 Conceptual Site Model                                              | 8-8  |
|     | 8.6.1 Primary and Secondary Contaminant Sources and Release Mechanisms | 8-8  |
|     | 8.6.2 Contaminant Migration Pathways and Discharge Points              | 8-10 |
|     | 8.6.3 Potential Receptors                                              | 8-10 |
|     | 8.6.4 Uncertainties                                                    | 8-11 |
|     | 8.7 Recommendations                                                    | 8-12 |
| 9.0 | References                                                             | 9-1  |
|     |                                                                        |      |

# **List of Figures**

| Figure 1-1  | Location Map                                                                   | 1-17 |
|-------------|--------------------------------------------------------------------------------|------|
| Figure 1-2  | Former RVAAP Facility Map                                                      | 1-18 |
| Figure 1-3  | Site Map                                                                       | 1-19 |
| Figure 1-4  | 2003 Facility-Wide Biological and Water Quality Study Sample Locations         | 1-20 |
| Figure 1-5  | 2003 Removal Action Sample Locations                                           | 1-21 |
| Figure 1-5a | Locations in 2003 Sample Grids where subsurface removal actions occurred       | 1-22 |
| Figure 1-6  | Geophysical Investigation Boundary                                             | 1-23 |
| Figure 2-1  | Topography and Surface Water Flow                                              | 2-15 |
| Figure 2-2  | Soils Map                                                                      | 2-16 |
| Figure 2-3  | Bedrock Geology                                                                | 2-17 |
| Figure 2-4  | RI Boring Locations                                                            | 2-18 |
| Figure 2-5  | AOC Cross-Section                                                              | 2-19 |
| Figure 3-1  | Phase I Remedial Investigation Sample Locations                                | 3-13 |
| Figure 3-2  | Example of Systematic Random Sampling                                          | 3-14 |
| Figure 4-1  | Process to Identify RVAAP Chemicals of Concern                                 | 4-22 |
| Figure 4-2  | All Explosives and Propellant SRCs in Surface Soil                             | 4-23 |
| Figure 4-3  | Inorganic SRCs in Surface Soil, 2003 Removal Action                            | 4-24 |
| Figure 4-4  | Inorganic SRCs in Surface Soil, Phase I Remedial Investigation                 | 4-25 |
| Figure 4-5  | All SVOC SRCs in Surface Soil                                                  | 4-26 |
| Figure 4-6  | Pesticide and Cyanide SRCs in Surface Soil                                     | 4-27 |
| Figure 4-7  | Explosives, Pesticides, PCBs, Cyanide, and VOC SRCs in Subsurface Soil         | 4-28 |
| Figure 4-8  | Inorganic SRCs in Subsurface Soil, 1–5 Feet Below Ground Surface               | 4-29 |
| Figure 4-9  | Inorganic SRCs in Subsurface Soil, 5–9 Feet Below Ground Surface               | 4-30 |
| Figure 4-10 | Inorganic SRCs in Subsurface Soil, 9–13 Feet Below Ground Surface              | 4-31 |
| Figure 4-11 | Inorganic SRCs in Subsurface Soil, 13–17 Feet Below Ground Surface             | 4-32 |
| Figure 4-12 | Inorganic SRCs in Subsurface Soil, 17–20 Feet Below Ground Surface             | 4-33 |
| Figure 4-13 | SVOC SRCs in Subsurface Soil, 1–5 Feet Below Ground Surface                    | 4-34 |
| Figure 4-14 | SVOC SRCs in Subsurface Soil, 5–9 Feet Below Ground Surface                    | 4-35 |
| Figure 4-15 | SVOC SRCs in Subsurface Soil, 9–13 Feet Below Ground Surface                   | 4-36 |
| Figure 4-16 | SVOC SRCs in Subsurface Soil, 13–17 Feet Below Ground Surface                  | 4-37 |
| Figure 4-17 | SVOC SRCs in Subsurface Soil, 17–20 Feet Below Ground Surface                  | 4-38 |
| Figure 4-18 | All SRCs in Sediment                                                           | 4-39 |
| Figure 4-19 | All SRCs in Surface Water                                                      | 4-40 |
| Figure 5-1  | Contaminant Migration Conceptual Model                                         | 5-23 |
| Figure 7-1  | Vegetation Alliance Map                                                        | 7-41 |
| Figure 7-2  | Plant Community Map.                                                           | 7-42 |
| Figure 7-3  | Surveyed Wetlands Map                                                          | 7-43 |
| Figure 7-4  | Ecological Conceptual Site Model for Level II Screen                           | 7-44 |
| Figure 7-5  | Preliminary Ecological Conceptual Site Model for Level III Baseline            | 7-45 |
| Figure 7-6  | Refined Ecological Conceptual Site Model for Level III Baseline                | 7-46 |
| Figure 7-7  | Procedural Flow Chart for Deriving Toxicity Reference Values from Class-Specif | fic  |
| C           | Toxicity Data                                                                  | 7-47 |

## **List of Tables**

| Table ES-1. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial           |
|------------------------------------------------------------------------------------------------------|
| Industrial Land Use, and Military Training Land Use for each Exposure Mediaxxvii                     |
| Table 2-1. Rare species list for Camp Ravenna Joint Military Training Center                         |
| Table 3-1. Chemical data from previous investigation that exceed screening criteria.       3-15      |
| Table 3-2.    Summary and rationale for Remedial Investigation samples.                              |
| Table 3-3. Quality Assurance/Quality Control samples taken for the RI.    3-18                       |
| Table 4-1. Data and use information for environmental samples collected as Sand Creek Disposal       |
| Road Landfill.4-41                                                                                   |
| Table 4-2. Screening for SRCs in surface soil samples (discrete) data collected during the 2003      |
| Removal Action                                                                                       |
| Table 4-3. Screening for SRCs in surface soil samples (ISM) data collected during the 2003 Removal   |
| Action                                                                                               |
| Table 4-4. Analytes detected in the confirmatory (post removal) samples for surface soil samples     |
| (discrete) taken during the 2003 Removal Action. 4-53                                                |
| Table 4-5. Analytes detected in surface soil samples (ISM) collected during the RI with the analytes |
| that were also detected in the surface soil samples from the 2003 Removal Action highlighted 4-59    |
| Table 4-6. Summary of the SRCs identified in the subsurface soil samples                             |
| Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the    |
| analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted 4-71       |
| Table 4-8. Summary of SRCs identified in 2003 Removal Action from discrete sediment                  |
| samples4-91                                                                                          |
| Table 4-9. Summary of the SRCs identified in the ISM sediment samples collected for 2003 Facility-   |
| Wide Biological and Water Quality Study. 4-92                                                        |
| Table 4-10. Summary of the SRCs identified from the ISM sediment samples collected for the           |
| RI                                                                                                   |
| Table 4-11. Analytes detected in discrete sediment samples collected during the 2003 Removal         |
| Action                                                                                               |
| Table 4-12. Analytes detected in the 2003 Facility-Wide Biological and Water Quality Study ISM       |
| sediment sample                                                                                      |
| Table 4-13. Analytes detected in the sediment samples (ISM) collected for this RI                    |
| Table 4-14. Summary of SRCs that were identified from screening of the 2003 Removal Action           |
| surface water samples                                                                                |
| Table 4-15. Summary of SRCs that were identified from screening of the 2003 Facility-Wide            |
| Biological and Water Quality Study in the surface water samples                                      |
| Table 4-16. Analytes detected in the surface water samples collected during the 2003 Removal         |
| Action after the removal was completed                                                               |
| Table 4-17. Analytes detected in the surface water samples from the 2003 Facility-Wide Biological    |
| and Water Quality Study                                                                              |
| Table 5-1. Lithology, interval depths, and depth measured to ground water in soil borings            |
| Table 5-2. Input parameters used in Travel Time Analysis for refinement of CMCOPCs                   |
| Table 5-3. Input data used in SESOIL Model for soil properties.    5-28                              |
| Table 5-4. The CMCOPCs identified from the SESOIL Model                                              |
| Table 6-1. Surface Soil (0 to 1 foot) Human Health Risk Assessment Data Set for Residential Land     |
| Use and Commercial Industrial Land Use                                                               |
| Table 6-2. Subsurface Soil (1 to 13 feet) Human Health Risk Assessment Data Set for Residential      |
| Land Use and Commercial Industrial Land Use                                                          |

Table 6 3. Deep Surface Soil (0 to 4 feet) Human Health Risk Assessment Data Set for Military Table 6-4. Subsurface Soil (4 to 7 feet) Human Health Risk Assessment Data Set for Military Table 6-5. Sediment Human Health Risk Assessment Data Set for Unrestricted (Residential) Land Table 6-6. Surface Water Human Health Risk Assessment Data Set for Unrestricted (Residential) Table 6-7. Summary of Screening Results for COPCs in Surface Soil (0 to 1 foot) for Residential Table 6-8. Summary of Screening Results for COPCs in Surface Soil (0 to 1 foot) for Commercial Table 6-9. Summary of Screening Results for COPCs in Deep Surface Soil (0 to 4 feet) for Military Table 6-10. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Table 6-11. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Table 6-12. Summary of Screening Results for COPCs in Subsurface Soil (1 to 4 feet) for the Table 6-13. Summary of Screening Results for COPCs in Sediment (0 to 0.5 foot) for Unrestricted Table 6-14. Summary of Screening Results for COPCs in Surface Water for Unrestricted Table 6-15. Summary of COPCs in identified for Unrestricted (Residential) Land Use, Commercial Table 6-16. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use (Resident Receptor Adult and Child) for using the maximum Table 6-17. Summary of COC Evaluation for Cancer Risk in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use using the maximum detected concentration at the Sand Creek Table 6-18. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Table 6-19. Summary of COC Evaluation for Cancer Risk in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Table 6-20. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Table 6-21. Summary of COC Evaluation for Cancer Risk in Deep Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Table 6-22. Summary of COC Evaluation for Noncancer Effects in Deep Surface Soil (1 to 4 feet) Table 6-23. Summary of COC Evaluation of Cancer Risk in Deep Surface Soil (1 to 4 feet) for Table 6-24. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land Use using the 95% UCL for the Resident Adult Receptor and the 

| Table 6-25. Summary of COC Evaluation of Cancer Risk in Subsurface Soil (1 to 13 feet) for         |       |
|----------------------------------------------------------------------------------------------------|-------|
| Unrestricted (Residential) Land Use using the 95% UCL                                              | 69    |
| Table 6-26. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for   | r     |
| Commercial Industrial Land Use using the 95% UCL.                                                  | 70    |
| Table 6-27. Summary of COC Evaluation of Cancer Risk in Subsurface Soil (1 to 13 feet) for         |       |
| Commercial Industrial Land Use using the 95% UCL                                                   | 73    |
| Table 6-28. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (4-to 7 feet -       | - 4   |
| using 5-to 9 data) for the Military Training Land Use using the 95% UCL                            | /4    |
| Table 6-29. Summary of COC Evaluation of Cancer Risk in Subsurface Soil (4 to 7 feet) for the      | -     |
| Military Training Land Use using the 95% UCL.                                                      | /6    |
| Table 6-30. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for         |       |
| Unrestricted (Residential) Land Use                                                                | 11    |
| Table 6-31. Summary of COC Evaluation of Cancer Risk in Sediment (0 to 0.5 foot) for Unrestricted  | ed 70 |
| (Residential) Land Use. $6^{-1}$                                                                   | 19    |
| National Guard Trainee                                                                             | 80    |
| Table 6-33. Summary of COC Evaluation of Cancer Risk in Sediment (0 to 0.5 foot) for the           |       |
| Commercial Industrial Land Use and the Military Training Land Use                                  | 83    |
| Table 6-34.       Summary of COC Evaluation of Noncancer Effects in Surface Water for Unrestricted |       |
| (Residential) Land Use                                                                             | 84    |
| Table 6-35.         Summary of COC Evaluation of Cancer Risk in Surface Water for Unrestricted     |       |
| (Residential) Land Use                                                                             | 85    |
| Table 6-36. Summary of COC Evaluation of Noncancer Effects in Surface Water for the Commercia      | ial   |
| Industrial Land Use and Military Training Land Use                                                 | 86    |
| Table 6-37. Summary of COC Evaluation for Cancer Risk in Surface Water for the Commercial          |       |
| Industrial Land Use and the Military Training Land Use                                             | 87    |
| Table 6-38. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial         |       |
| Industrial Land Use, and Military Training Land Use for each Exposure Media                        | 88    |
| Table 7-1. Ecological Risk Assessment Data Set for Surface Soils, Sediment, and Surface            |       |
| Water                                                                                              | 48    |
| Table 7-2. Summary of Screening Results for COPECs in Surface Soil (0 to 1 foot)                   | 50    |
| Table 7-3. Summary of Screening Results for COPECs in Sediment (0 to 0.5 foot)7-5                  | 53    |
| Table 7-4. Summary of Screening Results of COPECs in Surface Water                                 | 56    |
| Table 7-5. COPEC Distribution by Sampling Unit in Surface Soil                                     | 57    |
| Table 7-6. General Management Goals, Ecological Assessment Endpoints, Measures of Effect, and      |       |
| Decision Rules during Level II Screening                                                           | 59    |
| Table 7-7. Summary of COPECs in Surface Soil Sampling Units7-0                                     | 61    |
| Table 7-8. Hazard Quotients for COPECs in Surface Soil Sampling Units                              | 67    |
| Table 7-9. Summary of COPECs in Sediment Sampling Units                                            | 71    |
| Table 7-10. Summary of Hazard Quotients for COPECs in Sediment Sampling Units7-7                   | 75    |
| Table 7-11. Bioaccumulation Factors or Regression Equations Used to Model Uptake7-                 | 77    |
| Table 7-12. Exposure Parameters for Representative Ecological Receptors                            | 78    |
| Table 7-13. Toxicity Reference Values for Mammals                                                  | 79    |
| Table 7-14. Toxicity Reference Values for Birds7-8                                                 | 80    |
| Table 7-15. Wildlife Hazard Quotients for Mercury in Surface Soil with No AUF Adjustment 7-8       | 81    |
| Table 7-16. Wildlife Hazard Quotients for Mercury in Surface Soil Using an AUF Adjustment 7-8      | 82    |

## **List of Appendices**

- Appendix A Field Documentation
- Appendix B Quality Assurance Summary Report
- Appendix C Data Validation Results and Usability Assessment
- Appendix D Laboratory Analytical Results
- Appendix E Fate and Transport Modeling Results
- Appendix F Human Health Risk Assessment Tables
- Appendix G Ecological Screening Values
- Appendix H Ecological Risk Assessment Tables
- Appendix I Investigation-Derived Waste Management

## **Acronyms and Abbreviations**

| μg/L                    | micrograms per liter                                     |
|-------------------------|----------------------------------------------------------|
| °F                      | degrees Fahrenheit                                       |
| ACM                     | asbestos-containing material                             |
| ADD                     | average daily dose                                       |
| AMEC                    | AMEC Earth and Environmental, Inc.                       |
| amsl                    | above mean sea level                                     |
| AOC                     | Area of Concern                                          |
| atm-m <sup>3</sup> /mol | cubic meters of atmosphere per molecule                  |
| AUF                     | area use factor                                          |
| BAF                     | bioaccumulation factor                                   |
| BCF                     | bioconcentration factor                                  |
| bgs                     | below ground surface                                     |
| BSV                     | background screening value                               |
| CRJMTC                  | Camp Ravenna Joint Military Training Center              |
| CAS                     | Chemical Abstracts Service                               |
| CERCLA                  | Comprehensive Environmental, Compensation, and Liability |
|                         | Act                                                      |
| C&D                     | construction and debris                                  |
| CMCOPC                  | contaminant migration chemical of potential concern      |
| COC                     | chemical of concern                                      |
| COPC                    | chemical of potential concern                            |
| COPEC                   | chemical of potential ecological concern                 |
| CSM                     | conceptual site model                                    |
| da                      | aguifer thickness                                        |
| DAF                     | dilution attenuation factor                              |
| DGM                     | digital geophysical mapping                              |
| DOD                     | U.S. Department of Defense                               |
| DQO                     | data quality objective                                   |
| DPT                     | direct-push technology                                   |
| EcoSSL                  | ecological soil screening level                          |
| EPA                     | U.S. Environmental Protection Agency                     |
| EPC                     | exposure point concentration                             |
| ERA                     | ecological risk assessment                               |
| ESA                     | Endangered Species Act                                   |
| ESL                     | ecological screening level                               |
| ESV                     | ecological screening value                               |
| ET                      | evapotranspiration                                       |
| EU                      | exposure unit                                            |
| $f_{oc}$                | organic carbon fraction of soil                          |
| FS                      | feasibility study                                        |
| FWSAP                   | Facility-Wide Sampling and Analysis Plan                 |
| ft/yr                   | feet per year                                            |
| FWBWQS                  | Facility-Wide Biological and Water Quality Study         |
| FWBWQS                  | Facility-Wide Biological and Water Quality Study         |

# Acronyms and Abbreviations (continued)

| FWCUG    | facility-wide cleanup goal                               |
|----------|----------------------------------------------------------|
| gpd/ft   | gallons per day per foot                                 |
| GPS      | global positioning system                                |
| GSSL     | generic soil screening level                             |
| HELP     | Hydrologic Evaluation of Landfill Performance            |
| HI       | hazard index                                             |
| HHRA     | human health risk assessment                             |
| HHRAM    | Human Health Risk Assessment Manual                      |
| HLC      | Henry's Law Constant                                     |
| НО       | hazard quotient                                          |
| i        | hydraulic gradient                                       |
| IAEA     | International Atomic Energy Agency                       |
| ID       | identification                                           |
| IRP      | Installation Restoration Program                         |
| ISM      | incremental sampling method                              |
| K        | soil-water partition coefficient for inorganic chemicals |
| K        | soil-water partition coefficient for organic compounds   |
| Kom      | log octanol-water partition coefficient                  |
| ko       | kilogram                                                 |
| I ANI    | Los Alamos National Laboratory                           |
|          | Louisville Chemistry Guideline                           |
|          | laboratory control sample                                |
| LOAFI    | lowest observed adverse effect level                     |
| EOALL m  | nowest observed adverse effect level                     |
|          | meters per veer                                          |
| MCI      | moving contaminant level                                 |
| MCL      | maximum contaminant level                                |
| MD       | munitions debris                                         |
| MDC      | maximum detected concentration                           |
| MEC      | munitions and explosives of concern                      |
| mg/kg    | milligrams per kilogram                                  |
| mg/L     | milligrams per liter                                     |
| МКМ      | MKM Engineers, Inc.                                      |
| mm       | millimeter                                               |
| MS       | matrix spike                                             |
| MSD      | matrix spike duplicate                                   |
| NGB      | National Guard Bureau                                    |
| NOAEL    | no observed adverse effect level                         |
| OAC      | Ohio Administrative Code                                 |
| ODNR     | Ohio Department of Natural Resources                     |
| OHARNG   | Ohio Army National Guard                                 |
| Ohio EPA | Ohio Environmental Protection Agency                     |
| ORNL     | Oak Ridge National Laboratory                            |
| OWQS     | Ohio Water Quality Standards                             |
|          |                                                          |

# Acronyms and Abbreviations (continued)

| PA             | preliminary assessment                               |
|----------------|------------------------------------------------------|
| РАН            | polynuclear aromatic hydrocarbon                     |
| PBT            | persistent, bioaccumulative, and toxic               |
| PCB            | polychlorinated biphenyl                             |
| PID            | photoionization detector                             |
| PRG            | preliminary remediation goal                         |
| QA             | quality assurance                                    |
| QC             | quality control                                      |
| QSM            | Quality Systems Manual                               |
| R <sub>f</sub> | Retardation Factor                                   |
| RA             | removal action                                       |
| RD             | remedial design                                      |
| RI             | remedial investigation                               |
| ROD            | record of decision                                   |
| RME            | reasonable maximum exposure                          |
| RSL            | regional screening level                             |
| RRSE           | relative risk site evaluation                        |
| RVAAP          | Former Ravenna Army Ammunition Plant                 |
| SAIC           | Science Applications International Corporation       |
| SAP            | sampling and analysis plan                           |
| SESOIL         | seasonal soil compartment                            |
| Shaw           | Shaw Environmental & Infrastructure, Inc.            |
| SLERA          | screening level ecological risk assessment           |
| SMDP           | scientific management decision point                 |
| SOP            | standard operating procedure                         |
| SRC            | site-related chemical                                |
| SSSL           | site-specific soil screening level                   |
| SUXOS          | Senior Unexploded Ordnance Supervisor                |
| SVOC           | semivolatile organic compound                        |
| TAL            | Target Analyte List                                  |
| TCL            | Target Compound List                                 |
| TEC            | threshold effect concentration                       |
| TRV            | toxicity reference value                             |
| TUF            | temporal use factor                                  |
| UCL            | upper confidence limit                               |
| USACE          | U.S. Army Corps of Engineers                         |
| USACHPPM       | U.S. Army Center for Health Promotion & Preventative |
|                | Medicine                                             |
| USAEC          | U.S. Army Environmental Command                      |
| VOC            | volatile organic compound                            |
| WQC            | Water Quality Criteria                               |

## **EXECUTIVE SUMMARY**

This *Remedial Investigation (RI) Report* was completed to document the results of the field activities performed for Area of Concern (AOC) RVAAP-34 Sand Creek Disposal Road Landfill (herein, referred to as the "Sand Creek Site"). The Sand Creek Site is located at the former Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio. This work was completed in accordance with the *Comprehensive Environmental Response, Compensation, and Liability Act* (CERCLA). This RI Report was originally prepared by Shaw Environmental & Infrastructure, Inc. (Shaw) a CB&I company, under Delivery Order 0002 for Architectural/Engineering Environmental Services at the former RVAAP under the *Indefinite Delivery/Indefinite Quantity Contract No. W912QR-08-D-0013*. The Delivery Order was issued by the United States (U.S.) Army Corps of Engineers (USACE), Louisville District on September 22, 2008.

Work described herein was conducted under the U.S. Department of Defense (DOD) Installation Restoration Program (IRP). Due to delays in the overall cleanup program at the former RVAAP that were unrelated to Shaw's performance, Shaw could not complete this document before the Contract ended and the document was left as a Draft. Therefore, USACE has revised and completed this document. Revisions to the human health risk assessment was necessary before the Army could re-issue this RI. The human health risk assessment that was originally completed in the RI by Shaw, did not include the modifications to the human health risk assessment that was originally completed in the *"Final Technical Memorandum: Land Uses and Revised Risk Assessment Process for the Ravenna Army Ammunition Plant (Risk Assessment Technical Memo) (RVAAP Installation Restoration Program, Portage/Trumbull Counties, Ohio (Army National Guard Directorate, 2014)." Because the human health risk assessment was the only portion that needed updated in the RI, the primary work for this RI is unchanged. For example, no new samples were taken by the USACE. No new laboratory analysises were completed by USACE.* 

The human health risk assessment Section of this RI was fully updated and revised by USACE. Certain information depicted on figures and contained in this RI may not reflect current conditions since this document was originally completed in 2013. Species lists and other natural resources were updated in the 2014 Integrated Natural Resource Management Plan (INRMP). Please refer to this document for a current species list. However, additions and changes to the current species list do not affect the results and findings of this RI. Future documents such as the Proposed Plan (PP), will be updated as necessary. None of these updates or modifications such updated species lists alter the findings and recommendations presented in this RI.

This document summarizes the results of the RI field activities conducted at the Sand Creek Site between September and November 2010. Data from previous studies were also considered in this RI Report that included the following:

- Surface soil, sediment, and surface water samples collected during a removal action (RA) and sampling investigation documented in the *Remedial Design/Removal Action Plan for RVAAP-34 Sand Creek Disposal Road Landfill* (MKM Engineers, Inc. [MKM], 2004) (hereafter referred to as the Remedial Design [RD]/RA Report).
- A sediment sample and surface water samples collected adjacent to the site during a facility-wide investigation of surface water and sediment conditions at the former RVAAP and documented in the 2003 Facility-Wide Biological and Water Quality Study (FWBWQS) (USACE, 2005a).

Results from the subsurface digital geophysical mapping (DGM) survey performed at the site and documented in the *Final Digital Geophysical Mapping Report for the RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site* (Shaw, 2011). The scope of this investigation is to complete the assessment of the extent of contamination and the potential impact to human health and the environment for the purpose of reaching a remedial action decision. The primary objectives of the RI are as follows:

- To conduct surface and subsurface soil and sediment sampling to define the nature and extent of contamination to support the preparation of a feasibility study (FS) at the Sand Creek Site
- To collect data to support a Record of Decision at the Sand Creek Site

#### ES.1 AOC Description

The Sand Creek Disposal Road Landfill is in the eastern portion of the former RVAAP and is a former open dump area. The operational history of disposal activities at the site is incomplete. Construction and debris type material were delivered to the site and dumped over an embankment located immediately adjacent to Sand Creek. The dump site extended along the embankment for approximately 1,200 feet and varied in width from 20 to 40 feet from the top of the bank to the bottom. The size of the defined AOC is approximately 1 acre. The bank slopes from east to west towards Sand Creek at 40 to 60 degrees from the horizontal. There are no records indicating the quantities or materials dumped at the site and the dates of operation for the landfill are unknown.

#### **ES.2** Summary of Previous Investigations

Prior to the RI activities, previous investigations and other activities conducted at the Sand Creek Site included a 1996 preliminary assessment, a 2003 removal action (RA) with confirmatory sampling, and a 2010 digital geophysical mapping (DGM) survey. A facility-wide biological and water quality study (FWBWQS) was conducted for surface water and sediment adjacent to the site in 2003.

The evaluation of confirmatory data collected for the 2003 RA was performed as part of the *Final Data Quality Objectives (DQO) Report for the former RVAAP-34 Sand Creek Disposal Road Landfill* (Shaw, 2009) to identify any data gaps that needed to be addressed during the RI. Samples collected during the 2003 RA included surface soil, sediment, and surface water samples. The historical surface soil and sediment samples were collected using discrete sampling methods. The confirmatory soil samples showed elevated concentrations (i.e., greater than the RVAAP background concentrations and/or the U.S. Environmental Protection Agency [EPA] Preliminary Remediation Goals [PRGs]) of heavy metals in the northern third of the site with lower concentrations of heavy metals, semivolatile organic compounds (SVOCs), explosives, and propellants dispersed over the remainder of the site. The confirmation sediment samples collected from the neighboring floodplain and Sand Creek reported arsenic levels greater than the EPA PRG level. No analytes exceeded the background concentrations or the PRGs in the surface water samples collected from the Sand Creek located adjacent to the AOC (MKM, Engineers, Inc., 2004).

During the 2003 FWBWQS, the USACE performed surface water and sediment sampling and biological monitoring at 26 stream sites at the former RVAAP that included a location adjacent to the Sand Creek Site. The samples included two surface water samples that were collected at the intersection of the Sand Creek and the former railroad that transects the site. The surface water samples were collected at separate times of the year. A sediment sample was collected at the same time as the initial surface water sample using the incremental sampling method (ISM) along a reach of Sand Creek; however, the exact location where the sediment sample was collected is not known. The results of this survey are used in this RI to evaluate potential contaminant migration from the site to sediment and surface water adjacent to the AOC. In addition, the surface water results are further used in this RI to assess potential impacts to human health and the environment. Inorganics were detected in the sediment sample that exceeded the RVAAP background value of zero. Concentrations of arsenic, chromium, cobalt, silver, and vanadium were detected in surface water above the background concentrations. All other detected metals in surface water were either essential nutrients or the maximum concentration was less than the RVAAP surface water background values. Low concentrations of SVOCs and nutrient parameters were also detected in both the sediment and the surface water samples (USACE, 2005a).

The 2010 DGM survey was performed at the Sand Creek by Shaw to determine the broader limits of metallic waste materials as well as to define more localized regions within and outside the AOC footprint that contain relatively higher metal content. The DGM data indicated that the largest portion of the metal debris at the site is present northeast of the former railroad bed. Several areas characterized by relatively higher density of anomalies are located between the stream and the edge of the eastern plateau. Areas characterized by relatively lower density of anomalies are present throughout the southern portion of the survey area.

#### ES.3 Summary of Remedial Investigation Activities

The RI field activities conducted at the Sand Creek Site between September 21 and November 9, 2010, included the collection of surface soil and sediment samples using the ISM and subsurface soil samples using a modified version of the ISM. Sampling locations for these activities were based on data gaps identified in the DQO Report (Shaw, 2009). Surface water samples were not collected during the RI based on the recommendations made in the DQO Report. Groundwater sampling is performed on a facility-wide basis and was not included in Shaw's scope of work for the RI at the Sand Creek Site. Based on the data gaps and need for additional information regarding contaminants identified during the previous investigations at the AOC, the following samples were collected for the RI:

- 18 ISM surface soil samples from 0 to 1 foot below ground surface (bgs) from along the AOC source area slopes and upgradient locations at the top of slope where historical dumping activities occurred
- 2 ISM sediment samples from 0 to 0.5 foot bgs along the floodplain downgradient of the AOC source area slopes and adjacent to the Sand Creek
- 58 modified ISM subsurface soil samples using direct-push technology (DPT) and manual hand augers (The DPT samples were collected at the top of slope upgradient of the AOC source areas at the following intervals: 1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet. The hand-auger samples were collected at the 1- to 5-foot sample intervals along the sloped areas of the AOC where DPT sampling could not be performed.)

#### ES.4 Summary of Nature and Extent of Contamination

Available data were evaluated to identify site-related chemicals (SRCs) at the Sand Creek Site in accordance with the evaluation process presented in the *Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant* (Science Applications International Corporation [SAIC], 2010), hereafter, referred to as the Facility-Wide Cleanup Goal (FWCUG) Report. Much of the SRCs identified in the environmental media evaluated for nature and extent of contamination (surface soil, subsurface soil, sediment, and surface water) occurred at the northern portion of the AOC. Between the 2003 RA and RI data, a total of 58 SRCs was identified in surface soil (0 to 1 foot). Subsurface soils were collected during the RI only, and a total of 64 SRCs was identified in the five sample intervals between 1 and 20 feet bgs. A total of 50 SRCs were identified in sediment between the 2003 RA (0 to 1 foot), the 2003 FWBWQS (0 to 0.5 foot), and the RI data sets (0 to 0.5 foot). Eleven SRCs consisting of inorganics, SVOCs, and two nutrient parameters were identified in surface water between the two samples collected for the 2003 FWBWQS. The spatial distribution of the SRCs, particularly inorganics, is consistent among the environmental media and the types of methods used to collect the samples (i.e., discrete vs. ISM).

- In surface soils collected during the RI, the greatest concentrations of inorganic, SVOCs, and explosives and propellants SRCs occurred at the northern portion of the AOC where historical disposal activities occurred and where much of the RA was conducted in 2003. Explosives were detected at two locations at the northern portion of the AOC. The detections of inorganics and SVOCs were well distributed across the site. However, the greatest concentrations also occurred in the northern portion of the site. The number of detected inorganics and SVOCs and elevated concentrations generally decreased the further south the samples were collected at the AOC.
- A total of 22 soil borings was advanced during the RI field activities. Bedrock was not encountered at any of the borings which were advanced to a maximum depth of 20 feet bgs. Three explosives concentrations were detected at one soil boring location at 1 to 5 feet bgs along the slope at the northern portion of the AOC. The spatial distribution of inorganics and SVOCs was like that observed in surface soil samples with the greatest concentrations detected along and adjacent to the slope at the northern portion of the AOC. The greatest number of detects and the greatest concentrations for both inorganics and SVOCs were typically found in the 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet sample intervals. However, the number of detections and concentrations generally decreased with the sample distance to the south at the AOC and with boring depth. Concentrations of volatile organic compounds, pesticides, and polychlorinated biphenyls that were detected were at two boring locations at the northern portion of the AOC at the 1- to 5-foot sample intervals.
- Like the surface soils, the greatest concentrations of SRCs in the two ISM sediment samples collected for the RI occurred at the northern portion of the AOC. The SRCs included primarily inorganics, SVOCs, and pesticides. Two polychlorinated biphenyl analytes were detected in the northern floodplain sediment sampling unit. One explosive/propellant (nitroguanidine) was detected in both sediment sampling

units. Many the SRCs identified in sediment during the 2003 RA were detected north of the former rail bed and correlate with the results from the RI. The exact location of the 2003 FWBWQS sediment sample collected using ISM is not known; therefore, a distribution comparison to the sediment samples from the other investigations cannot be made.

• Although 11 SRCs were detected in the surface water samples collected adjacent to the AOC for the 2003 FWBWQS, a cursory review of the overall surface water data collected along the Sand Creek as part of the 2003 survey indicates that detected analyte concentrations in the samples collected adjacent to the AOC are consistent with the other surface water samples collected both upstream and downstream of the site. Based on these results, it appears that surface water conditions downstream of the AOC have not been impacted by historical disposal activities at the Sand Creek Site.

#### ES.5 Summary of Contaminant Fate and Transport

Contaminant fate and transport modeling was performed to evaluate the potential for the SRCs in surface and subsurface soils to migrate vertically downward and impact groundwater quality and eventually surface water. Any SRCs identified would require further evaluation in the FS.

Seasonal Soil Compartment (SESOIL) modeling (Waterloo Hydrogeologic, Inc., 2004) was performed for constituents identified in potential source surface soils as contaminant migration chemicals of potential concern (CMCOPCs) after screening against the 1,000-year travel time criteria. The SESOIL model defines the soil compartment as a soil column extending from the ground surface through the unsaturated zone and to the upper level of the saturated zone. Processes simulated in SESOIL are categorized in three cycles: (1) the hydrologic cycle (rainfall, surface runoff, infiltration, soil-water content, evapotranspiration, and groundwater recharge), (2) the sedimentation cycle, and (3) the pollutant cycle (convective transport, volatilization, adsorption/desorption, and degradation/decay),

The CMCOPCs identified as having the potential for impacting groundwater and surface water include 2,4,6-trinitrotoluene and 2-amino-4,6-dinitrotoluene, 1,4-dichlorobenzene, carbazole, pentachlorophenol, benzene, alpha-BHC, and beta-BHC. The CMCOPCs identified represent a conservative comparison since groundwater at the site has not been investigated and the hydrogeologic parameters are either assumed values or literature values for comparable lithologies.

#### ES.6 Summary of Human Health Risk Assessment

A human health risk assessment (HHRA) was performed to evaluate whether site conditions may pose a risk to current or future human receptors and to identify which, if any site conditions need to be addressed in the FS. The data sets used for the risk assessment process were primarily from the RI and included the ISM surface soil and sediment samples and subsurface samples. The surface water samples from the 2003 RA and the 2003 FWBWQS were also used. Also, the RI included data that was used to evaluate the need for use restrictions such as land-use controls.

The Sand Creek Site is in the eastern central portion of the facility. The AOC is not currently used for military training activities but may receive periodic foot traffic during maintenance, restoration, and security activities. The most likely future land use for the AOC is the Military Training. The Representative Receptor for this Land Use is the NGT per the *USACE's Facility-Wide Human Health Risk Assessment Manual* (HHRAM - USACE, 2005b) and the 2014 Risk Assessment Tech Memo. This anticipated future Land Use, in conjunction with the evaluation of Unrestricted (Residential) Land Use, form the basis for identifying chemicals of concern (COCs) in this RI. Unrestricted (Residential) Land Use is included to evaluate COCs for Unrestricted (Residential) Land Use at the AOC, as required by the CERCLA process and as outlined in the HHRAM (USACE, 2005b).

A third Land Use was also included in this revised RI. The third Land Use, Commercial Industrial Land Use was identified in the Risk Assessment Tech Memo to evaluate the site to determine if it is suitable for full-time, permanent employees. Per the Risk Assessment Tech Memo (NGB, 2014), if the criteria for the Commercial Industrial Land Use is met, then no additional remedial actions are required except for the development of Land Use Controls through the CERCLA process (FS, PP, ROD, etc.). The Military Training Land Use is the primary Land Use and is protective of all activities that the OHARNG may conduct on the site except for full-time, permanent-occupational use. Evaluation of the three Land Uses in the RI will allow better risk management decisions in an FS is needed.

The Sand Creek Site was considered as a single EU based on the future land use. Although the site is being evaluated as a single EU, soil data collected within and adjacent to the AOC were aggregated by depth intervals since different future use receptors with different depths of potential exposure are required to be evaluated. This RI includes analyses to assess potential risks at various depths to assess whether the most likely receptor to deep surface soil and subsurface soil, the NGT, would be able to dig and to what depth. The soil intervals for Unrestricted (Residential) Land Use and Commercial Industrial Land Use were also assessed. Sediment samples collected for the RI and previously collected surface water samples were evaluated in the same manner for the identified receptors. The purpose of evaluating the receptors in this manner is to provide information for further evaluation in the FS, if required, and to determine the best remedial action to meet the evaluation criteria. The COPC identification was completed for the following data sets:

- Resident Receptor (Adult and Child)—Surface soil (0–1 foot bgs)
- Industrial Receptor—Surface soil (0–1 foot bgs)
- National Guard Trainee Deep Surface soil (0–4 feet bgs)
- Resident Receptor (Adult/Child)—Subsurface soil (1–13 feet bgs)
- Industrial Receptor —Subsurface soil (1–13 feet bgs)
- National Guard Trainee—Subsurface soil (4–7 feet bgs))
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Sediment
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Surface water.

The exposure scenarios for RVAAP-specific receptors (Resident Receptor and NGT) are presented in the FWCUG Report (SAIC, 2010). The exposure parameters for the Industrial Receptor (Composite Indoor and Outdoor Worker) can be found on the USEPA's RSL website and are those used to calculate Industrial RSLs. There is no depth or intrusive activity associated with the Industrial Receptor so for the HHRA, they are assumed to be exposed to depths like that of the Resident Receptor.

The HHRA was prepared using the streamlined approach to risk decision making as described in the U.S. Army Corps of Engineers Ravenna Army Ammunition Plant Position Paper for the Application and Use of Facility-Wide Cleanup Goals (USACE, 2012). The approach identifies chemicals of potential concern (COPCs) by comparing concentrations to background screening values, eliminating essential nutrients, and comparing site concentrations to the FWCUGs. The COCs are identified through additional screening of the COPCs by comparing site concentrations to specific FWCUGs and using a "sum of ratios" approach to account for accumulative effects for carcinogens and noncarcinogens acting on the same critical effect.

#### <u>COPCs in Surface Soil and Deep Surface Soil</u>

Surface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 0- to 1-foot interval.

• The COPCs identified for the Unrestricted (Residential) Land Use receptors in surface soil are antimony, arsenic, cadmium, copper, mercury, silver, thallium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and ideno(1,2,3-cd) pyrene. These chemicals are provided in **Table ES-1**.

• The COPCs identified for the Commercial Industrial Land Use receptors in surface soil are arsenic, thallium, and benzo(a)pyrene. These chemicals are highlighted in **Table ES-1**.

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval.

• The COPCs identified for this interval and NGT Receptor are arsenic, barium, cadmium, cobalt, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h) anthracene. These chemicals are provided in **Table ES-1**.

A summary of COPCs in surface soil for the Resident Receptor, Industrial Receptor, and deep surface soils for the National Guard is presented in **Table ES-1**.

#### COPCs in Subsurface Soil

Subsurface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 1- to 13-foot interval. Samples from this interval include the subsurface samples from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet.

- The COPCs identified for the Unrestricted (Residential) Land Use receptors identified in subsurface soils based on the MDC are antimony, arsenic, copper, lead, thallium, vanadium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene. These chemicals are provided in **Table ES-1**.
- The COPCs identified for the Commercial Industrial Land Use in subsurface soil are arsenic, lead, thallium, benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene. These chemicals are provided in **Table ES-1**.

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap.

• Arsenic was the only COPC identified for this interval for Commercial Industrial Land Use. All SRCs were screened and the resulting COPCs are provided in **Table ES-1**.

A summary of results for the screening process used to evaluate for COPCs in subsurface soil for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use is presented in **Table ES-1**.

#### **COPCs in Sediment**

The COPCs identified in sediment for the Unrestricted (Residential) Land Use are antimony, silver, thallium, and benzo(a)pyrene. Only benzo(a)pyrene was identified as a COPC in sediment for the Commercial Industrial and the Military Training Land Use. Sediment is not considered an exposure medium for the Industrial Receptor. Therefore, no Industrial RSLs were developed for this receptor. For this risk assessment, it was assumed that an Industrial Receptor would be exposed similarly as the NGT receptor. The FWCUGs for the NGT were used to determine COPCs in the sediment for the Commercial Industrial Land Use.

A summary of the COPCs identified for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use Receptors in sediment is presented in **Table ES-1**.

#### COPCs in Surface Water

Arsenic is the only COPC identified in surface water for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors. Surface water is not considered an exposure medium for the Industrial Receptor. Therefore, no Industrial RSLs were developed for this receptor for surface water. For this risk assessment, it was assumed that an Industrial Receptor would be exposed similarly as the NGT receptor. The FWCUGs for the NGT were used to determine COPCs in the surface water for the Commercial Industrial Land Use.

A summary of the COPCs identified for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors in surface water is presented in **Table ES-1**.

#### COCs in Surface Soil and Deep Surface Soil

Surface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 0- to 1-foot interval. Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. The COC determination for each receptor was determined separately for noncancer (by target organ/critical effect) and for cancer risks. The COCs were identified using the maximum detected concentration for each COPC at any of the ISM locations and not by individual ISM location.

#### COCs Unrestricted Residential/Commercial Industrial Land Uses in Surface Soil

Only arsenic was identified as a COC based on noncancer effects for the child Resident Receptor for the Unrestricted (Residential) Land Uses in surface soil (**Table ES-1**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These were determined using the maximum concentration of any of the ISM surface soil results for each COPC for the Unrestricted (Residential) Land Use.

No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in surface soil (**Table ES-1**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene for the Commercial Industrial Land Use. These COCs were based on the maximum detected concentration for each COPC at any of the ISM locations and not by ISM location.

#### COCs Military Training Land Use in Deep Surface Soil

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval were also used.

No COCs based on noncancer effects were identified for the Military Training Land use in the surface samples using ISM maximum sample concentrations in the 0- to 1 foot interval (**Table ES-1**). Three COCs were identified based on cancer risks and using the SOR. These were arsenic, cobalt, and benzo(a)pyrene for the Military Training Land Use.

In the discrete samples from the 1 to 5-foot interval, the 95% UCL was estimated and used in the calculations. No COCs based on noncancer effects were identified for the Military Training Land Use in the deep surface samples (1-to 5-foot interval) using the 95% UCL (**Table ES-1**). Four COCs were identified based on cancer risks and using the SOR for this interval. These were arsenic, cobalt, benzo(a) pyrene, and benzo(b)fluoranthene for the Military Training Land Use.

#### COCs Unrestricted (Residential) Land Use in Subsurface Soil

Based on the results of this HHRA, there are several COCs identified in the subsurface soil for the Unrestricted (Residential) Land Use. These were identified using the 95% UCL or the MDC (if it was larger than the 95% UCL) for each COPCs regardless of location. No COCs based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in subsurface soil. ISM DU from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet (**Table ES-1**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These were determined using the maximum concentration of any of the ISM surface soil results for each COPC.

#### COCs in Subsurface Soil for the Commercial Industrial Land Use

No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in subsurface soil. Four COCs were identified based on cancer risks and using the SOR. These were arsenic, benzo(a)anthracene, dibenzo(a,h)anthracene, and benzo(a)pyrene. These COCs were derived using the 95% UCL for each COC at any of the ISM locations and not for each individual ISM locations. This type of re-assessment should be completed in the FS, so that the minimum area to be evaluated can be focused where there is the most contamination. This would help focus the FS so that only the contaminated areas are evaluated.

#### COCs in Subsurface Soil for the Military Training Land Use

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap. No COCs were identified for the Military Training Land Use in the subsurface interval for the NGT (should have been only 4-to 7 feet but this also included data from 5-to 9 feet).

#### **COCs in Sediment Summary for all Land Uses**

**No COCs** were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the sediment at the AOC. This media does not require further evaluation in an FS. A "No further Action" (NFA) determination is obtained for sediment at the Sand Creek Site.

#### Surface Water Summary

**No COCs** were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the surface water. This media does not require further evaluation in an FS. An NFA determination is obtained for surface water at the Sand Creek Site.

#### **Conclusions**

Results of the HHRA indicate the presence of several COCs in surface soil and subsurface soil for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use. Arsenic and benzo(a)pyrene are the primary risk drivers. These COCs should be further evaluated in an FS to determine the appropriate remedial actions for soil at this AOC.

No COCs were identified in sediment or surface water at the Sand Creek Disposal Road Landfill. An NFA determination is indicated for both sediment and surface water and an FS is not warranted.

#### ES.7 Summary of Ecological Risk Assessment

A screening level ecological risk assessment (SLERA) was conducted to evaluate the potential for adverse ecological effects to ecological receptors from SRCs at the Sand Creek Site and to determine if any ecological receptors need to be recommended for further evaluation in the FS. The SLERA included characterizing the ecological communities near the site, determining the contaminants present, identifying pathways for receptor exposure, and estimating the magnitude of the likelihood of potential adverse effects to identified receptors. Site-specific analyte concentration data for surface soil, sediment, and surface water from the Sand Creek Site were included in the SLERA. The ecological receptor species selected for evaluation in the SLERA were identified in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003).

The SLERA was prepared in accordance with the Ohio Environmental Protection Agency (2008) *Ecological Risk Assessment Guidance Document* Level I Scoping through Level III Baseline. The Level I Scoping is designed to efficiently determine whether further ecological risk should be evaluated at a site. The Level II Screen is to be completed after the full nature and extent of the site contamination has been determined. The purpose of a Level II Screen is to select the list of detected chemicals per media as appropriate, evaluate aquatic habitats potentially impacted by the site, and if necessary, revise the conceptual site model, complete a list of ecological receptors, identify chemicals of potential ecological concern (COPECs) and nonchemical stressors, and other tasks required for further ecological evaluation of the site and impacted habitats. The purpose of a Level III Baseline is to identify the potential for ecological harm at a site. Specifically, the Level III Baseline is a formal ecological risk assessment process that includes an exposure assessment, toxicity assessment, risk characterization, and an uncertainty analysis. Potential ecological hazards are evaluated by using the COPECs and nonchemical stressors identified in a Level II Screen, generic receptors, direct contact evaluations, and food-web models that are provided in the guidance document.

Mercury in surface soil was the only COPEC recommended to be evaluated under the Level III Baseline evaluation following the Level II Screen. The only species identified as having a hazard quotient (HQ) greater than 1 associated with mercury was the robin, which indicates that potential hazards could exist to omnivorous birds foraging exclusively at the site. It is important to state that the finding of HQs greater than 1 does not necessarily indicate that adverse impacts are occurring. Additionally, the size of the entire AOC would only support one breeding pair of the American robin. The AOC is not large enough to support very many birds, especially as foraging habitat. Therefore, no further evaluation from an ecological risk perspective is warranted.

#### ES.8 Remedial Investigation Recommendations

Based on the RI results, the Sand Creek Site has been adequately characterized and the project objectives have been achieved. Surface and subsurface soil and sediment samples were collected during the RI field activities to define the nature and extent of contamination and support the preparation of an FS and a subsequent Record of Decision for the AOC. Therefore, the recommended path forward is to proceed to the FS phase of the CERCLA process. The FS will evaluate remedial alternatives to address the COCs identified in surface and subsurface soil only. The FS will include a Risk Management Evaluation to fully assess each COCs before proceeding to the alternative analysis for human health. Since no COPECs in soil were identified in the ERA, no additional remedial actions are warranted at the AOC from an ecological perspective. No COCs or COPECs were identified in sediment or surface water; therefore, an FS is not warranted for sediment or surface water at the Sand Creek Site.

In addition to the FS to assess soils at the AOC, further analysis of the groundwater should be conducted for this AOC. An analysis of remedial alternatives for surface and subsurface soil is recommended based on fate and transport results of the leaching potential to groundwater that is associated with the identified CMCPOCs for these media. Evaluation of groundwater at the AOC should be conducted as part of the Facility Wide Groundwater Investigation (RVAAP-66).

# Table ES-1. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use for each Exposure Media.

| Receptor per Land Use and<br>Exposure Point                                                                             | COPO     | COCs Identified <sup>b</sup> |                                                                                                                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SURFACE SOIL                                                                                                            |          |                              |                                                                                                                                                                                          |  |  |  |
| Surface Soil (0 to 1 foot bgs)                                                                                          |          |                              |                                                                                                                                                                                          |  |  |  |
| <b>Unrestricted (Residential)</b><br><b>Land Use</b><br>-Based on MDC                                                   | Antimony | Benzo(a)anthracene           | Arsenic<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Dibenzo(a,h)anthracene<br>All carcinogenic except<br>arsenic which was also<br>from non-carcinogen<br>effects |  |  |  |
|                                                                                                                         | Arsenic  | Benzo(a)pyrene               |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Cadmium  | Benzo(b)fluoranthene         |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Copper   | Dibenzo(a,h)anthracene       |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Mercury  | Indeno(1,2,3-cd)pyrene       |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Silver   | Thallium                     |                                                                                                                                                                                          |  |  |  |
| Surface Soil (0 to 1 foot bgs)                                                                                          |          |                              |                                                                                                                                                                                          |  |  |  |
| <b>Commercial Industrial</b><br><b>Land Use</b><br><i>-Based on MDC</i>                                                 | Arsenic  | Benzo(a)pyrene               | Arsenic                                                                                                                                                                                  |  |  |  |
|                                                                                                                         | Thallium |                              | Benzo(a)pyrene                                                                                                                                                                           |  |  |  |
|                                                                                                                         |          |                              | All carcinogenic                                                                                                                                                                         |  |  |  |
| Deep Surface Soil (0 to 1 feet bgs)                                                                                     |          |                              |                                                                                                                                                                                          |  |  |  |
| <b>Military Training Land Use</b><br>-Based on MDC ISM results for 0<br>to 1 feet                                       | Arsenic  | Benzo(a)pyrene               | Arsenic<br>Cobalt                                                                                                                                                                        |  |  |  |
|                                                                                                                         | Barium   | Benzo(b)fluoranthene         |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Cadmium  | Dibenzo(a,h)anthracene       | Benzo(a)pyrene                                                                                                                                                                           |  |  |  |
|                                                                                                                         | Cobalt   |                              | All carcinogenic based                                                                                                                                                                   |  |  |  |
| Deep Surface Soil (1 to 5 feet bgs)                                                                                     |          |                              |                                                                                                                                                                                          |  |  |  |
| <b>Military Training Land Use</b><br>-Based on site-wide results for 1<br>to 5 feet and 95% UCL for<br>Discrete samples | Arsenic  | Benzo(a)pyrene               | Arsenic<br>Cobalt<br>Benzo(a)pyrene                                                                                                                                                      |  |  |  |
|                                                                                                                         | Barium   | Benzo(b)fluoranthene         |                                                                                                                                                                                          |  |  |  |
|                                                                                                                         | Cadmium  | Dibenzo(a,h)anthracene       | All carcinogenic based                                                                                                                                                                   |  |  |  |
|                                                                                                                         | Cobalt   |                              |                                                                                                                                                                                          |  |  |  |

# Table ES-1. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use for each Exposure Media.

| Receptor per Land Use and<br>Exposure Point                                                                                                                                        | COPCs Identified <sup>a</sup> |            |                        | COCs Identified <sup>b</sup>                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|------------------------|--------------------------------------------------|--|--|--|
| SUBSURFACE SOIL                                                                                                                                                                    |                               |            |                        |                                                  |  |  |  |
| Subsurface Soil (1 to 13 foot bgs)                                                                                                                                                 |                               |            |                        |                                                  |  |  |  |
| <b>Unrestricted (Residential)</b><br><b>Land Use</b><br>(1 to 13 feet bgs)<br><i>Based on site-wide results and</i><br>95% UCL for Discrete samples                                | Antimony                      |            | Benzo(a)anthracene     |                                                  |  |  |  |
|                                                                                                                                                                                    | Arsenic                       |            | Benzo(a)pyrene         | Arsenic                                          |  |  |  |
|                                                                                                                                                                                    | Copper                        |            | Benzo(b)fluoranthene   | Benzo(a)pyrene                                   |  |  |  |
|                                                                                                                                                                                    | Thallium                      |            | Dibenzo(a,h)anthracene |                                                  |  |  |  |
|                                                                                                                                                                                    | Vanadium                      |            |                        |                                                  |  |  |  |
| <b>Commercial Industrial</b><br><b>Land Use</b><br>(1 to 13 feet bgs)<br><i>-Based on site-wide results and</i><br>95% UCL for Discrete samples                                    | Arsenic                       |            | Benzo(a)anthracene     | Arsenic                                          |  |  |  |
|                                                                                                                                                                                    | Thallium                      |            | Benzo(a)pyrene         | Benzo(a)pyrene                                   |  |  |  |
|                                                                                                                                                                                    |                               |            | Dibenzo(a,h)anthracene | Dibenzo(a,h)anthracene<br>All carcinogenic based |  |  |  |
| Subsurface Soil (4 to 7 foot bgs)                                                                                                                                                  |                               |            |                        |                                                  |  |  |  |
| Military Training Land Use<br>-Based on site-wide results for 5<br>to 9 feet and 95% UCL for<br>Discrete samples                                                                   | Arsenic                       |            |                        | Arsenic<br>Carcinogenic based                    |  |  |  |
| Sediment (0 to 0.5 foot bgs)                                                                                                                                                       |                               |            |                        |                                                  |  |  |  |
| Unrestricted (Residential) Land<br>Use, Commercial Industrial<br>Land Use, and Military<br>Training Land Use                                                                       | Antimony                      | y Thallium |                        |                                                  |  |  |  |
|                                                                                                                                                                                    | Silver Benzo(a)pyrene         |            | None                   |                                                  |  |  |  |
| Surface Water                                                                                                                                                                      |                               |            |                        |                                                  |  |  |  |
| Unrestricted (Residential) Land<br>Use, Commercial Industrial<br>Land Use, and Military<br>Training Land Use                                                                       | Arsenic                       |            |                        | None                                             |  |  |  |
| <sup>a</sup> denotes COPCs identified by screening.<br><sup>b</sup> denotes COCs identified by screening.<br>has denotes below around surface. COC denotes chemical of concerning. |                               |            |                        |                                                  |  |  |  |

bgs denotes below ground surface. COC denotes chemical of concern.

COPC denotes chemical of potential concern.

bgs denotes below ground surface. COC denotes chemical of concern.

mg/kg denotes milligrams per kilogram.

Final RI

## **1.0 PROJECT DESCRIPTION**

#### **1.1 Introduction**

This *Remedial Investigation (RI) Report* was completed to document the results of the field activities performed for Area of Concern (AOC) RVAAP-34 Sand Creek Disposal Road Landfill (herein, referred to as the "Sand Creek Site"). The Sand Creek Site is located at the former Ravenna Army Ammunition Plant (former RVAAP) in Ravenna, Ohio. This work was completed in accordance with the *Comprehensive Environmental Response, Compensation, and Liability Act* (CERCLA). This RI Report was originally prepared by Shaw Environmental & Infrastructure, Inc. (Shaw) a CB&I company, under Delivery Order 0002 for Architectural/Engineering Environmental Services at the former RVAAP under the *Indefinite Delivery/Indefinite Quantity Contract No. W912QR-08-D-0013*. The Delivery Order was issued by the United States (U.S.) Army Corps of Engineers (USACE), Louisville District on September 22, 2008.

Work described herein was conducted under the U.S. Department of Defense (DOD) Installation Restoration Program (IRP). Due to delays in the overall cleanup program at the former RVAAP that were unrelated to Shaw's performance, Shaw could not complete this document before the Contract ended and it was left as a Draft. Therefore, USACE has revised and completed this document. Revisions to the human health risk assessment were necessary before the Army could re-issue this RI. The human health risk assessment that was originally completed in the RI by Shaw, did not include the modifications to the human health risk assessment process as required in the *"Final Technical Memorandum: Land Uses and Revised Risk Assessment Process for the Ravenna Army Ammunition Plant (Risk Assessment Technical Memo) (RVAAP Installation Restoration Program, Portage/Trumbull Counties, Ohio (Army National Guard Directorate, 2014)." Because the human health risk assessment was the only portion that needed updated in the RI, the primary work for this RI is unchanged. For example, no new samples were taken by the USACE.* 

The human health risk assessment section of this RI was fully updated and revised by USACE. Certain information depicted on figures and contained in this RI may not reflect current conditions since this document was originally completed in 2013. Species lists and other natural resources were updated in the 2014 Integrated Natural Resource Management Plan (INRMP). Please refer to this document for a current species list. However, additions and changes to the current species list do not affect the results and findings of this RI. Future documents such as the Proposed Plan (PP), will be updated as necessary. None of these updates or modifications such updated species lists alter the findings and recommendations presented in this RI.
#### 1.2 Purpose

This document summarizes the results of the RI field activities conducted at the Sand Creek Site between September and November 2010. Data from previous studies were also considered in this RI Report that included the following:

- Surface soil, sediment, and surface water samples collected during a removal action (RA) and sampling investigation documented in the *Remedial Design/Removal Action Plan for RVAAP-34 Sand Creek Disposal Road Landfill* (MKM Engineers, Inc. [MKM], 2004) (hereafter referred to as the Remedial Design [RD]/RA Report).
- A sediment sample and surface water samples collected adjacent to the site during a facility-wide investigation of surface water and sediment conditions at the former RVAAP and documented in the 2003 Facility-Wide Biological and Water Quality Study (FWBWQS) (USACE, 2005a).
- Results from the subsurface digital geophysical mapping (DGM) survey performed at the site and documented in the *Final Digital Geophysical Mapping Report for the former RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site* (Shaw, 2011).

#### 1.3 Scope

Environmental cleanup decision making under CERCLA follows a prescribed sequence: (1) RI, (2) Feasibility Study (FS), (3) Proposed Plan, and (4) Record of Decision (ROD). The RI serves as the mechanism for collecting data to characterize site conditions, determining the nature and extent of the contamination, and assessing risks to human health and the environment from this contamination.

The scope of this investigation is to complete the assessment of the extent of contamination and the potential impact to human health and the environment for reaching a remedial action decision. The primary objectives of the RI are as follows:

- To conduct surface and subsurface soil and sediment sampling to define the nature and extent of contamination to support preparation of a FS at the Sand Creek Site
- To collect data to support a ROD at the Sand Creek Site

To meet the primary project objectives, investigation-specific data quality objectives (DQOs) were developed using the approach presented in the Facility-Wide Sampling and Analysis Plan (FWSAP) (Science Applications International Corporation [SAIC], 2001). The DQOs specific to the Sand Creek Site are presented in the *Final Data Quality Objectives Report for the* 

*RVAAP-34 Sand Creek Disposal Road Landfill*, herein referred to as the DQO Report (Shaw, 2009) and are summarized in later in this RI.

The investigation approach to the RI at the Sand Creek Site involved a combination of field and laboratory activities to characterize the AOC. Field investigation techniques included the incremental sampling method (ISM) for surface soil and sediment and modified ISM at subsurface soil boring locations. A DGM survey was conducted prior to the RI activities to confirm potential impacted areas and to refine the sampling program (Shaw, 2011). The RI field activities were conducted in accordance with the FWSAP (SAIC, 2001) and the *Final Sampling and Analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site* (Shaw, 2010), herein referred to as the Sampling and Analysis Plan (SAP) Addendum No. 1.

The future Land Use for the Sand Creek Site is Military Training. The Representative Receptor is the National Guard Trainee (NGT); per the RVAAP Facility-Wide Human Health Risk Assessor Manual, Amendment 1 (FWHHRAM; USACE, 2005a) and the Risk Assessment Technical Memo. However, since this RI is being finalized and updated per the Final Risk Assessment Technical Memo, the Unrestricted (Residential) Land Use is evaluated first in the human health risk assessment in the RI. If no Chemicals of Concern (COCs) are identified, then the other two Land Uses (Commercial/Industrial and Military Training) do not need to be evaluated further. Since the original RI prepared by Shaw included an evaluation for Military Training using the National Guard Training (NGT) Receptor, the Army determined it would expedite future remedial decisions and limit revisions if the nature and extent and other information for the NGT are retained. Since this document is being updated, an additional Land Use scenario (Commercial Industrial Land Use) was also added to the human health risk assessment. Based on the findings presented in the RI originally prepared by Shaw in 2013, the Army decided to evaluate the three Land Uses as required in the Risk Assessment Tech Memorandum. In this instance, if COCs are identified for the Residential Receptor, then the Military Training Land Use and Commercial/Industrial Land Use using their Representative Receptors are evaluated in the human health risk assessment. The RI originally prepared by Shaw considered the anticipated future land use as Military Training but also included the evaluation of Unrestricted (Residential) Land Use and associated receptors. This same approach was used in the revised human health risk assessment. As stated previously, Unrestricted (Residential) Land Use, is included to evaluate COCs for unrestricted land use at the AOC, as required by the CERCLA process and as outlined in the FWHHRAM (USACE, 2005a). Additionally, USACE updated the risk assessment for the Residential Receptor and the National Guard Trainee (NGT) Receptor for chemicals that lack Facility-Wide Cleanup Goals (FWCUGs), and the Industrial USEPA Regional Screening Level (RSL) was used to

evaluate the Commercial Industrial Land Use using the Composite Worker Receptor, hereafter referred to as the Industrial Receptor. Since the screening for this RI was completed in 2013, the FWCUGs are the primary criteria for the Resident Receptor and the NGT Receptor.

Surface soil is defined as the 0–1 ft. bgs interval and subsurface soil is defined as the 1–13 ft. bgs interval for the Unrestricted (Residential) Land Use and Commercial Industrial Land Use exposure scenarios for this AOC. For the OHARNG receptors that were originally assessed in the RI, surface soil is defined as the 0–4 feet (ft.) below ground surface (bgs) interval and is referred to as deep surface soil. Subsurface soil defined by the OHARNG is the 4–7 ft. bgs interval. This data was retained in the RI for historical documentation but was not evaluated or included in the human health risk assessment.

The main goal of the RI process is to define the nature and extent of contamination and the potential risks to human health and the environment resulting from the presence of environmental contamination. Where little or no environmental hazards are determined to be present and/or not associated with site-related contamination, a no further action (NFA) decision will be recommended. However, if conditions for an NFA decision are not met (i.e., concentration of a chemical(s) is present and more than the facility-wide background values (inorganics only), FWCUGs, or the USEPA's RSLs, then the site will proceed to a Feasibility Study (FS), and remedial action alternatives will be assessed.

#### **1.4 Report Organization**

This RI Report is organized to meet Ohio EPA requirements in accordance with CERCLA guidance (EPA, 1988). The main text of this RI is composed of the following sections:

- Section 2.0, "Physical Characteristics," describes the environmental setting at the site including important site features, soils, geology, hydrology, and ecology and presents the CSM for the site.
- Section 3.0, "Study Area Investigation," presents a discussion of the field investigation activities associated with site characterization.
- Section 4.0, "Nature and Extent of Contamination," presents an analysis of data collected and describes chemical concentration levels found in environmental media in the study area.
- Section 5.0, "Contaminant Fate and Transport," combines the results of the site physical characteristics and the extent of chemical analyses to assess potential transport pathways and rates of migration.
- Section 6.0, "Human Health Risk Assessment," describes the evaluation of potential threat to human health receptors in the absence of any remedial action.

- Section 7.0, "Screening Level Ecological Risk Assessment," evaluates the potential for adverse effects posed to ecological receptors from potential releases at the site.
- Section 8.0, "Summary of Conclusions," summarizes the nature and extent of contamination, the fate and transport of potential contaminants in environmental media at the site, and the results of the screening level risk assessments. Recommendations for future work and recommended remedial action objectives are also discussed.
- Section 9.0, "References," presents the references cited in this document.

The appendices to this RI Report contain supporting data collected during the RI activities. The appendices consist of field documentation data, quality assurance (QA) documentation, laboratory analytical data, investigation-derived waste management characterization reports and supporting data for the fate and transport, human health risk assessments (HHRAs), and ecological risk assessments (ERAs). The appendices included at the end of this RI are as follows:

- Appendix A Field Documentation
- Appendix B Quality Assurance Summary Report
- Appendix C Data Validation Results and Usability Assessment
- Appendix D Laboratory Analytical Results
- Appendix E Fate and Transport Modeling Results
- Appendix F Human Health Risk Assessment Tables
- Appendix G Ecological Screening Values
- Appendix H Ecological Risk Assessment Tables
- Appendix I Investigation Derived Waste Management
- Appendix J Responses to Ohio EPA Comments

# 1.5 General Facility Description

The former RVAAP (Federal Facility Identification [ID] No. OH213820736) is in northeastern Ohio within Portage County and Trumbull County, approximately 3 miles east-northeast of the city of Ravenna (**Figure 1-1**). The installation is approximately 11 miles long and 3.5 miles wide. It is bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garrett, McCormick, and Berry Roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (**Figure 1-2**). The installation is surrounded by several communities: Windham on the north, Garrettsville 6 miles to the northwest, Newton Falls 1 mile to the southeast, Charlestown to the southwest, and Wayland 3 miles to the south.

Administrative accountability for the entire 21,683-acre facility has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio and the property subsequently licensed to the OHARNG for use as a military training site, Camp Ravenna. The restoration program at the former RVAAP involves cleanup of former production/operational areas throughout the facility related to activities that were conducted there.

# 1.5.1 RVAAP Operational History and Mission

Constructed in 1940, production at the former RVAAP began in December 1941, with the primary missions of depot storage and ammunition loading. The installation was divided into two separate units: the Portage Ordnance Depot and the Ravenna Ordnance Plant. The depot's primary mission was storage of munitions and components, while the mission of the ordnance plant was loading and packing major caliber artillery ammunition and the assembly of munitions-initiating components that included fuzes, boosters, and percussion elements. In August 1943, the installation was re-designated as the Ravenna Ordnance Center, and in November 1945, it was re-designated as the Ravenna Arsenal.

The plant was placed in standby status in 1950 and reactivated during the Korean Conflict to load and pack major caliber shells and components. All production ended in August 1957, and in October 1957 the installation again was placed in a standby condition. In October 1960, the ammonium nitrate line was renovated for demilitarization operations, which involved melting explosives out of bomb casings for subsequent recycling. These operations began in January 1961. In July 1961, the plant was deactivated again. In November 1961, the installation was divided into the Ravenna Ordnance Plant and an industrial section, with the entire Installation designated as the former RVAAP.

In May 1968, loading, assembling, and packing munitions began on three load lines and two component lines to support the Southeast Asia conflict. These facilities were deactivated in August 1972. The destruction of M71A1 90-millimeter (mm) projectiles extended from June

1973 until March 1974. Destruction of various munitions was conducted from October 1982 through 1992.

Until 1993, the former RVAAP maintained the capability to load, assemble, and pack military ammunition. As part of the former RVAAP mission, the U.S. Army maintained inactive facilities in a standby status by keeping equipment in a condition to allow resuming production within prescribed limitations. In September 1993, the U.S. Army placed the former RVAAP in inactive caretaker status, which subsequently changed to modified caretaker status. The load lines and associated real estate were determined to be excess by the U.S. Army.

#### 1.5.2 Current Status

Administrative accountability for the entire 21,683-acre facility has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio and the property subsequently licensed to the OHARNG for use as a military training site, Camp Ravenna. The RVAAP restoration program involves cleanup of former production/operational areas throughout the facility related to former activities conducted under the RVAAP.

The former RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the 21,683-acre former RVAAP. Therefore, references to the former RVAAP in this document are inclusive of the historical extent of the former RVAAP, which is inclusive of the combined acreages of the current Camp Ravenna and the former RVAAP, unless otherwise specifically stated. The Ohio Environmental Protection Agency (Ohio EPA) is the lead regulatory agency for the investigation and remediation conducted by the U.S. Army under the U.S. Department of Defense (DOD) IRP.

# 1.6 Sand Creek Disposal Road Landfill Site Description

This section presents a summary of the Sand Creek Site history, previous RAs and investigations, and site-related chemicals (SRCs) in environmental media at the AOC.

# **1.6.1 Operational History**

The Sand Creek Disposal Road Landfill is in the eastern portion of the former RVAAP and was used as an open dump area (**Figure 1-2**). The operational history of disposal activities at the site is incomplete. Construction and debris (C&D) type material were delivered to the site and dumped over an embankment located immediately adjacent to Sand Creek. The dump site extended along the embankment for approximately 1,200 feet and varied in width from 20 to 40 feet from the top of the bank to the bottom (**Figure 1-3**). The size of the defined AOC is approximately 1 acre. The bank slopes from east to west towards Sand Creek at 40 to 60 degrees from the horizontal. There are no records indicating the quantities or materials dumped at the site and the dates of operation for the landfill are unknown. Several buildings associated with the former Sand Creek Sewage Treatment Plant are located northeast of the

site. Surface water runoff follows the topography of the site and flows in a westerly direction where it enters Sand Creek. A very narrow floodplain occupies the land between the bottom of the embankment and Sand Creek. A former railroad bed bisects the AOC (MKM, 2004).

Preliminary site assessments found the AOC very overgrown with mature trees and ground level vegetation. The entire site was littered with C&D materials with large piles of debris concentrated mostly in the southern portion of the AOC. Some of the types of C&D materials identified during the preliminary site assessment included the following:

- Asbestos-containing material (ACM) (i.e., large piles of corrugated transite roofing and flat transite siding)
- Rubble (i.e., concrete, brick, and masonry fragments)
- Drywall and plaster
- Glass bottles, fluorescent light tubes, and broken glass
- Scrap metal items including wire fencing
- Wooden debris

#### **1.6.2 Previous Investigations and Removal Actions**

Prior to the RI activities, previous investigations and other activities conducted at the Sand Creek Site included a preliminary assessment (PA), RA, confirmatory sampling, a FWBWQS, and a DGM survey. A discussion of these activities is presented further in this section.

#### **1.6.2.1 Preliminary Assessment (1996)**

In 1996, SAIC was contracted by the USACE to conduct a PA at various AOCs at the former RVAAP. The purpose of the PA was to collect information concerning conditions at the former RVAAP sufficient to assess the potential threat posed to human health and the environment and to determine the need for additional characterization at areas identified at the former RVAAP containing potentially hazardous materials from former munitions assembly and demilitarization operations at the installation. The scope of the PA included review of available information, interviews with former employees, and field visits to review and identify potential sites. The PA reported that the site contained concrete, wood, several tons of asbestos and spent fluorescent light bulbs. The waste was characterized as containing asbestos and heavy metals (mercury), although no characterization data were available (SAIC, 1996).

#### 1.6.2.2 Relative Risk Site Evaluation (1996)

The U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) conducted a relative risk site evaluation (RRSE) for previously uninvestigated sites at the

former RVAAP in 1996. From the 19 sites that were evaluated, 4 were classified as "high" priority areas of concern and the others were classified as "low" or "medium." The four high-priority AOCs included the Sand Creek Disposal Road Landfill.

The 1996 USACHPPM Report identified surface soil and sediments to be potential media for contaminant migration at the Sand Creek Site due to the lack of any physical barriers/fence around the site and its proximity to Sand Creek. Three shallow soil samples and one sediment sample were collected from the site during the RRSE. The study identified arsenic as exceeding RRSE screening values for sediments and identified the potential for arsenic to migrate into Sand Creek. The RRSE for this AOC was scored "high" since it is the habitat for state-endangered species (Mountain Brook Lamprey and the river otter). Under the CERCLA process, a site which registers a RRSE rating of "high" requires further investigation and/or removal (USACHPPM, 1998).

# **1.6.2.3 Additional Investigations**

Site evaluations following the USACHPPM sampling event showed that the area used for dumping at the Sand Creek Site was larger than originally defined. In addition, observations identified multiple potential sources of chemical contamination, such as solvent drums, gas cylinders, open canisters, broken lab bottles, and construction debris.

Additional surface soil samples were taken to further characterize the dump site. Samples were collected and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, cyanide, pesticides, polychlorinated biphenyls (PCBs), explosives, and nitroguanidine. These results indicated that metals and SVOCs were present and should be evaluated further.

These sample results indicated that the contaminants had migrated to the sediments of Sand Creek. Additional contamination in soils beneath sediment along the Sand Creek was a concern. However, unexploded ordnance concerns prevented additional sampling before debris removal. As such, an RD/RA was the selected alternative for the Sand Creek Disposal Road Landfill as detailed in the *Final Remedial Design and Removal Action Plan for RVAAP-34 Sand Creek Disposal Road Landfill at Ravenna Army Ammunition Plant* (MKM, 2004).

# 1.6.2.4 Facility-Wide Biological and Water Quality Study (2003)

In 2003, the USACE performed surface water and sediment sampling and biological monitoring at 26 stream sites at the former RVAAP that included sample location (S-7) at the intersection of the Sand Creek and the former railroad that transects the site (**Figure 1-4**). Biological monitoring included fish and macroinvertebrate community assessments. Two surface water samples from each location at different collection dates during the summer of 2003 (June and September) were analyzed for target analyte list (TAL) metals, pesticides,

PCBs, explosive compounds, SVOCs, and several nutrient parameters. One sediment sample was collected using the ISM at the collocated biological sampling sites. Sediments were analyzed for TAL metals, SVOCs, pesticides, PCBs, explosive compounds, percent solids, and cyanide as well as several nutrient parameters. The collection of the data provided (1) aquatic life use attainment status of streams regarding the Warm Water Habitat or other applicable aquatic life use designation codified in the *Ohio Water Quality Standards* (OWQS), (2) an assessment if chemical contamination within the streams was adversely affecting the biological communities, and (3) an ecological assessment report summarizing the sediment, surface water, and aquatic biological results. The results of the surface water and sediment results collected at sample location S-7 is presented in the 2003 FWBWQS (USACE, 2005a). A summary of the results are as follows:

- Sediment—Cadmium and antimony were the only inorganics in the sediment sample that exceeded the former RVAAP background screening value (BSV) of 0. A low SVOC concentration of di-n-butyl phthalate was also detected. No PCBs, pesticides, cyanide, or explosives compounds were detected in the sediment sample.
- Surface Water—The only detected metal that exceeded an RVAAP-calculated BSV was arsenic in the September 2003 sampling event. Concentrations of chromium, cobalt, silver, and vanadium were detected between the two sampling events and exceeded the BSV of 0. All other detected metals were either essential nutrients (calcium, iron, magnesium, potassium, and sodium), or the maximum detected concentration (MDC) was less than the former RVAAP surface water BSV (aluminum, barium, copper, manganese, and zinc). A low concentration of bis(2-ethylhexyl) phthalate was detected in surface water during the first round of sampling, and di-n-butyl phthalate was detected in the second round of sampling. No PCBs, pesticides, or explosive concentrations were detected in the surface water samples.

A comparison of the results at sample location S-7 indicates that historical activities at the Sand Creek Site have not impacted surface water or sediment quality within the portion of the Sand Creek that is adjacent to the AOC. Furthermore, evaluation of the surface water and sediment data at the nearest downstream sample location (S-9 located approximately 1000 feet downstream of the site) provides support that historical activities at the Sand Creek Site have not impacted downstream conditions. In general, the FWBWQS 2003 Report (USACE, 2005a) concluded that surface water quality throughout the installation was generally good to excellent with very few exceedances of Ohio aquatic life water quality criteria (WQC). Sediment samples generally reflected non-contaminated conditions and stream habitat was good at most sites.

# 1.6.2.5 Removal Action (2003)

An RA at the Sand Creek Site was conducted by MKM between August and September 2003. The removal effort at the site consisted of removing all existing unconsolidated surface debris, the limited removal of subsurface debris, transportation and disposal of debris, and restoration activities. Due to the presence of transite, all debris was disposed of as ACM special waste. Approximately 1,118 tons (~799 cubic yards) of ACM material, including soil, the subsurface transite, glass, and miscellaneous debris were removed from the AOC (MKM, *2004*). The sample areas are presented on **Figure 1-5** and the areas that had the debris are presented on **Figure 1-5a**.

#### 1.6.2.6 Removal Action Sample Collection (2003)

Confirmatory soil, surface water, and sediment samples were collected in and around the site by MKM following the removal efforts to evaluate the success of the RA and characterize potential impact to Sand Creek and the neighboring floodplain (**Figures 1-5 and 1-5a**). Prior to sampling, the dump area was divided into 30 sampling grids to facilitate collection of the soil discrete samples. One shallow soil sample (0 to 1 foot), not including duplicates and quality control (QC) samples, was collected from each grid (30 total) measuring approximately 40 feet by 40 feet. Surface water was collected at 3 locations, and sediment samples were collected at 12 locations within the Sand Creek and neighboring floodplains, respectively, to characterize potential impact associated with surface water runoff from the site.

A summary of results for the samples collected during the RA is as follows:

- **Surface Soil**—Multiple inorganics concentrations were detected in the 2003 RA confirmatory surface soil samples in excess of the facility-wide BSVs. Although sporadic, numerous SVOCs consisting of polynuclear aromatic hydrocarbons (PAHs), three explosives (2,4-trintrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene), one propellant (nitrocellulose), and one VOC concentration (chloroethane) were detected at two surface soil sample locations.
- **Sediment**—Multiple inorganics were detected in the RA confirmatory sediment samples in excess of the facility-wide BSVs), and one VOC (acetone) was detected at two sample locations. No SVOCs were detected.
- **Surface Water**—No VOCs, SVOCs, explosives, or propellants were detected during the 2003 RA. All detected metals were either essential nutrients (calcium, iron, magnesium, potassium, and sodium), or the MDC was less than the RVAAP surface water BSVs (arsenic, aluminum, barium, copper, manganese, and zinc).

Initial evaluation of the results indicates that there may be some impact to environmental media at the AOC as a result of historical activities, in particular surface soil. During confirmation

• **Surface Water**—No VOCs, SVOCs, explosives, or propellants were detected during the 2003 RA. All detected metals were either essential nutrients (calcium, iron, magnesium, potassium, and sodium), or the MDC was less than the RVAAP surface water BSVs (arsenic, aluminum, barium, copper, manganese, and zinc).

Initial evaluation of the results indicates that there may be some impact to environmental media at the AOC because of historical activities, in particular surface soil. During confirmation sampling following the RA, two 75-mm projectile shells (i.e. munitions debris [MD]) were discovered at the northern portion of the site.

# 1.7 DGM Survey

Between April and May 2010, Shaw conducted a DGM survey at and in the immediate vicinity of the Sand Creek Site where historical dumping activities occurred. The primary purpose of the survey was to determine the horizontal extent of potential munitions and explosives of concern (MEC) contamination and other suspected buried anomalies without performing intrusive activities at the site. The secondary objective was to evaluate the data to characterize the anomaly density at the site. Geophysical data were collected south and north of the access road adjacent to the stream, along the steep slopes of the embankment in the central portion of the Sand Creek Site and east of the steep embankment in the open area. During this effort, data were acquired in accessible areas void of thick vegetation and fallen trees and where the embankments and other localized slopes were navigable by the field crew (Shaw, 2011). The areas at and adjacent to the Sand Creek Site that the DGM survey covered are presented in **Figure 1-6**.

The DGM data collected at the Sand Creek Site was able to determine the broader limits of metallic waste materials as well as to define more localized regions within and outside the AOC footprint that contain relatively higher metal content. The survey data indicated that the largest portion of the metal debris at the site is present northeast of the former railroad bed. Several areas characterized by relatively higher density of anomalies are located between the stream and the edge of the eastern plateau. The large oval-shaped area that trends southwest-northeast in the northeastern portion of the survey area (contiguous pink colors on **Figure 1-6**) is approximately 0.8 acres in size. Areas characterized by relatively lower density of anomalies are present throughout the southern portion of the survey area. During the survey of the area, the field crew noticed several relatively large areas where concrete rubble was present along and at the bottom of the embankment at the northern portion of the site.

# **1.8 Preliminary Evaluation for COPCs**

This section presents a discussion of the preliminary evaluation for chemicals of potential concern (COPCs) at the Sand Creek Site based on data collected before the implementation of

the RI field activities. Prior to the RI, the only environmental data available specifically for the Sand Creek Site were from the confirmatory samples collected during the 2003 RA and is the basis for the preliminary conceptual site model (CSM) discussed in this RI. Surface water samples and a sediment sample were collected at the site as part of the 2003 FWBWQS and are also available. Although the samples from the study are not considered "site specific," they are used in this section to supplement the results of the 2003 RA data.

#### 1.8.1 Summary of 2003 Removal Action Sampling Activities

The 2003 RA event included the collection of discrete surface soil (0 to 1 foot), sediment samples (0 to 6 inches) and surface water samples. The results and conclusions of the confirmatory sampling were evaluated and presented in the RD/RA Report (MKM, 2004). At the time the report was issued, the confirmatory results were compared to the former RVAAP BSVs for inorganics and the U.S. Environmental Protection Agency (EPA) Preliminary Remediation Goals (PRGs), which are based on risk-based screening concentrations adjusted to account for additive effects between chemicals and routes of exposure.

The confirmatory soil samples showed elevated concentrations (i.e., greater than the former RVAAP BSVs and/or the PRGs) of heavy metals in the northern third of the site with lower concentrations of heavy metals, SVOCs, explosives, and propellants dispersed over the remainder of the site. The confirmation sediment samples collected from the neighboring floodplain and Sand Creek reported arsenic levels greater than the EPA PRG level. Additionally, low levels of propellants and/or explosives were detected in the full suite sediment and surface water samples.

#### 1.8.2 Summary of 2003 FWBWQS Sampling Activities

Surface water grab samples were collected from the upper 12 inches of stream water and sampled directly into appropriate containers. The stream sampling locations at the former RVAAP were sampled twice with the initial samples collected between June 17 and June 25, 2003. The second round of stream samples was collected between September 15 and September 18, 2003. Initial surface water sampling was concurrent with the sole sediment sampling event.

The stream sampling locations were sampled once for sediment between June 17 and June 25, 2003. To obtain a representative measure of chemical contamination within the sediment, the ISM was performed at each collocated biological sampling site. At each stream sample site, the entire sampling reach (120 to 210 meters [m]) was walked from downstream to upstream, with equal volume sediment subsamples taken randomly at 30 to 50 locations.

The results and conclusions were presented in the FWBWQS 2003 Report (USACE, 2005a) for the former RVAAP. The surface water samples were evaluated using comparisons to

OWQS criteria, reference conditions, or other published literature. Sediment evaluations were conducted using guidelines established in MacDonald et al. (2000), sediment reference values for inorganic chemicals that were included in the 2003 Ohio EPA *Ecological Risk Assessment Guidance Manual*, EPA Region 5 Ecological Screening Levels (ESLs), and published literature. For the purposes of this RI, the surface and sediment sample results from the 2003 FWBWQS will be evaluated as discussed in Section 1.3.3.3.

# **1.8.3 Screening Process for Preliminary COPCs**

Since the submission of the RD/RA Report (MKM, 2004) and the FWBWQS 2003 Report (USACE, 2005a), the U.S. Army has refined the cleanup goal screening process at the former RVAAP and intends to clean up the various AOCs to an unrestricted land use scenario whenever possible. Shaw performed a data gap analysis of the existing data and comparison to the facility-wide cleanup goals (FWCUGs) for the unrestricted land use scenarios as well as to the desired land use by OHARNG (Military Training Land Use) in order to provide an assessment of preliminary COPCs. This evaluation is presented in the DQO Report (Shaw, 2009). The FWCUGs are presented in the *Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant* (SAIC, 2010), hereafter, referred to as the FWCUG Report.

Based on a comparison of the 2003 RA confirmatory sample results and the results of the 2003 FWBWQS to the FWCUGs, the preliminary COPCs in surface soil and sediment at the site are inorganics with sporadic concentrations of PAHs, explosives, propellants, and VOCs. The following sections discuss the preliminary COPCs based on the 2003 RA samples.

In order to be conservative, the results were screened against the FWCUGs for the identified receptors for the 10<sup>-6</sup> (one in a million) excess cancer risk level and hazard quotient (HQ) equal to 0.1 (<sup>1</sup>/<sub>10</sub> the noncancer risk) as presented in the FWCUG Report (SAIC, 2010). For organics, the contaminant was retained as a preliminary COPC if it was detected and no FWCUG is available. In the case where no FWCUG is available for an inorganic, it was retained as a preliminary COPC if it was detected, exceeded the former RVAAP BSV, and is not considered an essential nutrient (calcium, iron, magnesium, potassium, or sodium).

#### Surface Soil

Detected organics from the 2003 RA that do not have FWCUGs for surface soil include one propellant (nitrocellulose), three SVOCs (benzo(ghi)perylene, bis(2-ethylhexyl)phthalate, and phenanthrene), and one VOC (chloroethane). These were all retained as preliminary COPCs in surface soil. Arsenic was the only inorganic contaminant that exceeded the FWCUG for all receptors. Beryllium, lead, and selenium are inorganics that were detected in surface soil samples from the 2003 RA, but do not have FWCUGs; therefore, they were retained as preliminary COPCs for all receptors.

The unrestricted land use scenario applies for the Resident (Adult and Child) receptors. In addition to the aforementioned preliminary COPCs identified above for all receptors, additional preliminary COPCs identified in surface soil for the Adult Resident Receptor consist of five inorganics (antimony, cadmium, manganese, mercury, and silver) and seven SVOCs [benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo- (a,h)anthracene]. The preliminary COPCs for the Child Resident Receptor were similar to the Adult Resident Receptor with the exception that copper and barium were identified as noncancer risk preliminary COPCs for this receptor. Arsenic was the most pervasive inorganic preliminary COPC that was identified as a potential cancer risk for both unrestricted land use receptors.

#### Sediment

The FWCUG Report (SAIC, 2010) provides sediment screening values. The Child Resident Receptor was the only unrestricted land use receptor identified with additional preliminary COPCs (aluminum and silver) in sediment. No additional preliminary COPCs were identified in sediment for the Adult Resident Receptor. The only additional preliminary COPC identified in sediment for the National Guard Trainee was aluminum.

#### Surface Water

The FWCUG Report (SAIC, 2010) provides surface water screening values. Arsenic, cobalt, and lead were inorganics detected in the surface water sample collected during the 2003 FWBWQS and were identified as preliminary COPCs for the Resident Receptor (Adult and Child) and National Guard Trainee receptors. Arsenic was identified as a preliminary COPC since the concentration exceeded the FWCUG excess cancer risk values for these receptors. Cobalt and lead were retained as preliminary COPCs since there are no final FWCUG screening values for these inorganics. One SVOC (di-n-butyl phthalate) was detected in the June 2003 surface water sample collected adjacent to the site for the FWBWQS. This SVOC was identified as a preliminary COPC for the National Guard Trainee and the Resident Receptor (Adult and Child) since no FWCUG screening values were available for this chemical.

This page intentionally left blank.



Figure 1-1 Location Map



| RP SITES (29 SITES)                                 | RVAAP-33LOAD LINE 6                       | RVAAP-67FACILITY-WIDE SEWERS                       | MMRP SITES (14 SITES)                          | OCERCLA                                        |
|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|
| RVAAP-01RAMSDELL QUARRY LANDFILL                    | RVAAP-34SAND CREEK DISPOSAL ROAD LANDFILL | COMPLIANCE RESTORATION SITES (13 SITES)            | RWAAP-001-R-01RAMSDELL QUARRY LANDFILL MRS     | ORCRA                                          |
| WAAP 00 OPEN DEMOLITION AREA 1                      | RVAAP-38NACA TEST AREA                    | CC-RVAAP-68ELECTRIC SUBSTATIONS (E,W,No.3)         | RVAAP-002-R-01ERIE BURNING GROUNDS MRS         |                                                |
| RVAAP-05WINKLEPECK BURNING GROUNDS                  | RVAAP-39LOAD LINE 5                       | CC-RVAAP-69BUILDING 1048 - FIRE STATION            | RVAAP-004-R-01OPEN DEMOLITION AREA #2 MRS      | Summer Compliance Restoration Sites - Approved |
| RVAAP-06C BLOCK QUARRY                              | RVAAP-40LOAD LINE 7                       | CC-RVAAP-70EAST CLASSIFICATION YARD                | RVAAP-003-R-01LOAD LINE 1 MRS                  | ★DLA ORE STORAGE AREAS (7 SITES)               |
| RVAAP-08LOAD LINE 1                                 | RVAAP-41LOAD LINE 8                       | CC-RVAAP-72FACILITY-WIDE USTS (45 SITES)           | RVAAP-013-R-01FUZE AND BOOSTER QUARRY MRS      | ▲COAL STORAGE AREAS (17 SITES)                 |
| RVAAP-09LOAD LINE 2                                 | RVAAP-42LOAD LINE 9                       | CC-RVAAP-73FACILITY-WIDE COAL STORAGE              | KXAAP-019-R-01LANDFILL NORTH OF WINKLEPECK MRS |                                                |
| RVAAP-10LOAD LINE 3                                 | RVAAP-43LOAD LINE 10                      | CC-RVAAP-74BUILDING 1034 MOTOR POOL HYDRAULIC LIFT | RVAAP-092-R-01                                 |                                                |
| RVAAP-11LOAD LINE 4                                 | RVAAP-44LOAD LINE 11                      | CC-RVAAP-75GEORGE ROAD SEWAGE TREATMENT PLANT      | RVAAP-093-R-01FIRESTONE TEST FACILITY MRS      |                                                |
| RVAAP-12LOAD LINE 12                                | RVAAP-45WET STORAGE AREA                  | CC-RVAAP-76DEPOT AREA                              | RVAAP-031-R-01SAND CREEK DUMP MRS              |                                                |
| RVAAP-13BLDG 1200 AND DILLUTION/SETTLING POND       | RVAAP-46BUILDINGS F-15 AND F-16           | CC-RVAAP-77BUILDING 1037 LAUNDRY WASTE WATER SUMP  | RVAAP-050-R-01ATLAS SCRAP YARD MRS             |                                                |
| RVAAP-16FUZE AND BOOSTER QUARRY LANDFILL/PONDS      | RVAAP-48ANCHOR TEST AREA                  | CC-RVAAP-78QUARRY POND SURFACE DUMP                | RVAAP-030-R-01BLOCK D IGLOO MRS                |                                                |
| RVAAP-19LANDFILL NORTH OF WINKLEPECK BURNING GROUND | RVAAP-50ATLAS SCRAP YARD                  | CC-RVAAP-79DLA ORE STORAGE SITES                   | RVAAP-091-R-01BLOCK D IGLOO -TD MRS            |                                                |
| MAAP 23BUSTARD AGENT BURIAL SITE                    | RVAAP-51DUMP ALONG PARIS-WINDHAM ROAD     | CC-RVAAP-80GROUP 2 PROPELLANT CAN TOPS             | RVAAP-032-R-01WATER WORKS #4 DUMP MRS          |                                                |
|                                                     |                                           |                                                    | EVAD ARAB M                                    |                                                |



Figure 1-3 Site Map



Figure 1-4 2003 Facility-Wide Biological and Water Quality Study Sample Locations



Figure 1-5 2003 Removal Action Sample Locations

SC\_RA\_SampleLocs SC\RVAAP\_003\_Fig1-5\_ \_Documents/Project\_Maps/AE\RIFS\RIFS\_ File Path:\\crpbtrpgi01\arcgisprod3\MAMMS\Ravenna\GIS\_ 05/23/13 Date: Generated By: JRL

Project Number: 133616



Figure 1 5a Locations in 2003 Sample Grids where subsurface removal actions occurred

Grid 26

Grid 2

Crid 20

Grid 29

Grid 30

Legend Sand Creek Dump - Limits & Sample Grids Subsurface Transite Miscellaneous Subsurface Debris Subsurface Glass





Figure 1-6 Geophysical Investigation Boundary

# 2.0 PHYSICAL CHARACTERISTICS

This chapter presents the physical characteristics of the former RVAAP and the Sand Creek Site and the surrounding environment that are factors in understanding potential contaminant transport pathways, receptors, and exposure scenarios for human health and ecological risks. The physiographic setting, hydrology, climate and ecological characteristics of the former RVAAP were primarily compiled from information originally presented in the *Phase I Remedial Investigation Report for the High-Priority Areas of Concern at the Ravenna Army Ammunition Plant* (USACE, 1998) that included the Sand Creek Site, the *Updated Integrated Natural Resources Management Plan at the Ravenna Training Logistics Site* (AMEC Earth and Environmental, Inc. [AMEC], 2008), and the *Facility-Wide Groundwater Monitoring Program Plan for the Ravenna Army Ammunition Plant* (USACE, 2004). The CSM for the Sand Creek Site at the end of this section is based on site-specific data from the RI field investigation and local and regional information.

# 2.1 Physiographic Setting

The former RVAAP is located within the southern New York section of the Appalachian Plateaus physiographic region of northeastern Ohio. Although the land within this region was uplifted as part of the Appalachian Mountain building 2.2 process, the glaciers were able to override the gentle hills of the plateau. Huge ice blocks broke free from the glaciers, and kettle lakes formed as the blocks melted. Eventually, these lakes filled with sediment leaving boggy wetlands with unique assemblages of plants. Ridges and flat uplands, which are covered with thin drift and dissected by steep valleys, occur gently about 1,200 feet above mean sea level (amsl). Valley segments, ranging in elevation from 600 to 1,500 feet amsl, alternate between broad drift-filled and narrow rock-walled reaches (USACE, 1998).

The former RVAAP is in the Mahoning River Basin. Three major streams that include the South Fork Eagle Creek, Sand Creek, and Hinkley Creek drain approximately 65 percent of the facility. The northern and central portions of the former RVAAP, including the site, are drained by Sand Creek. Sand Creek subsequently drains to South Fork Eagle Creek and runs into Eagle Creek and finally the Mahoning River. The western portions of the former RVAAP drain to Hinkley Creek and subsequently to the West Branch of the Mahoning River. The easternmost portion of the installation drains to the West Branch of the Mahoning River near its confluence with the main trunk of the Mahoning River. The southern areas drain directly into the Michael J. Kirwan Reservoir. Several smaller, unnamed creaks drain other areas of the installation (USACE, 1998).

Overall, the former RVAAP can be considered flat land, although there are occasional steep slopes. Many of the steep slopes are due to modifications of the landscape from cut and fill

operations during the construction of the ammunition plant in the 1940s. The topographic relief across the installation is approximately 290 feet, with the elevation high point located in the northwest portion of the former RVAAP at approximately 1,220 amsl. The lowest point elevation of the installation is at the southeast corner, at approximately 930 amsl (AMEC, 2008).

# 2.1 Climate

The general climate of the former RVAAP area is continental and is characterized by moderately warm and humid summers, reasonably cold and cloudy winters, and wide variations in precipitation from year to year. The following climatological data were obtained from the Midwest Regional Climate Center at the Youngstown-Warren Regional Airport located in Trumbull County and are based on a 30-year average between 1971 and 2000 (Midwest Regional Climate Center, 2000).

Total annual rainfall in the former RVAAP area is approximately 38.2 inches, with the greatest monthly average occurring in July (4.10 inches) and the lowest monthly average occurring in February (2.03 inches). Average annual snowfall totals approximately 55 inches with the greatest monthly average occurring in January (14.3 inches). Due to the influence of lake-effect snowfall events associated with Lake Erie, located approximately 35 miles to the northwest of the former RVAAP snowfall totals vary widely throughout northeastern Ohio.

The average annual daily temperature in the former RVAAP area is 48.3 degrees Fahrenheit (°F), with an average daily high temperature of 58.2°F and an average daily low temperature of 38.8°F. The prevailing wind direction at the former RVAAP is from the southwest. Severe weather, in the form of thunder and hail in summer and snowstorms in winter is common. Tornadoes are infrequent in Portage County. However, minor structural damage to several buildings on facility property occurred as the result of a tornado in 1985.

# 2.2 Surface Features and Site Topography

The Sand Creek Site is in the eastern portion of the former RVAAP and encompasses approximately 1 acre along the eastern bank of the Sand Creek. The bank slopes from east to west towards Sand Creek 40 to 60 degrees from horizontal. Topographic relief between the top of embankment and the surface of Sand Creek varies across the AOC, but ranges from approximately 15 to 25 feet, representing the former extent of the dump area (**Figure 2-1**). There are no records indicating the quantities or materials dumped at the site and the dates of operation for the landfill are unknown. Therefore, the depth of the original unconsolidated glacial material overlying bedrock is unknown along the slopes of the dumpsite. Some visible surface debris, primarily large pieces of concrete construction debris, remains along and at the bottom of the embankments of the former disposal area. This surface debris is mostly situated at the northern portion of the site. A former rail bed bisects the site and the only nearby structures include the former sewage treatment plant buildings located adjacent to the northeast end of the site. The site is overgrown with mature trees and ground level vegetation. A narrow floodplain occupies the land between the bottom of the AOC embankment and the Sand Creek. The bottom of the embankment represents the lowest elevation at the AOC.

# 2.3 Geology

This section presents the regional geology at the former RVAAP and the local geology identified at the Sand Creek Site.

#### 2.3.1 Regional Geology

The regional geology at the former RVAAP consists of horizontal to gently dipping bedrock strata of the Mississippian- and Pennsylvanian-age overlain by varying thickness of unconsolidated glacial deposits. The bedrock and unconsolidated geology at the former RVAAP and the geology specific to the Sand Creek Site are presented in this section.

#### 2.3.1.1 Soils and Glacial Deposits

Two Wisconsinan-age glacial advances resulted in the disposition of a mantle of glacial till throughout the area that comprises the former RVAAP in the late Pleistocene. The first glacial advance deposited the Lavery Till. This till consists mostly of clayey silt with sparse cobbles and pebbles, and has an average thickness of 4 feet. The second glacial advance deposited the Hiram Till on top of the Lavery, over the eastern two-thirds of the former RVAAP. The Hiram Till consists of silty clay with some sand, and occurs from 5 to 15 feet below ground surface (bgs), although it may be locally thicker based on the results of the soil borings advanced at the site during the RI activities. In the far northeastern corner of the former RVAAP, the Hiram Till overlies thin beds of sandy outwash. Field observations indicate that overall thickness of glacial deposits at 2 feet or less in some parts of the installation. This may be the result of natural erosion or construction grading rather than the nondeposition of till.

The primary soil type that can be found at the Sand Creek Site consists of Mahoning silt loam with 0- to 2-percent and 2- to 6-percent slopes. Mahoning silt loam is a deep, somewhat poorly drained soil formed in silty clay loam or clay loam glacial till, generally where bedrock is greater than 5 feet bgs. Surface water runoff is medium to rapid, and soil is seasonally wet. Permeability is slow or very slow. This soil warms and dries slowly in spring. Rooting depth is influenced by the upper 15 to 20 inches. It is moderately deep over glacial till. Available water capacity is moderate. Organic matter content is moderately low. The surface layer is very strongly acid to neutral, and the subsoil is very strongly acid to mildly alkaline (USACE, 1998). **Figure 2-2** presents a geologic map of unconsolidated deposits at the former RVAAP.

# 2.3.1.2 Bedrock

Mississippian- and Pennsylvanian-age sandstones and conglomerates make up the stratigraphy underlying the Hiram and Lavery Tills at the former RVAAP. The Mississippian Cuyahoga Formation, consisting of blue-gray silty shale with interbedded sandstone, crops out in the far northeastern corner of the facility. The Cuyahoga Formation has a gentle southward regional dip of 5 to 10 feet per mile. The remainder of the facility is underlain by the Pottsville Formation of Pennsylvanian age. The Pottsville rests uncomformably on the eroded Cuyahoga Formation, and dips 5 to 10 feet per mile.

The Connoquenessing, Mercer, and Homewood members of the Pottsville Formation are present beneath the western half of the former RVAAP. The Connoquenessing is coarse gray sandstone with thin interbeds and partings of sandy shale. The Mercer, overlying the Connoquenessing, consists of silty to carbonaceous shale with thin, discontinuous sandstone lenses. The Homewood Member lays uncomformably on the Mercer and consists of coarse-grained cross-bedded sandstones.

The Sharon member of the Cuyahoga Formation is the primary formation that underlies the eastern half of the former RVAAP where the AOC is located. The Sharon Conglomerate is porous, coarse-grained, gray-white sandstone, commonly with white quartz pebbles and locally thin shale lenses. The Sharon shale overlies the conglomerate and consists of sandy, gray-black, fissile shale with plant fragments and thin flagstone beds.

Bedrock beneath the Sand Creek Site consists of the Berea Sandstone that is present at a very small area at the eastern portion of the former RVAAP. The Berea Sandstone formation is surrounded by the Sharon Conglomerate which underlies much of the eastern portion of the former RVAAP. The Berea Sandstone is generally 50 to 100 feet throughout its extent and consists predominantly of light gray sandstone that is fine grained in the lower and upper parts of the formation but medium to coarse grained in the middle. It is silty and pyritic in its lower part (USACE, 1998). A geologic map of bedrock at the former RVAAP is presented in **Figure 2-3**.

# 2.3.2 Sand Creek Disposal Road Landfill Geology

This section presents the site-specific geologic setting at the Sand Creek Site and is based on the observations made during subsurface borings advanced during the RI field activities. A total of 22 borings were advanced at the Sand Creek Site during the RI field activities to a maximum depth of 20 feet bgs. The methods used to advance the borings consisted of direct push technology (DPT) and manual hand augers. The locations of the borings at the Sand Creek Site are presented on **Figure 2-4**. A cross-section of that depicts the observations made at the AOC during the RI field work is presented in **Figure 2-5**. The boring logs for the RI

field activities are presented in **Appendix A**. Additional information can be found in Sections 1.6.2.5 and 1.6.2.6. Locations where activities occurred can be seen on **Figures 1-5 and 1-5a**.

#### 2.3.2.1 Soils

As a former landfill and disposal site, it is expected that much of the native soil at the site was reworked, removed, or used as cover material during dumping activities. Evidence of fill material that included coal ash and glass debris was encountered in the borings advanced along the top of the embankment as deep as 8 feet bgs, primarily at the northern portion of the site (soil boring locations SCsb-035, SCsb-036, and SCsb-037). Evidence of this debris was also visibly observed along the surface of the slope at the northern portion of the site as well. The depth of fill material along the top of the slopes appeared to decrease as the borings were advanced towards the southern portion of the site. Between boring locations SCsb-039 and SCsb-042, fill material was encountered at depths of less than 2 feet. At boring location SCsb-043, the only boring to be advanced to 20 feet bgs south of the former rail bed, only native glacial materials were observed. Glacial materials encountered in the borings were consistent with the deposits associated with the Mahoning silt loam that include light brown to dark brown, gray, and mottled silt with sand. Associated sediments were observed below the till and consisted of well-sorted, saturated gray silt with clay lenses and unconsolidated fine- to medium-grained sands. The depth to sediments ranged from 13 to 15 feet bgs across the site, which was the approximate depth where groundwater was encountered in three borings (SCsb-035, SCsb-036, and SCsb-037) at the northern portion of the site (Appendix A).

Evidence of fill material consisting of construction debris, slag, glass, and plastic materials were identified at various locations at the central portions of the Site (SCsb-045 through SCsb-051) along the slopes of the embankment. Refusal associated with buried debris was encountered at borings SCsb-045 at 4.25 feet bgs, SCsb-047 at 3 feet bgs, and SCsb-048 at 3.5 feet bgs. Glacial materials consistent with the till were penetrated in the remaining borings located to the extreme north of the site (SCsb-044) and to the south of SCsb-051 (SCsb-052 through SCsb-056) (**Appendix A**).

#### 2.3.2.2 Bedrock

Bedrock is not visible at the site and was not encountered during boring activities which were advanced a maximum of 20 feet bgs at nine locations at the site.

# 2.4 Hydrogeology

This section presents the regional hydrogeology at the former RVAAP and a discussion of the local hydrogeologic setting at the Sand Creek Site based on observations made during the RI field activities.

# 2.4.1 Regional Hydrogeology

A buried glacial valley, oriented southwest-northeast, is located at the central portion of the former RVAAP. This valley is filled with glacial outwash consisting of poorly sorted clay, till, gravel, and silt sand. The depths of the deposits in this valley range from 100 to 200 feet bgs. Generally, these saturated zones in this glacial valley are too thin and localized to provide large quantities of water for industrial or public water supplies. However, yields are sufficient for residential water supplies.

Lateral continuity of these aquifers is not known. Recharge of these units comes from surface water infiltration of precipitation and surface streams. Specific groundwater recharge and discharge areas at the former RVAAP have not been delineated. However, extensive upland areas, such as north of the Winklepeck Burning Grounds and in the western portion of the facility, are presumed to be regional recharge zones. The major perennial surface water drainages (i.e., Sand Creek, Hinkley Creek, and Eagle Creek) are presumed to be the major groundwater recharge areas (USACE, 1998).

# 2.4.1.1 Unconsolidated Sediment

The thickness of the unconsolidated interval ranges from thin to absent in the southeastern portion of the former RVAAP to an estimated 150 feet in the central portion of the installation. The groundwater table occurs within the unconsolidated zone in many areas of the former RVAAP. Because of the very heterogeneous nature of the unconsolidated glacial materials, groundwater flow patterns are difficult to determine with a high degree of accuracy. Vertical recharge from precipitation likely occurs via infiltration along root zones and desiccation cracks and partings within the soil column. Laterally, most groundwater flow likely occurs along preferential pathways (i.e., sand seams, channel deposits, or other stratigraphic discontinuities) having higher permeabilities than surrounding clay or silt-rich materials (SAIC, 2005).

# 2.4.1.2 Bedrock Hydrogeology

The most significant bedrock sources of groundwater near the former RVAAP are the sandstone/conglomerate members of the Pottsville Formation. These aquifers, together with two other deeper Mississippian/Devonian sandstone aquifers, represent the most important bedrock sources of groundwater in Northeastern Ohio.

The Sharon Conglomerate is the primary source of groundwater at the former RVAAP and maintains the most significant well yields of the Pottsville Formation members with hydraulic conductivity (K) values of 5 to 2,000 gallons per day per foot (gpd/ft). Past studies of the Sharon Conglomerate indicate that the greatest yields are associated with the true conglomerate phase (coarse-grained sandstone with abundant quartz pebbles), and with joints and factures in the bedrock. Where present, the overlying Sharon Shale acts as a relatively

impermeable confining layer for the Sharon Conglomerate. This is evidenced by several flowing artesian production wells that have been installed at the former RVAAP.

The Connoquenessing Sandstone and the Homewood Sandstone are the remaining aquifers of the Pottsville Formation and exhibit hydraulic conductivities of 5 to 300 gpd/ft and 5 to 200 gpd/ft, respectively. Well yields in the Connoquenessing and Homewood sandstones, although lower in the Sharon Conglomerate, are high enough to provide significant quantities of water. Several wells at the former RVAAP have penetrated both the Sharon Conglomerate and the Connoquenessing Sandstone and reportedly produced water from both units.

In general, hydraulic conductivities for the shales of the Sharon and Mercer members of the Pottsville Formation are low and result in significant groundwater yields. The porosity of the shales is likely secondary, in the form of joints and fractures in the bedrock. However, there is no facility-specific information available regarding occurrence of joints and fractures in these units (SAIC, 2005).

# 2.4.1.3 Groundwater Flow Directions

Groundwater in both the unconsolidated and bedrock aquifers at the former RVAAP predominantly flows in an eastward direction. The unconsolidated aquifer, however, also shows numerous local flow variations that are influenced by topography and site drainage patterns. The local variations in flow direction suggests groundwater in the unconsolidated deposits is generally in direct hydraulic communication with surface water, and that surface water drainage ways may also act as groundwater discharge locations. In addition, topographic ridges between surface water drainage features act as groundwater divides for groundwater found in the unconsolidated deposits (SAIC, 2005).

#### 2.4.1.4 Surface Water

The entire former RVAAP facility is situated within the Mahoning River Basin, with the West Branch of the Mahoning River representing the major surface stream in the area. The West Branch flows adjacent to the west end of the facility, generally in a north to south direction, before flowing into the Michael J. Kirwan Reservoir, which is located to the south of State Route 5. The West Branch flows out of the reservoir along the southern facility boundary before joining the Mahoning River east of the former RVAAP.

The western and northern portions of the former RVAAP facility display low hills and a dendritic surface drainage pattern. The eastern and southern portions are characterized by an undulating to moderately level surface, with less dissection of the surface drainage. The facility is marked with marshy areas and flowing and intermittent streams whose headwaters are located in the facility's hills. Three primary water courses drain the former RVAAP: (1)

the South Fork of Eagle Creek, (2) the Sand Creek, and (3) the Hinkley Creek. These water courses have many associated tributaries.

Sand Creek, with a drainage area of 13.9 square miles, flows generally in a northeast direction to its confluence with the South Fork of Eagle Creek. In turn, the South Fork of Eagle Creek then continues in a northerly direction for 2.7 square miles to its confluence with Eagle Creek. The drainage area of the South Fork of Eagle Creek is 26.2 square miles, including the area drained by Sand Creek. Hinkley Creek originates just southeast of the intersection between State Routes 88 and 303 to the north of the facility. Hinkley Creek, with a drainage area of 11.0 square miles, flows in a southerly direction through the installation to its confluence with the West Branch of the Mahoning River south of the facility.

Approximately 50 ponds are scattered throughout the installation. Many were built within natural drainage ways to function as settling ponds or basins for process effluent and runoff. Others are natural in origin, resulting from glacial action or beaver activity. All water bodies at the former RVAAP support an abundance of aquatic vegetation and are well stocked with fish. None of the ponds within the installation are currently used as a potable water supply source.

Storm water runoff is controlled primarily by natural drainage except in facility operations areas where an extensive storm sewer network helps to direct runoff to drainage ditches and settling ponds. In addition, the storm sewer system was one of the primary drainage mechanisms for process effluent during the period that production facilities were in operation (USACE, 1998).

# 2.4.2 Sand Creek Disposal Road Landfill Hydrogeology

There are currently no potentiometric data for the Sand Creek Site since no monitoring wells have been installed at the AOC. However, based on the significant topographic features at the site and the presence of the continuously flowing Sand Creek adjacent to the west of the AOC, it is assumed that groundwater at the site flows in a westerly to northwesterly direction towards the creek.

There are various depressions and several areas of standing water at the top of the embankment which is indicative of the silt-clay soils that are present in the subsurface. However, in general surface water runoff follows the topography of the site and flows in a westerly direction where it enters Sand Creek.

Throughout the facility, average depth to groundwater is as deep as 50 feet bgs with static water levels occurring between 958 and 1,184 feet amsl (Kammer, 1982). However, groundwater has been encountered at much shallower depths in the upper unconsolidated

aquifer across the former RVAAP. The latter is most likely the case at the Sand Creek Site where the top of the embankment ranges from 15 to 25 feet above the surface of Sand Creek, and saturated soil was encountered in the soil borings at the northern portion of the site (SCsb-035, SCsb-036, and SCsb-037), where the embankment is the shortest, at depths of approximately 13 feet bgs (**Appendix A**). The depth at which saturated soil was encountered in the soil borings advanced at the AOC during the RI field activities is presented in **Figure 2-4**.

# 2.5 Demography and Land Use

The 2010 Census (U.S. Census Bureau, 2010) lists the total populations of Portage County and Trumbull County as 161,419 and 210,312, respectively. Population centers closest to the former RVAAP are Ravenna, Ohio, with a population of 11,724, and Newton Falls, Ohio, with a population of 4,795.

The former RVAAP facility is in a rural area and is not close to any major industrial or developed areas. Approximately 55 percent of Portage County, in which much of the former RVAAP is located, consists of either woodland or farm acreage. The Michael J. Kirwan Reservoir (also known as West Branch Reservoir) is the closest major recreational area and is located adjacent to the western half of the former RVAAP, south of State Route 5.

The OHARNG is licensed to use the facility as a military training site, Camp Ravenna. The restoration program for the former RVAAP is managed by the ARNG and OHARNG. This program involves cleanup of former production/operational areas throughout the facility related to former activities conducted there. Training and related activities at Camp Ravenna include: range operations, field operations and bivouac training, convoy training, equipment maintenance, C-130 aircraft drop zone operations, helicopter operations, and storage of heavy equipment."

The Sand Creek Site is in the eastern central portion of the facility. The AOC is not currently used for military training activities but may receive periodic foot traffic during maintenance, restoration, and security activities. Future land use at the AOC is the Military Training Land Use. The Representative Receptor for this Land Use is the NGT per the *USACE's Facility-Wide Human Health Risk Assessment Manual* (HHRAM - USACE, 2005b) and the 2014 Risk Assessment Tech Memo. This anticipated future Land Use, in conjunction with the evaluation of Unrestricted (Residential) Land Use form the basis for identifying chemicals of concern (COCs) in this RI. Residential land use, specifically the Resident Receptor (Adult and Child) scenario, is included to evaluate COCs for Unrestricted (Residential) Land Use at the AOC as required by the CERCLA process and as outlined in the HHRAM (USACE, 2005b).

A third Land Use was also included in this revised RI. The third Land Use, Commercial Industrial Land Use was identified in the Risk Assessment Tech Memo as a means to evaluate the site to determine if the site is suitable for full-time, permanent employees. Per the Risk Assessment Tech Memo (NGB, 2014), if the criteria for the Commercial Industrial Land Use is met, then no additional remedial actions are required except for the development of Land Use Controls through the CERCLA process (FS, PP, ROD, etc.). The Commercial Industrial Land Use is evaluated using the USEPA's generic Composite Worker Receptor referred to herein as the Industrial Receptor. The Military Training Land Use is the primary Land Use and is protective of all activities that the OHARNG may conduct on the site except for full-time, permanent occupational occupancy. Evaluation of the three Land Uses in the RI will allow better risk management decisions in the FS if needed.

#### 2.6 Potential Receptors

This section presents the potential human health and ecological receptors that may be impacted in the absence of a remedial action.

# 2.6.1 Human Receptors

The facility is in a rural area and is not near any major industrial or developed areas. Public access to Camp Ravenna is limited. The facility is fenced and Camp Ravenna staff oversee and manage access when permitted and in accordance with safety and security requirements. Military trainees utilize the facility for various training purposes and operations and there are some full time OHARNG staff as well. There are also contractor staff that work at the facility for varying periods of time to complete construction projects, maintenance work, or remediation projects.

The AOC is located at the eastern central portion of the facility. It is not currently used for specific OHARNG training activities but receives periodic foot traffic during maintenance, restoration, and security activities. Human receptors evaluated in this RI include the following: Resident Receptor, NGT, and Industrial Receptor (for USEPA Composite Worker using Industrial RSLs). The generic Composite Worker Receptor is called the "Industrial Receptor" for RVAAP risk assessments per the Risk Assessment Technical Memorandum (NGB, 2014).

# **2.6.2 Ecological Receptors**

Descriptions in this section and items such as the list of species are based on the 2008 Integrated Natural Resource Management Plan (INRMP) and have not been updated to reflect any changes noted in the 2014 INRMP. However, information presented in this section is still relevant and adequately describes general-current ecological conditions and does not affect the analysis completed in this RI. Ecological receptors that were to be included in the ecological risk assessment were presented in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003). These selected receptors have not changed and should be considered

with completing an ecological risk assessment. The former RVAAP has a diverse range of vegetation and habitat resources. The majority of lands within the facility are post-successional agricultural lands, with the exception of a few areas of large mature forest and areas that were considered too wet to farm. Approximately 90 percent of the former RVAAP, apart from wet woods, had historically been cleared and used for agriculture or otherwise disturbed. Habitats currently present within the installation include large tracts of closed-canopy hardwood forest, scrub/shrub open areas, grasslands, wetlands, open-water ponds and lakes, and semi-improved administration areas.

Vegetated land at the former RVAAP can be divided into three broad vegetation categories: herb dominated, shrub dominated, and tree dominated. Tree-dominated areas are the most widespread form of vegetation across the facility. The remaining acres at the former RVAAP that are not dominated by vegetation include areas previously developed or disturbed through the emplacement of structures, roads, and other development.

Available estimates indicate that approximately one-third of the former RVAAP facility property meets the regulatory definition of a wetland, with most the wetland areas located in the eastern portion of the facility. Wetland areas at the former RVAAP include seasonal wetlands, wet fields, and forested wetlands. Many of the wetland areas are the result of natural drainage or beaver activity. However, some wetland areas are associated with anthropogenic settling ponds and drainage areas. The potential for impacts on wetland areas at the facility is real due to the amount of process effluent discharged to settling ponds and the natural drainage of the area in the past (AMEC, 2008).

Federal status as a candidate, threatened, or endangered species is derived from the *Endangered Species Act* (ESA) (16 USC § 1538, et seq.) and is administered by the U.S. Fish and Wildlife Service. State-listed plant and animal species are determined by the Ohio Department of Natural Resources (ODNR). There are currently no federally listed species or critical habitats on Camp Ravenna property. There are species under federal review for listing but none are listed. Information regarding endangered, threatened, and candidate species at the facility was obtained from the *Camp Ravenna Joint Military Training Center Rare Species List* (CRJMTC, 2010). **Table 2-1** presents state-listed species that have been confirmed to be on the facility by biological inventories and confirmed sightings.

# 2.7 Preliminary Conceptual Site Model

The preliminary CSM for the Sand Creek Site was developed in the DQO Report (Shaw, 2009) and included available information for the facility-wide CSM for the former RVAAP as presented in the FWSAP (SAIC, 2001), site-specific operational information, and data collected during the 2003 RA (MKM, 2004). Data from the 2003 FWBWQS (USACE, 2005a) were not included in the DQO Report but has been evaluated for the purposes of this

preliminary CSM. This preliminary CSM has been refined in this RI Report (Section 8.6) to integrate the results of the evaluation of contaminant nature and extent, fate and transport modeling, and the HHRA and SLERA sections as these sections are developed and present a summary of available knowledge for the AOC.

#### 2.7.1 Surface Soils

Surface soils at the site, characterized as 0 to 1 foot bgs at the former RVAAP, consist primarily of fill material most likely used for landfill cover. The surface soil is covered with thick vegetation consisting of primarily tall grass and overgrown brush. Surface soil sampling was conducted in 2003 as part of the RA confirmatory sampling activities. Additional surface soil sampling was performed during the RI field activities using ISM to evaluate data gaps identified in the preliminary CSM.

Thirty confirmation surface soil samples and three contingency soil samples were collected at the site as part of the 2003 RA. As discussed in Section 1.3.3, "Preliminary Evaluation for COPCs," the preliminary COPCs identified for the future land use receptors in surface soil during the 2003 RA included primarily metals (arsenic, antimony, barium, beryllium, cadmium, copper, lead, manganese, mercury, selenium, and silver) and SVOCs [benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene benzo(g,h,i)perylene, bis(2-ethylhexyl)phthalate, and phenanthrene] with concentrations greater than the final FWCUGs and/or the RVAAP BSVs. The sample locations where metals were detected above the final FWCUGs and the RVAAP BSVs were located primarily in the northern third of the site. The soil sample where the SVOCs were detected above the final FWCUGs is located approximately 120 feet north of the former railroad bed. Further discussion regarding the nature and extent of contamination of the surface soil samples results from the 2003 RA and inclusion of the RI sample results that will aid in refining the CSM is presented in Section 4.2.

#### 2.7.2 Subsurface Soils

Limited geologic and analytical data existed for subsurface soils at Sand Creek prior to the RI field activities. Therefore, an accurate assessment has previously not been possible. A DGM investigation was performed in 2010 with the primary objective for the Sand Creek Site of characterizing the anomaly density in the subsurface. Subsurface soil sampling was performed during the RI field activities using a modified ISM. Locations were biased based on elevated surface soil confirmatory analytical results identified during the 2003 RA and the DGM results for the site as presented in the DGM Report (Shaw, 2011). Further discussion regarding the nature and extent of contamination in subsurface soils based on the RI field sampling results is presented in Section 4.3.

# 2.7.3 Sediment

Twelve discrete sediment samples were collected from the neighboring floodplain to characterize potential impact associated with site runoff as part of the 2003 RA. One ISM sediment sample was collected in the portion of the Sand Creek adjacent the site for the 2003 FWBWQS to assess if chemical contamination within the streams was adversely affecting the biological communities. The preliminary COPCs identified for sediment in Section 1.3 include five inorganics (aluminum, beryllium, cobalt, lead, and silver), one explosive (2,6-dinitrotoluene), two propellants (nitrocellulose and nitroguanidine), one SVOC (di-n-butyl phthalate), and one VOC (acetone). Except for aluminum and silver, these analytes were only retained as preliminary COPCs since no final FWCUGs are available for them. Although relatively few preliminary COPCs were identified in the sediment samples collected for the 2003 RA, the detected results were primarily inorganics above the BSVs and were mostly found along the northern floodplain adjacent to the site. The one SVOC identified as a preliminary COPC was detected in the ISM sediment sample collected for the 2003 FWBWQS.

Erosion transport of soil contaminants and deposition as stream sediment is a potential migration mechanism and resuspension of sediment within Sand Creek during storm events provides a potential mechanism for downstream transport over time. The RI field activities targeted additional samples for sediment along the banks of the Sand Creek Site using ISM. Further discussion regarding the nature and extent of contamination of the sediment sample results from the 2003 RA and the 2003 FWBWQS and inclusion of the RI sample results that will aid in refining the CSM is presented in Section 4.4.

#### 2.7.4 Surface Water

Three surface water samples were collected from Sand Creek during the 2003 RA to assess surface water quality and characterize potential impact associated with site runoff. Two surface water samples were collected adjacent to the site during the 2003 FWBWQS, at separate times during that summer, to assess if chemical contamination within the streams was adversely affecting the biological communities. Inorganic concentrations of arsenic, cobalt, lead, and one SVOC were identified as preliminary COPCs between the separate surface water samples collected at the same location during the 2003 FWBWQS event—the intersection of the former railroad culvert and Sand Creek adjacent to the central portion of the site.

Potential contaminants along the site would be expected to leach or erode from source areas during rainfall events, become entrained in storm runoff and discharge directly to Sand Creek. However, the site is currently covered with mature trees and scrub vegetation, which somewhat reduces the potential for erosional transport processes to occur. Sand Creek is a constant flowing stream and it is unlikely that any contaminants that could be originating from the site

would still be detected in surface water. The surface water was believed to be adequately characterized; therefore, no additional surface water sampling was considered necessary for the RI. Further discussion regarding the nature and extent of contamination of the surface water sample results of the 2003 RA and the 2003 FWBWQS is presented in Section 4.5.

#### 2.7.5 Preliminary Conceptual Site Model Summary

The nature and types of chemicals to be expected from the former Sand Creek Site are largely unknown due to incomplete operational records and minimal environmental media samples collected prior to the RI field activities. Elevated metals and detected concentrations of SVOCs, explosives and propellants are consistent with past activities performed at the former RVAAP and would be expected because of historical dumping activities conducted at the site. The current potential for human exposure to potential chemicals migrating from the site is mitigated by inactivity at the site, the absence of permanent residents, and the low population density on adjacent private properties. The future potential for human exposure to potential chemicals migrating from the site based on additional sample investigation identified future use and anticipated human receptors will be evaluated further in this RI Report.


Figure 2-1 Topography and Surface Water Flow



Figure 2-2 Soils Map









erated By: MM Date: 05/28/13 File Path:\\crp.btrp.gl01\arcgisprod3\MAMMS\R

r: 136147

| Common Name                         | Scientific Name                     |
|-------------------------------------|-------------------------------------|
| State Endangered                    |                                     |
| American bittern                    | Botaurus lentiginosus               |
| Northern harrier                    | Circus cyaneus                      |
| Yellow-bellied sapsucker            | Sphyrapicus varius                  |
| Golden-winged warbler               | Vermivora chrysoptera               |
| Osprey                              | Pandion haliaetus                   |
| Trumpeter swan                      | Cygnus buccinators                  |
| Mountain brook lamprey              | Ichthyomyzon greeleyi               |
| Graceful underwing                  | Catocala gracilis                   |
| Tufted moisture-loving moss         | Philonotis Fontana var. caespitosa  |
| Bobcat                              | Felis rufus                         |
| Narrow-necked Pohl's moss           | Pohlia elongate car. Elongate       |
| Sandhill crane (probable nester)    | Grus Canadensis                     |
| Bald eagle (nesting pair)           | Haliaetus leucocephalus             |
| State Threatened                    |                                     |
| Barn owl                            | Tyto alba                           |
| Dark-eyed junco (migrant)           | Junco hyemalis                      |
| Hermit thrush (migrant)             | Catharus guttatus                   |
| Least bittern                       | Ixobrychus exilis                   |
| Least flycatcher                    | Empidonax minimus                   |
| Caddisfly                           | Psilotreta indecisa                 |
| Simple willow-herb                  | Epilobium strictum                  |
| Woodland horsetail                  | Equisetum sylvaticum                |
| Lurking leskea                      | Plagiiothecium latebricola          |
| Pale sedge                          | Carex pallescens                    |
| State Potentially Threatened Plants |                                     |
| Gray birch                          | Betula populifolia                  |
| Butternut                           | Juglans cinerea                     |
| Northern rose azalea                | Rhododendron nudiflorum var. roseum |
| Hobblebush                          | Viburnum alnifolium                 |

| Table 2-1. | Rare species | s list for Cam | p Ravenna | Joint Military | Training | Center. |
|------------|--------------|----------------|-----------|----------------|----------|---------|
|------------|--------------|----------------|-----------|----------------|----------|---------|

| Common Name              | Scientific Name           |
|--------------------------|---------------------------|
| Long beech fern          | Phegopteris connectilis   |
| Straw sedge              | Carex straminea           |
| Tall St. John's wort     | Hypercium majus           |
| Water avens              | Geum rivale               |
| Shining ladies-tresses   | Spiranthes lucida         |
| Swamp oats               | Sphenopholis pensylvanica |
| Arbor vitae              | Thuja occidentalis        |
| American chestnut        | Castanea dentate          |
| State Species of Concern |                           |
| Pygmy shrew              | Sorex hovi                |
| Woodland jumping mouse   | Napaeozapus insignis      |
| Star-nosed mole          | Condylura cristata        |
| Sharp-shinned hawk       | Accipiter striatus        |
| Marsh wren               | Cistothorus palustris     |
| Henslow's sparrow        | Ammodramus henslowii      |
| Cerulean warbler         | Dendroica cerulean        |
| Prothonotary warbler     | Protonotaria citrea       |
| Bobolink                 | Dolichonyx oryzivorus     |
| Northern bobwhite        | Colinus virginianus       |
| Common moorhen           | Gallinula chlorpus        |
| Great egret (migrant)    | Ardea alba                |
| Sora                     | Porzana Carolina          |
| Virginia rail            | Rallus limicola           |
| Creek heelsplitter       | Lasmigona compressa       |
| Eastern box turtle       | Terrapene Carolina        |
| Four-toed salamander     | Hemidactylium scutatum    |
| mayfly                   | Stenonema ithica          |
| Coastal plain apamea     | Apamea mixta              |
| Willow peasant           | Brachylomia algens        |
| Sedge wren               | Cistothorus platensis     |

### Table 2-1. Rare species list for Camp Ravenna Joint Military Training Center (continued).

| State Special Interest                     |          |
|--------------------------------------------|----------|
| Canada warbler Wilsonia Canada             | ensis    |
| Little blue heron Egretta caerula          |          |
| Magnolia warbler Dendroica magn            | olia     |
| Northern waterthrush Seiurus novebord      | acensis  |
| Winter wren   Troglodytes                  |          |
| Back-throated blue warbler Dendroica caeru | ulescens |
| Brown creeper Certhia America              | na       |
| Mourning warbler Oporornis philad          | delphia  |
| Pine siskin   Carduelis pinus              |          |
| Purple finch Carpodacus purp               | pureus   |
| Red-breasted nuthatch Sitta Canadensis     |          |
| Golden-crowned kinglet Regulus satrapa     |          |
| Blackburnian warbler Dendroica fusca       |          |
| Blue grosbeak Guiraca caeruled             | a        |
| Common snipe Gallinago                     |          |
| American wigeon   Anas Americana           |          |
| Gadwall Anas strepera                      |          |
| Green-winged teal Anas crecca              |          |
| Northern shoveler Anas clypeata            |          |
| Redhead duck     Aythya American           | па       |
| Ruddy duck   Oxyura jamaicent              | ısis     |

### Table 2-1. Rare species list for Camp Ravenna Joint Military Training Center (continued).

Source: Camp Ravenna Joint Military Training Center Rare Species List, April, 27, 2010.

# 3.0 STUDY AREA INVESTIGATION

This chapter presents the methodology for the development of the DQOs for this RI. The facility-wide CSM, operational history, historical data and records, and confirmatory data collected following the 2003 RA were used to design the RI sampling effort using the DQO approach presented in the FWSAP (SAIC, 2001). The DQOs for the RI are presented in detail in the DQO Report (Shaw, 2009). Furthermore, this section presents the locations of, the rationale for, samples collected during the RI field effort, and provides a description of the sampling methods implemented during the investigation.

# **3.1 Data Evaluation for Previous Investigations**

The evaluation of data collected during the 2003 RA was performed as part of the DQO Report (Shaw, 2009) for the Sand Creek Site. The data evaluated was on all the samples taken after the removal action had occurred. In general, the evaluation and screening methods initially compared constituents present at background concentrations from those present at concentrations that indicated potential impacts related to historical operations at the site. The identified constituents were then screened against the then most current version of the FWCUGs for unrestricted land use scenarios for the Resident Receptor (Adult and Child) and the National Guard Receptors based on the desired use of the land for the 10<sup>-6</sup> excess cancer risk level and HQ equal to 0.1 (<sup>1</sup>/<sub>10</sub> the noncancer risk). A summary of chemicals detected above the screening criteria for the 2003 RA is presented in **Table 3-1**.

The 2003 FWBWQS surface water and sediment samples were compared to OWQCs and ecological screening criteria to evaluate aquatic biological life impacts and if chemical contamination was adversely impacting life in the streams at the former RVAAP. The data were not included in the DQO Report (Shaw, 2009) since they were not considered to be site specific. However, the data are used in this section to supplement the results of the 2003 RA data. These data have been evaluated in the same manner as discussed above for the 2003 RA data. A summary of chemicals detected above the screening criteria for the 2003 FWBWQS is presented in **Table 3-1**.

The RI field activities conducted at the Sand Creek Site between September and November 2010 included the collection of surface soil and sediment samples using ISM and subsurface soil samples using a modified version of the ISM. Sampling locations for these activities were based on data gaps identified in the DQO Report (Shaw, 2009). Surface water samples were not collected during the RI based on the recommendations made in the DQO Report. Groundwater sampling is performed on a facility-wide basis and was not included in Shaw's scope of work for the RI at the Sand Creek Site. Specific notation is made where site conditions required a departure from planned activities detailed in the SAP Addendum No. 1

(Shaw, 2010) for the Sand Creek Site RI. Information regarding standard field decontamination procedures, sample container types, preservation techniques, sample labeling, chain of custody, and packaging and shipping requirements implemented during the field investigation can be found in the FWSAP (SAIC, 2001) and SAP Addendum No. 1 (Shaw, 2010).

Proposed RI sample locations were reviewed by representatives of the Ohio EPA and the USACE as part of the approval process for the SAP Addendum No. 1 (Shaw, 2010). The rationale for each component of the field investigation is described in the following sections.

## 3.2 Surface Soil Characterization

Surface soil samples were collected during the RI field activities to evaluate the potential for contaminant migration via leaching or erosional processes from surface soils to receptor media such as sediment. Surface soil samples were collected at 18 sampling units from 0 to 1 foot bgs to further characterize the areas where COPCs consisting of inorganics, SVOCs, one propellant, and one VOC were identified during the 2003 RA. In all, a total of 24 surface soil samples, including field duplicates and QC samples, were collected at the Sand Creek Site. All surface soil samples were collected using ISM except for samples to be analyzed for VOCs which were collected as a discrete sample from within the designated sampling unit. **Figure 3-1** presents the ISM sampling units and discrete sample locations where the surface soil samples were collected. **Table 3-2** summarizes the media sampled for the RI and the rationale for the sample strategy.

Methods used for the collection of surface soil samples during the RI are summarized below. The collection methodology for ISM is presented in the SAP Addendum No. 1 (Shaw, 2010) and is based upon the procedures presented in the *Implementation of Incremental Sampling (IS) of Soil for the Military Munitions Response Program, Interim Guidance 09-02* (USACE, 2009).

# 3.2.1 Sampling Approach

Surface soil samples were collected at 18 sampling units using the ISM approach. The purpose of collecting, preparing, and analyzing an ISM sample is to provide a repeatable and accurate measure of the average concentrations of chemicals within a previously defined sample area or sampling unit. The selected sampling units are locations where contamination associated with the historical dumping activities are expected to be the greatest in surface soil. The combined sampling units are considered the decision unit for the AOC and are the area in which a decision regarding SRCs in surface soil will be made. A sufficient amount of sample material must be collected from each sampling unit to account for compositional heterogeneity and additionally, a sufficient number of aliquots (sub samples) utilizing a stratified random methodology must be taken to account for distributional heterogeneity. For the purposes of

this RI, the accurate, average values derived from the ISM samples were used to evaluate (1) exposure point concentration (EPC) within human health or ERAs and (2) delineation of nature and extent of contamination.

Each ISM surface soil sample consisted of 30 random aliquots collected from each sampling unit across the entire 1-foot interval from 0 to 1 foot bgs using a systematic-random approach, where the collection of aliquots within a sampling unit is considered more reproducible. The stratification assures coverage over the entire sample area and the randomness provides repeatability and accuracy. The key steps performed for collection of a systematic random sample were (1) subdivide the ISM sampling unit into a uniform grid, (2) randomly select a single aliquot sample location in the first grid, and (3) collect aliquot samples from the same relative location within each of the other grids (USACE, 2009). **Figure 3-2** presents an example of how a systematic random sample is collected and is from the *Implementation of Incremental Sampling (IS) of Soil for the Military Munitions Response Program, Interim Guidance 09-02* (USACE, 2009). The sampling unit in the figure depicts a sampling unit with 100 grid cells, whereas the actual sampling units at the Sand Creek Site consisted of 30 grid cells.

The sampling units were established by placing wood stakes at the corners of each sampling unit at the predetermined coordinates. The coordinates were verified using a Trimble Pro XRS Global Positioning System (GPS) with submeter accuracy. The ISM samples were collected from the predetermined number of aliquot sample locations using a <sup>7</sup>/<sub>8</sub>-inch stainless steel step probe sample collection device. The aliquots of soil were placed into a plastic lined bucket and combined to make a single sample weighing between 1 to 2 kilograms (kg).

Each 1- to 2-kg sample was submitted to the contracted laboratory for processing and analysis. Processing consisted of drying out the sample and sieving the sample through a #10 sieve. Any material larger than the #10 sieve was discarded. The remaining air-dried, sieved material was then ground using a puck mill to better homogenize the sample.

The QC samples collected included field duplicate samples and matrix spike (MS)/matrix spike duplicate (MSD) samples. The field duplicates and the MS/MSDs were collected from the ISM sampling units at the frequency of 10 and 20 percent, respectively. The collection of the QC samples required similar portions of soil as the original sample. Therefore, at each ISM sampling unit where a QC sample was required, additional ISM samples were collected from within the same sampling unit consisting of at least 30 aliquots of soil each. The field duplicates were labeled with different sample numbers and submitted to the laboratory for processing as a blind field duplicate. The QA samples were collected for the USACE only at a frequency of 10 percent using the same methods as for the collection of the QC samples.

The QA samples were submitted to the specified USACE-contracted laboratory for processing and analysis.

Each ISM surface soil sample was analyzed for TAL metals, SVOCs, and explosives. In addition, five samples were submitted for hexavalent chromium analysis. Approximately 10 percent of the samples were analyzed for the RVAAP full suite that included pesticides, PCBs, total cyanide, and propellants.

# **3.2.2 Discrete VOC Surface Soil Samples**

The ISM sampling method was not utilized for samples to be analyzed for target compound list (TCL) VOC analysis which comprised approximately 10 percent of the sample locations collected as part of the RVAAP full suite. For samples designated for VOC analysis, one discrete sample was collected from within the ISM sampling unit using a disposable terra core sampler. The specific location of the discrete sample was intended to be biased toward the area most likely to contain VOCs. However, no such locations were identified during the field sampling activities and the locations were randomly chosen within each ISM sampling unit. Soil portions designated for VOC analysis were placed directly in the sample container with a methanol preservative and were not composited or further processed in the field.

The QC samples collected for VOC analysis included field duplicate samples and MS/MSDs at the same frequency as the RVAAP full suite ISM samples. The collection of the QC samples required similar portions of soil as the original sample. The field duplicates were labeled with different sample numbers and submitted to the laboratory for processing as a blind field duplicate. The QA samples for VOC analysis were collected for the USACE at a frequency of 10 percent of the VOC samples collected using the same methods as for the collection of the QC samples. The QA samples were submitted to the specified USACE-contracted laboratory for processing and analysis.

# **3.3 Sediment Characterization**

The sediment samples collected at the Sand Creek Site represent floodplain and other types of soil that are intermittently wet throughout the year. These types of media samples are collected similar to the surface soil samples discussed in Section 3.2.1 using ISM. However, the sample depth for sediment is from 0 to 6 inches instead of from 0 to 1 foot for surface soils. The rationale for collecting sediment samples is to evaluate the true average concentrations of the contaminants in the sediment in the floodplain along the reach of the Sand Creek adjacent to the disposal area using the ISM technique. Sediment samples were collected at two sampling units in the floodplain between Sand Creek and the AOC. The combined sediment sampling units are considered the decision unit for sediment and are the location in which a decision regarding SRCs in sediment adjacent to the AOC will be made. **Figure 3-1** presents the ISM

sampling units and discrete sample locations where the sediment samples were collected. **Table 3-2** summarizes the media sampled for the RI and the rationale for the sample strategy.

# 3.3.1 Sampling Approach

Sediment samples were collected at two sampling units using ISM as discussed in Section 3.2.1. Each ISM sediment soil sample consisted of 30 random aliquots collected from each sampling unit across the entire 6-inch interval from 0 to 6 inches bgs using a systematic-random approach.

The ISM samples were collected from the predetermined number of aliquot sample locations using a  $^{7}/_{8}$ -inch stainless steel step probe sample collection device. The aliquots of sediment were placed into a plastic lined bucket and combined to make a single sample weighing approximately 1 kg. Each 1-kg sample was submitted to the contracted laboratory for processing and analysis as discussed in Section 3.2.1. Due to the limited number of sediment samples (two), each of the samples was analyzed for the full RVAAP suite to include TAL metals, hexavalent chromium, SVOCs, explosives, pesticides, PCBs, cyanide, and propellants.

# **3.3.2 Discrete VOC Sediment Sample**

The ISM was not utilized for the collection of the dry sediment sample to be analyzed for TCL VOC analysis. For the sample designated for VOC analysis, one discrete sample was collected from within one of the sediment ISM sampling units using a disposable terra core sampler. The specific location of the discrete sample was intended to be biased toward the area most likely to contain VOCs. However, no such locations were identified during the field sampling activities and the location was randomly chosen within the designated sediment ISM sampling unit. The portions designated for VOC analysis were placed directly in the sample container with methanol preservative and were not composited or further processed in the field.

## 3.4 Subsurface Soil Characterization

Subsurface samples were collected near the areas of subsurface anomalies identified during the 2010 DGM investigation and at biased locations identified as a result of the data evaluation for surface soil in the RD/RA Report (MKM, 2004). The rationale for collecting subsurface samples at the site was to provide additional information to whether historical dumping activities at the site impacted transport pathways to deeper soil horizons for the contaminants identified in the RD/RA Report (MKM, 2004). In addition, subsurface sampling was intended to verify the depths of residual contamination (if any) at the surface soil locations requiring further evaluation.

Subsurface soil borings were advanced at 22 locations at the Sand Creek Site during the RI field activities that included 13 hand-auger borings and 9 DPT soil borings. The DPT borings were advanced along the level areas adjacent to the top of slope, and the hand augers were

advanced along the slopes of the site where the steep conditions limited the ability of the DPT to collect samples. The subsurface soil samples for both sampling methods were collected using a modified ISM as discussed below. A total of 78 subsurface soil samples, including duplicates and QC samples, were collected at the intervals described in Section 3.4.1 to a maximum depth of 20 feet bgs.

Figure 3-1 presents the subsurface soil boring locations. Table 3-2 summarizes the media sampled for the RI and the rationale for the sample strategy.

# 3.4.1 Sampling Approach

Subsurface soil samples were collected by means of a hydraulic DPT sampler (i.e., Geoprobe<sup>®</sup>) to a maximum sampling depth of 20 feet bgs at the Sand Creek Site. The manual bucket handauger method was used at areas of steep slopes to a maximum depth of 5 feet bgs. Subsurface borings for both methods were performed in accordance with the procedures presented in the FWSAP (SAIC, 2001).

Subsurface samples were collected at a maximum of 4-foot intervals using the modified ISM approach presented in the SAP Addendum No. 1 (Shaw, 2010). In general, the modified ISM approach consisted of collecting 30 aliquots of soil from each soil column for each sample interval using a stainless-steel spoon. The subsurface soil sample intervals began at 1 foot bgs as surface soil at the former RVAAP is considered to be the 0- to 1-foot interval. For the bucket hand-auger samples, subsurface soil samples were collected from the entire 1- to 5-foot. The DPT samples were collected at the following intervals: 1 to 5 feet bgs, 5 to 9 feet bgs, 9 to 13 feet bgs, 13 to 17 feet bgs, and 17 to 20 feet bgs.

If possible, a 1- to 2-kg ISM sample was collected from each boring interval and submitted to the contracted laboratory for processing and analysis. However, factors that sometimes decreased the amount submitted included (1) minimal recovery from the soil probe and (2) additional sample volume needed to fulfill QA and QC sample requirements. In all instances, the minimal amount of soil needed by the laboratory to adequately process the ISM samples (100 grams) was submitted. Processing consisted of the same methodology for sieving and drying as discussed for ISM surface soil samples in Section 3.2.1.

The QC samples included field duplicate samples and MS/MSDs. The field duplicates and the MS/MSDs were collected from the subsurface soil borings at the frequency of 10 percent and 20 percent, respectively. The collection of the QC samples required similar portions of soil as the original sample from the same soil probe or bucket auger sample interval. Where multiple QA/QC samples were required from a single sample interval, a similar amount was collected for the original sample and the QA/QC samples. The field duplicates were labeled with different sample numbers and submitted to the laboratory for processing as a blind field

duplicate. The QA samples were collected for the USACE at a frequency of 10 percent using the same methods as for the collection of the QC samples. The QA samples were submitted to the specified USACE-contracted laboratory for processing and analysis.

Borehole logs, including estimates of Unified Soil Classification System classification, were prepared at the time of sampling in accordance with the FSAP (SAIC, 2001). Organic vapor screening using a photoionization detector (PID) was performed on soil cores, and results were noted on the borehole logs that are presented in **Appendix A**.

Subsurface soil samples were submitted for TAL metals, SVOCs, and explosives. An additional five samples were submitted for hexavalent chromium analysis. A minimum of 10 percent were analyzed for the RVAAP full suite that includes pesticides, PCBs, cyanide, and propellants.

# 3.4.2 Discrete VOC Subsurface Soil Samples

Modified ISM was not utilized for subsurface samples to be analyzed for VOC analysis which comprised approximately 10 percent of the sample locations collected as part of the RVAAP full suite. For samples designated for VOC analysis, one discrete sample was collected at the designated depth interval from the DPT soil probe or the bucket hand-auger sample interval using a disposable terra core sampler. The specific location of the discrete sample was intended to be biased toward stained soils or soils that exhibited volatile compounds. However, no such locations were identified during the field sampling activities and the locations were randomly chosen within the designated sample interval. Soil portions designated for VOC analysis were placed directly in the sample container with methanol preservative and were not composited or further processed in the field.

The QC samples for VOC analysis of subsurface soil samples included field duplicate samples and MS/MSD samples at the same frequency as the RVAAP full suite modified ISM samples. The collection of the QC samples required similar portions of soil as the original sample. The field duplicates were labeled with different sample numbers and submitted to the laboratory for processing as a blind field duplicate. The QA samples for VOC analysis were collected for the USACE at a frequency of 10 percent of the VOC samples collected using the same methods as for the collection of the QC samples. The QA samples were submitted to the specified USACE-contracted laboratory for processing and analysis.

## **3.5 Deviations from the Work Plan**

No field change requests were submitted for the RI fieldwork. Deviations in the field based on site conditions are documented in the field sampling logs in **Appendix A**. Deviations from the work plan consisted of the following:

- The SAP Addendum No. 1 (Shaw, 2010) stated that headspace readings for VOCs using a PID would be conducted for soil samples to be collected for VOCs. However, the soils submitted for VOC analysis were placed into vials containing methanol, a liquid preservative. Therefore, headspace readings for VOCs were not able to be collected.
- Sampling equipment decontamination procedures were performed in accordance with the SAP Addendum No. 1 (Shaw, 2010) with the exception that hydrochloric acid was removed from the decontamination process due to observations in the field that the acid was corroding the outer coating of the stainless-steel step probes.
- Due to lack of adequate soil recovery in sample SCsb-038m-005-SO, analysis for pesticides, PCBs, total cyanide, and propellants was conducted at the same interval for nearby sample SCsb-039m-005-SO instead.
- Samples SCsb-037m-0001-SO, SCsb-039m-0005-SO, SCsb-040m-0002-SO, SCsb-042m-0003-SO, and SCss-076-0001-SO were analyzed for pesticides, PCBs, total cyanide, and propellants past the laboratory holding time due to a QC error in filling out the chain-of-custody form that was noticed after field activities were completed.

## **3.6 Analytical Program Overview**

All analytical procedures and data validation processes were completed in accordance with applicable professional standards, EPA requirements, government regulations and guidelines, the *Quality Systems Manual for Environmental Laboratories*, Final Version 4.1 (herein referred to as the Quality Systems Manual [QSM] 4.1) (DOD, 2009), the Louisville Chemistry Guideline (LCG) (USACE, 2002), and specific project goals and requirements, as defined in the SAP Addendum No. 1 (Shaw, 2010). An evaluation of Shaw's ability to meet the project QA/QC objectives for the RI is presented in the QA Summary Report in **Appendix B**.

## 3.6.1 Field Analyses

No field laboratory or test kit screening analyses were conducted at the Sand Creek Site during the RI field activities. Organic vapor screening using a PID was conducted on soil cores, and results were noted on the borehole logs presented in the field documentation data in **Appendix A**.

# 3.6.2 Laboratory Analyses

The sampling and analysis program conducted during the RI for Sand Creek Site involved the collection and analysis of surface soil, sediment, and subsurface soil. Field screening for organic vapors was conducted at each subsurface sampling location using a PID. Headspace readings were not performed.

Samples collected during the investigation were analyzed by CT Laboratories of Baraboo, Wisconsin—an Environmental Laboratory Accreditation Program and a National Environmental Laboratory Accreditation Conference–certified laboratory. The QA split samples collected for surface soil, sediment, and subsurface soils were analyzed by USACE's contracted QA laboratory, Severn Trent Laboratories of North Canton, Ohio. Laboratories involved in this work have statements of qualifications including organizational structures, QA manuals, and standard operating procedures (SOPs), which are available upon request.

Samples were collected and analyzed per the FWSAP (SAIC, 2001) and the SAP Addendum No. 1 (Shaw, 2010). The FWSAP and associated addenda were prepared in accordance with USACE and EPA guidance, and outline the organization, objectives, intended data uses, and QA/QC activities to achieve the desired DQOs and to maintain the defensibility of the data. Project DQOs were established in accordance with the *Guidance for the Data Quality Objectives Process* (EPA, 1994). Requirements for sample collection, handling, analysis criteria, target analytes, laboratory criteria, and data validation criteria for the RI are consistent with EPA requirements for National Priorities List sites. The DQOs for this project included analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity for the measurement data. The Shaw and third party data validation results are presented in **Appendix C** and provide an assessment of those objectives as they apply to the analytical program.

Strict adherence to the requirements set forth in the FWSAP (SAIC, 2001) and the SAP Addendum No. 1 (Shaw, 2010) was required of the analytical laboratory so that conditions adverse to quality would not arise. The laboratory was required to perform all analyses in compliance with EPA SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Analytical Protocols* (EPA, 2007). SW-846 chemical analytical procedures were followed for the analyses of TAL metals, hexavalent chromium, VOCs, SVOCs, pesticides, PCBs, explosives, propellants (nitroguanidine, nitroglycerine, and nitrocellulose), and cyanide. The contracted laboratory was required to comply with all methods as written; recommendations were considered requirements.

The QA/QC samples for this project included field blanks, trip blanks, QA field duplicates, QC split samples, laboratory method blanks, laboratory control samples (LCSs), laboratory duplicates, and MS/MSDs. Field blanks, consisting of potable water used in the

decontamination process, equipment rinsate blanks, and trip blanks were submitted for analysis, along with field duplicate samples, to provide a means to assess the quality of the data resulting from the field sampling program. **Table 3-3** presents a summary of QA/QC samples utilized during the RI field activities. Evaluation of these QA/QC samples and their contribution to documenting the project data quality is provided in **Appendix C**.

Shaw is the custodian of the project file and will maintain the contents of the files for this investigation, including all relevant records, reports, logs, field notebooks, pictures, subcontractor reports, correspondence, and chain-of-custody forms. These files will remain in a secure area under the custody of Shaw until they are transferred to USACE, Louisville District and the former RVAAP. CT Laboratories retain all original raw data in a secure area under the custody of the laboratory project manager.

# 3.6.3 Data Review, Validation, and Quality Assessment

Samples were properly packaged for shipment and dispatched to CT Laboratories for ISM processing and analysis. A separate signed custody record with sample numbers and locations listed was enclosed with each shipment. When transferring the possession of samples, the individuals relinquishing and receiving signed, dated, and noted the time on the record. All shipments followed applicable U.S. Department of Transportation regulations for environmental samples.

Data were produced, reviewed, and reported by the laboratory in accordance with specifications outlined in the FWSAP (SAIC, 2001), the SAP Addendum No. 1 (Shaw, 2010), the QSM 4.1 (DOD, 2009), the LCG (USACE, 2002), and the laboratory's QA manual. Laboratory reports included documentation verifying analytical holding time compliance.

The in-house analytical data reduction was performed by CT Laboratories under the direction of the laboratory project manager and QA officer. These individuals were responsible for assessing data quality and informing Shaw of any data that are considered "unacceptable" or required caution on the part of the data user in terms of its reliability. Data were reduced, reviewed, and reported as described in the laboratory QA manual and SOPs. Data reduction, review, and reporting by the laboratory were conducted as follows:

- Raw data produced by the analyst were turned over to the respective area supervisor.
- The area supervisor reviewed the data for attainment of QC criteria, as outlined in the established methods and for overall reasonableness.
- Upon acceptance of the raw data by the area supervisor, a report was generated and sent to the laboratory project manager.
- The laboratory project manager completed a thorough review of all reports.

• Final reports were generated by the laboratory project manager.

Data were then delivered to Shaw for data validation. CT Laboratories prepared and retained full analytical and QC documentation for the project in electronic storage media (i.e., compact disc), as directed by the analytical methods employed. CT Laboratories provided the following information to Shaw in each analytical data package submitted:

- Cover sheets listing the samples included in the report and narrative comments describing problems encountered in analysis
- Tabulated results of inorganic and organic compounds identified and quantified
- Analytical results for QC sample spikes, sample duplicates, initial and continuing calibration verifications of standards and blanks, method blanks, and LCS information

A systematic process for data verification and validation was performed by Shaw to ensure that the precision and accuracy of the analytical data were adequate for their intended use. This verification also attempted to minimize the potential of using false-positive or false-negative results in the decision-making process (i.e., to ensure accurate identification of detected versus non-detected compounds). This approach was consistent with the DQOs for the project and with the analytical methods, and was appropriate for determining contaminants of concern and calculating risk. Samples were identified through implementation of "definitive" analytical methods. These definitive data were then verified through the review process outlined in the SAP Addendum No. 1 (Shaw, 2010).

Following receipt of the analytical data packages, Shaw performed data validation to ensure that the precision and accuracy of the analytical data were adequate for their intended use. The review constituted (1) comprehensive validation of 100 percent of the primary data set; (2) comprehensive validation of the QA split sample data set; and (3) a comparison of primary sample, field duplicate sample, and field QA split sample information. This validation also attempted to minimize the potential of using false-positive or false-negative results in the decision-making process (i.e., to ensure accurate identification of detected versus non-detected compounds). This approach was consistent with the DQOs for the project and with the analytical methods, and was appropriate for determining contaminants of concern and calculating risk. The Shaw *Final Data Validation Report* for data collected for this RI is presented in **Appendix C**.

The USACE-Louisville District contracted MEC<sup>x</sup> to perform third party validation of the data collected at the Sand Creek Site. This evaluation included a review of the same QC elements as Shaw's review in addition to an in-depth look into the verification of sample results, target

compound identification, and raw data. The intent of the MEC<sup>x</sup> data validation efforts was to verify the quality and the reliability of the primary data for its intended use. The associated MEC<sup>x</sup> *Final Data Validation Report* presented in **Appendix C** details the MEC<sup>x</sup> findings from the Level IV validation of ten percent of the primary sample data, analysis of field duplicate results, and the determination of data usability.

## 3.7 Munitions and Explosives of Concern Avoidance

A qualified Senior Unexploded Ordnance Supervisor (SUXOS) from Shaw provided on-theground support for all phases of intrusive activities performed during the RI field activities at the Sand Creek Site to implement the MEC avoidance activities presented in the SAP Addendum No. 1 (Shaw, 2010). The SUXOS performed initial ground clearance of potential MEC with a Schonstedt Model GA-52Cx magnetometer prior to conducting any intrusive activities at the site. During subsurface sampling activities, the SUXOS screened the boreholes using the Schonstedt as a downhole sensor until the field geologist determined that the boring has reached undisturbed soil.

The SUXOS led an initial safety briefing on MEC avoidance to train all field personnel to recognize and stay away from potential MEC items. The briefing provided a description of MD previously identified at the site that included two 75-mm projectiles within the AOC and one 105-mm projectile in the Sand Creek downstream of the site. Daily tailgate safety briefings included reminders regarding MEC avoidance.



Figure 3-1 Phase I Remedial Investigation Sample Locations

Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill

#### Figure 3-2 Example of Systematic Random Sampling



| Medium          | Analyte                    | Frequency<br>of Detection | Units | MDC    | Screening<br>Criteria <sup>a</sup> |
|-----------------|----------------------------|---------------------------|-------|--------|------------------------------------|
| Surface Soil    | Antimony                   | 11/31                     | mg/kg | 25     | 2.82                               |
|                 | Arsenic                    | 31/31                     | mg/kg | 100    | 0.425                              |
|                 | Barium                     | 31/31                     | mg/kg | 1,600  | 351                                |
|                 | Beryllium                  | 31/31                     | mg/kg | 1.2    | 0.88 <sup>b</sup>                  |
|                 | Cadmium                    | 12/31                     | mg/kg | 40     | 6.41                               |
|                 | Cobalt                     | 31/31                     | mg/kg | 26     | 7.03                               |
|                 | Copper                     | 31/31                     | mg/kg | 470    | 311                                |
|                 | Lead                       | 31/31                     | mg/kg | 1,600  | 26.1 <sup>b</sup>                  |
|                 | Manganese                  | 31/31                     | mg/kg | 5,100  | 35.1                               |
|                 | Mercury                    | 30/31                     | mg/kg | 130    | 2.27                               |
|                 | Selenium                   | 8/31                      | mg/kg | 3.2    | 1.4 <sup>b</sup>                   |
|                 | Silver                     | 9/31                      | mg/kg | 630    | 38.6                               |
|                 | Nitrocellulose             | 2/3                       | mg/kg | 5      | <sup>c</sup>                       |
|                 | Chloroethane               | 1/3                       | mg/kg | 0.091  | <sup>c</sup>                       |
|                 | Phenanthrene               | 1/3                       | mg/kg | 0.089  | <sup>c</sup>                       |
|                 | Bis(2-ethylhexyl)phthalate | 2/3                       | mg/kg | 0.09   | <sup>c</sup>                       |
|                 | Benzo(a)anthracene         | 2/3                       | mg/kg | 0.31   | 0.221                              |
|                 | Benzo(a)pyrene             | 2/3                       | mg/kg | 0.29   | 0.022                              |
|                 | Benzo(b)fluoranthene       | 2/3                       | mg/kg | 0.3    | 0.221                              |
|                 | Benzo(g,h,i)perylene       | 1/3                       | mg/kg | 0.13   | <sup>c</sup>                       |
|                 | Dibenzo(a,h)anthracene     | 1/3                       | mg/kg | 0.69   | 0.022                              |
| Subsurface Soil | Not Sampled                | NA                        | NA    | NA     | NA                                 |
| Sediment        | 2,6-Dinitrotoluene         | 1/3                       | mg/kg | 0.11   | <sup>c</sup>                       |
|                 | Aluminum                   | 13/13                     | mg/kg | 14,000 | 3,496                              |

| Table 3-1   | Chemical data from | nrevious investigation | that exceed | screening criteria. |
|-------------|--------------------|------------------------|-------------|---------------------|
| 1 abic 5-1. | Chemical uata 110m | previous investigation | mai execu   | screening criteria. |

| Medium        | Analyte              | Frequency<br>of Detection | Units | Maximum<br>Detect | Screening<br>Criteria <sup>a</sup> |
|---------------|----------------------|---------------------------|-------|-------------------|------------------------------------|
| Sediment      | Beryllium            | 12/13                     | mg/kg | 0.67              | 0.38 <sup>b</sup>                  |
| (continued)   | Cobalt               | 13/13                     | mg/kg | 13                | 9.1 <sup>b</sup>                   |
|               | Lead                 | 13/13                     | mg/kg | 40                | 27.4 <sup>b</sup>                  |
|               | Silver               | 2/13                      | mg/kg | 40                | 38.6                               |
|               | Nitroguanidine       | 1/2                       | mg/kg | 0.5               | <sup>c</sup>                       |
|               | Nitrocellulose       | 2/2                       | mg/kg | 0.98              | <sup>c</sup>                       |
|               | Acetone              | 1/2                       | mg/kg | 0.011             | <sup>c</sup>                       |
|               | Di-n-butyl phthalate | 1/1                       | mg/kg | 120 J             | <sup>c</sup>                       |
| Groundwater   | Not Sampled          | NA                        | NA    | NA                | NA                                 |
| Surface Water | Arsenic              | 4/5                       | µg/L  | 6.6               | 1.1                                |
|               | Cobalt               | 1/5                       | µg/L  | 0.4               | 0 <sup>b</sup>                     |
|               | Lead                 | 1/5                       | µg/L  | 2.9               | 0 <sup>b</sup>                     |
|               | Di-n-butyl phthalate | 1/2                       | µg/L  | 3.85 J            | c                                  |

| Table 3-1. | Chemical data from | previous investigation | that exceed screening of | criteria |
|------------|--------------------|------------------------|--------------------------|----------|
| (continued | ).                 |                        |                          |          |

<sup>a</sup> denotes screening criteria is the lowest of the FWCUGs for the Residential Receptor (Adult and Child) and the identified National Guard receptors (National Guard Trainee and the Range Maintenance Soldier).

<sup>b</sup> denotes a FWCUG has not been calculated for this analyte. However, the detected concentration exceeds the available BSV.

<sup>c</sup> denotes a FWCUG has not been calculated for this analyte and no BSVs are available. Report due to low concentration and no toxicity values.

 $\mu$ g/L denotes micrograms per liter.

BSV denotes background screening value.

J denotes estimated value.

MDC denotes maximum detected concentration

mg/kg denotes milligrams per kilogram.

NA denotes not applicable.

| Medium             | Sample<br>Type  | Depth<br>(feet<br>bgs) | No. of<br>Samples <sup>1</sup> | Rationale                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|-----------------|------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface<br>Soil    | ISM             | 0–1                    | 18                             | To further characterize the areas where SRCs consisting of<br>inorganics, SVOCs, one propellant and one VOC were<br>identified during the 2003 RA. Additional sampling of<br>surface soils for the RI further illustrates the potential for<br>contamination migration via leaching or erosional<br>processes from surface soils to media such as sediment.                                    |
|                    |                 | 1–5                    | 13                             | To characterize subsurface soils based on the distribution<br>of SRCs identified in surface soil. Hand augers were used<br>at locations where site conditions consisting of steep<br>slopes, saturated conditions and/or overgrown vegetation<br>prevented the advancement of DPT samples.                                                                                                     |
| Subsurface<br>Soil | Modified<br>ISM | 1–20                   | 45                             | To characterize subsurface soils based on the distribution<br>of SRCs identified in surface soil. DPT borings were<br>advanced within 5 feet adjacent to the top of slope when<br>site conditions limited the ability of the DPT sample rig to<br>collect samples. The proposed modified ISM samples were<br>for a maximum of 4-foot intervals (1–5, 5–9, 9–13, 13–17,<br>and 17–20 feet bgs). |
| Sediment           | ISM             | 0–0.5                  | 2                              | Sediment samples were collected in the floodplain between<br>the Sand Creek and the AOC to evaluate the true average<br>concentration of SRCs detected in sediment during the<br>2003 RA.                                                                                                                                                                                                      |

| Table 3-2. | Summary | and rat | ionale f | for Re | medial | Investigation | samples. |
|------------|---------|---------|----------|--------|--------|---------------|----------|
|            |         |         |          |        |        |               |          |

<sup>1</sup> denotes number of samples does not include duplicates or other QA/QC samples.

AOC denotes area of concern.

bgs denotes below ground surface.

DPT denotes direct-push technology.

ISM denotes incremental sampling method.

QA denotes quality assurance.

QC denotes quality control.

RA denotes removal action.

RI denotes remedial investigation.

SRC denotes site-related chemical

SVOC denotes semivolatile organic compound.

VOC denotes volatile organic compound.

| Sample Type                               | Rationale                                                                                                                            |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Field Duplicate                           | Analyzed to determine sample heterogeneity and sampling methodology reproducibility                                                  |
| Equipment Rinsate                         | Analyzed to assess the adequacy of the equipment decontamination processes for soil and groundwater                                  |
| Laboratory<br>Method Blanks               | Analyzed to determine the accuracy and precision of the analytical method as implemented by the laboratory                           |
| Laboratory<br>Duplicate Samples           | Analyzed to assist in determining the analytical reproducibility and precision of the                                                |
| Matrix<br>Spike/Matrix<br>Spike Duplicate | analysis for the samples of interest and provide information about the effect of the<br>sample matrix on the measurement methodology |
| Trip Blank                                | Analyzed to assess the potential for contamination of samples due to contaminant interference during sample shipment and storage     |

Table 3-3. Quality Assurance/Quality Control samples taken for the RI.

# 4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents results of the RI data screening process to identify SRCs indicative of impacts from historical operations conducted at the site, and to evaluate occurrence and distribution of SRCs in environmental media at the AOC. The data evaluated in this section are inclusive of the results from the RI sampling as well as previous samples collected during the 2003 RA after the removal action was completed and the 2003 FWBWQS.

Section 4.1 presents the data reduction and screening process that describes the statistical methods and facility-wide BSV screening criteria used to distinguish constituents present at ambient concentrations from those present at concentrations that indicate potential impacts related to historical operations within the AOC. Sections 4.2 through 4.6 present the nature and extent of identified SRCs within each environmental media and spatial data aggregates (surface soil, subsurface soil, sediment, and surface water) established for this RI Report. Summary of the detected analytical results for the previous investigations and removal action and the current RI data used in the data screening process are presented in tabular formats at the end of this section. A summary of the complete laboratory data results and the laboratory data packages for the RI data are in **Appendix D**.

## 4.1 Data Evaluation Method

Data evaluation methods for the Sand Creek Site are consistent with those established in the USACE Position Paper and the FWCUG Report (SAIC, 2010). These methods consist of three general steps: (1) define data aggregates; (2) data verification, reduction, and screening; and (3) data presentation.

## **4.1.1 Definition of Aggregates**

The data from the Sand Creek Site were grouped (aggregated) in two ways for evaluation of contaminant nature and extent, fate and transport, and to determine potential hazards and risks to likely human and environmental receptors. The initial basic aggregation of data was by environmental media: soil (surface and subsurface), sediment, and surface water. For each media aggregate, an evaluation was conducted to determine if further aggregation was warranted with respect to site characteristics, historical operations, ecological habitat, and potential future remedial strategy and land use (i.e., spatial aggregates). Data for soil and sediment were further aggregated based on depth and sample type for consistency with the human health and ecological risk exposure units (EUs) and guidance established in the HHRAM (USACE, 2005b), the FWCUG Report (SAIC, 2010), and the *RVAAP Facility-Wide* 

*Ecological Risk Assessment Work Plan* (USACE, 2003). The data aggregates for each of the environmental media evaluated in this RI are as follows:

- Surface Soil (0 to 1 foot bgs) The surface soil sampling units are evaluated as an AOC-wide aggregate considered as the decision unit for surface soil. Both discrete and ISM data are available for these media. It is inappropriate to combine data from these two sample types; therefore, these two samples types are evaluated separately. The spatial aggregates of the sampling units were designed based on elevated concentrations in data from the 2003 RA, results of buried anomalies from the DGM investigation, and known historical dumping operations at the AOC.
- Sediment (between 0 and 1 foot bgs) The sediment sampling units are evaluated as an AOC-wide aggregate considered as the decision unit for sediment. The ISM and discrete data, as well as data from different sample intervals (0 to 0.5 foot and 0 to 1 foot), are available for these media. Although samples from various depths may be comparatively evaluated, it is inappropriate to combine data from these ISM and discrete sample types; therefore, these two sample types are evaluated separately.
- Subsurface Soil (>1 foot bgs)—The subsurface soil medium is evaluated as an AOC-wide aggregate on the same basis as surface soil. The subsurface soil samples were aggregated based on sample depth intervals of 1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet.
- Surface Water Due to the size of the creek and fast moving conditions, surface water is not considered to be representative of past disposal activities at the Sand Creek Site. No surface water samples were collected at Sand Creek during the RI field activities; however, the surface water samples that were collected during previous activities are conservatively evaluated as an AOC-wide aggregate in this RI to support the assertion that there are no impacts to the waterway as a result of the historical dumping activities.

Discussion of the nature and extent of contamination is discussed further in this section following the RVAAP data screening process for SRCs. Fate and transport of identified SRCs is discussed in Section 5.0, "Contaminant Fate and Transport." For risk assessment purposes, the identified data aggregates will be used to define human health and ecological exposures as discussed in Section 6.0, "Human Health Risk Assessment" and Section 7.0, "Screening Level Ecological Risk Assessment," respectively.

# 4.1.2 Data Review, Validation, and Quality Assessment Results

Data validation was performed by Shaw on all 28 surface soil, 3 sediment, and 78 subsurface soil samples (including field duplicates and QC samples) collected during the RI field activities

at the Sand Creek Site to ensure that the precision and accuracy of the analytical data were adequate for their intended use. The review constituted (1) comprehensive validation of 100 percent of the primary data set; (2) comprehensive validation of the QA split sample data set; and (3) a comparison of primary sample, field duplicate sample, and field QA split sample information.

Analytical results were reported by the laboratory in electronic format and issued to Shaw on compact disc. Data validation was performed to ensure all requested data were received and completed. Data use qualifiers were assigned to each result based on the criteria provided in the QSM 4.1 (DOD, 2009). Results were qualified as follows:

- "U" The analyte was not detected or reported less than the level of detection.
- "J" The reported result is an estimated value.
- "UJ" The analyte was not detected and the detection limits and quantitation limits are approximate.

In addition to assigning qualifiers, the validation process also selected the appropriate result to use when reanalysis or dilutions were performed. Where laboratory surrogate recovery data or laboratory QC samples were outside of analytical method specifications, the validation chemist determined whether laboratory reanalysis should be used in place of an original reported result. If the laboratory reported results for both diluted and undiluted samples, diluted sample results were used for those analytes that exceeded the calibration range of the undiluted sample. Shaw determined that the Sand Creek Site data were of sufficient quality to make informed decisions for the surface soil, subsurface soil, and sediment samples collected. A complete presentation of the validation process and associated results of the evaluation performed by Shaw is provided in the *Final Data Validation Report* in **Appendix C**.

The MEC<sup>x</sup> evaluated the data in the context of the project DQOs and the method quality objectives as specified in the SAP Addendum No. 1 (Shaw, 2010) and the *Facility-Wide Quality Assurance Project Plan* included in the FWSAP (SAIC, 2001). The USACE prepared a *Chemical Data Usability Assessment* following review of the *Final Data Validation Report* prepared by MEC<sup>x</sup> and concluded that through the proper implementation of the project data review, verification, and validation process that is outlined in the *Facility-Wide Quality Assurance Project Plan*, the data for the Sand Creek RI are deemed acceptable for use. Based upon this assessment, all analytical results are usable to meet the project DQOs as qualified and presented by Shaw; can withstand scientific scrutiny; are technically defensible; and are of known and acceptable quality in terms of sensitivity, precision, and accuracy. The MECx *Final Data Validation Report* and the *Chemical Data Usability Assessment* prepared by the USACE are presented in **Appendix C**.

# 4.1.3 Data Reduction and Screening

The data reduction process employed to identify SRCs involves identifying frequency of detection summary statistics, comparison to the facility-wide BSV screening values (BSVs) (inorganics only) and evaluation of essential nutrients. Historical site data were used from the RD/RA Report (MKM, 2004) and QC and field duplicates were excluded from the screening data sets. All analytes having at least one detected value was included in the data reduction process. Summary statistics calculated for each data aggregate included the minimum, maximum and average (mean) detected values and the proportion of detected results to the total number of samples collected. For calculation of mean detected values, nondetected results were included by using one-half of the reported detection limit as a surrogate value during calculation of the mean result for each compound. Following data reduction, the data were screened to identify SRCs using the processes outlined in the following sections. **Figure 4-1** shows data screening process to identify SRCs and COPCs in accordance with the FWCUG Report (SAIC, 2010).

## 4.1.3.1 Frequency of Detection

Chemicals that are detected infrequently, except explosives and propellants, may be artifacts in the data due to sampling, analytical, or other problems, and therefore, may not be related to the site activities or disposal practices. For sample aggregations, except for explosives and propellants, with at least 20 samples and frequency of detection of less than 5 percent, a weight of evidence approach was used to determine if the chemical is AOC related. The magnitudes and clustering of the detections and the potential source of the chemical were evaluated keeping in mind that the site was used for disposal purposes and various chemicals may be present. For example, if detected results were not clustered, and the chemical was not found in other media at the study area, and the concentrations were not substantially elevated relative to the detection limit, then the chemical may be considered spurious and be eliminated from further consideration. Therefore, chemicals that were detected only at low concentrations in less than 5 percent of the samples from a given medium were dropped from further consideration, unless their presence was expected based on historical information about the site, or it was likely to identify the existence of a "hot spot." Frequency of detection analysis was used for discrete samples only since it is not considered an appropriate criterion for ISM samples.

## 4.1.3.2 Facility-Wide Background Screen

For each inorganic constituent, concentrations were compared against the established RVAAP facility-wide BSVs. For inorganic constituents, if the detected value exceeded its respective BSV, it was considered to be an SRC. It should be noted that not all inorganic compounds, analyzed as part of the previous investigations or the RI sampling event, have established screening levels or BSVs. Therefore, in the event an inorganic constituent was not detected in

the background data set, the BSV was set to 0, and any detected result for that constituent was considered above background. This conservative process ensures that detected constituents are not eliminated as SRCs simply because they are not detected in the background data set. All detected organic compounds were considered to be above background because these classes of compounds do not occur naturally.

# 4.1.3.3 Essential Nutrient Screen

Chemicals that are considered to be essential nutrients (calcium, chloride, iodine, iron, magnesium, potassium, phosphorus, and sodium) are an integral part of the food supply and are often added to foods as supplements. The EPA recommends that these chemicals not be evaluated as COPCs if they are (1) present at low concentrations (i.e., only slightly elevated above naturally occurring levels) and (2) toxic at very high doses (i.e., much higher than those that could be associated with contact at the site) (USACE, 2005b). For the 2003 RA samples and the RI, analyses were conducted for calcium, iron, magnesium, potassium, and sodium. These five constituents were eliminated as SRCs in all environmental media based on comparison to BSVs.

# 4.1.4 Data Presentation

Data summary statistics and screening results for SRCs in surface and subsurface soil, sediment, and surface water at the Sand Creek Site are presented for each media in the following sections. The data use summary for the environmental samples collected at the Sand Creek Site during previous activities and during the RI field work are presented in **Table 4-1**. A summary of the analytical results for the environmental media samples and the data screening process for SRCs are presented in **Tables 4-2** through **4-17**. Analytical results for the SRCs are presented by sample location in **Figures 4-2** through **4-19**. The complete data summary tables and the laboratory data report for the samples collected at the Sand Creek Site during the RI field work is presented in **Appendix D**.

## 4.1.5 Data Use Evaluation

The types of environmental media sampled at the Sand Creek Site during the 2003 RA consisted of surface soil, sediment, and surface water. A sediment sample and surface water samples were also collected for the 2003 FWBWQS. Additional samples were collected for the RI that included surface and subsurface soil and sediment. Available sample data were evaluated to determine suitability for use in the various key RI data screens that include evaluation of nature and extent of contamination, fate and transport modeling, and potential hazards and risks to likely human and environmental receptors. Evaluation of data suitability for use in this RI Report involved two primary considerations: (1) representativeness with respect to current AOC conditions and (2) sample collection methods (i.e., discrete vs. ISM).

Samples collected for the 2003 RA included discrete surface soil, sediment samples from within the Sand Creek and adjacent floodplain, and surface water samples from the Sand Creek and represent existing media that was not removed during the RA. Samples for the 2003 FWBWQS included discrete surface water samples and a sediment sample collected using the ISM. The collection of surface soil and sediment samples using ISM and subsurface soil samples using a modified ISM were conducted for the Phase RI field activities. Site conditions have changed minimally since the 2003 RA. Therefore, all data from these two sampling events were incorporated into the nature and extent of contamination evaluation. Only the samples collected during the RI, apart from surface water from the 2003 RA and the 2003 FWBWQS, were screened for SRCs and carried forward into the risk assessments for likely receptors since the ISM is considered to provide a more representative spatial distribution within a sampling unit. The surface water samples from the 2003 RA and the 2003 FWBWQS were carried forward to the risk assessment to verify that historical site activities have not impacted the Sand Creek. The designated use for available Sand Creek Site samples is presented in **Table 4-1**.

# 4.2 Contaminant Nature and Extent in Surface Soil

Data from all qualified historical and RI surface soil samples were combined and screened to identify SRCs representing current conditions at the Sand Creek Site. The SRC screening data for surface soil (not including field duplicates or QC samples) included the following samples:

- 2003 RA
  - 33 discrete surface soil samples from 0 to 1 foot bgs
- RI
  - 18 ISM surface soil samples from 0 to 1 foot bgs
  - 2 discrete surface soil samples from 0 to 1 foot bgs for VOC analysis

The ISM samples were collected during the RI to further characterize the areas where SRCs consisting of inorganics, SVOCs, explosives, one propellant, and one VOC were identified from the 2003 RA data. Additional surface soil samples were collected to further illustrate the potential for contamination migration via leaching or erosion processes from surface soils to media such as sediment. All the surface soil samples collected during the RI sampling event were submitted for TAL metals, SVOCs, and explosives. Samples from two of the ISM sampling units were analyzed for the RVAAP full suite that also included VOCs, pesticides, PCBs, cyanide, and propellants. The samples analyzed for VOCs were collected as individual discrete samples collocated with the ISM sampling units.

**Tables 4-2** and **4-3** present the results of the SRCs screening for discrete and ISM surface soil samples, respectively. **Tables 4-4** and **4-5** summarize the detected results for each type of surface soil sample. **Figures 4-2** through **Figure 4-6** present the SRC distribution in surface soils for the Sand Creek Site.

# **4.2.1 Explosives and Propellants**

The data presented in **Table 4-3** and shown in **Figure 4-2** identify a total of three explosives and propellant compounds (2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, and nitroguanidine) that are considered as SRCs from the ISM samples collected during the RI field activities. Most of the SRCs were detected at the northern portion of the site at three sampling units (SCss-057, SCss-058, and SCss-069).

Explosives were detected at two discrete surface soil samples (SCss-029 and SCss-CONT-3) that were collected during the 2003 RA; however, the concentrations were below the applicable method reporting limit. The propellant nitrocellulose was detected at two discrete surface soil samples (SCss-017 and SCss-029) during the 2003 sampling event. Discrete sample SCss-029, collected at the southern portion of the site, contained 2,4-dinitrotoluene and 2,6-dinitrotoluene at estimated ("J"-flagged) concentrations of 0.037 milligrams per kilogram (mg/kg) and 0.17 mg/kg, respectively. The "J"-flagged data are considered estimated and are retained as a detected value. Nitrocellulose was detected at this sample location at a concentration of 5 mg/kg. This discrete sample location was resampled during the RI field activities (sampling unit SCss-068) using ISM and no explosives or propellants were detected.

Nitrocellulose was detected at 3.5 mg/kg in discrete sample SCss-017 that was collected during the 2003 RA. The RI sampling unit SCss-065 was collocated over the area where sample SCss-017 was collected and no explosives or propellants were detected.

Discrete sample SCss-CONT-003, collected at the northern portion of the site, contained a 2,4,6-trinitrotoluene concentration at 0.039 J mg/kg. This 2003 RA sample corresponds with RI sampling unit SCss-058 that had a detected 2,4,6-trinitrotoluene concentration of 0.26 J mg/kg.

## **4.2.2 Inorganics**

A total of 15 inorganics was identified as SRCs in surface soil based on the RI data summary presented in **Table 4-3**. These inorganics had a frequency of detection of at least 61 percent (11 detections in 18 samples). The distribution of metals between the 33 discrete surface soil samples collected during the 2003 RA and the 18 surface soil samples collected during the RI are similar in that the most inorganic concentrations were detected at the northern portion of the site and the detections decreased significantly in the samples collected at the southern

portion of the site. The distribution of the surface soil inorganic SRCs identified from the 2003 RA and RI data summaries is shown in **Figures 4-3** and **4-4**, respectively.

**Table 4-2** presents the MDCs for inorganic SRCs in the discrete surface soil samples collected during the 2003 RA. These MDCs for the identified SRCs were detected at surface soil sample locations SCss-004 through SCss-008 which were collected at the northern portion of the site. This corresponds with the majority of the MDCs for inorganic in surface soil that were collected during the RI sampling event which were detected primarily in ISM sampling units SCss-057, SCss-059, SCss-061, SCss-062, and SCss-064 also located at the northern portions of the site. The comparison and distribution of the inorganic SRCs identified in the 2003 RA and RI is as follows:

- For the 18 ISM surface soil samples collected for the RI, the inorganic with the most detected concentrations above its BSV was chromium with 17 detections. The MDC for chromium (188 mg/kg) was detected at sampling unit SCss-076 at the southern portion of the site, where the least number of SRCs in general have been identified. The next greatest chromium concentration (187 mg/kg) occurred in sampling unit SCss-064 at the central portion of the AOC where the bulk of the 2003 removal activities took place. The MDC for chromium (230 mg/kg) detected for the 2003 RA discrete surface soil samples are within an approximate order of magnitude of the MDCs from the RI. Based on the results of these two investigations, it appears that chromium concentrations are well distributed throughout the AOC, and no significant trend for chromium contamination is evident.
- Cadmium and thallium were both detected at 16 sampling units for the RI and are retained as SRCs since there are no available BSVs for these metals. The cadmium and thallium concentrations were relatively low with MDCs of 12.8 mg/kg and 3.2 J mg/kg, respectively, and appear to be well distributed across the AOC. Thallium was detected at only one discrete sample location (SCss-007) during the 2003 RA which does not correspond with the RI results for thallium. Cadmium was detected at 13 of 31 locations in discrete surface soil sample locations at a MDC of 40 mg/kg at sample locations SCss-005 at the northern portion of the AOC. The cadmium results detected in the 2003 RA discrete soil samples correlate with the locations for the elevated cadmium concentrations detected in the RI sampling units.
- Nickel exceeded its BSV at 15 sampling units for the RI. The location of the MDC for nickel (264 mg/kg) is situated at the northern portion of the site (sampling unit SCss-059), where the bulk of the elevated inorganic contaminants appear to reside. However, the remainder of nickel concentrations is well distributed throughout the site and is generally less than one order of magnitude above the BSV of 21.1 mg/kg. During the 2003 RA, nickel was detected above the BSV at 18 of 31 sample

locations. The nickel MDC of 110 mg/kg for the 2003 RA is within an approximate order of magnitude of the MDC from the RI further illustrating that nickel appears to be well distributed across the AOC.

- Mercury and silver were detected above the BSVs at 14 locations each for the RI surface soil samples. The MDCs for mercury (24.6 mg/kg) and silver (256 mg/kg) occurred at the northern portion of the site at sampling units SCss-061 and SCss-064, respectively. The detection of these metals correlates closely with the 2003 RA results. The MDCs for mercury (130 mg/kg) and silver (630 mg/kg) in 2003 were detected at discrete sample locations SCss-005 and SCss-007, respectively, which were collected at the same relative location as the RI sampling units.
- Lead and copper had a similar number of detections above the BSVs (12 and 11 detections, respectively). The MDC for lead (405 mg/kg) was detected in sampling unit SCss-061 situated at the northern portion of the site. The MDC of copper (726 mg/kg) was detected at sampling unit SCss-064, also situated in the northern portion of the AOC. The ISM data for copper correspond with the general location for the MDCs of copper detected during the 2003 RA (330 mg/kg) at discrete sample location SCss-005. Lead was not detected above its BSV in any of the 2003 RA samples.
- The remainder of the metal concentrations detected above the BSVs in the samples collected during the RI includes zinc (10), antimony (9), barium (8), selenium (5), arsenic (5), cobalt (4), and beryllium (2). Although these detections are sporadic and are not as well defined as the more frequently detected metals that exceed their respective BSVs, the MDCs trend similar in that they are primarily situated at the northern portion of the AOC. The MDCs for zinc, antimony, arsenic, and barium are found in sampling unit SCss-061. The MDCs of selenium and cobalt are at sampling units SCss-073 and SCss-074 at the top of slope adjacent to sampling unit SCss-061. The MDC for beryllium was detected at sampling unit SCss-062 located along the slope to the south of sampling unit SCss-061.

# 4.2.3 SVOCs

A total of 29 SVOCs, 18 of which are PAHs, was identified as SRCs from the ISM samples presented in **Table 4-3**. The sample location with the greatest number of detected SVOCs was at sampling unit SCss-060 where the SVOCs consist primarily of PAHs. The detected SVOC concentrations decrease significantly with the sampling units surrounding sampling unit SCss-060 indicating that the area has been bounded.

Only three discrete samples from the 2003 RA were analyzed for SVOCs (SCss-017, SCss-023, and SCss-029). The greatest concentrations were PAHs at SCss-017 located along the

AOC slope at the northern portion of the property which corresponds to the RI results. The distribution of the SVOC SRCs in surface soil is presented in **Figure 4-5**.

## 4.2.4 VOCs, Pesticides, PCBs, Total Cyanide, and Asbestos

Two discrete samples were analyzed for VOCs (SCss-057D-0001-SO and SCss-068D-0001-SO), and two ISM samples were analyzed for total cyanide, pesticide, and PCBs (SCss-057M-0001-SO and SCss-076M-0001-SO) for the RI. Three discrete samples were analyzed for VOCs, total cyanide, pesticide, and PCBs (SCss-017, SCss-023, and SCss-029) for the 2003 RA. All 31 surface soil samples collected for the 2003 RA were analyzed for asbestos.

A total of six pesticides were identified as SRCs in the ISM samples presented in **Table 4-3**. All six pesticides were detected at sampling unit SCss-076 situated at the top of slope at the southern portion of the AOC. Three of the pesticides SRCs were detected at sampling unit SCss-057, the most northern sample area along the AOC slope. It is suspected that the detected pesticides concentrations are associated with past accepted practices implemented for pest control at the former dump location. The distribution of the pesticides identified as SRCs are shown in **Figure 4-6**.

Total cyanide was identified as an SRC at both RI sample locations. The MDC was 0.39 J mg/kg at sampling unit SCss-076.

One VOC was detected in discrete sample SCss-029 from the 2003 RA. The low VOC concentration of chloroethane was detected at an estimated concentration of 0.091 J mg/kg.

No PCBs or VOCs were identified as SRCs in the surface soil samples collected during the RI. No total cyanide, pesticides, PCB, or asbestos SRCs were identified in surface soil samples collected for the 2003 RA.

## 4.3 Contaminant Nature and Extent in Subsurface Soil

The 2003 RA at the Sand Creek Site did not include investigation of subsurface soils. Therefore, only the RI samples are available to evaluate the nature and extent of contamination in the subsurface at the AOC. A total of 22 soil borings was completed at the Sand Creek Site during the RI field activities. The SRC screening data for subsurface soil are comprised of the following RI samples:

- 22 modified ISM subsurface soil samples from 1 to 5 feet bgs using DPT and handauger sampling methods
- 36 modified ISM subsurface samples from 5 to 20 feet bgs taken from the following intervals: 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet
- 5 discrete sediment samples for VOC analysis only
The subsurface samples were collected during the RI to evaluate and characterize subsurface conditions based on the 2003 RA surface soil data and results of the 2010 DGM investigation. All of the subsurface soil samples collected during the RI sampling event was submitted for TAL metals, SVOCs, and explosives. Samples from five of the subsurface samples, typically one from each interval except two of which were collected for the 1- to 5-foot interval, were analyzed for the full suite that also included VOCs, pesticides, PCBs, cyanide, and propellants. The samples analyzed for VOCs were collected as discrete samples from the pre-designated sample interval.

**Table 4-6** presents the results of the SRCs screening for subsurface soil samples, and **Table 4-7** summarizes the detected results.**Figures 4-7** through **4-17** present the SRC distributions in subsurface soils for the Sand Creek Site.

#### **4.3.1 Explosives and Propellants**

The data presented in **Table 4-6** identify three explosives compounds (2,4,6-trinitrotoluene, 2amino-4,6-dinitrotoluene, and m-nitrotoluene) that are considered as SRCs from the subsurface samples collected during the RI field activities. The distribution of explosives and propellants is shown in **Figure 4-7**. All three SRCs were detected at the hand-auger subsurface boring location SCsb-049 at the 1- to 5-foot sample interval. This boring location is situated at the northern portion of the site along the slope and is collocated with ISM surface soil sampling unit SCss-063 which did not exhibit detectable concentrations of explosives or propellants. No other explosives or propellants were detected in subsurface soils.

#### **4.3.2 Inorganics**

A total of 15 inorganics was identified as SRCs in subsurface soils based on the RI data summary presented in **Table 4-6**. The distribution of inorganic SRCs across the five sample intervals (1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet) is shown in **Figures 4-8** through **4-12**. Nine of the SRCs (barium, beryllium, chromium, copper, lead, mercury, nickel, vanadium, and zinc) were detected in 100 percent of the subsurface samples (58 detections in 58 samples). The inorganic with the least detection was silver with 14 detections out of 58 samples (24 percent).

In general, an evaluation of the subsurface sample results to corresponding surface soil samples identifies distinct vertical trends in the total number of detected inorganics, the types of inorganics detected and the resulting concentrations. Eight of the nine soil borings where the MDCs for inorganics were detected above BSVs (SCsb-036, SCsb-037, SCsb-038, SCsb-44, SCsb-45, SCsb-48, SCsb-49, and SCsb-50) were advanced both along the slope and at the top of slope at the northern portion of the site that correspond to the 2003 RA and RI surface soil sample locations that exhibited the greatest inorganic concentrations.

The sample with the most detected inorganic concentrations (14) above the BSVs was in the 5- to 9-foot sample interval at DPT soil boring SCsb-037 (SCsb-037M-002-SO). This boring was advanced at the top of slope at the northern portion of the AOC adjacent to the ISM sampling units SCss-062 and SCss063 where the greatest number of inorganics (14 at each sampling unit) were detected above the surface soil BSVs. The ISM sampling units for these two surface sample area were along the slope of the AOC which has an approximate vertical drop of 20 feet and corresponds with the 1- to 20-foot sample depth at DPT boring SCsb-037.

# 4.3.3 SVOCs

A total of 26 SVOCs, 16 of which were PAHs, was identified as SRCs in subsurface soils as presented in **Table 4-6**. The distribution of SVOC SRCs across the five sample intervals (1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet) is shown in **Figures 4-13** through **4-17**. The sample location with the greatest number of detected SVOCs (22) was in the 1- to 5-foot sample interval at boring locations SCsb-050 (SCsb-050M-0001-SO) Other locations with frequent detections of SVOCs include SCsb-037 (SCsb-037M-0001-SO), SCsb-47 (SCsb-047M-0001-SO), and SCsb-49 (SCsb-049M-0001-SO) that were also collected at the 1- to 5-foot sample interval. The subsurface soil sample results for SVOCs correspond with the RI surface sample locations, in particular sampling unit SCss-060, where the greatest numbers of SVOCs were detected in the 0- to 1-foot sample interval at the northern portion of the AOC.

# 4.3.4 Pesticides and PCBs

Five subsurface samples were analyzed at the various sample depths for the full suite that resulted in 13 pesticides and 1 PCB constituent that were identified as SRCs in subsurface soils as presented in **Table 4-6**. The majority of the pesticides SRCs (12) were detected at the 1- to 5-foot sample interval at boring location SCsb-037 (SCsb-037M-0001-SO). Heptachlor was the most prevalent pesticide, was detected in four of the five subsurface samples analyzed at the various samples depths, and was detected as deep as the 17- to 20-foot interval at boring SCsb-039 (SCsb-039M-0005-SO). The MDC of 0.0058 mg/kg for heptachlor was detected in the 1- to 5-foot sample interval at boring SCsb-037 (SCsb-037M-0001-SO). Heptachlor was the sole pesticide SRC detected at the 9- to 13-foot interval in boring SCsb-042 (SCsb-042M-0003). Endosulfan II, 4,4'-DDT, and 4,4'-DDE were detected at the 1- to 5-foot sample interval in boring SCsb-048 (SCsb-048M-0001-SO). Alpha-BHC, heptachlor, and methoxychlor were detected at the 5- to 9-foot interval in boring SCsb-040 (SCsb-040M-0002).

The PCB constituent, Arochlor-1254, was detected at the 1- to-5-foot interval in boring SCsb-037 (SCsb-037M-0001-SO). No other PCB concentrations were detected in subsurface soil. Both boring locations SCsb-037 and SCsb-048, where the majority of the pesticides and the one PCB concentration were detected at the 1- to 5-foot sample interval, were advanced in the

northern portion of the AOC where contaminant trending for inorganics and SVOCs is observed in surface soils. Boring SCsb-037 was advanced along the top of slope adjacent to ISM sampling units SCss-062 and SCss-063. Boring location SCsb-048 was collocated with ISM sampling unit SCss-062. The distribution of the pesticides and PCB SRCs is shown in **Figure 4-7**.

### 4.3.5 VOCs and Total Cyanide

Five discrete samples were analyzed for VOCs for the RI subsurface intervals. A total of five VOCs were identified as SRCs in subsurface soils. 1,2-Dimethylbenzene and toluene were detected at the 1- to 5-foot sample interval at boring locations SCsb-037 (SCsb-037D-0001-SO) and SCsb-048 (SCsb-048D-0001-SO). Benzene, ethylbenzene, and total xylenes (i.e., benzene, toluene, ethylbenzene, and xylene compounds) were also detected in sample SCsb-048D-0001-SO.

Five samples were analyzed for total cyanide, one for each of the sample intervals. One total cyanide concentration (0.76 mg/kg) was detected at the 1- to 5-foot sample interval at boring location SCsb-048 (SCsb-048M-0001-SO); therefore, total cyanide is retained as an SRC. Total cyanide was not detected in any of other subsurface samples analyzed.

The data summary for subsurface samples, including VOCs and total cyanide, is presented in **Table 4-6**. The distribution of the VOC and cyanide SRCs is shown in **Figure 4-7**.

#### 4.4 Contaminant Nature and Extent in Sediment

Data from all qualified historical and RI sediment samples were combined and screened to identify SRCs representing current conditions at the Sand Creek Site. The SRC screening data for sediment (not including field duplicates or QC samples) included the following samples:

- 2003 RA
  - 12 discrete sediment soil samples from 0 to 1 foot bgs
- 2003 FWBWQS
  - 1 ISM sediment sample from 0 to 0.5 foot bgs
- RI
  - 2 ISM sediment samples from 0 to 0.5 foot bgs
  - 1 discrete sediment sample from 0 to 5 feet bgs for VOC analysis

Six of the discrete sediment samples (SCsd-002, SCsd-004, SCsd-006, SCsd-008, SCsd-010, and SCsd-011) collected during the 2003 RA were collocated with the surface water samples discussed in Section 4.5. The remaining six samples (SCsd-001, SCsd-003, SCsd-005, SCsd-

007, SCsd-009, and SCsd-012) were collected from the narrow floodplain situated between Sand Creek and the AOC. Two ISM sediment samples were collected during the RI at two sampling units (SCsd-070 and SCsd-071) to further characterize the areas where SRCs consisting of inorganics, explosives and propellants and SVOCs were identified from the 2003 RA data, in particular the sediment along the floodplain adjacent to the AOC.

One ISM sediment sample (FSW-SD-011-0000) was collected along the reach of the Sand Creek adjacent to the AOC during the 2003 FWBWQS. The sediment sample was collocated with surface water samples collected for the study during two separate occasions as discussed in Section 4.5. The sample was submitted for laboratory analysis for metals, explosives, SVOCs, pesticides, PCBs, total cyanide, and several nutrient parameters (ammonia, phosphorus, and nitrate/nitrite).

Both sediment samples collected during the RI sampling event were submitted for metals, explosives, SVOCs, pesticides, PCBs, cyanide, and propellants. A discrete VOC sample was collected and collocated with the sediment sample collected at ISM sampling unit SCsd-071 (SCsd-071D-0001-SO).

**Tables 4-8**, **4-9**, and **4-10** present the results of the SRCs screening for discrete and ISM sediment samples, respectively. **Tables 4-11**, **4-12**, and **4-13** summarize the detected results for each of the sediment sample types. **Figure 4-18** presents the SRC distribution in sediments for the Sand Creek Site as identified from the data results for the 2003 RA, the 2003 FWBWQS, and the RI sample events.

#### **4.4.1 Explosives and Propellants**

The data presented in **Table 4-13** and shown in **Figure 4-18** identify nitroguanidine as the sole propellant detected in both ISM sediment sampling units along the floodplain adjacent to the AOC as part of the RI. The MDC (1.2 J mg/kg) was detected at sampling unit SCsd-071. No other explosives or propellants were detected in sediment samples collected for the RI.

Two of the 12 discrete sediment samples collected during the 2003 RA were analyzed for explosives and propellants (SCsd-007 and SCsd-008). Nitrocellulose was detected in both samples at a MDC of 0.98 mg/kg in sample SCsd-008. 2,6-Dinitrotoluene and nitroguanidine were also detected in sample SCsd-008 at concentrations of 0.11 J mg/kg and 0.05 J mg/kg, respectively. Discrete sample SCsd-007 was collected from sediment in the thin floodplain just north of the former railroad bed that bisects the site. Discrete sample SCsd-008 was collected in the Sand Creek sediment just north of the former railroad culvert that crossed Sand Creek. No explosives or propellants were detected in the sediment sample collected for the 2003 FWBWQS.

### 4.4.2 Inorganics

A total of 11 inorganics was identified as SRCs based on the RI data presented in **Table 4-13** for the two ISM sediment samples collected. All 11 metals identified as SRCs in sediment were present above the applicable BSVs at sample location SCsd-070 collected in the floodplain along the northern portion of the AOC. Seven of the metals exceeded the BSVs in sediment sample SCsd-071 collected along the southern portion of the AOC. The higher number of SRCs and elevated concentrations that were detected in sediment sample SCsd-070M-0001-SD in comparison to SCsd-071M-0001-SD (antimony [8.4 mg/kg to 0.45 J mg/kg], barium [231 mg/kg to 75.7 mg/kg], cadmium [2.7 mg/kg to 0.19 mg/kg], copper [53.7 mg/kg to 16.6 mg/kg], lead [104 mg/kg to 7.2 mg/kg], mercury [0.3 to 0.049 mg/kg], and silver [116 mg/kg to less than the detection limit of 0.087 mg/kg]) may be attributed to runoff from the slopes at the northern portion of the AOC where concentrated areas of elevated inorganic SRCs were identified in surface soil. Maximum detected concentrations of the remaining SRCs in sediment (beryllium, chromium, nickel, and thallium) varied less than several orders of magnitude between the two sediment sampling units and appeared well distributed throughout the floodplain along the entire reach of the AOC.

The distribution of metals between the 12 discrete sediment samples collected during the 2003 RA and the 2 ISM sediment samples collected during the RI are similar in that most of the inorganic SRCs were detected at the northern portion of the site and the detections decreased significantly in the samples collected at the southern portion of the site. As previously discussed, the majority of the SRCs identified in sediment during the RI were detected in sediment sampling unit SCsd-071 located along the floodplain adjacent to the northern half of the AOC. A total of 10 metal SRCs (aluminum, antimony, beryllium, cadmium, chromium, cobalt, lead, mercury, nickel, and silver) was detected during the 2003 RA and was mostly found at discrete sample locations (SCsd-001 and SCsd-008), both collected along the northern portion of the AOC (**Table 4-8**). Two metals (antimony and cadmium) were identified as SRCs in the sediment sample (FSW-SD-011-0000) collected during the 2003 FWBWQS. The distribution of the inorganic SRCs in sediment for both the 2003 RA and RI sample events is shown in **Figure 4-18**.

#### 4.4.3 SVOCs

A total of 15 SVOCs, 11 of which are PAHs, was identified as SRCs in the sediment samples collected for the RI and is presented in **Table 4-13**. The distribution of the SVOC SRCs in sediment is presented in **Figure 4-18**. All 15 SVOCs were detected at estimated (J-flagged) concentrations at sediment sampling unit SCsd-070 along the northern floodplain area which may be associated with runoff from SVOC-impacted surface soils situated upgradient of the floodplain area. Six of the SVOC SRCs were detected at estimated concentrations in sediment sampling unit SCsd-071 along the southern floodplain area.

SVOCs were analyzed for discrete samples SCsd-007 and SCsd-008 collected during the 2003 RA. However, no SRCs were identified. One SVOC (di-n-butyl phthalate) was identified as an SRC in the ISM sediment sample (FSW-SD-011-0000) collected during the 2003 FWBWQS.

#### 4.4.4 Pesticides and PCBs

Twelve pesticides and two PCB constituents were identified as SRCs in sediment collected for the RI as presented in **Table 4-13**. All 12 pesticides and both PCBs were detected in sediment sampling unit SCsd-070. Four of the pesticide SRCs were identified in the southern floodplain sampling unit SCsd-071. No PCBs were identified as SRCs at sampling unit SCsd-071. Pesticides and PCB analysis was performed for discrete samples SCsd-007 and SCsd-008 collected during the 2003 RA and for ISM sample FSW-SD-011-000 collected during the 2003 FWBWQS. However, no pesticide or PCB SRCs were identified during either investigation. The distribution of pesticide and PCB SRCs in sediment is presented in **Figure 4-18**.

# 4.4.5 VOCs and Total Cyanide

Total cyanide and VOC analysis was conducted for both sediment samples collected for the RI (**Table 4-13**). Cyanide was detected at concentrations of 0.36 J mg/kg and 0.32 J mg/kg for sediment sampling units SCsd-070 and SCsd-071, respectively, and is retained as SRC in sediment. A discrete sample for VOC analysis (SCsd-071D-0001-SD) was collected within sampling unit SCsd-071. No VOCs were identified as SRCs in sediment.

Total cyanide and VOCs were analyzed in discrete sediment sample locations SCsd-007 and SCsd-008 for the 2003 RA (**Table 4-11**). Acetone was the only VOC detected at a concentration of 0.011 mg/kg at sample location SCsd-008. Cyanide was not identified as an SRC in sediment for the 2003 RA.

Cyanide was analyzed for the ISM sediment sample collected during the 2003 FWBWQS and was not detected (**Table 4-12**). No VOCs were analyzed as part of the study.

The distribution of VOC and cyanide SRCs in sediment is presented in Figure 4-18.

#### 4.4.6 Asbestos

All 12 sediment samples collected for the 2003 RA were analyzed for asbestos. No asbestos was detected. Neither of the sediment samples collected for the RI were analyzed for asbestos.

#### 4.4.7 Nutrient Parameters

The sediment sample from the 2003 FWBWQS (FSW-SD-011-0000) was analyzed for nutrient parameters that included ammonia, phosphorus, and nitrate/nitrite to further evaluate ecotoxic effects within the Sand Creek. Concentrations for each of the parameters were detected and are retained as SRCs in sediment (**Table 4-12**).

#### 4.5 Contaminant Nature and Extent in Surface Water

Data from all qualified historical and RI surface soil samples were combined and screened to identify SRCs representing current surface water conditions at the Sand Creek Site. The SRC screening data for surface water (not including field duplicates or QC samples) included the following samples:

- 2003 RA
  - Three surface water samples
- 2003 FWBWQS
  - Two surface water samples

A total of three surface water samples (SCsw-001-0001-SW, SCsw-002-0001-SW, and SCsw-003-0001-SW) was collected from Sand Creek adjacent to the AOC following the 2003 RA to assess surface water quality near the site. One sample each was collected upstream, immediately adjacent and downstream of the site. All surface water samples were collected for analysis of filtered TAL metals and asbestos analysis. One sample that represented a minimum of 10 percent of the surface water samples collected was submitted for the full suite that in addition to TAL metals included total cyanide, VOCs, SVOCs, pesticides, PCBs, explosives, and propellants (nitroglycerine, nitroguanidine, and nitrocellulose).

Two surface water samples (FSW-SW-011-0000 and FSW-SW-051-0000) were collected from the Sand Creek for the 2003 FWBWQS at a sample location adjacent to the AOC. Each sample was collected from the same location at different collection dates during the summer of 2003 and was analyzed for TAL metals, pesticides, PCBs, explosive compounds, SVOCs, cyanide, and several nutrient parameters (ammonia, phosphorus, and nitrate).

**Tables 4-14** and **4-15** summarize the results of the surface water samples for the 2003 RA and 2003 FWBWQS, respectively, as well as the SRCs that were identified following the data screening process. **Tables 4-16** and **4-17** summarize the detected surface water results for each of the investigations. **Figure 4-19** presents the surface water sample locations with associated SRC concentrations.

#### 4.5.1 Explosives and Propellants

No explosives or propellants were detected in any of the surface water samples from either sample event.

#### 4.5.2 Inorganics

There were 17 inorganic analytes detected between the five surface water samples from the 2003 RA and 2003 FWBWQS. None of the inorganics detected in the 2003 RA surface water

samples were identified as SRCs. Seven inorganics detected in the 2003 FWBWQS surface water samples were identified as SRCs due to concentration exceedances above the BSVs. These inorganic SRCs include antimony, arsenic, chromium, cobalt, lead, silver, and vanadium. With the exception of arsenic that has a surface water BSV of 3.2 micrograms per liter ( $\mu$ g/L), the surface water BSVs for the other six inorganic SRCs is 0  $\mu$ g/L. The remaining detected constituents were eliminated as SRCs because they were either considered essential nutrients (calcium, iron, magnesium, potassium, and sodium) or the MDC was less than the surface water BSVs (aluminum, barium, copper, manganese, and zinc).

# 4.5.3 SVOCs

Only one surface water sample from the 2003 RA (SCsw-001-0001-SW) and both surface water samples from the 2003 FWBWQS (FSW-SW-011-0000 and FWS-SW-051-0000) were analyzed for SVOCs. A total of two SVOCs was identified SRCs in the surface water samples from the FWBWQS. Bis(2-ethylhexyl)phthalate was detected in sample FSW-SW-011-0000, and di-n-butyl phthalate was detected in sample FSW-SW-051-0000. No other SVOCs were identified as SRCs in the surface water samples.

#### 4.5.4 Other Analyses

The surface water samples from the two studies were analyzed for various other parameters that included asbestos, explosives, propellants, VOCs, total cyanide, pesticides, and/or PCBs as follows:

- SCsw-001-0001-SW was analyzed for explosives, propellants, VOCs, total cyanide, pesticides, and PCBs.
- FSW-SW-011-000 was analyzed for total cyanide, pesticides, and PCBs.
- FSW-SW-051-000 was analyzed for total cyanide.
- All surface water samples from the 2003 RA were analyzed for asbestos.

No concentrations of asbestos, cyanide, explosives, propellants, VOCs, pesticides, or PCBs were detected in any of the surface water samples analyzed for these respective parameters.

# 4.5.5 Nutrient Parameters

Only one of the surface water samples collected for the 2003 FWBWQS (FSW-SW-011-0000) was analyzed for nutrient parameters (ammonia, phosphorus, and nitrate) to further evaluate potential effects within the Sand Creek. Ammonia was not detected in the surface water sample; however, concentrations of the phosphorus and nitrate/nitrite parameters were detected. Phosphorus and nitrate/nitrite were retained as SRCs for further evaluation in surface water.

# 4.6 Summary of Nature and Extent of Contamination

In general, the majority of the SRCs identified in the environmental media evaluated for nature and extent of contamination (surface soil, subsurface soil, sediment, and surface water) occurred at the northern portion of the AOC. Between the 2003 RA and the RI data sets, a total of 58 SRCs was identified in surface soil (0 to 1 foot). A total of 50 SRCs were identified for sediment (42 SRCs for 0 to 0.5 foot and 17 SRCs for 0 to 1 foot) following evaluation of the sediment data from the 2003 RA, the 2003 FWBWQS, and the RI. A total of 64 SRCs were identified in surface soil (>1 foot bgs) for the RI data set. A total of 11 SRCs were identified in surface water for the 2003 RA and the 2003 FWBWQS data sets. The spatial distribution of the SRCs, in particular inorganics, is consistent among the environmental media and the types of methods used to collect the samples as part of the past activities and current investigation (i.e., discrete vs. ISM).

#### 4.6.1 Surface Soil

The greatest concentrations of inorganic, SVOC, and explosive and propellant SRCs in surface soil (0 to 1 foot bgs) occurred at the northern portion of the AOC where historical disposal activities occurred and where the majority of the RA was conducted in 2003. Explosives were detected at two locations (sampling units SCss-058 and SCss-069) at the northern portion of the AOC. One propellant was identified as an SRC at sampling unit SCss-069 as well. The detections of inorganics and SVOCs were well distributed across the site. However, the greatest concentrations in surface soil occurred in the northern third portion of the AOC along the slope. The number of detected inorganics and SVOCs and elevated concentrations generally decreased the further south the samples were collected. These RI results correspond with the results of the 2003 RA where the similar trending of SRCs, in particular inorganics, was observed at the northern portions of the AOC.

# 4.6.2 Subsurface Soils

A total of 22 soil borings was advanced during the RI field activities and subsurface samples were collected at a maximum depth of 20 feet bgs over five depth intervals (1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet) at nine of the soil boring locations. Bedrock was not encountered at any of the borings. Three explosives concentrations were detected at one soil boring location (SCsb-049) at 1 to 5 feet bgs along the slope at the northern portion of the AOC. The spatial distribution of inorganics and SVOCs was similar to that of surface soil with the greatest concentrations detected along and adjacent to the slope at the northern one-third of the AOC. The greatest number of detects and the greatest concentrations for both inorganics and SVOCs were typically found in the 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet sample intervals at this portion of the AOC. The number of detections and concentrations of SRCs generally decreased with the sample distance to the south and with depth.

For the borings where VOCs, pesticides, and PCBs were analyzed, the boring locations with the greatest number of detects were SCsb-038 and SCsb-048 at the 1- to 5-foot sample intervals. These borings were advanced in the northern portion of the AOC in the vicinity of the soil borings where the concentrated pockets of inorganic and SVOC SRCs were identified.

#### 4.6.3 Sediment

The SRCs identified in sediment consist of 3 explosives and propellants, 13 inorganics, 15 SVOCs, 12 pesticides, 2 PCB constituents, 1 VOC, total cyanide, and the nutrient parameters (ammonia, phosphorus, and nitrate/nitrite). The bulk of the SRCs were identified at sampling unit SCsd-070, the portion of the floodplain located adjacent to the northern portion of the AOC.

The number of SRCs identified for the RI (42) was significantly higher than the SRCs identified during the 2003 RA (14) and may be attributed to the types of samples collected (i.e., ISM versus discrete) or sample intervals (0 to 0.5 foot for the RI versus 0 to 1 foot for the 2003 RA). Five SRCs were identified in the ISM sediment sample collected during the 2003 FWBWQS including three nutrient parameters; however, the exact location that this sample was collected is not known. Sampling using ISM is considered more representative of a defined sampling unit whereas discrete samples are assumed to characterize an isolated location or "hot spot." The shallower sample interval may account for the higher number of SRCs due to contaminant absorption in the surficial organic matter in the top 6 inches and a higher concentrated grouping of chemicals than if spread out throughout the 0- to 1-foot interval.

#### 4.6.4 Surface Water

No asbestos, explosives, propellants, VOCs, total cyanide, pesticides, and PCBs were identified as SRCs in any of the surface water samples collected as part of the 2003 RA. Nine inorganics were identified as SRCs in the surface water samples collected for the 2003 FWBWQS; however, six of these inorganics were retained as SRCs because their surface water BSVs are 0  $\mu$ g/L. The SVOCs bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were identified as SRCs in the surface water samples collected at the site for the 2003 FWBWQS. Two nutrient parameters (phosphorus and nitrate/nitrite) were retained as SRCs in surface water. A cursory review of the overall surface water data collected along the Sand Creek as part of the 2003 FWBWQS indicates that detected analyte concentrations in the samples collected both upstream and downstream of the site. Based on these results, it appears that surface water conditions downstream of the AOC have not been impacted by historical disposal activities at the Sand Creek Site.



#### Figure 4-1 Process to Identify RVAAP Chemicals of Concern

Final RI



J - The reported result is an estimated value.

Figure 4-2 All Explosives and Propellant SRCs in Surface Soil



Figure 4-3 Inorganic SRCs in Surface Soil, 2003 Removal Action

| SCss                                                                                                            | -061                        | SC                    | s-060             |                 | PE-D TOTAL          | SCss                                    | -058               | sc             | ss-057                                    |                        |                |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-------------------|-----------------|---------------------|-----------------------------------------|--------------------|----------------|-------------------------------------------|------------------------|----------------|
| Depth (ft)                                                                                                      | 0-1                         | Depth (ft             | ): 0-1            | PR HILES        | 1.0.008             | Depth (ft):                             | 0-1                | Depth (        | ft): 0-1                                  | No and                 | 18 - 3 - A - C |
| Date                                                                                                            | 9/23/2010                   | Date                  | e: 9/23/2010      |                 | and the state       | Date:                                   | 9/23/2010          | Da             | ate: 9/24/2010                            |                        |                |
| Antimony                                                                                                        | 17.1                        | Antimony              | 1.5               | SCss            | -059                | Antimony                                | 3.1                | Cadmium        | 0.41 J                                    | A state of             |                |
| Arsenic                                                                                                         | 21.2                        | Barium                | 163               | Depth (ft):     | 0-1                 | Barium                                  | 127                | Cabalt         | 174                                       | ATTENDANCE AN          | 072            |
| Cadmium                                                                                                         | 12.9                        | Chromium              | 33.5              | Date            | 9/23/2010           | Chromium                                | 143                | Copper         | 15.2                                      | Depth (A)              | 0-1            |
| Chromium                                                                                                        | 77.6                        | Copper                | 42.8              | Cobalt          | 12.2                | Copper                                  | 33.7               | Mercury        | 15.1                                      | Deptn (ft              | 11/9/2010      |
| Copper                                                                                                          | 188                         | Lead                  | 134               | Copper          | 17.8                | Lead                                    | 139                | Nickel         | 34.6                                      | Cadmium                | 0.3            |
| Lead                                                                                                            | 405                         | Mercury               | 8.8               | Mercury         | 24.6                | Mercury                                 | 11.1               | Silver         | 12.9                                      | Chromium               | 32             |
| Mercury                                                                                                         | 2.7                         | Thallium              | 1.7               | Nickel          | 264                 | Nickel                                  | 21.7               | Thallium       | 3.2 J                                     | Mercury                | 0.063          |
| Nickel                                                                                                          | 30.7                        | Zinc                  | 234               | Thallium        | 1.8                 | Selenium                                | 0.83 J             | Zinc           | 94                                        | Nickel                 | 21.7           |
| Silver                                                                                                          | 256                         |                       | 1 1 - 1 - No.     |                 |                     | Zinc                                    | 269                | EAL            | Brach Sta                                 | Selenium               | 1.6            |
| Thallium                                                                                                        | 2.4                         |                       |                   | N. 769          | L. C.L.N.           | Carlos and                              | The state          | N. 184         | They bear a                               | Silver                 | 2.7            |
| Zine                                                                                                            | 373                         | and selling           |                   | P DAK           | 1. 1. 1. 1.         | CALC N                                  | STATISTICS.        |                | 15 217. 2                                 | SC                     | -073           |
| 60-                                                                                                             | 0(2                         | La la Charles         |                   | and a little of |                     |                                         |                    |                |                                           | Depth (ft              | 0-1            |
| Depth (A)                                                                                                       | -002                        |                       |                   |                 | S. 1. 1             | 1 307 Se                                | 14.20              | 11/16          |                                           | Date                   | : 11/9/2010    |
| Depth (It)                                                                                                      | 9/22/2010                   |                       | 100               |                 | 1000                |                                         |                    | 1 Partie       |                                           | Antimony               | 2.9            |
| Antimony                                                                                                        | 3.7                         |                       |                   | Service .       |                     | 10 A C                                  | States A           | A              | 1 and                                     | Arsenic                | 21.8           |
| Arsenic                                                                                                         | 36.6                        |                       |                   |                 |                     | North Com                               |                    | 1              | 1 - 2                                     | Barium                 | 94.3           |
| Barium                                                                                                          | 226                         | Page 184              |                   | Start Laterna   | Jaren J             | 10 10 100                               | Sales 1            | 1 and 1        | and a state                               | Cadmium                | 0.63           |
| Beryllium                                                                                                       | 1.1                         | CALL AND              |                   |                 | 12 C                | A ANALISE                               | N D                |                | ·                                         | Cobalt                 | 10.8           |
| Cadmium                                                                                                         | 2.3                         |                       | - 1 J - 1         | the start       | Sold States         | The second                              |                    |                | the second                                | Copper                 | 24.3           |
| Chromium                                                                                                        | 106                         |                       |                   | AL AND DO       | Sec. 1              | MILE CONTRACT                           |                    |                | - The state                               | Lead                   | 50.3           |
| Copper                                                                                                          | 03.7                        | 1.1.1.1               | SCss-063          | 100121          | A DEC               |                                         | ATV.               | And the second | and the second                            | Mercury                | 0.27           |
| Mercury                                                                                                         | 0.5                         | D                     | epth (ft): 0-1    | 1. 11.          | ALC: N              |                                         |                    | North L        | H CAR                                     | Nickel                 | 32.7           |
| Meleury                                                                                                         | 0.5                         | Sec.                  | Date: 9/22/20     | 10              | The second second   |                                         | X                  | and all        | and the state                             | Selenium               | 2.4            |
|                                                                                                                 |                             | Antimo                | ny 2.8            | Carl and        | 1 NOT 250           | 11/1                                    | A                  |                | and the                                   | Silver                 | 101            |
|                                                                                                                 |                             | Arsenie               | 16.2              | VALUE IE        |                     | 61                                      | <b>Y</b>           | 12/15/1        | - USP - N                                 | Zinc                   | 86.1           |
|                                                                                                                 | 0 45, 24,                   | Barum                 | 180<br>Im 1       | ZAL 3           | 5 4 C               |                                         | No.                |                | 2326                                      | State State            | A              |
| 1000                                                                                                            |                             | Cadmiu                | m 2.8             | 1 1 50          | 1.100               |                                         |                    | 3 1 1 A 1 A    | Carlos Carlos                             | SCs                    | s-069          |
|                                                                                                                 |                             | Chromi                | um 39.9           | 1.10            | 100                 |                                         | 1.81 6.98          | THE ST         |                                           | Depth (ft              | ): 0-1         |
|                                                                                                                 |                             | Copper                | 95.5              |                 | Sec. Mark           | 1 24 23                                 |                    | a farmer       |                                           | Marcura                | 0.061          |
|                                                                                                                 |                             | Lead                  | 109               |                 | mere and            |                                         |                    |                |                                           | Silver                 | 0.052          |
|                                                                                                                 |                             | Mercur                | y 0.55            | 100 100         | THINK F 1           | B . CON                                 | Contraction of the | and states.    | and the second                            | Thallium               | 1.1            |
|                                                                                                                 |                             | Nickel                | 27.6              | 102.00          | 3872 /              | 5 0 MER 1                               | 1                  | C. Stormany V. | All and a                                 | No. of Concession, No. | Bar Isa        |
|                                                                                                                 |                             | Silver                | 120               | - Aller         | 0                   |                                         | 6-2×               | SCs            | s-064                                     | SCs                    | s-074          |
|                                                                                                                 |                             | and the second        |                   | A CARLER        | 2 ° c               | 5                                       |                    | Depth (f       | t): 0-1                                   | Depth (ft              | ): 0-1         |
|                                                                                                                 |                             | SC                    | ss-066            |                 | 111                 |                                         | 1. 1. 1. 1.        | Dat            | e: 9/22/2010                              | Date                   | e: 11/9/2010   |
|                                                                                                                 |                             | Depth (               | ft): 0-1          |                 |                     | 1000                                    | 63                 | Barium         | 128                                       | Antimony               | 1.4            |
| 1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                             | Da                    | te: 9/22/2010     |                 |                     |                                         |                    | Cadmium        | 187                                       | Barium                 | 96.1           |
|                                                                                                                 |                             | Cadmium               | 0.41              |                 | IN                  | 100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |                    | Copper         | 726                                       | Cadmium                | 1.6            |
|                                                                                                                 |                             | Chromium              | 38.6              |                 |                     | 1100                                    |                    | Lead           | 131                                       | Chromium               | 88.4           |
| 192.                                                                                                            |                             | Mercura               | 0.07              | and the second  | 1 K                 | 1 .                                     | a .                | Mercury        | 0.078                                     | Cobalt                 | 19.7           |
| 24/201                                                                                                          |                             | Nickel                | 25.6              |                 |                     | Contraction of                          | 1 100              | Nickel         | 48.2                                      | Copper                 | 67             |
|                                                                                                                 |                             | Thallium              | 0.72              | Salary /        | $\langle I \rangle$ | 1 196 BAR                               | 1 Martin           | Silver         | 0.95                                      | Lead                   | 140            |
|                                                                                                                 |                             | A TALLO               | Mark 12           |                 | XX                  |                                         | 10                 | Thallium       | 1.1                                       | Mercury                | 0.13           |
| 142                                                                                                             |                             |                       | 1 1.7 4 5         |                 | IV                  | No. THE                                 | Mar N              | Zinc           | 235                                       | Nickel                 | 25.9           |
|                                                                                                                 | Css-067                     | 1 + I                 |                   | -1              |                     | 1                                       | 100                | No. 199        | BE SHOWN                                  | Thalling               | 0.09           |
| Depth                                                                                                           | (ft): 0-1                   | the state             | 100               |                 | 1002 CA             | 2 - A - A - A                           |                    | A ALA          |                                           | Zinc                   | 147            |
| Г                                                                                                               | Date: 9/21/2010             |                       | 01112             |                 |                     | 100 - 10 - 10 - 10 - 10 - 10 - 10 - 10  |                    | A State        | - North                                   |                        | 1              |
| Cadmium                                                                                                         | 0.41                        |                       | 120 1             | 1.1             | 1                   | and the second                          |                    | Chi As         | 111 A                                     | 200                    | 100            |
| Chromium                                                                                                        | 38.6                        | and the second        | a state of        | C/              | Date: A             | Sec. N                                  |                    |                | 1. S. | SCss-065               |                |
| Lead                                                                                                            | 37.1                        | 12.20                 | The second of the | VX              | 1 8. S. M.          | STREET A                                | X Part             |                | 100                                       | Depth (ft): 0-1        | 010            |
| Mercury                                                                                                         | 0.07                        | Training .            | 18 A.             |                 | 12 8 300            | a all a state                           | X                  |                | and and                                   | Date: 9/22/2           | 010            |
| Nickel                                                                                                          | 25.6                        |                       |                   |                 | SC                  | ss-076                                  | A.                 |                | Cad                                       | omium 30.8             | 1000           |
| Thallium                                                                                                        | 0.72                        | 9 723                 | ET.               |                 | Depth (             | ft): 0-1                                | ALL.               | SCss-075       | Con                                       | per 21.4               | 55             |
| WEST COL                                                                                                        | 10 62                       | 1.1                   | SCss-068          |                 | Da                  | ate: 11/9/2010                          | De                 | pth (ft): 0-1  | Lead                                      | 37                     | £              |
| 11. 19                                                                                                          | No. Contract                | Dept                  | h (ft): 0-1       | 12 - 1          | Antimony            | 3.1                                     | 1                  | Date: 11/9/201 | 0 Nick                                    | cel 22                 | 10.00          |
|                                                                                                                 |                             |                       | Date: 9/21/2010   | 1. 12           | Cadmium             | 0.65                                    | Antimor            | ny 1.3         | Silve                                     | er 1.3                 |                |
| 1                                                                                                               |                             | Cadmium               | 0.057             | 100 - 18        | Chromium            | 188                                     | Cadmiur            | n 0.85         | Tha                                       | llium 0.76             | 1.0            |
|                                                                                                                 | 10 - SK                     | Chromium              | 24.2              | P 10 22         | Mercury             | 0.049                                   | Chromiu            | m 81           | Zinc                                      | 68.8                   | N              |
| and the second second                                                                                           | 1.14                        | Thalling              | 0.62              | 142010-1        | Selenium            | 2.2                                     | Nickel             | 21.8           | 714 - 18                                  |                        | ×              |
| And I have been                                                                                                 | State & V                   | Trainuth              | 2 /2              |                 | Silver              | 0.11                                    | Silver             | 0.095 J        | 2                                         |                        |                |
| USCS ACL                                                                                                        | strando source              | Cen, Digitalisto      | Swissiana and     | the GIS Here    | Thallium            | 0.73                                    | Thallium           | 0.14 J         |                                           |                        |                |
| Community                                                                                                       |                             | and the second second |                   | 12 62 200       | - 74L               | 1.1                                     | 27507              | No. ST.        |                                           |                        |                |
| 100                                                                                                             | and the states              | and the second        | NALING BRANC      |                 |                     |                                         |                    |                | IIG                                       | ARMV                   |                |
| Lanund                                                                                                          |                             |                       |                   |                 |                     | 25                                      | ~ W .              | сй I           | COPPEO                                    | FENCINE                | FRS            |
| Legend                                                                                                          |                             |                       |                   |                 | (                   |                                         |                    | ш              | LOUISV                                    | ILLE DISTRIC           | T              |
| 2010                                                                                                            | RI Increme                  | ntal Sample S         | oil Sample A      | rea             | 2                   | -                                       |                    |                | LOUISV                                    | DISTRIC                |                |
| 2010                                                                                                            | , at morenie                | nui Sampie S          | on oumple A       |                 |                     | •                                       |                    |                | CREEV DIG                                 | POSAL BOAR             | ANDERT         |
|                                                                                                                 |                             |                       |                   |                 |                     |                                         | R R                | AAP-34 SAN     | CREEK DIS                                 | FUSAL RUAD             | LANDFILL       |
|                                                                                                                 |                             |                       |                   |                 |                     | -                                       |                    | RAVENN         | A ARMY AM                                 | MUNITION PL.           | ANT            |
| Notes                                                                                                           |                             | 1.1                   | -1>               |                 | 25                  | - All                                   |                    |                | RAVENNA                                   | , OHIO                 |                |
| 1) All results                                                                                                  | in milligrams               | per kilogram (m       | g/kg)             |                 |                     |                                         |                    |                |                                           |                        |                |
| 2) Yellow - ex                                                                                                  | Cool (10 <sup>-5</sup> Cool | ound and lowest       | racinty - Wide    | 1)              | 0                   | 125 2                                   | 250                |                | TURNER STORES                             |                        |                |
| 3) Data Ousli                                                                                                   | fiers                       | Lef Risk of Haza      | nu Quotient =     | .,              |                     |                                         | Feet               | Shaw Envir     | onmental &                                | & Infrastruct          | ture, Inc.     |
| J - The ren                                                                                                     | orted result is             | an estimated va       | lue.              |                 |                     |                                         |                    |                | (A CB&I C                                 | Company)               |                |
|                                                                                                                 | 10                          |                       |                   |                 |                     |                                         |                    |                |                                           |                        |                |

Figure 4-4 Inorganic SRCs in Surface Soil, Phase I Remedial Investigation

Generated By: JRL Date: 05/23/13 File Path:\\crpbtrpgi01\arcgisprod3\MAMMS\Ravenna\GIS\_Documents\Project\_Maps\AE\RIFS\RIFS\_SC\RVAAP\_011\_Fig4-4\_SC\_Inorg\_2010RLSSLocs.mxd

33616



Figure 4-5 All SVOC SRCs in Surface Soil

012 SC/RVAAP Maps/AE/RIFS/RIFS

Path://crobtrogi01/arcgisprod3/MAMMS/Ravenna/GIS File 05/23/13 Date: JRL

> ¢ 13361

Number Project



Figure 4-6 Pesticide and Cyanide SRCs in Surface Soil

Project Number: 133616



Figure 4-7 Explosives, Pesticides, PCBs, Cyanide, and VOC SRCs in Subsurface Soil



Figure 4-8 Inorganic SRCs in Subsurface Soil, 1-5 Feet Below Ground Surface



Figure 4-9 Inorganic SRCs in Subsurface Soil, 5-9 Feet Below Ground Surface



Figure 4-10 Inorganic SRCs in Subsurface Soil, 9-13 Feet Below Ground Surface



Figure 4-11 Inorganic SRCs in Subsurface Soil, 13-17 Feet Below Ground Surface



Figure 4-12 Inorganic SRCs in Subsurface Soil, 17-20 Feet Below Ground Surface



Figure 4-13 SVOC SRCs in Subsurface Soil, 1-5 Feet Below Ground Surface



Figure 4-14 SVOC SRCs in Subsurface Soil, 5-9 Feet Below Ground Surface



Figure 4-15 SVOC SRCs in Subsurface Soil, 9-13 Feet Below Ground Surface



Figure 4-16 SVOC SRCs in Subsurface Soil, 13-17 Feet Below Ground Surface



Figure 4-17 SVOC SRCs in Subsurface Soil, 17-20 Feet Below Ground Surface

| SCsd-003                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCsd-0                                  | 002                                       | SCsd                                  | 001                                      | Carlo Patri M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth (ft)                              | : 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth                                   | (ft): 0-1                                 | Depth                                 | (ft): 0-1                                | Carling and June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Date                                    | 9/18/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                       | ate: 9/18/2003                            | I                                     | Date: 9/18/2003                          | AND THE MENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Metals                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metals                                  |                                           | Metals                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Silver                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beryllium                               | 0.73                                      | Beryllium                             | 0.62                                     | SCsd-070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0            |
| Capital States                          | 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A starting                              | ALC: NOT                                  | Cadmium                               | 0.39                                     | Depth (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft): 0-0.5   |
|                                         | SCsd-004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | a = x - x - x - x - x - x - x - x - x - x | Cobalt                                | 11                                       | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te: 9/28/201 |
| 0.0 100                                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                           | Lead                                  | 40                                       | Propellants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| SCsd-005                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                           | Maraum                                | 40                                       | Nitroguanidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.69         |
| Depth (ft)                              | : 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Manager All                               | Nielcury                              | 0.00                                     | Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Date                                    | : 9/18/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | Nickel                                | 23                                       | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.4          |
| Metals                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           | Silver                                | 40                                       | Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.41         |
| Cadmium                                 | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in the second second                    |                                           | A C S A                               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7          |
| ALL ALL ALL                             | Second Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | Alter Street Way                          |                                       |                                          | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.9         |
|                                         | SCsd-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of                                  | i produktion alla                         |                                       |                                          | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.7         |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | State Inc.                                |                                       | 100 C                                    | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104          |
| SCsd-007                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1 N. G.                                   |                                       | Station Station                          | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3          |
| Denth (ft)                              | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3. 10 12                              | A CONTRACTOR                              |                                       | and the second                           | Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116          |
| Depth (It)                              | 0/15/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STANDE NOT                              | 1. 1. 1. 1. 1. 1.                         |                                       |                                          | Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2          |
| Date                                    | 9/15/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AVA JAW                                 |                                           | $\sim \sim$                           |                                          | Semivolatile Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| ropellants                              | La contra de la co | EVEN NO.                                | 10 m                                      |                                       | 3. 1. 4.                                 | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.044 J      |
| ntimony                                 | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A PRANT NECK                            | States -                                  |                                       | Sold Sold                                | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04 J       |
|                                         | A State of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State of the                            |                                           | $\sim$                                | and the second second                    | 2-Methylnaphathalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.043 J      |
| SCsd-008                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | National A. C.                          | NON TO                                    | That I                                |                                          | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.057 J      |
| Depth (ft)                              | : 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A State A A                             |                                           |                                       |                                          | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.067.1      |
| Date                                    | 9/18/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All des set                             |                                           |                                       |                                          | Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11 J       |
| plosives/Propellante                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Dealer Mark                           |                                           |                                       |                                          | Benzo(ghi)nervlene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.026 1      |
| Dinitrotaluce                           | 0.11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AND |                                           |                                       |                                          | Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.047 1      |
| -Dinitiotoluene                         | U.11 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Los Alexandre                         | 53 59 2                                   | A A A A A A A A A A A A A A A A A A A |                                          | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.071        |
| trocellulose                            | 1/0/1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VAR VICE NOR                            |                                           |                                       |                                          | Di-n-Butyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 031          |
| troguanidine                            | 0.05 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A CONTRACTOR                            |                                           | SC-40                                 | 71                                       | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.080 1      |
| etals                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar Martin Martin                       | A A A A                                   | Danth Danth                           | (0):0.05                                 | Indeno(123-cd)ourona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.039 J      |
| luminum                                 | 14,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | Con Salo                                  | Depti                                 | Data: 0/28/2010                          | Nanhthalana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.020 J      |
| eryllium                                | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 16 11 1 1                            | de la                                     | Propellante                           | Jate. 9/20/2010                          | Phenanthrana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.029 J      |
| nromium                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 50 000                                    | Nitroguanidir                         | 1121                                     | Durana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.033 J      |
| obalt                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | State of the state of the               | * e 6                                     | Matala                                | 1.23                                     | Polyablarizated Distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.089 J     |
| ickel                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | State - State                           | °C                                        | Antimone                              | 0.45 1                                   | A rochlor 1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.004        |
| alatila Comercia                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MANDAL STR                              | 10.81                                     | Regulier                              | 0.45 J                                   | Arochler 1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.094        |
| oratile Compounds                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                           | Berymum                               | 0.47                                     | Arochior 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15         |
| cetone                                  | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CT WHEN                                 |                                           | Cadmium                               | 0.19                                     | Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000        |
| DOM/ OF A4                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V ANDO                                  |                                           | Chromium                              | 107                                      | 4,4-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.003        |
| r5w-5D-01                               | 10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALL DE LES                              | V L                                       | Nickel                                | 20                                       | 4,4-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.004        |
| Depth (ft)                              | 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | a stand                                   | Thallium                              | 1.1                                      | 4,4-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.007 J      |
| Date                                    | 6/24/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | and the                                   | Semivolatile Compound                 | B                                        | alpha Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002 J      |
| tals                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contraction of the second               | And the second second                     | Benzo(b)fluoranthene                  | 0.046 J                                  | Dieldei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001 J      |
| timony                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | and the second                            | Chrysene                              | 0.027 J                                  | Dieldnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005        |
| mium                                    | 0.14 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | a fission is                              | Di-n-Butyl Phthalate                  | 0.11 J                                   | Endosulfan Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.006 J      |
| nivolatile Compounds                    | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ALC: COMPANY                              | Fluoranthene                          | 0.047 J                                  | Endrin Aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006        |
| -Buthylphthalate                        | 0.12 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                           | Indeno(1,2,3-cd)pyrene                | 0.026 J                                  | gamma Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008        |
| rients                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | A State of the                            | Phenanthrene                          | 0.027 J                                  | Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006 J      |
| monium                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AN                                      | The second second                         | Pyrene                                | 0.04 J                                   | Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002 J      |
| sphorus (as P)                          | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                           | Pesticides                            |                                          | Total Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.36 J       |
| ate + Nitrite                           | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | A STATES                                  | 4,4'-DDD                              | 0.0006 J                                 | A COLORING COLORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| are . Inditte                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                       | A SHAREN TO                               | 4,4'-DDT                              | 0.0009 J                                 | ALL STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Ced-010                                   | Heptachlor                            | 0.002 J                                  | A ALL AND A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|                                         | - 7 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S.                                      | 030-010                                   | Methoxychlor                          | 0.002 J                                  | 10 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Tele Collection of the                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | All All All A                             | Total Cyanide                         | 0.32 J                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190          |
| 1-4- Indenitial II.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           | 10 - 18 St                            | Section 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| SCsd-012                                | AND THE REAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a for the second                        |                                           | 1                                     | SCsd-009                                 | A PARTICULAR DE LA CARACTERISTICA DE LA CARACTERIST | - William    |
| AND THE REAL PROPERTY.                  | A Long and a g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                       | 0.1011                                    |                                       | Depth (ft):                              | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00       |
| The LOW DOC                             | ALS CHARLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                       | CSG-011                                   | 100                                   | Date:                                    | 9/18/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                       | epth (ft): 0-1                            | Metale                                |                                          | State State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 N X        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Date: 9/18/200                            | 3 Baryllin                            | m                                        | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                         | THE A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metals                                  |                                           | Cabelt                                |                                          | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Service Laver Credits Se                | ures: Esn, DigitalG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beryllium                               | 0.48                                      | Cobalt                                |                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| enEye, Loubed, USDA,                    | USGS, AEX, Gebr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobalt                                  | 13                                        | Nickel                                | and the second second                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| eragna, IGN, IGP, swis-                 | topo, and the GIS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nickel                                  | 22                                        | A STATE OF THE                        | Carlos Philes                            | and the state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Contraction of the second               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR OF THE                     |                                           | SHALL BREAK                           | Barris Mars                              | No. No. And Address of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| gend                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           |                                       | (wW)                                     | U.S. ARMY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 2003 Facility V                         | Vide Biologiaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Water Quality St                    | ndy /                                     | 5                                     |                                          | CORPS OF ENGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EERS         |
| Sediment Ser                            | ole Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and water Quality St                    | ady P                                     |                                       |                                          | LOUISVILLE DISTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICT          |
| Sediment Sam                            | pie Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                           | • •                                   |                                          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | deres 1      |
| 2003 Removal                            | Action Sedimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Sample Location                       |                                           |                                       | RVAAP-34 SAN                             | D CREEK DISPOSAL ROA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D LANDF      |
| 2010 RI Increm                          | nental Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sediment Sample Area                    |                                           | -                                     | RAVEN                                    | NA ARMY AMMUNITION F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLANT        |
| 2010 RI Incien                          | actual Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | content Sample Alea                     | 1                                         |                                       |                                          | RAVENNA, OHIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 2010 RI Incren                          | nental Sample S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil Sample Area                        |                                           |                                       |                                          | in a line of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| es                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       | 0                                         | 100 200                               | 121.7                                    | Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| All results in milligrams               | per kilogram (mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg)                                     |                                           | Feet                                  | Shaw Envi                                | ronmental & Infrastru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cture, In    |
| hoto / huo                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                           | 1.000                                 |                                          | (A CDOIC )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |

Figure 4-18 All SRCs in Sediment



Figure 4-19 All SRCs in Surface Water

|                       |         | 1                   | 1           |               |                                                                            |                                                                  |
|-----------------------|---------|---------------------|-------------|---------------|----------------------------------------------------------------------------|------------------------------------------------------------------|
| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                                   | Comments                                                         |
| Surface Soil          |         |                     |             |               |                                                                            |                                                                  |
| SCss-001-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-002-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-003-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-004-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-005-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-006-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-007-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-008-0001-SO      | 9/9/03  | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-009-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-010-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-011-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-012-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-013-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-014-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-015-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-016-0001-SO      | 9/10/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-017-0001-SO      | 9/15/03 | 0-1                 | GR          | N&E           | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, VOCs, Total Cyanide, asbestos | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-018-0001-SO      | 9/15/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-019-0001-SO      | 9/15/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-020-0001-SO      | 9/15/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |

#### Table 4-1. Data and use information for environmental samples collected as Sand Creek Disposal Road Landfill.

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                                   | Comments                                                         |
|-----------------------|---------|---------------------|-------------|---------------|----------------------------------------------------------------------------|------------------------------------------------------------------|
| SCss-021-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-022-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-023-0001-SO      | 9/17/03 | 0–1                 | GR          | N&E           | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, VOCs, Total Cyanide, Asbestos | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-024-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-025-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-026-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-027-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-028-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-029-0001-SO      | 9/17/03 | 0–1                 | GR          | N&E           | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, VOCs, Total Cyanide, Asbestos | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-030-0001-SO      | 9/17/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-CONT1-0001-SO    | 9/22/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                           | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-CONT2-0001-SO    | 9/22/03 | 0-1                 | GR          | N&E           | Explosives                                                                 | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-CONT3-0001-SO    | 9/22/03 | 0-1                 | GR          | N&E           | Explosives                                                                 | 2003 RA confirmatory (after removal actions) surface soil sample |
| SCss-057M-0001-SO     | 9/24/10 | 0–1                 | ISM         | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide, Hex. Chrome    | RI surface soil sample                                           |
| SCss-057D-0001-SO     | 9/24/10 | 0-1                 | GR          | N&E, R, F&T   | VOCs                                                                       | RI surface soil sample (discrete)                                |
| SCss-058M-0001-SO     | 9/23/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                                  | RI surface soil sample                                           |
| SCss-059M<br>-0001-SO | 9/23/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                                  | RI surface soil sample                                           |
| SCss-060M-0001-SO     | 9/23/10 | 0–1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                                  | RI surface soil sample                                           |
| SCss-061M-0001-SO     | 9/23/10 | 0–1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                                  | RI surface soil sample                                           |
| SCss-062M-0001-SO     | 9/23/10 | 0–1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                                  | RI surface soil sample                                           |

| Table 4-1 Data and use information for environmental sa | mples collected as Sand | Creek Disposal Road Landfill (c | ontinued). |
|---------------------------------------------------------|-------------------------|---------------------------------|------------|
|---------------------------------------------------------|-------------------------|---------------------------------|------------|

| Sample<br>Location ID         | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                             |                       |
|-------------------------------|---------|---------------------|-------------|---------------|----------------------------------------------------------------------|-----------------------|
| SCss-063M-0001-SO             | 9/23/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-064M-0001-SO             | 9/23/10 | 0–1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                            | RI surface soil samp  |
| SCss-065M-0001-SO             | 9/23/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-066M-0001-SO             | 9/24/10 | 0–1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                            | RI surface soil samp  |
| SCss-067M-0001-SO             | 9/21/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-068M-0001-SO             | 9/21/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-068D-0001-SO             | 9/21/10 | 0-1                 | GR          | N&E, R, F&T   | VOCs                                                                 | RI surface soil samp  |
| SCss-069M-0001-SO             | 9/24/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-072M-0001-SO             | 11/9/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-073M-0001-SO             | 11/9/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-074M-0001-SO             | 11/9/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-075M-0001-SO             | 11/9/10 | 0-1                 | ISM         | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI surface soil samp  |
| SCss-076M-0001-SO             | 11/9/10 | 0–1                 | ISM         | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB, SVOCs, Total Cyanide, Hex. Chrome | RI surface soil samp  |
| Subsurface Soil (>1 foot bgs) |         |                     |             |               |                                                                      |                       |
| SCsb-035M-0001-SO             | 9/22/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |
| SCsb-035M-0002-SO             | 9/22/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |
| SCsb-035M-0003-SO             | 9/22/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |
| SCsb-035M-0004-SO             | 9/22/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |
| SCsb-035M-0005-SO             | 9/22/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |
| SCsb-036M-0001-SO             | 9/22/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                            | RI subsurface soil sa |
| SCsb-036M-0002-SO             | 9/22/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                            | RI subsurface soil sa |

| Table 4-1 Data and use information for environmental samples collected as Sand | Creek Disposal Road Landfill (continued). |
|--------------------------------------------------------------------------------|-------------------------------------------|
|--------------------------------------------------------------------------------|-------------------------------------------|

| Comments       |
|----------------|
| ble            |
| ble            |
| ple            |
| ble            |
| ble            |
| ple            |
| ple (discrete) |
| ple            |
| ble            |
|                |
| ample          |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                   | Comments                             |
|-----------------------|---------|---------------------|-------------|---------------|------------------------------------------------------------|--------------------------------------|
| SCsb-036M-0003-SO     | 9/22/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-036M-0004-SO     | 9/22/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-036M-0005-SO     | 9/22/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-037D-0001-SO     | 9/22/10 | 1–5                 | GR          | N&E, R, F&T   | VOCs                                                       | RI subsurface soil sample (discrete) |
| SCsb-037M-0001-SO     | 9/22/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB, SVOCs, Total Cyanide    | RI subsurface soil sample            |
| SCsb-037M-0002-SO     | 9/22/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-037M-0003-SO     | 9/22/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-037M-0004-SO     | 9/22/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-037M-0005-SO     | 9/22/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038M-0001-SO     | 9/22/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038M-0002-SO     | 9/22/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038M-0003-SO     | 9/22/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038M-0004-SO     | 9/22/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038M-0005-SO     | 9/22/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-038D-0005-SO     | 9/22/10 | 17–20               | GR          | N&E, R, F&T   | VOCs                                                       | RI subsurface soil sample (discrete) |
| SCsb-039M-0001-SO     | 9/21/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-039M-0002-SO     | 9/21/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-039M-0003-SO     | 9/21/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-039M-0004-SO     | 9/21/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-039M-0005-SO     | 9/21/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide | RI subsurface soil sample            |

Table 4-1 Data and use information for environmental samples collected as Sand Creek Disposal Road Landfill (continued).

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                   | Comments                             |
|-----------------------|---------|---------------------|-------------|---------------|------------------------------------------------------------|--------------------------------------|
| SCsb-040M-0001-SO     | 9/21/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-040M-0002-SO     | 9/21/10 | 5-9                 | Mod. ISM    | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB, SVOCs, Total Cyanide    | RI subsurface soil sample            |
| SCsb-040D-0002-SO     | 9/21/10 | 5–9                 | GR          | N&E, R, F&T   | VOCs                                                       | RI subsurface soil sample (discrete) |
| SCsb-040M-0003-SO     | 9/21/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-040M-0004-SO     | 9/21/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-040M-0005-SO     | 9/21/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-041M-0001-SO     | 9/21/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-041M-0002-SO     | 9/21/10 | 5-9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-041M-0003-SO     | 9/21/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-041M-0004-SO     | 9/21/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-041M-0005-SO     | 9/21/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-042M-0001-SO     | 9/21/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-042M-0002-SO     | 9/21/10 | 5–9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-042M-0003-SO     | 9/21/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide | RI subsurface soil sample            |
| SCsb-042D-0003-SO     | 9/21/10 | 9–13                | GR          | N&E, R, F&T   | VOCs                                                       | RI subsurface soil sample (discrete) |
| SCsb-042M-0004-SO     | 9/21/10 | 13–17               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-042M-0005-SO     | 9/21/10 | 17–20               | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-043M-0001-SO     | 9/21/10 | 1–5                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-043M-0002-SO     | 9/21/10 | 5-9                 | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |
| SCsb-043M-0003-SO     | 9/21/10 | 9–13                | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                  | RI subsurface soil sample            |

| Table 4-1 Data and use information for environmental samples collected as Sand | Creek Disposal Road Landfill (continued). |
|--------------------------------------------------------------------------------|-------------------------------------------|
|--------------------------------------------------------------------------------|-------------------------------------------|

| Sample Location ID | Date    | Depth (feet bgs) | Sample Type | Data Use Type | Analyses                                                                |                       |
|--------------------|---------|------------------|-------------|---------------|-------------------------------------------------------------------------|-----------------------|
| SCsb-043M-0004-SO  | 9/21/10 | 13–17            | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-043M-0005-SO  | 9/21/10 | 17–20            | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-044M-0001-SO  | 9/24/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-045M-0001-SO  | 9/25/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-046M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                               | RI subsurface soil sa |
| SCsb-047M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-048M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide, Hex. Chrome | RI subsurface soil s  |
| SCsb-048D-0001-SO  | 9/29/10 | 1–5              | GR          | N&E, R, F&T   | VOCs                                                                    | RI subsurface soil sa |
| SCsb-049M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil sa |
| SCsb-050M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil s  |
| SCsb-051M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                               | RI subsurface soil s  |
| SCsb-052M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil s  |
| SCsb-053M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil s  |
| SCsb-054M-0001-SO  | 9/29/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil s  |
| SCsb-055M-0001-SO  | 9/25/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs                                               | RI subsurface soil s  |
| SCsb-056M-0001-SO  | 9/25/10 | 1–5              | Mod. ISM    | N&E, R, F&T   | Explosives, Metals, SVOCs, Hex.<br>Chrome                               | RI subsurface soil s  |
| Sediment           | •       | •                |             | ·             | •                                                                       |                       |

| Table 4-1 Data and use information for environmental samples collected as Sand ( | Creek Disposal Road Landfill (continued). |
|----------------------------------------------------------------------------------|-------------------------------------------|
|----------------------------------------------------------------------------------|-------------------------------------------|

| FSW-SD-011-0000  | 6/24/03 | 0–0.5 | ISM | N&E | Metals, Explosives, Pesticides, PCBs,<br>SVOCs, Total Cyanide, Nutrients | 2003 FWBWQS se   |
|------------------|---------|-------|-----|-----|--------------------------------------------------------------------------|------------------|
| SCsd-001-0001-SD | 9/18/03 | 0-1   | GR  | N&E | Metals, Asbestos                                                         | 2003 RA sediment |
| SCsd-002-0001-SD | 9/18/03 | 0-1   | GR  | N&E | Metals, Asbestos                                                         | 2003 RA sediment |
| SCsd-003-0001-SD | 9/18/03 | 0–1   | GR  | N&E | Metals, Asbestos                                                         | 2003 RA sediment |

| Comments                      |
|-------------------------------|
| ample                         |
| ample (discrete)              |
| ample                         |
|                               |
| diment sample from Sand Creek |
| sample from flood plan        |
| sample from Sand Creek        |
| sample from floodplain        |
|                               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Sample Type | Data Use Type | Analyses                                                                  |                    |
|-----------------------|---------|---------------------|-------------|---------------|---------------------------------------------------------------------------|--------------------|
| SCsd-004-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-005-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-006-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-007-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Exp/Prop, Metals, Pesticides, PCB, SVOCs, VOCs, Asbestos                  | 2003 RA sediment s |
| SCsd-008-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Exp/Prop, Metals, Pesticides, PCB, SVOCs, VOCs, Asbestos                  | 2003 RA sediment s |
| SCsd-009-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-010-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-011-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment s |
| SCsd-012-0001-SD      | 9/18/03 | 0-1                 | GR          | N&E           | Metals, Asbestos                                                          | 2003 RA sediment   |
| SCsd-070M-0001-SD     | 9/28/10 | 0–0.5               | ISM         | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide, Hex. Chrome   | RI sediment sample |
| SCsd-071M-0001-SD     | 9/28/10 | 0–0.5               | ISM         | N&E, R, F&T   | Exp/Prop, Metals, Pesticides, PCB,<br>SVOCs, Total Cyanide, Hex. Chrome   | RI sediment sample |
| SCsd-071D-0001-SD     | 9/28/10 | 0-0.5               | GR          | N&E, R, F&T   | VOCs                                                                      | RI sediment sample |
| Surface Water         |         |                     |             |               |                                                                           |                    |
| FSW-SW-011-0000       | 6/24/03 |                     | GR          | N&E, R        | Metals, Explosives, Pesticides, PCBs,<br>SVOCs, Total Cyanide, Nutrients  | 2003 FWBWQS sur    |
| FSW-SW-051-0000       | 9/17/03 |                     | GR          | N&E, R        | Metals, Explosives, SVOCs                                                 | 2003 FWBWQS sur    |
| SCsw-001-0001-SW      | 9/18/03 |                     | GR          | N&E, R        | Exp/Prop, Metals, Pesticides, PCB,<br>SVOC, VOCs, Total Cyanide, Asbestos | 2003 RA surface wa |
| SCsw-002-0001-SW      | 9/15/03 |                     | GR          | N&E, R        | Metals, asbestos                                                          | 2003 RA surface wa |
| SCsw-003-0001-SW      | 9/15/03 |                     | GR          | N&E, R        | Metals, asbestos                                                          | 2003 RA surface wa |

| Table 4-1 Data and use information for environmental samples collected as Sand | d Creek Disposal Road Landfill (continued). |
|--------------------------------------------------------------------------------|---------------------------------------------|
|--------------------------------------------------------------------------------|---------------------------------------------|

--- denotes not applicable. bgs denotes below ground surface. Exp/Prop denotes explosives and propellants. F&T denotes fate and transport evaluation. FWBWQS denotes Facility-Wide Biological and Water Quality Study. GR denotes gr Hex. Chrome denotes hexavalent chromium. ID denotes identification. ISM denotes incremental sampling method. Mod. ISM denotes modified incremental sampling method. N&E denotes nature and extent of contamination evaluation. evaluation. RA denotes removal action. RI denotes remedial investigation. SVOC denotes semivolatile organic compound. VOC denotes volatile organic compound. Body Break

| Comments                                                        |
|-----------------------------------------------------------------|
| sample from Sand Creek                                          |
| sample from floodplain                                          |
| sample from Sand Creek                                          |
| sample from floodplain                                          |
| sample                                                          |
| sample from floodplain                                          |
| sample from Sand Creek                                          |
| sample from Sand Creek                                          |
| sample from floodplain                                          |
| from floodplain                                                 |
| from floodplain                                                 |
| (discrete)                                                      |
|                                                                 |
| rface water sample                                              |
| rface water sample                                              |
| ater sample                                                     |
| ater sample                                                     |
| ater sample                                                     |
| rab sample collection method (discrete).                        |
| PCB denotes polychlorinated biphenyl. R denotes risk assessment |
| Analyte                           | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification  |
|-----------------------------------|------------|------------------------|---------------------------|---------------------------|------------------------|----------------|------|--------------------|
| <b>Explosives and Propellants</b> |            |                        |                           |                           |                        |                |      |                    |
| 2,4,6-Trinitrotoluene             | 118-96-7   | 2/5                    | 0.039 J                   | 0.5                       | 0.3                    | NA             | Yes  | Detected organic   |
| 2,4-Dinitrotolune                 | 121-14-2   | 1/5                    | 0.037 J                   | 0.037 J                   | 0.05                   | NA             | Yes  | Detected organic   |
| 2,6-Dinitrotoluene                | 606-20-2   | 1/5                    | 0.17                      | 0.17                      | 0.11                   | NA             | Yes  | Detected organic   |
| Nitrocellulose                    | 9004-70-0  | 2/3                    | 3.5                       | 5                         | 3.23                   | NA             | Yes  | Detected organic   |
| Inorganics                        |            |                        |                           |                           |                        |                |      |                    |
| Aluminum                          | 7429-90-5  | 31/31                  | 5,700                     | 17,000                    | 10,525                 | 17,700         | No   | Below BSV          |
| Antimony                          | 7440-36-0  | 11/31                  | 0.0037                    | 25                        | 1.56                   | 0.96           | Yes  | Above BSV          |
| Arsenic                           | 7440-38-2  | 31/31                  | 2.5                       | 100                       | 17.25                  | 15.4           | Yes  | Above BSV          |
| Barium                            | 7440-39-3  | 31/31                  | 30                        | 1,600                     | 157                    | 88.4           | Yes  | Above BSV          |
| Beryllium                         | 7440-41-7  | 31/31                  | 0.22 J                    | 1.2                       | 1.87                   | 0.88           | Yes  | Above BSV          |
| Cadmium                           | 7440-43-9  | 12/31                  | 0.14                      | 40                        | 2.86                   | 0              | Yes  | Above BSV          |
| Calcium                           | 7440-70-2  | 31/31                  | 340                       | 38,000                    | 4,944                  | 15,800         | No   | Essential nutrient |
| Chromium                          | 7440-47-3  | 31/31                  | 7.6                       | 230                       | 32.5                   | 17.4           | Yes  | Above BSV          |
| Cobalt                            | 7440-48-4  | 31/31                  | 3.3                       | 26                        | 10.3                   | 10.6           | Yes  | Above BSV          |
| Copper                            | 7440-50-8  | 31/31                  | 7.3                       | 470                       | 58.5                   | 17.7           | Yes  | Above BSV          |
| Iron                              | 7439-89-6  | 31/31                  | 13,000                    | 44,000                    | 24,742                 | 23,100         | No   | Essential nutrient |
| Lead                              | 7439-92-1  | 31/31                  | 8                         | 1,600                     | 106.7                  | 26.1           | Yes  | Above BSV          |
| Magnesium                         | 7439-95-4  | 31/31                  | 1,300                     | 5,100                     | 2,929                  | 3,030          | No   | Essential nutrient |
| Manganese                         | 7439-96-5  | 31/31                  | 90                        | 4,800                     | 574                    | 1,450          | Yes  | Above BSV          |
| Mercury                           | 7439-97-6  | 30/31                  | 0.015                     | 130                       | 4.4                    | 0.036          | Yes  | Above BSV          |
| Nickel                            | 7440-02-0  | 31/31                  | 9.2                       | 110                       | 26.2                   | 21.1           | Yes  | Above BSV          |
| Potassium                         | 7440-09-7  | 31/31                  | 770                       | 2,400                     | 1,348                  | 927            | No   | Essential nutrient |
| Selenium                          | 7782-49-2  | 8/31                   | 0.53                      | 3.2                       | 1.84                   | 1.4            | Yes  | Above BSV          |
| Silver                            | 7440-22-4  | 9/31                   | 0.47                      | 630                       | 58.3                   | 0              | Yes  | Above BSV          |
| Sodium                            | 7440-23-5  | 7/31                   | 120                       | 550                       | 111.3                  | 123            | No   | Essential nutrient |
| Thallium                          | 7440-28-0  | 1/31                   | 0.58                      | 0.58                      | 0.16                   | 0              | No   | Less than 5% FOD   |
| Vanadium                          | 7440-62-2  | 31/31                  | 10                        | 25                        | 18.2                   | 31.1           | No   | Below BSV          |
| Zinc                              | 7440-66-6  | 31/31                  | 35                        | 620                       | 121                    | 61.8           | Yes  | Above BSV          |

Table 4-2. Screening for SRCs in surface soil samples (discrete) data collected during the 2003 Removal Action.

| Analyte                        | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification |
|--------------------------------|------------|------------------------|---------------------------|---------------------------|------------------------|----------------|------|-------------------|
| Semivolatile Organic Compounds |            |                        |                           |                           |                        |                |      |                   |
| Benzo(a)anthracene             | 56-55-3    | 2/3                    | 0.0044 J                  | 0.3100                    | 0.0363                 | NA             | Yes  | Detected organic  |
| Benzo(a)pyrene                 | 50-32-8    | 2/3                    | 0.0047 J                  | 0.2900                    | 0.1046                 | NA             | Yes  | Detected organic  |
| Benzo(b)fluoranthene           | 205-99-2   | 2/3                    | 0.0051 J                  | 0.3000                    | 0.1080                 | NA             | Yes  | Detected organic  |
| Benzo(k)fluoranthene           | 207-08-9   | 2/3                    | 0.0054 J                  | 0.3300                    | 0.1181                 | NA             | Yes  | Detected organic  |
| Benzo(g,h,i)perylene           | 191-24-2   | 1/3                    | 0.1300                    | 0.1300                    | 0.0567                 | NA             | Yes  | Detected organic  |
| Bis(2-Ethylhexyl)phthalate     | 117-81-7   | 2/3                    | 0.0220 J                  | 0.0900                    | 0.069                  | NA             | Yes  | Detected organic  |
| Chrysene                       | 218-01-9   | 2/3                    | 0.0046 J                  | 0.2900                    | 0.1045                 | NA             | Yes  | Detected organic  |
| Dibenzo(a,h)anthracene         | 53-70-3    | 1/3                    | 0.0690                    | 0.0690                    | 0.0363                 | NA             | Yes  | Detected organic  |
| Fluoranthene                   | 206-44-0   | 2/3                    | 0.0098 J                  | 0.5200                    | 0.1829                 | NA             | Yes  | Detected organic  |
| Indeno(1,2,3-cd)pyrene         | 193-39-5   | 1/3                    | 0.1300                    | 0.1300                    | 0.0567                 | NA             | Yes  | Detected organic  |
| Phenanthrene                   | 85-01-8    | 1/3                    | 0.0890                    | 0.0890                    | 0.0430                 | NA             | Yes  | Detected organic  |
| Pyrene                         | 129-00-0   | 1/3                    | 0.5300                    | 0.5300                    | 0.1900                 | NA             | Yes  | Detected organic  |
| Volatile Organic Compounds     |            |                        |                           |                           |                        |                |      |                   |

| Table 4-2. Sc | creening for SRCs in | surface soil samples | (discrete) data c | ollected during the | 2003 Removal Action | (continued). |
|---------------|----------------------|----------------------|-------------------|---------------------|---------------------|--------------|
|---------------|----------------------|----------------------|-------------------|---------------------|---------------------|--------------|

| volatile Organic Compounds |          |     |        |        |      |    |     |                  |
|----------------------------|----------|-----|--------|--------|------|----|-----|------------------|
| Chloroethane               | 75-00-03 | 1/3 | 0.09 J | 0.09 J | 0.03 | NA | Yes | Detected organic |
|                            |          |     |        |        |      |    |     |                  |

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

FOD denotes frequency of detection.

J denotes the reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

SRC denotes site-related chemical

|                            |            |                        |                           |                           | Mean              | DOM            |      |                    |
|----------------------------|------------|------------------------|---------------------------|---------------------------|-------------------|----------------|------|--------------------|
| Analyte                    | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification  |
| Explosives and Propellants |            |                        |                           |                           |                   |                |      |                    |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 2/18                   | 0.26 J                    | 3.9                       | 0.41              | NA             | Yes  | Detected organic   |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2 | 1/18                   | 0.26 J                    | 0.26 J                    | 0.22              | NA             | Yes  | Detected organic   |
| Nitroguanidine             | 556-88-7   | 1/2                    | 0.64                      | 1.2                       | 0.40              | NA             | Yes  | Detected organic   |
| Inorganics                 |            |                        |                           |                           |                   |                |      |                    |
| Aluminum                   | 7429-90-5  | 18/18                  | 26.1                      | 16,700                    | 10,123            | 17,700         | No   | Below BSV          |
| Antimony                   | 7440-36-0  | 11/18                  | 0.75                      | 17.1                      | 2.4               | 0.96           | Yes  | Above BSV          |
| Arsenic                    | 7440-38-2  | 17/18                  | 4.5                       | 36.6                      | 14                | 15.4           | Yes  | Above BSV          |
| Barium                     | 7440-39-3  | 18/18                  | 1.5                       | 764                       | 128               | 88.4           | Yes  | Above BSV          |
| Beryllium                  | 7440-41-7  | 17/18                  | 0.41                      | 1.1                       | 0.59              | 0.88           | Yes  | Above BSV          |
| Cadmium                    | 7440-43-9  | 16/18                  | 0.057                     | 12.9                      | 1.61              | 0              | Yes  | Above BSV          |
| Calcium                    | 7440-70-2  | 18/18                  | 26.5                      | 32,500                    | 9,844             | 15,800         | No   | Essential nutrient |
| Chromium                   | 7440-47-3  | 18/18                  | 0.26                      | 188                       | 79                | 17.4           | Yes  | Above BSV          |
| Cobalt                     | 7440-48-4  | 17/18                  | 6.7                       | 19.7                      | 9.3               | 10.4           | Yes  | Above BSV          |
| Copper                     | 7440-50-8  | 18/18                  | 0.49                      | 726                       | 77                | 17.7           | Yes  | Above BSV          |
| Iron                       | 7439-89-6  | 18/18                  | 86.8                      | 34,800                    | 24,483            | 23,100         | No   | Essential nutrient |
| Lead                       | 7439-92-1  | 18/18                  | 0.88                      | 405                       | 81                | 26.1           | Yes  | Above BSV          |
| Magnesium                  | 7439-95-4  | 18/18                  | 6.6                       | 8,130                     | 3,312             | 3,030          | No   | Essential nutrient |
| Manganese                  | 7439-96-5  | 18/18                  | 2.2                       | 920                       | 511               | 1,450          | No   | Below BSV          |
| Mercury                    | 7439-97-6  | 18/18                  | 0.026                     | 24.6                      | 3.6               | 0.036          | Yes  | Above BSV          |
| Nickel                     | 7440-02-0  | 18/18                  | 0.08 J                    | 48.2                      | 25.8              | 21.1           | Yes  | Above BSV          |
| Potassium                  | 7440-09-7  | 18/18                  | 693                       | 1,650                     | 1,094             | 927            | No   | Essential nutrient |
| Selenium                   | 7782-49-2  | 14/18                  | 0.13                      | 3.1                       | 1.2               | 1.4            | Yes  | Above BSV          |
| Silver                     | 7440-22-4  | 14/18                  | 0.52                      | 256                       | 42.3              | 0              | Yes  | Above BSV          |
| Sodium                     | 7440-23-5  | 18/18                  | 20.5                      | 150                       | 68                | 123            | No   | Essential nutrient |
| Thallium                   | 7440-28-0  | 16/18                  | 0.14 J                    | 3.2 J                     | 1.2               | 0              | Yes  | Above BSV          |
| Vanadium                   | 7440-62-2  | 17/18                  | 14.2                      | 23.8                      | 17.9              | 31.1           | No   | Below BSV          |
| Zinc                       | 7440-66-6  | 18/18                  | 0.96                      | 373                       | 127               | 61.8           | Yes  | Above BSV          |

| Table 4-3. | Screening for | SRCs in surfac | e soil samples | (ISM) data | collected during the | e 2003 Removal Action. |
|------------|---------------|----------------|----------------|------------|----------------------|------------------------|
|            |               |                |                | · /        |                      |                        |

| Analyte                        | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV<br>(mg/kg) |
|--------------------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|----------------|
| General Chemistry              |            |                        |                           |                           |                           |                |
| Cyanide, total                 | 57-12-5    | 2/2                    | 0.35                      | 0.39 J                    | 0.03                      | 0              |
| Semivolatile Organic Compounds |            |                        | 1                         |                           | 1                         |                |
| 1,2,4-Trichlorobenzene         | 120-82-1   | 1/18                   | 0.027 J                   | 0.027 J                   | 0.197                     | NA             |
| 1,2-Dichlorobenzene            | 95-50-1    | 17/18                  | 0.028 J                   | 0.11 J                    | 0.14415                   | NA             |
| 1,3-Dichlorobenzene            | 541-73-1   | 1/18                   | 0.031 J                   | 0.031 J                   | 0.197                     | NA             |
| 1,4-Dichlorobenzene            | 106-46-7   | 6/18                   | 0.022 J                   | 0.27 J                    | 0.168                     | NA             |
| 2-Methylnaphthalene            | 91-57-6    | 11/18                  | 0.045 J                   | 0.53                      | 0.249                     | NA             |
| Acenaphthene                   | 83-32-9    | 7/18                   | 0.029 J                   | 0.44                      | 0.184                     | NA             |
| Acenaphthylene                 | 208-96-8   | 8/18                   | 0.029 J                   | 0.16 J                    | 0.155                     | NA             |
| Anthracene                     | 120-12-7   | 10/18                  | 0.026 J                   | 1.1                       | 0.275                     | NA             |
| Benzo(a)anthracene             | 56-55-3    | 15/18                  | 0.027 J                   | 2.6                       | 0.472                     | NA             |
| Benzo(a)pyrene                 | 50-32-8    | 15/18                  | 0.026 J                   | 2.4                       | 0.419                     | NA             |
| Benzo(b)fluoranthene           | 205-99-2   | 15/18                  | 0.039 J                   | 4.8                       | 0.715                     | NA             |
| Benzo(g,h,i)perylene           | 191-24-2   | 11/18                  | 0.031 J                   | 0.69                      | 0.223                     | NA             |
| Benzo(k)fluoranthene           | 207-08-9   | 14/18                  | 0.027 J                   | 1.4                       | 0.275                     | NA             |
| Benzoic Acid                   | 65-85-0    | 4/18                   | 0.39 J                    | 0.57 J                    | 0.721                     | NA             |
| Bis(2-Ethylhexyl)phthalate     | 117-81-7   | 7/18                   | 0.1 J                     | 1.7                       | 0.519                     | NA             |
| Carbazole                      | 86-74-8    | 9/18                   | 0.034 J                   | 0.61                      | 0.197                     | NA             |
| Chrysene                       | 218-01-9   | 14/18                  | 0.049 J                   | 2.7                       | 0.479                     | NA             |
| Dibenzo(a,h)anthracene         | 53-70-3    | 7/18                   | 0.055 J                   | 0.28 J                    | 0.176                     | NA             |
| Dibenzofuran                   | 132-64-9   | 10/18                  | 0.027 J                   | 0.33 J                    | 0.1715                    | NA             |
| Diethyl Phthalate              | 84-66-2    | 2/18                   | 0.069 J                   | 0.14 J                    | 0.196                     | NA             |
| Di-n-Butyl Phthalate           | 84-74-2    | 17/18                  | 0.082 J                   | 0.47                      | 0.170                     | NA             |
| Fluoranthene                   | 206-44-0   | 16/18                  | 0.04 J                    | 4.3                       | 0.877                     | NA             |
| Fluorene                       | 86-73-7    | 8/18                   | 0.031 J                   | 0.47                      | 0.191                     | NA             |
| Indeno(1,2,3-cd)pyrene         | 193-39-5   | 11/18                  | 0.025 J                   | 0.81                      | 0.233                     | NA             |
| Isophorone                     | 78-59-1    | 6/18                   | 0.051 J                   | 0.2 J                     | 0.179                     | NA             |
| Naphthalene                    | 91-20-3    | 11/18                  | 0.028 J                   | 0.33 J                    | 0.184                     | NA             |

# Table 4-3. Screening for SRCs in surface soil samples (ISM) data collected during the 2003 Removal Action (continued).

| SKU?    | SKC Justification |
|---------|-------------------|
| Yes     | Above BSV         |
|         |                   |
| Yes     | Detected organic  |
| <br>Yes | Detected organic  |
| Yes     | Detected organic  |
| Yes     | Detected organic  |
| Yes     | Detected organic  |

| Table 4-3. So | creening for SRC | s in surface soil sample | s (ISM) data colle | cted during the 2003 | <b>Removal Action (continued).</b> |
|---------------|------------------|--------------------------|--------------------|----------------------|------------------------------------|
|---------------|------------------|--------------------------|--------------------|----------------------|------------------------------------|

| Analyte           | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification |
|-------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|----------------|------|-------------------|
| Pentachlorophenol | 87-86-5    | 2/18                   | 0.40 J                    | 0.52 J                    | 0.499                     | NA             | Yes  | Detected organic  |
| Phenanthrene      | 85-01-8    | 15/18                  | 0.026 J                   | 3.4                       | 0.611                     | NA             | Yes  | Detected organic  |
| Pyrene            | 129-00-0   | 15/18                  | 0.035 J                   | 4                         | 0.683                     | NA             | Yes  | Detected organic  |
| Pesticides        |            |                        |                           |                           |                           |                |      |                   |
| 4,4'-DDD          | 72-54-8    | 2/2                    | 0.0014                    | 0.0023                    | 0.002                     | NA             | Yes  | Detected organic  |
| 4,4'-DDT          | 50-29-3    | 2/2                    | 0.0015                    | 0.0017                    | 0.002                     | NA             | Yes  | Detected organic  |
| alpha-Chlordane   | 5103-71-9  | 1/2                    | 0.0015                    | 0.0015                    | 0.002                     | NA             | Yes  | Detected organic  |
| Heptachlor        | 76-44-8    | 2/2                    | 0.001                     | 0.0081                    | 0.005                     | NA             | Yes  | Detected organic  |
| Lindane           | 58-89-9    | 1/2                    | 0.0013                    | 0.0013                    | 0.001                     | NA             | Yes  | Detected organic  |
| Methoxychlor      | 72-43-5    | 1/2                    | 0.0016                    | 0.0016                    | 0.001                     | NA             | Yes  | Detected organic  |

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

ISM denotes incremental sampling method.

J denotes the reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

SRC denotes site-related contaminant.

|                     | Station ID:       | SCss-001         | SCss-002         | SCss-003         | SCss-004         | SCss-005         | SCss-006         | SCss-007         | SCss-008         | SCss-009         |
|---------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                     | Sample ID:        | SCss-001-0001-SO | SCss-002-0001-SO | SCss-003-0001-SO | SCss-004-0001-SO | SCss-005-0001-SO | SCss-006-0001-SO | SCss-007-0001-SO | SCss-008-0001-SO | SCss-009-0001-SO |
|                     | Sample Date:      | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/9/2003         | 9/10/2003        |
|                     | Depth (feet bgs): | 0–1              | 0–1              | 0-1              | 0–1              | 0–1              | 0–1              | 0-1              | 0–1              | 0–1              |
|                     | Parameters:       | metals, asbestos |
| Detected<br>Analyte | BSV               |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Inorganics (m       | g/kg)             |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Aluminum            | 17,700            | 10,000           | 11,000           | 10,000           | 9,200            | 15,000           | 17,000           | 9,300            | 9,500            | 7,800            |
| Antimony            | 0.96              | 0.61             | <0.4 U           | <0.36 U          | 1.6              | 25               | 2.5              | 11               | 1.6              | 0.12             |
| Arsenic             | 15.4              | 10               | 13               | 9.2              | 8.4              | 30               | 49               | 38               | 100              | 10               |
| Barium              | 88.4              | 74               | 54               | 61               | 230              | 1,600            | 470              | 800              | 170              | 56               |
| Beryllium           | 0.88              | 0.56             | 0.38             | 0.44             | 0.55             | 1.1              | 1.2              | 0.78             | 1                | 0.33             |
| Cadmium             | 0                 | 0.6              | 0.36             | 0.26             | 15               | 40               | 7.2              | 18               | 3.3              | 0.14             |
| Calcium             | 15,800            | 3,500            | 4,000            | 4,500            | 12,000           | 24,000           | 38,000           | 8,700            | 4,700            | 1,800            |
| Chromium            | 17.4              | 21               | 16               | 18               | 45               | 230              | 60               | 140              | 41               | 11               |
| Cobalt              | 10.4              | 12               | 8.9              | 11               | 8.6              | 13               | 9.9              | 9.6              | 9.3              | 6.8              |
| Copper              | 17.7              | 32               | 19               | 20               | 99               | 330              | 110              | 270              | 110              | 12               |
| Iron                | 23,100            | 23,000           | 23,000           | 25,000           | 26,000           | 44,000           | 29,000           | 40,000           | 31,000           | 17,000           |
| Lead                | 26.1              | 50               | 19               | 25               | 390              | 1,600            | 250              | 450              | 80               | 13               |
| Magnesium           | 3,030             | 3,000            | 3,000            | 3,400            | 2,900            | 5,100            | 4,600            | 2,400            | 2,100            | 1,800            |
| Manganese           | 1,450             | 600              | 390              | 460              | 720              | 1,200            | 1,500            | 950              | 580              | 400              |
| Mercury             | 0.036             | 0.72             | 0.46             | 0.072            | 130              | 2.3              | 0.51             | 1.4              | 0.79             | 0.061            |
| Nickel              | 21.1              | 25               | 20               | 22               | 24               | 30               | 110              | 38               | 36               | 14               |
| Potassium           | 927               | 1,500            | 1,500            | 1,400            | 1,100            | 2,200            | 1,800            | 1,200            | 1,400            | 920              |
| Selenium            | 1.4               | <1.4 U           | <1.4 U           | <1.2 U           | <1.3 U           | <1.5 U           | 0.89             | 1.3              | 3.2              | 0.66             |
| Silver              | 0                 | 85               | 1.2              | <0.61 U          | 55               | 580              | 140              | 630              | 310              | <0.61 U          |
| Sodium              | 123               | 120              | 140 U            | <120 U           | 400              | 550              | 270              | 280              | 230              | <120 U           |
| Thallium            | 0                 | <0.28 U          | <0.26 U          | <0.24 U          | <0.26 U          | 0.3              | <0.25 U          | 0.58             | <0.26 U          | <0.23 U          |
| Vanadium            | 31.1              | 17               | 19               | 18               | 16               | 19               | 20               | 17               | 22               | 13               |
| Zinc                | 61.8              | 150              | 110              | 100              | 520              | 620              | 170              | 360              | 250              | 66               |
| Asbestos (f/cc)     |                   | Γ                | Γ                |                  | Γ                | 1                | T                |                  | T                | Γ                |
| Asbestos            | NA                | NAD              |

| Table 4-4. Analyt | es detected in the con | nfirmatory (post remo | val) samples for surf | ace soil samples (discre | ete) taken during the 2003 | <b>Removal Action</b> . |
|-------------------|------------------------|-----------------------|-----------------------|--------------------------|----------------------------|-------------------------|
|-------------------|------------------------|-----------------------|-----------------------|--------------------------|----------------------------|-------------------------|

|                           | Station ID:       | SCss-010         | SCss-011         | SCss-012         | SCss-013         | SCss-014         | SCss-015         | SCss-016         | SCss-017                                        |
|---------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------------------------|
|                           | Sample ID:        | SCss-010-0001-SO | SCss-011-0001-SO | SCss-012-0001-SO | SCss-013-0001-SO | SCss-014-0001-SO | SCss-015-0001-SO | SCss-016-0001-SO | SCss-017-0001-SO                                |
|                           | Sample Date:      | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/15/2003                                       |
|                           | Depth (feet bgs): | 0–1              | 0–1              | 0–1              | 0–1              | 0–1              | 0-1              | 0–1              | 0-1                                             |
|                           | Parameters:       | metals, asbestos | explosives, propellants,                        |
| Detected Analyte          | BSV               |                  |                  |                  |                  |                  |                  |                  | metals, SVOCs, VOCs,<br>total cvanide, asbestos |
| Explosives/Propellants (m | g/kg)             |                  |                  |                  | 1                |                  |                  |                  |                                                 |
| 2,4,6-Trinitrotoluene     | NA                | NT               | <0.1 U                                          |
| 2,4-Dinitrotoluene        | NA                | NT               | <0.1 U                                          |
| 2,6-Dinitrotoluene        | NA                | NT               | <0.2 U                                          |
| Nitrocellulose            | NA                | NT               | 3.5                                             |
| Inorganics (mg/kg)        |                   |                  |                  |                  |                  |                  |                  |                  |                                                 |
| Aluminum                  | 17,700            | 8,500            | 12,000           | 11,000           | 14,000           | 12,000           | 5,700            | 12,000           | 13,000                                          |
| Antimony                  | 0.96              | <0.41 U          | 0.42             | <0.34 U          | 0.46             | <0.35 U          | <0.36 U          | <0.37 U          | 0.0037                                          |
| Arsenic                   | 15.4              | 13               | 10               | 21               | 12               | 2.5              | 9.8              | 10               | 8.6                                             |
| Barium                    | 88.4              | 58               | 70               | 64               | 72               | 72               | 34               | 57               | 200                                             |
| Beryllium                 | 0.88              | 0.6              | 0.41             | 0.5              | 0.6              | 0.32             | 0.22             | 0.31             | 0.53                                            |
| Cadmium                   | 0                 | 0.21             | 0.33             | <0.22 U          | <0.22 U          | <0.22 U          | <0.22 U          | <0.25 U          | 0.23                                            |
| Calcium                   | 15,800            | 4,900            | 14,000           | 2,100            | 2,300            | 2,400            | 1,700            | 3,100            | 2,200                                           |
| Chromium                  | 17.4              | 16               | 110              | 17               | 19               | 13               | 8.4              | 16               | 16                                              |
| Cobalt                    | 10.4              | 7.9              | 8.5              | 12               | 14               | 3.3              | 4.9              | 11               | 26                                              |
| Copper                    | 17.7              | 39               | 470              | 18               | 20               | 7.3              | 12               | 8.4              | 9.6                                             |
| Iron                      | 23,100            | 30,000           | 23,000           | 25,000           | 28,000           | 13,000           | 13,000           | 22,000           | 21,000                                          |
| Lead                      | 26.1              | 20               | 50               | 13               | 21               | 8                | 11               | 15               | 14                                              |
| Magnesium                 | 3,030             | 2,100            | 2,900            | 3,500            | 4,000            | 1,300            | 1,500            | 2,300            | 1,900                                           |
| Manganese                 | 1,450             | 510              | 580              | 240              | 380              | 90               | 270              | 340              | 4,800                                           |
| Mercury                   | 0.036             | 0.062            | 0.049            | 0.015            | 0.024            | 0.016            | 0.032            | 0.034            | 0.04                                            |
| Nickel                    | 21.1              | 18               | 53               | 26               | 28               | 9.4              | 11               | 14               | 19                                              |
| Potassium                 | 927               | 1,100            | 1,400            | 1,700            | 1,900            | 1,400            | 800              | 1,200            | 1,300                                           |
| Selenium                  | 1.4               | <1.3 U           | 0.57             | <1.1 U           | <1.1 U           | <1.1 U           | <1.1 U           | 0.53             | 0.89                                            |
| Silver                    | 0                 | <0.67 U          | 0.47             | <0.54 U          | <0.56 U          | <0.57 U          | <0.55 U          | <0.63 U          | 1                                               |
| Sodium                    | 123               | <130 U           | 140              | <110 U           | <110 U           | <110 U           | <110 U           | <130 U           | <120 U                                          |

# Table 4-4. Analytes detected in the confirmatory (post removal) samples for surface soil samples (discrete) taken during the 2003 Removal Action. (continued).

|                                | Station ID:       | SCss-010         | SCss-011         | SCss-012         | SCss-013         | SCss-014         | SCss-015         | SCss-016         | SCss-017                                        |
|--------------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------------------------|
|                                | Sample ID:        | SCss-010-0001-SO | SCss-011-0001-SO | SCss-012-0001-SO | SCss-013-0001-SO | SCss-014-0001-SO | SCss-015-0001-SO | SCss-016-0001-SO | SCss-017-0001-SO                                |
|                                | Sample Date:      | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/10/2003        | 9/15/2003                                       |
|                                | Depth (feet bgs): | 0–1              | 0–1              | 0–1              | 0–1              | 0–1              | 0–1              | 0–1              | 0–1                                             |
|                                | Parameters:       | metals, asbestos | explosives, propellants,                        |
| Detected Analyte               | BSV               |                  |                  |                  |                  |                  |                  |                  | metals, SVOCs, VOCs,<br>total cyanide, asbestos |
| Thallium                       | 0                 | <0.27 U          | <0.23 U          | <0.23 U          | <0.24 U          | <0.23 U          | <0.23 U          | <0.24 U          | <0.22 U                                         |
| Vanadium                       | 31.1              | 16               | 19               | 17               | 22               | 17               | 10               | 25               | 23                                              |
| Zinc                           | 61.8              | 100              | 160              | 58               | 68               | 35               | 49               | 55               | 58                                              |
| Semivolatile Organic Com       | pounds (mg/kg)    |                  |                  |                  |                  |                  |                  |                  |                                                 |
| Phenanthrene                   | NA                | NT               | 0.089                                           |
| Fluoranthene                   | NA                | NT               | 0.52                                            |
| Pyrene                         | NA                | NT               | 0.53                                            |
| Benzo(a)anthracene             | NA                | NT               | 0.31                                            |
| Chrysene                       | NA                | NT               | 0.29                                            |
| Bis(2-Ethylhexyl)phthalat<br>e | NA                | NT               | 0.09 J                                          |
| Benzo(b)fluoranthene           | NA                | NT               | 0.3                                             |
| Benzo(k)fluoranthene           | NA                | NT               | 0.33                                            |
| Benzo(a)pyrene                 | NA                | NT               | 0.29                                            |
| Indeno(1,2,3-cd)pyrene         | NA                | NT               | 0.13                                            |
| Dibenzo(a,h)anthracene         | NA                | NT               | 0.069                                           |
| Benzo(g,h,i)perylene           | NA                | NT               | 0.13                                            |
| Asbestos (f/cc)                |                   |                  |                  |                  |                  |                  |                  |                  |                                                 |
| Asbestos                       | NA                | NAD                                             |

# Table 4-4. Analytes detected in the confirmatory (post removal) samples for surface soil samples (discrete) taken during the 2003 Removal Action. (continued).

|                 | Station ID:       | SCss-018         | SCss-019         | SCss-020         | SCss-021         | SCss-022         | SCss-023          | SCss-024         | SCss-025         |
|-----------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|
|                 | Sample ID:        | SCss-018-0001-SO | SCss-019-0001-SO | SCss-020-0001-SO | SCss-021-0001-SO | SCss-022-0001-SO | SCss-023-0001-SO  | SCss-024-0001-SO | SCss-025-0001-SO |
|                 | Sample Date:      | 9/15/2003        | 9/15/2003        | 9/15/2003        | 9/17/2003        | 9/17/2003        | 9/15/2003         | 9/17/2003        | 9/17/2003        |
|                 | Depth (feet bgs): | 0–1              | 0–1              | 0–1              | 0–1              | 0–1              | 0–1               | 0–1              | 0–1              |
| Detected        | Parameters:       | metals, asbestos | metals, total     | metals, asbestos | metals, asbestos |
| Analyte         | BSV               |                  |                  |                  |                  |                  | cyanide, asbestos |                  |                  |
| Inorganics (m   | g/kg)             |                  |                  |                  |                  |                  |                   |                  |                  |
| Aluminum        | 17,700            | 13,000           | 13,000           | 11,000           | 10,000           | 8,300            | 14,000            | 9,100            | 8600             |
| Antimony        | 0.96              | <0.34 U          | 0.0059           | <0.34 U          | <0.72 U          | <0.66 U          | 0.064             | <0.71 U          | <0.69 U          |
| Arsenic         | 15.4              | 13               | 16               | 13               | 12               | 8.5              | 17                | 13               | 15               |
| Barium          | 88.4              | 69               | 62               | 45               | 33               | 40               | 55                | 46               | 41               |
| Beryllium       | 0.88              | 0.58             | 0.59             | 0.37             | 0.42             | 0.5              | 0.65              | 0.52             | 0.45             |
| Cadmium         | 0                 | <0.22 U          | <0.22 U          | <0.21 U          | <0.24 U          | 0.22             | <0.22 U           | <0.23 U          | <0.23 U          |
| Calcium         | 15,800            | 2,500            | 2,200            | 340              | 390              | 1,200            | 1,900             | 1,000            | 1,000            |
| Chromium        | 17.4              | 18               | 19               | 16               | 14               | 13               | 20                | 15               | 13               |
| Cobalt          | 10.4              | 13               | 12               | 9.5              | 9.7              | 11               | 13                | 12               | 11               |
| Copper          | 17.7              | 20               | 19               | 14               | 14               | 16               | 20                | 17               | 15               |
| Iron            | 23,100            | 27,000           | 29,000           | 23,000           | 22,000           | 23,000           | 32,000            | 25,000           | 21,000           |
| Lead            | 26.1              | 15               | 12               | 14               | 14               | 20               | 11                | 20               | 14               |
| Magnesium       | 3,030             | 4,200            | 4,100            | 2,800            | 2,600            | 3,200            | 4,700             | 3,500            | 2,900            |
| Manganese       | 1,450             | 310              | 300              | 270              | 240              | 240              | 300               | 310              | 250              |
| Mercury         | 0.036             | <0.02 U          | 0.021            | 0.026            | 0.045            | 0.051            | 0.027             | 0.021            | 0.017            |
| Nickel          | 21.1              | 29               | 28               | 20               | 18               | 22               | 32                | 26               | 20               |
| Potassium       | 927               | 1,900            | 1,800            | 1,300            | 770              | 1,200            | 2,100             | 1,000            | 980              |
| Selenium        | 1.4               | <1.1 U           | <1.1 U           | <1.1 U           | <1.2 U           | <1.1 U           | <1.1 U            | <1.2 U           | <1.2 U           |
| Silver          | 0                 | <0.56 U          | <0.55 U          | <0.53 U          | <0.6 U           | <0.56 U          | <0.54 U           | <0.58 U          | <0.58 U          |
| Thallium        | 0                 | <0.23 U          | <0.22 U          | <1.1 U           | <0.24 U          | <0.22 U          | <0.22 U           | <0.24 U          | <0.23 U          |
| Vanadium        | 31.1              | 20               | 20               | 18               | 20               | 17               | 21                | 18               | 18               |
| Zinc            | 61.8              | 65               | 62               | 57               | 57               | 69               | 68                | 71               | 61               |
| Asbestos (f/cc) | 1                 | r                |                  |                  |                  | 1                |                   |                  |                  |
| Asbestos        | NA                | NAD              | NAD              | NAD              | NAD              | NAD              | NAD               | NAD              | NAD              |

| Table 4-4. Analytes detected in the co | onfirmatory (post removal) samples fo | r surface soil samples (discrete) taken during t | the 2003 Removal Action. (continued). |
|----------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|
|----------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|

| Table 4-4. Analytes detected in the cor | nfirmatory (post removal) samples for | surface soil samples (discrete) taken | during the 2003 Removal Action. (continued). |
|-----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------|
|-----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------|

|                       | Station ID:       | SCss-026         | SCss-027         | SCss-028         | SCss-029                                                        | SCss-030         | SCss-CONT1         | SCss-CONT2         | SCss-CONT3         |
|-----------------------|-------------------|------------------|------------------|------------------|-----------------------------------------------------------------|------------------|--------------------|--------------------|--------------------|
|                       | Sample ID:        | SCss-026-0001-SO | SCss-027-0001-SO | SCss-028-0001-SO | SCss-029-0001-SO                                                | SCss-030-0001-SO | SCss-CONT1-0001-SO | SCss-CONT2-0001-SO | SCss-CONT3-0001-SO |
|                       | Sample Date:      | 9/17/2003        | 9/17/2003        | 9/17/2003        | 9/17/2003                                                       | 9/17/2003        | 9/15/2003          | 9/22/2003          | 9/22/2003          |
|                       | Depth (feet bgs): | 0–1              | 0–1              | 0–1              | 0–1                                                             | 0–1              | 0-1                | 0-1                | 0–1                |
|                       | Parameters:       | metals, asbestos | metals, asbestos | metals, asbestos | explosives,                                                     | metals, asbestos | metals, asbestos   | metals, asbestos   | metals, asbestos   |
| Detected<br>Analyte   | BSV               |                  |                  |                  | propellants, metals,<br>SVOCs, VOCs,<br>total cyanide, asbestos |                  |                    |                    |                    |
| Explosives/Propellant | s (mg/kg)         |                  | _                |                  |                                                                 |                  |                    |                    | -                  |
| 2,4,6-Trinitrotoluene | NA                | NT               | NT               | NT               | <0.1 U                                                          | NT               | NT                 | <0.5 U             | 0.039 J            |
| 2,4-Dinitrotoluene    | NA                | NT               | NT               | NT               | 0.037 J                                                         | NT               | NT                 | <0.1 U             | <0.1 U             |
| 2,6-Dinitrotoluene    | NA                | NT               | NT               | NT               | 0.170 J                                                         | NT               | NT                 | <0.2 U             | <0.2 U             |
| Nitrocellulose        | NA                | NT               | NT               | NT               | 5                                                               | NT               | NT                 | NT                 | NT                 |
| Inorganics (mg/kg)    |                   |                  |                  |                  |                                                                 |                  |                    |                    |                    |
| Aluminum              | 17,700            | 10,000           | 7,100            | 9,200            | 9,100                                                           | 8,300            | 8,600              | NT                 | NT                 |
| Antimony              | 0.96              | <0.72 U          | <0.72 U          | <0.73 U          | <0.74 U                                                         | <0.72 U          | 0.31               | NT                 | NT                 |
| Arsenic               | 15.4              | 11               | 8.2              | 12               | 15                                                              | 11               | 16                 | NT                 | NT                 |
| Barium                | 88.4              | 69               | 30               | 52               | 47                                                              | 44               | 91                 | NT                 | NT                 |
| Beryllium             | 0.88              | 0.6              | 0.30             | 0.45             | 0.5                                                             | 0.47             | 0.30               | NT                 | NT                 |
| Calcium               | 15,800            | 2,200            | 740              | 1,200            | 1,300                                                           | 1,700            | 1,700              | NT                 | NT                 |
| Chromium              | 17.4              | 15               | 9.8              | 13               | 14                                                              | 12               | 21                 | NT                 | NT                 |
| Cobalt                | 10.4              | 13               | 5.3              | 11               | 13                                                              | 13               | 6.4                | NT                 | NT                 |
| Copper                | 17.7              | 16               | 7.6              | 12               | 14                                                              | 13               | 28                 | NT                 | NT                 |
| Iron                  | 23,100            | 25,000           | 15,000           | 23,000           | 22,000                                                          | 19,000           | 28,000             | NT                 | NT                 |
| Lead                  | 26.1              | 18               | 17               | 16               | 20                                                              | 17               | 19                 | NT                 | NT                 |
| Magnesium             | 3,030             | 3,400            | 1,400            | 2,800            | 2,900                                                           | 2,300            | 2,200              | NT                 | NT                 |
| Manganese             | 1,450             | 330              | 220              | 340              | 310                                                             | 270              | 98                 | NT                 | NT                 |
| Mercury               | 0.036             | 0.016            | 0.039            | 0.031            | 0.026                                                           | 0.032            | 0.033              | NT                 | NT                 |
| Nickel                | 21.1              | 28               | 9.2              | 19               | 22                                                              | 19               | 22                 | NT                 | NT                 |
| Potassium             | 927               | 1,100            | 630              | 900              | 920                                                             | 980              | 2,400              | NT                 | NT                 |
| Vanadium              | 31.1              | 19               | 17               | 20               | 18                                                              | 17               | 14                 | NT                 | NT                 |
| Zinc                  | 61.8              | 65               | 41               | 57               | 62                                                              | 59               | 45                 | NT                 | NT                 |

### Table 4-4. Analytes detected in the confirmatory (post removal) samples for surface soil samples (discrete) taken during the 2003 Removal Action. (continued).

|                            | Station ID:       | SCss-026         | SCss-027         | SCss-028         | SCss-029                             | SCss-030         | SCss-CONT1         | SCss-CONT2         | SCss-CONT3         |
|----------------------------|-------------------|------------------|------------------|------------------|--------------------------------------|------------------|--------------------|--------------------|--------------------|
|                            | Sample ID:        | SCss-026-0001-SO | SCss-027-0001-SO | SCss-028-0001-SO | SCss-029-0001-SO                     | SCss-030-0001-SO | SCss-CONT1-0001-SO | SCss-CONT2-0001-SO | SCss-CONT3-0001-SO |
|                            | Sample Date:      | 9/17/2003        | 9/17/2003        | 9/17/2003        | 9/17/2003                            | 9/17/2003        | 9/15/2003          | 9/22/2003          | 9/22/2003          |
|                            | Depth (feet bgs): | 0–1              | 0–1              | 0–1              | 0–1                                  | 0–1              | 0–1                | 0–1                | 0–1                |
|                            | Parameters:       | metals           | metals           | metals           | explosives,                          | metals           | metals             | explosives         | explosives         |
| Detected                   |                   |                  |                  |                  | propellants, metals,<br>SVOCs, VOCs, |                  |                    |                    |                    |
| Analyte                    | BSV               |                  |                  |                  | total cyanide                        |                  |                    |                    |                    |
| Volatile Organic Compound  | ls (mg/kg)        |                  | -                | -                | -                                    |                  |                    |                    |                    |
| Chloroethane               | NA                | NT               | NT               | NT               | 0.091 J                              | NT               | NT                 | NT                 | NT                 |
| Semivolatile Organic Comp  | ounds (mg/kg)     |                  | _                |                  |                                      |                  |                    |                    |                    |
| Fluoranthene               | NA                | NT               | NT               | NT               | 0.0098 J                             | NT               | NT                 | NT                 | NT                 |
| Benzo(a)anthracene         | NA                | NT               | NT               | NT               | 0.0044 J                             | NT               | NT                 | NT                 | NT                 |
| Chrysene                   | NA                | NT               | NT               | NT               | 0.0046 J                             | NT               | NT                 | NT                 | NT                 |
| Bis(2-Ethylhexyl)phthalate | NA                | NT               | NT               | NT               | 0.022 J                              | NT               | NT                 | NT                 | NT                 |
| Benzo(b)fluoranthene       | NA                | NT               | NT               | NT               | 0.0051 J                             | NT               | NT                 | NT                 | NT                 |
| Benzo(k)fluoranthene       | NA                | NT               | NT               | NT               | 0.0054 J                             | NT               | NT                 | NT                 | NT                 |
| Benzo(a)pyrene             | NA                | NT               | NT               | NT               | 0.0047 J                             | NT               | NT                 | NT                 | NT                 |
| Asbestos (f/cc)            |                   |                  |                  |                  |                                      |                  |                    |                    |                    |
| Asbestos                   |                   | NAD              | NAD              | NAD              | NAD                                  | NAD              | NAD                | NAD                | NAD                |

< denotes less than

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010).

Highlighted box denotes concentration is greater than the former RVAAP background value.

bgs denotes below ground surface.

BSV denotes background screening value

*f/cc denotes fibers per cubic centimeter.* 

ID denotes identification.

J denotes result is less than the reporting limit, but greater than or equal to the method detection limit.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

NAD denotes no asbestos detected.

NT denotes not tested.

RVAAP denotes former Ravenna Army Ammunition Plant.

SVOC denotes semivolatile organic compound.

U denotes analyte was not detected above the method detection limit.

VOC denotes volatile organic compound.

|                       |                   | 1                                                           | 8                   |                     |                         | 1                   |                     | 8 8                 |                         |
|-----------------------|-------------------|-------------------------------------------------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|-------------------------|
|                       | Station ID:       | SCss-057                                                    | SCss-058            | SCss-059            | SCss-060                | SCss-061            | SCss-062            | SCss-063            | SCss-064                |
|                       | Sample ID:        | SCss-057M-0001-SO                                           | SCss-058M-0001-SO   | SCss-059M-0001-SO   | SCss-060M-0001-SO       | SCss-061M-0001-SO   | SCss-062M-0001-SO   | SCss-063M-0001-SO   | SCss-064M-0001-SO       |
|                       | Sample Date:      | 9/24/2010                                                   | 9/23/2010           | 9/23/2010           | 9/23/2010               | 9/23/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010               |
|                       | Depth (feet bgs): | 0–1                                                         | 0–1                 | 0-1                 | 0-1                     | 0–1                 | 0–1                 | 0–1                 | 0–1                     |
|                       | Parameters:       | explosives, propellants,                                    | explosives, metals, | explosives, metals, | explosives, metals,     | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,     |
| Detected<br>Analyte   | BSV               | SVOCs, pesticides, PCBs,<br>total cyanide, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> |
| Explosives/Propellant | ts (mg/kg)        |                                                             |                     |                     |                         |                     |                     |                     |                         |
| 2,4,6-Trinitrotoluene | NA                | <0.089 U                                                    | 0.26 J              | <0.089 U            | 0.09 U                  | <0.09 U             | <0.09 U             | <0.09 U             | <0.09 U                 |
| Nitroguanidine        | NA                | 0.64                                                        | NT                  | NT                  | NT                      | NT                  | NT                  | NT                  | NT                      |
| Metals (mg/kg)        |                   |                                                             |                     |                     |                         |                     |                     |                     |                         |
| Aluminum              | 17,700            | 12,800                                                      | 10,400              | 12,200              | 9,170                   | 9,550               | 10,600              | 11,100              | 16,700                  |
| Antimony              | 0.96              | <1.6 UJ                                                     | 3.1                 | <0.43 U             | 1.5                     | 17.1                | 3.7                 | 2.8                 | 0.75                    |
| Arsenic               | 15.4              | 8.3 J                                                       | 4.5                 | 10.4                | 13.4                    | 21.2                | 36.6                | 16.2                | 11.9                    |
| Barium                | 88.4              | 67.6                                                        | 127                 | 66.8                | 163                     | 764                 | 226                 | 180                 | 128                     |
| Beryllium             | 0.88              | 0.71                                                        | 0.66                | 0.41                | 0.58                    | 0.66                | 1.1                 | 1                   | 0.64                    |
| Cadmium               | 0                 | 0.41 J                                                      | 1.9                 | <0.032 U            | 3.6                     | 12.9                | 2.3                 | 2.8                 | 0.69                    |
| Calcium               | 15,800            | 4,880                                                       | 21,500              | 32,500              | 17,900                  | 11,900              | 15,300              | 10,400              | 13,900                  |
| Chromium              | 17.4              | 174                                                         | 143                 | 30.9                | 33.5                    | 77.6                | 106                 | 39.9                | 187                     |
| Cobalt                | 10.4              | 13.2                                                        | 6.7                 | 12.2                | 7.4                     | 10                  | 6.7                 | 8.2                 | 8.3                     |
| Copper                | 17.7              | 25.3                                                        | 33.7                | 17.8                | 42.8                    | 188                 | 63.7                | 95.5                | 726                     |
| Iron                  | 23,100            | 30,000                                                      | 27,100              | 28,200              | 23,000                  | 34,800              | 25,200              | 30,200              | 26,900                  |
| Lead                  | 26.1              | 12.1 J                                                      | 139                 | 10.8                | 134                     | 405                 | 141                 | 109                 | 131                     |
| Magnesium             | 3,030             | 4,410                                                       | 3,930               | 8,130               | 4,340                   | 3,500               | 2,650               | 2,900               | 4,380                   |
| Manganese             | 1,450             | 421                                                         | 729                 | 453                 | 705                     | 876                 | 765                 | 707                 | 674                     |
| Mercury               | 0.036             | 15.1                                                        | 11.1                | 24.6                | 8.8                     | 2.7                 | 0.5                 | 0.55                | 0.078                   |
| Nickel                | 21.1              | 34.6                                                        | 21.7                | 26.4                | 21                      | 30.7                | 37.6                | 27.6                | 48.2                    |
| Potassium             | 927               | 1,540                                                       | 1,180               | 1,030               | 942                     | 1,020               | 1,120               | 810                 | 1,480                   |
| Selenium              | 1.4               | <1.4 UJ                                                     | 0.83 J              | <0.37 U             | 0.63 J                  | 0.4 J               | 3.1                 | 1.9                 | 0.48                    |
| Silver                | 0                 | 12.9                                                        | 3.8                 | <0.091 U            | 47.9 J                  | 256                 | 145                 | 120                 | 0.95                    |
| Sodium                | 123               | 51.8                                                        | 99.6                | 61                  | 55.4                    | 108                 | 107                 | 70.6                | 150                     |

# Table 4-5. Analytes detected in surface soil samples (ISM) collected during the RI with the analytes that were also detected in the surface soil samples from the 2003 Removal Action highlighted.

|                            | Station ID:       | SCss-057                                     | SCss-058            | SCss-059            | SCss-060                | SCss-061            | SCss-062            | SCss-063            | SCss-064                |
|----------------------------|-------------------|----------------------------------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|-------------------------|
|                            | Sample ID:        | SCss-057M-0001-SO                            | SCss-058M-0001-SO   | SCss-059M-0001-SO   | SCss-060M-0001-SO       | SCss-061M-0001-SO   | SCss-062M-0001-SO   | SCss-063M-0001-SO   | SCss-064M-0001-SO       |
|                            | Sample Date:      | 9/24/2010                                    | 9/23/2010           | 9/23/2010           | 9/23/2010               | 9/23/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010               |
|                            | Depth (feet bgs): | 0–1                                          | 0–1                 | 0–1                 | 0–1                     | 0-1                 | 0–1                 | 0–1                 | 0–1                     |
|                            | Parameters:       | explosives, propellants,                     | explosives, metals, | explosives, metals, | explosives, metals,     | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,     |
| Detected<br>Analyte        | BSV               | SVOCs, pesticides, PCBs,<br>Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> |
| Thallium                   | 0                 | 3.2 J                                        | 1.7                 | 1.8                 | 1.7                     | 2.4                 | 1.4                 | 2.7                 | 1.1                     |
| Vanadium                   | 31.1              | 20.9                                         | 14.8                | 17.6 J              | 16.3 J                  | 21.6 J              | 15.7                | 18.3                | 23.8                    |
| Zinc                       | 61.8              | 94                                           | 269                 | 59.9                | 234                     | 373                 | 111                 | 303                 | 235                     |
| Semivolatile Organic Compo | unds (mg/kg)      |                                              |                     |                     |                         |                     |                     | -                   |                         |
| 1,2,4-Trichlorobenzene     | NA                | <0.021 U                                     | <0.021 U            | <0.022 U            | <0.023 U                | 0.027 J             | <0.022 U            | <0.022 U            | <0.022 U                |
| 1,2-Dichlorobenzene        | NA                | 0.028 J                                      | <0.024 U            | 0.028 J             | 0.078 J                 | 0.11 J              | 0.041 J             | 0.05 J              | <0.025 U                |
| 1,3-Dichlorobenzene        | NA                | <0.02 U                                      | <0.02 U             | <0.021 U            | <0.021 U                | 0.031 J             | <0.021 U            | <0.021 U            | <0.021 U                |
| 1,4-Dichlorobenzene        | NA                | <0.019 U                                     | 0.022 J             | 0.058 J             | 0.21 J                  | 0.27 J              | 0.041 J             | 0.047 J             | <0.02 U                 |
| 2-Methylnaphthalene        | NA                | <0.025 U                                     | 0.37 J              | 0.23 J              | 0.35 J                  | 0.48                | 0.41                | 0.48                | 0.096 J                 |
| Acenaphthene               | NA                | <0.024 U                                     | 0.043 J             | 0.44                | 0.34 J                  | 0.074 J             | <0.025 U            | 0.047 J             | <0.025 U                |
| Acenaphthylene             | NA                | <0.024 U                                     | 0.16 J              | 0.056 J             | 0.13 J                  | 0.087 J             | <0.025 U            | 0.033 J             | <0.025 U                |
| Anthracene                 | NA                | <0.024 U                                     | 0.3 J               | 1.1                 | 1.1                     | 0.32 J              | 0.056 J             | 0.16 J              | 0.026 J                 |
| Benzo(a)anthracene         | NA                | 0.046 J                                      | 0.74                | 1.8                 | 2.6                     | 0.89                | 0.18 J              | 0.59                | 0.078 J                 |
| Benzo(a)pyrene             | NA                | 0.045 J                                      | 0.59                | 1.5                 | 2.4                     | 0.76                | 0.17 J              | 0.53                | 0.078 J                 |
| Benzo(b)fluoranthene       | NA                | 0.072 J                                      | 1                   | 2.3                 | 4.8                     | 1.7                 | 0.33 J              | 0.77                | 0.12 J                  |
| Benzo(g,h,i)perylene       | NA                | <0.022 U                                     | 0.17 J              | 0.51                | 0.69                    | 0.24 J              | 0.13 J              | 0.36 J              | 0.066 J                 |
| Benzo(k)fluoranthene       | NA                | 0.042 J                                      | 0.33 J              | 0.68                | 1.4                     | 0.76                | 0.13 J              | 0.3 J               | 0.045 J                 |
| Benzoic Acid               | NA                | <0.3 U                                       | <0.3 U              | 0.45 J              | 0.41 J                  | 0.39 J              | 0.3 U               | <0.3 U              | <0.3 U                  |
| Bis(2-Ethylhexyl)phthalate | NA                | <0.089 U                                     | <0.089 U            | 0.11 J              | <0.093 U                | <0.093 U            | <0.09 U             | <0.089 U            | <0.09 U                 |
| Carbazole                  | NA                | <0.029 U                                     | 0.078 J             | 0.61                | 0.59                    | 0.12 J              | 0.045 J             | 0.1 J               | <0.029 U                |
| Chrysene                   | NA                | 0.049 J                                      | 0.7                 | 1.6                 | 2.7                     | 0.97                | 0.22 J              | 0.57                | 0.1 J                   |
| Dibenzo(a,h)anthracene     | NA                | <0.022 U                                     | 0.075 J             | 0.17 J              | 0.28 J                  | 0.11 J              | <0.023 U            | 0.097 J             | <0.023 U                |
| Dibenzofuran               | NA                | <0.024 U                                     | 0.14 J              | 0.3 J               | 0.33 J                  | 0.16 J              | 0.089 J             | 0.12 J              | 0.027 J                 |
| Di-n-Butyl Phthalate       | NA                | 0.17 J                                       | 0.12 J              | 0.18 J              | 0.47                    | 0.3 J               | 0.14 J              | 0.22 J              | 0.12 J                  |
| Fluoranthene               | NA                | 0.078 J                                      | 1.8                 | 3.8                 | 4.3                     | 1.4                 | 0.33 J              | 1.4                 | 0.17 J                  |

| Table 4-5. Analytes detected in surface soil samples (ISM) collecte | d during the RI with the analytes that were | e also detected in the surface soil samples from the 2003 Removal A |
|---------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
|---------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|

# Action highlighted (continued).

|                        | Station ID:       | SCss-057                                     | SCss-058            | SCss-059            | SCss-060                | SCss-061            | SCss-062            | SCss-063            | SCss-064                |
|------------------------|-------------------|----------------------------------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|-------------------------|
|                        | Sample ID:        | SCss-057M-0001-SO                            | SCss-058M-0001-SO   | SCss-059M-0001-SO   | SCss-060M-0001-SO       | SCss-061M-0001-SO   | SCss-062M-0001-SO   | SCss-063M-0001-SO   | SCss-064M-0001-SO       |
|                        | Sample Date:      | 9/24/2010                                    | 9/23/2010           | 9/23/2010           | 9/23/2010               | 9/23/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010               |
|                        | Depth (feet bgs): | 0–1                                          | 0–1                 | 0–1                 | 0–1                     | 0–1                 | 0–1                 | 0–1                 | 0–1                     |
|                        | Parameters:       | explosives, propellants,                     | explosives, metals, | explosives, metals, | explosives, metals,     | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,     |
| Detected<br>Analyte    | BSV               | SVOCs, pesticides, PCBs,<br>Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> |
| Fluorene               | NA                | <0.025 U                                     | 0.19 J              | 0.46                | 0.47                    | 0.079 J             | <0.026 U            | 0.051 J             | <0.026 U                |
| Indeno(1,2,3-cd)pyrene | NA                | <0.023 U                                     | 0.18 J              | 0.54                | 0.81                    | 0.27 J              | 0.11 J              | 0.33 J              | 0.055 J                 |
| Isophorone             | NA                | <0.051 U                                     | 0.11 J              | <0.053 U            | <0.054 U                | <0.053 U            | 0.13 J              | 0.2 J               | 0.13 J                  |
| Naphthalene            | NA                | <0.021 U                                     | 0.24 J              | 0.22 J              | 0.32 J                  | 0.31 J              | 0.25 J              | 0.33 J              | 0.063 J                 |
| Pentachlorophenol      | NA                | <0.24 UJ                                     | <0.24 U             | <0.25 U             | 0.52 J                  | 0.4 J               | <0.25 U             | <0.25 U             | <0.25 U                 |
| Phenanthrene           | NA                | 0.033 J                                      | 1.2                 | 3.4                 | 3.1                     | 0.69                | 0.29 J              | 0.74                | 0.16 J                  |
| Pyrene                 | NA                | 0.063 J                                      | 1.3                 | 3                   | 4                       | 1.5                 | 0.28 J              | 1                   | 0.16 J                  |
| Pesticides (mg/kg)     |                   |                                              |                     |                     |                         |                     |                     |                     |                         |
| 4,4'-DDD               | NA                | 0.0014 J                                     | NT                  | NT                  | NT                      | NT                  | NT                  | NT                  | NT                      |
| 4,4'-DDT               | NA                | 0.0015 J                                     | NT                  | NT                  | NT                      | NT                  | NT                  | NT                  | NT                      |
| Heptachlor             | NA                | 0.0081 J                                     | NT                  | NT                  | NT                      | NT                  | NT                  | NT                  | NT                      |

| Table 4-5. Analytes detected in surface | soil samples (ISM) collected | during the RI with | the analytes that were also | o detected in the surface soil samples from the 2003 Ren | noval A |
|-----------------------------------------|------------------------------|--------------------|-----------------------------|----------------------------------------------------------|---------|
|-----------------------------------------|------------------------------|--------------------|-----------------------------|----------------------------------------------------------|---------|

# Action highlighted (continued).

| Table 4-5. Analytes detected in surface set | oil samples (ISM) collected d | luring the RI with th | e analytes that were als | o detected in the surface soil samples from the 2 | 2003 Removal A |
|---------------------------------------------|-------------------------------|-----------------------|--------------------------|---------------------------------------------------|----------------|
|---------------------------------------------|-------------------------------|-----------------------|--------------------------|---------------------------------------------------|----------------|

|                                | Station ID:        | SCss-065                     | SCss-066                                       | SCss-067                     | SCss-068                     | SCss-069                     | SCss-072                     | SCss-073                     | SCss-074                     |
|--------------------------------|--------------------|------------------------------|------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                                | Sample ID:         | SCss-065M-0001-SO            | SCss-066M-0001-SO                              | SCss-067M-0001-SO            | SCss-068M-0001-SO            | SCss-069M-0001-SO            | SCss-072M-0001-SO            | SCss-073M-0001-SO            | SCss-074M-0001-SO            |
|                                | Sample Date:       | 9/22/2010                    | 9/22/2010                                      | 9/21/2010                    | 9/21/2010                    | 9/24/2010                    | 11/9/2010                    | 11/9/2010                    | 11/9/2010                    |
|                                | Depth (feet bgs):  | 0–1                          | 0–1                                            | 0–1                          | 0–1                          | 0–1                          | 0–1                          | 0–1                          | 0–1                          |
| Detected<br>Analyte            | Parameters:<br>BSV | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs, Cr <sup>+6</sup> | explosives, metals,<br>SVOCs |
| Explosives/Propellants (mg/kg) |                    |                              |                                                | <u> </u>                     |                              |                              |                              | I                            | I                            |
| 2,4,6-Trinitrotoluene          | NA                 | <0.09 U                      | <0.089 U                                       | <0.09 U                      | <0.09 U                      | 3.9                          | <0.09 U                      | <0.091 U                     | <0.09 U                      |
| 2-Amino-4,6-Dinitrotoluene     | NA                 | <0.05 U                      | <0.05 U                                        | <0.05 U                      | <0.05 U                      | 0.26 J                       | <0.05 U                      | <0.05 U                      | <0.05 U                      |
| Inorganics (mg/kg)             |                    |                              |                                                |                              |                              |                              |                              |                              | ·                            |
| Aluminum                       | 17,700             | 12,500                       | 13,000                                         | 10,700                       | 9,150                        | 26.1                         | 7,980                        | 9,480                        | 9,100                        |
| Antimony                       | 0.96               | <0.083 U                     | <0.082 U                                       | <0.082 U                     | <0.082 U                     | <0.16 U                      | 0.89                         | 2.9                          | 1.4                          |
| Arsenic                        | 15.4               | 10                           | 12.8                                           | 10                           | 11.2                         | <0.27 U                      | 14.5                         | 21.8                         | 18.3                         |
| Barium                         | 88.4               | 67.3                         | 58.8                                           | 48.5                         | 49.7                         | 1.5                          | 52.8                         | 94.3                         | 96.1                         |
| Beryllium                      | 0.88               | 0.57                         | 0.69                                           | 0.48                         | 0.41                         | <0.0082 U                    | 0.51                         | 0.77                         | 0.78                         |
| Cadmium                        | 0                  | 0.12                         | 0.41                                           | 0.071                        | 0.057                        | <0.012 U                     | 0.3                          | 0.63                         | 1.6                          |
| Calcium                        | 15,800             | 3,080                        | 2,810                                          | 1,410                        | 1,650                        | 26.5                         | 3,790                        | 10,300                       | 6,240                        |
| Chromium                       | 17.4               | 30.8                         | 38.6                                           | 24.7                         | 24.2                         | 0.26                         | 32 J                         | 130                          | 88.4                         |
| Cobalt                         | 10.4               | 9.3                          | 10.2                                           | 8.7                          | 7.6                          | <0.031 U                     | 9.9                          | 10.8                         | 19.7                         |
| Copper                         | 17.7               | 21.4                         | 16.5                                           | 11.8                         | 11                           | 0.49                         | 16.4                         | 24.3                         | 67                           |
| Iron                           | 23,100             | 27,400                       | 26,300                                         | 23,100                       | 22,500                       | 86.8                         | 22,600                       | 24,800                       | 25,400                       |
| Lead                           | 26.1               | 37                           | 37.1                                           | 35.5                         | 29.8                         | 0.88                         | 8.9                          | 50.3                         | 140                          |
| Magnesium                      | 3,030              | 3,570                        | 3,830                                          | 2,880                        | 2,320                        | 6.6                          | 2,970                        | 3,040                        | 2,540                        |
| Manganese                      | 1,450              | 451                          | 383                                            | 316                          | 395                          | 2.2                          | 356                          | 576                          | 471                          |
| Mercury                        | 0.036              | 0.029                        | 0.07                                           | 0.026                        | 0.031                        | 0.061                        | 0.063                        | 0.27                         | 0.13                         |

# ction highlighted (continued).

|                                  | Station ID:        | SCss-065                     | SCss-066                                       | SCss-067                     | SCss-068                     | SCss-069                     | SCss-072                     | SCss-073                     | SCss-074                     |
|----------------------------------|--------------------|------------------------------|------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                                  | Sample ID:         | SCss-065M-0001-SO            | SCss-066M-0001-SO                              | SCss-067M-0001-SO            | SCss-068M-0001-SO            | SCss-069M-0001-SO            | SCss-072M-0001-SO            | SCss-073M-0001-SO            | SCss-074M-0001-SO            |
|                                  | Sample Date:       | 9/22/2010                    | 9/22/2010                                      | 9/21/2010                    | 9/21/2010                    | 9/24/2010                    | 11/9/2010                    | 11/9/2010                    | 11/9/2010                    |
|                                  | Depth (feet bgs):  | 0–1                          | 0–1                                            | 0–1                          | 0–1                          | 0–1                          | 0–1                          | 0–1                          | 0–1                          |
| Detected<br>Analyte              | Parameters:<br>BSV | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs, Cr <sup>+6</sup> | explosives, metals,<br>SVOCs |
| Nickel                           | 21.1               | 22                           | 25.6                                           | 21.3                         | 20.9                         | 0.083 J                      | 21.7                         | 32.7                         | 25.9                         |
| Potassium                        | 927                | 1,120                        | 1,140                                          | 821                          | 693                          | 1,650                        | 940                          | 1,350                        | 1,130                        |
| Selenium                         | 1.4                | 0.13                         | <0.072 U                                       | 0.18 J                       | 0.24                         | 0.19 J                       | 1.6                          | 2.4                          | 0.98                         |
| Silver                           | 0                  | 1.3                          | <0.017 U                                       | <0.017 U                     | <0.017 U                     | 0.52                         | 2.7                          | 2                            | 0.69                         |
| Sodium                           | 123                | 36.5                         | 39.1                                           | 22.1                         | 20.5                         | 74                           | 45                           | 101                          | 83.8                         |
| Thallium                         | 0                  | 0.76                         | 0.72                                           | 0.97                         | 0.62                         | 1.1                          | <0.081 U                     | <0.082 U                     | 0.23 J                       |
| Vanadium                         | 31.1               | 18.6                         | 18.4                                           | 16.8                         | 14.8                         | <0.023 U                     | 14.2                         | 19.8                         | 19.2                         |
| Zinc                             | 61.8               | 68.8                         | 61.6                                           | 49.7                         | 48.2                         | 0.96                         | 54.4                         | 86.1                         | 147                          |
| Semivolatile Organic Compounds ( | ng/kg)             |                              |                                                |                              |                              |                              |                              |                              |                              |
| 1,2-Dichlorobenzene              | NA                 | <0.025 U                     | <0.025 U                                       | <0.025 U                     | <0.024 U                     | <0.025 U                     | <0.024 U                     | 0.039 J                      | <0.025 U                     |
| 2-Methylnaphthalene              | NA                 | <0.026 U                     | <0.026 U                                       | <0.026 U                     | <0.025 U                     | 0.064 J                      | <0.025 U                     | 0.24 J                       | 0.53                         |
| Acenaphthene                     | NA                 | <0.025 U                     | <0.025 U                                       | <0.025 U                     | <0.024 U                     | <0.064 U                     | <0.029 U                     | 0.035 J                      | 0.029 J                      |
| Acenaphthylene                   | NA                 | 0.11 J                       | <0.025 U                                       | <0.025 U                     | <0.024 U                     | <0.025 U                     | <0.024 U                     | 0.029 J                      | 0.042 J                      |
| Anthracene                       | NA                 | 0.23 J                       | <0.025 U                                       | <0.025 U                     | <0.024 U                     | <0.025 U                     | <0.024 U                     | 0.093 J                      | 0.07 J                       |
| Benzo(a)anthracene               | NA                 | 0.79                         | <0.026 U                                       | <0.026 U                     | <0.025 U                     | 0.062 J                      | 0.027 J                      | 0.37 J                       | 0.3 J                        |
| Benzo(a)pyrene                   | NA                 | 0.61                         | <0.024 U                                       | <0.024 U                     | <0.023 U                     | 0.054 J                      | 0.026 J                      | 0.35 J                       | 0.31 J                       |
| Benzo(b)fluoranthene             | NA                 | 1                            | <0.026 U                                       | <0.026 U                     | <0.025 U                     | 0.12 J                       | 0.039 J                      | 0.58                         | 0.51                         |
| Benzo(g,h,i)perylene             | NA                 | 0.3 J                        | <0.023 U                                       | <0.022 U                     | <0.022 U                     | <0.023 UJ                    | <0.022 U                     | 0.19 J                       | 0.15 J                       |
| Benzo(k)fluoranthene             | NA                 | 0.29 J                       | <0.026 U                                       | <0.026 U                     | <0.025 U                     | 0.047 J                      | <0.025 U                     | 0.2 J                        | 0.14 J                       |

# Action highlighted (continued).

|                            | Station ID:       | SCss-065            | SCss-066                | SCss-067            | SCss-068            | SCss-069            | SCss-072            | SCss-073            | SCss-074            |
|----------------------------|-------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                            | Sample ID:        | SCss-065M-0001-SO   | SCss-066M-0001-SO       | SCss-067M-0001-SO   | SCss-068M-0001-SO   | SCss-069M-0001-SO   | SCss-072M-0001-SO   | SCss-073M-0001-SO   | SCss-074M-0001-SO   |
|                            | Sample Date:      | 9/22/2010           | 9/22/2010               | 9/21/2010           | 9/21/2010           | 9/24/2010           | 11/9/2010           | 11/9/2010           | 11/9/2010           |
|                            | Depth (feet bgs): | 0–1                 | 0–1                     | 0–1                 | 0–1                 | 0–1                 | 0–1                 | 0–1                 | 0–1                 |
|                            | Parameters:       | explosives, metals, | explosives, metals,     | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, |
| Detected<br>Analyte        | BSV               | SVOCs               | SVOCs, Cr <sup>10</sup> | SVOCs               | Svocs               | SVOCs               | SVOCs               | Svocs               | SVOCs               |
| Benzoic Acid               | NA                | 0.57 J              | <0.3 U                  | <0.3 U              | <0.29 U             | <0.3 U              | <0.3 U              | <0.3 U              | <0.3 U              |
| Bis(2-Ethylhexyl)phthalate | NA                | <0.091 U            | <0.089 U                | <0.089 U            | 0.1 J               | <0.089 U            | 1.7                 | 0.19 J              | 0.49 J              |
| Carbazole                  | NA                | 0.034 J             | <0.029 U                | <0.029 U            | <0.028 U            | <0.029 U            | <0.028 U            | 0.058 J             | 0.057 J             |
| Chrysene                   | NA                | 0.76                | <0.026 U                | <0.026 U            | <0.025 U            | 0.061 J             | <0.025 U            | 0.4 J               | 0.34 J              |
| Dibenzofuran               | NA                | 0.037 J             | <0.025 U                | <0.025 U            | <0.024 U            | <0.025 U            | <0.024 U            | 0.072 J             | 0.11 J              |
| Diethyl Phthalate          | NA                | 0.66 U              | <0.67 U                 | <0.66 U             | <0.065 U            | <0.066 U            | 0.069 J             | <0.065 U            | <0.065 U            |
| Di-n-Butyl Phthalate       | NA                | 0.082 J             | <0.081 U                | 0.093 J             | 0.088 J             | 0.15 J              | 0.13 J              | 0.14 J              | 0.15 J              |
| Fluoranthene               | NA                | 1.7                 | 0.04 J                  | <0.027 U            | <0.026 U            | 0.14 J              | 0.046 J             | 0.76                | 0.64                |
| Fluorene                   | NA                | 0.059 J             | <0.026 U                | <0.026 U            | <0.025 U            | <0.026 U            | <0.025 U            | 0.033 J             | 0.031 J             |
| Indeno(1,2,3-cd)pyrene     | NA                | 0.34 J              | <0.024 U                | <0.024 U            | <0.023 U            | <0.024 UJ           | <0.023 U            | 0.17 J              | 0.16 J              |
| Isophorone                 | NA                | <0.052 U            | 0.07 J                  | <0.051 U            | 0.051 J             | <0.051 U            | <0.051 U            | <0.051 U            | <0.051 U            |
| Naphthalene                | NA                | 0.029 J             | <0.022 U                | <0.021 U            | <0.021 U            | 0.05 J              | <0.021 U            | 0.17 J              | <0.021 U            |
| Phenanthrene               | NA                | 0.78                | <0.027 U                | <0.027 U            | <0.026 U            | 0.093 J             | 0.026 J             | 0.45                | 0.43                |
| Pyrene                     | NA                | <0.027 U            | 0.035 J                 | <0.027 U            | <0.026 U            | 0.12 J              | 0.035 J             | 0.62                | 0.52                |

Table 4-5. Analytes detected in surface soil samples (ISM) collected during the RI with the analytes that were also detected in the surface soil samples from the 2003 Removal Action highlighted (continued).

|  | Table 4-5. | Analytes detected in sur | rface soil samples (ISM) collect | ed during the RI with t | he analytes that were als | so detected in the surface soil samples from | the 2003 Removal Ac |
|--|------------|--------------------------|----------------------------------|-------------------------|---------------------------|----------------------------------------------|---------------------|
|--|------------|--------------------------|----------------------------------|-------------------------|---------------------------|----------------------------------------------|---------------------|

|                    | Station ID:       | SCss-075            | SCss-076            |
|--------------------|-------------------|---------------------|---------------------|
|                    | Sample ID:        | SCss-075M-0001-SO   | SCss-076M-0001-SO   |
|                    | Sample Date:      | 11/9/2010           | 11/9/2010           |
|                    | Depth (feet bgs): | 0–1                 | 0–1                 |
|                    | Parameters:       | explosives, metals, | explosives, metals, |
| Analyte            | BSV               | SVOCS               | PCBs, total cyanide |
| Inorganics (mg/kg) |                   |                     |                     |
| Aluminum           | 17,700            | 9,780               | 7,990               |
| Antimony           | 0.96              | 1.3                 | 3.1                 |
| Arsenic            | 15.4              | 12.4                | 10.3                |
| Barium             | 88.4              | 54.5                | 74.8                |
| Beryllium          | 0.88              | 0.54                | 0.48                |
| Cadmium            | 0                 | 0.85                | 0.65                |
| Calcium            | 15,800            | 1,100               | 18,500              |
| Chromium           | 17.4              | 81                  | 188                 |
| Cobalt             | 10.4              | 9.9                 | 8.7                 |
| Copper             | 17.7              | 13.1                | 10.1                |
| Iron               | 23,100            | 24,100              | 19,000              |
| Lead               | 26.1              | 13.2                | 18.2                |
| Magnesium          | 3,030             | 2,470               | 1,750               |
| Manganese          | 1,450             | 256                 | 661                 |
| Mercury            | 0.036             | 0.054               | 0.049               |
| Nickel             | 21.1              | 21.8                | 25.3                |
| Potassium          | 927               | 878                 | 845                 |
| Selenium           | 1.4               | 1.4                 | 2.2                 |

# ction highlighted (continued).

| Table 4-5. Analytes detected in surface soil samples (ISM) collected during the RI with the analytes that were also | o detected in the surface soil samples from the 2003 Removal Ac |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|

|                                  | Station ID:       | SCss-075            | SCss-076            |
|----------------------------------|-------------------|---------------------|---------------------|
|                                  | Sample ID:        | SCss-075M-0001-SO   | SCss-076M-0001-SO   |
|                                  | Sample Date:      | 11/9/2010           | 11/9/2010           |
|                                  | Depth (feet bgs): | 0–1                 | 0–1                 |
|                                  | Parameters:       | explosives, metals, | explosives, metals, |
| Analyte                          | BSV               | SVOCS               | PCBs, total cyanide |
| Silver                           | 0                 | 0.095 J             | 0.11                |
| Sodium                           | 123               | 35.4                | 68.1                |
| Thallium                         | 0                 | 0.14 J              | 0.73                |
| Vanadium                         | 31.1              | 18.1                | 15.9                |
| Zinc                             | 61.8              | 50.1                | 46.9                |
| Semivolatile Organic Compounds ( | mg/kg)            |                     |                     |
| 2-Methylnaphthalene              | NA                | <0.025 U            | 0.045 J             |
| Benzo(a)anthracene               | NA                | 0.046 J             | 0.052 J             |
| Benzo(a)pyrene                   | NA                | 0.034 J             | 0.045 J             |
| Benzo(b)fluoranthene             | NA                | 0.11 J              | 0.077 J             |
| Benzo(g,h,i)perylene             | NA                | 0.031 J             | <0.023 U            |
| Benzo(k)fluoranthene             | NA                | 0.035 J             | 0.027 J             |
| Bis(2-Ethylhexyl)phthalate       | NA                | 0.91 J              | 0.27 J              |
| Chrysene                         | NA                | 0.14 J              | 0.051 J             |
| Diethyl Phthalate                | NA                | 0.14 J              | <0.066 U            |
| Di-n-Butyl Phthalate             | NA                | 0.087 J             | 0.14 J              |
| Fluoranthene                     | NA                | 0.3 J               | 0.081 J             |
| Indeno(1,2,3-cd)pyrene           | NA                | 0.025 J             | <0.024 U            |
| Naphthalene                      | NA                | <0.021 U            | 0.028 J             |

# ction highlighted (continued).

Table 4-5. Analytes detected in surface soil samples (ISM) collected during the RI with the analytes that were also detected in the surface soil samples from the 2003 Removal Action highlighted (continued).

|                    | Station ID:       | SCss-075                     | SCss-076                                  |
|--------------------|-------------------|------------------------------|-------------------------------------------|
|                    | Sample ID:        | SCss-075M-0001-SO            | SCss-076M-0001-SO                         |
|                    | Sample Date:      | 11/9/2010                    | 11/9/2010                                 |
|                    | Depth (feet bgs): | 0–1                          | 0–1                                       |
| Detected           | Parameters:       | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs, pesticides, |
| Analyte            | BSV               |                              | PCBs, total cyanide                       |
| Phenanthrene       | NA                | 0.09 J                       | 0.05 J                                    |
| Pyrene             | NA                | 0.2 J                        | 0.072 J                                   |
| Pesticides (mg/kg) |                   |                              |                                           |
| 4,4'-DDD           | NA                | NT                           | 0.0023 J                                  |
| 4,4'-DDT           | NA                | NT                           | 0.0017 J                                  |
| alpha-Chlordane    | NA                | NT                           | 0.0015 J                                  |
| Heptachlor         | NA                | NT                           | 0.001 J                                   |
| Lindane            | NA                | NT                           | 0.0013 J                                  |
| Methoxychlor       | NA                | NT                           | 0.0016 J                                  |

#### **General Chemistry**

| Total Cyanide | 0 | NT | 0.39 J |
|---------------|---|----|--------|
|               |   |    |        |

< denotes less than

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the RAAP, Ravenna, Ohio (March 2010).

Highlighted box denotes concentration is greater than the former RVAAP background value.

bgs denotes below ground surface.

BSV denotes background screening value

Cr<sup>+6</sup> denotes hexavalent chromium.

J denotes the reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

NT denotes not tested.

PCB denotes polychlorinated biphenyl.

SVOC denotes semivolatile organic compound.

U denotes analyte was not detected and is reported as less than the limit of detection.

VOC denotes volatile organic compound.

| Analyte                    | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification  |
|----------------------------|------------|------------------------|---------------------------|---------------------------|------------------------|----------------|------|--------------------|
| Explosives and Propellants |            |                        |                           |                           |                        |                |      |                    |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 1/58                   | 0.1 J                     | 0.1 J                     | 0.218                  | NA             | Yes  | Detected organic   |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2 | 1/58                   | 0.26 J                    | 0.26 J                    | 0.221                  | NA             | Yes  | Detected organic   |
| m-Nitrotoluene             | 99-08-1    | 1/58                   | 0.32 J                    | 0.32 J                    | 0.222                  | NA             | Yes  | Detected organic   |
| Inorganics                 |            |                        |                           |                           |                        |                |      |                    |
| Aluminum                   | 7429-90-5  | 58/58                  | 7,050                     | 16,600                    | 11,991                 | 19,500         | No   | Below BSV          |
| Antimony                   | 7440-36-0  | 39/58                  | 0.11 J                    | 11.2                      | 0.74                   | 0.96           | Yes  | Above BSV          |
| Arsenic                    | 7440-38-2  | 57/58                  | 2                         | 182                       | 18.24                  | 19.8           | Yes  | Above BSV          |
| Barium                     | 7440-39-3  | 58/58                  | 33.4                      | 932                       | 85.7                   | 124            | Yes  | Above BSV          |
| Beryllium                  | 7440-41-7  | 58/58                  | 0.31                      | 3.9                       | 0.71                   | 0.88           | Yes  | Above BSV          |
| Cadmium                    | 7440-43-9  | 38/58                  | 0.039                     | 5.5                       | 0.52                   | 0              | Yes  | Above BSV          |
| Calcium                    | 7440-70-2  | 58/58                  | 507                       | 82,400                    | 10,221                 | 35,500         | No   | Essential nutrient |
| Chromium                   | 7440-47-3  | 58/58                  | 14                        | 186                       | 64.5                   | 27.2           | Yes  | Above BSV          |
| Cobalt                     | 7440-48-4  | 58/58                  | 4.4                       | 22.3                      | 10.4                   | 23.2           | No   | Below BSV          |
| Copper                     | 7440-50-8  | 58/58                  | 11.5                      | 2,020                     | 59.6                   | 32.3           | Yes  | Above BSV          |
| Iron                       | 7439-89-6  | 58/58                  | 19,500                    | 79,400                    | 32,672                 | 35,200         | No   | Essential nutrient |
| Lead                       | 7439-92-1  | 58/58                  | 4.9                       | 907                       | 60.8                   | 19.1           | Yes  | Above BSV          |
| Magnesium                  | 7439-95-4  | 58/58                  | 1,880                     | 8,830                     | 5,247                  | 8,790          | No   | Essential nutrient |
| Manganese                  | 7439-96-5  | 58/58                  | 244                       | 2,010                     | 512                    | 3,030          | No   | Below BSV          |
| Mercury                    | 7439-97-6  | 58/58                  | 0.0042 J                  | 2                         | 0.076                  | 0.044          | Yes  | Above BSV          |
| Nickel                     | 7440-02-0  | 58/58                  | 10.4                      | 88.1                      | 28.1                   | 60.7           | Yes  | Above BSV          |
| Potassium                  | 7440-09-7  | 58/58                  | 584                       | 4,600                     | 1,625                  | 3,350          | No   | Essential nutrient |
| Selenium                   | 7782-49-2  | 26/58                  | 0.14 J                    | 5.7                       | 0.47                   | 1.5            | Yes  | Above BSV          |
| Silver                     | 7440-22-4  | 14/58                  | 0.13                      | 13.5                      | 0.50                   | 0              | Yes  | Above BSV          |
| Sodium                     | 7440-23-5  | 58/58                  | 20.2                      | 264                       | 95.2                   | 145            | No   | Essential nutrient |
| Thallium                   | 7440-28-0  | 41/58                  | 0.19                      | 17.3                      | 1.36                   | 0.91           | Yes  | Above BSV          |
| Vanadium                   | 7440-62-2  | 58/58                  | 12.3                      | 173                       | 19.2                   | 37.6           | Yes  | Above BSV          |
| Zinc                       | 7440-66-6  | 58/58                  | 38.9                      | 1,350                     | 96.5                   | 93.3           | Yes  | Above BSV          |
| General Chemistry          |            |                        |                           |                           |                        |                |      |                    |
| Cyanide, total             | 57-12-5    | 1/5                    | 0.76                      | 0.76                      | 0.2                    | 0              | Yes  | Above BSV          |

| Table 4-6. | Summary | of the | SRCs | identified | l in th | e subsurfa | ce soil samples. |
|------------|---------|--------|------|------------|---------|------------|------------------|
|------------|---------|--------|------|------------|---------|------------|------------------|

# Table 4-6. Summary of the SRCs identified in the subsurface soil samples (continued).

| Analyte                        | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification |
|--------------------------------|------------|------------------------|---------------------------|---------------------------|------------------------|----------------|------|-------------------|
| Semivolatile Organic Compounds |            |                        | (8)                       | (8,8)                     | (8)                    | (8,8)          | ~    |                   |
| 1,2-Dichlorobenzene            | 95-50-1    | 4/58                   | 0.024 J                   | 0.049 J                   | 0.191                  | NA             | Yes  | Detected organic  |
| 1,4-Dichlorobenzene            | 106-46-7   | 1/58                   | 0.022 J                   | 0.022 J                   | 0.199                  | NA             | Yes  | Detected organic  |
| 2-Methylnaphthalene            | 91-57-6    | 18/58                  | 0.026 J                   | 0.7                       | 0.174                  | NA             | Yes  | Detected organic  |
| Acenaphthene                   | 83-32-9    | 6/58                   | 0.029 J                   | 0.7                       | 0.198                  | NA             | Yes  | Detected organic  |
| Acenaphthylene                 | 208-96-8   | 5/58                   | 0.034 J                   | 0.14 J                    | 0.19219                | NA             | Yes  | Detected organic  |
| Anthracene                     | 120-12-7   | 8/58                   | 0.03 J                    | 3.1                       | 0.242                  | NA             | Yes  | Detected organic  |
| Benzo(a)anthracene             | 56-55-3    | 11/58                  | 0.046 J                   | 8.2                       | 0.370                  | NA             | Yes  | Detected organic  |
| Benzo(a)pyrene                 | 50-32-8    | 13/58                  | 0.036 J                   | 8.3                       | 0.37993                | NA             | Yes  | Detected organic  |
| Benzo(b)fluoranthene           | 205-99-2   | 14/58                  | 0.027 J                   | 13                        | 0.5501                 | NA             | Yes  | Detected organic  |
| Benzo(g,h,i)perylene           | 191-24-2   | 13/58                  | 0.022 J                   | 1.7                       | 0.22302                | NA             | Yes  | Detected organic  |
| Benzo(k)fluoranthene           | 207-08-9   | 11/58                  | 0.027 J                   | 4.4 J                     | 0.29283                | NA             | Yes  | Detected organic  |
| Benzoic Acid                   | 65-85-0    | 1/58                   | 0.32 J                    | 0.32 J                    | 0.581                  | NA             | Yes  | Detected organic  |
| Bis(2-Ethylhexyl)phthalate     | 117-81-7   | 10/58                  | 0.088 J                   | 0.85 J                    | 0.447                  | NA             | Yes  | Detected organic  |
| Carbazole                      | 86-74-8    | 8/58                   | 0.033 J                   | 2.2                       | 0.23                   | NA             | Yes  | Detected organic  |
| Chrysene                       | 218-01-9   | 12/58                  | 0.034 J                   | 7.6                       | 0.39829                | NA             | Yes  | Detected organic  |
| Dibenzo(a,h)anthracene         | 53-70-3    | 6/58                   | 0.032 J                   | 0.55 J                    | 0.200                  | NA             | Yes  | Detected organic  |
| Dibenzofuran                   | 132-64-9   | 11/58                  | 0.024 J                   | 0.84                      | 0.1859                 | NA             | Yes  | Detected organic  |
| Di-n-Butyl Phthalate           | 84-74-2    | 31/58                  | 0.081 J                   | 0.27 J                    | 0.158                  | NA             | Yes  | Detected organic  |
| Fluoranthene                   | 206-44-0   | 14/58                  | 0.027 J                   | 17                        | 0.65869                | NA             | Yes  | Detected organic  |
| Fluorene                       | 86-73-7    | 9/58                   | 0.034 J                   | 1.1                       | 0.197                  | NA             | Yes  | Detected organic  |
| Indeno(1,2,3-cd)pyrene         | 193-39-5   | 10/58                  | 0.024 J                   | 1.6 J                     | 0.23783                | NA             | Yes  | Detected organic  |
| Isophorone                     | 78-59-1    | 21/58                  | 0.053 J                   | 1.2                       | 0.211                  | NA             | Yes  | Detected organic  |
| Naphthalene                    | 91-20-3    | 18/58                  | 0.021 J                   | 0.98                      | 0.167                  | NA             | Yes  | Detected organic  |
| Pentachlorophenol              | 87-86-5    | 1/58                   | 0.38 J                    | 0.38 J                    | 0.499                  | NA             | Yes  | Detected organic  |
| Phenanthrene                   | 85-01-8    | 20/58                  | 0.027 J                   | 11                        | 0.484                  | NA             | Yes  | Detected organic  |
| Pyrene                         | 129-00-0   | 14/58                  | 0.029 J                   | 13                        | 0.560                  | NA             | Yes  | Detected organic  |
| Volatile Organic Compounds     |            |                        |                           |                           |                        |                |      |                   |
| 1,2-Dimethylbenzene            | 95-47-6    | 2/5                    | 0.013 J                   | 0.35                      | 0.089                  | NA             | Yes  | Detected organic  |
| Benzene                        | 71-43-2    | 1/5                    | 0.06                      | 0.06                      | 0.035                  | NA             | Yes  | Detected organic  |

| Table 4-6. | Summary | of the SR | Cs identifie | d in the | subsurface | soil | samples | (continued) | ). |
|------------|---------|-----------|--------------|----------|------------|------|---------|-------------|----|
|------------|---------|-----------|--------------|----------|------------|------|---------|-------------|----|

| Analyte                           | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification |
|-----------------------------------|------------|------------------------|---------------------------|---------------------------|------------------------|----------------|------|-------------------|
| Ethylbenzene                      | 100-41-4   | 1/5                    | 0.15                      | 0.15                      | 0.053                  | NA             | Yes  | Detected organic  |
| Toluene                           | 108-88-3   | 2/5                    | 0.012 J                   | 0.31                      | 0.081                  | NA             | Yes  | Detected organic  |
| Xylene (Total)                    | 1330-20-7  | 1/5                    | 0.36                      | 0.36                      | 0.119                  | NA             | Yes  | Detected organic  |
| Pesticides                        |            |                        | ·                         |                           | ·                      | •              | ·    |                   |
| 4,4'-DDE                          | 72-55-9    | 1/5                    | 0.0051 J                  | 0.0051 J                  | 0.00114                | NA             | Yes  | Detected organic  |
| 4,4'-DDT                          | 50-29-3    | 2/5                    | 0.00091 J                 | 0.013 J                   | 0.00455                | NA             | Yes  | Detected organic  |
| Aldrin                            | 309-00-2   | 1/5                    | 0.0012 J                  | 0.0012 J                  | 0.00159                | NA             | Yes  | Detected organic  |
| alpha-BHC                         | 319-84-6   | 2/5                    | 0.0013 J                  | 0.011 J                   | 0.00358                | NA             | Yes  | Detected organic  |
| beta-BHC                          | 319-85-7   | 1/5                    | 0.0032 J                  | 0.0032 J                  | 0.00182                | NA             | Yes  | Detected organic  |
| delta-BHC                         | 319-86-8   | 1/5                    | 0.0016 J                  | 0.0016 J                  | 0.00161                | NA             | Yes  | Detected organic  |
| Dieldrin                          | 60-57-1    | 1/5                    | 0.0034 J                  | 0.0034 J                  | 0.00985                | NA             | Yes  | Detected organic  |
| Endosulfan II                     | 33213-65-9 | 1/5                    | 0.0036 J                  | 0.0036 J                  | 0.0008                 | NA             | Yes  | Detected organic  |
| Endrin aldehyde                   | 7421-93-4  | 1/5                    | 0.005 J                   | 0.005 J                   | 0.00233                | NA             | Yes  | Detected organic  |
| gamma-Chlordane                   | 5566-34-7  | 1/5                    | 0.0054 J                  | 0.0054 J                  | 0.00217                | NA             | Yes  | Detected organic  |
| Heptachlor                        | 76-44-8    | 4/5                    | 0.0009 J                  | 0.0058 J                  | 0.00232                | NA             | Yes  | Detected organic  |
| Heptachlor epoxide                | 1024-57-3  | 1/5                    | 0.00071 J                 | 0.00071 J                 | 0.00129                | NA             | Yes  | Detected organic  |
| Methoxychlor                      | 72-43-5    | 2/5                    | 0.001 J                   | 0.0058 J                  | 0.0021                 | NA             | Yes  | Detected organic  |
| Polychlorinated Biphenyls (mg/kg) |            |                        |                           |                           |                        |                |      |                   |
| Arochlor-1254                     | 11097-69-1 | 1/5                    | 0.14 J                    | 0.14 J                    | 0.03                   | NA             | Yes  | Detected organic  |

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

J denotes the reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

SRC denotes site-related chemical

|                              | Station ID:       | SCsb-035M                    | SCsb-035M                    | SCsb-035M                    | SCsb-035M                 | SCsb-035M                    | SCsb-036M                                      | SCsb-036M                    |
|------------------------------|-------------------|------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|------------------------------------------------|------------------------------|
|                              | Sample ID:        | SCsb-035M-0001-SO            | SCsb-035M-0002-SO            | SCsb-035M-0003-SO            | SCSsb-035M-0004-SO        | SCsb-035M-0005-SO            | SCsb-036M-0001-SO                              | SCsb-036M-0002-SO            |
|                              | Sample Date:      | 9/22/2010                    | 9/22/2010                    | 9/22/2010                    | 9/22/2010                 | 9/22/2010                    | 9/22/2010                                      | 9/22/2010                    |
|                              | Depth (feet bgs): | 1–5                          | 5–9                          | 9–13                         | 13–17                     | 17–20                        | 1–5                                            | 5–9                          |
| Detected                     | Parameters:       | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs | explosives, metals, SVOCs | explosives, metals,<br>SVOCs | explosives, metals,<br>SVOCs, Cr <sup>+6</sup> | explosives, metals,<br>SVOCs |
| Analyte                      | BSV               |                              |                              |                              |                           |                              |                                                |                              |
| Inorganics (mg/kg)           | 10 500            | 12 000                       | 11.100                       | 0.690                        | 12 200                    | 12 100                       | 10.200                                         | 7.050                        |
| Aluminum                     | 19,500            | 12,900                       | 11,100                       | 9,680                        | 12,300                    | 13,100                       | 10,300                                         | 7,050                        |
| Antimony                     | 0.96              | <0.081 U                     | <0.081 U                     | 0.51                         | 0.35                      | <0.081 U                     | <0.082 U                                       | <0.081 U                     |
| Arsenic                      | 19.8              | 15.7                         | 6                            | 15                           | 16.8                      | 15.4                         | 9.2                                            | 13                           |
| Barium                       | 124               | 50.1                         | 105                          | 41.8                         | 49.2                      | 41.1                         | 0.72                                           | 40.7                         |
| Beryllium                    | 0.88              | 0.67                         | 0.81                         | 0.45                         | 0.53                      | 0.54                         | 0.72                                           | 0.33                         |
|                              | 0                 | 0.15                         | 0.067                        | <0.006 U                     | 0.039                     | 0.055                        | 0.48                                           | <0.0061 U                    |
| Clacium                      | 35,500            | 4,980                        | 4,460                        | 17,900                       | 6,920                     | 4,770                        | 14,900                                         | 3,180                        |
| Chromium                     | 27.2              | 29.8                         | 42.6                         | 102                          | /8.8                      | 41.3                         | 38.5                                           | 30.6                         |
| Cobalt                       | 23.2              | 11.4                         | 11.5                         | 8.5                          | 10.4                      | 10.8                         | 8.1                                            | 6.9                          |
| Copper                       | 32.3              | 16.1                         | 23                           | 18.8                         | 15.2                      | 15.2                         | 15.8                                           | 18.7                         |
| Iron                         | 35,200            | 34,400                       | 30,300                       | 30,400                       | 32,400                    | 31,600                       | 21,800                                         | 25,200                       |
| Lead                         | <i>19.1</i>       | 36.1                         | 40.8                         | 33.2                         | 32.3                      | 33.7                         | 134                                            | 36.4                         |
| Magnesium                    | 2,790             | 5,470                        | 4,790                        | 7,090                        | 6,620                     | 6,520                        | 5,660                                          | 2,440                        |
| Manganese                    | 3,030             | 399                          | 849                          | 440                          | 356                       | 271                          | 702                                            | 480                          |
| Mercury                      | 0.044             | 0.02                         | 0.033                        | 0.0099                       | 0.0077 J                  | 0.0059 J                     | 0.078                                          | 0.011                        |
| Nickel                       | 60.7              | 30                           | 43.6                         | 21.3                         | 27.8                      | 28.9                         | 33.4                                           | 17.9                         |
| Potassium                    | 3,350             | 1,160                        | 2,300                        | 1,580                        | 2,000                     | 1,690                        | 923                                            | 694                          |
| Selenium                     | 1.5               | <0.071 U                     | 0.49                         | <0.07 U                      | <0.071 U                  | <0.071 U                     | 0.47                                           | 0.14 J                       |
| Silver                       | 0                 | 1.2                          | <0.034 U                     | <0.034 U                     | <0.017 U                  | <0.017 U                     | 0.22                                           | <0.034 U                     |
| Sodium                       | 145               | 46.3                         | 134                          | 101                          | 89.6                      | 68                           | 62.2                                           | 22.8                         |
| Thallium                     | 0.91              | 0.7                          | 0.86                         | 0.77                         | 0.71                      | 0.76                         | 0.83                                           | 0.7                          |
| Vanadium                     | 37.6              | 16.7                         | 15.1                         | 14.1                         | 16.5                      | 16.4                         | 17.8                                           | 12.6                         |
| Zinc                         | 93.3              | 57.5                         | 81.6                         | 48.5                         | 52                        | 53.2                         | 105                                            | 68.7                         |
| Semivolatile Organic Compour | nds (mg/kg)       |                              | 1                            | 1                            | 1                         | 1                            | 1                                              |                              |
| 2-Methylnaphthalene          | NA                | <0.025 U                     | 0.28 J                       | 0.036 J                      | 0.03 J                    | <0.025 U                     | 0.2 J                                          | <0.025 U                     |

Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted.

| 0.2 J | <0.025 U |
|-------|----------|
|       |          |

|                        | Station ID:<br>Sample ID: | SCsb-035M<br>SCsb-035M-0001-SO | SCsb-035M<br>SCsb-035M-0002-SO | SCsb-035M<br>SCsb-035M-0003-SO | SCsb-035M<br>SCSsb-035M-0004-SO | SCsb-035M<br>SCsb-035M-0005-SO | SCsb-036M<br>SCsb-036M-0001-SO | SCsb-036M<br>SCsb-036M-0002-SO |
|------------------------|---------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                        | Sample Date:              | 9/22/2010                      | 9/22/2010                      | 9/22/2010                      | 9/22/2010                       | 9/22/2010                      | 9/22/2010                      | 9/22/2010                      |
|                        | Depth (feet bgs):         | 1–5                            | 5–9                            | 9–13                           | 13–17                           | 17–20                          | 1–5                            | 5–9                            |
| Detected               | Parameters:               | explosives, metals,            | explosives, metals,            | explosives, metals,            | explosives, metals, SVOCs       | explosives, metals,            | explosives, metals,            | explosives, metals,            |
| Analyte                | BSV                       | SVOCs                          | SVOCs                          | SVOCs                          |                                 | SVOCs                          | SVOCs, Cr <sup>+0</sup>        | SVOCs                          |
| Anthracene             | NA                        | <0.024 U                       | <0.024 U                       | <0.024 U                       | <0.024 U                        | <0.024 U                       | 0.03 J                         | <0.024 U                       |
| Benzo(a)anthracene     | NA                        | 0.046 J                        | <0.025 U                       | <0.025 U                       | <0.025 U                        | <0.025 U                       | 0.16 J                         | <0.025 U                       |
| Benzo(a)pyrene         | NA                        | 0.042 J                        | 0.036 J                        | <0.023 U                       | <0.023 U                        | <0.023 U                       | 0.16 J                         | <0.023 U                       |
| Benzo(b)fluoranthene   | NA                        | 0.054 J                        | 0.062 J                        | <0.025 U                       | <0.025 U                        | <0.025 U                       | 0.22 J                         | <0.025 U                       |
| Benzo(g,h,i)perylene   | NA                        | 0.023 J                        | 0.14 J                         | 0.022 J                        | <0.022 U                        | <0.022 U                       | 0.15 J                         | <0.022 U                       |
| Benzo(k)fluoranthene   | NA                        | 0.025 U                        | <0.025 U                       | <0.025 U                       | <0.025 U                        | <0.025 U                       | 0.083 J                        | <0.025 U                       |
| Chrysene               | NA                        | 0.043 J                        | <0.025 U                       | <0.025 U                       | <0.025 U                        | <0.025 U                       | 0.17 J                         | <0.025 U                       |
| Dibenzo(a,h)anthracene | NA                        | <0.022 U                       | <0.022 U                       | <0.022 U                       | <0.022 U                        | <0.022 U                       | 0.06 J                         | <0.022 U                       |
| Dibenzofuran           | NA                        | <0.024 U                       | 0.035 J                        | <0.024 U                       | <0.024 U                        | <0.024 U                       | 0.046 J                        | <0.024 U                       |
| Di-n-Butyl Phthalate   | NA                        | 0.093 J                        | 0.11 J                         | <0.079 U                       | 0.084 J                         | <0.08 U                        | 0.15 J                         | 0.089 J                        |
| Fluoranthene           | NA                        | 0.14 J                         | 0.027 J                        | <0.026 U                       | <0.026 U                        | <0.026 U                       | 0.32 J                         | <0.026 U                       |
| Fluorene               | NA                        | <0.025 U                       | 0.044 J                        | <0.025 U                       | <0.025 U                        | <0.025 U                       | <0.025 U                       | <0.025 U                       |
| Indeno(1,2,3-cd)pyrene | NA                        | 0.024 J                        | <0.023 U                       | <0.023 U                       | <0.023 U                        | <0.023 U                       | 0.1 J                          | <0.023 U                       |
| Isophorone             | NA                        | 0.21 J                         | <0.05 U                        | 0.079 J                        | 0.42 J                          | 0.32 J                         | 0.073 J                        | 0.18 J                         |
| Naphthalene            | NA                        | 0.029 J                        | 0.11 J                         | 0.021 J                        | <0.021 U                        | <0.021 U                       | 0.14 J                         | <0.021 U                       |
| Phenanthrene           | NA                        | 0.16 J                         | 0.13 J                         | <0.026 U                       | <0.026 U                        | <0.026 U                       | 0.19 J                         | <0.026 U                       |
| Pyrene                 | NA                        | 0.097 J                        | 0.072 J                        | <0.026 U                       | <0.026 U                        | <0.026 U                       | 0.25 J                         | <0.026 U                       |

# Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                     | Station ID:       | SCsb-036M           | SCsb-036M           | SCSB-036M           | SCsb-037D         | SCsb-037M                                          | SCsb-037M                 | SCsb-037M           |
|---------------------|-------------------|---------------------|---------------------|---------------------|-------------------|----------------------------------------------------|---------------------------|---------------------|
|                     | Sample ID:        | SCsb-036M-0003-SO   | SCsb-036M-0004-SO   | SCsb-036M-0005-SO   | SCsb-037D-0001-SO | SCsb-037M-0001-SO                                  | SCsb-037M-0002-SO         | SCsb-037M-0003-SO   |
|                     | Sample Date:      | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010         | 9/22/2010                                          | 9/22/2010                 | 9/22/2010           |
|                     | Depth (feet bgs): | 9–13                | 13–17               | 17–20               | 1–5               | 1–5                                                | 5–9                       | 9–13                |
|                     | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | VOCs              | explosives, metals,                                | explosives, metals, SVOCs | explosives, metals, |
| Detected<br>Analyte | BSV               | SVOCs               | SVOCs               | SVOCs               |                   | SVOCs, VOCs,<br>pesticides, PCBs, total<br>cyanide |                           | SVOCs               |
| Inorganics (mg/kg)  |                   |                     |                     |                     |                   |                                                    |                           |                     |
| Aluminum            | 19,500            | 11,800              | 18,200              | 12,700              | NT                | 14,800                                             | 15,900                    | 11,100              |
| Antimony            | 0.96              | <0.33 U             | <0.32 U             | <0.32 U             | NT                | 0.93 J                                             | 1.5                       | 0.52 J              |
| Arsenic             | 19.8              | <0.53 U             | 8.5                 | 9.2                 | NT                | 182                                                | 155                       | 8.1                 |
| Barium              | 124               | 219                 | 66.5                | 41.1                | NT                | 932                                                | 326                       | 52                  |
| Beryllium           | 0.88              | 0.4                 | 0.9                 | 0.43                | NT                | 3.9                                                | 2                         | 0.31                |
| Cadmium             | 0                 | 3.6                 | <0.024 U            | 0.049 J             | NT                | 1.6                                                | 5.5                       | 0.61                |
| Calcium             | 35,500            | 13,100              | 5,520               | 12,900              | NT                | 13,900                                             | 33,200                    | 2,020               |
| Chromium            | 27.2              | 131                 | 68.6                | 21.5                | NT                | 112                                                | 186                       | 25                  |
| Cobalt              | 23.2              | 8.1                 | 19.1                | 12.3                | NT                | 9                                                  | 8.9                       | 7.1                 |
| Copper              | 32.3              | 2,020               | 21.5                | 20.5                | NT                | 95.7                                               | 209                       | 23.1                |
| Iron                | 35,200            | 79,400              | 41,400              | 37,500              | NT                | 41,500                                             | 47,600                    | 28,000              |
| Lead                | 19.1              | 907                 | 10.9                | 6.8                 | NT                | 325                                                | 507                       | 43                  |
| Magnesium           | 2,790             | 3,900               | 6,670               | 8,540               | NT                | 3,050                                              | 5,230                     | 2,700               |
| Manganese           | 3,030             | 626                 | 525                 | 477                 | NT                | 743                                                | 1,050                     | 463                 |
| Mercury             | 0.044             | 0.044               | 0.014               | 0.0067 J            | NT                | 0.24                                               | 0.3                       | 0.019               |
| Nickel              | 60.7              | 42.8                | 39.6                | 28.4                | NT                | 35.7                                               | 51.6                      | 17.1                |
| Potassium           | 3,350             | 2,220               | 2,080               | 1,370               | NT                | 1,020                                              | 1,740                     | 650                 |
| Selenium            | 1.5               | 1.9                 | 0.53 J              | <0.28 U             | NT                | 3.1                                                | 5.7                       | <0.28 U             |
| Silver              | 0                 | 0.28                | <0.069 U            | <0.068 U            | NT                | 1.2                                                | 0.29                      | <0.069 U            |
| Sodium              | 145               | 254                 | 93.1                | 89.5                | NT                | 178                                                | 264                       | 24.4                |
| Thallium            | 0.91              | 2.7                 | 2.7                 | 2.3                 | NT                | 5.5                                                | 17.3                      | 2.4                 |
| Vanadium            | 37.6              | 17.3                | 22.5                | 16.9                | NT                | 41                                                 | 173                       | 19.6                |
| Zinc                | 93.3              | 1,350               | 90                  | 64.3                | NT                | 298                                                | 490                       | 86.3                |

# Table 4-7 Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                             | Station ID:       | SCsb-036M           | SCsb-036M           | SCSB-036M           | SCsb-037D         | SCsb-037M                                          | SCsb-037M           | SCsb-037M           |
|-----------------------------|-------------------|---------------------|---------------------|---------------------|-------------------|----------------------------------------------------|---------------------|---------------------|
|                             | Sample ID:        | SCsb-036M-0003-SO   | SCsb-036M-0004-SO   | SCsb-036M-0005-SO   | SCsb-037D-0001-SO | SCsb-037M-0001-SO                                  | SCsb-037M-0002-SO   | SCsb-037M-0003-SO   |
|                             | Sample Date:      | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010         | 9/22/2010                                          | 9/22/2010           | 9/22/2010           |
|                             | Depth (feet bgs): | 9–13                | 13–17               | 17–20               | 1–5               | 1–5                                                | 5–9                 | 9–13                |
|                             | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | VOCs              | explosives, metals,                                | explosives, metals, | explosives, metals, |
| Detected<br>Analyte         | BSV               | SVOCs               | SVOCs               | SVOCs               |                   | SVOCs, VOCs,<br>pesticides, PCBs, total<br>cyanide | SVOCs               | SVOCs               |
| Semivolatile Organic Compou | nds (mg/kg)       |                     |                     |                     |                   |                                                    |                     |                     |
| 1,2-Dichlorobenzene         | NA                | <0.024 U            | <0.024 U            | <0.024 U            | NT                | 0.049 J                                            | 0.043 J             | <0.024 U            |
| 1,4-Dichlorobenzene         | NA                | <0.019 U            | <0.019 U            | <0.019 U            | NT                | <0.019 U                                           | 0.022 J             | <0.019 U            |
| 2-Methylnaphthalene         | NA                | 0.28 J              | 0.068 J             | 0.046 J             | NT                | 0.26 J                                             | 0.24 J              | <0.025 U            |
| Acenaphthene                | NA                | 0.056 J             | <0.024 U            | <0.024 U            | NT                | <0.024 U                                           | <0.024 U            | <0.024 U            |
| Acenaphthylene              | NA                | 0.14 J              | <0.024 U            | <0.024 U            | NT                | <0.024 U                                           | <0.024 U            | <0.024 U            |
| Anthracene                  | NA                | <0.024 U            | <0.024 U            | <0.024 U            | NT                | 0.032 J                                            | <0.024 U            | <0.024 U            |
| Benzo(a)anthracene          | NA                | 1.3                 | <0.025 U            | <0.025 U            | NT                | 0.12 J                                             | 0.053 J             | <0.025 U            |
| Benzo(a)pyrene              | NA                | 1.7                 | <0.023 U            | <0.023 U            | NT                | 0.14 J                                             | 0.048 J             | <0.023 U            |
| Benzo(b)fluoranthene        | NA                | 4                   | <0.025 U            | <0.025 U            | NT                | 0.26 J                                             | 0.12 J              | <0.025 U            |
| Benzo(g,h,i)perylene        | NA                | 1.7                 | 0.048 J             | 0.025 J             | NT                | 0.12 J                                             | 0.038 J             | <0.022 U            |
| Benzo(k)fluoranthene        | NA                | 1                   | <0.025 U            | <0.025 U            | NT                | 0.069 J                                            | 0.027 J             | <0.025 U            |
| Bis(2-Ethylhexyl)phthalate  | NA                | <0.089 U            | <0.087 U            | <0.087 U            | NT                | 0.088 J                                            | <0.089 U            | 0.12 J              |
| Carbazole                   | NA                | 0.61                | <0.028 U            | <0.028 U            | NT                | 0.033 J                                            | <0.028 U            | <0.028 U            |
| Chrysene                    | NA                | 3.3                 | <0.025 U            | <0.025 U            | NT                | 0.16 J                                             | 0.089 J             | <0.025 U            |
| Dibenzo(a,h)anthracene      | NA                | 0.32 J              | <0.022 U            | <0.022 U            | NT                | 0.032 J                                            | <0.022 U            | <0.022 U            |
| Dibenzofuran                | NA                | 0.35 J              | <0.024 U            | <0.024 U            | NT                | 0.069 J                                            | 0.055 J             | <0.024 U            |
| Di-n-Butyl Phthalate        | NA                | 0.19 J              | <0.079 U            | <0.079 U            | NT                | 0.12                                               | 0.27 J              | 0.12 J              |
| Fluoranthene                | NA                | 6.3                 | <0.026 U            | <0.026 U            | NT                | 0.36 J                                             | 0.17 J              | <0.026 U            |
| Fluorene                    | NA                | 0.064 J             | <0.025 U            | <0.025 U            | NT                | <0.025 U                                           | <0.025 U            | <0.025 U            |
| Indeno(1,2,3-cd)pyrene      | NA                | 1.6                 | <0.023 U            | <0.023 U            | NT                | 0.093 J                                            | 0.025 J             | <0.023 U            |
| Isophorone                  | NA                | 1.2                 | 0.12 J              | <0.05 U             | NT                | 0.5                                                | 0.43                | 0.22 J              |
| Naphthalene                 | NA                | 0.55                | 0.06 J              | 0.028 J             | NT                | 0.15 J                                             | 0.15 J              | <0.021 U            |
| Phenanthrene                | NA                | 7.4                 | 0.038 J             | 0.034 J             | NT                | 0.28 J                                             | 0.19 J              | <0.026 U            |
| Pyrene                      | NA                | <0.024 U            | <0.026 U            | <0.026 U            | NT                | 0.28 J                                             | 0.15 J              | <0.026 U            |

# Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                               | Station ID:       | SCsb-036M           | SCsb-036M           | SCSB-036M           | SCsb-037D         | SCsb-037M                                          | SCsb-037M           | SCsb-037M           |
|-------------------------------|-------------------|---------------------|---------------------|---------------------|-------------------|----------------------------------------------------|---------------------|---------------------|
|                               | Sample ID:        | SCsb-036M-0003-SO   | SCsb-036M-0004-SO   | SCsb-036M-0005-SO   | SCsb-037D-0001-SO | SCsb-037M-0001-SO                                  | SCsb-037M-0002-SO   | SCsb-037M-0003-SO   |
|                               | Sample Date:      | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010         | 9/22/2010                                          | 9/22/2010           | 9/22/2010           |
|                               | Depth (feet bgs): | 9–13                | 13–17               | 17–20               | 1–5               | 1–5                                                | 5–9                 | 9–13                |
|                               | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | VOCs              | explosives, metals,                                | explosives, metals, | explosives, metals, |
| Detected<br>Analyte           | BSV               | SVOCs               | SVOCs               | SVOCs               |                   | SVOCs, VOCs,<br>pesticides, PCBs, total<br>cyanide | SVOCs               | SVOCs               |
| Volatile Organic Compounds (  | mg/kg)            |                     |                     |                     |                   |                                                    |                     |                     |
| 1,2-Dimethylbenzene           | NA                | NT                  | NT                  | NT                  | 0.013 J           | NT                                                 | NT                  | NT                  |
| Toluene                       | NA                | NT                  | NT                  | NT                  | 0.012 J           | NT                                                 | NT                  | NT                  |
| Pesticides (mg/kg)            |                   |                     |                     |                     |                   |                                                    |                     |                     |
| 4,4'-DDE                      | NA                | NT                  | NT                  | NT                  | NT                | 0.0069                                             | NT                  | NT                  |
| 4,4'-DDT                      | NA                | NT                  | NT                  | NT                  | NT                | 0.009 J                                            | NT                  | NT                  |
| Aldrin                        | NA                | NT                  | NT                  | NT                  | NT                | 0.0012 J                                           | NT                  | NT                  |
| alpha BHC                     | NA                | NT                  | NT                  | NT                  | NT                | 0.011                                              | NT                  | NT                  |
| beta-BHC                      | NA                | NT                  | NT                  | NT                  | NT                | 0.0032 J                                           | NT                  | NT                  |
| delta-BHC                     | NA                | NT                  | NT                  | NT                  | NT                | 0.0016 J                                           | NT                  | NT                  |
| Dieldrin                      | NA                | NT                  | NT                  | NT                  | NT                | 0.0034 J                                           | NT                  | NT                  |
| Endrin aldehyde               | NA                | NT                  | NT                  | NT                  | NT                | 0.005                                              | NT                  | NT                  |
| gamma-Chlordane               | NA                | NT                  | NT                  | NT                  | NT                | 0.0054                                             | NT                  | NT                  |
| Heptachlor                    | NA                | NT                  | NT                  | NT                  | NT                | 0.0058 J                                           | NT                  | NT                  |
| Heptachlor epoxide            | NA                | NT                  | NT                  | NT                  | NT                | 0.00071 J                                          | NT                  | NT                  |
| Methoxychlor                  | NA                | NT                  | NT                  | NT                  | NT                | 0.0058 J                                           | NT                  | NT                  |
| Polychlorinated Biphenyls (mg | /kg)              |                     |                     |                     |                   |                                                    |                     |                     |
| Arochlor-1254                 | NA                | NT                  | NT                  | NT                  | NT                | 0.14                                               | NT                  | NT                  |

# Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                              | Station ID:       | SCsb-037M           | SCsb-037M           | SCsb-038M           | SCsb-038M           | SCsb-038M           | SCsb-038M           | SCsb-038M           |
|------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                              | Sample ID:        | SCsb-037M-0004-SO   | SCsb-037M-0005-SO   | SCsb-038M-0001-SO   | SCsb-038M-0002-SO   | SCsb-038M-0003-SO   | SCsb-038M-0004-SO   | SCsb-038M-0005-SO   |
|                              | Sample Date:      | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           |
|                              | Depth (feet bgs): | 13–17               | 17–20               | 1–5                 | 5–9                 | 9–13                | 13–17               | 17–20               |
|                              | Parameters:       | explosives, metals, |
| Analyte                      | BSV               | SVOCs               |
| Inorganics (mg/kg)           |                   |                     |                     |                     |                     |                     |                     |                     |
| Aluminum                     | 19,500            | 10,000              | 13,300              | <14,900 UJ          | 14,200              | 11,000              | 14,400              | 10,900              |
| Antimony                     | 0.96              | 0.59                | <0.16 U             | 0.16 J              | <0.16 U             | 0.26 J              | <0.16 U             | 0.63                |
| Arsenic                      | 19.8              | 2                   | 5.3                 | 7                   | 8.2                 | 9.1                 | 6.5                 | 6.1                 |
| Barium                       | 124               | 45.9                | 71.9                | 93.6                | 51.6                | 33.4                | 50.4                | 43.8                |
| Beryllium                    | 0.88              | 0.31                | 0.62                | <0.71 UJ            | 0.63                | 0.46                | 0.55                | 0.38                |
| Cadmium                      | 0                 | <0.012 U            | 0.28                | 0.012               | <0.012 U            | <0.012 U            | <0.012 U            | <0.012 U            |
| Calcium                      | 35,500            | 913                 | 1,270               | 507                 | 3,070               | 5,450               | 8,920               | 10,900              |
| Chromium                     | 27.2              | 170                 | 53.6                | 36.1 J              | 48.1                | 70.6                | 16.3                | 156                 |
| Cobalt                       | 23.2              | 4.4                 | 11.8                | 22.3 J              | 10.8                | 8.8                 | 11.1                | 9                   |
| Copper                       | 32.3              | 13.3                | 15.5                | 20.8                | 17.7                | 17                  | 16.5                | 18.6                |
| Iron                         | 35,200            | 23,600              | 32,500              | 36,500 J            | 35,600              | 30,100              | 35,800              | 29,600              |
| Lead                         | 19.1              | 10.9                | 11.5                | 11.1                | 6.6                 | 6.6                 | 5.3                 | 5.3                 |
| Magnesium                    | 2,790             | 2,120               | 3,420               | 3,230               | 4,430               | 4,290               | 7,260               | 6,840               |
| Manganese                    | 3,030             | 308                 | 511                 | 732                 | 425                 | 366                 | 333                 | 369                 |
| Mercury                      | 0.044             | 0.019               | 0.018               | 0.019 J             | 0.0081              | 0.0053 J            | 0.0057 J            | 0.0079              |
| Nickel                       | 60.7              | 10.4                | 30.2                | 24.8                | 26.8                | 19.5                | 25.4                | 20.4                |
| Potassium                    | 3,350             | 1,030               | 1,570               | 2,100 J             | 2,100               | 1,970               | 2,390               | 2,020               |
| Selenium                     | 1.5               | 1                   | 0.67 J              | <1 U                | 0.53 J              | 0.26 J              | 0.45 J              | 0.6 J               |
| Silver                       | 0                 | <0.034 U            | <0.034 U            | 0.035               | <0.034 U            | <0.034 U            | 0.034 U             | <0.034 U            |
| Sodium                       | 145               | 67.6                | 61                  | 67.7 J              | 77.4                | 80.2                | 115                 | 134                 |
| Thallium                     | 0.91              | 1.6                 | 2.1                 | 2.5 J               | 2.1                 | 1.8                 | 2                   | 1.7                 |
| Vanadium                     | 37.6              | 14.5                | 17.7                | 19.6 J              | 17.7                | 15.3                | 17.3                | 14.3                |
| Zinc                         | 93.3              | 51                  | 222                 | 68.7 J              | 57.7                | 47.8                | 54.4                | 48.1                |
| Semivolatile Organic Compour | nds (mg/kg)       |                     |                     |                     |                     |                     |                     |                     |
| 2,6-Dinitrotoluene           | NA                | 0.047 J             | <0.024 U            |

| Table 4-7. Analytes detected in each | of the subsurface soil samples collected for the RI | with the analytes detected in the | subsurface soil samples from the 2003 Removal | Action |
|--------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------------------------|--------|
| J                                    | 1                                                   | v                                 | 1                                             |        |

# n highlighted (continued).

|                      | Station ID:       | SCsb-037M           | SCsb-037M           | SCsb-038M           | SCsb-038M           | SCsb-038M           | SCsb-038M           | SCsb-038M           |
|----------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                      | Sample ID:        | SCsb-037M-0004-SO   | SCsb-037M-0005-SO   | SCsb-038M-0001-SO   | SCsb-038M-0002-SO   | SCsb-038M-0003-SO   | SCsb-038M-0004-SO   | SCsb-038M-0005-SO   |
|                      | Sample Date:      | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           | 9/22/2010           |
|                      | Depth (feet bgs): | 13–17               | 17–20               | 1–5                 | 5–9                 | 9–13                | 13–17               | 17–20               |
| Dotoctod             | Parameters:       | explosives, metals, |
| Analyte              | BSV               | SVOCs               |
| 2-Methylnaphthalene  | NA                | <0.025 U            | <0.025 U            | 0.097 J             | <0.025 U            | 0.14 J              | 0.072 J             | 0.035 J             |
| Dibenzofuran         | NA                | <0.024 U            | 0.025 J             | <0.024 U            |
| Di-n-Butyl Phthalate | NA                | 0.11 J              | <0.084 J            | 0.16 J              | 0.093 J             | <0.08 U             | 0.08 U              | 0.11 J              |
| Fluorene             | NA                | <0.025 U            | <0.025 U            | <.025 U             | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            |
| Isophorone           | NA                | <0.31 U             | <0.054 J            | <0.051 U            | 0.19 J              | 0.28 J              | <0.051 U            | 0.05 J              |
| Naphthalene          | NA                | <0.021 U            | <0.021 U            | 0.074 J             | <0.021 U            | <0.021 U            | 0.049 J             | <0.021 U            |
| Phenanthrene         | NA                | <0.026 U            | <0.026 U            | 0.047 J             | <0.026 U            | <0.026 U            | 0.039 J             | <0.026 U            |

Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                                        | Station ID:       | SCsb-039M           | SCsb-039M           | SCsb-039M           | SCsb-039M           | SCsb-039M                                | SCsb-040M           | SCsb-040M                                       |
|----------------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|------------------------------------------|---------------------|-------------------------------------------------|
|                                        | Sample ID:        | SCsb-039M-0001-SO   | SCsb-039M-0002-SO   | SCsb-039M-0003-SO   | SCsb-039M-0004-SO   | SCsb-039M-0005-SO                        | SCsb-040M-0001-SO   | SCsb-040M-0002-SO                               |
|                                        | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010                                | 9/21/2010           | 9/21/2010                                       |
|                                        | Depth (feet bgs): | 1–5                 | 5–9                 | 9–13                | 13–17               | 17-20                                    | 1–5                 | 5-9                                             |
| _                                      | Parameters:       | explosives, metals, SVOCs,               | explosives, metals, | explosives, metals,                             |
| Detected<br>Analyte                    | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | VOCs, pesticides, PCBs,<br>total cyanide | SVOCs               | SVOCs, VOCs, pesticides,<br>PCBs, total cyanide |
| Inorganics (mg/kg)                     |                   |                     |                     |                     |                     |                                          |                     |                                                 |
| Aluminum                               | 19,500            | 10,700              | 12,600              | 12,400              | 12,200              | 10,700                                   | 12,500              | 11,500                                          |
| Antimony                               | 0.96              | 0.11 J              | <0.081 U            | <0.081 U            | <0.081 U            | <0.081 U                                 | 2                   | 1                                               |
| Arsenic                                | 19.8              | 15.1                | 15.6                | 15.3                | 15.7                | 14.9                                     | 12.8                | 14.7                                            |
| Barium                                 | 124               | 58.7                | 47.8                | 42.2                | 38.7                | 38.3                                     | 80.4                | 49.8                                            |
| Beryllium                              | 0.88              | 0.66                | 0.54                | 0.49                | 0.45                | 0.45                                     | 0.75                | 0.66                                            |
| Cadmium                                | 0                 | 0.33                | 0.25                | 0.18                | 0.19                | 0.11                                     | 0.29                | 0.28                                            |
| Calcium                                | 35,500            | 4,230               | 8,670               | 6,770               | 8,780               | 10,200                                   | 1,710               | 4,700                                           |
| Chromium                               | 27.2              | 18                  | 34.1                | 33.8                | 26.7                | 24                                       | 95.4                | 54.9                                            |
| Cobalt                                 | 23.2              | 11.6                | 11.8 J              | 11.3                | 11.5                | 10.3                                     | 10.8                | 11.1                                            |
| Copper                                 | 32.3              | 17.7                | 16.3 J              | 16.5                | 16.1                | 16.3                                     | 19.1                | 17.1                                            |
| Iron                                   | 35,200            | 36,400              | 31,400 J            | 34,200              | 29,900              | 29,800                                   | 37,200              | 33,700                                          |
| Lead                                   | 19.1              | 46.1                | 37.4                | 35.6                | 36.9                | 34.6                                     | 40.7                | 42.5                                            |
| Magnesium                              | 2,790             | 4,550               | 6,310               | 6,790               | 7,840               | 8,020                                    | 3,940               | 5,690                                           |
| Manganese                              | 3,030             | 420                 | 333                 | 354                 | 336                 | 366                                      | 431                 | 312                                             |
| Mercury                                | 0.044             | 0.0072 J            | 0.0069 J            | 0.0057 J            | 0.0073 J            | 0.0059 J                                 | 0.014               | 0.0064 J                                        |
| Nickel                                 | 60.7              | 27.8                | 30.5                | 30                  | 30.5                | 27.5                                     | 27                  | 25.8                                            |
| Potassium                              | 3,350             | 1,170               | 1,570               | 1,490               | 1,530               | 1,320                                    | 1,680               | 2,070                                           |
| Sodium                                 | 145               | 43.8                | 65.1                | 66.6                | 92.4                | 87.3                                     | 75                  | 124                                             |
| Thallium                               | 0.91              | <0.081 U            | 0.71 J              | 0.87                | 0.71                | 0.6                                      | <0.081 U            | <0.081 U                                        |
| Vanadium                               | 37.6              | 14.7                | 16.8                | 16.5                | 15.6                | 14.1                                     | 18.3                | 15.3                                            |
| Zinc                                   | 93.3              | 56.4                | 56.5 J              | 56.7                | 55.2                | 56.3                                     | 55.7                | 54.1                                            |
| Semivolatile Organic Compounds (mg/kg) |                   |                     |                     |                     |                     |                                          |                     |                                                 |
| 2-Methylnaphthalene                    | NA                | <0.025 U            | 0.19 J              | 0.14 J              | 0.088 J             | 0.061 J                                  | <0.025 U            | <0.025 U                                        |
| Bis(2-Ethylhexyl)phthalate             | NA                | 0.12 J              | <0.088 U            | <0.088 U            | <0.089 U            | <0.088 U                                 | <0.088 U            | 0.085 J                                         |
| Dibenzofuran                           | NA                | <0.024 U            | <0.024 U            | <0.024 U            | 0.024 J             | <0.024 U                                 | <0.024 U            | <0.24 U                                         |

|  | Table 4-7. Analytes detected in each of | the subsurface soil samples collected for the RI | with the analytes detected in th | e subsurface soil samples from the 2003 | <b>Removal Action</b> |
|--|-----------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------|
|--|-----------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------|

# highlighted (continued).

|                      | Station ID:       | SCsb-039M           | SCsb-039M           | SCsb-039M           | SCsb-039M           | SCsb-039M                                          | SCsb-040M           | SCsb-040M                                          |
|----------------------|-------------------|---------------------|---------------------|---------------------|---------------------|----------------------------------------------------|---------------------|----------------------------------------------------|
|                      | Sample ID:        | SCsb-039M-0001-SO   | SCsb-039M-0002-SO   | SCsb-039M-0003-SO   | SCsb-039M-0004-SO   | SCsb-039M-0005-SO                                  | SCsb-040M-0001-SO   | SCsb-040M-0002-SO                                  |
|                      | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010                                          | 9/21/2010           | 9/21/2010                                          |
|                      | Depth (feet bgs): | 1–5                 | 5–9                 | 9–13                | 13–17               | 17–20                                              | 1–5                 | 5–9                                                |
|                      | Parameters:       | explosives, metals,                                | explosives, metals, | explosives, metals,                                |
| Detected<br>Analyte  | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs, VOCs,<br>pesticides, PCBs, total<br>cyanide | SVOCs               | SVOCs, VOCs,<br>pesticides, PCBs, total<br>cyanide |
| Di-n-Butyl Phthalate | NA                | 0.16 J              | 0.081 J             | <0.08 U             | 0.092 J             | <0.08 U                                            | 0.09 J              | 0.12 J                                             |
| Fluorene             | NA                | <0.025 U            | 0.034 J             | <0.025 U            | <0.025 U            | <0.025 U                                           | <0.025 U            | <0.25 U                                            |
| Isophorone           | NA                | 0.11 J              | 0.5 J               | 0.17 J              | <0.051 U            | 0.09 J                                             | <0.051 U            | 0.06 J                                             |
| Naphthalene          | NA                | <0.021 U            | 0.053 J             | 0.032 J             | 0.057 J             | 0.045 J                                            | <0.021 U            | <0.021 U                                           |
| Phenanthrene         | NA                | 0.03 J              | 0.11 J              | 0.028 J             | 0.049 J             | 0.036 J                                            | <0.026 U            | <0.026 U                                           |
| Pesticides (mg/kg)   |                   |                     |                     |                     |                     |                                                    |                     |                                                    |
| alpha-BHC            | NA                | NT                  | NT                  | NT                  | NT                  | <0.0006 U                                          | NT                  | 0.0013 J                                           |
| Heptachlor           | NA                | NT                  | NT                  | NT                  | NT                  | 0.001 J                                            | NT                  | 0.0091 J                                           |
| Methoxychlor         | NA                | NT                  | NT                  | NT                  | NT                  | <0.0007 U                                          | NT                  | 0.001 J                                            |

# Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                    | Station ID:       | SCsb-040M           | SCsb-040M           | SCsb-040M           | SCsb-041M           | SCsb-041M           | SCsb-041M           | SCsb-041M           |
|--------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                    | Sample ID:        | SCsb-040M-0003-SO   | SCsb-040M-0004-SO   | SCsb-040M-0005-SO   | SCsb-041M-0001-SO   | SCsb-041M-0002-SO   | SCsb-041M-0003-SO   | SCsb-041M-0004-SO   |
|                    | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           |
|                    | Depth (feet bgs): | 9–13                | 13–17               | 17–20               | 1–5                 | 5-9                 | 9–13                | 13–17               |
|                    | Parameters:       | explosives, metals, |
| Analyte            | BSV               | SVOCs               |
| Inorganics (mg/kg) |                   |                     |                     |                     |                     |                     |                     |                     |
| Aluminum           | 19,500            | 10,300              | 10,100              | 9,510               | 11,600              | 13,000              | 10,400              | 10,100              |
| Antimony           | 0.96              | 0.74                | 0.32                | <0.08 U             | 0.85                | 1                   | 0.24 J              | 0.15 J              |
| Arsenic            | 19.8              | 20.5                | 16.3                | 14.4                | 13.6                | 15.4                | 15.7                | 14                  |
| Barium             | 124               | 34.6                | 39.9                | 35.7                | 73.8                | 51.2                | 46.1                | 38                  |
| Beryllium          | 0.88              | 0.62                | 0.58                | 0.54                | 0.72                | 0.67                | 0.6                 | 0.56                |
| Cadmium            | 0                 | 0.41                | 0.26 0.31           |                     | 0.32                | 0.31                | 0.31                | 0.3                 |
| Calcium            | 35,500            | 5,560               | 7,710               | 7,870               | 7,780               | 6,080               | 6,460               | 7,980               |
| Chromium           | 27.2              | 47.7                | 26.9                | 16                  | 48.6                | 56                  | 24                  | 17.7                |
| Cobalt             | 23.2              | 14.4                | 11.1                | 10.9                | 11.4                | 11.6                | 12.1                | 10.9                |
| Copper             | 32.3              | 17                  | 15.9                | 15.8                | 17.1                | 17                  | 16.6                | 15.8                |
| Iron               | 35,200            | 40,000              | 34,700              | 34,000              | 32,500              | 32,200              | 33,700              | 32,000              |
| Lead               | 19.1              | 47.5                | 40.5                | 42.3                | 39.2                | 42.4                | 42.6                | 40.5                |
| Magnesium          | 2,790             | 5,380               | 6,160               | 6,410               | 4,550               | 5,800               | 6,100               | 6,470               |
| Manganese          | 3,030             | 1,110               | 528                 | 382                 | 372                 | 403                 | 466                 | 362                 |
| Mercury            | 0.044             | 0.0055 J            | 0.004 J             | 0.0041 J            | 0.0068 J            | 0.0049 J            | 0.0079 J            | 0.0055 J            |
| Nickel             | 60.7              | 33.3                | 25.4                | 25.2                | 26.4                | 28                  | 28.1                | 25.4                |
| Potassium          | 3,350             | 1,840               | 2010                | 1,540               | 1,690               | 2,040               | 1,730               | 1,630               |
| Sodium             | 145               | 97.5                | 112                 | 99.6                | 74.5                | 91.3                | 95.2                | 110                 |
| Thallium           | 0.91              | 0.34                | <0.08 U             | <0.08 U             | <0.081 U            | <0.081 U            | <0.081 U            | <0.081 U            |

| Table 4-7. Analytes detected in each of | the subsurface soil samples collected for the R | I with the analytes detected in th | he subsurface soil samples from the 2003 | <b>Removal Action</b> |
|-----------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------------|-----------------------|
|-----------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------------|-----------------------|

# highlighted (continued).

|                          | Station ID:                            | SCsb-040M           | SCsb-040M           | SCsb-040M           | SCsb-041M           | SCsb-041M           | SCsb-041M           | SCsb-041M           |
|--------------------------|----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                          | Sample ID:                             | SCsb-040M-0003-SO   | SCsb-040M-0004-SO   | SCsb-040M-0005-SO   | SCsb-041M-0001-SO   | SCsb-041M-0002-SO   | SCsb-041M-0003-SO   | SCsb-041M-0004-SO   |
|                          | Sample Date:                           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           |
|                          | Depth (feet bgs):                      | 9–13                | 13–17               | 17–20               | 1–5                 | 5–9                 | 9–13                | 13–17               |
|                          | Parameters:                            | explosives, metals, |
| Detected<br>Analyte      | BSV                                    | SVOCs               |
| Vanadium                 | 37.6                                   | 14.1                | 13.1                | 12.3                | 15.8                | 15.6                | 14.1                | 12.8                |
| Zinc                     | 93.3                                   | 58.3                | 52.3                | 52.3                | 52.4                | 54.7                | 55.2                | 52.4                |
| Semivolatile Organic Con | Semivolatile Organic Compounds (mg/kg) |                     |                     |                     |                     |                     |                     |                     |
| 2-Methylnaphthalene      | NA                                     | <0.025 U            | 0.082 J             | <0.082 U            | <0.026 U            | <0.025 U            | 0.043 J             | 0.084 J             |
| Di-n-Butyl Phthalate     | NA                                     | <0.08 U             | <0.079 U            | 0.1 J               | 0.11 J              | 0.081 J             | <0.08 U             | <0.08 U             |
| Isophorone               | NA                                     | 0.097 J             | 0.088 J             | <0.05 U             | 0.053 J             | 0.11 J              | <0.051 U            | <0.05 U             |
| Naphthalene              | NA                                     | <0.021 U            | 0.057 J             | 0.051 J             | <0.021 U            | <0.021 U            | 0.029 J             | 0.057 J             |
| Phenanthrene             | NA                                     | <0.026 U            | 0.039 J             | 0.038 J             | <0.027 U            | <0.026 U            | 0.028 J             | 0.042 J             |

Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                     | Station ID:       | SCsb-041M           | SCsb-042M                                                | SCsb-042M           | SCsb-042M           | SCsb-042M           | SCsb-042M           | SCsb-043M           |
|---------------------|-------------------|---------------------|----------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                     | Sample ID:        | SCsb-041M-0005-SO   | SCsb-042M-0001-SO                                        | SCsb-042M-0002-SO   | SCsb-042M-0003-SO   | SCsb-042M-0004-SO   | SCsb-042M-0005-SO   | SCsb-043M-0001-SO   |
|                     | Sample Date:      | 9/21/2010           | 9/21/2010                                                | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           |
|                     | Depth (feet bgs): | 17–20               | 1–5                                                      | 5–9                 | 9–13                | 13–17               | 17–20               | 1–5                 |
|                     | Parameters:       | explosives, metals, | explosives, metals,                                      | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, |
| Detected<br>Analyte | BSV               | SVOCs               | SVOCS SVOCS SVOCS, vocs, pesticides, PCBs, total cyanide |                     | SVOCs               | SVOCs SVOCs         |                     |                     |
| Inorganics (mg/kg)  |                   |                     |                                                          |                     |                     |                     |                     |                     |
| Aluminum            | 19,500            | 10,900              | 11,900                                                   | 11,600              | 14,000              | 11,200              | 10,700              | 11,400              |
| Antimony            | 0.96              | 0.52                | 0.69                                                     | 0.58                | <0.4 U              | 0.25 J              | 0.79                | <0.082 U            |
| Arsenic             | 19.8              | 14.8                | 12.4                                                     | 16.4                | 15.4                | 13.9                | 14.8                | 15.5                |
| Barium              | 124               | 45.8                | 78.1                                                     | 48.8                | 69.3                | 46.9                | 43.8                | 56.8                |
| Beryllium           | 0.88              | 0.6                 | 0.76                                                     | 0.63                | 0.49                | 0.62                | 0.57                | 0.67                |
| Cadmium             | 0                 | 0.28                | 0.27                                                     | 0.29                | <0.03 U             | 0.31                | 0.27                | 0.25                |
| Calcium             | 35,500            | 8,220               | 2210                                                     | 6,220               | 5,360               | 8,900               | 8,400               | 1,490               |
| Chromium            | 27.2              | 38.2                | 45.4                                                     | 42                  | 19.8                | 27.6                | 47                  | 19.4                |
| Cobalt              | 23.2              | 11                  | 11.9                                                     | 10.9                | 13                  | 11                  | 10.5                | 11.2                |
| Copper              | 32.3              | 16.5                | 18.7                                                     | 17.1                | 21                  | 17.1                | 16.4                | 18                  |
| Iron                | 35,200            | 31,700              | 32,700                                                   | 33,500              | 35,600              | 34,400              | 32,600              | 35,500              |
| Lead                | 19.1              | 41.2                | 36.8                                                     | 42.2                | 11.2                | 41.1                | 40                  | 40.9                |
| Magnesium           | 2,790             | 6,610               | 3,830                                                    | 5,030               | 5,490               | 6,870               | 6,540               | 4,070               |
| Manganese           | 3,030             | 360                 | 412                                                      | 445                 | 451                 | 391                 | 385                 | 385                 |
| Mercury             | 0.044             | 0.0066 J            | 0.012                                                    | 0.0052 J            | 0.008               | 0.0059 J            | 0.0044 J            | 0.011               |
| Nickel              | 60.7              | 25.7                | 26.4                                                     | 26                  | 30.7                | 26.1                | 24.7                | 26.6                |
| Potassium           | 3,350             | 2,150               | 1,650                                                    | 1,950               | 1,880               | 2,110               | 2,070               | 1,080               |
| Sodium              | 145               | 135                 | 64.4                                                     | 83.2                | 92                  | 113                 | 118                 | 48.1                |
| Thallium            | 0.91              | <0.08 U             | <0.081 U                                                 | <0.081 U            | 2.1                 | <0.081 U            | 0.19 J              | <0.082 U            |
| Vanadium            | 37.6              | 14.1                | 17                                                       | 15.1                | 20.5                | 14.7                | 13.6                | 15.6                |

|  | Table 4-7. Analytes detected in each of the | subsurface soil samples collected for the | RI with the analytes detected in th | e subsurface soil samples from the 2003 | Removal Action |
|--|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------|----------------|
|--|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------|----------------|

# highlighted (continued).

|                           | Station ID:       | SCsb-041M           | SCsb-042M           | SCsb-042M           | SCsb-042M                        | SCsb-042M           | SCsb-042M           | SCsb-043M           |
|---------------------------|-------------------|---------------------|---------------------|---------------------|----------------------------------|---------------------|---------------------|---------------------|
|                           | Sample ID:        | SCsb-041M-0005-SO   | SCsb-042M-0001-SO   | SCsb-042M-0002-SO   | SCsb-042M-0003-SO                | SCsb-042M-0004-SO   | SCsb-042M-0005-SO   | SCsb-043M-0001-SO   |
|                           | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010                        | 9/21/2010           | 9/21/2010           | 9/21/2010           |
|                           | Depth (feet bgs): | 17–20               | 1–5                 | 5-9                 | 9–13                             | 13–17               | 17–20               | 1–5                 |
|                           | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,              | explosives, metals, | explosives, metals, | explosives, metals, |
| Detected<br>Analyte       | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs, VOCs,<br>pesticides, PCBs | SVOCs               | SVOCs               | SVOCs               |
| Zinc                      | 93.3              | 52.6                | 56.3                | 54.1                | 67                               | 54.5                | 51.3                | 56                  |
| Semivolatile Organic Comp | ounds (mg/kg)     |                     | -                   | -                   |                                  | -                   |                     |                     |
| 2-Methylnaphthalene       | NA                | 0.08 J              | <0.025 U            | <0.025 U            | 0.049 J                          | 0.068 J             | 0.073 J             | <0.025 U            |
| Dibenzofuran              | NA                | <0.024 U            | <0.024 U            | <0.024 U            | <0.024 U                         | 0.024 J             | <0.024 U            | <0.024 U            |
| Di-n-Butyl Phthalate      | NA                | <0.079 U            | <0.08 U             | <0.079 U            | 0.1 J                            | <0.081 U            | <0.079 U            | <0.08 U             |
| Isophorone                | NA                | <0.05 U             | <0.05 U             | 0.07 J              | <0.051 U                         | <0.051 U            | <0.05 U             | <0.051 U            |
| Naphthalene               | NA                | 0.056 J             | <0.021 U            | <0.021 U            | 0.035 J                          | 0.06 J              | 0.031 J             | <0.021 U            |
| Phenanthrene              | NA                | 0.051 J             | <0.026 U            | <0.026 U            | 0.034 J                          | 0.043 J             | 0.04 J              | <0.026 U            |
| Pesticides (mg/kg)        |                   |                     |                     |                     |                                  |                     |                     |                     |
| Heptachlor                | NA                | NT                  | NT                  | NT                  | 0.009                            | NT                  | NT                  | NT                  |

| Table 4-7 | 7. Analytes detected | in each of the subsurface | soil samples collecte | d for the RI w | vith the analytes detected | in the subsurface soil samples from the | he 2003 Removal Action ] |
|-----------|----------------------|---------------------------|-----------------------|----------------|----------------------------|-----------------------------------------|--------------------------|
|           |                      |                           |                       |                |                            |                                         |                          |

| highlighted | (continued). |
|-------------|--------------|
|-------------|--------------|
|                    |                   | _                   |                     |                     | _                   |                     |                     |                         |
|--------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------------|
|                    | Station ID:       | SCsb-043M           | SCsb-043M           | SCsb-043M           | SCsb-043M           | SCsb-044M           | SCsb-045M           | SCsb-046M               |
|                    | Sample ID:        | SCsb-043M-0002-SO   | SCsb-043M-0003-SO   | SCsb-043M-0004-SO   | SCsb-043M-0005-SO   | SCsb-044M-0001-SO   | SCsb-045M-0001-SO   | SCsb-046M-0001-SO       |
|                    | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/24/2010           | 9/25/2010           | 9/29/2010               |
|                    | Depth (feet bgs): | 5–9                 | 9–13                | 13–17               | 17–20               | 1–5                 | 1–5                 | 1–5                     |
| Detected           | Parameters:       | explosives, metals,     |
| Analyte            | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> |
| Inorganics (mg/kg) | -                 | -                   |                     | -                   |                     |                     | -                   |                         |
| Aluminum           | 19,500            | 12,300              | 16,600              | 10,800              | 11,700              | 11,100              | 8,490               | 11,600                  |
| Antimony           | 0.96              | 0.8                 | 3.6                 | 0.33                | 0.11 J              | 0.7                 | 1.3 J               | 0.41 J                  |
| Arsenic            | 19.8              | 15.8                | 20.3                | 13.7                | 13.8                | 7.8                 | 11.9                | 11.1                    |
| Barium             | 124               | 54.8                | 83.3                | 48.5                | 48.9                | 45                  | 113                 | 94.6                    |
| Beryllium          | 0.88              | 0.7                 | 0.88                | 0.59                | 0.64                | 0.41                | 0.52                | 0.53                    |
| Cadmium            | 0                 | 0.26                | 0.41                | 0.24                | 0.27                | <0.012 U            | 0.45                | <0.012 U                |
| Calcium            | 35,500            | 5,020               | 4,600               | 7,330               | 8,280               | 2,690               | 56,600              | 12,600                  |
| Chromium           | 27.2              | 49.9                | 186                 | 25.3                | 28.4                | 65.2                | 153                 | 20.4                    |
| Cobalt             | 23.2              | 12.3                | 13.2                | 10.4                | 10.9                | 9.2                 | 6.6                 | 7.6                     |
| Copper             | 32.3              | 17.6                | 18.9                | 16.6                | 16.3                | 14.3                | 24                  | 16.6                    |
| Iron               | 35,200            | 32,400              | 38,200              | 32,600              | 33,400              | 26,700              | 19,500              | 27,000                  |
| Lead               | 19.1              | 40.5                | 42.8                | 38.7                | 49.7                | 25.8                | 53.5                | 33.1                    |
| Magnesium          | 2,790             | 5,280               | 5,330               | 6,040               | 6,780               | 4,110               | 5,610               | 4,260                   |
| Manganese          | 3,030             | 461                 | 630                 | 312                 | 366                 | 312                 | 658                 | 483                     |
| Mercury            | 0.044             | 0.0042 J            | 0.0064 J            | 0.006 J             | 0.007 J             | 2                   | 0.26                | 0.076                   |
| Nickel             | 60.7              | 28.5                | 30.8                | 25.1                | 26.1                | 20                  | 18.9                | 17.4                    |
| Potassium          | 3,350             | 2,270               | 4,600               | 1,780               | 2,250               | 1,570               | 1,030               | 838                     |
| Selenium           | 1.5               | 0.071               | <0.07 U             | <0.071 U            | <0.07 U             | 0.22 J              | 0.86 J              | 1.1                     |
| Silver             | 0                 | <0.017 U            | <0.017 U            | <0.017 U            | <0.017 U            | <0.034 U            | 13.5                | 5.4                     |
| Sodium             | 145               | 88.9                | 215                 | 89.5                | 124                 | 58.1                | 72.9                | 39.9                    |
| Thallium           | 0.91              | <0.082 U            | 0.39                | <0.081 U            | <0.08 U             | 1.6                 | 1.2                 | 1.6                     |
| Vanadium           | 37.6              | 16.3                | 22.2                | 14.1                | 14.7                | 15.4                | 14.7                | 17                      |
| Zinc               | 93.3              | 56.1                | 58.5                | 51.8                | 53                  | 48                  | 76                  | 56.7                    |

Table 4-7. Analytes detected in each of the subsurface soil samples collected for the RI with the analytes detected in the subsurface soil samples from the 2003 Removal Action highlighted (continued).

|                            | Station ID:       | SCsb-043M           | SCsb-043M           | SCsb-043M           | SCsb-043M           | SCsb-044M           | SCsb-045M           | SCsb-046M               |
|----------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------------|
|                            | Sample ID:        | SCsb-043M-0002-SO   | SCsb-043M-0003-SO   | SCsb-043M-0004-SO   | SCsb-043M-0005-SO   | SCsb-044M-0001-SO   | SCsb-045M-0001-SO   | SCsb-046M-0001-SO       |
|                            | Sample Date:      | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/21/2010           | 9/24/2010           | 9/25/2010           | 9/29/2010               |
|                            | Depth (feet bgs): | 5–9                 | 9–13                | 13–17               | 17–20               | 1–5                 | 1–5                 | 1–5                     |
| Detected                   | Parameters:       | explosives, metals,     |
| Analyte                    | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+0</sup> |
| Semivolatile Organic Compo | ounds (mg/kg)     |                     |                     |                     |                     |                     |                     |                         |
| 1,2-Dichlorobenzene        | NA                | <0.025 U            | <0.024 U            | <0.024 U            | <0.024 U            | <0.024 U            | 0.029 J             | <0.025 U                |
| 2-Methylnaphthalene        | NA                | <0.026 U            | <0.025 U            | 0.049 J             | 0.063 J             | 0.025 U             | 0.1 J               | 0.052 J                 |
| Acenaphthene               | NA                | <0.025 U            | <0.024 U            | <0.024 U            | <0.024 U            | <0.024 U            | 0.032 J             | 0.086 J                 |
| Anthracene                 | NA                | <0.025 U            | <0.024 U            | <0.024 U            | <0.024 U            | <0.024 U            | 0.098 J             | 0.21 J                  |
| Benzo(a)anthracene         | NA                | <0.026 U            | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            | 0.26 J              | 0.34 J                  |
| Benzo(a)pyrene             | NA                | <0.024 U            | <0.023 U            | <0.023 U            | <0.023 U            | <0.023 U            | 0.41 J              | 0.29J                   |
| Benzo(b)fluoranthene       | NA                | <0.026 U            | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            | 0.63 J              | 0.52 J                  |
| Benzo(g,h,i)perylene       | NA                | <0.023 U            | <0.022 U            | <0.022 U            | <0.022 U            | <0.022 U            | 0.22 J              | 0.072 J                 |
| Benzo(k)fluoranthene       | NA                | <0.026 U            | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            | 0.14 J              | 0.16 J                  |
| Bis(2-Ethylhexyl)phthalate | NA                | <0.089 U            | 0.11 J              | <0.088 U            | <0.087 U            | <0.088 U            | 0.11 J              | <0.089 U                |
| Carbazole                  | NA                | <0.029 U            | <0.028 U            | <0.028 U            | <0.028 U            | <0.028 U            | 0.067 J             | 0.11 J                  |
| Chrysene                   | NA                | <0.026 U            | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            | 0.27 J              | 0.29 J                  |
| Dibenzofuran               | NA                | <0.025 U            | <0.024 U            | <0.024 U            | <0.024 U            | <0.024 U            | 0.038 J             | 0.062 J                 |
| Di-n-Butyl Phthalate       | NA                | <0.081 U            | 0.24 J              | <0.08 U             | <0.079 U            | 0.094 J             | 0.22 J              | 0.15 J                  |
| Fluoranthene               | NA                | <0.027 U            | <0.026 U            | <0.026 U            | <0.026 U            | <0.026 U            | 0.57                | 0.84                    |
| Fluorene                   | NA                | <0.026 U            | <0.025 U            | <0.025 U            | <0.025 U            | <0.025 U            | 0.04 J              | 0.094 J                 |
| Indeno(1,2,3-cd)pyrene     | NA                | <0.024 U            | <0.023 U            | <0.023 U            | <0.023 U            | <0.023 U            | 0.19 J              | <0.024 UJ               |
| Isophorone                 | NA                | 0.064 J             | 0.094 J             | 0.1 J               | <0.05 U             | 0.13 J              | <0.053 U            | <0.051 U                |
| Naphthalene                | NA                | <0.022 U            | <0.021 U            | 0.054 J             | 0.043 J             | 0.021 U             | 0.076 J             | 0.054 J                 |
| Phenanthrene               | NA                | <0.027 U            | <0.026 U            | 0.037 J             | 0.034 J             | 0.026 U             | 0.41 J              | 0.7                     |
| Pyrene                     | NA                | <0.027 U            | <0.026 U            | <0.026 U            | <0.026 U            | <0.026 U            | 0.54                | 0.64                    |

|                             | Station ID:       | SCsb-047M           | SCsb-048D         | SCsb-048M                                            | SCsb-049M           | SCsb-050M           | SCsb-051M           | SCsb-052M           |
|-----------------------------|-------------------|---------------------|-------------------|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|
|                             | Sample ID:        | SCsb-047M-0001-SO   | SCsb-048D-0001-SO | SCsb-048M-0001-SO                                    | SCsb-049M-0001-SO   | SCsb-050M-0001-SO   | SCsb-051M-0001-SO   | SCsb-052M-0001-SO   |
|                             | Sample Date:      | 9/29/2010           | 9/29/2010         | 9/29/2010                                            | 9/29/2010           | 9/29/2010           | 9/21/2010           | 9/24/2010           |
|                             | Depth (feet bgs): | 1–5                 | 1–5               | 1–5                                                  | 1–5                 | 1–5                 | 1–5                 | 1–5                 |
|                             | Parameters:       | explosives, metals, | VOCs              | explosives, propellants,                             | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals, |
| Detected<br>Analyte         | BSV               | SVOCS               |                   | pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | SVOCS               | SVOCS               | svocs, cr.º         | svocs               |
| Explosives/Propellants (mg/ | kg)               |                     |                   |                                                      |                     | -                   |                     |                     |
| 2,4,6-Trinitrotoluene       | NA                | <0.089 U            | NT                | <0.9 U                                               | 0.1 J               | <0.9 U              | <0.9 U              | <0.9 U              |
| 2-Amino-4,6-Dinitrotoluene  | NA                | <0.05 U             | NT                | <0.05 U                                              | 0.26 J              | <0.05 U             | <0.05 U             | <0.05 U             |
| m-Nitrotoluene              | NA                | <0.07U              | NT                | <0.07U                                               | 0.32 J              | <0.07U              | <0.07U              | <0.07U              |
| Inorganics (mg/kg)          |                   |                     |                   |                                                      |                     |                     |                     |                     |
| Aluminum                    | 19,500            | 13,700              | NT                | 13,000                                               | 17,600              | 11,500              | 12,000              | 9,050               |
| Antimony                    | 0.96              | 1.9                 | NT                | 1.5                                                  | 0.71 J              | 11.2                | <0.41 UJ            | 0.55                |
| Arsenic                     | 19.8              | 20.2                | NT                | 15                                                   | 20.1                | 13.2                | 14.6                | 10.2                |
| Barium                      | 124               | 112                 | NT                | 137                                                  | 183                 | 77.6                | 76.9                | 45.6                |
| Beryllium                   | 0.88              | 0.92                | NT                | 1.5                                                  | 1.7                 | 1.2                 | 0.6                 | 0.4                 |
| Cadmium                     | 0                 | <0.012 U            | NT                | <0.012 U                                             | <0.03 U             | 0.39                | <0.031 UJ           | 0.062               |
| Calcium                     | 35,500            | 28,200              | NT                | 37,100                                               | 82,400              | 5,410               | 10,600              | 3,410               |
| Chromium                    | 27.2              | 138                 | NT                | 109                                                  | 155                 | 163                 | 73.2                | 14                  |
| Cobalt                      | 23.2              | 6.5                 | NT                | 6                                                    | 9.4                 | 7.6                 | 11.2                | 7.3                 |
| Copper                      | 32.3              | 19.3                | NT                | 44.8                                                 | 30.7                | 153                 | 20.7                | 12.5                |
| Iron                        | 35,200            | 22,800              | NT                | 22,800                                               | 24,000              | 25,800              | 29,800              | 24,700              |
| Lead                        | 19.1              | 24.3                | NT                | 34.5                                                 | 38.5                | 41.2                | 10.9                | 10.9                |
| Magnesium                   | 2,790             | 3,660               | NT                | 3,580                                                | 8,830               | 1,880               | 4,520               | 4,340               |
| Manganese                   | 3,030             | 950                 | NT                | 1,150                                                | 1,640               | 477                 | 552                 | 244                 |
| Mercury                     | 0.044             | 0.7                 | NT                | 0.046                                                | 0.032               | 0.16                | 0.054               | 0.016               |
| Nickel                      | 60.7              | 47.7                | NT                | 88.1                                                 | 27.3                | 22.5                | 27.9                | 17.1                |
| Potassium                   | 3,350             | 1,170               | NT                | 1,020                                                | 1,430               | 937                 | 1,140               | 1,140               |
| Selenium                    | 1.5               | 1.8                 | NT                | 1.1                                                  | 0.51 J              | 1.5                 | <0.36 U             | 0.53 J              |
| Silver                      | 0                 | 0.61                | NT                | 0.5                                                  | 0.17 J              | 0.7                 | 0.13 J              | 4.8                 |
| Sodium                      | 145               | 121                 | NT                | 227                                                  | 180                 | 76.1                | 53.7                | 66.4                |

|                            | Station ID:       | SCsb-047M           | SCsb-048D         | SCsb-048M                                                              | SCsb-049M           | SCsb-050M           | SCsb-051M               | SCsb-052M           |
|----------------------------|-------------------|---------------------|-------------------|------------------------------------------------------------------------|---------------------|---------------------|-------------------------|---------------------|
|                            | Sample ID:        | SCsb-047M-0001-SO   | SCsb-048D-0001-SO | SCsb-048M-0001-SO                                                      | SCsb-049M-0001-SO   | SCsb-050M-0001-SO   | SCsb-051M-0001-SO       | SCsb-052M-0001-SO   |
|                            | Sample Date:      | 9/29/2010           | 9/29/2010         | 9/29/2010                                                              | 9/29/2010           | 9/29/2010           | 9/21/2010               | 9/24/2010           |
|                            | Depth (feet bgs): | 1–5                 | 1–5               | 1–5                                                                    | 1–5                 | 1–5                 | 1–5                     | 1–5                 |
|                            | Parameters:       | explosives, metals, | VOCs              | explosives, propellants,                                               | explosives, metals, | explosives, metals, | explosives, metals,     | explosives, metals, |
| Detected<br>Analyte        | BSV               | SVOCs               |                   | metals, SVOCs,<br>pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> | SVOCs               |
| Thallium                   | 0.91              | 1.9                 | NT                | 1.6                                                                    | 2.1                 | 1.8                 | 1.7 J                   | 1.3                 |
| Vanadium                   | 37.6              | 17.3                | NT                | 13.3                                                                   | 19.7                | 17.7                | 17.6                    | 12.8                |
| Zinc                       | 93.3              | 49                  | NT                | 41.3                                                                   | 53.8                | 193                 | 66.6 J                  | 42.2                |
| Semivolatile Organic Comp  | ounds (mg/kg)     |                     |                   |                                                                        |                     |                     |                         |                     |
| 1,2-Dichlorobenzene        | NA                | <0.025 U            | NT                | <0.024 U                                                               | 0.024 J             | <0.025 U            | <0.024 U                | <0.024 U            |
| 2-Methylnaphthalene        | NA                | 0.31 J              | NT                | 0.49                                                                   | 0.57                | 0.7                 | <0.025 U                | <0.025 U            |
| Acenaphthene               | NA                | 0.029 J             | NT                | <0.024 U                                                               | 0.7                 | 0.061 J             | <0.024 U                | <0.024 U            |
| Acenaphthylene             | NA                | 0.057 J             | NT                | 0.034 J                                                                | 0.14 J              | 0.066 J             | <0.024 U                | <0.024 U            |
| Anthracene                 | NA                | 0.14 J              | NT                | 0.065 J                                                                | 3.1                 | 0.25                | <0.024 U                | <0.024 U            |
| Benzo(a)anthracene         | NA                | 0.29 J              | NT                | 0.12 J                                                                 | 8.2                 | 1.1                 | <0.025 U                | <0.026 U            |
| Benzo(a)pyrene             | NA                | 0.35 J              | NT                | 0.15 J                                                                 | 8.3                 | 1.3 J               | 0.035 J                 | <0.023 UJ           |
| Benzo(b)fluoranthene       | NA                | 0.96 J              | NT                | 0.41 J                                                                 | 13                  | 2.7 J               | 0.039 J                 | <0.026 UJ           |
| Benzo(g,h,i)perylene       | NA                | 0.074 J             | NT                | <0.022 UJ                                                              | 1.3 J               | 0.28 J              | <0.022 UJ               | <0.022 UJ           |
| Benzo(k)fluoranthene       | NA                | 0.33 J              | NT                | 0.16 J                                                                 | 4.4 J               | 1.1 J               | <0.025 UJ               | <0.026 UJ           |
| Benzoic Acid               | NA                | <0.3 U              | NT                | <0.29 U                                                                | <0.3 U              | <0.3 U              | 0.32 J                  | <0.3 U              |
| Bis(2-Ethylhexyl)phthalate | NA                | 0.095 J             | NT                | <0.088 U                                                               | <0.089 U            | 0.14 J              | 0.17 J                  | <0.089 U            |
| Carbazole                  | NA                | 0.06 J              | NT                | 0.035 J                                                                | <2.2                | 0.13 J              | <0.029 U                | <0.029 U            |
| Chrysene                   | NA                | 0.39 J              | NT                | 0.18 J                                                                 | 7.6                 | 1.3                 | <0.025 U                | <0.026 U            |
| Dibenzo(a,h)anthracene     | NA                | 0.036 J             | NT                | <0.022 UJ                                                              | 0.55 J              | 0.1 J               | <0.022 UJ               | <0.022 UJ           |
| Dibenzofuran               | NA                | 0.076 J             | NT                | 0.093 J                                                                | 0.84                | 0.17 J              | <0.024 U                | <0.024 U            |
| Di-n-Butyl Phthalate       | NA                | 0.19 J              | NT                | 0.12 J                                                                 | 0.13 J              | 0.18 J              | 0.14 J                  | 0.13 J              |
| Fluoranthene               | NA                | 0.49                | NT                | 0.24 J                                                                 | 17                  | 2.8                 | 0.031 J                 | <0.027 U            |
| Fluorene                   | NA                | 0.034 J             | NT                | 0.041 J                                                                | 1.1                 | 0.1 J               | <0.025 U                | <0.026 U            |
| Indeno(1,2,3-cd)pyrene     | NA                | 0.088 J             | NT                | 0.049 J                                                                | 1.6 J               | 0.34 J              | <0.023 UJ               | <0.023 UJ           |
| Isophorone                 | NA                | <0.051 U            | NT                | 0.05                                                                   | <0.051 U            | <0.051 U            | <0.051 U                | <0.051 U            |

|                           | Station ID:       | SCsb-047M           | SCsb-048D         | SCsb-048M                                                              | SCsb-049M           | SCsb-050M           | SCsb-051M               | SCsb-052M           |
|---------------------------|-------------------|---------------------|-------------------|------------------------------------------------------------------------|---------------------|---------------------|-------------------------|---------------------|
|                           | Sample ID:        | SCsb-047M-0001-SO   | SCsb-048D-0001-SO | SCsb-048M-0001-SO                                                      | SCsb-049M-0001-SO   | SCsb-050M-0001-SO   | SCsb-051M-0001-SO       | SCsb-052M-0001-SO   |
|                           | Sample Date:      | 9/29/2010           | 9/29/2010         | 9/29/2010                                                              | 9/29/2010           | 9/29/2010           | 9/21/2010               | 9/24/2010           |
|                           | Depth (feet bgs): | 1–5                 | 1–5               | 1–5                                                                    | 1–5                 | 1–5                 | 1–5                     | 1–5                 |
|                           | Parameters:       | explosives, metals, | VOCs              | explosives, propellants,                                               | explosives, metals, | explosives, metals, | explosives, metals,     | explosives, metals, |
| Detected<br>Analyte BSV   | BSV               | SVOCs               |                   | metals, SVOCs,<br>pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | SVOCs               | SVOCs               | SVOCs, Cr <sup>+0</sup> | SVOCs               |
| Naphthalene               | NA                | 0.23 J              | NT                | 0.33 J                                                                 | 0.98                | 0.53                | <0.021 U                | <0.021 U            |
| Pentachlorophenol         | NA                | <0.25 U             | NT                | <0.24 U                                                                | <0.24 U             | 0.38 J              | <0.24 U                 | <0.24 U             |
| Phenanthrene              | NA                | 0.35 J              | NT                | 0.28 J                                                                 | 11                  | 1.1                 | 0.027 J                 | <0.027 U            |
| Pyrene                    | NA                | 0.49                | NT                | 0.24 J                                                                 | 13                  | 2.5                 | 0.029 J                 | <0.027 U            |
| Volatile Organic Compound | ds (mg/kg)        |                     |                   |                                                                        |                     |                     |                         |                     |
| 1.2-Dimethylbenzene       | NA                | NT                  | 0.35              | NT                                                                     | NT                  | NT                  | NT                      | NT                  |
| Benzene                   | NA                | NT                  | 0.06              | NT                                                                     | NT                  | NT                  | NT                      | NT                  |
| Ethylbenzene              | NA                | NT                  | 0.15              | NT                                                                     | NT                  | NT                  | NT                      | NT                  |
| Toluene                   | NA                | NT                  | 0.31              | NT                                                                     | NT                  | NT                  | NT                      | NT                  |
| Xylene (Total)            | NA                | NT                  | 0.36              | NT                                                                     | NT                  | NT                  | NT                      | NT                  |
| Pesticides (mg/kg)        |                   |                     |                   |                                                                        |                     |                     |                         |                     |
| 4,4'-DDE                  | NA                | NT                  | NT                | 0.0051 J                                                               | NT                  | NT                  | NT                      | NT                  |
| 4,4'-DDT                  | NA                | NT                  | NT                | 0.013 J                                                                | NT                  | NT                  | NT                      | NT                  |
| Endosulfan II             | NA                | NT                  | NT                | 0.0036 J                                                               | NT                  | NT                  | NT                      | NT                  |
| General Chemistry         |                   |                     |                   |                                                                        |                     |                     |                         |                     |
| Total Cyanide             | 0                 | NT                  | NT                | 0.76                                                                   | NT                  | NT                  | NT                      | NT                  |

|                            | Station ID:       | SCsb-053M           | SCsb-054M           | SCsb-055M           | SCsb-056M               |
|----------------------------|-------------------|---------------------|---------------------|---------------------|-------------------------|
|                            | Sample ID:        | SCsb-053M-0001-SO   | SCsb-054M-0001-SO   | SCsb-055M-0001-SO   | SCsb-056M-0001-SO       |
|                            | Sample Date:      | 9/25/2010           | 9/29/2010           | 9/25/2010           | 9/25/2010               |
|                            | Depth (feet bgs): | 1–5                 | 1–5                 | 1–5                 | 1–5                     |
|                            | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,     |
| Analyte                    | BSV               | SVOCs               | SVOCs               | SVOCs               | SVOCs, Cr <sup>+6</sup> |
| Inorganics (mg/kg)         |                   |                     |                     |                     |                         |
| Aluminum                   | 19,500            | 10,700              | 8,410               | 15,200              | 12,800                  |
| Antimony                   | 0.96              | 0.16 U              | 1.4                 | 0.93                | 1.2                     |
| Arsenic                    | 19.8              | 17.7                | 11.4                | 11.1                | 15.2                    |
| Barium                     | 124               | 46.4                | 80                  | 91 B                | 58.9                    |
| Beryllium                  | 0.88              | 0.43                | 0.4                 | 0.77                | 0.54                    |
| Calcium                    | 35,500            | 5,440               | 3,40                | 12,000              | 3,340                   |
| Chromium                   | 27.2              | 18.3                | 116                 | 96.6                | 111                     |
| Cobalt                     | 23.2              | 11.6                | 4.8                 | 8.4                 | 11.4                    |
| Copper                     | 32.3              | 16.5                | 16                  | 11.5                | 16.9                    |
| Iron                       | 35,200            | 33,100              | 25,800              | 30,000              | 33,500                  |
| Lead                       | 19.1              | 8.7                 | 20.3                | 15.7                | 11.7                    |
| Magnesium                  | 2,790             | 5,440               | 2,130               | 4,670               | 5,180                   |
| Manganese                  | 3,030             | 584                 | 420                 | 711                 | 342                     |
| Mercury                    | 0.044             | 0.026               | 0.0087              | 0.021               | 0.014                   |
| Nickel                     | 60.7              | 26.3                | 14.9                | 16                  | 25.9                    |
| Potassium                  | 3,350             | 1,050               | 980                 | 1,090               | 1,160                   |
| Selenium                   | 1.5               | 0.72 J              | 1.7                 | 1.6                 | 0.46 J                  |
| Silver                     | 0                 | <0.035 U            | 0.48                | <0.035 U            | <0.035 U                |
| Sodium                     | 145               | 44                  | 31.7                | 70.3                | 47.5                    |
| Thallium                   | 0.91              | 1.7                 | 1.4                 | 1.7                 | 1.8                     |
| Vanadium                   | 37.6              | 14.9                | 14.1                | 17.7                | 18.6                    |
| Zinc                       | 93.3              | 54.4                | 47.5                | 38.9                | 55.3                    |
| Semivolatile Organic Compo | ounds (mg/kg)     |                     |                     | 1                   |                         |
| 2-Methylnaphthalene        | NA                | 0.026 J             | <0.025 U            | <0.025 U            | <0.025 U                |
| Benzo(b)fluoranthene       | NA                | 0.061 J             | <0.025 UJ           | <0.025 U            | <0.025 U                |

| Table 4-7. Analytes detected in each of | the subsurface soil samples collected for the l | RI with the analytes detected in th    | e subsurface soil samples from the 2003 | <b>Removal Action</b> |
|-----------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------|
|                                         |                                                 | ······································ |                                         |                       |

# n highlighted (continued).

|                            | Station ID:       | SCsb-053M           | SCsb-054M           | SCsb-055M           | SCsb-056M                                      |  |
|----------------------------|-------------------|---------------------|---------------------|---------------------|------------------------------------------------|--|
|                            | Sample ID:        | SCsb-053M-0001-SO   | SCsb-054M-0001-SO   | SCsb-055M-0001-SO   | SCsb-056M-0001-SO                              |  |
|                            | Sample Date:      | 9/25/2010           | 9/29/2010           | 9/25/2010           | 9/25/2010                                      |  |
|                            | Depth (feet bgs): | 1–5                 | 1–5                 | 1–5                 | 1–5                                            |  |
| Detected                   | Parameters:       | explosives, metals, | explosives, metals, | explosives, metals, | explosives, metals,<br>SVOCs, Cr <sup>+6</sup> |  |
| Analyte                    | BSV               | SVOCs               | SVOCs               | SVOCs               |                                                |  |
| Benzo(k)fluoranthene       | NA                | 0.035 J             | <0.025 UJ           | <0.025 U            | <0.025 U                                       |  |
| Bis(2-Ethylhexyl)phthalate | NA                | <0.089 U            | <0.088 U            | 0.14 J              | <0.088 U                                       |  |
| Chrysene                   | NA                | 0.034 J             | <0.025 U            | <0.025 U            | <0.025 U                                       |  |
| Di-n-Butyl Phthalate       | NA                | 0.15 J              | 0.13 J              | 0.14 J              | 0.2 J                                          |  |
| Fluoranthene               | NA                | 0.046 J             | <0.026 U            | <0.026 U            | <0.026 U                                       |  |
| Phenanthrene               | NA                | 0.033 J             | <0.026 U            | <0.026 U            | <0.026 U                                       |  |
| Pyrene                     | NA                | 0.046 J             | <0.026 U            | <0.026 U            | <0.026 U                                       |  |

< denotes less than

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010).

Highlighted box denotes concentration is greater than the former RVAAP background value.

bgs denotes below ground surface.

BSV denotes background screening value

 $Cr^{+6}$  denotes hexavalent chromium.

ID denotes identification.

J denotes reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

NT denotes not tested.

PCB denotes polychlorinated biphenyl.

RVAAP denotes former Ravenna Army Ammunition Plant.

SVOC denotes semivolatile organic compound.

U denotes analyte was not detected and is reported as less than the level of detection.

UJ denotes analtye not detected. The detection limits and quantitation limits are approximate.

VOC denotes volatile organic compound.

### Table 4-8. Summary of SRCs identified in 2003 Removal Action from discrete sediment samples.

| Analyte                                | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV<br>(mg/kg) |
|----------------------------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|----------------|
| Explosives and Propellants             |            |                        |                           |                           |                           |                |
| 2,6-Dinitrotoluene                     | 606-20-2   | 1/2                    | 0.11 J                    | 0.11 J                    | 0.11                      | NA             |
| Nitrocellulose                         | 9004-70-0  | 1/2                    | 0.82                      | 0.98                      | 0.9                       | NA             |
| Nitroguanidine                         | 556-88-7   | 1/2                    | 0.05 J                    | 0.05 J                    | 0.05                      | NA             |
| Inorganics                             | •          |                        |                           |                           | •                         | -              |
| Aluminum                               | 7429-90-5  | 12/12                  | 1,500                     | 14,000                    | 6,241                     | 13,900         |
| Antimony                               | 7440-36-0  | 1/12                   | 0.086                     | 0.086                     | 0.32                      | 0              |
| Arsenic                                | 7440-38-2  | 12/12                  | 3.4                       | 15                        | 9.9                       | 19.5           |
| Barium                                 | 7440-39-3  | 12/12                  | 9.4                       | 59                        | 18.36                     | 123            |
| Beryllium                              | 7440-41-7  | 12/12                  | 0.073                     | 0.67                      | 0.31                      | 0.38           |
| Cadmium                                | 7440-43-9  | 2/12                   | 0.13                      | 0.39                      | 0.23                      | 0              |
| Calcium                                | 7440-70-2  | 12/12                  | 570                       | 3,300                     | 1,780                     | 15,800         |
| Chromium                               | 7440-47-3  | 12/12                  | 2.3                       | 19                        | 9.24                      | 18.1           |
| Cobalt                                 | 7440-48-4  | 12/12                  | 2                         | 13                        | 6.6                       | 9.1            |
| Copper                                 | 7440-50-8  | 12/12                  | 2.6                       | 26                        | 11.6                      | 27.6           |
| Iron                                   | 7439-89-6  | 12/12                  | 4,300                     | 30,000                    | 14,967                    | 28,200         |
| Lead                                   | 7439-92-1  | 12/12                  | 2.9                       | 40                        | 11.2                      | 27.4           |
| Magnesium                              | 7439-95-4  | 12/12                  | 620                       | 4,800                     | 1,880                     | 2,760          |
| Manganese                              | 7439-96-5  | 12/12                  | 52                        | 960                       | 329                       | 1,950          |
| Mercury                                | 7439-97-6  | 10/12                  | 0.012                     | 0.66                      | 0.076                     | 0.059          |
| Nickel                                 | 7440-02-0  | 12/12                  | 3.6                       | 29                        | 14                        | 17.7           |
| Potassium                              | 7440-09-7  | 12/12                  | 230                       | 2,300                     | 878                       | 0              |
| Selenium                               | 7782-49-2  | 1/12                   | 0.57                      | 0.57                      | 1.2                       | 1.7            |
| Silver                                 | 7440-22-4  | 2/12                   | 3.2                       | 40                        | 3.9                       | 0              |
| Thallium                               | 7440-28-0  | 1/12                   | 0.36                      | 0.36                      | 0.14                      | 0.89           |
| Vanadium                               | 7440-62-2  | 12/12                  | 2.9                       | 21                        | 10.6                      | 26.1           |
| Zinc                                   | 7440-66-6  | 12/12                  | 15                        | 170                       | 57.1                      | 532            |
| Volatile Organic Compounds             |            |                        |                           |                           |                           |                |
| Acetone                                | 57-64-01   | 1/2                    | 0.011                     | 0.011                     | 0.011                     | NA             |
| BSV denotes background screening value |            |                        |                           |                           |                           |                |

CAS denotes background screening value mg/kg denotes milligrams per kilogram.

J denotes reported result is an estimated value. NA denotes not available. SRC denotes site-related chemical

| SRC?    | SRC Justification  |
|---------|--------------------|
| Γ       |                    |
| Yes     | Detected organic   |
| Yes     | Detected organic   |
| Yes     | Detected organic   |
|         |                    |
| Yes     | Above BSV          |
| Yes     | Above BSV          |
| No      | Below BSV          |
| No      | Below BSV          |
| Yes     | Above BSV          |
| Yes     | Above BSV          |
| No      | Essential nutrient |
| Yes     | Above BSV          |
| Yes     | Above BSV          |
| No      | Below BSV          |
| No      | Essential nutrient |
| Yes     | Above BSV          |
| No      | Essential nutrient |
| No      | Below BSV          |
| Yes     | Above BSV          |
| Yes     | Above BSV          |
| No      | Essential nutrient |
| No      | Below BSV          |
| <br>Yes | Above BSV          |
| No      | Below BSV          |
| <br>No  | Below BSV          |
| <br>No  | Below BSV          |
|         |                    |
| Yes     | Detected organic   |

| Table 4-9. Summar | v of the SRCs identified in | the ISM sediment sam | ples collected for 2003 Facil | ity-Wide Biologia | cal and Water Oualit | v Study. |
|-------------------|-----------------------------|----------------------|-------------------------------|-------------------|----------------------|----------|
|                   |                             |                      |                               |                   |                      |          |

|                                |            |                        |                |                | Moon    |         |      |                    |
|--------------------------------|------------|------------------------|----------------|----------------|---------|---------|------|--------------------|
|                                |            |                        | Minimum Detect | Maximum Detect | Result  | BSV     |      |                    |
| Analyte                        | CAS Number | Frequency of Detection | (mg/kg)        | (mg/kg)        | (mg/kg) | (mg/kg) | SRC? | SRC Justification  |
| Inorganics                     | 1          |                        |                |                |         |         |      |                    |
| Aluminum                       | 7429-90-5  | 1/1                    | 5,500          | 5,500          | 5,500   | 13,900  | No   | Below BSV          |
| Antimony                       | 7440-36-0  | 1/1                    | 0.37           | 0.37           | 0.37    | 0       | Yes  | Above BSV          |
| Arsenic                        | 7440-38-2  | 1/1                    | 12.3           | 12.3           | 12.3    | 19.5    | No   | Below BSV          |
| Barium                         | 7440-39-3  | 1/1                    | 42.3           | 42.3           | 42.3    | 123     | No   | Below BSV          |
| Beryllium                      | 7440-41-7  | 1/1                    | 0.34           | 0.34           | 0.34    | 0.38    | No   | Below BSV          |
| Cadmium                        | 7440-43-9  | 1/1                    | 0.14 J         | 0.14 J         | 0.14    | 0       | Yes  | Above BSV          |
| Calcium                        | 7440-70-2  | 1/1                    | 1,930 J        | 1,930 J        | 1,930   | 15,800  | No   | Essential nutrient |
| Chromium                       | 7440-47-3  | 1/1                    | 8              | 8              | 8       | 18.1    | No   | Below BSV          |
| Cobalt                         | 7440-48-4  | 1/1                    | 6.1            | 6.1            | 6.1     | 9.1     | No   | Below BSV          |
| Copper                         | 7440-50-8  | 1/1                    | 12.2           | 12.2           | 12.2    | 27.6    | No   | Below BSV          |
| Iron                           | 7439-89-6  | 1/1                    | 16,300         | 16,300         | 16,300  | 28,200  | No   | Essential nutrient |
| Lead                           | 7439-92-1  | 1/1                    | 9.5            | 9.5            | 9.5     | 27.4    | No   | Below BSV          |
| Magnesium                      | 7439-95-4  | 1/1                    | 1,890 J        | 1,890 J        | 1,890   | 2,760   | No   | Essential nutrient |
| Manganese                      | 7439-96-5  | 1/1                    | 497            | 497            | 497     | 1,950   | No   | Below BSV          |
| Nickel                         | 7440-02-0  | 1/1                    | 12.7           | 12.7           | 12.7    | 17.7    | No   | Below BSV          |
| Selenium                       | 7782-49-2  | 1/1                    | 0.63           | 0.63           | 0.63    | 1.7     | No   | Below BSV          |
| Sodium                         | 7440-23-5  | 1/1                    | 98.4           | 98.4           | 98.4    | 112     | No   | Essential nutrient |
| Thallium                       | 7440-28-0  | 1/1                    | 0.54           | 0.54           | 0.54    | 0.89    | No   | Below BSV          |
| Vanadium                       | 7440-62-2  | 1/1                    | 10             | 10             | 10      | 26.1    | No   | Below BSV          |
| Zinc                           | 7440-66-6  | 1/1                    | 63.4           | 63.4           | 63.4    | 532     | No   | Below BSV          |
| Semivolatile Organic Compounds |            |                        |                |                |         |         |      |                    |
| Di-n-Butyl Phthalate           | 84-74-2    | 1/1                    | 0.12 J         | 0.12 J         | 0.12    | NA      | Yes  | Detected organic   |
| Nutrients                      |            |                        |                |                |         |         |      |                    |
| Ammonia                        | 7664-41-7  | 1/1                    | 20             | 20             | 20      | NA      | Yes  | Detected organic   |
| Phosphorous                    | 7803-51-2  | 1/1                    | 330            | 330            | 330     | NA      | Yes  | Detected inorganic |
| Nitrate/Nitrite                | 14797-55-8 | 1/1                    | 2.6            | 2.6            | 2.6     | NA      | Yes  | Detected inorganic |

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

J denotes reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

SRC denotes site-related chemical

### Table 4-10. Summary of the SRCs identified from the ISM sediment samples collected for the RI.

|                                |            | -                      |                           |                           |                           |                |      |                    |
|--------------------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|----------------|------|--------------------|
| Analyte                        | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification  |
| Explosives and Propellants     |            |                        |                           |                           |                           |                |      |                    |
| Nitroguanidine                 | 556-88-7   | 2/2                    | 0.69                      | 1.2 J                     | 0.95                      | NA             | Yes  | Detected organic   |
| Inorganics                     |            |                        |                           |                           |                           |                |      |                    |
| Aluminum                       | 7429-90-5  | 2/2                    | 7,240                     | 7,580                     | 7,410                     | 13,900         | No   | Below BSV          |
| Antimony                       | 7440-36-0  | 2/2                    | 0.45 J                    | 8.4                       | 0.87                      | 0              | Yes  | Above BSV          |
| Arsenic                        | 7440-38-2  | 2/2                    | 8.2                       | 9.4                       | 8.8                       | 19.5           | No   | Below BSV          |
| Barium                         | 7440-39-3  | 2/2                    | 75.7                      | 231                       | 153                       | 123            | Yes  | Above BSV          |
| Beryllium                      | 7440-41-7  | 2/2                    | 0.41                      | 0.47                      | 0.88                      | 0.38           | Yes  | Above BSV          |
| Cadmium                        | 7440-43-9  | 2/2                    | 0.19                      | 2.7                       | 1.44                      | 0              | Yes  | Above BSV          |
| Calcium                        | 7440-70-2  | 2/2                    | 2,330                     | 3,240                     | 2,785                     | 5,510          | No   | Essential nutrient |
| Chromium                       | 7440-47-3  | 2/2                    | 40.9                      | 107                       | 74                        | 18.1           | Yes  | Above BSV          |
| Cobalt                         | 7440-48-4  | 2/2                    | 7.8                       | 8.3                       | 8                         | 9.1            | No   | Below BSV          |
| Copper                         | 7440-50-8  | 2/2                    | 16.6                      | 53.7                      | 35.2                      | 27.6           | Yes  | Above BSV          |
| Iron                           | 7439-89-6  | 2/2                    | 22,300                    | 23,800                    | 23,050                    | 28,200         | No   | Essential nutrient |
| Lead                           | 7439-92-1  | 2/2                    | 7.2                       | 104                       | 55.6                      | 27.4           | Yes  | Above BSV          |
| Magnesium                      | 7439-95-4  | 2/2                    | 2,600                     | 2,840                     | 2,720                     | 2,760          | No   | Essential nutrient |
| Manganese                      | 7439-96-5  | 2/2                    | 512                       | 920                       | 716                       | 1,950          | No   | Below BSV          |
| Mercury                        | 7439-97-6  | 2/2                    | 0.049                     | 0.3                       | 0.17                      | 0.059          | Yes  | Above BSV          |
| Nickel                         | 7440-02-0  | 2/2                    | 20                        | 21.1                      | 20.6                      | 17.7           | Yes  | Above BSV          |
| Potassium                      | 7440-09-7  | 2/2                    | 930                       | 1,070                     | 1,465                     | 0              | No   | Essential nutrient |
| Selenium                       | 7782-49-2  | 2/2                    | 0.68 J                    | 1.4 J                     | 1.04                      | 1.7            | No   | Below BSV          |
| Silver                         | 7440-22-4  | 1/2                    | 116                       | 116                       | 58                        | 0              | Yes  | Above BSV          |
| Sodium                         | 7440-23-5  | 2/2                    | 52                        | 221                       | 136.5                     | 0              | No   | Essential nutrient |
| Thallium                       | 7440-28-0  | 2/2                    | 1.1                       | 2.1                       | 1.6                       | 0.89           | Yes  | Above BSV          |
| Vanadium                       | 7440-62-2  | 2/2                    | 11.5                      | 12.9                      | 12.2                      | 26.1           | No   | Below BSV          |
| Zinc                           | 7440-66-6  | 2/2                    | 68.8                      | 108                       | 88.4                      | 532            | No   | Below BSV          |
| Semivolatile Organic Compounds |            |                        |                           |                           |                           |                |      |                    |
| 1,2-Dichlorobenzene            | 95-50-1    | 1/2                    | 0.044 J                   | 0.0044 J                  | 0.028                     | NA             | Yes  | Detected organic   |
| 1,4-Dichlorobenzene            | 106-46-7   | 1/2                    | 0.040 J                   | 0.040 J                   | 0.025                     | NA             | Yes  | Detected organic   |

## Table 4-10. Summary of the SRCs identified from the ISM sediment samples collected for the RI (continued).

| Analyte                   | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV<br>(mg/kg) | SRC? | SRC Justification |
|---------------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|----------------|------|-------------------|
| 2-Methylnaphthalene       | 91-57-6    | 1/2                    | 0.043 J                   | 0.043 J                   | 0.022                     | NA             | Yes  | Detected organic  |
| Benzo(a)anthracene        | 56-55-3    | 1/2                    | 0.057 J                   | 0.057 J                   | 0.035                     | NA             | Yes  | Detected organic  |
| Benzo(a)pyrene            | 50-32-8    | 1/2                    | 0.067 J                   | 0.067 J                   | 0.040                     | NA             | Yes  | Detected organic  |
| Benzo(b)fluoranthene      | 205-99-2   | 2/2                    | 0.046 J                   | 0.110 J                   | 0.101                     | NA             | Yes  | Detected organic  |
| Benzo(g,h,i)perylene      | 191-24-2   | 1/2                    | 0.026 J                   | 0.026 J                   | 0.019                     | NA             | Yes  | Detected organic  |
| Benzo(k)fluoranthene      | 207-08-9   | 1/2                    | 0.047 J                   | 0.047 J                   | 0.030                     | NA             | Yes  | Detected organic  |
| Chrysene                  | 218-01-9   | 2/2                    | 0.027 J                   | 0.070 J                   | 0.048                     | NA             | Yes  | Detected organic  |
| Di-n-Butyl Phthalate      | 84-74-2    | 2/2                    | 0.110 J                   | 0.300 J                   | 0.205                     | NA             | Yes  | Detected organic  |
| Fluoranthene              | 206-44-0   | 2/2                    | 0.047 J                   | 0.089 J                   | 0.068                     | NA             | Yes  | Detected organic  |
| Indeno(1,2,3-cd)pyrene    | 193-39-5   | 1/2                    | 0.026 J                   | 0.026 J                   | 0.019                     | NA             | Yes  | Detected organic  |
| Naphthalene               | 91-20-3    | 1/2                    | 0.029 J                   | 0.029 J                   | 0.020                     | NA             | Yes  | Detected organic  |
| Phenanthrene              | 85-01-8    | 2/2                    | 0.027 J                   | 0.053 J                   | 0.040                     | NA             | Yes  | Detected organic  |
| Pyrene                    | 129-00-0   | 2/2                    | 0.040 J                   | 0.089 J                   | 0.065                     | NA             | Yes  | Detected organic  |
| Polychlorinated Biphenyls | _          |                        |                           |                           |                           | -              | -    |                   |
| Aroclor-1254              | 11097-69-1 | 1/2                    | 0.15                      | 0.15                      | 0.080                     | NA             | Yes  | Detected organic  |
| Aroclor-1262              | 37324-23-5 | 1/2                    | 0.094                     | 0.094                     | 0.052                     | NA             | Yes  | Detected organic  |
| Pesticides                |            |                        |                           |                           |                           |                | -    |                   |
| 4,4'-DDD                  | 72-54-8    | 2/2                    | 0.00061                   | 0.00340                   | 0.0002                    | NA             | Yes  | Detected organic  |
| 4,4'-DDE                  | 72-55-9    | 1/2                    | 0.0043                    | 0.0043                    | 0.0022                    | NA             | Yes  | Detected organic  |
| 4,4'-DDT                  | 50-29-3    | 2/2                    | 0.00091 J                 | 0.0068 J                  | 0.0038                    | NA             | Yes  | Detected organic  |
| alpha-Chlordane           | 5103-71-9  | 1/2                    | 0.0023 J                  | 0.0023 J                  | 0.0012                    | NA             | Yes  | Detected organic  |
| beta-BHC                  | 319-85-7   | 1/2                    | 0.0012 J                  | 0.0012 J                  | 0.0007                    | NA             | Yes  | Detected organic  |
| delta-BHC                 | 319-86-8   | 1/2                    | 0.0017 J                  | 0.0017 J                  | 0.0009                    | NA             | Yes  | Detected organic  |
| Dieldrin                  | 60-57-1    | 1/2                    | 0.0046                    | 0.0046                    | 0.0024                    | NA             | Yes  | Detected organic  |
| Endosulfan Sulfate        | 1031-07-8  | 1/2                    | 0.0055 J                  | 0.0055 J                  | 0.0030                    | NA             | Yes  | Detected organic  |
| Endrin Aldehyde           | 7421-93-4  | 1/2                    | 0.0063                    | 0.0063                    | 0.0034                    | NA             | Yes  | Detected organic  |
| gamma-Chlordane           | 5103-74-2  | 1/2                    | 0.0078                    | 0.0078                    | 0.0040                    | NA             | Yes  | Detected organic  |
| Heptachlor                | 76-44-8    | 2/2                    | 0.002 J                   | 0.0057 J                  | 0.0039                    | NA             | Yes  | Detected organic  |
| Methoxychlor              | 72-43-5    | 2/2                    | 0.0016 J                  | 0.0021 J                  | 0.00185                   | NA             | Yes  | Detected organic  |

## Table 4-10. Summary of the SRCs identified from the ISM sediment samples collected for the RI (continued).

| Analyte                                                                                                                                                                                                                                                                                       | CAS Number | Frequency of Detection | Minimum Detect<br>(mg/kg) | Maximum Detect<br>(mg/kg) | Mean<br>Result<br>(mg/kg) | BSV (mg/kg) | SRC? | SRC Justification |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|---------------------------|---------------------------|---------------------------|-------------|------|-------------------|
| General Chemistry                                                                                                                                                                                                                                                                             |            |                        |                           |                           |                           |             |      |                   |
| Cyanide, total                                                                                                                                                                                                                                                                                | 57-12-5    | 2/2                    | 0.32 J                    | 0.36 J                    | 0.22                      | 0           | Yes  | Above background  |
| BSV denotes background screening value<br>CAS denotes Chemical Abstracts Service.<br>ISM denotes incremental sampling method.<br>J denotes reported result is an estimated value.<br>mg/kg denotes milligrams per kilogram.<br>NA denotes not available.<br>SRC denotes site-related chemical |            |                        |                           |                           |                           |             |      |                   |

| Table 4-11. Analytes detected in discrete sediment samples conected during the 2005 Kemoval Action | <b>Table 4-11.</b> | Analytes det | ected in discrete | sediment samples | s collected durin | g the 2003 | <b>Removal Action</b> |
|----------------------------------------------------------------------------------------------------|--------------------|--------------|-------------------|------------------|-------------------|------------|-----------------------|
|----------------------------------------------------------------------------------------------------|--------------------|--------------|-------------------|------------------|-------------------|------------|-----------------------|

|                    | Station ID:       | SCsd-001         | SCsd-002         | SCsd-003         | SCsd-004         | SCsd-005         | SCsd-006         |
|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                    | Sample ID:        | SCsd-001-0001-SD | SCsd-002-0001-SD | SCsd-003-0001-SD | SCsd-004-0001-SD | SCsd-005-0001-SD | SCsd-006-0001-SD |
|                    | Sample Date:      | 9/17/2003        | 9/18/2003        | 9/17/2003        | 9/18/2003        | 9/17/2003        | 9/18/2003        |
|                    | Depth (feet bgs): | 0–1              | 0-1              | 0–1              | 0-1              | 0–1              | 0–1              |
| Detected           | Parameters:       | metals, asbestos |
| Analyte            | BSV               |                  |                  |                  |                  |                  |                  |
| Inorganics (mg/kg) |                   |                  |                  |                  |                  |                  |                  |
| Aluminum           | 13,900            | 9,400            | 1,500            | 4,000            | 2,100            | 8,400            | 4,200            |
| Arsenic            | 19.5              | 13               | 3.4              | 9                | 5.8              | 13               | 12               |
| Barium             | 123               | 62               | 9.4              | 34               | 11               | 43               | 44               |
| Beryllium          | 0.38              | 0.62             | 0.73             | 0.23             | 0.13             | 0.31             | 0.22             |
| Cadmium            | 0                 | 0.39             | <0.23 U          | <0.23 U          | <0.21 U          | 0.13             | <0.22 U          |
| Calcium            | 5,510             | 3,200            | 790              | 1,600            | 900              | 2,400            | 1,000            |
| Chromium           | 18.1              | 15               | 2.3              | 7.6              | 3.3              | 12               | 6.6              |
| Cobalt             | 9.1               | 11               | 2                | 4.6              | 2.5              | 6.9              | 6                |
| Copper             | 27.6              | 26               | 2.6              | 10               | 3.8              | 13               | 6.7              |
| Iron               | 28,200            | 20,000           | 4,300            | 11,000           | 6,800            | 18,000           | 12,000           |
| Lead               | 27.4              | 40               | 2.9              | 8.8              | 2.9              | 11               | 6.3              |
| Magnesium          | 2,760             | 2,200            | 620              | 1,200            | 770              | 2,500            | 1,300            |
| Manganese          | 1,950             | 960              | 73               | 290              | 99               | 270              | 280              |
| Mercury            | 0.059             | 0.66             | <0.02 U          | 0.029            | <0.019 U         | 0.031            | 0.012            |
| Nickel             | 17.7              | 23               | 3.6              | 9.6              | 5.7              | 17               | 11               |
| Potassium          | 0                 | 1,100            | 230              | 560              | 310              | 1,300            | 460              |
| Selenium           | 1.7               | <1.4 U           | <1.1 U           | 0.57             | <1 U             | <1.2 U           | <1.2 U           |
| Silver             | 0                 | 40               | <0.57 U          | 3.2              | <0.52 U          | <0.61 U          | <0.59 U          |
| Sodium             | 0                 | 170              | <110 U           | <110 U           | <100 U           | <120 U           | <120 U           |
| Thallium           | 0.89              | 0.36             | <0.24 U          | <0.23 U          | <0.21 U          | <0.25 U          | <0.25 U          |
| Vanadium           | 26.1              | 15               | 2.9              | 7.6              | 3.7              | 14               | 7.5              |
| Zinc               | 532               | 170              | 15               | 43               | 19               | 78               | 29               |
| Asbestos (f/cc)    | Γ                 | Γ                | 1                | Ι                | 1                | I                | I                |
| Asbestos           | NA                | NAD              | NAD              | NAD              | NAD              | NAD              | NAD              |

## Table 4-11. Analytes detected in discrete sediment samples collected during the 2003 Removal Action (continued).

|                                | Station ID:       | SCsd-007                         | SCsd-008                         | SCsd-009         | SCsd-010         | SCsd-011         | SCsd-012         |
|--------------------------------|-------------------|----------------------------------|----------------------------------|------------------|------------------|------------------|------------------|
|                                | Sample ID:        | SCsd-007-0001-SD                 | SCsd-008-0001-SD                 | SCsd-009-0001-SD | SCsd-010-0001-SD | SCsd-011-0001-SD | SCsd-012-0001-SD |
|                                | Sample Date:      | 9/17/2003                        | 9/18/2003                        | 9/17/2003        | 9/15/2003        | 9/18/2003        | 9/17/2003        |
|                                | Depth (feet bgs): | 0–1                              | 0–1                              | 0–1              | 0–1              | 0–1              | 0–1              |
|                                | Parameters:       | explosives, propellants, metals, | explosives, propellants, metals, | metals, asbestos | metals, asbestos | metals, asbestos | metals, asbestos |
| Analyte                        | BSV               | VOCs, total cyanide, asbestos    | VOCs, total cyanide, asbestos    |                  |                  |                  |                  |
| Explosives/Propellants (mg/kg) |                   |                                  |                                  |                  |                  |                  |                  |
| 2,6-Dinitrotoluene             | NA                | <0.1 U                           | 0.11 J                           | NT               | NT               | NT               | NT               |
| Nitrocellulose                 | NA                | 0.82                             | 0.98                             | NT               | NT               | NT               | NT               |
| Nitroguanidine                 | NA                | <0.25 U                          | 0.05 J                           | NT               | NT               | NT               | NT               |
| Inorganics (mg/kg)             |                   |                                  |                                  |                  |                  |                  |                  |
| Aluminum                       | 13,900            | 3,100                            | 14,000                           | 10,000           | 3,500            | 9,200            | 5,500            |
| Antimony                       | 0                 | 0.086                            | <0.8 U                           | <0.73 U          | <0.73 U          | <0.87 U          | <0.87 U          |
| Arsenic                        | 19.5              | 5.3                              | 15                               | 14               | 5.6              | 13               | 9.4              |
| Barium                         | 123               | 21                               | 53                               | 57               | 29               | 59               | 38               |
| Beryllium                      | 0.38              | 0.095 J                          | 0.67                             | 0.49             | 0.15             | 0.48             | 0.29             |
| Calcium                        | 5,510             | 570                              | 3,100                            | 2,000            | 1,300            | 3,300            | 1,200            |
| Chromium                       | 18.1              | 4.5                              | 19                               | 14               | 5.5              | 13               | 8.1              |
| Cobalt                         | 9.1               | 2.3                              | 12                               | 9.4              | 4.1              | 13               | 5.9              |
| Copper                         | 27.6              | 3.9                              | 19                               | 17               | 8.7              | 15               | 14               |
| Iron                           | 28,200            | 6,500                            | 30,000                           | 23,000           | 11,000           | 22,000           | 15,000           |
| Lead                           | 27.4              | 4.8                              | 11                               | 15               | 5.4              | 17               | 9.4              |
| Magnesium                      | 2,760             | 870                              | 4,800                            | 2,800            | 1,200            | 2,600            | 1,700            |
| Manganese                      | 1,950             | 52                               | 300                              | 580              | 390              | 390              | 270              |
| Mercury                        | 0.059             | 0.0091                           | 0.013                            | 0.046            | 0.024            | 0.028            | 0.039            |
| Nickel                         | 17.7              | 5.9                              | 29                               | 20               | 8.7              | 22               | 13               |
| Potassium                      | 0                 | 360                              | 2,300                            | 1,300            | 490              | 1,400            | 720              |
| Vanadium                       | 26.1              | 5                                | 21                               | 17               | 6.9              | 17               | 10               |

### Table 4-11. Analytes detected in discrete sediment samples collected during the 2003 Removal Action (continued).

|                                                                                                                                                                                                                                                                         | Station ID:       | SCsd-007                         | SCsd-008                         | SCsd-009         | SCsd-010         | SCsd-011         | SCsd-012         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------------------------|------------------|------------------|------------------|------------------|
|                                                                                                                                                                                                                                                                         | Sample ID:        | SCsd-007-0001-SD                 | SCsd-008-0001-SD                 | SCsd-009-0001-SD | SCsd-010-0001-SD | SCsd-011-0001-SD | SCsd-012-0001-SD |
|                                                                                                                                                                                                                                                                         | Sample Date:      | 9/17/2003                        | 9/18/2003                        | 9/17/2003        | 9/15/2003        | 9/18/2003        | 9/17/2003        |
|                                                                                                                                                                                                                                                                         | Depth (feet bgs): | 0-1                              | 0-1                              | 0–1              | 0-1              | 0–1              | 0–1              |
|                                                                                                                                                                                                                                                                         | Parameters:       | explosives, propellants, metals, | explosives, propellants, metals, | metals, asbestos | metals, asbestos | metals, asbestos | metals, asbestos |
| Analyte                                                                                                                                                                                                                                                                 | BSV               | VOCs, total cyanide, asbestos    | vOCs, total cyanide, asbestos    |                  |                  |                  |                  |
| Zinc                                                                                                                                                                                                                                                                    | 532               | 18                               | 64                               | 72               | 41               | 79               | 57               |
| Volatile Organic Compounds (                                                                                                                                                                                                                                            | mg/kg)            |                                  |                                  |                  |                  |                  |                  |
| Acetone                                                                                                                                                                                                                                                                 | NA                | <0.0055 U                        | 0.011                            | NT               | NT               | NT               | NT               |
| Asbestos (f/cc)                                                                                                                                                                                                                                                         |                   |                                  |                                  |                  |                  |                  |                  |
| Asbestos                                                                                                                                                                                                                                                                | NA                | NAD                              | NAD                              | NAD              | NAD              | NAD              | NAD              |
| Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010).<br>Highlighted box denotes concentration is greater than the former RVAAP background value for inorganic site-related contaminant. |                   |                                  |                                  |                  |                  |                  |                  |

BSV denotes background screening value

f/cc denotes fibers per cubic centimeter.

ID denotes identification.

J denotes result is less than the reporting limit, but greater than or equal to the method detection limit.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

NAD denotes no asbestos detected.

NT denotes not tested.

RVAAP denotes former Ravenna Army Ammunition Plant.

U denotes analyte was not detected above the method detection limit.

VOC denotes volatile organic compound.

| T-LL 4 13   |                               |                         | -1 - $-1$ W - 4 - $-1$ $-1$ |                            |
|-------------|-------------------------------|-------------------------|-----------------------------|----------------------------|
| I Shie 4-17 | Analytes detected in the 2001 | N R9CHITV-WIDE BININGIC | ai and water clinality s    | Stildy ISW sediment sample |
|             | many cos actected in the 2000 | i acmer vilae biologie  |                             | judy ioni scament sample.  |
|             | <b>v</b>                      |                         | <b>~</b> <i>v</i>           | v .                        |

|                              | Station ID:       | S-7                                           |
|------------------------------|-------------------|-----------------------------------------------|
|                              | Sample ID:        | FSW-SD-011-0000                               |
|                              | Sample Date:      | 6/24/2003                                     |
|                              | Depth (feet bgs): | 0-0.5                                         |
|                              | Parameters:       | explosives, metals, SVOCs,                    |
| Detected<br>Analyte          | BSV               | pesticides, PCBs, total cyanide,<br>nutrients |
| Inorganics (mg/kg)           |                   |                                               |
| Aluminum                     | 13,900            | 5,500                                         |
| Antimony                     | 0                 | 0.37                                          |
| Arsenic                      | 19.5              | 12.3                                          |
| Barium                       | 123               | 42.3                                          |
| Beryllium                    | 0.38              | 0.34                                          |
| Cadmium                      | 0                 | 0.14 J                                        |
| Calcium                      | 5,510             | 1,930 J                                       |
| Chromium                     | 18.1              | 8                                             |
| Cobalt                       | 9.1               | 6.1                                           |
| Copper                       | 27.6              | 12.2                                          |
| Iron                         | 28,200            | 16,300                                        |
| Lead                         | 27.4              | 9.5                                           |
| Magnesium                    | 2,760             | 1,890 J                                       |
| Manganese                    | 1,950             | 497                                           |
| Nickel                       | 17.7              | 12.7                                          |
| Selenium                     | 1.7               | 0.63                                          |
| Sodium                       | 112               | 98.4                                          |
| Thallium                     | 0.89              | 0.54                                          |
| Vanadium                     | 26.1              | 10                                            |
| Zinc                         | 532               | 63.4                                          |
| Semivolatile Organic Compour | nds (mg/kg)       |                                               |
| Di-n-butyl phthalate         | NA                | 0.12 J                                        |
| Nutrients (mg/kg)            |                   |                                               |
| Ammonia                      | NA                | 20                                            |
| Phosphorus                   | NA                | 330                                           |

### Table 4-12. Analytes detected in the 2003 Facility-Wide Biological and Water Quality Study ISM sediment sample (continued).

|                     | Station ID:       | S-7                                           |
|---------------------|-------------------|-----------------------------------------------|
|                     | Sample ID:        | FSW-SD-011-0000                               |
|                     | Sample Date:      | 6/24/2003                                     |
|                     | Depth (feet bgs): | 0–0.5                                         |
|                     | Parameters:       | explosives, metals, SVOCs,                    |
| Detected<br>Analyte | BSV               | pesticides, PCBs, total cyanide,<br>nutrients |
| Nitrate             | NA                | 2.6                                           |

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010). Highlighted box denotes concentration is greater than the former RVAAP background value.

Highlighted box denotes concentration is greater than the former RVAAP bo

bgs denotes below ground surface.

BSV denotes background screening value

ID denotes identification.

J denotes estimated value due to QC parameter out of control.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

PCB denotes polychlorinated biphenyl.

QC denotes quality control.

RVAAP denotes former Ravenna Army Ammunition Plant.

SVOC denotes semivolatile organic compound.

|                           | Station ID:       | SCsd-070                                             | SCsd-071                                             |
|---------------------------|-------------------|------------------------------------------------------|------------------------------------------------------|
|                           | Sample ID:        | SCss-070-0001-SD                                     | SCss-071-0001-SD                                     |
|                           | Sample Date:      | 9/28/2010                                            | 9/28/2010                                            |
|                           | Depth (feet bgs): | 0-0.5                                                | 0-0.5                                                |
|                           | Parameters:       | explosives, metals, SVOCs,                           | explosives, metals, SVOCs,                           |
| Detected<br>Analyte       | BSV               | pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> |
| Explosives and Propellant | s (mg/kg)         |                                                      |                                                      |
| Nitroguanidine            | NA                | 0.69                                                 | 1.2 J                                                |
| Inorganics (mg/kg)        |                   |                                                      |                                                      |
| Aluminum                  | 13,900            | 7,240 J                                              | 7,580 J                                              |
| Antimony                  | 0                 | 8.4                                                  | 0.45 J                                               |
| Arsenic                   | 19.5              | 9.4                                                  | 8.2                                                  |
| Barium                    | 123               | 231 J                                                | 75.7 J                                               |
| Beryllium                 | 0.38              | 0.41                                                 | 0.47                                                 |
| Cadmium                   | 0                 | 2.7                                                  | 0.19                                                 |
| Calcium                   | 5,510             | 3,240                                                | 2,330                                                |
| Chromium                  | 18.1              | 40.9                                                 | 107                                                  |
| Cobalt                    | 9.1               | 7.8                                                  | 8.3                                                  |
| Copper                    | 27.6              | 53.7                                                 | 16.6                                                 |
| Iron                      | 28,200            | 23,800 J                                             | 22,300 J                                             |
| Lead                      | 27.4              | 104                                                  | 7.2                                                  |
| Magnesium                 | 2,760             | 2,840 J                                              | 2,600 J                                              |
| Manganese                 | 1,950             | 512                                                  | 920                                                  |
| Mercury                   | 0.059             | 0.3                                                  | 0.049                                                |
| Nickel                    | 17.7              | 21.1                                                 | 20                                                   |
| Potassium                 | 1,950             | 1,070                                                | 930                                                  |
| Selenium                  | 1.7               | 1.4 J                                                | 0.68 J                                               |
| Silver                    | 0                 | 116                                                  | <0.087 U                                             |
| Sodium                    | 112               | 221                                                  | 51                                                   |
| Thallium                  | 0.89              | 1.2                                                  | 1.1                                                  |
| Vanadium                  | 26.1              | 11.5                                                 | 12.9                                                 |
| Zinc                      | 532               | 108                                                  | 68.8                                                 |

Table 4-13. Analytes detected in the sediment samples (ISM) collected for this RI.

|                          | Station ID:       | SCsd-070                                             | SCsd-071                                              |
|--------------------------|-------------------|------------------------------------------------------|-------------------------------------------------------|
|                          | Sample ID:        | SCss-070-0001-SD                                     | SCss-071-0001-SD                                      |
|                          | Sample Date:      | 9/28/2010                                            | 9/28/2010                                             |
|                          | Depth (feet bgs): | 0-0.5                                                | 0–0.5                                                 |
|                          | Parameters:       | explosives, metals, SVOCs,                           | explosives, metals, SVOCs,                            |
| Detected<br>Analyte      | BSV               | pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | pesticides, PCBs, total,<br>cyanide, Cr <sup>+6</sup> |
| Semivolatile Organic Com | pounds (mg/kg)    |                                                      |                                                       |
| 1,2-Dichlorobenzene      | NA                | 0.044 J                                              | <0.025 U                                              |
| 1,4-Dichlorobenzene      | NA                | 0.04 J                                               | <0.019 U                                              |
| 2-Methylnaphthalene      | NA                | 0.043 J                                              | <0.026 U                                              |
| Benzo(a)anthracene       | NA                | 0.057 J                                              | <0.026 U                                              |
| Benzo(a)pyrene           | NA                | 0.067 J                                              | <0.024 U                                              |
| Benzo(b)fluoranthene     | NA                | 0.11 J                                               | 0.046 J                                               |
| Benzo(g,h,i)perylene     | NA                | 0.026 J                                              | <0.023 U                                              |
| Benzo(k)fluoranthene     | NA                | 0.047 J                                              | <0.026 U                                              |
| Chrysene                 | NA                | 0.07 J                                               | 0.027 J                                               |
| Di-n-Butyl Phthalate     | NA                | 0.3 J                                                | 0.11 J                                                |
| Fluoranthene             | NA                | 0.089 J                                              | 0.047 J                                               |
| Indeno(1,2,3-cd)pyrene   | NA                | 0.026 J                                              | <0.024 U                                              |
| Naphthalene              | NA                | 0.029 J                                              | <0.021 U                                              |
| Phenanthrene             | NA                | 0.053 J                                              | 0.027 J                                               |
| Pyrene                   | NA                | 0.089 J                                              | 0.04 J                                                |
| Pesticides (mg/kg)       |                   |                                                      |                                                       |
| 4,4'-DDD                 | NA                | 0.0034                                               | 0.00061 J                                             |
| 4,4'-DDE                 | NA                | 0.0043                                               | <0.0003 U                                             |
| 4,4'-DDT                 | NA                | 0.0068 J                                             | 0.00091 J                                             |
| alpha-Chlordane          | NA                | 0.0023 J                                             | <0.0003 U                                             |
| beta-BHC                 | NA                | 0.0012 J                                             | <0.00061 U                                            |
| delta-BHC                | NA                | 0.0017                                               | <0.0003 U                                             |
| Dieldrin                 | NA                | 0.0046                                               | <0.0003 U                                             |
| Endosulfan Sulfate       | NA                | 0.0055 J                                             | <0.00091 U                                            |
| Endrin Aldehyde          | NA                | 0.0063                                               | <0.0011 U                                             |

## Table 4-13. Analytes detected in sediment samples (ISM) collected for this RI (continued).

### Table 4-13. Analytes detected in sediment samples (ISM) collected for this RI (continued).

|                               | Station ID:       | SCsd-070                                             | SCsd-071                                            |  |
|-------------------------------|-------------------|------------------------------------------------------|-----------------------------------------------------|--|
|                               | Sample ID:        | SCss-070-0001-SD                                     | SCss-071-0001-SD                                    |  |
|                               | Sample Date:      | 9/28/2010                                            | 9/28/2010<br>0-0.5                                  |  |
|                               | Depth (feet bgs): | 0-0.5                                                |                                                     |  |
|                               | Parameters:       | explosives, metals, SVOCs,                           | explosives, metals, SVOCs,                          |  |
| Detected<br>Analyte           | BSV               | pesticides, PCBs, total<br>cyanide, Cr <sup>+6</sup> | pesticides PCBs, total<br>cyanide, Cr <sup>+6</sup> |  |
| gamma-Chlordane               | NA                | 0.0078                                               | <0.0003 U                                           |  |
| Heptachlor                    | NA                | 0.0057 J                                             | 0.002 J                                             |  |
| Methoxychlor                  | NA                | 0.0021 J                                             | 0.0016 J                                            |  |
| Polychlorinated Biphenyls (mg | g/kg)             |                                                      |                                                     |  |
| Arochlor-1262                 | NA                | 0.094                                                | <0.021 U                                            |  |
| Arochlor-1254                 | NA                | 0.15                                                 | <0.023 U                                            |  |
| General Chemistry (mg/kg)     |                   |                                                      |                                                     |  |
| Total Cyanide                 | 0                 | 0.36 J                                               | 0.32 J                                              |  |

< denotes less than

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010).

Highlighted box denotes concentration is greater than the former RVAAP background value.

bgs denotes below ground surface.

BSV denotes background screening value

Cr<sup>+6</sup> denotes hexavalent chromium.

ID denotes identification.

J denotes reported result is an estimated value.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

PCB denotes polychlorinated biphenyl.

RVAAP denotes former Ravenna Army Ammunition Plant.

SVOC denotes semivolatile organic compound.

U denotes analyte was not detected and is reported as less than the limit of detection.

### Table 4-14. Summary of SRCs that were identified from screening of the 2003 Removal Action surface water samples.

| Analyte    | CAS Number | Frequency of Detection | Minimum Detect<br>(µg/L) | Maximum Detect<br>(µg/L) | Mean<br>Result<br>(µg/L) | BSV<br>(µg/L) | SRC? | SRC Justification  |
|------------|------------|------------------------|--------------------------|--------------------------|--------------------------|---------------|------|--------------------|
| Inorganics |            |                        |                          |                          |                          |               |      |                    |
| Aluminum   | 7429-90-5  | 3/3                    | 28 J                     | 94 J                     | 65                       | 3,370         | No   | Below BSV          |
| Arsenic    | 7440-38-2  | 2/3                    | 2.2                      | 2.8                      | 2.0                      | 3.2           | No   | Below BSV          |
| Barium     | 7440-39-3  | 3/3                    | 36                       | 40                       | 38                       | 47.5          | No   | Below BSV          |
| Calcium    | 7440-70-2  | 3/3                    | 60,000                   | 62,000                   | 61,000                   | 0             | No   | Essential nutrient |
| Copper     | 7440-50-8  | 3/3                    | 2.8 J                    | 4.2 J                    | 3.5                      | 7.9           | No   | Below BSV          |
| Iron       | 7439-89-6  | 3/3                    | 580                      | 780                      | 713                      | 2,560         | No   | Essential nutrient |
| Magnesium  | 7439-95-4  | 3/3                    | 15,000                   | 15,000                   | 15,000                   | 0             | No   | Essential nutrient |
| Manganese  | 7439-96-5  | 3/3                    | 150                      | 230                      | 203                      | 391           | No   | Below BSV          |
| Potassium  | 7440-09-7  | 3/3                    | 1,600                    | 1,900                    | 1,800                    | 0             | No   | Essential nutrient |
| Sodium     | 7440-23-5  | 3/3                    | 5,100                    | 5,600                    | 5,400                    | 0             | No   | Essential nutrient |
| Zinc       | 7440-66-6  | 3/3                    | 13 J                     | 18 J                     | 15.67                    | 42            | No   | Below BSV          |

µg/L denotes micrograms per liter.

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

J denotes reported result is an estimated value.

SRC denotes site-related chemical.

|                                |            |                        | Minimum Detect | Maximum Detect | Mean<br>Result | BSV    |      |                    |
|--------------------------------|------------|------------------------|----------------|----------------|----------------|--------|------|--------------------|
| Analyte                        | CAS Number | Frequency of Detection | (µg/L)         | (µg/L)         | (µg/L)         | (µg/L) | SRC? | SRC Justification  |
| Inorganics                     |            |                        |                |                |                |        |      |                    |
| Aluminum                       | 7429-90-5  | 2/2                    | 94.6           | 120 J          | 107.3          | 3,370  | No   | Below BSV          |
| Antimony                       | 7440-36-0  | 1/2                    | 2.9 J          | 2.9 J          | 1.9            | 0      | Yes  | Above BSV          |
| Arsenic                        | 7440-38-2  | 1/1                    | 6.6            | 6.6            | 4.5            | 3.2    | Yes  | Above BSV          |
| Barium                         | 7440-39-3  | 2/2                    | 41.8           | 42.3           | 42.1           | 47.5   | No   | Below BSV          |
| Calcium                        | 7440-70-2  | 2/2                    | 53,300         | 61,500         | 57,400         | 0      | No   | Essential nutrient |
| Chromium                       | 7440-47-3  | 2/2                    | 0.66 J         | 1.4            | 1.03           | 0      | Yes  | Above BSV          |
| Cobalt                         | 7440-48-4  | 1/2                    | 0.4 J          | 0.4 J          | 0.6            | 0      | Yes  | Above BSV          |
| Copper                         | 7440-50-8  | 1/2                    | 1              | 1              | 1.3            | 7.9    | No   | Below BSV          |
| Iron                           | 7439-89-6  | 2/2                    | 1,050          | 1,650          | 1,350          | 2,560  | No   | Essential nutrient |
| Lead                           | 7439-92-1  | 1/2                    | 2.9            | 2.9            | 3.45           | 0      | Yes  | Above BSV          |
| Magnesium                      | 7439-95-4  | 2/2                    | 13,800         | 15,700         | 14,750         | 0      | No   | Essential nutrient |
| Manganese                      | 7439-96-5  | 2/2                    | 232            | 284            | 258            | 391    | No   | Below BSV          |
| Potassium                      | 7440-09-7  | 2/2                    | 1,600          | 2,050          | 1,825          | 0      | No   | Essential nutrient |
| Silver                         | 7440-22-4  | 1/2                    | 1.1            | 1.1            | 1.2            | 0      | Yes  | Above BSV          |
| Sodium                         | 7440-23-5  | 2/2                    | 5,750          | 5,780 J        | 5,765          | 0      | No   | Essential nutrient |
| Vanadium                       | 7440-62-2  | 1/2                    | 0.5 J          | 0.5 J          | 0.375          | 0      | Yes  | Above BSV          |
| Zinc                           | 7440-66-6  | 2/2                    | 5.1 J          | 10.6 J         | 7.85           | 42     | No   | Below BSV          |
| Semivolatile Organic Compounds |            |                        |                |                |                |        |      |                    |
| Bis(2-Ethylhexyl)phthalate     | 117-81-7   | 1/2                    | 2.1 J          | 2.1 J          | 4.1            | NA     | Yes  | Detected organic   |
| Di-n-Butyl Phthalate           | 84-74-2    | 1/2                    | 3.85 J         | 3.85 J         | 4.7            | NA     | Yes  | Detected organic   |
| Nutrients                      |            |                        |                |                |                |        |      |                    |
| Phosphorous                    | 7803-51-2  | 1/1                    | 430            | 430            | 430            | NA     | Yes  | Detected inorganic |
| Nitrate/Nitrite                | 14797-55-8 | 1/1                    | 130            | 130            | 130            | NA     | Yes  | Detected organic   |
|                                |            |                        |                |                |                |        |      |                    |

 $\mu$ g/L denotes micrograms per liter.

BSV denotes background screening value

CAS denotes Chemical Abstracts Service.

J denotes reported result is an estimated value.

NA denotes not available.

SRC denotes site-related chemical.

|                   | Station ID:  | SCsw-001                                                  | SCsw-002         | SCsw-003         |  |
|-------------------|--------------|-----------------------------------------------------------|------------------|------------------|--|
|                   | Sample ID:   | SCSW-001-0001-SW                                          | SCSW-002-0001-SW | SCSW-003-0001-SW |  |
|                   | Sample Date: | 9/18/2003                                                 | 9/15/2003        | 9/15/2003        |  |
|                   | Parameters:  | explosives, propellants, metals,                          | metals, asbestos | metals, asbestos |  |
| Detected Analyte  | BSV          | SVOCs, VOCs, pesticides,<br>PCBs, total cyanide, asbestos |                  |                  |  |
| Inorganics (µg/L) |              |                                                           |                  |                  |  |
| Aluminum          | 3,370        | 28                                                        | 94               | 73               |  |
| Arsenic           | 3.2          | <2 U                                                      | 2.2              | 2.8              |  |
| Barium            | 47.5         | 36                                                        | 40               | 38               |  |
| Calcium           | 41,400       | 62,000                                                    | 61,000           | 60,000           |  |
| Copper            | 7.9          | 2.8                                                       | 4.2              | 3.5              |  |
| Iron              | 2,560        | 580                                                       | 780              | 780              |  |
| Magnesium         | 10,800       | 15,000                                                    | 15,000           | 15,000           |  |
| Manganese         | 391          | 150                                                       | 230              | 230              |  |
| Potassium         | 3,170        | 1,600                                                     | 1,900            | 1,900            |  |
| Sodium            | 21,300       | 5,100                                                     | 5,600            | 5,500            |  |
| Zinc              | 42           | 16                                                        | 13               | 18               |  |

#### Table 4-16. Analytes detected in the surface water samples collected during the 2003 Removal Action after the removal was completed.

< denotes less than

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the former RVAAP, Ravenna, Ohio (March 2010).

Highlighted box denotes concentration is greater than the former RVAAP background value. The metals were not retained as SRCs since they are essential nutrients.

µg/L denotes micrograms per liter.

BSV denotes background screening value

ID denotes identification.

PCB denotes polychlorinated biphenyl.

RVAAP denotesformer Ravenna Army Ammunition Plant.

SRC denotes site-related contaminant.

SVOC denotes semivolatile organic compound.

U denotes analyte was not detected above the method detection limit.

VOC denotes volatile organic compound.

|                                       | Station ID:  | S-7                                           | S-7<br>FWS-SW-051-000     |  |  |  |  |
|---------------------------------------|--------------|-----------------------------------------------|---------------------------|--|--|--|--|
|                                       | Sample ID:   | FSW-SW-011-0000                               |                           |  |  |  |  |
|                                       | Sample Date: | 6/24/2003                                     | 9/17/2003                 |  |  |  |  |
|                                       | Parameters:  | explosives, metals, SVOCs,                    | explosives, metals, SVOCs |  |  |  |  |
| <b>Detected Analyte</b>               | BSV          | pesticides, PCBs, total cyanide,<br>nutrients |                           |  |  |  |  |
| Inorganics (µg/L)                     |              |                                               |                           |  |  |  |  |
| Aluminum                              | 3,370        | 94.6                                          | 120 J                     |  |  |  |  |
| Antimony                              | 0            | <1.9 U                                        | 2.9 J                     |  |  |  |  |
| Arsenic                               | 3.2          | <4.2 UJ                                       | 6.6                       |  |  |  |  |
| Barium                                | 47.5         | 36.9                                          | 41.8                      |  |  |  |  |
| Calcium                               | 41,400       | 53,300                                        | 61,500                    |  |  |  |  |
| Chromium                              | 0            | 0.66 J                                        | 1.4                       |  |  |  |  |
| Cobalt                                | 0            | 0.4 J                                         | <1.6 U                    |  |  |  |  |
| Copper                                | 7.9          | 1                                             | <3.2 U                    |  |  |  |  |
| Iron                                  | 2,560        | 1,050                                         | 1,650                     |  |  |  |  |
| Lead                                  | 0            | 2.9                                           | <8 U                      |  |  |  |  |
| Magnesium                             | 10,800       | 13,800                                        | 15,700                    |  |  |  |  |
| Manganese                             | 391          | 284                                           | 232                       |  |  |  |  |
| Potassium                             | 3,170        | 1,600                                         | 2,050                     |  |  |  |  |
| Sodium                                | 21,300       | 5,780 J                                       | 5,750                     |  |  |  |  |
| Silver                                | 0            | 1.1                                           | <2.5 U                    |  |  |  |  |
| Vanadium                              | 0            | <0.5 U                                        | 0.5 J                     |  |  |  |  |
| Zinc                                  | 42           | 10.6 J                                        | 5.1 J                     |  |  |  |  |
| Semivolatile Organic Compounds (µg/L) |              |                                               |                           |  |  |  |  |
| Bis(2-Ethylhexyl)phthalate            | NA           | 2.1 J                                         | <12 U                     |  |  |  |  |
| Di-n-Butyl Phthalate                  | NA           | <11 U                                         | 3.85 J                    |  |  |  |  |
| Nutrients (µg/L)                      |              |                                               |                           |  |  |  |  |
| Phosphorus (Total as P)               | NA           | 430                                           |                           |  |  |  |  |

#### Table 4-17. Analytes detected in the surface water samples from the 2003 Facility-Wide Biological and Water Quality Study.

Background values taken from the Final Facility-Wide Human Health Remediation Goals at the RVAAP, Ravenna, Ohio (March 2010)

130

Highlighted box denotes concentration is greater than the background value. The metals were not retained as SRCs since they are essential nutrients.

--- denotes not analyzed. µg/L denotes micrograms per liter. BSV denotes background screening value

NA

ID denotes identification. J denotes estimated value due to QC parameter out of control. NA denotes not available.

NT denotes not tested. PCB denotes polychlorinated biphenyl. QC denotes quality control. RVAAP denotes former Ravenna Army Ammunition Plant.

SRC denotes site-related contaminant. SVOC denotes semivolatile organic compound. U denotes analyte was not detected. UJ denotes analyte not detected. The detection limits and quantitation limits are approximate. VOCs denotes volatile organic compound.

---

Nitrate/Nitrite

# 5.0 CONTAMINANT FATE AND TRANSPORT

Contaminant fate and transport analyses were conducted for the chemicals detected in the impacted media (surface soil, subsurface soil, sediment, and surface water) that were investigated during the performance of the RI at the Sand Creek Site. Various SRCs were identified in each of the impacted media. The potential migration pathways and transport mechanisms for these SRCs from the impacted media to potential receptors were then evaluated and are presented in this section.

Groundwater evaluation beneath the Sand Creek Site was excluded from Shaw's scope of work for the Phase RI since it is performed on a facility-wide basis; therefore, SRCs for groundwater were not identified. Fate and transport modeling was used to estimate the potential for the SRCs present in surface and subsurface soils to migrate vertically downwards and impact groundwater quality underneath the AOC and eventually the surface water quality in the nearby Sand Creek. Computer models were used to predict which SRCs may leach to the groundwater at concentrations exceeding the groundwater standards and also predict at what time in future the impacts to groundwater are likely to occur. The model predictions provide a mechanism to establish the potential for future impacts to human health and environment arising from the documented SRCs. Model predictions can also serve as a basis for determining if follow-up remedial action is warranted, in what media the remediation needs to be performed, and to what extent will the remediation be effective in mitigation impacts to human and ecological receptors downgradient of the site.

For the purpose of fate and transport modeling, a conservative approach was utilized wherein the vertical transport of SRCs present in soils above the water table was simulated by using the greatest detected SRC concentrations in surface and subsurface soils. The model prediction identified the maximum concentrations of the SRCs expected in groundwater under the Sand Creek Landfill. The final step of predicting the horizontal transport of the SRCs in groundwater to the receptor locations could not be completed at this time because groundwater at the site has not been investigated and information on the chemicals present in the site groundwater and the flow characteristics of the groundwater underneath the Sand Creek Site are not available.

A summary of the fundamental mechanisms affecting contaminant fate and transport is provided in this section along with the results of the computer modeling performed. The procedure used to identify the SRCs is summarized in Section 5.2. Section 5.3 briefly discusses the physical and chemical properties of the SRCs that affect their fate and transport in the environment. A conceptual model of the contamination sources, migration pathways and transport mechanisms is provided in Section 5.4. Soil leachability analysis was performed

to identify the contaminant migration chemicals of potential concern (CMCOPCs) and is presented in Section 5.5. Section 5.6 describes the fate and transport modeling, followed by the presentation of the summary and conclusions of the contaminant fate and transport analyses in Section 5.7.

# 5.1 Identification of SRCs

A discussion of the SRCs evaluated for the environmental media at the Sand Creek Site is discussed in Section 4.0, "Nature and Extent of Contamination".

# **5.1.1 Physical and Chemical Properties of SRCs**

The SRCs identified at the site consists of chemicals that may be classified as inorganic compounds and organic compounds (including explosives, VOCs, SVOCs, PCBs and pesticides). Each of these chemicals have unique physical and chemical properties that govern their fate and transport characteristics such as persistence in the environment (how long will the chemical last in the environment under natural conditions) and their mobility (ability to migrate through the soil and groundwater without being adsorbed to the surfaces of the solids in these media). The persistence and mobility of chemicals determines the potential for human and ecological receptors to be exposed to these contaminants at locations at a certain distance away from the source areas, and also determine the chemical concentration the receptors may be exposed to over certain time duration.

A number of chemical and biological reactions occur along the migration pathways once the chemicals are released to the environment. Examples of these reactions include hydrolysis, oxidation, reduction, isomerization, photolysis, photooxidation, biotransformation, and biodegradation. These reactions tend to reduce the concentrations of the chemicals over time and distance from the source. The reactions depend upon the properties of the chemicals as well as the properties of the media (soil, groundwater, etc.) that the chemicals are exposed to before reaching the potential receptors.

Key chemical-specific parameters that affect the fate and transport of chemicals in the environment include the organic carbon normalized soil-water partition coefficient for organic compounds ( $K_{oc}$ ), the soil-water partition coefficient for inorganic chemicals ( $K_d$ ), water solubility (S), Henry's Law Constant (HLC) and biodegradation rates for organic compounds along with air and water diffusivity. A compilation of these parameters is provided in the following reference sources:

 Soil Screening Guidance: Technical Background Document, EPA Document No. EPA/540/R-95/128, July 1996 (EPA, 1996a), http://www.epa.gov/ superfund/health/conmedia/soil/toc.htm#p5 • Regional Screening Levels (RSLs) Chemical-Specific Parameters Supporting Table, EPA Region 9, Last Updated November 2015 (EPA, 2015), "http://www.epa.gov/reg3hwmd/risk/human/rbconcentration\_table/Generic\_Table s/pdf/params\_sl\_table\_bwrun\_NOVEMBER2015.pdf".

The chemical-specific properties are discussed in further detail in Section 5.2.1.

Media-specific parameters that affect the fate and transport of contaminants in groundwater include depth to groundwater, groundwater flow direction, aquifer characteristics, infiltration rate in soil, organic carbon content, bulk density, and soil moisture content. These media-specific properties are discussed in further detail in Section 5.2.2.

# **5.1.2 Chemical Properties Affecting Fate and Transport**

The following chemical-specific properties affect the fate and transport of contaminants in soil and groundwater.

# 5.1.2.1 Soil-Water Partition Coefficient for Organic Chemicals (Koc)

When an organic chemical is released to soil or groundwater, a fraction of the chemical may be adsorbed to the solid media (unsaturated soil or aquifer) due to hydrophobic effects while the remainder is dissolved in the soil moisture or groundwater. The primary adsorptive surface for organic chemicals is the fraction of organic solids in the unsaturated soil or aquifer (Fetter, 1992). Therefore, the partitioning of the chemical between the surface of the solids and soil moisture or groundwater depends upon organic carbon fraction of the soil (foc), which may be expressed as a fraction or as a percent of soil weight.

The preference of an organic chemical to partition between the solids and water is defined by the  $K_{oc}$  which is related to  $f_{oc}$  and soil sorption coefficient  $K_d$  as follows:

$$K_{oc} = \frac{K_d}{f_{oc}}$$

where:

 $f_{oc}\xspace$  is dimensionless,  $K_{oc}\xspace$  and  $K_d\xspace$  are expressed in units of L/kg.

# 5.1.2.2 Retardation Factor

The soil sorption coefficient  $K_d$  can be used to calculate the degree to which a chemical will tend to adsorb to the soil, and therefore, be not available to migrate with water. The lack of

mobility of the chemical caused by the adsorption to solid surfaces can be defined by a term called the Retardation Factor ( $R_f$ ). The  $R_f$  is defined as follows:

$$R_f = 1 + \frac{K_d \rho_b}{\theta_w}$$

where:

 $\rho_b$  is the soil bulk density (grams per cubic centimeters)

 $\theta_w$  is the water filled soil porosity (or soil water content, dimensionless)

For chemicals which move at the same velocity as groundwater, the  $R_f$  is 1. Chemicals whose mobility is slower than groundwater (i.e., are retarded as compared to the flow of groundwater) have an  $R_f$  exceeding 1. The greater the  $R_f$ , the slower the chemical will move relative to groundwater.

# 5.1.2.3 Soil-Water Partition Coefficient for Inorganic Chemicals (Kd)

Unlike organic compounds, the partitioning of inorganic chemicals and metals between solids and water is not dependent on the organic carbon content. The mobility of metals is defined by the distribution coefficient ( $K_d$ ), which is the soil-water partition coefficient defined as the ratio of a chemical's sorbed concentration (mg/kg) to the dissolved concentration (milligrams per liter [mg/L]) in water (EPA, 1996b).

# 5.1.2.4 Water Solubility (S)

The water solubility of a compound is the concentration of the compound in water, and varies with the temperature of the water, pH and pressure. Compounds with higher water solubility tend to remain dissolved in water and are more likely to migrate with water as compared to compounds with low water solubility, which tend to either adsorb to soil or volatilize into air.

# 5.1.2.5 Henry's Law Constant

Henry's Law Constant (HLC) is the ratio of a chemical's concentration in the air (vapor pressure) to its concentration in water (aqueous solubility) at equilibrium. This parameter can vary significantly with temperature for some chemicals. The HLC can be expressed in dimensionless form or in units of cubic meters of atmosphere per molecule (atm-m<sup>3</sup>/mol) and is used to calculate a soil concentration that is protective of groundwater (EPA, 1996b). General predictions regarding a compounds tendency to volatilize from water can be made using this parameter. If the HLC value of a compound is less than 10<sup>-7</sup> atm-m<sup>3</sup>/mol, it will tend to remain in solution and volatilize slowly, while compounds with HLC exceeding 10<sup>-3</sup> atm-m<sup>3</sup>/mol will tend to volatilize rapidly (Lyman et al., 1990).

# 5.1.3 Media Properties Affecting Fate and Transport

The following properties of the porous media (unsaturated soil and aquifer media) affect the fate and transport of contaminants in soil and groundwater.

# 5.1.3.1 Groundwater Flow Direction

The direction of groundwater flow in the aquifer underlying the source of contamination determines source length parallel to that flow, which is factor in calculating the amount of dilution and attenuation a chemical undergoes during transport between the source and the receptor.

## **5.1.3.2 Aquifer Parameters**

Aquifer parameters needed to estimate a site-specific dilution factor including the following:

- K
- Hydraulic gradient (*i*)
- Aquifer thickness (d<sub>a</sub>)

Site-measured values for these parameters are the preferred alternative (EPA, 1996a).

# 5.1.3.3 Infiltration Rate

Infiltration rate is used to calculate leachate concentration arising from contaminants present in soil. Infiltration rates are a subset of the precipitation rates in an area and can be estimated as a percentage of the recharge rates. Another method of estimating infiltration rates is to use infiltration rates determined for a better characterized site in the same hydrogeologic setting and with similar meteorological conditions as the site in question. A third alternative is to use the Hydrologic Evaluation of Landfill Performance (HELP) Model developed by Schroeder et al., 1984 (EPA, 1996a).

### 5.1.3.4 Average Soil Moisture Content

The soil moisture content represents fraction of total soil porosity that is filled by water. It is an important parameter in the application of the soil/water partition equation and the calculation of  $R_{\rm f}$ .

# 5.2 Biodegradation

An additional consideration that applies to the fate and transport of organic compounds (VOCs, SVOCs, PCBs, and pesticides) is the reduction in contaminant concentration by biodegradation. Biodegradation is the transformation or breakdown of organic compounds that occurs when microorganisms use the organic compounds as a source of carbon and energy.

Biodegradation can reduce the chemical hazards related to organic compounds through the following mechanisms:

- Primary Reduction—Alteration of the chemical structure of a substance resulting in loss of a specific property of that substance
- Environmentally Acceptable Reduction—Biodegradation to such an extent as to remove undesirable properties of the compound (This often corresponds to primary biodegradation, but it depends on the circumstances under which the products are discharged into the environment.)
- Ultimate Reduction—Complete breakdown of a compound to either fully oxidized or reduced simple molecules (such as carbon dioxide/methane, nitrate/ammonium, and water)

In some cases, the products of biodegradation can be more harmful than the substance degraded (U.S. Geological Survey, 2007).

The biodegradation half-life is calculated as follows:

$$t_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

where:

 $t_{1/2}$  is the half-life of the organic compound ( days)

 $\lambda$  is the biodegradation rate constant

The biodegradation half-life represents the time taken by biodegradation activities to reduce the concentration of an organic chemical to 50 percent of the original concentration. It depends upon a number of factors, including the presence of microorganisms capable of degrading the chemical, the size of the microbial populations and environmental conditions like temperature.

# **5.3 Transformation of Explosives**

Explosive and propellant SRCs were detected in surface soils at the Sand Creek Site. Only explosive SRCs were detected in subsurface soil at the AOC. Concentrations of explosives and propellants in soil and groundwater typically are attenuated by the processes of microbiological and photochemical transformation, which govern their fate and transport in the environment. In a study reported in Burrows, et al., 1989), TNT was shown to undergo rapid disappearance when incubated with activated sludge microorganism. The ring structure of the TNT was labelled with <sup>14</sup>C. No CO<sub>2</sub> was produced so the researchers concluded that TNT underwent transformation by the microbes but not biodegradation. It is believed that

there is successive reduction of the nitro groups into amino groups through hydroxylamine intermediates and some formation of tetranitoazyotoluenes. The products that form are dependent upon the nature of the microorganisms and other factors that would encourage nitro reduction. The researchers also observed similar transformations by thermophilic organisms. Some of the compounds that form include: 2-azodicarboxylic acid, 2,2'-azoxytoluene and 2-hydroxylamino-4,6-dinitrotoluene. Depending upon the situation, biotransformation occurs rapidly and the intermediate products are short-lived (Burrows, et al., 1989). If biodegradation was occurring, the organisms would ultimately metabolize the TNT into water, carbon dioxides, nitrogen dioxide, and carboxylic acids.

# 5.4 Conceptual Model for Fate and Transport

This section provides a CSM of the contamination sources at the Sand Creek Site, the contaminant migration pathways and transport mechanisms. The conceptual model represents the site-specific conditions and is derived from numerical modeling for soil leaching and groundwater transport. The numerical modeling consists of site-specific parameters that are entered into the model application. The conceptual model is based on the description of site physiographic setting, climate, topography, geology, hydrogeology, and potential receptors presented in Section 2.0. The CSM is used to identify chemical migration pathways at the Sand Creek Site for the fate and transport analysis.

The CSM serves as a basis for the model predictions during the fate and transport analysis and is dependent upon the available information and assumptions about the site conditions. The accuracy of the predictions made by the numerical models is comparative to the accuracy of these assumptions and the ability of site-specific data to accurately represent physical and chemical conditions at the Sand Creek Site. A summary of the essential elements of the conceptual model that apply to fate and transport modeling and assumptions are presented in the following subsections.

# **5.5 Contamination Sources**

This section discusses suspected contamination source areas at the Sand Creek Site. The exact release histories of contaminants at the Sand Creek Site are largely unknown because only limited operational records are available. Additionally, only minimal environmental media samples were collected prior to the RI. Elevated concentrations of metals, VOCs, SVOCs, PCBs, pesticides, explosives, and propellants are consistent with past activities performed at the former RVAAP and would be expected as a result of historical dumping activities conducted at the AOC. A summary of the sampling performed for the 2003 RA, the 2003 FWBWQS, and the RI and the identification of SRCs in surface and subsurface soils, sediments, and surface water are presented in Section 4.0. In addition, a DGM survey was conducted at the Sand Creek Site in 2010 that identified buried anomalies which is most likely

remaining subsurface debris. SRCs have not been identified for groundwater since groundwater well installation and sampling is performed on a facility-wide basis and is not included in Shaw's scope of work for the Phase RI work. The sources of contamination in each of the impacted media are summarized below:

- Much of the native soil was reworked, removed, or used as cover material during dumping activities at the landfill. Overland surface flow from the landfill following rain events and snowmelt may have contaminated the surface soils in the vicinity of the Sand Creek.
- The SRCs in the deep soil appear to have originated from the fill material placed after the native soil was disturbed, and the fill material including coal and glass debris was placed along the embankment and slopes of the Sand Creek. However, the SRCs may be a result of subsurface anomalies that were identified during the 2010 DGM survey that may be potentially remaining debris.
- The source of the SRCs measured in the sediment may be a result of overland runoff flow from impacted surface soil. However, it may also have been impacted by surface water contaminated from upstream sources during flood conditions.
- The SRC concentrations measured in the surface water could potentially be derived from the surface soil and sediment, dissolved in the rainwater and snowmelt running off the land surface and Sand Creek slopes. They could also originate from the surface and subsurface soils, whose chemical constituents may have been dissolved in the rainwater and snowmelt infiltrating vertically downwards to the groundwater and then discharging to the Sand Creek. Surface water is obviously transient in nature, and contaminants may be easily dispersed once immersed in surface water.

Based on the above discussion, the SRCs found in the surface and subsurface soil samples were used as the primary contamination sources in the fate and transport assessment for the Sand Creek Site. For the purposes of this fate and transport discussion, it is assumed that the contamination detected in the sediments and surface water originates from these soil sources.

# 5.6 Hydrogeologic Setting

A description of the regional and site hydrogeologic setting is presented in Section 2.0 of this report. Salient features applicable to fate and transport analysis are presented below:

• The Sand Creek Site is located on the eastern side of Sand Creek, with the land surface sloping steeply from the edge of the landfill towards the Sand Creek. The bank slopes from east to west towards Sand Creek 40 to 60 degrees from horizontal.

- Topographic relief between the top of embankment and the surface of Sand Creek is approximately 15 to 25 feet.
- Surface water runoff (overland flow) generally follows the topography of the site and flows in a westerly direction where it enters Sand Creek, except for several small depressions with ponded water that are present along the level surface at the top of the embankment.
- No monitoring wells have been installed, and groundwater elevation data are not available.
- Groundwater was not encountered in a majority of the deep borings at the Sand Creek Site during the RI field activities. Only three of the deep borings advanced during this sample event to collect soil samples (SCsb035, SCsb036, and SCsb037) that encountered groundwater with the remainder being dry or moist, but not saturated. The depth to groundwater at these three borings was approximately 13 feet bgs. Throughout the facility, average depth to groundwater is as deep as 50 feet bgs (USACE, 2004).
- The three borings where groundwater was observed in the soil cores are located in the northern part of the AOC, at an approximate elevation of  $965 \pm 5$  feet amsl. The approximate groundwater elevation at these locations is estimated to be  $952 \pm 5$  feet amsl, which is higher than the surface of Sand Creek ( $950 \pm 5$  feet) indicating groundwater may be discharging to the Sand Creek.

As shown in **Table 5-1**, the groundwater exists in sand and sandy fill material, which is underlain by dense silty clay and clay. The top of the clay ranges from 0 to 5.5 feet below the elevation at which water was encountered in these three borings.

# 5.6.1 Contaminant Release Mechanism and Migration Pathways

The following contaminant release mechanisms and migration pathways were identified based on an analysis of the contaminant sources and hydrogeologic setting information presented above:

- One of the principal migration pathways at the Sand Creek Site is infiltration through the unsaturated soil (approximately 13 feet thick) to the underlying groundwater causing SRCs to leach from surface and subsurface soils into groundwater present in the unconsolidated water-bearing zone.
- Due to the very heterogeneous nature of the unconsolidated glacial materials, groundwater flow patterns within the unconsolidated water-bearing zone are difficult to predict. Site-specific groundwater data are not available at the AOC.

- Some of the precipitation falling as rainfall and snow leaves the site as surface runoff to the Sand Creek, carrying dissolved SRCs that are present in the surface soil to the site. The fraction of the precipitation that does not leave the AOC as surface runoff infiltrates into the subsurface. Some of the infiltrating water is lost to the atmosphere as evapotranspiration. The remainder of the infiltrating water recharges the groundwater.
- The rate of infiltration and eventual recharge of the groundwater is controlled by soil cover, ground slope, saturated hydraulic conductivity of the soil, and meteorological conditions.
- The infiltrating water leaches the contaminated soil impacted with SRCs and carries the dissolved SRCs to deeper soil and groundwater. The factors that affect the leaching rate include the amount of infiltration, the SRCs' solubility in water, and partitioning between solids and water. Insoluble compounds will precipitate out of solution in the subsurface or remain in insoluble forms with little leaching. For organic compounds, the rate of decay, either by biodegradation or biotransformation, determines whether a contaminant will leach to the groundwater and if it does, then at what concentration. Inorganic compounds are not attenuated by the decay processes. Most organic compounds decay at rates that are proportional to their half-life as described in Section 5.3. The SRCs with longer half-lives have a greater potential for contaminating groundwater than the SRCs with shorter half-lives.
- The impacted groundwater eventually discharges to the surface water in Sand Creek, carrying dissolved SRCs with it.

**Figure 5-1** shows the contaminant migration conceptual model. After the SRCs leach through the unsaturated soil and reach the groundwater, they migrate with the local groundwater and potentially discharge to Sand Creek. In addition, overland flow over the AOC source soils may impact sediment which may potentially leach to Sand Creek.

# 5.6.2 Water Budget

Precipitation falling as rainfall and snow leaves the Sand Creek Site via the following mechanisms:

- Evapotranspiration (ET)
- Overland flow or surface runoff (R)
- Infiltration to groundwater (I)

The partitioning of precipitation (P) into the three components (ET, R, and I) of the hydrologic cycle constitutes the water budget. Evapotranspiration is the mechanism by which a fraction of the precipitation is lost to the atmosphere. The remainder of precipitation either reaches the Sand Creek as surface runoff or infiltrates to the water table. Infiltration is the mechanism that transports contaminants from soil to the groundwater by the process of leaching. The actual water budget was prepared to quantify the components of the hydrologic cycle at the Sand Creek Site. The quantified components of the water balance are used for inputs to the numerical modeling of soil leaching and groundwater transport. The components of a simple steady-state water balance model are related by the following equation:

$$P = ET + R + I$$

The water balance estimations were developed using the HELP Model (Schroeder et al., 1994). Calculations for site conditions using precipitation and temperature data for a 100-year period were generated synthetically using coefficients for Cleveland, Ohio. The annual average water balance estimates for the Sand Creek Site indicate an evapotranspiration of 28 percent (0.26 m [10.3 inches]) of total precipitation (0.94 m [37 inches]). The remaining 72 percent (0.68 m [27 inches]) of rainwater is available for surface water runoff and infiltration to groundwater. Of that 0.68 m (27 inches), groundwater recharge (infiltration) accounts for 10 percent (0.095 m [3.6 inches]), and surface runoff accounts for the remaining 62 percent (0.60 m [23 inches]).

# 5.6.3 Natural Attenuation of SRCs

As chemicals migrate vertically through the soil zone and then horizontally in groundwater, the SRC concentrations are reduced by several natural processes that are collectively referred to as natural attenuation. These processes include advection, dispersion, sorption, volatilization, and decay effects. The net result of natural attenuation is the reduction of SRC toxicity, mobility, and volume (mass) associated with the chemical. It is possible that for some chemicals with elevated concentrations, the concentrations are reduced to levels that are protective of human health and the ecosystem within an acceptable, site-specific time period. Therefore, natural attenuation is a viable alternative to active remediation.

Geotechnical samples were not collected from the unsaturated soil or the groundwater zone. Therefore, site-specific data regarding the soil moisture content, bulk density and porosity, and organic carbon content are not available. Data from other similar, nearby areas at the former RVAAP where investigations were conducted, such as the Ramsdell Quarry Landfill (SAIC, 2005) and Building 1200 (SAIC, 2011), were used for estimating these parameters at the Sand Creek Site. It is expected that attenuation through adsorption will occur in the unsaturated soil because of the organic carbon and clay content in the soils.

# 5.7 Soil Leachability Analysis

A soil leachability analysis was conducted to determine which of the SRCs found in surface and subsurface soils have the potential to leach to groundwater and eventually migrate to the Sand Creek when the groundwater discharges to it. The soil leachability analysis is a threestep screening process that includes the following:

- Amount of rainwater available for flow and infiltration to groundwater is highly variable and dependent upon soil type and climatic conditions.
  - Identifying SRCs for sample aggregates of interest.
  - Comparing the MDC of SRCs with generic soil screening levels (GSSLs) to develop initial CMCOPCs.
  - Comparing the MDC of initial CMCOPCs with site-specific soil screening levels (SSSLs) (GSSL multiplied by the site-specific Dilution Attenuation Factor [DAF]) to refine the initial CMCOPCs).

# 5.8 Soil Screening Analysis

This section presents the development and screening process for the CMCOPCs in soil and sediment at the Sand Creek Site that have the potential to leach to groundwater

# **5.8.1 Development of Initial CMCOPCs**

A screening evaluation was performed to identify SRCs with the potential to leach to groundwater and potentially migrate to the surface water. These SRCs are referred to as initial CMCOPCs. The CMCOPCs are defined as the constituents that may leach to groundwater and migrate to a downgradient receptor location at a concentration exceeding the drinking water Maximum Contaminant Level (MCL) or the Regional Screening Level (RSL) for residential soil that is protective of groundwater (EPA, 2011).

Table E-1 in **Appendix E** shows the development of initial CMCOPCS for the surface soil and dry sediments. The MDCs for the SRCs were compared with the GSSLs for contaminant migration to groundwater pathway developed by EPA for application at Superfund sites. The GSSLs are available at:

"http://www.epa.gov/superfund/health/conmedia/soil/pdfs/appd\_a.pdf".

The GSSL is defined as the concentration of a contaminant in soil that represents a level of contamination below which there is no concern for impacts to groundwater under CERCLA, provided conditions associated with soil screening levels are met. Generally, if contaminant concentrations in soil fall below the GSSL, and there are no significant ecological receptors of concern, then no further study or action is warranted for that area. A default DAF of 1 was
used, which assumes that there is no reduction in contaminant concentrations by dilution natural attenuation processes active between the source and the receptor location. If the MDC for a SRC was less than the GSSL, the SRC was excluded from further consideration as a CMCOPC.

For SRCs for which the GSSLs are not available, the RSLs for residential soil protective of groundwater were used to determine if the SRCs qualify as CMCOPCs (EPA, 2015). These RSLs are available at: "http://www.epa.gov/reg3hwmd/risk/human/rb-concentration\_table/Generic\_Tables/xls/ master\_sl\_table\_run\_NOVEMBER2015.xls".

If neither the GSSL nor the RSL for residential soil protective of groundwater was available for a chemical, then no further evaluation of the chemical was performed.

The results of the initial CMCOPC screen (presented in Table E-1 in **Appendix E**) for surface soils eliminated 2 inorganics (beryllium and zinc), 17 SVOCs (bis(2-ethylhexyl)phthalate, anthracene, 1,2,4-trichlorobenzene, pyrene, 5-13 ldrin 5-13 furan, benzo(g,h,i)perylene, fluoranthene, benzo(k)fluoranthene, chrysene, benzoic acid, acenaphthene, diethyl phthalate, di-n-butyl phthalate, fluorine, naphthalene, 2-methylnaphthalene, and 1,2-dichlorobenzene), and 5 pesticides (4,4'-DDT, methoxychlor, 4,4'-DDD, 4,4'-DDE, and heptachlor) from further consideration.

The results of the initial CMCOPC screen (presented in Table E-2 in **Appendix E**) for subsurface soils eliminated 1 explosive (m-nitrotoluene), 1 inorganic (vanadium), 13 SVOCs (1,4-dichlorobenzene, bis(2-Ethylhexyl)phthalate, anthracene, pyrene, fluoranthene, chrysene, benzoic acid, acenaphthene, di-n-butyl phthalate, fluorene, naphthalene, 2-methylnaphthalene, and 1,2-dichlorobenzene), 3 VOCs (ethylbenzene, toluene, and total xylenes), 10 pesticides (4,4'-DDT, 4,4'-DDE, 5-13 ldrin, delta-BHC, Endosulfan II, Endrin aldehyde, gamma chlordane, heptachlor, heptachlor epoxide, and methoxychlor), and 1 PCB constituent (Arochlor-1254) from further consideration.

#### **5.8.2 Refinement of Initial CMCOPCs**

The third step of the screening process involves comparing the MDC of a SRC with the SSSLs. As mentioned previously, the SSSL is defined as the GSSL multiplied by the site-specific DAF. The DAF, which is defined as the ratio of soil leachate concentration to receptor point concentration, is minimally equal to 1. In the derivation of the GSSLs (a DAF of 1), direct partitioning is used, assuming groundwater is in contact with the analytes in soil and the groundwater concentration is assumed to be equal to the leachate concentration. However, as soil leachate moves through soil, contaminant concentrations are attenuated by adsorption and degradation. When the leachate reaches the water table, dilution by groundwater further

reduces leachate concentrations. This reduction in concentration can be expressed by a DAF that is greater than 1.

The DAF for the Sand Creek Site was calculated using the site data to the extent possible and assumed or literature values where site-specific data related to the hydrogeologic properties were not available. The *Soil Screening Guidance* (EPA, 1996a), protocol was used to calculated the DAF. The following equations were used:

$$DAF = 1 + \frac{(Kid)}{IL}$$

where:

DAF is the Dilution Attenuation Factor

K is the aquifer hydraulic conductivity (meters per year [m/yr])

*i* is the horizontal hydraulic gradient (meters per meter)

I is the infiltration rate (m/yr)

L is the source length parallel to groundwater flow (m)

d is the mixing zone depth (m) (see equation below)

$$d = \sqrt{0.012 L^2} + d_a \left\{ 1 - \exp\left(\frac{-Li}{Kid_a}\right) \right\}$$

where:

 $d_a$  is aquifer thickness (m)  $d \le d_a$ 

If the aquifer thickness is less than the calculated mixing zone depth, then the aquifer thickness is used for "d" in the DAF calculation.

A site-specific DAF of 1.08 was calculated for the Sand Creek Site based on the aforementioned assumptions and reference literature. The DAF calculation is presented in Table E-3 in **Appendix E**. The results of the DAF evaluation are presented in Table E-4 for surface soils and in Table E-5 for subsurface soils (**Appendix E**). Based on this screening, only those constituents that exceeded their published GSSL or calculated SSSL (GSSL multiplied by the DAF) were identified as the initial CMCOPCs, based on leaching to groundwater. The only SRC eliminated as a CMCOPC as a result of screening against DAF based SSSLs was lead in surface soils. No additional SRCs were eliminated during the SSSL screening at the Sand Creek Site. These refined CMCOPCs, presented in Tables E-4 and E-5

(**Appendix E**), include explosives, inorganic compounds, SVOCs, and pesticides. Only one VOC compound, benzene in subsurface soil, was identified as a CMCOPC.

#### 5.8.3 Limitations and Assumptions of Soil Screening Analysis

It is important to note a limitation of the soil leachability analysis approach utilized above. The GSSLs and RSLs for residential soil protective of groundwater used in this screening are based on a number of default assumptions chosen by EPA to be protective of human health for most site conditions. The GSSLs and RSLs are expected to be more conservative than SSSLs developed based on site conditions which could be conducted if site-specific data were available. The conservative assumptions included in this analysis are as follows:

- Uniform distribution of contamination throughout the source area at concentration equal to the MDC
- No adsorption in the unsaturated soil or in the groundwater to retard the contaminated migration
- No biological degradation or transformation in the soil or in the groundwater

# 5.9 Fate and Transport Modeling

The conceptual model for the Sand Creek Site presented in Section 5.3 served as the basis for the numerical fate and transport modeling performed at the AOC.

A two-step modeling approach was utilized as follows:

- Screening the refined CMCOPCs (Section 5.6.1.2, Tables E-4 and E-5 [Appendix E]) with a travel time leaching analysis over duration 1,000 years
- Evaluating CMCOPCs that remain after the travel time screening using numerical fate and transport models to develop final CMCOPCs

Details of the two-step approaches are presented in the following subsections:

#### **5.9.1 Travel Time Analysis**

This step of the screening process involves comparing the MDCs of the refined CMCOPCs identified in the SSSL screen with a travel time evaluation. A travel time simulation for a contaminant was performed over a 1,000-year period. The time period of 1,000 years was selected assuming the time to be sufficient for the potential migration of the contaminant to the receptor locations and considering the high uncertainty associated with predicting conditions beyond that time frame. Therefore, the refined CMCOPCs at the selected sources were screened against a travel time of greater than 1,000 years. The travel time is the time required by a contaminant to travel from the base of its contamination source to the water table.

The estimated travel time for each initial CMCOPC to reach the water table is determined using the following equations:

$$T_r = \frac{T_h R_f}{V_p}$$

where:

T<sub>r</sub> is the leachate travel time (years)

 $T_{\rm h}$  is the thickness of the leaching zone, the vertical separation between soil source and water table (feet)

 $R_{\rm f}$  is the Retardation Factor (unit less) described in Section 5.2.1.2

V<sub>p</sub> is the pore water velocity (feet per year [ft/yr])

and

$$V_p = \frac{I}{\theta_w}$$

where:

I is the infiltration rate (ft/yr)

 $\theta_w$  is the water filled soil porosity (unit less)

**Table 5-2** presents the input parameters used in the travel time analysis.

Travel times for each of the refined CMCOPCs are presented in Table E-6 (surface soils) and Table E-7 (subsurface soils) of **Appendix E**. If the travel time for refined CMCOPCs from a source area exceeded 1,000 years, then the constituent was eliminated from the list of CMCOPCs. Initial CMCOPCs with travel times less than 1,000 years are considered to be CMCOPCs and are retained for further analysis. This screening evaluation eliminated seven inorganics, five SVOCs, and five pesticides from further consideration in the surface soil. It also eliminated 12 inorganics, 8 SVOCs, and 10 pesticides from further consideration in the subsurface soil. The constituents selected for further consideration and numerical modeling are listed below:

- Explosives and Propellants
  - 2,4,6-Trinitrotoluene
  - 2-Amino-4,6-Dinitrotoluene
  - Nitroguanidine

- Inorganics
  - Cadmium
  - Mercury
- SVOCs
  - Dibenzofuran
  - 1,4 Dichlorobenzene
  - Carbazole
  - Pentachlorophenol
- VOCs
  - Benzene
- Pesticides
  - Alpha-BHC
  - Beta-BHC
  - Lindane

Table E-8 in **Appendix E** lists the physical and chemical properties of these selected constituents.

#### 5.9.2 SESOIL Modeling

Seasonal Soil Compartment (SESOIL) modeling (Waterloo Hydrogeologic, Inc., 2004) was performed for constituents identified as CMCOPCs after screening against the 1,000-year travel time criteria presented in Section 5.7.1. Modeling was performed to predict concentrations of constituents in the leachate immediately beneath the selected source areas, just above the water table. If the predicted groundwater concentration derived from the leachate concentration of a CMCOPC exceeded its MCL or RSL, then the CMCOPC was retained as a final CMCOPC. The CMCOPC was not evaluated further using groundwater flow and transport models (i.e., the Analytical Transient 1-,2-,3-Dimensional (AT123D) model or the BIOSCREEN model) to predict the groundwater concentrations at designated receptor locations because groundwater at the site has not been investigated and input data for groundwater modeling are not available. The receptor location identified for the source areas is the Sand Creek at its closest point downgradient of the source areas.

The SESOIL model defines the soil compartment as a soil column extending from the ground surface through the unsaturated zone and to the upper level of the saturated zone. Processes

simulated in SESOIL are categorized in three cycles: the hydrologic cycle, the sedimentation cycle, and the pollutant cycle. Each cycle is a separate submodule in the SESOIL code. The hydrologic cycle includes rainfall, R, infiltration, soil-water content, ET, and groundwater recharge. The pollutant cycle includes convective transport, volatilization, adsorption/desorption, and degradation/decay. A contaminant in SESOIL can partition in up to four phases (liquid, adsorbed, air, and pure).

Data requirements for SESOIL are not extensive and utilize a minimum of site-specific soil and chemical parameters and monthly or seasonal meteorological values as input. Output of the SESOIL model includes pollutant concentrations at various soil depths and pollutant loss from the unsaturated soil zone in terms of R, percolation to groundwater, volatilization, and degradation. The mathematical representations in SESOIL generally consider the rate at which the modeled processes occur, the interaction of different processes with each other, and the initial conditions of both the waste area and the surrounding subsurface matrix material.

The input data for SESOIL can be grouped into four types: climatic data, chemical data, soil data, and application data. There are a total of 61 separate parameters contained in these four data groups. Wherever possible, site-specific parameter values were used for the modeling. Certain parameters, however, were not available for all of the source areas, and were estimated based on pertinent scientific literature, geochemical investigations, and checks for consistency between model results and historical data. Conservative estimates were used when a range of values was indicated, or parameter values were not available.

#### 5.9.2.1 Climate Data

The climatic data file of SESOIL consists of an array of mean monthly temperature, mean monthly cloud cover fraction, average monthly relative humidity, average monthly shortwave albedo, average daily ET, monthly P, mean number of storm events per month, mean duration of rainfall, and mean length of rainy season. The climatic data for the Sand Creek Site are presented in Table E-9 in **Appendix E**. These data were taken from the Youngstown Weather Service Office, Airport Station, Ohio, as it was determined to be nearest weather station to the former RVAAP.

#### 5.9.2.2 Chemical Data

The pollutant fate cycle of SESOIL focuses on the various chemical transport and transformation processes that may occur in the soil zone. These processes include volatilization/diffusion, adsorption/desorption, cation exchange, biodegradation and hydrolysis, and metal complexation. The chemical-specific parameters are presented in Table E-10 in **Appendix E**.

Parameters such as S, air diffusivity, HLC, the distribution coefficients ( $K_{ds}$ ) for inorganic chemicals and organic carbon-based  $K_{ocs}$  for organic compounds were obtained from the following sources:

- EPA, 1996b. Soil Screening Guidance: Technical Background Document, EPA Document Number: EPA/540/R-95/128, July.
- Baes, C.F. and R.D. Sharp, 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models, Journal of Environmental Quality, 12: 17–28.
- EPA, 2011. RSL Chemical-Specific Parameters Supporting Table, EPA Region 9, November.

For compounds that are subject to biodegradation and transformation, the most conservative degradation rates found in the literature (Howard et al., 1991) were used.

# 5.9.2.3 Soil Data

The soil data input parameters describing the physical characteristics of the soil are presented in **Table 5-3**. Site-specific data were used, if available; otherwise, SESOIL default values or data collected by SAIC as part of the former RVAAP Building 1200 geotechnical analysis (SAIC, 2011) were used.

#### 5.9.3.4 Source Terms

Analytical data from surface and subsurface soil collected from the Sand Creek Site were used as the source term for SESOIL modeling. Samples at different depth intervals were compiled to provide a detailed loading option for the SESOIL model. The MDCs from the surface soil and subsurface soil overlying the water table were used as source term concentrations.

#### 5.9.2.5 Application Data

The model was arranged in four layers. The first layer is equivalent to the surface soil (0 to 1 foot), with the other three layers corresponding to the subsurface soil sampling increments (1 to 5 feet, 5 to 9 feet, and 9 to 13 feet bgs) which are above the water table. Contamination loading was in one or more of layers 1, 2, and 3. Details of the model layers utilized in this modeling are presented in Table E-10 in **Appendix E**.

#### **5.9.2.6 SESOIL Modeling Results**

SESOIL modeling was performed for CMCOPCs 2,4,6-trinitrotoluene, 2-amino-4,6dinitrotoluene, nitroguanidine, cadmium, mercury, dibenzofuran, 1,4 dichlorobenzene, carbazole, pentachlorophenol, benzene, alpha-BHC, beta-BHC, and lindane. These CMCOPCs have the potential to reach the water table within 1,000 years based on the

screening analysis results (Tables E-7 and E-8 in Appendix E). Table 5-4 presents the SESOIL predicted peak leachate concentrations beneath source areas and the corresponding time for peak leachate concentrations. The variation of leachate concentrations over time is presented graphically in **Appendix E**. The MDCs for groundwater were calculated using a DAF of 1.08 as described in Section 5.6.1.2. The MCL or the residential tap water RSL for the CMCOPCs are also shown in this table for comparison purposes. For determining if a CMCOPC would qualify as a final CMCOPC, the predicted groundwater MDC was compared to the MCL. If MCL was not available, then the residential tap water RSL value was used. The residential RSL tap water values are available at "http://www.epa.gov/reg3hwmd/risk/human/rb-

concentration table/Generic Tables/xls/restap sl table run NOVEMBER2015.xls".

**Table 5-4** shows that 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 1,4-dichlorobenzene, carbazole, pentachlorophenol, benzene, alpha-BHC, and beta-BHC are predicted to exceed MCLs or RBCs; therefore, these eight constituents were selected as the final CMCOPCs.

# **5.10 Uncertainties Analysis**

Throughout the screening and modeling processes, a conservative approach was used to provide a moderate and cautious evaluation which may overestimate the contaminant concentration in the leachate for migration from observed soil concentrations. The important assumptions used in the fate and transport analysis and the related limitations of the analysis are as follows:

- The equations used to determine soil adsorption and contaminant retardation are based on the assumption that an equilibrium relationship exists between the solidand solution-phase concentrations and that the relationship is linear and reversible.
- A number of literature values were used in the analysis. These values depend upon the properties of the impacted media and vary from site to site (i.e. organic carbon content, K, and soil-moisture content). The use of literature values is an approximation that may not represent the site conditions.
- This modeling used current soil concentration data collected during the RI field activities. These samples were collected years after historical operations were terminated and following an RA performed in 2003. The modeling does not account for constituents that have already leached to groundwater.
- Groundwater flow and solute transport are not affected by density variations.
- The MDC values were used as the source term concentrations for SESOIL model instead of more realistic average values.

- The water budget represents an overall average rainwater recharge and assumes an even distribution of infiltration in the modeled area. An average water budget assumes some areas will have higher or lower recharge based on the heterogeneity of the soil and varying topography.
- The effects of porous media heterogeneity and anisotropy are not addressed in these simulations.
- The effects of seasonal fluctuations in the depth to water and changes in flow directions and gradients were not considered.
- Groundwater at the site has not been investigated. The hydrogeologic parameters are either assumed values or literature values for comparable lithologies.
- The biodegradation rate constants for organic constituents are literature based values that may deviate from actual biodegradation rates at the site. Generally, higher biodegradation rates will produce lower concentrations.

#### 5.11 Summary of Fate and Transport

Surface soil, subsurface soil, and sediment from the RI field activities and surface water samples from the 2003 RA and the 2003 FWBWQS were used to evaluate fate and transport of chemicals identified as SRCs at the Sand Creek Site. Groundwater evaluation beneath the Sand Creek Site was excluded from Shaw's scope of work for the Phase RI since it is performed on a facility-wide basis. The data identified explosive- and propellant-related compounds, inorganics, VOCs, SVOCs, PCBs, and pesticides as SRCs. The SRCs found in the surface soil and subsurface soil samples were used as the primary contamination sources in the fate and transport assessment to determine the potential for the SRCs to migrate vertically downwards and impact groundwater quality underneath the AOC and eventually the surface water quality in the nearby Sand Creek. The SRCs detected in the sediments and surface water may originate from these soil sources or may result from upstream contaminant sources. Further evaluation of groundwater at the AOC will be required to provide an accurate assessment if it has been impacted by the SRCs identified in surface and subsurface soil during the RI.

Fate and transport analysis indicates that some of these SRCs may leach from soil into the groundwater beneath the source. A soil leachability analysis was conducted to determine which of the SRCs found in surface soil and subsurface soils have the potential to leach to groundwater and eventually the Sand Creek when groundwater discharges to Sand Creek. A multistep approach was utilized that included the following:

• Identifying SRCs

- Comparing the MDCs of SRCs with GSSLs to develop initial CMCOPCs
- Comparing the MDCs of initial CMCOPCs with DAF-based SSSLs to refine the initial CMCOPCs

The refined list of CMCOPCs was used for the numerical fate and transport modeling performed for the Sand Creek Site. A two-step modeling approach was utilized as follows:

- Screening the refined CMCOPCs with a travel time leaching analysis
- Evaluating CMCOPCs that remain after the travel time screening using SESOIL to develop final CMCOCs

The final list of CMCOPCs that have the potential for impacting groundwater and surface water includes the following:

- Two explosives (2,4,6-trinitrotoluene and 2-amino-4,6-dinitrotoluene)
- Three SVOCs (1,4-dichlorobenzene, carbazole, and pentachlorophenol)
- One VOC (benzene)
- Two pesticides (alpha-BHC and beta-BHC)



Figure 5-1. Contaminant Migration Conceptual Model

RVPBC\_100\_4

| Boring ID | Boring Date | Lithology Description  | Interval Depth<br>(feet bgs) | Depth to Water<br>(feet bgs) <sup>1</sup> |  |
|-----------|-------------|------------------------|------------------------------|-------------------------------------------|--|
|           |             | sand and gravel        | 0–4                          |                                           |  |
|           |             | sand, slag, fill       | 4-8                          |                                           |  |
| SCsb-035  | 9/22/2010   | sands with silt        | 8–18.5                       | 13                                        |  |
|           |             | dense silty clay, clay | 18.5–20                      |                                           |  |
|           |             | sandy fill             | 0–4                          |                                           |  |
| SCsb-036  | 9/22/2010   | sand                   | 4–13                         | 13                                        |  |
|           |             | dense silty clay, clay | 13–20                        |                                           |  |
|           |             | sandy fill             | 0-8                          |                                           |  |
| SCsb-037  | 9/22/2010   | sand                   | 8–17                         | 13                                        |  |
|           |             | dense silty clay       | dense silty clay 17–19       |                                           |  |
|           |             | sand                   | 19–20                        |                                           |  |
| SC sh 038 | 0/02/2010   | sand                   | 0–13                         | D                                         |  |
| 5050-058  | 9/22/2010   | dense silty clay, clay | 13–20                        | Dry                                       |  |
| SCsb 039  | 0/01/0010   | sand, silty sand, silt | 0–17                         | D                                         |  |
| 50.80-039 | 9/21/2010   | dense silty clay       | 17–19                        | Dry                                       |  |
| SCsb 040  | 0/01/0010   | sand, silty sand, silt | 0–17                         | Des                                       |  |
| 5030-040  | 9/21/2010   | dense silty clay       | 17–19                        | Dry                                       |  |
| SCsb-041  | 9/21/2010   | sand, silty sand, silt | 0–17                         | Des                                       |  |
|           |             | dense silty clay       | 17–19                        | Dry                                       |  |
| SCsb-042  | 9/21/2010   | sand                   | 0–9.5                        |                                           |  |
|           |             | silty clay             | 9.5–17                       | Dry                                       |  |
|           |             | silt, dry              | 17–20                        |                                           |  |
| SCsb-0/3  | 0/01/2010   | sand, silt             | 0–16                         |                                           |  |
| SCSD-043  | 9/21/2010   | dense clay             | 16–20                        | Moist but not saturated                   |  |

| Table 5-1.  | Lithology. | interval de | enths. | and der | oth measured | to ground | water in soi | borings.   |
|-------------|------------|-------------|--------|---------|--------------|-----------|--------------|------------|
| 1 abic 5-1. | Lithology, | muci vai u  | puis,  | and ucp | /m measureu  | to ground | water in son | i borings. |

Note:

<sup>1</sup>Depth to water is based on observations of saturated soil in the drill cores and were not measured. No wells were installed at any of the boring locations.

bgs denotes below ground surface.

ID denotes identification.

This page intentionally left blank.

| Table 5 2. Input parameters used in Traver Time Mary 515 for remember of Chicor Co. |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| Parameter                                  | Symbol           | Value        | Units     | Notes                                                                                    |  |
|--------------------------------------------|------------------|--------------|-----------|------------------------------------------------------------------------------------------|--|
| Infiltration rate                          | I                | 0.31         | ft/yr     | 10 percent of annual precipitation from<br>Youngstown WSO AP, Ohio weather station       |  |
| Soil-water distribution coefficient        | K <sub>d</sub>   | SRC-specific | L/kg      | See Appendix E, Tables E-6 and E-7                                                       |  |
| Organic carbon distribution coefficient    | Koc              | SRC-specific | L/kg      | See Appendix E, Tables E-6 and E-7                                                       |  |
| Fraction organic carbon—Surface soil       | F <sub>oc</sub>  | 0.0026       | unit less | Assumed value, based on data from Ramsdell<br>Quarry Landfill (SAIC, 2005)               |  |
| Fraction organic carbon—Subsurface soil    | F <sub>oc</sub>  | 0.0012       | unit less | Assumed value, based on data from Building 1200 (SAIC, 2011)                             |  |
| Water filled soil porosity—Surface soil    | $\theta_{\rm w}$ | 0.30         | unit less | Assumed value, based on lithology type                                                   |  |
| Bulk density (dry)—Surface soil            | ρь               | 1.8          |           | Assumed value, based on data from Ramsdell<br>Quarry Landfill (SAIC, 2005)               |  |
| Water filled soil porosity—Subsurface soil | $\theta_{\rm w}$ | 0.367        | unit less | Assumed value, based on lithology type                                                   |  |
| Bulk density (dry)—Subsurface soil         | ρь               | 1.63         |           | Assumed value, based on data from Building 1200 (SAIC, 2011)                             |  |
| Thickness of leaching zone                 | T <sub>h</sub>   | Variable     | feet      | See Appendix E, Tables E-6 and E-7                                                       |  |
| Retardation Factor                         | R <sub>f</sub>   | SRC-specific | unit less | Calculated in Tables E-6 and E-7 ( <b>Appendix E</b> ) using equation in Section 5.2.1.2 |  |
| Contaminant arrival time                   | Tr               | SRC-specific | year      | Calculated in Tables E-6 and E-7 ( <b>Appendix E</b> ) using equations above             |  |

CMCOPCs denotes contaminant migration chemical of potential concern.

ft/yr denotes feet per year.

L/kg denotes liters per kilogram.

SAIC denotes Science Applications International Corporation.

SRC denotes site-related contaminant.

| Parameter                          | Symbol         | Value              | Units           | Notes                                                                                          |
|------------------------------------|----------------|--------------------|-----------------|------------------------------------------------------------------------------------------------|
| Infiltration rate (Recharge Rate)  | q              | 0.09               | m/yr            | 10 percent of annual precipitation from<br>Youngstown WSO AP, Ohio weather station             |
| Intrinsic Permeability             | К              | $1 \times 10^{-9}$ | cm <sup>2</sup> | Estimated value based on lithology                                                             |
| Application Area                   | Ар             | 4.05E+0            | cm <sup>2</sup> | Model calculated value                                                                         |
| Disconnectedness Index             | с              | 3.7                | Unit less       | Model calculated value                                                                         |
| Fraction organic carbon            | foc            | 0.0012             | unit less       | Assumed value, based on comparable data from<br>Building 1200 geotechnical sample (SAIC, 2011) |
| Water filled soil porosity         | $\theta_{w}$   | 0.367              | unit less       | Assumed value, based on lithology type                                                         |
| Freundlich Equation Exponent       | n              | 0.5                | unit less       | Model calculated value                                                                         |
| Effective porosity                 | $\theta_{e}$   | 0.30               | unit less       | Assumed value, based on lithology type                                                         |
| Bulk density (dry)—Subsurface soil | ρ <sub>b</sub> | 1.63               | kg/L            | Assumed value, based on data from Building 1200 (SAIC, 2011)                                   |
| Thickness of leaching zone         | T <sub>h</sub> | Variable           | feet            | See Appendix E, Table E-10                                                                     |
| Vadose Zone Thickness              | Vz             | 13                 | feet            | From remedial investigation boring logs (Appendix A)                                           |

#### Table 5-3. Input data used in SESOIL Model for soil properties.

*cm<sup>2</sup> denotes square centimeters.* 

kg/L denotes kilograms per liter.

m/yr denotes meters per year.

SAIC denotes Science Applications International Corporation.

SESOIL denotes Seasonal Soil Compartment.

| CMCOPC Based on Travel<br>Time <1,000 years | Maximum Leachate<br>Concentration<br>(mg/L) | Time<br>(days) | Maximum Groundwater<br>Concentration<br>(mg/L) | Time<br>(Years) | MCL/RSL<br>(mg/L) | Final<br>CMCOPC? |  |  |  |
|---------------------------------------------|---------------------------------------------|----------------|------------------------------------------------|-----------------|-------------------|------------------|--|--|--|
| Explosives                                  |                                             |                |                                                |                 |                   |                  |  |  |  |
| 2,4,6-Trinitrotoluene                       | 0.25                                        | 12,410         | 0.23                                           | 34              | 0.018             | Yes              |  |  |  |
| 2-Amino-4,6-Dinitrotoluene                  | 0.43                                        | 1,825          | 0.40                                           | 5               | 0.073             | Yes              |  |  |  |
| Nitroguanidine                              | 0.52                                        | 730            | 0.48                                           | 2               | 3.7               | No               |  |  |  |
| Inorganics                                  |                                             |                |                                                |                 |                   |                  |  |  |  |
| Cadmium                                     | 0.00                                        | NA             | 0.00                                           | NA              | 0.005             | No               |  |  |  |
| Mercury                                     | 0.00                                        | NA             | 0.00                                           | NA              | 0.002             | No               |  |  |  |
| Semivolatile Organic Compounds              |                                             |                |                                                |                 |                   |                  |  |  |  |
| Dibenzofuran                                | 0.00                                        | NA             | 0.00                                           | NA              | NA                | No               |  |  |  |
| 1,4 Dichlorobenzene                         | 0.084                                       | 2,922          | 0.078                                          | 8               | 0.075             | Yes              |  |  |  |
| Carbazole                                   | 0.55                                        | 14,610         | 0.51                                           | 40              | 0.003             | Yes              |  |  |  |
| Volatile Organic Compounds                  |                                             |                |                                                |                 |                   |                  |  |  |  |
| Pentachlorophenol                           | 0.19                                        | 21,185         | 0.18                                           | 58              | 0.001             | Yes              |  |  |  |
| Benzene                                     | 0.10                                        | 1,095          | 0.09                                           | 3               | 0.005             | Yes              |  |  |  |
| Pesticides                                  |                                             |                |                                                |                 |                   |                  |  |  |  |
| Alpha-BHC                                   | 0.00963                                     | 5,844          | 0.00892                                        | 16              | 0.000011          | Yes              |  |  |  |
| Beta-BHC                                    | 0.000041                                    | 15,341         | 0.000038                                       | 42              | 0.000037          | Yes              |  |  |  |
| Lindane                                     | 0.0000                                      | NA             | 0.00                                           | NA              | 0.0002            | No               |  |  |  |

#### Table 5-4. The CMCOPCs identified from the SESOIL Model.

#### Table 5-4. CMCOPCs Identified from the SESOIL Model (continued).

The final CMCOPC was identified comparing predicted maximum leachate concentration to MCL/RBC. A constituent is a CMCOPC if its predicted leachate concentration exceeds its MCL/RBC within 1,000 years. CMCOPC denotes contaminant migration chemical of potential concern. MCL denotes Maximum Contaminant Level. mg/L denotes milligrams per liter. NA denotes not applicable. RSL denotes residential tap water Regional Screening Level (EPA, 2010). SESOIL denotes Seasonal Soil Compartment.

# 6.0 HUMAN HEALTH RISK ASSESSMENT

The purpose of this HHRA is to document whether concentrations of chemicals remaining on the AOC may pose a risk to current or future site receptors, and to identify if any site conditions need to be addressed in an FS. This human health risk assessment has been revised and updated per requirements in the Risk Assessment Technical Memo (NGB, 2014) to include the evaluation of three Land Uses. This risk assessment follows the streamlined approach to risk decision-making, as described in the FWCUG Report (SAIC, 2010). The FWCUGs are used in the evaluation process for the Residential Receptor (Unrestricted (Residential) Land Use) and the NGT Receptor (Military Training Land Use). These values are used since the initial screening was completed and finalized prior to the completion of the Risk Assessment Tech Memo. The USEPA's November 2015 RSLs for the Commercial Industrial Land Use are used for the Industrial Receptor. The Risk Assessment Technical Memo states that the Residential RSL should be used for a chemical lacking a FWCUG and that the Industrial RSL can be used for any chemical that lacks a FWCUG for the NGT. The Risk Assessment Technical Memo identifies two Land Uses that should be evaluated in the RI if the Unrestricted (Residential) Land Use is not obtained. These two Land Uses: Commercial/Industrial Land and the Military Training Land Use, are included in this RI since it was not known if the Unrestricted (Residential) Land Use would be achieved. The Residential RSLs have been a part of the risk assessment process since the development of the FWCUGs. The use of the RSLs follow the same process as that developed for the FWCUGs.

The *Position Paper for the Application and Use of FWCUGs* (USACE, 2012), describes the use of FWCUGs/RSLs which are used in the streamlined risk assessment in the following steps:

- Identify COPCs for the site by comparing site concentrations to soil background concentrations, eliminating essential nutrients, and comparing site concentrations to FWCUGs and RSLs.
- Identify COCs by comparing site concentrations to specific FWCUGs and RSLs, and using a "sum of ratios" approach to account for cumulative effects from exposure to multiple chemicals. This method sums the ratios of site concentration to the FWCUG and RSL for all COPCs. A sum of ratios greater than one represents an unacceptable risk, and cancer and noncancer effects are considered separately.

More details on this approach and its application at this site are provided in the following sections.

# 6.1 Data Used in the Human Health Risk Assessment

As described in Section 1.3.1, "Operational History," the Sand Creek Disposal Road Landfill is located in the eastern portion of the former RVAAP and is a former open dump area (**Figure** 

**1-2**). A C&D type material were delivered to the site and dumped over an embankment located immediately adjacent to Sand Creek Site. The Sand Creek Site extends along the embankment of Sand Creek for approximately 1,200 feet, and occupies a total area of approximately 1 acre. The bank slopes from east to west towards the Sand Creek 40 to 60 degrees from horizontal. Prior to the 2003 RA, the site was overgrown with mature trees and ground level vegetation. The RA cleared large areas of vegetation, which were then reseeded with hydroseed and then mulched. The RI field activities included areas adjacent to the top of the slopes and along the floodplain at the bottom of the slopes adjacent to the AOC. The total area investigated for the RI consisted of the 1 acre AOC (approximate) and about an additional acre of land adjacent to the AOC.

Section 1.3.2, "Previous Investigations and Removal Actions," describes the previous activities and investigations conducted at the Sand Creek Site. The inclusion or exclusion of these data in the risk assessment is described below:

- USACHPPM RRSE (1996)—The 1996 USACHPPM RRSE Report identified surface soil and sediments to be potential media for contaminant migration at the Sand Creek Site due to the lack of any physical barriers/fence around the site and its proximity to Sand Creek. Three shallow soil samples and one sediment sample were collected from the site during the RRSE; however, the data from this investigation are not available. These samples are considered limited in nature due to the minimal number of samples that were collected across the entire site for the RRSE. A more comprehensive and current soil and sediment sampling program was conducted for the RI, as described in Section 3.0. Based on these considerations, there is negligible impact to the risk assessment by not including the RRSE samples.
- 2003 FWBWQS (USACE, 2005a)—Two surface water samples and one sediment sample were collected at the intersection of the Sand Creek and the former railroad that transects the site as described in Section 1.3.2.4, "2003 Facility-Wide Biological and Water Quality Study." The surface water samples were collected on different collection dates during the summer. The collection of the aforementioned data provided (1) aquatic life use attainment status of streams regarding the Warm Water Habitat or other applicable aquatic life use designation codified in the OWQS, (2) an assessment if whether chemical contamination within the streams is adversely affecting the biological communities, and (3) an ecological assessment report summarizing the sediment, surface water, and aquatic biological results. The sediment data (2010) are available for the site and are described in Section 3.3, "Sediment Characterization." Additionally, the nutrients detected in the sediment

sample from this event (phosphorus and nitrate/nitrite) are not typically used to evaluate human health risks and is provided in this assessment for informational purposes only. The surface water data from the 2003 sampling event are used in this evaluation and will be used in conjunction with the surface water data from the 2003 RA to support the DQO Report (Shaw, 2009) assessment that the Sand Creek has not been impacted by previous site activities.

- 2003 RA (MKM, 2004)—Confirmatory soil, surface water, and sediment samples were collected in and around the site by MKM following the 2003 RA, as described in Section 1.3.2.6, "2003 Removal Action Sample Collection." Thirty soil samples were collected from the base of the excavation at a depth of 1 foot. Surface water was collected at 3 locations and sediment samples were collected at 12 locations within the Sand Creek and neighboring floodplains, respectively, to characterize potential impact associated with surface water runoff from the site. Surface soil and sediment data from this report were not used in this RI, since more recent data (2010) for surface soil and sediment are available for the entire area of the site as discussed in Section 3.2, "Surface Soil Characterization" and Section 3.3, "Sediment Characterization," respectively. The surface water data from the 2003 RA are used in this evaluation to support the DQO Report (Shaw, 2009) assessment that the Sand Creek has not been impacted by previous site activities.
- **RI Sampling (Section 3.0)**—Soil sampling was conducted for the RI from the surface and subsurface. Surface soils were collected from the 0- to 1-foot bgs interval using ISM. Subsurface samples were collected at the following intervals: 1 to 5 feet, 5 to 9 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet using a modified ISM sampling approach as directed by USACE in the SOW and presented in the approved SAP Addendum No. 1 (Shaw, 2010). In general, 30 increments of soil were collected from the soil column for each interval to generate a modified ISM sample. Even though these samples consisted of 30 increments that were processed similar to ISM samples collected over a surface soil sampling unit, they are still representative of a depth interval at a distinct location and are therefore, considered as discrete samples and are referenced as such for the purposes of this evaluation.

The samples included in the risk assessment data sets are provided in **Tables 6-1** through **6-6**. Sample lists for soil are included for four depth intervals (0 to 1 foot, 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet) to account for the different intervals used to evaluate receptors, as discussed in Section 6.2.

# 6.2 Human Receptors and Land Use

The Sand Creek Site is located in the eastern central portion of the facility. The AOC is not currently used for military training activities but may receive periodic foot traffic during maintenance, restoration, and security activities. The most likely future land use for the AOC is the Military Training since it is within the facility's boundary. The Representative Receptor for this Land Use is the NGT per the *USACE's Facility-Wide Human Health Risk Assessment Manual* (HHRAM - USACE, 2005b) and the 2014 Risk Assessment Tech Memo. This anticipated future Land Use, in conjunction with the evaluation of Unrestricted (Residential) Land Use form the basis for identifying chemicals of concern (COCs) in this RI. Unrestricted (Residential) Land Use, specifically the Resident Receptor (Adult and Child) scenario, is included to evaluate COCs for Unrestricted (Residential) Land Use at the AOC as required by the CERCLA process and as outlined in the HHRAM (USACE, 2005b).

A third Land Use was also included in this revised RI. The third Land Use, Commercial Industrial Land Use was identified in the Risk Assessment Tech Memo as a means to evaluate the site to determine if the site is suitable for full-time, permanent occupational exposure by employees. According to the Risk Assessment Tech Memo (NGB, 2014), if the criteria for the Commercial Industrial Land Use is met, then no additional remedial actions are required except for the development of Land Use Controls (non-residential use) through the CERCLA process (FS, PP, ROD, etc.). The Military Training Land Use is the primary Land Use and is protective of all activities that the OHARNG may conduct on the site except for full-time, permanent occupational use. Evaluation of the three Land Uses in the RI will allow better risk management decisions in an FS if needed.

The Sand Creek Site was considered as a single EU based on the future land use. Although the site is being evaluated as a single EU, soil data collected within and adjacent to the AOC were aggregated by depth intervals since different future use receptors with different depths of potential exposure are required to be evaluated. This RI includes analyses to assess potential risks at various depths to assess whether or not the most likely receptor to deep surface soil and subsurface soil, the NGT, would be able to dig and to what depth. The soil intervals for Unrestricted (Residential) Land Use and Commercial Industrial Land Use were also assessed. Sediment samples collected for the RI and previously collected surface water samples were evaluated in the same manner for the identified receptors. The purpose of evaluating the receptors in this manner is to provide information for further evaluation in the FS, if required, as to whether there is a need for restrictions or potential land-use controls based on the future land use. The COPC identification was completed for the following data sets:

- Resident Receptor (Adult and Child)—Surface soil (0–1 foot bgs) (**Table 6-7**)
- Industrial Receptor—Surface soil (0–1 foot bgs) (Table 6-8)

- National Guard Trainee Deep Surface soil (0–4 feet bgs) (**Table 6-9**)
- Resident Receptor (Adult/Child)—Subsurface soil (1–13 feet bgs) (Table 6-10)
- Industrial Receptor Subsurface soil (1–13 feet bgs) (**Table 6-11**)
- National Guard Trainee—Subsurface soil (4–7 feet bgs) (Table 6-12)
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Sediment (Table 6-13)
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Surface water (Table 6-13).

The exposure scenarios for RVAAP-specific receptors (Resident Receptor and NGT) are presented in the FWCUG Report (SAIC, 2010). The exposure parameters for the Industrial Receptor (Composite Indoor and Outdoor Worker) can be found on the USEPA's RSL website and are those used to calculate Industrial RSLs. There is no depth or intrusive activity associated with the Industrial Receptor so in this HHRA, they are assumed to be exposed to depths similar to that of the Resident Receptor.

# 6.3 Selection of COPCs

The section presents the evaluation of site data and the identification of COPCs for the intended receptors based on future land use. The data for this RI Report was evaluated in accordance with the initial evaluation steps presented in the Position Paper (USACE, 2012) to identify SRCs as presented in Section 4.1, "Data Evaluation Method." The evaluation incorporates the same criteria described in Section 4.1.3, "Data Reduction and Screening" to eliminate chemicals that are not SRCs (i.e., infrequently detected chemicals, background comparisons, and essential nutrients). To establish COPCs, all chemicals that had not been eliminated to this point were evaluated using the following steps

- The FWCUGs developed for the Resident Receptor (Adult and Child) and the National Guard Trainee human health receptors and the USEPA's RSLs for the Industrial Receptor for each chemical are used. If there are no FWCUGs developed for a particular chemical, then the Residential RSL is used for the Resident Receptor and the Industrial RSL is used for the NGT (Risk Assessment Tech Memo, 2014). The FWCUGs are currently presented in the FWCUG Report (SAIC, 2010).
- The FWCUGs at the  $1 \times 10^{-6}$  (one in a million) excess cancer risk level and noncarcinogenic risk HQ using the 0.1 risk value for each of the receptors are used.
- A comparison of the selected final FWCUG to the EPC will be completed. The EPC for the identification of COPCs is the MDC.

The chemical will be retained as a COPC if the EPC exceeds the risk value for that receptor for either one of the 1 × 10<sup>-6</sup> excess cancer risk and the noncarcinogenic HQ using the 0.1 risk value. The Industrial RSL is used similarly for the Industrial Receptor to determine COPCs, using the same risk levels.

Screening the FWCUGs for the Resident Receptor (Adult and Child) and the NGT and the RSLs for the Industrial Receptor against the MDC, is used to determine COPCs. The screening values used to evaluate for the identified human receptors are presented in the data summary tables in **Appendix D**.

Tables 6-7 and 6-14 present the screening results for COPCs for the Resident Receptor (Adult and Child), Industrial Receptor, and the National Guard Trainee in accordance with the process outlined in the FWCUG Report (SAIC, 2010) and the USACE Position Paper (2012). For the Unrestricted (Residential) Land Use screening tables, both the adult and child final FWCUGs are shown for the relevant depth interval and media. The values shown are the most stringent of the carcinogenic and noncarcinogenic FWCUGs taken from the FWCUG Report (SAIC, 2010). As directed by the Position Paper (USACE, 2012), the carcinogenic FWCUG to be used is at the  $1 \times 10^{-6}$  (one in a million) excess cancer risk and the noncarcinogenic FWCUG is based on a HQ of 0.1. If a chemical was detected for which there was no FWCUG, the USEPA RSL (EPA, 2015) was used. These values are only shown in the tables if there are no FWCUGs available for the Resident Receptor. The RSLs are based on the lower of values derived considering a cancer risk of  $1 \times 10^{-6}$  and noncancer hazard considering a HQ of 1. As a result, RSLs derived based on noncancer risk were adjusted to a HQ of 0.1 in order to be consistent with the noncancer final FWCUGs. The RSL for lead, however, was not adjusted in this manner, since it was not derived using the hazard index (HI) approach. The RSL for lead in soil is based on the value recommended by USEPA as generally safe for residential settings.

In some cases, the FWCUGs or RSLs were not available for the SRC, and values for a closely related compound are used. All such substitutions are noted in the tables. They are discussed further in the "Uncertainty Analysis" section of this HHRA.

For SRCs in surface water where no FWCUGs were available, the RSLs for tap water were used for evaluation of COPCs (EPA, 2015). In the case of lead, there is no RSL for tap water. Instead, the EPA drinking water action limit of 15  $\mu$ g/L was used for screening surface water concentrations (EPA, 2012).

For SRCs in sediment, the NGT FWCUGs were used for the Industrial Receptor since there are no Industrial RSLs for sediment. This approach is overly conservative but provides an idea of potential chemicals that could pose risks.

In summary, the COPCs are identified by comparing the MDC to the applicable screening criteria. Substances that are considered SRCs as identified in Section 4.0, and for which the MDC is greater than the respective FWCUG, or the RSL (if no FWCUGs are available for the Resident Receptor or NGT; or the Industrial RSL for the Industrial Receptor), are considered COPCs. A summary of the COPCs identified for the Residential and National Guard Land Use receptors and depth intervals is presented in **Table 6-15**.

This is a very conservative approach for this AOC since there were so many ISM surface samples taken and numerous soil borings (also called vertical ISM samples). Generally, each ISM should be treated separately. Using the MDC is conservative but assures that all possible COPCs are identified for the soil samples.

Another factor affecting the data and distribution of the COPCs for the Military Training Land Use evaluation is the depth of the data. Ideally, data use dot estimate the COPCs for the NGT in the deep surface soil is generated from samples for the entire interval (0-to 4 foot) rather than form ISM sample results 0-to 1 foot and discrete samples from 1-to 5 feet. This conservative approach likely overestimates the actual exposure for this receptor. Potential impacts from this overestimate and other effects are discussed later in this risk assessment.

# 6.3.1 COPCs in Surface Soil and Deep Surface Soil

Surface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 0- to 1-foot interval.

- The COPCs identified for the Unrestricted (Residential) Land Use receptors in surface soil are antimony, arsenic, cadmium, copper, mercury, silver, thallium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and ideno(1,2,3-cd) pyrene. These chemicals are highlighted in **Table 6-7**, which also lists all the SRCs. All SRCs were screened. Rationale for the determination of COPCs is provided in in **Table 6-7**.
- The COPCs identified for the Commercial Industrial Land Use receptors in surface soil are arsenic, thallium, and benzo(a)pyrene. These chemicals are highlighted in Table 6-8, which also lists all the SRCs. All SRCs were screened. Rationale for the determination of COPCs is provided in in Table 6-8.

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval.

• The COPCs identified for this interval and NGT Receptor are arsenic, barium, cadmium, cobalt, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h) anthracene. These chemicals are highlighted in **Table 6-9**, which also lists all the SRCs. All SRCs were screened. Rationale for the determination of COPCs is provided in **Table 6-9**.

A summary of results for the screening process used to evaluate for COPCs in surface soil for the Resident Receptor, Industrial Receptor, and deep surface soils for the National Guard is presented in **Table 6-15**.

# 6.3.2 COPCs in Subsurface Soil

Subsurface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 1- to 13-foot interval. Samples from this interval include the subsurface samples from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet.

- The COPCs identified for the Unrestricted (Residential) Land Use receptors identified in subsurface soils based on the MDC are antimony, arsenic, copper, lead, thallium, vanadium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene. These chemicals are highlighted in **Table 6-10**, which also lists all the SRCs. All SRCs were screened. Rationale for the determination of COPCs is provided in **Table 6-10**.
- The COPCs identified for the Commercial Industrial Land Use in subsurface soil are arsenic, lead, thallium, benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene. These chemicals are highlighted in **Table 6-11**, which also lists all the SRCs. All SRCs were screened. Rationale for the determination of COPCs is provided in **Table 6-11**.

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap.

• Arsenic was the only COPC identified for this interval for Commercial Industrial Land Use. All SRCs were screened. Rationale for the determination of COPCs is provided in **Table 6-12**.

A summary of results for the screening process used to evaluate for COPCs in subsurface soil for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use is presented in **Table 6-15**.

# 6.3.3 COPCs in Sediment

The COPCs identified in sediment for the Unrestricted (Residential) Land Use are antimony, silver, thallium, and benzo(a)pyrene. Only benzo(a)pyrene was identified as a COPC in sediment for the Commercial Industrial and the Military Training Land Use. Sediment is not considered an exposure medium for the Industrial Receptor. Therefore, no Industrial RSLs were developed for this receptor. For this risk assessment, it was assumed that an Industrial Receptor would be exposed similarly as the NGT receptor. The FWCUGs for the NGT were used to determine COPCs in the sediment for the Commercial Industrial Land Use.

A summary of results for the screening process used to evaluate for COPCs in sediment is provided in **Table 6-13** for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors. A summary of the COPCs identified for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use Receptors in sediment is presented in **Table 6-15**.

# 6.3.4 COPCs in Surface Water

Arsenic is the only COPC identified in surface water for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors. Surface water is not considered an exposure medium for the Industrial Receptor. Therefore, no Industrial RSLs were developed for this receptor for surface water. For this risk assessment, it was assumed that an Industrial Receptor would be exposed similarly as the NGT receptor. The FWCUGs for the NGT were used to determine COPCs in the surface water for the Commercial Industrial Land Use.

A summary of results for the screening process used to evaluate for COPCs in surface water is provided in **Table 6-14** for all three Land Uses. A summary of the COPCs identified for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors in surface water is presented in **Table 6-15**.

#### 6.4 Selection of COCs

#### 6.4.1 Process

This section presents the COC evaluation process for the human health risk receptors. The COCs are identified through additional screening of the COPCs identified in Section 6.3 and summarized per media for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors in **Table 6-15**. The determination of COCs for the AOC was conducted in accordance with the Position Paper (USACE, 2012) as follows:

• The FWCUG values for the Residential Receptors and the NGT for the Military Training Land Use as well as the Industrial Receptor's RSLs (Commercial Industrial

Land Use) were selected using the  $1 \times 10^{-5}$  (one in one hundred thousand) excess cancer risk and noncarcinogenic risk value at an HQ of 1.

- All carcinogenic and noncarcinogenic risk values for all receptors and all critical effect and target organs for each of the noncarcinogenic risk values are reported.
- A comparison of the FWCUG to the EPC was conducted. The EPC was either the ISM result for RI ISM sampling, or the 95-percent upper confidence limit (UCL) of the mean or the MDC for discrete samples. If the 95-percent UCL could not be calculated, the MDC was used as the EPC.
- For carcinogens and noncarcinogens, the EPCs were compared to the target risk FWCUG using the sum of ratios method presented in the Position Paper (USACE, 2012).
- The chemical was retained as a COC for Unrestricted Land Use if (1) the EPC exceeds the Resident Receptor for either one of the 1 × 10<sup>-5</sup> (one in one hundred thousand) excess cancer risk and the noncarcinogenic risk value termed HQ using the 1.0 risk value and/or (2) the sum of ratios for all carcinogens or all noncarcinogens that may affect the same organ are greater than 1 and the chemical contributes at least 5 to 10% percent to the sum. The same process was completed for the COC determination for Commercial Industrial Land Use using the same risk values as stated above for the Resident Receptor for the Industrial Receptor's RSLs (USEPA, 2015). The same process was also followed for the Military Training Land Use using the FWCUGs developed for the NGT.

The use of the sum of ratios approach is intended to account for additive effects from exposure to multiple chemicals that can cause the same effect (i.e., cancer) or affect the same target organ. The sum of ratios approach develops a ratio for each chemical by comparing the chemical concentration (i.e., mean concentration or concentration in confirmation samples, the EPC) of the COC to the individual FWCUG and then adds those ratios for chemicals with similar effects (USACE, 2012). These chemicals are further assessed using a weight of evidence evaluation.

Each of these steps presented herein are discussed in further detail in the following sections. Additional information can be obtained from the Position Paper (USACE, 2012).

# 6.4.2 Identification of Cleanup Goals

The FWCUGs used for identification of COCs include those for the resident Receptor to evaluate COCs for the Unrestricted (Residential) Land Use and the NGT's FWCUGs for the Military Training Land Use. The future use of the AOC will be by the OHARNG. As discussed in Section 2, "Human Receptors", potential human exposure is limited. The AOC

is located at the eastern central portion of the facility. It is not currently used for OHARNG training activities but receives periodic foot traffic during maintenance, restoration, and security activities.

The NGT is the most applicable receptors for the evaluation of COCs at the Sand Creek Site given the potential for greater exposure for these receptors. The NGT was conservatively evaluated for potential exposure for surface soil, subsurface soil, sediment and surface water. The Industrial Receptor does not have RSLs for sediment or surface water so the FWCUGs for the NGT were used to determine potential risks. The FWCUGs for the NGT should be considered to be protective to the Industrial Receptor although no exposure would be expected to surface water or sediment by this receptor. The USEPA's CSM for the RSLs for the Composite Receptor does not consider surface water and sediment as complete exposure pathways since there is no contact point. The approach taken in this risk assessment is to assume that the Industrial Receptor will be exposed to all media similarly as the NGT, thereby ensuring that evaluation represents the most conservative approach for the Industrial Receptor.

The FWCUGs/RSLs selected are those based on a 10<sup>-5</sup> (one in one hundred thousand) excess cancer risk for carcinogenic effects, and an HQ of 1 for noncarcinogenic effects. A summary of results for the screening processes used to evaluate for COCs for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use in surface soil, subsurface soil, sediment, and surface water is presented in **Tables 6-16** through **6-38**.

#### 6.4.3 EPC Development

The COPCs in the surface soil ISM samples and subsurface discrete samples are evaluated separately. For the ISM samples, the MDC for each relevant depth interval is used as the EPC because these samples represent an average concentration over the area sampled. Therefore, additional statistical evaluation of these samples is not appropriate. For the subsurface discrete samples, the lower of the MDC and the 95-percent UCL on the mean is used as the EPC. The 95-percent UCLs were derived using results for the COPCs for all the subsurface discrete samples identified in **Tables 6-2**, **6-3**, and **6-4**. They were calculated using ProUCL Version 4.00.04, which is software package developed by the EPA designed to calculate various statistical measures, including UCLs. It contains several parametric, nonparametric and bootstrap methods for calculating UCLs, and some methods are capable of handling nondetect results, including multiple detection limits. The data sets for UCL derivation include detected results, and nondetect results. The nondetect results are included as such, with the reporting limit. The ProUCL outputs are provided in **Appendix F**.

The recommended 95-percent UCL value is used as the EPC unless it is greater than the MDC. If more than one value is recommended, the greatest value was selected. The EPCs used for

evaluation of COCs for the Residential Receptor, Industrial Receptor, and the NGT receptors in surface soil, deep surface soil, subsurface soil, sediment, and surface water are provided in **Tables 6-16** through **6-38**.

#### 6.4.4 Comparison of EPCs to Cleanup Goals

As described in the Position Paper (USACE, 2012), EPCs are compared to the applicable final FWCUGs for cancer and noncancer effects through the development of a ratio. These ratios are summed to account for potential cumulative effects. In the case of noncancer effects, ratios are summed for each target organ. The COCs are identified if the following occur:

- The cancer or noncancer ratio for a given COPC is greater than 1.
- The sum of the ratios for cancer or noncancer effects for any target organ is greater than 1, and the COPC contributes more than 5 percent to the sum.
- The Weight of Evidence Evaluation (WOE Evaluation) indicates that the COPCs is at concentrations that need some additional remedial action. The WOE allows for an assessment of the concentration and severity of the COPC as it occurs with other chemicals. For example, if a COPC is from a single ISM location and another COPC is from a different location, it would be inappropriate to assume multiple chemical exposure by a receptor if the ISM sample decision unit was comparable to that of the receptor's EU. For Sand Creek, there were numerous surface soil ISM samples taken over just one acre, which is not really relevant to an actual exposure area. This step is a refinement step that is used to identify true COCs that need remedial action and investigation per the CERCLA process.

**Tables 6-16** through **6-38** present the comparison of the EPCs to the FWCUGs/RSLs and identify which COPCs have been identified as COCs for the receptors in surface soil, deep surface soil, subsurface soil, sediment, and surface water. Summaries of the COCs identified for the Residential and National Guard Land Use receptors in the environmental media are presented in **Table 6-38**.

#### 6.4.5 COCs in Surface Soil and Deep Surface Soil

Surface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 0- to 1-foot interval. The COC determination for each receptor is presented separately for noncancer (by target organ/critical effect) and for cancer risks. The table identification and information is described below for each Land Use/representative receptor.

These COCs were identified using the maximum detected concentration for each COPC at any of the ISM locations and not by individual ISM location.

- Arsenic was the only chemical identified as a COC based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in surface soil using the maximum (**Table 6-16**). This was due to potential impacts to the child Resident Receptor. None were identified for the adult.Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These chemicals are highlighted in **Table 6-17**, which also lists all the COPCs evaluated for the Unrestricted (Residential) Land Use. These were determined using the maximum concentration of any of the ISM surface soil results for each COPC.
- No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in surface soil (**Table 6-18**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These chemicals are highlighted in **Table 6-19**, which also lists all the COPCs evaluated for the Commercial Industrial Land Use. These COCs were based on the maximum detected concentration for each COPC at any of the ISM locations and not by ISM location.

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval were also used.

- No COCs based on noncancer effects were identified for the Military Training Land use in the surface samples using ISM maximum sample concentrations in the 0- to 1 foot interval (**Table 6-20**). Three COCs were identified based on cancer risks and using the SOR. These were arsenic, cobalt, and benzo(a)pyrene. These chemicals are highlighted in **Table 6-21**, which also lists all the COPCs evaluated for the Military Training Land Use.
- In the discrete samples from the 1 to 5 foot interval, the 95% UCL was estimated and used in the calculations. The number of samples were limited so the statistical type of test varies from chemical to chemical depending upon how many actual detections were made of the chemical and the Standard Deviation. The output from ProUCL is provided in Appendix F. No COCs based on noncancer effects were identified for the Military Training Land use in the deep surface samples (1-to 5 foot interval) using the 95% UCL (Table 6-22). Four COCs were identified based on cancer risks and using the SOR for this interval. These were arsenic, cobalt, benzo(a)pyrene, and

benzo(b)fluoranthene. These chemicals are highlighted in **Table 6-23**, which also lists all the COPCs evaluated for the Military Training Land Use.

A summary of results for the screening process used to evaluate for COCs in surface soil for the Unrestricted (Residential) Land Use and Commercial Industrial Land Use and deep surface soil for the Military Training Land Use is presented in **Tables 6-16** through **6-23**. Summaries of the COCs identified for the Unrestricted Land Use, Commercial Industrial Land Use, and Military Training Land Use receptors in surface soil and deep surface soil, are presented in **Table 6-38**.

# 6.4.6 COCs in Subsurface Soil

Subsurface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 1- to 13-foot interval. Samples from this interval include the subsurface samples from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet.

- No COCs based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in subsurface soil (**Table 6-24**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These chemicals are highlighted in **Table 6-25**, which also lists all the COPCs evaluated for the Unrestricted (Residential) Land Use. These were determined using the 95% UCL of the discrete subsurface sample results for each COPC.
- No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in subsurface soil (**Table 6-26**). Four COCs were identified based on cancer risks and using the SOR. These were arsenic, benzo(a)anthracene, dibenzo(a,h)anthracene, and benzo(a)pyrene. These chemicals are highlighted in **Table 6-27**, which also lists all the COPCs evaluated for the Commercial Industrial Land Use. These COCs were based on the maximum detected concentration for each COPC at any of the ISM locations and not by ISM location.

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap.

No COCs were identified for the Military Training Land Use in the subsurface interval for the NGT (should have been only 4-to 7 feet but this also included data from 5-to 9 feet). Table 6-28 presents the screening for COCs based noncancer effects and Table 6-29 presents the screening summary for the determination of COC based on carcinogenic effects.

A summary of results for the screening process used to evaluate for COCs in subsurface soil for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use is presented in **Table 6-38**.

#### 6.4.7 COCs in Sediment

Sediment at the former RVAAP is defined as the 0 to 0.5 foot interval for the applicable receptors identified in the FWCUG Report (SAIC, 2010). For the Sand Creek Site, the receptors include the Resident Receptor and the NGT. Additionally, it was assumed (in this risk assessment) that the Industrial Receptor may be exposed similarly as the NGT. The USEPA's RSLs do not include sediment as an exposure medium for either the Resident Receptor or the Industrial Receptor. The FWCUGs developed for the NGT were considered protective of the Industrial receptor.

None of the COPCs identified in sediment for the Unrestricted (Residential) Land Use. **Table 6-30** presents the screening for COCs based noncancer effects and **Table 6-31** presents the screening summary for the determination of COC based on carcinogenic effects.

No COCs identified in sediment were identified in the Commercial Industrial Land Use or the Military Training Land Use. **Table 6-32** presents the screening for COCs based noncancer effects and **Table 6-33** presents the screening summary for the determination of COC based on carcinogenic effects.

A summary of results for the screening process used to evaluate for COCs in sediment is provided in **Table 6-38** for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use receptors.

#### 6.4.8 COCs in Surface Water

Arsenic was the only COPC identified in surface water. It was not identified as a COC for any of the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or the Military Training Land Use as concentrations detected in surface water were less than the FWCUGs or the sums of ratios were less than 1 for cancer and noncancer effects.

**Table 6-34** presents the screening for COCs based noncancer effects and **Table 6-35** presents the screening summary for the determination of COC based on carcinogenic effects for the Unrestricted (Residential) Land Use. **Table 6-34** presents the screening for COCs based noncancer effects and **Table 6-35** presents the screening summary for the determination of COC based on carcinogenic effects for the Unrestricted (Residential) Land Use. **Table 6-36** presents the screening for COCs based noncancer effects and **Table 6-37** presents the screening summary for the determination of COC based on carcinogenic effects for the Unrestricted (Residential) Land Use. **Table 6-36** presents the screening for COCs based noncancer effects and **Table 6-37** presents the screening summary for the determination of COC based on carcinogenic effects for the Unrestricted (Residential) Land Use. A summary of results of the COC evaluation for surface

water for the Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and the Military Training Land Use is presented in **Table 6-38**.

#### 6.5 Conclusions of the HHRA and Discussion

#### 6.5.1 Surface Soil Summary

#### Unrestricted (Residential) Land Use

Based on the results of this HHRA, there are several COCs identified in the surface soil for the Unrestricted (Residential) Land Use. Subsurface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 1- to 13-foot interval. Samples from this interval include the subsurface samples from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet. Only arsenic was identified as a COC for the Resident Receptor (Child) based on noncancer effects for the Unrestricted (Residential) Land Use receptors in surface soil. **Two COCs** were identified based on cancer risks and using the SOR. These were **arsenic** and **benzo(a)pyrene**. These were determined using the 95% UCL of the discrete subsurface sample results for each COPC.

# Commercial Industrial Land Use

The same two COCs that were identified in the surface soil for the Unrestricted (Residential) Land Use were also identified as COCs for the surface soil Commercial Industrial Land Use. The **two COCs** were identified based on cancer risks and using the SOR approach. These were **arsenic** and **benzo(a)pyrene**. These COCs were derived using the maximum detected concentration for each COC at any of the ISM locations and not for each individual ISM locations. This type of assessment should be completed in the FS, so that the minimum area to be evaluated can be focused where there is the most contamination. This would help streamline the FS so that only areas where COCs occur are the areas that are fully evaluated in the FS.

#### Military Training Land Use

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval were also used. Three COCs were identified based on cancer risks and using the SOR. These were **arsenic**, **cobalt**, and **benzo(a)pyrene**. These three COCs were identified in the surface soil ISMs are were only for the 0-to1 foot interval. It is very likely a site-wide weighted average (combining the 0to1 foot results and the 1-to 5 foot results) could be calculated for these three COCs. This would likely limit locations where these COCs occur that would be evaluated in an FS.

In the discrete samples from the 1 to 5 foot interval, the 95% UCL was estimated and used in the calculations. The number of samples were limited so the statistical type of test varies from chemical to chemical depending upon how many actual detections were made of the

chemical and the Standard Deviation. **Four COCs** were identified based on cancer risks and using the SOR for this interval. These were **arsenic**, **cobalt**, **benzo(a)pyrene**, and **benzo(b)fluoranthene**.

## 6.5.2 Subsurface Soil Summary

## Unrestricted (Residential) Land Use

Based on the results of this HHRA, there are several COCs identified in the subsurface soil for the Unrestricted (Residential) Land Use. These were identified using the 95% UCL or the MDC (if it was larger than the 95% UCL) for each COPCs regardless of location. No COCs based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in subsurface soil. ISM DU. This would help focus the FS so that only the contaminated areas are evaluated.

# Commercial Industrial Land Use

No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in subsurface soil. **Four COCs** were identified based on cancer risks and using the SOR. These were **arsenic**, **benzo(a)anthracene**, **dibenzo(a,h)anthracene**, and **benzo(a)pyrene**. These COCs were derived using the 95% UCL for each COC at any of the ISM locations and not for each individual ISM locations. This type of re-assessment should be completed in the FS, so that the minimum area to be evaluated can be focused where there is the most contamination. This would help focus the FS so that only the contaminated areas where COCs occur are evaluated.

#### Military Training Land Use

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap. **No COCs** were identified for the Military Training Land Use in the subsurface interval for the NGT (should have been only 4-to 7 feet but this also included data from 5-to 9 feet).

#### 6.5.3 Sediment Summary

No COCs were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the sediment at the AOC. This media does not require further evaluation in an FS. A "No further Action" (NFA) determination is obtained for sediment at the Sand Creek Site.

#### 6.5.4 Surface Water Summary

No COCs were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the surface water. This media does not require

further evaluation in an FS. A NFA determination is obtained for surface water at the Sand Creek Site.

# 6.5.5 Conclusions

Results of the HHRA indicate the presence of several COCs in surface soil and subsurface soil for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use. Arsenic and benzo(a)pyrene are the primary risk drivers. These COCs should be further evaluated in an FS to determine the appropriate remedial actions for soil at this AOC.

No COCs were identified in sediment or surface water at the Sand Creek Disposal Road Landfill. An NFA determination is indicated for both sediment and surface water and an FS is not warranted for either of these media.

#### 6.6 Uncertainty Analysis

There are inherent sources of uncertainty in the evaluation of exposure and risk that are common to all risk assessments. These general sources of uncertainty are not described here. However, those specific to this assessment are discussed in the following sections. These uncertainties generally relate to sampling considerations, the determination of EPCs, and the selection of appropriate receptors. There are numerous uncertainties related to the final FWCUGs, including exposure assumptions and toxicity values. These uncertainties are inherent to the use of these values, and are similar for all assessments using them. Therefore, these uncertainties are not discussed here unless there is a particular issue relevant to this evaluation.

Uncertainty can arise from sampling techniques or approaches. In this assessment surface soil and sediment were sampled using ISM techniques. These techniques provide a good representation of average concentrations over the area sampled. While it may not identify small areas of higher concentrations, this approach is useful for estimating exposure, which is expected to occur over an area and not discrete locations. Although sampling of subsurface soil was conducted using a modified ISM sampling technique, the samples are still representative of a discrete location and should be evaluated using a statistical approach. As a result, there is more variability in these results. However, if sample numbers are sufficient, 95 percent UCLs on the mean can be calculated to provide an upper limit on the mean concentration for use in exposure assessment, thus limiting the uncertainty associated with this sampling technique.

The identification of COPCs and COCs is based on the identification of SRCs. The identification of SRCs is largely based on the site-specific BSVs. As shown in **Table 6-38**, a number of metals were identified as COCs. The identification of these metals as SRCs in some

cases is based on small differences in MDCs compared to BSVs (**Tables 6-7** to **6-14**). This comparison is subject to uncertainties in both the site data and background data sets. Arsenic was identified as a COCs in soil for at least one of the receptors and depth intervals. Maximum concentrations of arsenic are greater than twice the BSV, suggesting that the identification of this substances as an SRC does not represent a large uncertainty to the risk assessment.

The evaluation of chromium in this assessment is based on the FWCUGs for trivalent chromium. This assumption was made since samples of both soil and sediment were analyzed for hexavalent chromium, and it was not detected in any sample. Therefore, this assumption represents a minor uncertainty to the risk assessment.

The FWCUGs were developed from all chemicals that have been detected at the former RVAAP during previously completed studies. Therefore, if a chemical lacks a FWCUG then it has not been frequently detected at the former RVAAP. In these cases when no FWCUGs were available, the RSLs (EPA, 2015) were used as the screening values for all receptors. This provides a conservative evaluation, since the RSLs are based on a generic residential exposure and are not site-specific values. In some cases, if no FWCUGs or RSLs were available, screening values for closely related chemicals were used. This assumption represents an uncertainty to the risk assessment, although concentrations of most substances without FWCUGs or RSLs were quite low. The presence of these compounds represents an uncertainty to the risk assessment, although it is likely to be small, since the concentrations of these chemicals are low compared to others detected at the site.

The selection of the MDC as the EPC for the ISM samples provides a conservative evaluation of potential exposures in the area with the greatest concentrations. For modified ISM samples that were evaluated as discrete samples, the 95-percent UCL of the mean is used as the EPC unless it is higher than the MDC. There is uncertainty associated with the calculation and selection of the 95-percent UCL. In some cases, UCLs were calculated for data sets of less than 10 samples. These values represent a greater uncertainty than those calculated with more samples. In addition, the 95-percent UCL on data sets skewed by a few high values are more uncertain. However, the UCLs recommended in this circumstance are conservative to reflect the uncertainty.

The selection of receptors and their exposure assumptions also represents an uncertainty to the risk assessment. The NCP requires the evaluation for Unrestricted Land Use that have been identified as the Resident Receptor for the former RVAAP. However, since the exposure scenarios for the Resident Receptor and the NGT are based on long term continuous exposure to the MDC, it is likely that any uncertainty does not underestimate risks.
| Table 6-1. | 1. Surface Soil (0 to 1 foot) Human Health Risk Assessment Data Set for 1 | Residential Land Use and Commercial Industrial Land |
|------------|---------------------------------------------------------------------------|-----------------------------------------------------|
| Use.       |                                                                           |                                                     |

| Sample Location                   | Sample Number     | Sample Date | Depth of<br>Sample<br>(feet bgs) |   | Analyses                                                              |  |  |  |  |
|-----------------------------------|-------------------|-------------|----------------------------------|---|-----------------------------------------------------------------------|--|--|--|--|
| Incremental Samples (Except VOCs) |                   |             |                                  |   |                                                                       |  |  |  |  |
| SCss-057                          | SCss-057D-0001-SO | 9/24/10     | 0                                | 1 | VOCs                                                                  |  |  |  |  |
| SCss-057                          | SCss-057M-0001-SO | 9/24/10     | 0                                | 1 | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |  |  |  |  |
| SCss-058                          | SCss-058M-0001-SO | 9/23/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-059                          | SCss-059M-0001-SO | 9/23/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-060                          | SCss-060M-0001-SO | 9/23/10     | 0                                | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |  |  |  |  |
| SCss-061                          | SCss-061M-0001-SO | 9/23/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-062                          | SCss-062M-0001-SO | 9/22/10     | 0                                | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |  |  |  |  |
| SCss-063                          | SCss-063M-0001-SO | 9/22/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-064                          | SCss-064M-0001-SO | 9/22/10     | 0                                | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |  |  |  |  |
| SCss-065                          | SCss-065M-0001-SO | 9/22/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-066                          | SCss-066M-0001-SO | 9/22/10     | 0                                | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |  |  |  |  |
| SCss-067                          | SCss-067M-0001-SO | 9/21/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-068                          | SCss-068D-0001-SO | 9/21/10     | 0                                | 1 | VOCs                                                                  |  |  |  |  |
| SCss-068                          | SCss-068M-0001-SO | 9/21/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-069                          | SCss-069M-0001-SO | 9/24/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-072                          | SCss-072M-0001-SO | 11/9/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-073                          | SCss-073M-0001-SO | 11/9/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-074                          | SCss-074M-0001-SO | 11/9/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |
| SCss-075                          | SCss-075M-0001-SO | 11/9/10     | 0                                | 1 | Explosives, Metals, SVOCs                                             |  |  |  |  |

# Table 6-1. Surface Soil (0 to 1 foot) Human Health Risk Assessment Data Set for Residential Land Use and Commercial Industrial Land Use (continued).

| Sample Location | Sample Number     | Sample Date | Dep<br>Sar<br>(feet | th of<br>nple<br>t bgs) | Analyses                                                              |  |
|-----------------|-------------------|-------------|---------------------|-------------------------|-----------------------------------------------------------------------|--|
| SCss-076        | SCss-076M-0001-SO | 11/9/10     | 0                   | 1                       | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |  |

bgs denotes below ground surface.

Exp denotes explosives.

Hex. Chrome denotes hexavalent chromium.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

| Table 6-2. | Subsurface Soil (1 to 13 feet) Human Health Risk Assessment Data Set for Residential Land Use and Commercial Industrial |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Land Use.  |                                                                                                                         |

| Sample Location | Sample Number     | Sample Date | Dep<br>Sar<br>(feet | th of<br>nple<br>t bgs) | Analyses                                                              |
|-----------------|-------------------|-------------|---------------------|-------------------------|-----------------------------------------------------------------------|
| SCsb-035        | SCsb-035M-0001-SO | 9/22/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-036        | SCsb-036M-0001-SO | 9/22/10     | 1                   | 5                       | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCsb-037        | SCsb-037D-0001-SO | 9/22/10     | 1                   | 5                       | VOCs                                                                  |
| SCsb-037        | SCsb-037M-0001-SO | 9/22/10     | 1                   | 5                       | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide              |
| SCsb-038        | SCsb-038M-0001-SO | 9/22/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-039        | SCsb-039M-0001-SO | 9/21/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-040        | SCsb-040M-0001-SO | 9/21/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-041        | SCsb-041M-0001-SO | 9/21/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-042        | SCsb-042M-0001-SO | 9/21/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-043        | SCsb-043M-0001-SO | 9/21/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-044        | SCsb-044M-0001-SO | 9/24/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-045        | SCsb-045M-0001-SO | 9/25/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-046        | SCsb-046M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCsb-047        | SCsb-047M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-048        | SCsb-048M-0001-SO | 9/29/10     | 1                   | 5                       | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |
| SCsb-049        | SCsb-049M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-050        | SCsb-050M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-051        | SCsb-051M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |
| SCsb-052        | SCsb-052M-0001-SO | 9/29/10     | 1                   | 5                       | Explosives, Metals, SVOCs                                             |

| Table 6-2. Subsurface Soil (1 to 13 feet) Human Health Risk Assessment Data Set for Residential Land Use and Commercial Industria | al |
|-----------------------------------------------------------------------------------------------------------------------------------|----|
| Land Use (continued).                                                                                                             |    |

| Sample Location | Sample Number     | Sample Date | Depth of<br>(feet | Sample<br>bgs) | Analyses                                                 |
|-----------------|-------------------|-------------|-------------------|----------------|----------------------------------------------------------|
| SCsb-053        | SCsb-053M-0001-SO | 9/29/10     | 1                 | 5              | Explosives, Metals, SVOCs                                |
| SCsb-054        | SCsb-054M-0001-SO | 9/29/10     | 1                 | 5              | Explosives, Metals, SVOCs                                |
| SCsb-055        | SCsb-055M-0001-SO | 9/25/10     | 1                 | 5              | Explosives, Metals, SVOCs                                |
| SCsb-056        | SCsb-056M-0001-SO | 9/25/10     | 1                 | 5              | Explosives, Metals, SVOCs, Hex. Chrome                   |
| SCsb-035        | SCsb-035M-0002-SO | 9/22/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-036        | SCsb-036M-0002-SO | 9/22/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-037        | SCsb-037M-0002-SO | 9/22/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-038        | SCsb-038M-0002-SO | 9/22/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-039        | SCsb-039M-0002-SO | 9/21/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-040        | SCsb-040D-0002-SO | 9/21/10     | 5                 | 9              | VOCs                                                     |
| SCsb-040        | SCsb-040M-0002-SO | 9/21/10     | 5                 | 9              | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide |
| SCsb-041        | SCsb-041M-0002-SO | 9/21/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-042        | SCsb-042M-0002-SO | 9/21/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-043        | SCsb-043M-0002-SO | 9/21/10     | 5                 | 9              | Explosives, Metals, SVOCs                                |
| SCsb-035        | SCsb-035M-0003-SO | 9/22/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |
| SCsb-036        | SCsb-036M-0003-SO | 9/22/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |
| SCsb-037        | SCsb-037M-0003-SO | 9/22/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |
| SCsb-038        | SCsb-038M-0003-SO | 9/22/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |
| SCsb-039        | SCsb-039M-0003-SO | 9/21/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |
| SCsb-040        | SCsb-040M-0003-SO | 9/21/10     | 9                 | 13             | Explosives, Metals, SVOCs                                |

# Table 6-2. Subsurface Soil (1 to 13 feet) Human Health Risk Assessment Data Set for Residential Land Use and Commercial Industrial Land Use (continued).

| Sample Location | Sample Number     | Sample Date | Depth of Sample<br>(feet bgs) |    | Analyses                                                 |
|-----------------|-------------------|-------------|-------------------------------|----|----------------------------------------------------------|
| SCsb-041        | SCsb-041M-0003-SO | 9/21/10     | 9                             | 13 | Explosives, Metals, SVOCs                                |
| SCsb-042        | SCsb-042D-0003-SO | 9/21/10     | 9                             | 13 | VOCs                                                     |
| SCsb-042        | SCsb-042M-0003-SO | 9/21/10     | 9                             | 13 | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide |
| SCsb-043        | SCsb-043M-0003-SO | 9/21/10     | 9                             | 13 | Explosives, Metals, SVOCs                                |

bgs denotes below ground surface.

Exp denotes explosives.

Hex. Chrome denotes hexavalent chromium.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

| Table 6-3. | Deep Surface Soil (0 to 4 f | eet) Human Health Risk | Assessment Data Set for N | Ailitary Training Land Use. |
|------------|-----------------------------|------------------------|---------------------------|-----------------------------|
|            |                             |                        |                           |                             |

| Sample<br>Location | Sample Number      | Sample<br>Date | Depth of Sample<br>(feet bgs) |   | Analyses                                                              |
|--------------------|--------------------|----------------|-------------------------------|---|-----------------------------------------------------------------------|
| Incremental Sam    | ples (Except VOCs) |                |                               |   |                                                                       |
| SCss-057           | SCss-057D-0001-SO  | 9/24/10        | 0                             | 1 | VOCs                                                                  |
| SCss-057           | SCss-057M-0001-SO  | 9/24/10        | 0                             | 1 | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |
| SCss-058           | SCss-058M-0001-SO  | 9/23/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-059           | SCss-059M-0001-SO  | 9/23/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-060           | SCss-060M-0001-SO  | 9/23/10        | 0                             | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-061           | SCss-061M-0001-SO  | 9/23/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-062           | SCss-062M-0001-SO  | 9/22/10        | 0                             | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-063           | SCss-063M-0001-SO  | 9/22/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-064           | SCss-064M-0001-SO  | 9/22/10        | 0                             | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-065           | SCss-065M-0001-SO  | 9/22/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-066           | SCss-066M-0001-SO  | 9/22/10        | 0                             | 1 | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-067           | SCss-067M-0001-SO  | 9/21/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-068           | SCss-068D-0001-SO  | 9/21/10        | 0                             | 1 | VOCs                                                                  |
| SCss-068           | SCss-068M-0001-SO  | 9/21/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-069           | SCss-069M-0001-SO  | 9/24/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-072           | SCss-072M-0001-SO  | 11/9/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-073           | SCss-073M-0001-SO  | 11/9/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |
| SCss-074           | SCss-074M-0001-SO  | 11/9/10        | 0                             | 1 | Explosives, Metals, SVOCs                                             |

| Sample<br>Location | Sample Number            | Sample<br>Date | Dep | th of Sample<br>(feet bgs) | Analyses                                                              |
|--------------------|--------------------------|----------------|-----|----------------------------|-----------------------------------------------------------------------|
| SCss-075           | SCss-075M-0001-SO        | 11/9/10        | 0   | 1                          | Explosives, Metals, SVOCs                                             |
| SCss-076           | SCss-076M-0001-SO        | 11/9/10        | 0   | 1                          | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |
| Modified Incren    | nental Samples (Except V | OCs)           |     | ÷                          |                                                                       |
| SCsb-035           | SCsb-035M-0001-SO        | 9/22/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-036           | SCsb-036M-0001-SO        | 9/22/10        | 1   | 5                          | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCsb-037           | SCsb-037D-0001-SO        | 9/22/10        | 1   | 5                          | VOCs                                                                  |
| SCsb-037           | SCsb-037M-0001-SO        | 9/22/10        | 1   | 5                          | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide              |
| SCsb-038           | SCsb-038M-0001-SO        | 9/22/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-039           | SCsb-039M-0001-SO        | 9/21/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-040           | SCsb-040M-0001-SO        | 9/21/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-041           | SCsb-041M-0001-SO        | 9/21/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-042           | SCsb-042M-0001-SO        | 9/21/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-043           | SCsb-043M-0001-SO        | 9/21/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-044           | SCsb-044M-0001-SO        | 9/24/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-045           | SCsb-045M-0001-SO        | 9/25/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-046           | SCsb-046M-0001-SO        | 9/29/10        | 1   | 5                          | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCsb-047           | SCsb-047M-0001-SO        | 9/29/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-048           | SCsb-048M-0001-SO        | 9/29/10        | 1   | 5                          | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |
| SCsb-049           | SCsb-049M-0001-SO        | 9/29/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |
| SCsb-050           | SCsb-050M-0001-SO        | 9/29/10        | 1   | 5                          | Explosives, Metals, SVOCs                                             |

### Table 6-3. Deep Surface Soil (0 to 4 feet) Human Health Risk Assessment Data Set for Military Training Land Use.

| Sample Location | Sample Number     | Sample Date | Depth of Sample<br>(feet bgs) |   | Analyses                               |
|-----------------|-------------------|-------------|-------------------------------|---|----------------------------------------|
| SCsb-051        | SCsb-051M-0001-SO | 9/29/10     | 1                             | 5 | Explosives, Metals, SVOCs              |
| SCsb-052        | SCsb-052M-0001-SO | 9/29/10     | 1                             | 5 | Explosives, Metals, SVOCs              |
| SCsb-053        | SCsb-053M-0001-SO | 9/29/10     | 1                             | 5 | Explosives, Metals, SVOCs              |
| SCsb-054        | SCsb-054M-0001-SO | 9/29/10     | 1                             | 5 | Explosives, Metals, SVOCs              |
| SCsb-055        | SCsb-055M-0001-SO | 9/25/10     | 1                             | 5 | Explosives, Metals, SVOCs              |
| SCsb-056        | SCsb-056M-0001-SO | 9/25/10     | 1                             | 5 | Explosives, Metals, SVOCs, Hex. Chrome |

#### Table 6-3. Deep Surface Soil (0 to 4 feet) Human Health Risk Assessment Data Set for Military Training Land Use (continued).

bgs denotes below ground surface.

Exp denotes explosives.

Hex. Chrome denotes hexavalent chromium.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

| Table 6-4. | Subsurface Soil ( | 4 to 7 feet | ) Human Health Risk | <b>Assessment Data S</b> | Set for Military | Training Land Use. |
|------------|-------------------|-------------|---------------------|--------------------------|------------------|--------------------|
|            |                   |             | ,                   |                          |                  |                    |

| Sample Location  | Sample Number          | Sample Date Depth<br>of<br>Sample<br>(feet<br>bgs) |   | pth<br>of<br>nple<br>eet<br>gs) | Analyses                                                 |
|------------------|------------------------|----------------------------------------------------|---|---------------------------------|----------------------------------------------------------|
| Modified Increme | ntal Samples (Except V | OCs)                                               | - |                                 |                                                          |
| SCsb-035         | SCsb-035M-0002-SO      | 9/22/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-036         | SCsb-036M-0002-SO      | 9/22/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-037         | SCsb-037M-0002-SO      | 9/22/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-038         | SCsb-038M-0002-SO      | 9/22/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-039         | SCsb-039M-0002-SO      | 9/21/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-040         | SCsb-040D-0002-SO      | 9/21/10                                            | 5 | 9                               | VOCs                                                     |
| SCsb-040         | SCsb-040M-0002-SO      | 9/21/10                                            | 5 | 9                               | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide |
| SCsb-041         | SCsb-041M-0002-SO      | 9/21/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-042         | SCsb-042M-0002-SO      | 9/21/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |
| SCsb-043         | SCsb-043M-0002-SO      | 9/21/10                                            | 5 | 9                               | Explosives, Metals, SVOCs                                |

bgs denotes below ground surface.

Exp denotes explosives.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

# Table 6-5. Sediment Human Health Risk Assessment Data Set for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use.

| Sample<br>Location | Sample Number     | Sample Date | Depth of Sample<br>(feet bgs) |                                   |  | Analyses                                                              |  |  |
|--------------------|-------------------|-------------|-------------------------------|-----------------------------------|--|-----------------------------------------------------------------------|--|--|
|                    |                   |             | Incremen                      | Incremental Samples (Except VOCs) |  |                                                                       |  |  |
| SCsd-070           | SCsd-070M-0001-SD | 9/28/10     | 0                             | 0.5                               |  | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |  |  |
| SCsd-071           | SCsd-071D-0001-SD | 9/28/10     | 0                             | 0.5                               |  | VOCs                                                                  |  |  |
| SCsd-071           | SCsd-071M-0001-SD | 9/28/10     | 0                             | 0.5                               |  | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |  |  |

bgs denotes below ground surface.

Exp denotes explosives.

Hex. Chrome denotes hexavalent chromium.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

| Table 6-6. | Surface Water I   | Human Hea | lth Risk As | sessment Data | Set for U | nrestricted | (Residential) | Land Use, | Commercial | Industrial I | Land |
|------------|-------------------|-----------|-------------|---------------|-----------|-------------|---------------|-----------|------------|--------------|------|
| Use, and M | lilitary Training | Land Use. |             |               |           |             |               |           |            |              |      |

| Sample Location | Sample Number    | Sample Date | Analyses                                                                                           |
|-----------------|------------------|-------------|----------------------------------------------------------------------------------------------------|
| S-7             | FSW-SW-011-0000  | 6/24//03    | Explosives, Metals, PCBs, Pesticides, SVOCs, Total Cyanide, Ammonia, Phosphorus, Nitrate           |
| S-7             | FSW-SW-051-0000  | 9/17/03     | Explosives, Metals, SVOCs                                                                          |
| SCsw-001        | SCsw-001-0001-SW | 9/18/03     | Exp/Prop, Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals, PCBs, Pesticides, SVOCs, VOCs |
| SCsw-002        | SCsw-002-0001-SW | 9/15/03     | Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals                                          |
| SCsw-003        | SCsw-003-0001-SW | 9/15/03     | Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals                                          |

<sup>a</sup> denotes field tests for surface water included conductivity, pH, oxygen, temperature, and turbidity

<sup>b</sup> denotes general chemistry included analysis for asbestos.

Exp denotes explosives. Gen Chem denotes general chemistry. PCB denotes polychlorinated biphenyl. Prop denotes propellants.

SVOC denotes semivolatile organic compound. VOC denotes volatile organic compound.

|                                   | Range of Values, mg/kg |          |              |    |          |         | Use HQ - 0.1 or 10-6 cancer risk |            |                       |               |       |                               |             |
|-----------------------------------|------------------------|----------|--------------|----|----------|---------|----------------------------------|------------|-----------------------|---------------|-------|-------------------------------|-------------|
| Site-Related Chemical             | De                     | tected C | oncentration | ıs | Detectio | n Limit | Background                       | RRA FWCUGa | RRC FWCUGa<br>(mg/kg) | RSLb          | COPC? | COPC Justification            | Loci of MDC |
|                                   | Min                    | VQ       | Max          | QQ | Min      | Max     | BSV a                            | (mg/kg)    |                       | (mg/kg)       |       |                               |             |
| General Chemistry                 |                        |          |              |    |          |         | (mg/kg)                          |            |                       |               |       |                               |             |
| Cyanide, Total                    | 0.3                    | J        | 0.39         | J  | 0.39     | 0.39    |                                  |            |                       | 0.27          | No    | Estimated value near criteria | SCss-076    |
| Inorganics                        |                        |          |              |    |          |         |                                  |            |                       |               |       |                               |             |
| Antimony                          | 0.75                   |          | 17.1         |    | 0.28     | 5.5     | 0.96                             | 13.6       | 2.82                  |               | Yes   | MDC exceeds risk value        | SCss-061    |
| Arsenic                           | 4.5                    |          | 36.6         |    | 0.46     | 9.1     | 15.4                             | 0.425      | 0.524                 |               | Yes   | MDC exceeds risk value        | SCss-062    |
| Barium                            | 1.5                    |          | 764          |    | 0.028    | 0.55    | 88.4                             | 8,966      | 1,413                 |               | No    |                               | SCss-061    |
| Beryllium                         | 0.41                   |          | 1.1          |    | 0.024    | 0.24    | 0.88                             |            |                       | 16            | No    |                               | SCss-062    |
| Cadmium                           | 0.057                  |          | 12.9         |    | 0.021    | 0.43    | 0                                | 22.3       | 6.41                  |               | Yes   | MDC exceeds risk value        | SCss-061    |
| Chromium                          | 0.26                   |          | 188          |    | 0.064    | 1.3     | 17.4                             | 19,694     | 8,147                 |               | No    |                               | SCss-076    |
| Cobalt                            | 6.7                    |          | 19.7         |    | 0.05     | 1       | 10.4                             | 803        | 131                   |               | No    |                               | SCss-074    |
| Copper                            | 0.49                   |          | 726          |    | 0.2      | 4.1     | 17.7                             | 2,714      | 311                   |               | Yes   | MDC exceeds risk value        | SCss-064    |
| Lead                              | 0.88                   |          | 405          |    | 0.14     | 2.8     | 26.1                             |            |                       | 400           | No    | Estimated value near criteria | SCss-061    |
| Mercury                           | 0.026                  |          | 24.6         |    | 0.008    | 0.85    | 0.036                            | 16.5       | 2.27                  |               | Yes   | MDC exceeds risk value        | SCss-059    |
| Nickel                            | 0.083                  | J        | 48.2         |    | 0.062    | 1.2     | 21.1                             | 1,346      | 155                   |               | No    |                               | SCss-064    |
| Selenium                          | 0.13                   |          | 3.1          |    | 0.43     | 8.5     | 1.4                              |            |                       | 39            | No    |                               | SCss-062    |
| Silver                            | 0.095                  |          | 256          |    | 0.057    | 60      | 0                                | 324        | 38.6                  |               | Yes   | MDC exceeds risk value        | SCss-061    |
| Thallium                          | 0.14                   | J        | 3.2          | J  | 0.28     | 2.8     | 0                                | 4.76       | 0.612                 |               | Yes   | MDC exceeds risk value        | SCss-057    |
| Zinc                              | 0.96                   |          | 373          |    | 0.12     | 2.4     | 61.8                             | 19,659     | 2,321                 |               | No    |                               | SCss-061    |
| <b>Explosives and Propellants</b> |                        |          |              |    |          |         |                                  |            |                       |               |       |                               |             |
| 2,4,6-Trinitrotoluene             | 0.26                   | J        | 3.9          |    | 0.43     | 0.44    |                                  | 21.1       | 3.9                   |               | No    |                               | SCss-069    |
| 2-Amino-4,6-Dinitrotoluene        | 0.26                   | J        | 0.26         | J  | 0.43     | 0.44    |                                  | 12.8       | 1.54                  | 15            | No    |                               | SCss-069    |
| Nitroguanidine                    | 0.64                   |          | 0.64         |    | 0.16     | 0.25    |                                  |            |                       | 630           | No    |                               | SCss-057    |
| Pesticides                        |                        |          |              |    |          |         |                                  |            |                       |               |       |                               |             |
| 4,4'-DDD                          | 0.0014                 | J        | 0.0023       | J  | 0.0024   | 0.0024  |                                  |            |                       | 2.3           | No    |                               | SCss-076    |
| 4,4'-DDT                          | 0.0015                 | J        | 0.0017       | J  | 0.0024   | 0.0024  |                                  |            |                       | 1.9           | No    |                               | SCss-076    |
| alpha-Chlordane                   | 0.0015                 | J        | 0.0015       | J  | 0.0024   | 0.0041  |                                  |            |                       | 1.7 Chlordane | No    |                               | SCss-076    |
| Heptachlor                        | 0.001                  | J        | 0.0081       | J  | 0.0024   | 0.0024  |                                  | 0.308      | 0.198                 | 0.13          | No    |                               | SCss-057    |
| Lindane                           | 0.0013                 | J        | 0.0013       | J  | 0.0024   | 0.0024  |                                  |            |                       | 0.57          | No    |                               | SCss-076    |
| Methoxychlor                      | 0.0016                 | J        | 0.0024       | J  | 0.0024   | 31      |                                  |            |                       | 32            | No    |                               | SCss-076    |
| Semivolatile Organic<br>Compounds |                        |          |              |    |          |         |                                  |            |                       |               |       |                               |             |
| 1,2,4-Trichlorobenzene            | 0.027                  | J        | 0.027        | J  | 0.41     | 0.43    |                                  |            |                       | 5.8           | No    |                               | SCss-061    |
| 1,2-Dichlorobenzene               | 0.028                  | J        | 0.11         | J  | 0.41     | 0.43    |                                  |            |                       | 180           | No    |                               | SCss-061    |
| 1,3-Dichlorobenzenee              | 0.031                  | J        | 0.031        | J  | 0.41     | 0.43    |                                  |            |                       | 180*          | No    |                               | SCss-061    |
| 1,4-Dichlorobenzene               | 0.022                  | J        | 0.27         | J  | 0.41     | 0.43    |                                  |            |                       | 2.6           | No    |                               | SCss-061    |
| 2-Methylnaphthalene               | 0.045                  | J        | 0.53         |    | 0.41     | 0.43    |                                  | 238        | 30.6                  | 24            | No    |                               | SCss-074    |
| Acenaphthene                      | 0.029                  | J        | 0.44         |    | 0.41     | 0.43    |                                  |            |                       | 360           | No    |                               | SCss-059    |
| Acenaphthylene                    | 0.029                  | J        | 0.16         | J  | 0.41     | 0.43    |                                  |            |                       | 360*          | No    |                               | SCss-058    |
| Anthracene                        | 0.026                  | J        | 1.1          |    | 0.41     | 0.43    |                                  |            |                       | 1,800         | No    |                               | SCss-060    |

Table 6-7. Summary of Screening Results for COPCs in Surface Soil (0 to 1 foot) for Residential Land Use.

| Range of Values, mg/kg     |       |           |             |    |          |          |            | Use HQ     | - 0.1 or 10-6 cancer  | r risk  |       |                        |             |
|----------------------------|-------|-----------|-------------|----|----------|----------|------------|------------|-----------------------|---------|-------|------------------------|-------------|
| Site-Related Chemical      | De    | etected C | oncentratio | ns | Detectio | on Limit | Background | RRA FWCUGa | RRC FWCUGa<br>(mg/kg) | RSLb    | COPC? | COPC Justification     | Loci of MDC |
|                            | Min   | VQ        | Max         | QQ | Min      | Max      | BSV a      | (mg/kg)    |                       | (mg/kg) |       |                        |             |
| General Chemistry          |       |           |             |    |          |          | (mg/kg)    |            |                       |         |       |                        |             |
| Benzo(a)anthracene         | 0.027 | J         | 2.6         |    | 0.41     | 0.43     |            | 0.221      | 0.65                  |         | Yes   | MDC exceeds risk value | SCss-060    |
| Benzo(a)pyrene             | 0.026 | J         | 2.4         |    | 0.41     | 0.43     |            | 0.022      | 0.065                 |         | Yes   | MDC exceeds risk value | SCss-060    |
| Benzo(b)fluoranthene       | 0.039 | J         | 4.8         |    | 0.41     | 0.43     |            | 0.221      | 0.65                  |         | Yes   | MDC exceeds risk value | SCss-060    |
| Benzo(g,h,i)perylene       | 0.031 | J         | 0.69        |    | 0.41     | 0.43     |            | 2.22*      | 6.5*                  |         | No    |                        | SCss-060    |
| Benzo(k)fluoranthene       | 0.027 | J         | 1.4         |    | 0.41     | 0.43     |            | 2.21       | 6.5                   |         | No    |                        | SCss-060    |
| Benzoic Acid               | 0.39  | J         | 0.57        | J  | 0.99     | 2.1      |            |            |                       | 25,000  | No    |                        | SCss-065    |
| Bis(2-Ethylhexyl)phthalate | 0.1   | J         | 1.7         |    | 1        | 1.1      |            |            |                       | 39      | No    |                        | SCss-072    |
| Carbazole                  | 0.034 | J         | 0.61        |    | 0.41     | 0.43     |            | 69.4       | 44.6                  |         | No    |                        | SCss-059    |
| Chrysene                   | 0.049 | J         | 2.7         |    | 0.41     | 0.43     |            | 22.1       | 65                    |         | No    |                        | SCss-060    |
| Dibenzo(a,h)anthracene     | 0.055 | J         | 0.28        | J  | 0.41     | 0.43     |            | 0.22       | 0.65                  |         | No    |                        | SCss-060    |
| Dibenzofuran               | 0.027 | J         | 0.33        | J  | 0.41     | 0.43     |            | 119        | 15.3                  |         | No    |                        | SCss-060    |
| Diethyl Phthalate          | 0.069 | J         | 0.14        | J  | 0.41     | 0.43     |            |            |                       | 5100    | No    |                        | SCss-075    |
| Di-n-Butyl Phthalate       | 0.082 | J         | 0.47        |    | 0.41     | 0.43     |            |            |                       | 630     | No    |                        | SCss-060    |
| Fluoranthene               | 0.04  | J         | 4.3         |    | 0.41     | 0.43     |            | 276        | 163                   |         | No    |                        | SCss-060    |
| Fluorene                   | 0.031 | J         | 0.47        |    | 0.41     | 0.43     |            | 737        | 243                   |         | No    |                        | SCss-060    |
| Indeno(1,2,3-cd)pyrene     | 0.025 | J         | 0.81        |    | 0.41     | 0.43     |            | 0.221      | 0.65                  |         | Yes   | MDC exceeds risk value | SCss-060    |
| Isophorone                 | 0.051 | J         | 0.2         | J  | 0.41     | 0.43     |            |            |                       | 570     | No    |                        | SCss-063    |
| Naphthalene                | 0.028 | J         | 0.33        | J  | 0.41     | 0.43     |            | 368        | 122                   |         | No    |                        | SCss-063    |
| Pentachlorophenol          | 0.4   | J         | 0.52        | J  | 1        | 1.1      |            | 2.12       | 4.91                  |         | No    |                        | SCss-060    |
| Phenanthrene               | 0.026 | J         | 3.4         |    | 0.41     | 0.43     |            |            |                       | 360*    | No    |                        | SCss-059    |
| Pyrene                     | 0.035 | J         | 4           |    | 0.41     | 0.43     |            | 207        | 122                   |         | No    |                        | SCss-060    |

| Table 6-7. | Summary of | of Screening | <b>Results</b> for | <b>COPCs</b> in | <b>Surface Soil</b> | (0 to 1 f | oot) for l | Residential L | and Use ( | continued). |
|------------|------------|--------------|--------------------|-----------------|---------------------|-----------|------------|---------------|-----------|-------------|
|------------|------------|--------------|--------------------|-----------------|---------------------|-----------|------------|---------------|-----------|-------------|

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>c</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

<sup>e</sup> denotes RSL for 1,4-dichlorobenzene used for 1,3-dichlorobenzene.

<sup>f</sup> denotes RSL for acenaphthene used for acenaphthylene.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

EPA denotes U.S. Environmental Protection Agency.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for Resident Receptor Adult (RFA) and Child (RFC). HQ denotes hazard quotient.

ISM denotes incremental sampling method.

J denotes result should be considered estimated. MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

RSL denotes EPA Regional Screening Level (November 2015).

SAIC denotes Science Applications International Corporation.

VQ denotes validation qualifier.

| All concentrations in mg/kg    | Ra     | nge of Va | alues, mg/kg |    | Detection I | limits, mg/kg |            |                             |       |                        |             |
|--------------------------------|--------|-----------|--------------|----|-------------|---------------|------------|-----------------------------|-------|------------------------|-------------|
| Site-Related Chemical          |        |           |              |    |             |               | Background | Industrial<br>Receptor RSLb | COPC? | COPC Justification     | Loci of MDC |
|                                | Min    | VQ        | Max          | QQ | Min         | Max           | BSV a      | (mg/kg)                     |       |                        |             |
| General Chemistry              |        |           |              |    |             |               |            |                             |       |                        |             |
| Cyanide, Total                 | 0.3    | J         | 0.39         | J  | 0.39        | 0.39          |            | 1.2                         | No    |                        | SCss-076    |
| Inorganics                     |        |           |              |    |             |               |            |                             |       |                        |             |
| Antimony                       | 0.75   |           | 17.1         |    | 0.28        | 5.5           | 0.96       | 47                          |       |                        | SCss-061    |
| Arsenic                        | 4.5    |           | 36.6         |    | 0.46        | 9.1           | 15.4       | 3.0                         | Yes   | MDC exceeds risk value | SCss-062    |
| Barium                         | 1.5    |           | 764          |    | 0.028       | 0.55          | 88.4       | 22,000                      |       |                        | SCss-061    |
| Beryllium                      | 0.41   |           | 1.1          |    | 0.024       | 0.24          | 0.88       | 230                         |       |                        | SCss-062    |
| Cadmium                        | 0.057  |           | 12.9         |    | 0.021       | 0.43          | 0          | 98                          |       |                        | SCss-061    |
| Chromium                       | 0.26   |           | 188          |    | 0.064       | 1.3           | 17.4       | 180,000                     |       |                        | SCss-076    |
| Cobalt                         | 6.7    |           | 19.7         |    | 0.05        | 1             | 10.4       | 35                          |       |                        | SCss-074    |
| Copper                         | 0.49   |           | 726          |    | 0.2         | 4.1           | 17.7       | 4,700                       |       |                        | SCss-064    |
| Lead                           | 0.88   |           | 405          |    | 0.14        | 2.8           | 26.1       | 800                         |       |                        | SCss-061    |
| Mercury                        | 0.026  |           | 24.6         |    | 0.008       | 0.85          | 0.036      | 35                          |       |                        | SCss-059    |
| Nickel                         | 0.083  | J         | 48.2         |    | 0.062       | 1.2           | 21.1       | 2,200                       |       |                        | SCss-064    |
| Selenium                       | 0.13   |           | 3.1          |    | 0.43        | 8.5           | 1.4        | 580                         |       |                        | SCss-062    |
| Silver                         | 0.095  |           | 256          |    | 0.057       | 60            | 0          | 580                         |       |                        | SCss-061    |
| Thallium                       | 0.14   | J         | 3.2          | J  | 0.28        | 2.8           | 0          | 2.3                         | Yes   | MDC exceeds risk value | SCss-057    |
| Zinc                           | 0.96   |           | 373          |    | 0.12        | 2.4           | 61.8       | 35,000                      |       |                        | SCss-061    |
| Explosives and Propellants     |        |           |              |    |             |               |            |                             |       |                        |             |
| 2,4,6-Trinitrotoluene          | 0.26   | J         | 3.9          |    | 0.43        | 0.44          |            | 51                          | No    |                        | SCss-069    |
| 2-Amino-4,6-Dinitrotoluene     | 0.26   | J         | 0.26         | J  | 0.43        | 0.44          |            | 230                         | No    |                        | SCss-069    |
| Nitroguanidine                 | 0.64   |           | 0.64         |    | 0.16        | 0.25          |            | 8,200                       | No    |                        | SCss-057    |
| Pesticides                     |        |           |              |    |             |               |            |                             |       |                        |             |
| 4,4'-DDD                       | 0.0014 | J         | 0.0023       | J  | 0.0024      | 0.0024        |            | 9.6                         | No    |                        | SCss-076    |
| 4,4'-DDT                       | 0.0015 | J         | 0.0017       | J  | 0.0024      | 0.0024        |            | 8.5                         | No    |                        | SCss-076    |
| alpha-Chlordane                | 0.0015 | J         | 0.0015       | J  | 0.0024      | 0.0041        |            | 7.5 Chlordane               | No    |                        | SCss-076    |
| Heptachlor                     | 0.001  | J         | 0.0081       | J  | 0.0024      | 0.0024        |            | 0.63                        | No    |                        | SCss-057    |
| Lindane                        | 0.0013 | J         | 0.0013       | J  | 0.0024      | 0.0024        |            | 2.5                         | No    |                        | SCss-076    |
| Methoxychlor                   | 0.0016 | J         | 0.0024       | J  | 0.0024      | 31            |            | 410                         | No    |                        | SCss-076    |
| Semivolatile Organic Compounds |        |           |              |    |             |               |            |                             |       |                        |             |
| 1,2,4-Trichlorobenzene         | 0.027  | J         | 0.027        | J  | 0.41        | 0.43          |            | 26                          | No    |                        | SCss-061    |
| 1,2-Dichlorobenzene            | 0.028  | J         | 0.11         | J  | 0.41        | 0.43          |            | 930                         | No    |                        | SCss-061    |
| 1,3-Dichlorobenzenee           | 0.031  | J         | 0.031        | J  | 0.41        | 0.43          |            | 930*                        | No    |                        | SCss-061    |
| 1,4-Dichlorobenzene            | 0.022  | J         | 0.27         | J  | 0.41        | 0.43          |            | 610                         | No    |                        | SCss-061    |
| 2-Methylnaphthalene            | 0.045  | J         | 0.53         |    | 0.41        | 0.43          |            | 300                         | No    |                        | SCss-074    |
| Acenaphthene                   | 0.029  | J         | 0.44         |    | 0.41        | 0.43          |            | 4,500                       | No    |                        | SCss-059    |
| Acenaphthylene                 | 0.029  | J         | 0.16         | J  | 0.41        | 0.43          |            | 4,500*                      | No    |                        | SCss-058    |
| Anthracene                     | 0.026  | J         | 1.1          |    | 0.41        | 0.43          |            | 23,000                      | No    |                        | SCss-060    |
| Benzo(a)anthracene             | 0.027  | J         | 2.6          |    | 0.41        | 0.43          |            | 2                           | No    |                        | SCss-060    |

### Table 6-8. Summary of Screening Results for COPCs in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use.

| All concentrations in mg/kg | Ra    | ange of Va | alues, mg/kg |    | Detection I | .imits, mg/kg |            |                             |       |                        |             |
|-----------------------------|-------|------------|--------------|----|-------------|---------------|------------|-----------------------------|-------|------------------------|-------------|
| Site-Related Chemical       |       |            |              |    |             |               | Background | Industrial<br>Receptor RSLb | COPC? | COPC Justification     | Loci of MDC |
|                             | Min   | VQ         | Max          | QQ | Min         | Max           | BSV a      | (mg/kg)                     |       |                        |             |
| Benzo(a)pyrene              | 0.026 | J          | 2.4          |    | 0.41        | 0.43          |            | 29                          | Yes   | MDC exceeds risk value | SCss-060    |
| Benzo(b)fluoranthene        | 0.039 | J          | 4.8          |    | 0.41        | 0.43          |            | 2.9                         | No    |                        | SCss-060    |
| Benzo(g,h,i)perylene        | 0.031 | J          | 0.69         |    | 0.41        | 0.43          |            | 0.45*                       | No    |                        | SCss-060    |
| Benzo(k)fluoranthene        | 0.027 | J          | 1.4          |    | 0.41        | 0.43          |            | 45                          | No    |                        | SCss-060    |
| Benzoic Acid                | 0.39  | J          | 0.57         | J  | 0.99        | 2.1           |            | 330,000                     | No    |                        | SCss-065    |
| Bis(2-Ethylhexyl)phthalate  | 0.1   | J          | 1.7          |    | 1           | 1.1           |            | 160                         | No    |                        | SCss-072    |
| Carbazole                   | 0.034 | J          | 0.61         |    | 0.41        | 0.43          |            | 835*NGT FWCUG               | No    |                        | SCss-059    |
| Chrysene                    | 0.049 | J          | 2.7          |    | 0.41        | 0.43          |            | 290                         | No    |                        | SCss-060    |
| Dibenzo(a,h)anthracene      | 0.055 | J          | 0.28         | J  | 0.41        | 0.43          |            | 0.45                        | No    |                        | SCss-060    |
| Dibenzofuran                | 0.027 | J          | 0.33         | J  | 0.41        | 0.43          |            | 100                         | No    |                        | SCss-060    |
| Diethyl Phthalate           | 0.069 | J          | 0.14         | J  | 0.41        | 0.43          |            | 66,000                      | No    |                        | SCss-075    |
| Di-n-Butyl Phthalate        | 0.082 | J          | 0.47         |    | 0.41        | 0.43          |            | 8,200                       | No    |                        | SCss-060    |
| Fluoranthene                | 0.04  | J          | 4.3          |    | 0.41        | 0.43          |            | 3,000                       | No    |                        | SCss-060    |
| Fluorene                    | 0.031 | J          | 0.47         |    | 0.41        | 0.43          |            | 3,000                       | No    |                        | SCss-060    |
| Indeno(1,2,3-cd)pyrene      | 0.025 | J          | 0.81         |    | 0.41        | 0.43          |            | 2.9                         | No    |                        | SCss-060    |
| Isophorone                  | 0.051 | J          | 0.2          | J  | 0.41        | 0.43          |            | 2,400                       | No    |                        | SCss-063    |
| Naphthalene                 | 0.028 | J          | 0.33         | J  | 0.41        | 0.43          |            | 17                          | No    |                        | SCss-063    |
| Pentachlorophenol           | 0.4   | J          | 0.52         | J  | 1           | 1.1           |            | 4                           | No    |                        | SCss-060    |
| Phenanthrene                | 0.026 | J          | 3.4          |    | 0.41        | 0.43          |            | 4,500*                      | No    |                        | SCss-059    |
| Pyrene                      | 0.035 | J          | 4            |    | 0.41        | 0.43          |            | 2,300                       | No    |                        | SCss-060    |

### Table 6-8. Summary of Screening Results for COPCs in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use (continued).

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>-6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>*c*</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

<sup>e</sup> denotes RSL for o-nitrotoluene used for m-nitrotoluene.

<sup>f</sup> denotes RSL for technical hexachlorocyclohexane (HCH) used for delta-BHC.

<sup>g</sup> denotes RSL for endosulfan used for endosulfan II.

<sup>h</sup> denotes RSL for endrin used for endrin aldehyde.

<sup>*i*</sup> denotes RSL for chlordane used for gamma-chlordane.

<sup>*j*</sup> denotes RSL for acenaphthene used for acenaphthylene.

<sup>k</sup> denotes RSL for pyrene used for benzo(g,h,i)perylene. --- denotes no BSV available. BSV denotes background screening value.

COPC denotes chemical of potential concern.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for the National Guard Trainee (NGT).

HQ denotes hazard quotient.

ISM denotes incremental sampling method.

J denotes result should be considered estimated.

 $MDC\ denotes\ maximum\ detected\ concentration.$ 

mg/kg denotes milligrams per kilogram. NG denotes National Guard Trainee

RSL denotes EPA Regional Screening Level. (November 2015).

VQ denotes validation qualifier.

| Site-Related Chemical             | Detected Concentrations |    | Detection Limits Backgr |    | Background | NCT EWCUC | Soil Industrial DSI | COPC?    | OPC? COPC Justification | Location of |                                                                                          |          |
|-----------------------------------|-------------------------|----|-------------------------|----|------------|-----------|---------------------|----------|-------------------------|-------------|------------------------------------------------------------------------------------------|----------|
| All concentrations in mg/kg       | Min                     | VQ | Max                     | VQ | Min        | Max       | BSV (mg/kg)         | NGIFWCUG | Soli muustriai KSL      | COPC:       | COPC Justification                                                                       | MDC      |
| General Chemistry                 |                         |    |                         |    |            |           |                     |          |                         |             |                                                                                          |          |
| Cyanide, Total                    | 0.3                     | J  | 0.76                    |    | 0.38       | 0.39      |                     | none     | 1.2                     | No          |                                                                                          | SCsb-048 |
| Inorganics                        |                         |    |                         |    |            |           |                     |          |                         |             |                                                                                          |          |
| Antimony                          | 0.11                    | J  | 17.1                    |    | 0.27       | 5.5       | 0.96                | 175      |                         | No          |                                                                                          | SCss-061 |
| Arsenic                           | 4.5                     |    | 182                     |    | 0.46       | 9.1       | 15.4                | 2.78     |                         | Yes         | MDC exceeds risk value                                                                   | SCsb-037 |
| Barium                            | 1.5                     |    | 932                     |    | 0.027      | 0.55      | 88.4                | 351      |                         | Yes         | MDC exceeds risk value                                                                   | SCsb-037 |
| Beryllium                         | 0.4                     |    | 3.9                     |    | 0.012      | 0.24      | 0.88                | none     | 230                     | No          |                                                                                          | SCsb-037 |
| Cadmium                           | 0.057                   |    | 12.9                    |    | 0.021      | 0.43      | 0                   | 10.9     |                         | Yes         | MDC exceeds risk value                                                                   | SCss-061 |
| Chromium                          | 0.26                    |    | 188                     |    | 0.064      | 1.3       | 17.4                | 329,763  |                         | No          |                                                                                          | SCss-076 |
| Cobalt                            | 4.8                     |    | 22.3                    |    | 0.05       | 1         | 10.4                | 7.03     |                         | Yes         | MDC exceeds risk value                                                                   | SCsb-038 |
| Copper                            | 0.49                    |    | 726                     |    | 0.2        | 4.1       | 17.7                | 25,568   |                         | No          |                                                                                          | SCss-064 |
| Lead                              | 0.88                    |    | 405                     |    | 0.14       | 2.8       | 26.1                | none     | 800                     | No          |                                                                                          | SCss-061 |
| Manganese                         | 2.2                     |    | 1,640                   |    | 0.051      | 1         | 1,450               | 35.1     | 2600 (Industrial)       | No          | MDC near BSV and much less than Industrial RSL. Will address in the Uncertainty section. | SCsb-049 |
| Mercury                           | 0.0068                  | J  | 24.6                    |    | 0.008      | 0.85      | 0.036               | 172      |                         | No          |                                                                                          | SCss-059 |
| Nickel                            | 0.083                   | J  | 88.1                    |    | 0.062      | 1.2       | 21.1                | 12,639   |                         | No          |                                                                                          | SCsb-048 |
| Selenium                          | 0.13                    |    | 3.1                     |    | 0.43       | 8.5       | 1.4                 | none     | 580                     | No          |                                                                                          | SCss-062 |
| Silver                            | 0.095                   | J  | 256                     |    | 0.057      | 60        | 0                   | 3,105    |                         | No          |                                                                                          | SCss-061 |
| Thallium                          | 0.14                    | J  | 5.5                     |    | 0.28       | 2.8       | 0                   | 47.7     |                         | No          |                                                                                          | SCsb-037 |
| Vanadium                          | 12.8                    |    | 41                      |    | 0.034      | 0.69      | 31.1                | 2,304    |                         | No          |                                                                                          | SCsb-037 |
| Zinc                              | 0.96                    |    | 373                     |    | 0.12       | 2.4       | 61.8                | 187,269  |                         | No          |                                                                                          | SCss-061 |
| <b>Explosives and Propellants</b> |                         |    |                         |    |            |           |                     |          |                         |             |                                                                                          |          |
| 2,4,6-Trinitrotoluene             | 0.1                     |    | 3.9                     |    | 0.43       | 0.44      |                     | 464      |                         | No          |                                                                                          | SCss-069 |
| 2-Amino-4,6-Dinitrotoluene        | 0.26                    | J  | 0.26                    | J  | 0.43       | 0.44      |                     | 124      |                         | No          |                                                                                          | SCss-069 |
| 4-Nitrotoluene                    | 0.32                    | J  | 0.32                    | J  | 0.43       | 0.44      |                     | 982      |                         | No          |                                                                                          | SCsb-049 |
| Nitroguanidine                    | 0.64                    |    | 0.64                    |    | 0.16       | 0.25      |                     | none     | 8,200                   | No          |                                                                                          | SCss-057 |
| Polychlorinated Biphenyls         |                         |    |                         |    |            |           |                     |          |                         |             |                                                                                          |          |
| PCB-1254                          | 0.14                    | J  | 0.14                    | J  | 0.051      | 0.1       |                     | 3.46     |                         | No          |                                                                                          | SCss-069 |
| Pesticides                        |                         |    |                         |    |            |           |                     |          |                         |             |                                                                                          |          |
| 4,4'-DDD                          | 0.0014                  | J  | 0.0023                  | J  | 0.0024     | 0.012     |                     | none     | 9.6                     | No          |                                                                                          | SCss-076 |
| 4,4'-DDE                          | 0.0051                  |    | 0.0069                  | J  | 0.0024     | 0.02      |                     | 49.1     |                         | No          |                                                                                          | SCsb-048 |
| 4,4'-DDT                          | 0.0015                  | J  | 0.013                   |    | 0.0024     | 0.012     |                     | none     | 8.5                     | No          |                                                                                          | SCsb-048 |
| Aldrin                            | 0.0012                  | J  | 0.0012                  | J  | 0.0024     | 0.012     |                     | 0.788    |                         | No          |                                                                                          | SCss-076 |
| alpha-BHC                         | 0.011                   |    | 0.011                   |    | 0.0024     | 0.02      |                     | none     | 7.42*                   | No          |                                                                                          | SCsb-037 |
| alpha-Chlordane                   | 0.0015                  | J  | 0.0015                  | J  | 0.0024     | 0.02      |                     | none     | 7.5 Chlordane           | No          |                                                                                          | SCss-076 |
| beta-BHC                          | 0.0032                  | J  | 0.0032                  | J  | 0.0024     | 0.02      |                     | 7.42     |                         | No          |                                                                                          | SCsb-037 |
| delta-BHC                         | 0.0016                  | J  | 0.0016                  | J  | 0.0024     | 0.012     |                     | none     | 7.42*                   | No          |                                                                                          | SCsb-037 |
| Dieldrin                          | 0.0034                  | J  | 0.0034                  | J  | 0.0024     | 0.012     |                     | 0.839    |                         | No          |                                                                                          | SCsb-037 |
| Endosulfan II                     | 0.0036                  | J  | 0.0036                  | J  | 0.0024     | 0.012     |                     | none     | 7.42*                   | No          |                                                                                          | SCsb-048 |
| Endrin Aldehyde                   | 0.005                   | J  | 0.005                   | J  | 0.004      | 0.02      |                     | none     | 7.42*                   | No          |                                                                                          | SCsb-037 |
| gamma-Chlordane                   | 0.0054                  | J  | 0.0054                  | J  | 0.0024     | 0.02      |                     | none     | 7.42*                   | No          |                                                                                          | SCsb-037 |

| All concentrations in mg/kg         Min         VQ         Min         Max         BSV (mg/kg)         Not Proceed         Soft Indistrial KSL         Core Core distribution         MDC           Heptachlor         0.001         J         0.0081         J         0.0024         0.012          2.98         No         Soft Indistrial KSL         No         SSCs-0           Heptachlor Epoxide         0.00071         J         0.0024         0.012          1.48         No         SSCs-0           Lindare         0.0016         J         0.0028         J         0.0024         0.012          none         2.5         No         SSCs-0           Methoxychlor         0.0016         J         0.0028         J         0.0024         0.012          none         410         No         SSCs-0           Semivolatile Organic           none         26         No         SSCs-0         SSCs-0           1,2-4-Trichlorobenzene         0.027         J         0.4         0.43          none         930         No         SSCs-0           1,3-Dichlorobenzene         0.021         J         0.4         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |         | Dettected cone | chir ations |    | Detectio | II LIIIIIIS | Dackground  | NCT FWCUC | Soil Inductrial DSI | COPC2 | COPC Instification     | Location of     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|----------------|-------------|----|----------|-------------|-------------|-----------|---------------------|-------|------------------------|-----------------|
| Heptachlor         0.001         J         0.0081         J         0.0024         0.01          2.98         No         Scs-05           Heptachlor Epoxide         0.00071         J         0.00071         J         0.0024         0.02          1.48         No         No         SCs-05           Lindane         0.0013         J         0.0013         J         0.0024         0.012          none         2.5         No         Scs-05           Methoxychlor         0.0016         J         0.0028         J         0.0024         0.012          none         2.5         No         Scs-05           Methoxychlor         0.0016         J         0.0028         J         0.002          none         2.5         No         Scs-05           Semivolatile Organic         D         D         0.0027         J         0.0027         J         0.024         0.012          none         2.6         No         Scs-05           1,2-Dichlorobenzene         0.024         J         0.11         J         0.4         0.43          none         930         No         Scs-05         Scs-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All concentrations in mg/kg            | Min     | VQ             | Max         | VQ | Min      | Max         | BSV (mg/kg) | NGITWCCG  | Son muustriai KSL   | core. |                        | MDC             |
| Heptachlor Epoxide         0.00071         J         0.0024         0.02          1.48         No         School         School           Lindare         0.0013         J         0.0013         J         0.0024         0.012          none         2.5         No         School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eptachlor                              | 0.001   | J              | 0.0081      | J  | 0.0024   | 0.012       |             | 2.98      |                     | No    |                        | SCss-057        |
| Lindane         0.0013         J         0.0013         J         0.0024         0.012          none         2.5         No         Section         SCs-07           Methoxychlor         0.0016         J         0.0058         J         0.0024         0.012          none         410         No         SCs-07           Semivolatile Organic<br>Compounds         Image: Compounds         No         SCs-07           1.2,4-Trichlorobenzene         0.027         J         0.027         J         0.4         0.43          none         26         No         SCs-06           1,2-Dichlorobenzene         0.024         J         0.11         J         0.4         0.43          none         930         No         SCs-06           1,3-Dichlorobenzene         0.031         J         0.4         0.43          none         930*         No         SCs-06           1,4-Dichlorobenzene         0.026         J         0.7         0.4         0.43          none         11         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eptachlor Epoxide                      | 0.00071 | J              | 0.00071     | J  | 0.0024   | 0.02        |             | 1.48      |                     | No    |                        | SCsb-037        |
| Methoxychlor         0.0016         J         0.0058         J         0.0024         0.012          none         410         No         Scs-07           Semivolatile Organic<br>Compounds         Image: Compounds         Image: Compounds <td>indane</td> <td>0.0013</td> <td>J</td> <td>0.0013</td> <td>J</td> <td>0.0024</td> <td>0.012</td> <td></td> <td>none</td> <td>2.5</td> <td>No</td> <td></td> <td>SCss-076</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | indane                                 | 0.0013  | J              | 0.0013      | J  | 0.0024   | 0.012       |             | none      | 2.5                 | No    |                        | SCss-076        |
| Semivolatile Organic<br>Compounds         Image: Marcine Compounds         Image: Marcine Compounds         Image: Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lethoxychlor                           | 0.0016  | J              | 0.0058      | J  | 0.0024   | 0.012       |             | none      | 410                 | No    |                        | SCss-076        |
| Compounds         Image: Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emivolatile Organic                    |         |                |             |    |          |             |             |           |                     |       |                        |                 |
| 12.4-Intendobenzene       0.027       J       0.027       J       0.04       0.43        indice       2.0       No       No       Scss-0         1.2-Dichlorobenzene       0.024       J       0.11       J       0.4       0.43        none       930       No       Scss-0       Scss-0         1.3-Dichlorobenzene       0.031       J       0.031       J       0.4       0.43        none       930*       No       Scss-0       Scss-0         1.4-Dichlorobenzene       0.022       J       0.27       J       0.4       0.43        none       930*       No       Scss-0       Scss-0         2-Methylnaphthalene       0.026       J       0.7       0.4       0.43        none       11       No       Scss-0       Scss-0         2-Methylnaphthalene       0.029       J       0.7       0.4       0.43        none       4,500       No       Scss-0       Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 Trichlorobanzana                   | 0.027   | I              | 0.027       | T  | 0.4      | 0.43        |             | nono      | 26                  | No    |                        | SCss 061        |
| 1,2-Dichlorobenzene $0.024$ $3$ $0.011$ $3$ $0.4$ $0.43$ $-12$ hone $300$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $1000$ $100$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $10000$ $10000$ $10000$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Themorobenzene                     | 0.027   | J              | 0.027       | J  | 0.4      | 0.43        |             | none      | 030                 | No    |                        | SCss 061        |
| 1,3-Dichlorobenzene       0.022       J       0.031       J       0.4       0.43        finite       950*       No       No       Scssor         1,4-Dichlorobenzene       0.022       J       0.27       J       0.4       0.43        none       11       No       Scssor       Scssor         2-Methylnaphthalene       0.026       J       0.7       0.4       0.43        2,384       No       Scssor       Scssor         Acenaphthene       0.029       J       0.7       0.4       0.43        none       4,500       No       Scssor       Scssor         Acenaphthylene       0.029       J       0.16       J       0.4       0.43        none       4,500*       No       Scssor       Scssor         Anthracene       0.026       J       3.1       0.4       0.43        none       23,000       No       Scssor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Dichlorobenzene                      | 0.024   | J              | 0.021       | J  | 0.4      | 0.43        |             | none      | 930                 | No    |                        | SCss-001        |
| 1,4-Dicholobelizelle       0.022       J       0.27       J       0.4       0.43        10he       11       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1000       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Dichlorobonzono                      | 0.031   | J              | 0.031       | J  | 0.4      | 0.43        |             | none      | 930                 | No    |                        | SCss-001        |
| Z-Menymaphtache         0.020         J         0.7         0.4         0.43          none         4,500         No         Scsb-0.4           Acenaphthene         0.029         J         0.7         0.4         0.43          none         4,500         No         SCsb-0.4           Acenaphthylene         0.029         J         0.16         J         0.4         0.43          none         4,500         No         SCsb-0.4           Actionaphthylene         0.026         J         3.1         0.4         0.43          none         23,000         No         SCsb-0.4           Benzo(a)anthracene         0.027         J         8.2         0.4         2          4.77         No         SCsb-0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Dichlorobenzene<br>Methylpaphthalene | 0.022   | J              | 0.27        | J  | 0.4      | 0.43        |             | 2 384     | 11                  | No    |                        | SCsb 050        |
| Acchapment         0.025         J         0.17         0.4         0.43         110         100         140         140         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160 <t< td=""><td>conanthhane</td><td>0.020</td><td>J</td><td>0.7</td><td></td><td>0.4</td><td>0.43</td><td></td><td>2,304</td><td>4 500</td><td>No</td><td></td><td>SCsb 049</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | conanthhane                            | 0.020   | J              | 0.7         |    | 0.4      | 0.43        |             | 2,304     | 4 500               | No    |                        | SCsb 049        |
| Anthracene         0.027         J         3.1         0.4         0.43          none         23,000         No         SCsb-04           Benzo(a)anthracene         0.027         J         8.2         0.4         2          4.77         No         SCsb-04         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cenaphthylene                          | 0.029   | J              | 0.7         | T  | 0.4      | 0.43        |             | none      | 4,500               | No    |                        | <u>SCss-058</u> |
| Annuactic         0.020         J         J         0.4         0.43         Hole         1000         100         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nthracene                              | 0.023   | J              | 3.1         | J  | 0.4      | 0.43        |             | none      | 4,500               | No    |                        | SCsb 049        |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | anzo(a)anthracana                      | 0.020   | J              | 3.1<br>8.2  |    | 0.4      | 0.43        |             | 4.77      | 23,000              | No    |                        | SCsb 049        |
| Benzo(a) nurse $0.026$ I 8.3 $0.4$ 2 $0.477$ Ves MDC exceeds risk value SCsb 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | enzo(a)pyrene                          | 0.027   | J              | 8.2         |    | 0.4      | 2           |             | 4.77      |                     | Vas   | MDC exceeds risk value | SCsb 049        |
| $\frac{1}{1} = \frac{1}{1} = \frac{1}$ | enzo(h)fluoranthene                    | 0.020   | J<br>T         | 13          |    | 0.4      | 2           |             | 4.77      |                     | Ves   | MDC exceeds risk value | SCsb 049        |
| $\frac{1}{1} = \frac{1}{1} = \frac{1}$ | enzo(g h i)pervlenek                   | 0.033   | J<br>I         | 13          |    | 0.4      | 0.43        |             | 4.77      | / 77*               | No    |                        | <u>SCsb-049</u> |
| $\frac{1}{1.5} = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.45 = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | enzo(k)fluoranthene                    | 0.023   | J              | 1.5         |    | 0.4      | 0.43        |             | 47.7      | τ.//                | No    |                        | SCsb 049        |
| Benzoic Acid         0.32         J         4.4         0.4         0.45         110         110         110         100         Scs004           Benzoic Acid         0.32         J         0.57         J         0.99         2.1          none         330.000         No         SCss00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enzoic Acid                            | 0.027   | J              | 0.57        | T  | 0.4      | 2.1         |             | none      | 330,000             | No    |                        | <u>SCss-065</u> |
| $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$                                                                             | is(2-Ethylbeyyl)phthalate              | 0.088   | J              | 17          | 5  | 1        | 1 1         |             | none      | 160                 | No    |                        | SCss-072        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arbazole                               | 0.033   | J              | 2.2         |    | 0.4      | 0.43        |             | 835       | 100                 | No    |                        | SCsb-049        |
| Chrysene         0.034         I         7.6         0.4         2          477         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hrvsene                                | 0.035   | J              | 7.6         |    | 0.4      | 2           |             | 477       |                     | No    |                        | SCsb-049        |
| Diberzo(a h)anthracene $0.032$ I $0.55$ $0.4$ $0.43$ $0.477$ Yes MDC exceeds risk value SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ibenzo(a h)anthracene                  | 0.032   | I<br>I         | 0.55        |    | 0.4      | 0.43        |             | 0.477     |                     | Yes   | MDC exceeds risk value | SCsb-049        |
| Dibenzofuran         0.027         J         0.84         0.4         0.43          1.192         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vibenzofuran                           | 0.027   | J              | 0.84        |    | 0.4      | 0.43        |             | 1.192     |                     | No    |                        | SCsb-049        |
| Diethyl Phthalate         0.069         J         0.14         J         0.4         0.43          none         66.000         No         SCss-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | viethyl Phthalate                      | 0.069   | J              | 0.14        | J  | 0.4      | 0.43        |             | none      | 66.000              | No    |                        | SCss-075        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vi-n-Butyl Phthalate                   | 0.082   | J              | 0.47        |    | 0.4      | 0.43        |             | none      | 8.200               | No    |                        | SCss-060        |
| Fluoranthene         0.031         J         17         0.4         2          5.087         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | luoranthene                            | 0.031   | J              | 17          |    | 0.4      | 2           |             | 5.087     |                     | No    |                        | SCsb-049        |
| Fluorene 0.031 J 1.1 0.4 0.43 11,458 No SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | luorene                                | 0.031   | J              | 1.1         |    | 0.4      | 0.43        |             | 11,458    |                     | No    |                        | SCsb-049        |
| Indeno(1,2,3-cd)pyrene 0.024 J 1.6 0.4 0.43 4.77 No SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | deno(1.2.3-cd)pyrene                   | 0.024   | J              | 1.6         |    | 0.4      | 0.43        |             | 4.77      |                     | No    |                        | SCsb-049        |
| Isophorone 0.051 J 0.5 0.4 0.43 none 2,400 No SCsb-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ophorone                               | 0.051   | J              | 0.5         |    | 0.4      | 0.43        |             | none      | 2,400               | No    |                        | SCsb-037        |
| Naphthalene         0.028         J         0.98         0.4         0.43          1,541         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aphthalene                             | 0.028   | J              | 0.98        |    | 0.4      | 0.43        |             | 1,541     |                     | No    |                        | SCsb-049        |
| Pentachlorophenol 0.38 J 0.52 J 1 1.1 44.0 No SCss-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | entachlorophenol                       | 0.38    | J              | 0.52        | J  | 1        | 1.1         |             | 44.0      |                     | No    |                        | SCss-060        |
| Phenanthrene         0.026         J         11         0.4         2          none         4,500*         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | henanthrene                            | 0.026   | J              | 11          |    | 0.4      | 2           |             | none      | 4,500*              | No    |                        | SCsb-049        |
| Pyrene 0.029 J 13 0.4 2 3,815 No SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yrene                                  | 0.029   | J              | 13          |    | 0.4      | 2           |             | 3,815     |                     | No    |                        | SCsb-049        |
| Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volatile Organic Compounds             |         |                |             |    |          |             |             |           |                     |       |                        |                 |
| 1,2-Dimethylbenzene 0.013 J 0.35 0.053 0.07 none 280 No SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,2-Dimethylbenzene                     | 0.013   | J              | 0.35        |    | 0.053    | 0.07        |             | none      | 280                 | No    |                        | SCsb-048        |
| Benzene         0.06         0.053         0.07          none         5.1         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | enzene                                 | 0.06    |                | 0.06        |    | 0.053    | 0.07        |             | none      | 5.1                 | No    |                        | SCsb-048        |
| Ethylbenzene         0.15         0.053         0.07          none         25         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | thylbenzene                            | 0.15    |                | 0.15        |    | 0.053    | 0.07        |             | none      | 25                  | No    |                        | SCsb-048        |
| Toluene         0.012         J         0.31         0.053         0.07          none         4700         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oluene                                 | 0.012   | J              | 0.31        |    | 0.053    | 0.07        |             | none      | 4700                | No    |                        | SCsb-048        |
| Xylene (Total)         0.36         0.11         0.14          none         250         No         SCsb-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ylene (Total)                          | 0.36    |                | 0.36        |    | 0.11     | 0.14        |             | none      | 250                 | No    |                        | SCsb-048        |

 Table 6-9.
 Summary of Screening Results for COPCs in Deep Surface Soil (0 to 4 feet) for Military Training Land Use (continued).

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>-6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>c</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

<sup>e</sup> denotes RSL for o-nitrotoluene used for m-nitrotoluene.

<sup>f</sup> denotes RSL for technical hexachlorocyclohexane (HCH) used for delta-BHC.

<sup>g</sup> denotes RSL for endosulfan used for endosulfan II.

<sup>h</sup> denotes RSL for endrin used for endrin aldehyde.

<sup>*i*</sup> denotes RSL for chlordane used for gamma-chlordane.

<sup>*j*</sup> denotes RSL for acenaphthene used for acenaphthylene.

<sup>k</sup> denotes RSL for pyrene used for benzo(g,h,i)perylene.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

EPA denotes U.S. Environmental Protection Agency.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for the National Guard Trainee (NGT).a

HQ denotes hazard quotient.

ISM denotes incremental sampling method.

J denotes result should be considered estimated.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

ND denotes not detected.

NG denotes National Guard

RSL denotes EPA Regional Screening Level. (November 2015).

SAIC denotes Science Applications International Corporation

VQ denotes validation qualifier.

|                                  | Rang   | e of Valu | es, mg/kg  |    | Derect  | <b>T</b> ''4. |                |                                   |                                   |                          |       |                                           |                 |
|----------------------------------|--------|-----------|------------|----|---------|---------------|----------------|-----------------------------------|-----------------------------------|--------------------------|-------|-------------------------------------------|-----------------|
| Site-Related Chemical            | Detect | ed Conce  | entrations |    | Keporti | ng Limits     | BSV<br>(mg/kg) | RRA FWCUG <sup>a</sup><br>(mg/kg) | RRC FWCUG <sup>a</sup><br>(mg/kg) | RSL <sup>b</sup> (mg/kg) | COPC? | COPC Justification                        | Location of MDC |
|                                  | Min    | VQ        | Max        | VQ | Min     | Max           | (              | (                                 | (1119,119)                        |                          |       |                                           |                 |
| General Chemistry                |        |           |            |    |         |               |                |                                   |                                   |                          |       |                                           |                 |
| Cyanide, Total <sup>d</sup>      | 0.76   |           | 0.76       |    | 0.38    | 0.39          |                |                                   |                                   | 0.27                     | No    | MDC below screening criteria              | SCsb-048        |
| Inorganics                       |        |           |            |    |         |               |                |                                   |                                   |                          |       |                                           |                 |
| Antimony                         | 0.11   | J         | 11.2       |    | 0.27    | 1.4           | 0.96           | 13.6                              | 2.82                              |                          | Yes   | MDC above screening criteria              | SCsb-050        |
| Arsenic                          | б      |           | 182        |    | 0.45    | 2.4           | 19.8           | 0.425                             | 0.524                             |                          | Yes   | MDC above screening criteria              | SCsb-037        |
| Barium                           | 33.4   |           | 932        |    | 0.027   | 0.14          | 124            | 8,966                             | 1,413                             |                          | No    | MDC below screening criteria              | SCsb-037        |
| Beryllium                        | 0.31   |           | 3.9        |    | 0.012   | 0.063         | 0.88           |                                   |                                   | 16                       | No    | MDC below screening criteria              | SCsb-037        |
| Cadmium                          | 0.062  |           | 5.5        |    | 0.021   | 0.11          | 0              | 22.3                              | 6.41                              |                          | No    | MDC below screening criteria              | SCsb-037        |
| Chromium <sup>c</sup>            | 14     |           | 186        |    | 0.063   | 0.33          | 27.2           | 19,694                            | 8147                              |                          | No    | MDC below screening criteria              | SCsb-043        |
| Copper                           | 11.5   |           | 2,020      |    | 0.2     | 1             | 32.3           | 2,714                             | 311                               |                          | Yes   | MDC above screening criteria              | SCsb-036        |
| Lead                             | 6.6    |           | 907        |    | 0.14    | 0.73          | 19.1           |                                   |                                   | 400                      | Yes   | MDC above screening criteria              | SCsb-036        |
| Mercury                          | 0.0042 | J         | 2          |    | 0.0079  | 0.08          | 0.044          | 16.5                              | 2.27                              |                          | No    | MDC below screening criteria              | SCsb-044        |
| Nickel                           | 14.9   |           | 88.1       |    | 0.061   | 0.32          | 60.7           | 1346                              | 155                               |                          | No    | MDC below screening criteria              | SCsb-048        |
| Selenium                         | 0.14   | J         | 5.7        |    | 0.42    | 2.2           | 1.5            |                                   |                                   | 39                       | No    | MDC below screening criteria              | SCsb-037        |
| Silver                           | 0.13   |           | 13.5       |    | 0.056   | 0.29          | 0              | 324                               | 38.6                              |                          | No    | MDC below screening criteria              | SCsb-045        |
| Thallium                         | 0.34   |           | 17.3       |    | 0.28    | 0.73          | 0.91           | 4 76                              | 0.612                             |                          | Yes   | MDC above screening criteria              | SCsh-037        |
| Vanadium                         | 12.6   |           | 173        |    | 0.034   | 0.18          | 37.6           | 156                               | 44.9                              |                          | Yes   | MDC above screening criteria              | SCsb-037        |
| Zinc                             | 38.9   |           | 1 350      |    | 0.12    | 0.63          | 93.3           | 19.659                            | 2321                              |                          | No    | MDC below screening criteria              | SCsb-036        |
| Explosives and Propellants       | 50.9   |           | 1,550      |    | 0.12    | 0.05          | 75.5           | 17,037                            | 2321                              |                          | 110   | MDC below selecting chiefia               |                 |
| 2.4.6-Trinitrotoluene            | 0.1    |           | 0.1        |    | 0.43    | 0.49          |                | 21.1                              | 3.65                              |                          | No    | MDC below screening criteria              | SCsb-049        |
| 2-Amino-4,6-Dinitrotoluene       | 0.26   |           | 0.26       |    | 0.43    | 0.49          |                | 12.8                              | 1.54                              |                          | No    | MDC below screening criteria              | SCsb-049        |
| m-Nitrotoluene <sup>e</sup>      | 0.32   | J         | 0.32       | J  | 0.43    | 0.49          |                | 6.03                              | 3.88                              |                          | No    | MDC below screening criteria              | SCsb-049        |
| <b>Polychlorinated Biphenyls</b> |        | •         |            |    | •       | 1             | 1              |                                   |                                   | 1                        |       |                                           |                 |
| Ar+L29+A29:N29+A29:N29           | 0.14   | J         | 0.14       | J  | 0.051   | 0.1           |                | 0.203                             | 0.12                              |                          | No    | MDC near child FWCUG but < Adult<br>FWCUG | SCsb-037        |
| Pesticides                       |        |           |            |    |         |               |                |                                   |                                   |                          |       |                                           |                 |
| 4,4'-DDE                         | 0.0051 |           | 0.0069     | J  | 0.0024  | 0.02          |                | 4.08                              | 2.63                              |                          | No    |                                           | SCsb-037        |
| 4,4'-DDT                         | 0.009  | J         | 0.013      |    | 0.0024  | 0.012         |                |                                   |                                   | 1.9                      | No    |                                           | SCsb-048        |
| Aldrin                           | 0.0012 | J         | 0.0012     | J  | 0.0024  | 0.012         |                | 0.082                             | 0.053                             | 0.001                    | No    |                                           | SCsb-037        |
| alpha-BHC                        | 0.0013 | J         | 0.011      | J  | 0.0024  | 0.02          |                | 0.77                              | 0.406                             | 0.086                    | No    |                                           | SCsb-037        |
| Deta-BHC                         | 0.0032 | J         | 0.0032     | J  | 0.0024  | 0.02          |                | 0.77                              | 0.496                             | 0.086 Alpha 0.3          | INO   |                                           | SCSD-037        |
| delta-BHC <sup>t</sup>           | 0.0016 | J         | 0.0016     | J  | 0.0024  | 0.012         |                |                                   |                                   | Beta                     | No    |                                           | SCsb-037        |
| Dieldrin                         | 0.0034 | J         | 0.0034     | J  | 0.0024  | 0.012         |                | 0.087                             | 0.056                             |                          | No    |                                           | SCsb-037        |
| Endosulfan II <sup>g</sup>       | 0.0036 |           | 0.0036     |    | 0.0024  | 0.012         |                |                                   |                                   | 47 Endosulfan            | No    |                                           | SCsb-048        |
| Endrin Aldehyde <sup>h</sup>     | 0.005  | J         | 0.005      | J  | 0.004   | 0.02          |                | 1.77                              | 1.12                              |                          | No    |                                           | SCsb-037        |

### Table 6-10. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land Use.

|                                   | Range    | Range of Values, mg/kg |            |    |         |           |                |                        |                        |                          |       |                              |                 |
|-----------------------------------|----------|------------------------|------------|----|---------|-----------|----------------|------------------------|------------------------|--------------------------|-------|------------------------------|-----------------|
| Site-Related Chemical             | Detect   | ed Conce               | entrations |    | Keporun | ig Limits | BSV<br>(mg/kg) | RRA FWCUG <sup>a</sup> | RRC FWCUG <sup>a</sup> | RSL <sup>o</sup> (mg/kg) | COPC? | COPC Justification           | Location of MDC |
|                                   | Min      | VQ                     | Max        | VQ | Min     | Max       | (ing/kg)       | (Ing/Kg)               | (IIIg/Kg)              |                          |       |                              |                 |
| gamma-Chlordane <sup>i</sup>      | 0.0054   | J                      | 0.0054     | J  | 0.0024  | 0.02      |                |                        |                        | 1.7 Chlordane            | No    |                              | SCsb-037        |
| Heptachlor                        | 0.0009   | J                      | 0.0058     | J  | 0.0024  | 0.012     |                | 0.308                  | 0.198                  |                          | No    |                              | SCsb-037        |
| Heptachlor Epoxide                | 0.00071  | J                      | 0.00071    | J  | 0.0024  | 0.02      |                | 0.152                  | 0.098                  |                          | No    |                              | SCsb-037        |
| Methoxychlor                      | 0.001    | J                      | 0.0058     | J  | 0.0024  | 0.012     |                |                        |                        | 32                       | No    |                              | SCsb-037        |
| Semivolatile Organic Compo        | ounds    |                        |            |    |         |           |                | ·                      |                        |                          |       | ·                            |                 |
| 1,2-Dichlorobenzene               | 0.024    | J                      | 0.049      | J  | 0.4     | 0.42      |                |                        |                        | 180                      | No    |                              | SCsb-037        |
| 1,4-Dichlorobenzene               | 0.022    | J                      | 0.022      | J  | 0.4     | 0.42      |                |                        |                        | 2.6                      | No    |                              | SCsb-037        |
| 2-Methylnaphthalene               | 0.026    | J                      | 0.7        |    | 0.4     | 0.42      |                | 238                    | 30.6                   |                          | No    |                              | SCsb-050        |
| Acenaphthene                      | 0.029    | J                      | 0.7        |    | 0.4     | 0.42      |                |                        |                        | 360                      | No    |                              | SCsb-049        |
| Acenaphthylene <sup>j</sup>       | 0.034    | J                      | 0.14       | J  | 0.4     | 0.42      |                |                        |                        | 360*                     | No    |                              | SCsb-049        |
| Anthracene                        | 0.03     | J                      | 3.1        |    | 0.4     | 0.42      |                |                        |                        | 1,800                    | No    |                              | SCsb-049        |
| Benzo(a)anthracene                | 0.046    | J                      | 8.2        |    | 0.4     | 2         |                | 0.221                  | 0.65                   |                          | Yes   | MDC above screening criteria | SCsb-049        |
| Benzo(a)pyrene                    | 0.035    |                        | 8.3        |    | 0.4     | 2         |                | 0.022                  | 0.065                  |                          | Yes   | MDC above screening criteria | SCsb-049        |
| Benzo(b)fluoranthene              | 0.039    |                        | 13         |    | 0.4     | 2         |                | 0.221                  | 0.65                   |                          | Yes   | MDC above screening criteria | SCsb-049        |
| Benzo(g,h,i)perylene <sup>k</sup> | 0.022    | J                      | 1.7        |    | 0.4     | 0.42      |                |                        |                        | 180 Pyrene               | No    |                              | SCsb-036        |
| Benzo(k)fluoranthene              | 0.027    | J                      | 4.4        |    | 0.4     | 0.42      |                | 2.21                   | 6.5                    |                          | No    |                              | SCsb-049        |
| Benzoic Acid                      | 0.32     | J                      | 0.32       | J  | 0.98    | 2.1       |                |                        |                        | 25,000                   | No    |                              | SCsb-051        |
| Bis(2-Ethylhexyl)phthalate        | 0.088    | J                      | 0.85       | J  | 1       | 1.1       |                |                        |                        | 39                       | No    |                              | SCsb-040        |
| Carbazole                         | 0.033    | J                      | 2.2        |    | 0.4     | 0.42      |                | 69.4                   | 44.6                   |                          | No    |                              | SCsb-049        |
| Chrysene                          | 0.034    | J                      | 7.6        |    | 0.4     | 2         |                | 22.1                   | 65                     |                          | No    |                              | SCsb-049        |
| Dibenzo(a,h)anthracene            | 0.032    | J                      | 0.55       |    | 0.4     | 0.42      |                | 0.022                  | 0.065                  |                          | Yes   | MDC above screening criteria | SCsb-049        |
| Dibenzofuran                      | 0.035    | J                      | 0.84       |    | 0.4     | 0.42      |                | 119                    | 15.3                   |                          | No    |                              | SCsb-049        |
| Di-n-Butyl Phthalate              | 0.081    | J                      | 0.27       | J  | 0.4     | 0.42      |                |                        |                        | 630                      | No    |                              | SCsb-037        |
| Fluoranthene                      | 0.027    | J                      | 17         |    | 0.4     | 2         |                | 276                    | 163                    |                          | No    |                              | SCsb-049        |
| Fluorene                          | 0.034    | J                      | 1.1        |    | 0.4     | 0.42      |                | 737                    | 243                    |                          | No    |                              | SCsb-049        |
| Indeno(1,2,3-cd)pyrene            | 0.024    | J                      | 1.6        |    | 0.4     | 0.42      |                | 0.221                  | 0.65                   |                          | Yes   |                              | SCsb-049        |
| Isophorone                        | 0.053    | J                      | 1.2        |    | 0.4     | 0.42      |                |                        |                        | 570                      | No    |                              | SCsb-036        |
| Naphthalene                       | 0.028    | J                      | 0.98       |    | 0.4     | 0.42      |                | 368                    | 122                    |                          | No    |                              | SCsb-049        |
| Pentachlorophenol                 | 0.38     | J                      | 0.38       | J  | 1       | 1.1       |                | 2.12                   | 4.91                   |                          | No    |                              | SCsb-050        |
| Phenanthrene                      | 0.027    | J                      | 11         |    | 0.4     | 2         |                |                        |                        | 360*                     | No    |                              | SCsb-049        |
| Pyrene                            | 0.029    | J                      | 13         |    | 0.4     | 2         |                | 207                    | 122                    |                          | No    |                              | SCsb-049        |
| Volatile Organic Compound         | <u>s</u> |                        |            |    |         |           |                | •                      | -                      |                          |       |                              |                 |
| 1,2-Dimethylbenzene               | 0.013    | J                      | 0.35       |    | 0.048   | 0.07      |                |                        |                        | 65                       | No    |                              | SCsb-048        |
| Benzene                           | 0.06     |                        | 0.06       |    | 0.048   | 0.07      |                |                        |                        | 1.2                      | No    |                              | SCsb-048        |
| Ethylbenzene                      | 0.15     |                        | 0.15       |    | 0.048   | 0.07      |                |                        |                        | 5.8                      | No    |                              | SCsb-048        |
| Toluene                           | 0.012    | J                      | 0.31       |    | 0.048   | 0.07      |                |                        |                        | 490                      | No    |                              | SCsb-048        |
| Xylene (Total)                    | 0.36     |                        | 0.36       |    | 0.096   | 0.14      |                |                        |                        | 58                       | No    |                              | SCsb-048        |

### Table 6-10. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land Use (continued).

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>-6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>*c*</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

<sup>e</sup> denotes RSL for o-nitrotoluene used for m-nitrotoluene.

<sup>*f*</sup> denotes RSL for technical hexachlorocyclohexane (HCH) used for delta-BHC.

<sup>g</sup> denotes RSL for endosulfan used for endosulfan II.

<sup>h</sup> denotes RSL for endrin used for endrin aldehyde RSL for chlordane used for gamma-chlordane.

<sup>*j*</sup> denotes RSL for acenaphthene used for acenaphthylene.

<sup>k</sup> denotes RSL for pyrene used for benzo(g,h,i)perylene.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for Resident Receptor Adult (RRA) and Child (RRC).

HQ denotes hazard quotient.

J denotes result should be considered estimated.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

RSL denotes EPA Regional Screening Level (November 2015).

VQ denotes validation qualifier

| Site-Related Chemical             | Range of Values, mg/kg     |          |        |    | Dementing Limite |          |                |                                       |       |                              |                 |
|-----------------------------------|----------------------------|----------|--------|----|------------------|----------|----------------|---------------------------------------|-------|------------------------------|-----------------|
|                                   | Detected<br>Concentrations |          |        |    | Reportin         | g Limits | BSV<br>(mg/kg) | Industrial RSL <sup>b</sup> (mg/kg)   | COPC? | <b>COPC</b> Justification    | Location of MDC |
|                                   | Min                        | VQ       | Max    | VQ | Min              | Max      |                |                                       |       |                              |                 |
| General Chemistry                 |                            |          |        |    |                  |          |                |                                       |       |                              |                 |
| Cyanide, Total <sup>d</sup>       | 0.76                       |          | 0.76   |    | 0.38             | 0.39     |                | 1.2                                   | No    |                              | SCsb-048        |
| Inorganics                        |                            | <u> </u> |        |    | •                |          |                | ·                                     |       |                              |                 |
| Antimony                          | 0.11                       | J        | 11.2   |    | 0.27             | 1.4      | 0.96           | 47                                    | No    |                              | SCsb-050        |
| Arsenic                           | 6                          |          | 182    |    | 0.45             | 2.4      | 19.8           | 3.0                                   | Yes   | MDC above screening criteria | SCsb-037        |
| Barium                            | 33.4                       |          | 932    |    | 0.027            | 0.14     | 124            | 22,000                                | No    |                              | SCsb-037        |
| Beryllium                         | 0.31                       |          | 3.9    |    | 0.012            | 0.063    | 0.88           | 230                                   | No    |                              | SCsb-037        |
| Cadmium                           | 0.062                      |          | 5.5    |    | 0.021            | 0.11     | 0              | 98                                    | No    |                              | SCsb-037        |
| Chromium <sup>c</sup>             | 14                         |          | 186    |    | 0.063            | 0.33     | 27.2           | 180,000                               | No    |                              | SCsb-043        |
| Copper                            | 11.5                       |          | 2,020  |    | 0.2              | 1        | 32.3           | 4,700                                 | No    |                              | SCsb-036        |
| Lead                              | 6.6                        |          | 907    |    | 0.14             | 0.73     | 19.1           | 800                                   | Yes   | MDC above screening criteria | SCsb-036        |
| Mercury                           | 0.0042                     | J        | 2      |    | 0.0079           | 0.08     | 0.044          | 35                                    | No    |                              | SCsb-044        |
| Nickel                            | 14.9                       |          | 88.1   |    | 0.061            | 0.32     | 60.7           | 2,200                                 | No    |                              | SCsb-048        |
| Selenium                          | 0.14                       | J        | 5.7    |    | 0.42             | 2.2      | 1.5            | 580                                   | No    |                              | SCsb-037        |
| Silver                            | 0.13                       |          | 13.5   |    | 0.056            | 0.29     | 0              | 580                                   | No    |                              | SCsb-045        |
| Thallium                          | 0.34                       |          | 17.3   |    | 0.28             | 0.73     | 0.91           | 2.3                                   | Yes   | MDC above screening criteria | SCsb-037        |
| Vanadium                          | 12.6                       |          | 173    |    | 0.034            | 0.18     | 37.6           | 580                                   | No    |                              | SCsb-037        |
| Zinc                              | 38.9                       |          | 1,350  |    | 0.12             | 0.63     | 93.3           | 35,000                                | No    |                              | SCsb-036        |
| <b>Explosives and Propellants</b> |                            |          |        | 1  |                  |          |                | · · · · · · · · · · · · · · · · · · · |       |                              |                 |
| 2,4,6-Trinitrotoluene             | 0.1                        |          | 0.1    |    | 0.43             | 0.49     |                | 51                                    | No    |                              | SCsb-049        |
| 2-Amino-4,6-Dinitrotoluene        | 0.26                       |          | 0.26   |    | 0.43             | 0.49     |                | 230                                   | No    |                              | SCsb-049        |
| m-Nitrotoluene <sup>e</sup>       | 0.32                       | J        | 0.32   | J  | 0.43             | 0.49     |                | 8.2                                   | No    |                              | SCsb-049        |
| Polychlorinated Biphenyls         |                            | 1        |        | Г  |                  | [        |                |                                       |       |                              |                 |
| Aroclor-1254                      | 0.14                       | J        | 0.14   | J  | 0.051            | 0.1      |                | 0.97                                  | Yes   |                              | SCsb-037        |
| Pesticides                        |                            | 1        |        |    | I                | 1        |                |                                       | 1     |                              |                 |
| 4,4'-DDE                          | 0.0051                     |          | 0.0069 | J  | 0.0024           | 0.02     |                | 9.6                                   | No    |                              | SCsb-037        |
| 4,4'-DDT                          | 0.009                      | J        | 0.013  |    | 0.0024           | 0.012    |                | 8.5                                   | No    |                              | SCsb-048        |
| Aldrin                            | 0.0012                     | J        | 0.0012 | J  | 0.0024           | 0.012    |                | 0.18                                  | No    |                              | SCsb-037        |
| alpha-BHC                         | 0.0013                     | J        | 0.011  | J  | 0.0024           | 0.02     |                | 0.36                                  | No    |                              | SCsb-037        |
| beta-BHC                          | 0.0032                     | J        | 0.0032 | J  | 0.0024           | 0.02     |                | 1.3                                   | No    |                              | SCsb-037        |
| delta-BHC <sup>t</sup>            | 0.0016                     | J        | 0.0016 | J  | 0.0024           | 0.012    |                | 0.36 Alpha. 1.3 Beta                  | No    |                              | SCsb-037        |
| Dieldrin                          | 0.0034                     | J        | 0.0034 | J  | 0.0024           | 0.012    |                | 0.14                                  | No    |                              | SCsb-037        |
| Endosulfan II <sup>g</sup>        | 0.0036                     |          | 0.0036 |    | 0.0024           | 0.012    |                | 700 Endosulfan                        | No    |                              | SCsb-048        |

## Table 6-11. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Commercial Industrial Land Use.

| Site-Related Chemical             | Range of Values, mg/kg     |    |         |    |          |          |                |                                     |        |                              |                 |
|-----------------------------------|----------------------------|----|---------|----|----------|----------|----------------|-------------------------------------|--------|------------------------------|-----------------|
|                                   | Detected<br>Concentrations |    |         |    | Reportin | g Limits | BSV<br>(mg/kg) | Industrial RSL <sup>b</sup> (mg/kg) | COPC?  | <b>COPC</b> Justification    | Location of MDC |
|                                   | Min                        | VQ | Max     | VQ | Min      | Max      |                |                                     |        |                              |                 |
| General Chemistry                 |                            |    | ı       | 1  | •        |          |                | •                                   |        |                              |                 |
| Endrin Aldehyde <sup>h</sup>      | 0.005                      | J  | 0.005   | J  | 0.004    | 0.02     |                | 25 Endrin                           | No     |                              | SCsb-037        |
| gamma-Chlordane <sup>i</sup>      | 0.0054                     | J  | 0.0054  | J  | 0.0024   | 0.02     |                | 7.5 Chlordane                       | No     |                              | SCsb-037        |
| Heptachlor                        | 0.0009                     | J  | 0.0058  | J  | 0.0024   | 0.012    |                | 0.63                                | No     |                              | SCsb-037        |
| Heptachlor Epoxide                | 0.00071                    | J  | 0.00071 | J  | 0.0024   | 0.02     |                | 0.33                                | No     |                              | SCsb-037        |
| Methoxychlor                      | 0.001                      | J  | 0.0058  | J  | 0.0024   | 0.012    |                | 410                                 | No     |                              | SCsb-037        |
| Semivolatile Organic Compound     | ds                         |    | 1       | 1  | •        | •        | •              |                                     |        |                              |                 |
| 1,2-Dichlorobenzene               | 0.024                      | J  | 0.049   | J  | 0.4      | 0.42     |                | 930                                 | No     | MDC below screening criteria | SCsb-037        |
| 1,4-Dichlorobenzene               | 0.022                      | J  | 0.022   | J  | 0.4      | 0.42     |                | 11                                  | No     | MDC below screening criteria | SCsb-037        |
| 2-Methylnaphthalene               | 0.026                      | J  | 0.7     |    | 0.4      | 0.42     |                | 300                                 | No     | MDC below screening criteria | SCsb-050        |
| Acenaphthene                      | 0.029                      | J  | 0.7     |    | 0.4      | 0.42     |                | 4,500                               | No     | MDC below screening criteria | SCsb-049        |
| Acenaphthylene <sup>j</sup>       | 0.034                      | J  | 0.14    | J  | 0.4      | 0.42     |                | 4,500*                              | No     | MDC below screening criteria | SCsb-049        |
| Anthracene                        | 0.03                       | J  | 3.1     |    | 0.4      | 0.42     |                | 23,000                              | No     | MDC below screening criteria | SCsb-049        |
| Benzo(a)anthracene                | 0.046                      | J  | 8.2     |    | 0.4      | 2        |                | 2.9                                 | Yes    | MDC above screening criteria | SCsb-049        |
| Benzo(a)pyrene                    | 0.035                      |    | 8.3     |    | 0.4      | 2        |                | 0.29                                | Yes    | MDC above screening criteria | SCsb-049        |
| Benzo(b)fluoranthene              | 0.039                      |    | 13      |    | 0.4      | 2        |                | 2.9                                 | No     |                              | SCsb-049        |
| Benzo(g,h,i)perylene <sup>k</sup> | 0.022                      | J  | 1.7     |    | 0.4      | 0.42     |                | 0.29*                               | No     |                              | SCsb-036        |
| Benzo(k)fluoranthene              | 0.027                      | J  | 4.4     |    | 0.4      | 0.42     |                | 29                                  | No     |                              | SCsb-049        |
| Benzoic Acid                      | 0.32                       | J  | 0.32    | J  | 0.98     | 2.1      |                | 33,000                              | No     |                              | SCsb-051        |
| Bis(2-Ethylhexyl)phthalate        | 0.088                      | J  | 0.85    | J  | 1        | 1.1      |                | 160                                 | No     |                              | SCsb-040        |
| Carbazole                         | 0.033                      | J  | 2.2     |    | 0.4      | 0.42     |                | 835* FWCUG                          | No     |                              | SCsb-049        |
| Chrysene                          | 0.034                      | J  | 7.6     |    | 0.4      | 2        |                | 290                                 | No     |                              | SCsb-049        |
| Dibenzo(a,h)anthracene            | 0.032                      | J  | 0.55    |    | 0.4      | 0.42     |                | 0.29                                | Yes    | MDC above screening criteria | SCsb-049        |
| Dibenzofuran                      | 0.035                      | J  | 0.84    |    | 0.4      | 0.42     |                | 100                                 | No     |                              | SCsb-049        |
| Di-n-Butyl Phthalate              | 0.081                      | J  | 0.27    | J  | 0.4      | 0.42     |                | 8,200                               | No     |                              | SCsb-037        |
| Fluoranthene                      | 0.027                      | J  | 17      |    | 0.4      | 2        |                | 3,000                               | No     |                              | SCsb-049        |
| Fluorene                          | 0.034                      | J  | 1.1     |    | 0.4      | 0.42     |                | 3,000                               | No     |                              | SCsb-049        |
| Indeno(1,2,3-cd)pyrene            | 0.024                      | J  | 1.6     |    | 0.4      | 0.42     |                | 2.9                                 | No     |                              | SCsb-049        |
| Isophorone                        | 0.053                      | J  | 1.2     |    | 0.4      | 0.42     |                | 2,400                               | No     |                              | SCsb-036        |
| Naphthalene                       | 0.028                      | J  | 0.98    |    | 0.4      | 0.42     |                | 17                                  | No     |                              | SCsb-049        |
| Pentachlorophenol                 | 0.38                       | J  | 0.38    | J  | 1        | 1.1      |                | 4                                   | No     |                              | SCsb-050        |
| Phenanthrene                      | 0.027                      | J  | 11      |    | 0.4      | 2        |                | 4,500*                              | No     |                              | SCsb-049        |
| Pyrene                            | 0.029                      | J  | 13      |    | 0.4      | 2        |                | 2,300                               | No     |                              | SCsb-049        |
| Volatile Organic Compounds        |                            |    | 0.5-7   | T  |          | 0.7-     |                |                                     | 1 2- 1 |                              |                 |
| 1,2-Dimethylbenzene               | 0.013                      | J  | 0.35    |    | 0.048    | 0.07     |                | 280                                 | No     |                              | SCsb-048        |
| Benzene                           | 0.06                       |    | 0.06    |    | 0.048    | 0.07     |                | 5.1                                 | No     |                              | SCsb-048        |
| Ethylbenzene                      | 0.15                       | -  | 0.15    |    | 0.048    | 0.07     |                | 25                                  | No     |                              | SCsb-048        |
| Toluene                           | 0.012                      | J  | 0.31    |    | 0.048    | 0.07     |                | 4,700                               | No     |                              | SCsb-048        |

## Table 6-11. Summary of Screening Results for COPCs in Subsurface Soil (1 to 13 feet) for Commercial Industrial Land Use (continued).

| Table 6-11. Summ | nary of Screening Re | ults for COPCs in Su | bsurface Soil (1 to 13 | 6 feet) for Commercial | Industrial Land Use (contin | nued). |
|------------------|----------------------|----------------------|------------------------|------------------------|-----------------------------|--------|
|------------------|----------------------|----------------------|------------------------|------------------------|-----------------------------|--------|

| Site-Related Chemical | Ran                        | ge of Val | ues, mg/kg |    |          |                  |  |                                     |       |                    |                 |
|-----------------------|----------------------------|-----------|------------|----|----------|------------------|--|-------------------------------------|-------|--------------------|-----------------|
|                       | Detected<br>Concentrations |           |            |    | Reportin | Reporting Limits |  | Industrial RSL <sup>b</sup> (mg/kg) | COPC? | COPC Justification | Location of MDC |
|                       | Min                        | VQ        | Max        | VQ | Min      | Max              |  |                                     |       |                    |                 |
| Xylene (Total)        | 0.36                       |           | 0.36       |    | 0.096    | 0.096 0.14       |  | 250                                 | No    |                    | SCsb-048        |
|                       |                            |           |            |    |          |                  |  |                                     |       |                    |                 |

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>c</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

<sup>e</sup> denotes RSL for o-nitrotoluene used for m-nitrotoluene.

<sup>*f*</sup> denotes RSL for technical hexachlorocyclohexane (HCH) used for delta-BHC.

<sup>g</sup> denotes RSL for endosulfan used for endosulfan II.

<sup>h</sup> denotes RSL for endrin used for endrin aldehyde RSL for chlordane used for gamma-chlordane.

<sup>*j*</sup> denotes RSL for acenaphthene used for acenaphthylene.

<sup>k</sup> denotes RSL for pyrene used for benzo(g,h,i)perylene.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for Resident Receptor Adult (RRA) and Child (RRC). HQ denotes hazard quotient.

J denotes result should be considered estimated.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

RSL denotes EPA Regional Screening Level (November 2015).

VQ denotes validation qualifier

| Site Polated Chamical          | Rang    | e of Value | es, mg/kg  |    | Reporting | g Limits | BSV     | NGT<br>EWCLIC <sup>a</sup> | RSL <sup>b</sup> | COPC? | CODC Instification           | Location of MDC |
|--------------------------------|---------|------------|------------|----|-----------|----------|---------|----------------------------|------------------|-------|------------------------------|-----------------|
| Site-Kelated Chemical          | Detect  | ted Conce  | entrations | VO | Min       | More     | (mg/kg) | (mg/kg)                    | (mg/kg)          | core: |                              | Location of MDC |
| Inorganics                     | IVIII   | ٧Ų         | Max        | ٧Q | NIII      | Max      |         |                            |                  |       |                              |                 |
| Antimony                       | 0.58    |            | 1.5        |    | 0.27      | 1.1      | 0.96    | 175                        |                  | No    |                              | SCsb-037        |
| Arsenic                        | 6       |            | 155        |    | 0.45      | 1.8      | 19.8    | 2.78                       |                  | Yes   | MDC above screening criteria | SCsb-037        |
| Barium                         | 40.7    |            | 326        |    | 0.027     | 0.11     | 124     | 351                        |                  | No    |                              | SCsb-037        |
| Beryllium                      | 0.33    |            | 2          |    | 0.012     | 0.049    | 0.88    |                            | 230              | No    |                              | SCsb-037        |
| Cadmium                        | 0.067   |            | 5.5        |    | 0.021     | 0.085    | 0       | 10.9                       |                  | No    |                              | SCsb-037        |
| Chromium <sup>c</sup>          | 30.6    |            | 186        |    | 0.064     | 0.26     | 27.2    | 329,763                    |                  | No    |                              | SCsb-037        |
| Copper                         | 16.3    |            | 209        |    | 0.2       | 0.81     | 32.3    | 25,368                     |                  | No    |                              | SCsb-037        |
| Lead                           | 6.6     |            | 507        |    | 0.14      | 0.57     | 19.1    | ,_ ~~                      | 800              | No    |                              | SCsb-037        |
| Mercury                        | 0.0042  | J          | 0.3        |    | 0.008     | 0.0081   | 0.044   | 172                        |                  | No    |                              | SCsb-037        |
| Selenium                       | 0.14    | J          | 5.7        |    | 0.42      | 1.7      | 1.5     |                            | 580              | No    |                              | SCsb-037        |
| Silver                         | 0.29    |            | 0.29       |    | 0.057     | 0.23     | 0       | 3,105                      |                  | No    |                              | SCsb-037        |
| Thallium                       | 0.7     |            | 17.3       |    | 0.28      | 0.57     | 0.91    | 47.7                       |                  | No    |                              | SCsb-037        |
| Vanadium                       | 12.6    |            | 173        |    | 0.034     | 0.14     | 37.6    | 2,304                      |                  | No    |                              | SCsb-037        |
| Zinc                           | 54.1    |            | 490        |    | 0.12      | 0.49     | 93.3    | 187,269                    |                  | No    |                              | SCsb-037        |
| Pesticides                     |         |            |            |    |           |          |         |                            |                  |       |                              |                 |
| alpha-BHC                      | 0.0013  | J          | 0.0013     | J  | 0.0024    | 0.0024   |         |                            | 7.42*            | No    |                              | SCsb-040        |
| Heptachlor                     | 0.00091 | J          | 0.00091    | J  | 0.0024    | 0.0024   |         | 2.98                       |                  | No    |                              | SCsb-040        |
| Methoxychlor                   | 0.001   | J          | 0.001      | J  | 0.0024    | 0.0024   |         |                            | 410              | No    |                              | SCsb-040        |
| Semivolatile Organic Com       | pounds  | -          |            |    |           |          | -       |                            | -                | -     |                              |                 |
| 1,2-Dichlorobenzene            | 0.043   | J          | 0.043      | J  | 0.4       | 0.41     |         |                            | 930              | No    |                              | SCsb-037        |
| 1,4-Dichlorobenzene            | 0.022   | J          | 0.022      | J  | 0.4       | 0.41     |         |                            | 11               | No    |                              | SCsb-037        |
| 2-Methylnaphthalene            | 0.19    | J          | 0.28       | J  | 0.4       | 0.41     |         | 2384                       |                  | No    |                              | SCsb-035        |
| Benzo(a)anthracene             | 0.053   | J          | 0.053      | J  | 0.4       | 0.41     |         | 4.77                       |                  | No    |                              | SCsb-037        |
| Benzo(a)pyrene                 | 0.036   | J          | 0.048      | J  | 0.4       | 0.41     |         | 0.477                      |                  | No    |                              | SCsb-037        |
| Benzo(b)fluoranthene           | 0.062   | J          | 0.12       | J  | 0.4       | 0.41     |         | 4.77                       |                  | No    |                              | SCsb-037        |
| Benzo(g,h,i)perylene           | 0.038   | J          | 0.14       | J  | 0.4       | 0.41     |         |                            | 4.77*            | No    |                              | SCsb-035        |
| Benzo(k)fluoranthene           | 0.027   | J          | 0.027      | J  | 0.4       | 0.41     |         | 47.7                       |                  | No    |                              | SCsb-037        |
| Bis(2-<br>Ethylhexyl)phthalate | 0.85    | J          | 0.85       | J  | 1         | 1        |         |                            | 160              | No    |                              | SCsb-040        |
| Chrysene                       | 0.089   | J          | 0.089      | J  | 0.4       | 0.41     |         | 477                        |                  | No    |                              | SCsb-037        |
| Dibenzofuran                   | 0.035   | J          | 0.055      | J  | 0.4       | 0.41     |         | 1,192                      |                  | No    |                              | SCsb-037        |
| Di-n-Butyl Phthalate           | 0.081   | J          | 0.27       | J  | 0.4       | 0.41     |         |                            | 8,200            | No    |                              | SCsb-037        |
| Fluoranthene                   | 0.027   | J          | 0.17       | J  | 0.4       | 0.41     |         | 5,087                      |                  | No    |                              | SCsb-037        |
| Fluorene                       | 0.034   | J          | 0.044      | J  | 0.4       | 0.41     |         | 11,458                     |                  | No    |                              | SCsb-035        |
| Indeno(1,2,3-cd)pyrene         | 0.025   | J          | 0.025      | J  | 0.4       | 0.41     |         | 4.77                       |                  | No    |                              | SCsb-037        |
| Isophorone                     | 0.062   | J          | 0.5        |    | 0.4       | 0.41     |         |                            | 2,400            | No    |                              | SCsb-039        |
| Naphthalene                    | 0.053   | J          | 0.15       | J  | 0.4       | 0.41     |         | 1,541                      |                  | No    |                              | SCsb-037        |
| Phenanthrene                   | 0.11    | J          | 0.19       | J  | 0.4       | 0.41     |         |                            | 360*             | No    |                              | SCsb-037        |
| Pyrene                         | 0.072   | J          | 0.15       | J  | 0.4       | 0.41     |         | 3,815                      |                  | No    |                              | SCsb-037        |

# Table 6-12. Summary of Screening Results for COPCs in Subsurface Soil (1 to 4 feet) for the Military Training Land Use using the maximum detected concentration.

#### Table 6-12. Summary of Screening Results for COPCs in Subsurface Soil (1 to 4 feet) for the Military Training Land Use using the maximum detected concentration (continued).

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

<sup>c</sup> denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

EPA denotes U.S. Environmental Protection Agency.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant,

Ravenna, Ohio, Final (SAIC, 2010) for National Guard Trainee (NGT).

HQ denotes hazard quotient.

J denotes result should be considered estimated.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

RSL denotes EPA Regional Screening Level (November 2015).

SAIC denotes Science Applications International Corporation.

VQ denotes validation qualifier.

|                                   | Range of Values, mg/kg |          |            |    |        |            |         |                           |                           |                           |                  |      |                                                                                      |          |
|-----------------------------------|------------------------|----------|------------|----|--------|------------|---------|---------------------------|---------------------------|---------------------------|------------------|------|--------------------------------------------------------------------------------------|----------|
|                                   | Dete                   | cted Con | centration | ıs | Report | ing Limits | BSV     | RRA<br>FWCUG <sup>a</sup> | RRC<br>FWCUG <sup>a</sup> | NGT<br>FWCUG <sup>a</sup> | RSL <sup>b</sup> |      |                                                                                      | Location |
| Site-Related Chemical             | Min                    | VQ       | Max        | VQ | Min    | Max        | (mg/kg) | (mg/kg)                   | (mg/kg)                   | (mg/kg)                   | (mg/kg)          | COPC | COPC Justification                                                                   | of MDC   |
| General Chemistry                 |                        | -1       |            |    | 1      |            |         | 1                         |                           |                           |                  |      |                                                                                      |          |
| Cyanide, Total <sup>d</sup>       | 0.32                   | J        | 0.36       | J  | 0.39   | 0.39       |         |                           |                           |                           | 160              | No   |                                                                                      | SCsd-070 |
| Inorganics                        |                        | -        |            |    |        |            |         |                           |                           |                           |                  |      |                                                                                      |          |
| Antimony                          | 0.45                   | J        | 8.4        |    | 1.4    | 1.4        | 0       | 13.6                      | 2.82                      | 175                       |                  | Yes  | MDC above screening criteria for Resident Child                                      | SCsd-070 |
| Barium                            | 75.7                   |          | 231        |    | 0.14   | 0.14       | 123     | 8,966                     | 1,413                     | 351                       |                  | No   |                                                                                      | SCsd-070 |
| Beryllium                         | 0.41                   |          | 0.47       |    | 0.061  | 0.061      | 0.38    |                           |                           |                           | 16               | No   |                                                                                      | SCsd-071 |
| Cadmium                           | 0.19                   |          | 2.7        |    | 0.11   | 0.11       | 0       | 22.4                      | 6.41                      | 10.9                      |                  | No   |                                                                                      | SCsd-070 |
| Chromium <sup>c</sup>             | 40.9                   |          | 107        |    | 0.32   | 0.32       | 18.1    | 19,694                    | 8147                      | 329,763                   |                  | No   |                                                                                      | SCsd-071 |
| Copper                            | 16.6                   |          | 53.7       |    | 1      | 1          | 27.6    | 2714                      | 311                       | 25,368                    |                  | No   |                                                                                      | SCsd-070 |
| Lead                              | 7.2                    |          | 104        |    | 0.71   | 0.71       | 27.4    |                           |                           |                           | 400              | No   |                                                                                      | SCsd-070 |
| Mercury                           | 0.049                  |          | 0.3        |    | 0.008  | 0.0081     | 0.059   | 16.5                      | 2.27                      | 172                       |                  | No   |                                                                                      | SCsd-070 |
| Nickel                            | 20                     |          | 21.1       |    | 0.31   | 0.31       | 17.7    | 1,346                     | 155                       | 12,639                    |                  | No   |                                                                                      | SCsd-070 |
| Silver                            | 116                    |          | 116        |    | 0.29   | 57         | 0       | 324                       | 38.6                      | 3,105                     |                  | Yes  | MDC above screening criteria for Resident Child                                      | SCsd-070 |
| Thallium                          | 1.1                    |          | 1.2        |    | 0.71   | 0.71       | 0.89    | 4.76                      | 0.612                     | 47.7                      |                  | Yes  | MDC above screening criteria for Resident Child                                      | SCsd-070 |
| <b>Explosives and Propellants</b> |                        |          |            |    |        |            |         |                           |                           |                           |                  |      |                                                                                      |          |
| Nitroguanidine                    | 0.69                   |          | 1.2        | J  | 0.16   | 0.16       |         |                           |                           |                           | 610              | No   |                                                                                      | SCsd-071 |
| <b>Polychlorinated Biphenyls</b>  |                        |          |            |    |        |            |         |                           |                           |                           |                  |      |                                                                                      |          |
| Aroclor-1262                      | 0.094                  |          | 0.094      |    | 0.051  | 0.051      |         | 0.203                     | 0.349                     | 3.46                      |                  | No   |                                                                                      | SCsd-070 |
| Aroclor-1254                      | 0.15                   | J        | 0.15       | J  | 0.051  | 0.051      |         | 0.203                     | 0.12                      | 3.46                      |                  | No   | MDC below screening criteria for Resident Adult, similar to FWCUG for Resident Child | SCsd-070 |
| Pesticides                        |                        |          |            |    |        |            |         |                           |                           |                           |                  |      |                                                                                      |          |
| 4,4'-DDD                          | 0.00061                | J        | 0.0034     |    | 0.0024 | 0.0024     |         |                           |                           |                           | 2                | No   |                                                                                      | SCsd-070 |
| 4,4'-DDE                          | 0.0043                 |          | 0.0043     |    | 0.004  | 0.0041     |         | 4.08                      | 2.63                      | 49.1                      |                  | No   |                                                                                      | SCsd-070 |
| 4,4'-DDT                          | 0.00091                | J        | 0.0068     | J  | 0.0024 | 0.0024     |         |                           |                           |                           | 1.7              | No   |                                                                                      | SCsd-070 |
| alpha-Chlordane                   | 0.0023                 | J        | 0.0023     | J  | 0.004  | 0.0041     |         |                           |                           |                           | 1.6              | No   |                                                                                      | SCsd-070 |
| beta-BHC                          | 0.0012                 | J        | 0.0012     | J  | 0.004  | 0.0041     |         |                           |                           |                           | 0.27             | No   |                                                                                      | SCsd-070 |
| delta-BHC <sup>e</sup>            | 0.0017                 |          | 0.0017     |    | 0.0024 | 0.0024     |         |                           |                           |                           | 0.27             | No   |                                                                                      | SCsd-070 |
| Dieldrin                          | 0.0046                 |          | 0.0046     |    | 0.0024 | 0.0024     |         | 0.087                     | 0.056                     | 0.839                     |                  | No   |                                                                                      | SCsd-070 |
|                                   | -                      | 1        | -          | 1  |        | 1          | 1       | I                         | 1                         | 1                         | 1                | I    |                                                                                      |          |

# Table 6-13. Summary of Screening Results for COPCs in Sediment (0 to 0.5 foot) for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use.

|                                   |        | -       | Range of V | alues, m | g/kg    |            |         |                           |                           |                           |         |      |                                          |          |
|-----------------------------------|--------|---------|------------|----------|---------|------------|---------|---------------------------|---------------------------|---------------------------|---------|------|------------------------------------------|----------|
|                                   | Dete   | cted Co | ncentratio | ns       | Reporti | ing Limits | BSV     | RRA<br>EWCUC <sup>a</sup> | RRC<br>FWCUC <sup>a</sup> | NGT<br>EWCUC <sup>a</sup> | DCI p   |      |                                          | Location |
| Site-Related Chemical             | Min    | VQ      | Max        | VQ       | Min     | Max        | (mg/kg) | (mg/kg)                   | (mg/kg)                   | (mg/kg)                   | (mg/kg) | COPC | COPC Justification                       | of MDC   |
| Endosulfan Sulfate                | 0.0055 | J       | 0.0055     | J        | 0.004   | 0.0041     |         |                           |                           |                           | 37      | No   |                                          | SCsd-070 |
| Endrin Aldehyde <sup>f</sup>      | 0.0063 |         | 0.0063     |          | 0.004   | 0.0041     |         | 1.77                      | 1.12                      |                           |         | No   |                                          | SCsd-070 |
| gamma-Chlordane <sup>g</sup>      | 0.0078 |         | 0.0078     |          | 0.004   | 0.0041     |         |                           |                           |                           | 1.6     | No   |                                          | SCsd-070 |
| Heptachlor                        | 0.002  | J       | 0.0057     | J        | 0.0024  | 0.0024     |         | 0.308                     | 0.198                     | 2.98                      |         | No   |                                          | SCsd-070 |
| Methoxychlor                      | 0.0016 | J       | 0.0021     | J        | 0.0024  | 0.0024     |         |                           |                           |                           | 31      | No   |                                          | SCsd-070 |
| Semivolatile Organic Compo        | unds   |         |            |          |         |            |         |                           |                           |                           |         |      |                                          |          |
| 1,2-Dichlorobenzene               | 0.044  | J       | 0.044      | J        | 0.4     | 0.41       |         |                           |                           |                           | 19      | No   |                                          | SCsd-070 |
| 1,4-Dichlorobenzene               | 0.04   | J       | 0.04       | J        | 0.4     | 0.41       |         |                           |                           |                           | 2.4     | No   |                                          | SCsd-070 |
| 2-Methylnaphthalene               | 0.043  | J       | 0.043      | J        | 0.4     | 0.41       |         | 238                       | 30.6                      | 2384                      |         | No   |                                          | SCsd-070 |
| Benzo(a)anthracene                | 0.057  | J       | 0.057      | J        | 0.4     | 0.41       |         | 0.221                     | 0.65                      | 4.77                      |         | No   |                                          | SCsd-070 |
| Benzo(a)pyrene                    | 0.067  | J       | 0.067      | J        | 0.4     | 0.41       |         | 0.022                     | 0.065                     | 0.477                     |         | Yes  | MDC above Residential screening criteria | SCsd-070 |
| Benzo(b)fluoranthene              | 0.046  | J       | 0.11       | J        | 0.4     | 0.41       |         | 0.221                     | 0.65                      | 4.77                      |         | No   |                                          | SCsd-070 |
| Benzo(g,h,i)perylene <sup>h</sup> | 0.026  | J       | 0.026      | J        | 0.4     | 0.41       |         | 0.221                     | 0.65                      | 4.77                      |         | No   |                                          | SCsd-070 |
| Benzo(k)fluoranthene              | 0.047  | J       | 0.047      | J        | 0.4     | 0.41       |         | 2.21                      | 6.5                       | 47.7                      |         | No   |                                          | SCsd-070 |
| Chrysene                          | 0.027  | J       | 0.07       | J        | 0.4     | 0.41       |         | 22.1                      | 65                        | 477                       |         | No   |                                          | SCsd-070 |
| Di-n-Butyl Phthalate              | 0.11   | J       | 0.3        | J        | 0.4     | 0.41       |         |                           |                           |                           | 610     | No   |                                          | SCsd-070 |
| Fluoranthene                      | 0.047  | J       | 0.089      | J        | 0.4     | 0.41       |         | 276                       | 163                       | 5,087                     |         | No   |                                          | SCsd-070 |
| Indeno(1,2,3-cd)pyrene            | 0.026  | J       | 0.026      | J        | 0.4     | 0.41       |         | 0.221                     | 0.65                      | 47.7                      |         | No   |                                          | SCsd-070 |
| Naphthalene                       | 0.029  | J       | 0.029      | J        | 0.4     | 0.41       |         | 368                       | 122                       | 1,541                     |         | No   |                                          | SCsd-070 |
| Phenanthrene                      | 0.027  | J       | 0.053      | J        | 0.4     | 0.41       |         | 276*                      | 163*                      | 477*                      |         | No   |                                          | SCsd-070 |
| Pyrene                            | 0.04   | J       | 0.089      | J        | 0.4     | 0.41       |         | 207                       | 122                       | 3,815                     |         | No   |                                          | SCsd-070 |

### Table 6-13. Summary of Screening Results for COPCs in Sediment (0 to 0.5 foot) for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use (continued).

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>6</sup> risk.

<sup>b</sup> denotes RSL for residential soil based on noncancer risk adjusted to HQ of 0.1 (as opposed to published value based on HQ of 1) except for lead.

 $^{\rm c}$  denotes total chromium assumed to be trivalent, since hexavalent chromium was not detected.

<sup>d</sup> denotes RSL for cyanide used for total cyanide.

 $^{e}\ denotes\ RSL\ for\ technical\ hexachlorocyclohexane\ (HCH)\ used\ for\ delta\ BHC.$ 

<sup>f</sup> denotes FWCUG for endrin used for endrin aldehyde.

<sup>g</sup> denotes RSL for chlordane used for gamma chlordane.

<sup>h</sup> denotes RSL for pyrene used for benzo(g,h,i)perylene. --- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

EPA denotes U.S. Environmental Protection Agency.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for Resident Farmer Adult (RFA) and Child (RFC) and National Guard Trainee (NGT). HQ denotes hazard quotient.

ISM denotes incremental sampling method.

J denotes result should be considered estimated. MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

RSL denotes EPA Regional Screening Level (November 2015).

SAIC denotes Science Applications International Corporation.

VQ denotes validation qualifier.

| Table 6-14. Summary of Screening Results for COPCs in Surface Water for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land. |       |         |             |        |          |           |        |                           |                           |                           |                     |       |                              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|--------|----------|-----------|--------|---------------------------|---------------------------|---------------------------|---------------------|-------|------------------------------|----------|
|                                                                                                                                                                          |       |         | Range of V  | Values | , μg/L   |           |        |                           |                           |                           |                     |       |                              |          |
|                                                                                                                                                                          | Dete  | cted Co | oncentratio | ons    | Reportin | ng Limits | BSV    | RRA<br>FWCUC <sup>a</sup> | RRC<br>FWCUC <sup>a</sup> | NGT<br>FWCUC <sup>a</sup> | PSI                 |       |                              | Location |
| Chemical                                                                                                                                                                 | Min   | VQ      | Max         | VQ     | Min      | Max       | (μg/L) | μg/L)                     | μg/L)                     | μg/L)                     | (µg/L)              | COPC? | <b>COPC</b> Justification    | of MDC   |
| Inorganics                                                                                                                                                               |       |         |             |        |          |           |        |                           |                           |                           |                     |       |                              |          |
| Antimony                                                                                                                                                                 | 2.9   |         | 2.9         |        | 1.9      | 6         | 0      | 17.1                      | 4.91                      | 6.45                      |                     | No    |                              | S-7      |
| Arsenic                                                                                                                                                                  | 2.2   |         | 6.6         |        | 2        | 4.9       | 3.2    | 1.1                       | 1.2                       | 4.17                      |                     | Yes   | MDC above screening criteria | S-7      |
| Chromium                                                                                                                                                                 | 0.66  |         | 1.4         |        | 10       | 10        | 0      | 28,442                    | 11,173                    | 6,165                     |                     | No    |                              | S-7      |
| Cobalt                                                                                                                                                                   | 0.4   |         | 0.4         |        | 1.6      | 5         | 0      |                           |                           |                           | 4.7                 | No    |                              | S-7      |
| Lead                                                                                                                                                                     | 2.9   |         | 2.9         |        | 2        | 8         | 0      |                           |                           |                           | 15 <sup>b</sup>     | No    |                              | S-7      |
| Silver                                                                                                                                                                   | 1.1   |         | 1.1         |        | 2.5      | 5         | 0      | 348                       | 76.8                      | 900                       |                     | No    |                              | S-7      |
| Vanadium                                                                                                                                                                 | 0.5   |         | 0.5         |        | 0.5      | 5         | 0      | 211                       | 70.6                      | 57.2                      |                     | No    |                              | S-7      |
| Semivolatile Organic Comp                                                                                                                                                | ounds |         |             |        |          |           |        |                           |                           |                           |                     |       |                              |          |
| Bis(2-Ethylhexyl)Phthalate                                                                                                                                               | 2.1   |         | 2.1         |        | 4.9      | 12        |        | 3.49                      | 2,68                      | 6.79                      |                     | No    |                              | S-7      |
| Di-n-Butyl Phthalate                                                                                                                                                     | 3.85  |         | 3.85        |        | 4.9      | 11        |        |                           |                           |                           | 670                 | No    |                              | S-7      |
| Nutrients                                                                                                                                                                |       |         |             |        |          |           |        |                           |                           |                           |                     |       |                              |          |
| Phosphorus (Total as P)                                                                                                                                                  | 430   |         | 430         |        | NA       | NA        |        |                           |                           |                           |                     | No    | No algae present             | S-7      |
| Nitrate-N + Nitrite-N                                                                                                                                                    | 130   |         | 130         |        | NA       | NA        |        |                           |                           |                           | 10,000 <sup>b</sup> | No    |                              | S-7      |

#### o Waton for Un nostricted (Desidential) I Table 6 14 S ulta for CODCa in Surfa nd Use C ial Inductrial I d 1 7 7 A MILL , **T** oining I and р 60

<sup>a</sup> denotes the FWCUG used is the lower of the noncarcinogenic FWCUG at HQ of 0.1 and carcinogenic FWCUG at 10<sup>6</sup> risk.

<sup>b</sup> denotes the EPA Maximum Contaminant Limit (EPA, 2012) was used since no RSL is available.

<sup>c</sup> denotes total phosphorus as P shall be limited to the extent necessary to prevent nuisance growths of algae, weeds, and slimes in violation of the OAC 3745-1-04.

 $\mu g/L$  denotes micrograms per liter.

--- denotes no BSV available.

BSV denotes background screening value.

COPC denotes chemical of potential concern.

EPA denotes U.S. Environmental Protection Agency.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010) for Resident Receptor Adult (RRA) and Child (RRC) and National Guard Trainee (NGT). HQ denotes hazard quotient.

J denotes results should be considered estimated.

MDC denotes maximum detected concentration.

NA denotes the reporting limits were not provided for the 2003 FWBWQS.

OAC denotes Ohio Administrative Code.

RSL denotes EPA Regional Screening Levels (November 2015).

SAIC denotes Science Applications International Corporation.

VQ denotes validation qualifier.

| Receptor/Exposure Point                                                                           | COPCs Identified <sup>a</sup> |                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--|--|--|--|
| Surface Soil (0 to 1 foot bgs)                                                                    |                               |                        |  |  |  |  |
|                                                                                                   | Antimony                      | Benzo(a)anthracene     |  |  |  |  |
|                                                                                                   | Arsenic                       | Benzo(a)pyrene         |  |  |  |  |
| Unnertristed (Desidential) Land Use                                                               | Cadmium                       | Benzo(b)fluoranthene   |  |  |  |  |
| Unrestrictea (Kestaenitat) Lana Use                                                               | Copper                        | Indeno(1,2,3-cd)pyrene |  |  |  |  |
|                                                                                                   | Mercury                       | Silver                 |  |  |  |  |
|                                                                                                   | Thallium                      |                        |  |  |  |  |
| Surface Soil (0 to 1 foot bgs)                                                                    | l                             | 1                      |  |  |  |  |
| Commercial Industrial Land Use                                                                    | Arsenic                       | Benzo(a)pyrene         |  |  |  |  |
|                                                                                                   | Thallium                      |                        |  |  |  |  |
| Deep Surface Soil ( 0 to 4 feet bgs)                                                              | l                             | 1                      |  |  |  |  |
|                                                                                                   | Arsenic                       | Benzo(a)pyrene         |  |  |  |  |
| Military Training Land Use                                                                        | Barium                        | Benzo(b)fluoranthene   |  |  |  |  |
|                                                                                                   | Cadmium                       | Dibenzo(a,h)anthracene |  |  |  |  |
|                                                                                                   | Cobalt                        |                        |  |  |  |  |
| Subsurface Soil (1 to 13 feet bgs)                                                                | T                             | 1                      |  |  |  |  |
| Unrestricted (Residential) Land Use                                                               | Antimony                      | Benzo(a)anthracene     |  |  |  |  |
| (1 to 13 feet bgs)                                                                                | Arsenic                       | Benzo(a)pyrene         |  |  |  |  |
|                                                                                                   | Copper                        | Benzo(b)fluoranthene   |  |  |  |  |
|                                                                                                   | Lead                          | Dibenzo(a,h)anthracene |  |  |  |  |
|                                                                                                   | Thallium                      | Vanadium               |  |  |  |  |
|                                                                                                   | Vanadium                      |                        |  |  |  |  |
| Subsurface Soil (1 to 13 feet bgs)                                                                |                               |                        |  |  |  |  |
| Commercial Industrial Land Use                                                                    | Arsenic                       | Benzo(a)anthracene     |  |  |  |  |
| (1 to 13 feet bgs)                                                                                | Lead                          | Benzo(a)pyrene         |  |  |  |  |
|                                                                                                   | Thallium                      | Dibenzo(a,h)anthracene |  |  |  |  |
| Subsurface Soil (4 to 7 feet bgs)                                                                 |                               |                        |  |  |  |  |
| Military Training Land Use                                                                        | Arsenic                       |                        |  |  |  |  |
| (4 to 7 feet bgs)                                                                                 |                               |                        |  |  |  |  |
| Sediment (0 to 0.5 foot bgs)                                                                      |                               |                        |  |  |  |  |
| Unrestricted (Residential) Land Use                                                               | Antimony                      | Benzo(a)pyrene         |  |  |  |  |
| No COPCs in sediment for Commercial                                                               | Silver                        |                        |  |  |  |  |
| Industrial or Military Training Land Uses                                                         | Thallium                      |                        |  |  |  |  |
| Surface Water                                                                                     |                               |                        |  |  |  |  |
| Unrestricted (Residential) Land Use,<br>Commercial Industrial, and Military Training<br>Land Uses | Arsenic                       |                        |  |  |  |  |

 Table 6-15.
 Summary of COPCs in identified for Unrestricted (Residential) Land Use,

 Commercial Industrial Land Use, and Military Training Land Uses.

<sup>a</sup> denotes COPCs identified by screening **Tables 6-7** through **6-15**.

COPC denotes chemical of potential concern.

bgs denotes below ground surface.

| (Resident Recept | Resident Receptor Adult and Child) for using the maximum detected concentration at the Sand Creek Disposal Road Landfill. |  |  |          |       |  |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|----------|-------|--|--|--|--|--|--|--|
|                  |                                                                                                                           |  |  | Ratio of | %<br> |  |  |  |  |  |  |  |

Table 6-16. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use

| Parameter | EPC <sup>a</sup><br>(mg/kg) | RRA/RRC<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ | Ratio of<br>EPC to<br>RRA/RRC<br>FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification |
|-----------|-----------------------------|------------------------------------------|--------------|----------------------------------------|------------------------------------------|------|-------------------|
|           |                             |                                          |              |                                        |                                          |      |                   |

**Neurotoxicity Effects** 

| Mercury  | 24.6 | 165/68.2  | Hand tremor, memory<br>disturbance, objective<br>autonomic dysfunction                                                      | 0.14/0.36   | No | Sum of ratios by target<br>organ < 1 |
|----------|------|-----------|-----------------------------------------------------------------------------------------------------------------------------|-------------|----|--------------------------------------|
| Thallium | 1.21 | 47.6/18.4 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.025/0.065 | No | Sum of ratios by target<br>organ < 1 |

Neurotoxicity Effects Sum of Ratios RRA: 0.16

Neurotoxicity Effects Sum of Ratios RRC: 0.43

#### **Gastrointestinal Effects**

| Copper   | 726 | 27,138/3106 | Gastrointestinal, hepatic, and renal effects                                                        | 0.026/ | No | Sum of ratios by target<br>organ < |
|----------|-----|-------------|-----------------------------------------------------------------------------------------------------|--------|----|------------------------------------|
| Silver   | 256 | 3240/386    | Gastrointestinal effects                                                                            | 0.079  | No | Sum of ratios by target<br>organ < |
| Thallium | 3.2 | 47.6/.18.4  | Gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.067  | No | Sum of ratios by target<br>organ < |

Gastrointestinal Effects Sum of Ratios RRA: 0.17

Gastrointestinal Effects Sum of Ratios RRC: 1.0

#### Table 6-16. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

| Parameter      | EPC <sup>a</sup><br>(mg/kg) | RRA /RRC<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ              | Ratio of<br>EPC to<br>RRA/RRC<br>FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification       |
|----------------|-----------------------------|-------------------------------------------|---------------------------|----------------------------------------|------------------------------------------|------|-------------------------|
| Vascular Effec | ts                          |                                           |                           |                                        |                                          |      |                         |
| Antimony       | 17.10                       | 136/28 2                                  | Longevity, blood glucose, | 0 125/0 42                             |                                          | No   | Sum of ratios by target |

| Antimony | 17.10 | 136/28.2  | Longevity, blood glucose, and cholesterol                               | 0.125/0.42 | No | Sum of ratios by target organ $\leq 1$ |
|----------|-------|-----------|-------------------------------------------------------------------------|------------|----|----------------------------------------|
| Arsenic  | 36.6  | 82.1/20.2 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.43/0.53  | No | Sum of ratios by target organ $\leq 1$ |

Vascular Effects Sum of Ratios RRA: 0.55

Vascular Effects Sum of Ratios RRC:

0.95

### **Renal Effects**

| Cadmium  | 12.9 | 223/64.1    | Significant proteinuria                                                                                                     | 0.057/0.20  | No | Sum of ratios by target organ $\leq 1$ |
|----------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|----|----------------------------------------|
| Copper   | 726  | 27,138/3106 | Gastrointestinal, hepatic, and renal effects                                                                                | 0.026/0.23  | No | Sum of ratios by target organ $\leq 1$ |
| Thallium | 1.21 | 47.6/18.4   | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.025/0.067 | No | Sum of ratios by target organ $\leq 1$ |

Renal Effects Sum of Ratios RRA: 0.18

Renal Effects Sum of Ratios RRC: 0.49

# Table 6-16. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

|         |                  | RRA /RRC                 |              | Ratio of<br>EPC to |                  |      |                   |
|---------|------------------|--------------------------|--------------|--------------------|------------------|------|-------------------|
| Paramet | EPC <sup>a</sup> | <b>FWCUG<sup>b</sup></b> |              | RRC/RRC            | % Contribution   |      |                   |
| er      | (mg/kg)          | (mg/kg)                  | Target Organ | FWCUG              | to the Total Sum | COC? | COC Justification |

**Liver Effects** 

| Arsenic    | 36.6        | 82.1/20.2   | Hyperpigmentation,<br>keratosis, and possible                                                                               | 0.43/0.56   |                   | No        | Sum of ratios by target<br>organ > 1   |
|------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------|----------------------------------------|
| Skin and I | Eye Effects |             | 101 Aunt AK;                                                                                                                |             | ior Child IAA.    |           |                                        |
|            |             |             | Liver Effects Sum of Ratios<br>for Adult RB:                                                                                | 0.051       | Liver Effects Sum | of Ratios | 0.29                                   |
| Thallium   | 1.21        | 47.6/18.4   | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.025/0.067 |                   | No        | Sum of ratios by target organ $\leq 1$ |
| Copper     | 726         | 27,138/3106 | Gastrointestinal, hepatic, and renal effects                                                                                | 0.026/0.23  |                   | No        | Sum of ratios by target organ $\leq 1$ |

<sup>*a*</sup> denotes the EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1, only decisions based on FWCUG for the Adult since these are chronic non-cancer effects although the child is lower for noncancer effects; the EPA RSL (2015) is used for lead. <sup>c</sup> denotes lead is considered separately due to is unique effects. COC denotes chemical of concern. EPA denotes U.S. Environmental Protection Agency. EPC denotes exposure point concentration. FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010). HQ denotes hazard quotient. mg/kg denotes milligrams per kilogram. RRC denotes Residential Receptor Child. RSL denotes Regional Screening Level. SAIC denotes Science Applications International Corporation.

| Parameter              | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | RRA<br>FWCUG<br><sup>b</sup> (mg/kg) | Ratio of<br>EPC to RRA<br>FWCUG | % Contribution<br>to the Total<br>Sum | COC? | COC Justification              |
|------------------------|-----------------------------|----------------|--------------------------------------|---------------------------------|---------------------------------------|------|--------------------------------|
| Antimony               | 17                          | 0.96           | NA                                   | NA                              | NA                                    | No   | Not carcinogenic               |
| Arsenic                | 36.60                       | 15.4           | 4.25                                 | 2.3 (used BG)                   | 13.6%                                 | Yes  | Contribution to sum > 5%       |
| Cadmium                | 12.9                        | 0              | 12,491                               | 0.001                           | 0.005%                                | No   | Contribution to sum $\leq 5\%$ |
| Copper                 | 726                         | 17.7           | NA                                   | NA                              | NA                                    | No   | Not carcinogenic               |
| Mercury                | 24.6                        | 0.036          | NA                                   | NA                              | NA                                    | No   | Not carcinogenic               |
| Silver                 | 256                         | 0              | NA                                   | NA                              | NA                                    | No   | Not carcinogenic               |
| Thallium               | 3.20                        | 0              | NA                                   | NA                              | NA                                    | No   | Not carcinogenic               |
| Benzo(a)anthracene     | 2.6                         |                | 2.2                                  | 1.18                            | 6.9%                                  | Yes  | Ratio > 1                      |
| Benzo(a)pyrene         | 2.4                         |                | 0.221                                | 10.9                            | 64.5%                                 | Yes  | Contribution to sum > 5%       |
| Benzo(b)fluoranthene   | 4.8                         |                | 2.21                                 | 2.17                            | 12.8%                                 | Yes  | Contribution to sum > 5%       |
| Indeno(1,2,3-cd)pyrene | 0.81                        |                | 2.21                                 | 0.367                           | 2.17%                                 | No   | Contribution to sum $\leq 5\%$ |

Table 6-17. Summary of COC Evaluation for Cancer Risk in Surface Soil (0 to 1 foot) for Unrestricted (Residential) Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill.

Cancer Risk Sum of Ratios: 16.9

<sup>*a*</sup> denotes the EPC is the maximum concentration.

<sup>c</sup> denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte. BSV denotes background screening value. COC denotes chemical of concern. EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram. NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

RRA denotes Residential Receptor Adult. The RRA was used to make decisions instead of the RRC since the effects are long term and chronic. SAIC denotes Science Applications International Corporation. RSL denotes USEPA Regional Screening Value (November, 2015).

# Table 6-18. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill.

| Parameter       | EPC <sup>a</sup><br>(mg/kg) | Industrial<br>Receptor<br>RSL <sup>b</sup><br>(mg/kg) | Target Organ                                                                                                             | Ratio of<br>EPC to<br>FWCUG | %<br>Contribution to<br>the Total Sum | COC? | COC Justification                      |
|-----------------|-----------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|------|----------------------------------------|
| Neurotoxicity E | ffects                      |                                                       |                                                                                                                          |                             |                                       |      |                                        |
| Thallium        | 1.21                        | 23                                                    | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.05                        |                                       | No   | Sum of ratios by target<br>organ < 1   |
|                 |                             | Neu                                                   | rotoxicity Effects Sum of Ratios:                                                                                        | 0.05                        |                                       |      |                                        |
| Gastrointestina | l Effects                   |                                                       |                                                                                                                          |                             |                                       |      |                                        |
| Thallium        | 1.21                        | 23                                                    | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.05                        |                                       | No   | Sum of ratios by target<br>organ < 1   |
|                 |                             | Gastro                                                | intestinal Effects Sum of Ratios:                                                                                        | 0.05                        |                                       |      |                                        |
| Vascular Effect | s                           |                                                       |                                                                                                                          |                             |                                       |      |                                        |
| Arsenic         | 36.6                        | 480                                                   | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications                                                  | 0.07                        |                                       | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             |                                                       | Vascular Effects Sum of Ratios:                                                                                          | 0.07                        |                                       |      |                                        |

# Table 6-18. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

| Parameter     | EPC <sup>a</sup><br>(mg/kg) | Industrial<br>Receptor<br>RSL <sup>b</sup><br>(mg/kg) | Target Organ                                                                                                             | Ratio of<br>EPC to<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification                      |
|---------------|-----------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|------|----------------------------------------|
| Renal Effect  | 5                           |                                                       |                                                                                                                          |                             |                                    |      |                                        |
| Thallium      | 1.21                        | 23                                                    | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.025                       |                                    | No   | Sum of ratios by target<br>organ < 1   |
|               |                             |                                                       | Renal Effects Sum of Ratios:                                                                                             | 0.36                        |                                    |      |                                        |
| Liver Effects | i                           |                                                       |                                                                                                                          |                             |                                    |      |                                        |
| Thallium      | 1.21                        | 23                                                    | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.025                       |                                    | No   | Sum of ratios by target<br>organ < 1   |
|               |                             |                                                       | Liver Effects Sum of Ratios:                                                                                             | 0.14                        |                                    |      |                                        |
| Skin and Eye  | e Effects                   |                                                       |                                                                                                                          |                             |                                    |      |                                        |
| Arsenic       | 36.6                        | 480                                                   | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications                                                  | 0.04                        |                                    | No   | Sum of ratios by target organ $\leq 1$ |

### Skin and Eye Effects Sum of Ratios: 0.18
Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

### Table 6-18. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

<sup>a</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1; the EPA RSL (2011) is used for lead.

<sup>c</sup> denotes lead is considered separately due to its unique effects.

BSV denotes background screening value.

COC denotes chemical of concern.

EPA denotes U.S. Environmental Protection Agency.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient.

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for noncancer effects or no FWCUG or other risk-screening criteria.

NGT denotes National Guard Trainee.

RSL denotes Regional Screening Level (November, 2015)l.

SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

## Table 6-19. Summary of COC Evaluation for Cancer Risk in Surface Soil (0 to 1 foot) for Commercial Industrial Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill.

| Parameter      | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | Industrial<br>Receptor RSL <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification        |
|----------------|-----------------------------|----------------|----------------------------------------------------|--------------------------|------------------------------------|------|--------------------------|
| Arsenic        | 36.6                        | 15.4           | 30                                                 | 1.2                      | 56.7 %                             | Yes  | Contribution to sum > 5% |
| Thallium       | 1.21                        | 0              | NA                                                 | NA                       | NA                                 | No   | Not carcinogenic         |
| Benzo(a)pyrene | 2.4                         |                | 2.62                                               | 0.91                     | 43.3%                              | Yes  | Contribution to sum > 5% |
|                |                             | Cancer Ris     | k Sum of Ratios:                                   | 2.1                      |                                    |      |                          |

<sup>a</sup> denotes EPC is 95 percent of the UCL. See Appendix F.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

<sup>c</sup> denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte.

BSV denotes background screening value.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

NGT denotes National Guard Trainee.

RMS denotes Range Maintenance Soldier.

SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

RSL denotes Regional Screening Level (November, 2015).

# Table 6-20. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill.

| Parameter       | EPC <sup>a</sup><br>(mg/kg) | NGT<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ                                                            | Ratio of<br>EPC to% Contribut<br>to the TotaTarget OrganFWCUGSum |     | COC? | COC Justification                      |
|-----------------|-----------------------------|--------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----|------|----------------------------------------|
| Neurotoxicity E | Effects                     |                                      |                                                                         |                                                                  |     |      |                                        |
| Cobalt          | 19.7                        | 140                                  | NA                                                                      | 0.14 No                                                          |     | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             | Neu                                  | rotoxicity Effects Sum of Ratios:                                       | 0.14                                                             |     |      |                                        |
| Gastrointestina | l Effects                   |                                      |                                                                         |                                                                  |     |      |                                        |
| Cobalt          | 19.7                        | 140                                  | NA                                                                      | 0.14                                                             |     | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             | Gastro                               | ointestinal Effects Sum of Ratios:                                      | 0.14                                                             |     |      |                                        |
| Vascular Effect | s                           |                                      |                                                                         |                                                                  |     |      |                                        |
| Arsenic         | 36.6                        | 1140                                 | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications | 0.04                                                             |     | No   | Sum of ratios by target organ $\leq 1$ |
| Cobalt          | 19.7                        | 140                                  | NA                                                                      | 0.14                                                             | 78% | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             |                                      | Vascular Effects Sum of Ratios:                                         | 0.18                                                             |     |      |                                        |

# Table 6-20. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

| Parameter            | EPC <sup>a</sup><br>(mg/kg) | NGT<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ                 | Ratio of<br>EPC to<br>FWCUG | % Contribution<br>to the Total<br>Sum | COC? | COC Justification                      |
|----------------------|-----------------------------|--------------------------------------|------------------------------|-----------------------------|---------------------------------------|------|----------------------------------------|
| <b>Renal Effects</b> |                             |                                      |                              |                             |                                       |      |                                        |
| Barium               | 764                         | 3,506                                | Nephropathy                  | 0.22                        |                                       | No   | Sum of ratios by target organ $\leq 1$ |
| Cadmium              | 12.9                        | 3,292                                | Significant proteinuria      | 0.005                       |                                       | No   | Sum of ratios by target organ $\leq 1$ |
| Cobalt               | 19.7                        | 140                                  | NA                           | 0.14                        |                                       | No   | Sum of ratios by target organ $\leq 1$ |
|                      |                             |                                      | Renal Effects Sum of Ratios: | 0.36                        |                                       |      |                                        |
| Liver Effects        |                             |                                      |                              |                             |                                       |      |                                        |
| Cobalt               | 19.7                        | 140                                  | NA                           | 0.14                        |                                       | No   | Sum of ratios by target organ $\leq 1$ |
|                      |                             |                                      | Liver Effects Sum of Ratios: | 0.14                        |                                       |      |                                        |

# Table 6-20. Summary of COC Evaluation for Noncancer Effects in Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill (continued).

| Derroratio | EDCa    | NGT     |              | Ratio of |                  |      |                   |
|------------|---------|---------|--------------|----------|------------------|------|-------------------|
| Paramete   | EPC"    | FWCUG   |              | EPC to   | % Contribution   |      |                   |
| r          | (mg/kg) | (mg/kg) | Target Organ | FWCUG    | to the Total Sum | COC? | COC Justification |

**Skin and Eye Effects** 

| Arsenic | 36.6 | 1140 | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications | 0.03 | No | Sum of ratios by target organ $\leq 1$ |
|---------|------|------|-------------------------------------------------------------------------|------|----|----------------------------------------|
| Cobalt  | 19.7 | 140  | NA                                                                      | 0.14 | No | Sum of ratios by target organ $\leq 1$ |

Skin and Eye Effects Sum of Ratios: 0.17

<sup>*a*</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1; the EPA RSL (2011) is used for lead.

<sup>c</sup> denotes lead is considered separately due to its unique effects.

BSV denotes background screening value. COC denotes chemical of concern.

EPA denotes U.S. Environmental Protection Agency.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient.

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for noncancer effects or no FWCUG or other risk-screening criteria.

NGT denotes National Guard Trainee. RMS denotes Range Maintenance Soldier. RSL denotes Regional Screening Level. SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

RSL denotes Regional Screening Level (November, 2015).

# Table 6-21. Summary of COC Evaluation for Cancer Risk in Deep Surface Soil (0 to 1 foot) for Military Training Land Use using the maximum detected concentration at the Sand Creek Disposal Road Landfill.

| Parameter             | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | NGT FWCUG <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification              |
|-----------------------|-----------------------------|----------------|-----------------------------------|--------------------------|------------------------------------|------|--------------------------------|
| Arsenic               | 36.6                        | 15.4           | 27.8                              | 1.3                      | 56%                                | Yes  | Contribution to sum > 5%       |
| Barium                | 764                         | 88.4           | NA                                | NA                       | NA                                 | No   | Not carcinogenic               |
| Cadmium               | 12.9                        | ND             | 109                               | 0.118                    | 5.0%                               | No   | Contribution to sum $\leq$ 5%  |
| Cobalt                | 19.7                        | 10.4           | 70.3                              | 0.28                     | 12.0%                              | Yes  | Contribution to sum > 5%       |
| Benzo(a)pyrene        | 2.4                         |                | 4.7                               | 0.51                     | 22.0%                              | Yes  | Contribution to sum > 5%       |
| Benzo(b)fluoranthene  | 4.8                         |                | 47.7                              | 0.10                     | 4.0%                               | No   | Contribution to sum $\leq 5\%$ |
| Dibenz(a,h)anthracene | 0.28                        |                | 4.77                              | 0.059                    | 2.0 %                              | No   | Contribution to sum $\leq$ 5%  |

Cancer Risk Sum of Ratios: 2.3

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

<sup>c</sup> denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte.

BSV denotes background screening value.

COC denotes chemical of concern. EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram. NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

NGT denotes National Guard Trainee.

SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

RSL denotes Regional Screening Level (November, 2015)

# Table 6-22. Summary of COC Evaluation for Noncancer Effects in Deep Surface Soil (1 to 4 feet) for National Guard Land Use using the 95% UCL for the Exposure Point Concentration.

| Parameter                                 | EPC <sup>a</sup><br>(mg/kg) | NGT<br>FWCUG<br>b<br>(mg/kg) | Target Organ                                                            | Ratio of<br>EPC to<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification                      |  |  |  |
|-------------------------------------------|-----------------------------|------------------------------|-------------------------------------------------------------------------|-----------------------------|------------------------------------|------|----------------------------------------|--|--|--|
| Neurotoxicity E                           | eurotoxicity Effects        |                              |                                                                         |                             |                                    |      |                                        |  |  |  |
| Cobalt                                    | 11.09                       | 140                          | NA                                                                      | 0.08 No                     |                                    | No   | Sum of ratios by target organ $\leq 1$ |  |  |  |
| Neurotoxicity Effects Sum of Ratios: 0.08 |                             |                              |                                                                         |                             |                                    |      |                                        |  |  |  |
| Gastrointestinal Effects                  |                             |                              |                                                                         |                             |                                    |      |                                        |  |  |  |
| Cobalt                                    | 11.09                       | 140                          | NA                                                                      | 0.08                        |                                    | No   | Sum of ratios by target organ $\leq 1$ |  |  |  |
|                                           |                             | Gastrointes                  | tinal Effects Sum of Ratios:                                            | 0.08                        |                                    |      |                                        |  |  |  |
| Vascular Effect                           | s                           |                              |                                                                         |                             |                                    |      |                                        |  |  |  |
| Arsenic                                   | 28.9*                       | 1140                         | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.047                       |                                    | No   | Sum of ratios by target organ $\leq 1$ |  |  |  |
| Cobalt                                    | 11.09                       | 140                          | NA                                                                      | 0.08                        |                                    | No   | Sum of ratios by target organ $\leq 1$ |  |  |  |
|                                           |                             | Vaso                         | cular Effects Sum of Ratios:                                            | 0.127                       |                                    |      |                                        |  |  |  |

## Table 6-22. Summary of COC Evaluation for Noncancer Effects in Deep Surface Soil (1 to 4 feet) for National Guard Land Use using the 95% UCL for the Exposure Point Concentration (continued).

|           |                  | NGT<br>FWCUG |              | Ratio of |                  |      |                          |
|-----------|------------------|--------------|--------------|----------|------------------|------|--------------------------|
|           | EPC <sup>a</sup> | U            |              | EPC to   | % Contribution   |      |                          |
| Parameter | (mg/kg)          | (mg/kg)      | Target Organ | FWCUG    | to the Total Sum | COC? | <b>COC Justification</b> |

**Renal Effects** 

| Barium  | 295   | 3,506 | Nephropathy             | 0.08   | 51%   | No | Sum of ratios by target organ $\leq 1$ |
|---------|-------|-------|-------------------------|--------|-------|----|----------------------------------------|
| Cadmium | 0.366 | 2,424 | Significant proteinuria | 0.0002 | 0.09% | No | Sum of ratios by target organ $\leq 1$ |
| Cobalt  | 11.09 | 140   | NA                      | 0.08   | 48%   | No | Sum of ratios by target organ $\leq 1$ |

Renal Effects Sum of Ratios: 0.16

Liver Effects

| Cobalt11.09140NA0.08100%NoSum of ratios by target organ $\leq 1$ |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

Liver Effects Sum of Ratios: 0.08

Skin and Eye Effects

| Arsenic | 28.9* | 924 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.04 | 33% | No | Sum of ratios by target organ $\leq 1$ |
|---------|-------|-----|-------------------------------------------------------------------------|------|-----|----|----------------------------------------|
| Cobalt  | 11.09 | 140 | NA                                                                      | 0.08 | 67% | No | Sum of ratios by target organ $\leq 1$ |

Skin and Eye Effects Sum of Ratios: 0.12

Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

### Table 6-22. Summary of COC Evaluation for Noncancer Effects in Deep Surface Soil (1 to 4 feet) for National Guard Land Use using the 95% UCL for the Exposure Point Concentration (continued).

<sup>a</sup> denotes EPC is 95 percent of the UCL. See Appendix F.
<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1; the EPA RSL (2011) is used for lead.
<sup>c</sup> denotes lead is considered separately due to its unique effects.
BSV denotes background screening value.
COC denotes chemical of concern.
EPA denotes U.S. Environmental Protection Agency.
EPC denotes exposure point concentration.
FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).
HQ denotes not applicable, no FWCUG for noncancer effects or no FWCUG or other risk-screening criteria.
NGT denotes National Guard Trainee.
RMS denotes Rage Maintenance Soldier.
FSL denotes Regional Screening Level.
SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

|                       |                             |                |                                      | •                           |                                    | •    |                                |
|-----------------------|-----------------------------|----------------|--------------------------------------|-----------------------------|------------------------------------|------|--------------------------------|
| Parameter             | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | NGT<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of<br>EPC to<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification              |
| Arsenic               | 28.9*                       | 15.4           | 27.8                                 | 1.03                        | 49.1%                              | Yes  | Contribution to sum > 5%       |
| Barium                | 295                         | 88.4           | NA                                   | NA                          | NA                                 | No   | Not carcinogenic               |
| Cadmium               | 0.366                       | ND             | 109                                  | 0.003                       | 0.11%                              | No   | Contribution to sum $\leq 5\%$ |
| Cobalt                | 11.09                       | 10.4           | 70.3                                 | 0.15                        | 7.1%                               | Yes  | Contribution to sum > 5%       |
| Benzo(a)pyrene        | 2.99                        |                | 4.7                                  | 0.63                        | 30.1%                              | Yes  | Contribution to sum > 5%       |
| Benzo(b)fluoranthene  | 13                          |                | 47.7                                 | 0.27                        | 12.4%                              | Yes  | Contribution to sum > 5%       |
| Dibenz(a,h)anthracene | 0.128                       |                | 4.77                                 | 0.026                       | 1.2%                               | No   | Contribution to sum < 5%       |

## Table 6-23. Summary of COC Evaluation of Cancer Risk in Deep Surface Soil (1 to 4 feet) for Military Training Land Use using the 95% UCL as the Exposure Point Concentration.

#### Cancer Risk Sum of Ratios: 2.08

\* Mean was used because only 9 data points and calculation of 95%UCL unreliable.

<sup>a</sup> denotes EPC is 95 percent of the UCL. See Appendix F.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

<sup>c</sup> denotes phenanthrene and 1,2-dimethylbenzene are shown with their maximum concentration. They could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte. BSV denotes background screening value. COC denotes chemical of concern. EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram. NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

NGT denotes National Guard Trainee. SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

RSL denotes Regional Screening Level (November, 2015).

# Table 6-24. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land Use using the 95% UCL for the Resident Adult Receptor and the Resident Child Receptor.

|           |                         |                          |              | Ratio of       | %            |      |                          |
|-----------|-------------------------|--------------------------|--------------|----------------|--------------|------|--------------------------|
|           |                         | <b>KKA/KKC</b>           |              | EPC to         | Contribution |      |                          |
|           | <b>EPC</b> <sup>a</sup> | <b>FWCUG<sup>b</sup></b> |              | <b>RRA/RRC</b> | to the Total |      |                          |
| Parameter | (mg/kg)                 | (mg/kg)                  | Target Organ | FWCUG          | Sum          | COC? | <b>COC Justification</b> |

**Neurotoxicity Effects** 

| Lead     | 329 | 400/400   | Neurotoxicity,<br>behavioral effects                                                                                        | 0.81/0.81  | No | Ratio <1° |
|----------|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------|------------|----|-----------|
| Thallium | 2.6 | 47.6/18.4 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart,<br>liver, and kidneys | 0.017/0.14 | No | Ratio <1° |

Neurotoxicity Effects Sum of Ratios RRA: 0.82

Neurotoxicity Effects Sum of Ratios RRC: 0.95

**Gastrointestinal Effects** 

| Copper   | 297                                                                                        | 27,138/3106      | Gastrointestinal, hepatic, and renal effects                                                                                | 0.010/0.095 |                  | No          | Sum of ratios by target organ $\leq 1$ |
|----------|--------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------|----------------------------------------|
| Thallium | hallium 2.6 47.6/18.4 Temporary hair loss,<br>effects, lungs, heart,<br>liver, and kidneys |                  | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart,<br>liver, and kidneys | 0.017/0.14  |                  | No          | Sum of ratios by target organ $\leq 1$ |
|          | Gas                                                                                        | trointestinal Ef | fects Sum of Ratios RRA:                                                                                                    | 0.027       | Gastrointestinal | Effects Sum | of Ratios RRC: 0.23                    |

| Table 6-24. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|
| Use using the 95% UCL (continued).                                                                                               |  |

| Parameter        | EPC <sup>a</sup><br>(mg/kg) | RRA/RRC<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ     | Ratio of<br>EPC to<br>RRA/RRC<br>FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification       |  |  |  |  |
|------------------|-----------------------------|------------------------------------------|------------------|----------------------------------------|------------------------------------------|------|-------------------------|--|--|--|--|
| Vascular Effects |                             |                                          |                  |                                        |                                          |      |                         |  |  |  |  |
| Antimony         | 1.6                         | 136/28.2                                 | Longevity, blood | 0.011/0.05                             |                                          | No   | Sum of ratios by target |  |  |  |  |

| Antimony | 1.6 | 136/28.2  | glucose, and cholesterol                                                | 0.011/0.05 | No                            | organ $\leq 1$                                |
|----------|-----|-----------|-------------------------------------------------------------------------|------------|-------------------------------|-----------------------------------------------|
| Arsenic  | 45  | 82.1/20.2 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.548/2.3  | No for Adult<br>Yes for Child | Sum of ratios by target<br>organ >1 for child |

Vascular Effects Sum of Ratios RRA 0.559

Vascular Effects Sum of Ratios RRC: 2.4

### **Renal Effects**

| Copper   | 297.5 | 27,138/3106 | Gastrointestinal, hepatic, and renal effects                                                                                | 0.010/0.08 | No               | Sum of ratios by target organ $\leq 1$ |
|----------|-------|-------------|-----------------------------------------------------------------------------------------------------------------------------|------------|------------------|----------------------------------------|
| Thallium | 2.6   | 47.6/18.4   | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart,<br>liver, and kidneys | 0.017/0.14 | No               | Sum of ratios by target organ $\leq 1$ |
|          |       | Renal Ef    | fects Sum of Ratios RRA:                                                                                                    | 0.027      | Renal Effects Su | um of Ratios RRC: 0.22                 |

|           |                         |                          |              |            | 0/0          |      |                   |
|-----------|-------------------------|--------------------------|--------------|------------|--------------|------|-------------------|
|           |                         | RRA/RRC                  |              | Ratio of   | Contribution |      |                   |
|           | <b>EPC</b> <sup>a</sup> | <b>FWCUG<sup>b</sup></b> |              | EPC to RRC | to the Total |      |                   |
| Parameter | (mg/kg)                 | (mg/kg)                  | Target Organ | FWCUG      | Sum          | COC? | COC Justification |

Table 6-24. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Unrestricted (Residential) Land Use using the 95% UCL (continued).

**Liver Effects** 

| Copper   | 297.5 | 27,138/3106 | Gastrointestinal, hepatic, and renal effects                                                                                | 0.010/0.09  | No | Sum of ratios by target organ $\leq 1$ |
|----------|-------|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|----|----------------------------------------|
| Thallium | 2.6   | 47.6/18.4   | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart,<br>liver, and kidneys | 0.017/0.014 | No | Sum of ratios by target organ $\leq 1$ |

Liver Effects Sum of Ratios RRA: 0.027

Liver Effects Sum of Ratios RRC: 0.10

#### Skin and Eye Effects

| Arsenic  | 45 | 82.1/20.2/ | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.548/2.3  |  | No for Adult<br>Yes for Child | Sum of ratios by target organ >1<br>for child |  |
|----------|----|------------|-------------------------------------------------------------------------|------------|--|-------------------------------|-----------------------------------------------|--|
| Vanadium | 28 | 1558/449   | Lungs, throat and eyes                                                  | 0.017/0.06 |  | No                            | Sum of ratios by target organ $\leq 1$        |  |

#### Skin and Eye Effects Sum of Ratios RRA: 0.608

Skin and Eye Effects Sum of Ratios RRC: 2.36

<sup>a</sup> denotes EPC is 95 percent of the UCL. See **Appendix F**. <sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1, only child FWCUG is shown as this is lower than adult for noncancer effects; the EPA RSL (2011) is used for lead. <sup>c</sup> denotes while lead and thallium are both listed as affecting the central nervous system, they do not have similar effects and are considered separately. COC denotes chemical of concern. EPC denotes exposure point concentration. FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010). HQ denotes hazard quotient. mg/kg denotes milligrams per kilogram. RRC denotes Residential Receptor Adult. RSL denotes Regional Screening Level. SAIC denotes Science Applications International Corporation. UCL denotes Upper Confidence Limit.

| Parameter              | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | RRA<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of<br>EPC to<br>RRA<br>FWCUG | % Contribution to<br>the Total Sum | COC? | COC Justification              |
|------------------------|-----------------------------|----------------|--------------------------------------|------------------------------------|------------------------------------|------|--------------------------------|
| Antimony               | 1.6                         | 0.96           | NA                                   | NA                                 | NA                                 | No   | Not carcinogenic               |
| Arsenic                | 45                          | 15.4           | 4.25                                 | 10.59                              | 56.1%                              | Yes  | Contribution to sum > 5%       |
| Copper                 | 297.5                       | 17.7           | NA                                   | NA                                 | NA                                 | No   | Not carcinogenic               |
| Lead                   | 329                         | 26.1           | NA                                   | NA                                 | NA                                 | No   | Not carcinogenic               |
| Thallium               | 2.6                         | ND             | NA                                   | NA                                 | NA                                 | No   | Not carcinogenic               |
| Vanadium               | 28                          | 31.1           | NA                                   | NA                                 | NA                                 | No   | Not carcinogenic               |
| Benzo(a)anthracene     | 1.35                        |                | 2.21                                 | 0.61                               | 3.2%                               | No   | Contribution to sum $\leq 5\%$ |
| Benzo(a)pyrene         | 1.36                        |                | 0.221                                | 6.2                                | 32.8%                              | Yes  | Contribution to sum > 5%       |
| Benzo(b)fluoranthene   | 1.24                        |                | 2.21                                 | 0.56                               | 2.9%                               | No   | Contribution to sum $\leq 5\%$ |
| Dibenzo(a,h)anthracene | 0.22                        |                | 0.221                                | 1.00                               | 5.01%                              | No   | Contribution to sum $\leq 5\%$ |

| <b>Table 6-25.</b> | Summary of C | OC Evaluation of | Cancer Risk in | Subsurface Soil | (1 to 13 fe | et) for Un | restricted ( | <b>Residential</b> ) | Land Use |
|--------------------|--------------|------------------|----------------|-----------------|-------------|------------|--------------|----------------------|----------|
| using the 95       | 5% UCL.      |                  |                |                 |             |            |              |                      |          |

#### Cancer Risk Sum of Ratios: 18.87

<sup>a</sup> denotes EPC is 95 percent of the UCL. See Appendix F. EPC for PCB-1254 is the maximum concentration due to low number of samples.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>; only RRA FWCUG is shown as this is lower than child for noncancer effects.

<sup>c</sup> denotes phenanthrene and 1,2-dimethylbenzene are shown with their maximum concentration. They could not be evaluated due to lack of screening values and toxicity values to develop screening values. --- denotes no BSV is available for this analyte. BSV denotes background screening value. COC denotes chemical of concern.

EPC denotes exposure point concentration. FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010). mg/kg denotes milligrams per kilogram. NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

RRA denotes Residential Receptor Adult. SAIC denotes Science Applications International Corporation. UCL denotes Upper Confidence Limit.

| Table 6-26.  | Summary of COC | 2 Evaluation of Noncance | er Effects in Subsurfa | ce Soil (1 to 13 feet | t) for Commercial In | dustrial Land Use |
|--------------|----------------|--------------------------|------------------------|-----------------------|----------------------|-------------------|
| using the 95 | % UCL.         |                          |                        |                       |                      |                   |

|           |                         |                    |              | Ratio of   |                  |      |                   |
|-----------|-------------------------|--------------------|--------------|------------|------------------|------|-------------------|
|           |                         | Industria          |              | EPC to     |                  |      |                   |
|           | <b>EPC</b> <sup>a</sup> | l RSL <sup>b</sup> |              | Industrial | % Contribution   |      |                   |
| Parameter | (mg/kg)                 | (mg/kg)            | Target Organ | RSL        | to the Total Sum | COC? | COC Justification |

**Neurotoxicity Effects** 

| Lead     | 329 | 800 | Neurotoxicity, behavioral effects                                                                                           | 0.41 | No | Sum of ratios by target organ $\leq 1$ |
|----------|-----|-----|-----------------------------------------------------------------------------------------------------------------------------|------|----|----------------------------------------|
| Thallium | 2.6 | 23  | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.11 | No | Sum of ratios by target organ $\leq 1$ |

Neurotoxicity Effects Sum of Ratios: 0.52

### **Gastrointestinal Effects**

| Thallium                                     | 2.6 | 23 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.11 |  | No | Sum of ratios by target organ $\leq 1$ |  |  |
|----------------------------------------------|-----|----|-----------------------------------------------------------------------------------------------------------------------------|------|--|----|----------------------------------------|--|--|
| Gastrointestinal Effects Sum of Ratios: 0.11 |     |    |                                                                                                                             |      |  |    |                                        |  |  |

# Table 6-26. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Commercial Industrial Land Use using the 95% UCL (continued).

|           |                         | Industria          |              | Ratio of<br>EPC to |                  |      |                   |
|-----------|-------------------------|--------------------|--------------|--------------------|------------------|------|-------------------|
|           | <b>EPC</b> <sup>a</sup> | l RSL <sup>b</sup> |              | Industria          | % Contribution   |      |                   |
| Parameter | (mg/kg)                 | (mg/kg)            | Target Organ | l RSL              | to the Total Sum | COC? | COC Justification |

**Vascular Effects** 

| Arsenic | 45 480 | Arsenic | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.093 | No | Sum of ratios by target organ $\leq 1$ |
|---------|--------|---------|-------------------------------------------------------------------------|-------|----|----------------------------------------|

#### Vascular Effects Sum of Ratios: 0.093

#### **Renal Effects**

| Thallium | 2.6 | 23 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.11 |  | No | Sum of ratios by target organ $\leq 1$ |
|----------|-----|----|-----------------------------------------------------------------------------------------------------------------------------|------|--|----|----------------------------------------|
|----------|-----|----|-----------------------------------------------------------------------------------------------------------------------------|------|--|----|----------------------------------------|

#### Renal Effects Sum of Ratios: 0.11

### Table 6-26. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (1 to 13 feet) for Commercial Industrial Land Use using the 95% UCL (continued).

|           |                         |                    |              | Ratio of  |                  |      |                   |
|-----------|-------------------------|--------------------|--------------|-----------|------------------|------|-------------------|
|           |                         | Industria          |              | EPC to    |                  |      |                   |
|           | <b>EPC</b> <sup>a</sup> | l RSL <sup>b</sup> |              | Industria | % Contribution   |      |                   |
| Parameter | (mg/kg)                 | (mg/kg)            | Target Organ | l RSL     | to the Total Sum | COC? | COC Justification |

**Liver Effects** 

| Thallium | 2.6 | 23 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.11 | No | Sum of ratios by target organ $\leq 1$ |
|----------|-----|----|-----------------------------------------------------------------------------------------------------------------------------|------|----|----------------------------------------|
|          |     |    |                                                                                                                             |      |    |                                        |

#### Liver Effects Sum of Ratios: 0.11

#### Skin and Eye Effects

| Arsenic | 45 | 480 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.093 |  | No | Sum of ratios by target organ $\leq 1$ |
|---------|----|-----|-------------------------------------------------------------------------|-------|--|----|----------------------------------------|
|---------|----|-----|-------------------------------------------------------------------------|-------|--|----|----------------------------------------|

#### Skin and Eye Effects Sum of Ratios: 0.093

<sup>*a*</sup> denotes EPC is 95 percent of the UCL. See **Appendix F** .<sup>*b*</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1, only child FWCUG is shown as this is lower than adult for noncancer effects; the EPA RSL (2011) is used for lead. <sup>*c*</sup> denotes while lead and thallium are both listed as affecting the central nervous system, they do not have similar effects and are considered separately. COC denotes chemical of concern. EPC denotes exposure point concentration. FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010). HQ denotes hazard quotient. mg/kg denotes milligrams per kilogram. RRC denotes Residential Receptor Adult. RSL denotes Regional Screening Level. SAIC denotes Science Applications International Corporation. UCL denotes Upper Confidence Limit.

| Parameter              | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | Industrial<br>RSL <sup>b</sup><br>(mg/kg) | Ratio of<br>EPC to<br>Industrial<br>RSL | % Contribution to the Total Sum | COC? | COC Justification        |
|------------------------|-----------------------------|----------------|-------------------------------------------|-----------------------------------------|---------------------------------|------|--------------------------|
| Arsenic                | 45                          | 19.8           | 3.0 (19.8)                                | 2.27.                                   | 27.4%                           | Yes  | Contribution to sum > 5% |
| Lead                   | 329                         | 26.1           | NA                                        | NA                                      | NA                              | No   | Not carcinogenic         |
| Thallium               | 2.6                         | ND             | NA                                        | NA                                      | NA                              | No   | Not carcinogenic         |
| Benzo(a)anthracene     | 1.35                        |                | 2.29                                      | 0.58                                    | 7.0%                            | Yes  | Contribution to sum > 5% |
| Benzo(a)pyrene         | 1.36                        |                | .29                                       | 4.68                                    | 56.5%                           | Yes  | Contribution to sum > 5% |
| Dibenzo(a,h)anthracene | 0.22                        |                | 0.29                                      | 0.75                                    | 9.0%                            | Yes  | Contribution to sum > 5% |

| Table 6-27. | Summary of COC | <b>Evaluation of Cancer</b> | <b>Risk in Subsurface S</b> | oil (1 to 13 feet) for | r Commercial II | ndustrial Land Use usin | g |
|-------------|----------------|-----------------------------|-----------------------------|------------------------|-----------------|-------------------------|---|
| the 95% U(  | CL.            |                             |                             |                        |                 |                         |   |

#### Cancer Risk Sum of Ratios: 8.28

<sup>a</sup> denotes EPC is 95 percent of the UCL. See Appendix F. EPC for PCB-1254 is the maximum concentration due to low number of samples.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>5</sup>; only RRA FWCUG is shown as this is lower than child for noncancer effects.

<sup>c</sup> denotes phenanthrene and 1,2-dimethylbenzene are shown with their maximum concentration. They could not be evaluated due to lack of screening values and toxicity values to develop screening values. --- denotes no BSV is available for this analyte. BSV denotes background screening value. COC denotes chemical of concern.

EPC denotes exposure point concentration. FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010). mg/kg denotes milligrams per kilogram. NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

RRA denotes Residential Receptor Adult. SAIC denotes Science Applications International Corporation. UCL denotes Upper Confidence Limit.

| 8               | 8                           |                                      |                                                                         |                                    |                                    |      |                                        |
|-----------------|-----------------------------|--------------------------------------|-------------------------------------------------------------------------|------------------------------------|------------------------------------|------|----------------------------------------|
| Parameter       | EPC <sup>a</sup><br>(mg/kg) | NGT<br>FWCUG<br><sup>b</sup> (mg/kg) | Target Organ                                                            | Ratio of<br>EPC to<br>NGT<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification                      |
| Neurotoxicity E | ffects                      |                                      |                                                                         |                                    |                                    |      |                                        |
| None            |                             |                                      |                                                                         |                                    |                                    |      |                                        |
|                 | •                           | Neurotoxi                            | city Effects Sum of Ratios:                                             |                                    |                                    |      |                                        |
| Vascular Effect | S                           |                                      |                                                                         |                                    |                                    |      |                                        |
| Arsenic         | 97.8                        | 1,140                                | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.09                               |                                    | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             | Vascu                                | ılar Effects Sum of Ratios:                                             | 0.09                               |                                    | ·    |                                        |
| Skin and Eye E  | ffects                      |                                      |                                                                         |                                    |                                    |      |                                        |
| Arsenic         | 97.8                        | 1,140                                | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.09                               |                                    | No   | Sum of ratios by target organ $\leq 1$ |
|                 |                             | Skin and                             | Eye Effects Sum of Ratios:                                              | 0.09                               |                                    |      |                                        |

## Table 6-28. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (4-to 7 feet - using 5-to 9 data) for the Military Training Land Use using the 95% UCL.

Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

### Table 6-28. Summary of COC Evaluation of Noncancer Effects in Subsurface Soil (4 to 7 feet) for the Military Training Land Use using the 95% UCL (continued).

<sup>a</sup> denotes EPC is 95 percent of the UCL for arsenic. See Appendix F. Lead UCL was greater than maximum concentration; maximum is used for EPC.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1; the EPA RSL (2011) is used for lead.
COC denotes chemical of concern.
EPA denotes U.S. Environmental Protection Agency.
EPC denotes exposure point concentration.
FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).
HQ denotes hazard quotient.
mg/kg denotes milligrams per kilogram.
NGT denotes National Guard Trainee.
RSL denotes Regional Screening Level.
SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

### Table 6-29. Summary of COC Evaluation of Cancer Risk in Subsurface Soil (4 to 7 feet) for the Military Training Land Use using the 95% UCL.

| Parameter | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | NGT<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to NGT<br>FWCUG | % Contribution to the Total Sum | COC? | COC Justification |
|-----------|-----------------------------|----------------|--------------------------------------|---------------------------------|---------------------------------|------|-------------------|
| Arsenic   | 97.8                        | 15.4           | 27.8                                 | 3.52                            | 100.00%                         | Yes  | Ration > 1        |
|           | 71.0                        | 13.1           | 21.0                                 | 5.52                            | 100.0070                        | 105  |                   |

#### Cancer Risk Sum of Ratios: 3.52

<sup>a</sup> denotes EPC is 95 percent of the UCL for arsenic. See Appendix F. Lead UCL was greater than maximum concentration; maximum is used for EPC.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

<sup>e</sup> denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte.

> denotes greater than.

BSV denotes background screening value.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

NGT denotes National Guard Trainee.

SAIC denotes Science Applications International Corporation.

UCL denotes Upper Confidence Limit.

| Parameter     | EPC <sup>a</sup><br>(mg/kg) | RRC<br>FWCUG<br><sup>b</sup> (mg/kg) | Target Organ                                                                                                                | Ratio of<br>EPC to<br>RRC<br>FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification                              |
|---------------|-----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|------|------------------------------------------------|
| Neurotoxicity | v Effects                   |                                      | 0 0                                                                                                                         |                                    |                                          |      | I                                              |
| Thallium      | 1.2                         | 6.12                                 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver, and<br>kidneys | 0.20                               |                                          | No   | Sum of ratios by target organ <u>&lt;</u><br>1 |
|               |                             | Neuro                                | toxicity Effects Sum of Ratios:                                                                                             | 0.20                               |                                          |      |                                                |
| Gastrointesti | nal Effects                 |                                      |                                                                                                                             |                                    |                                          |      |                                                |
| Silver        | 116                         | 386                                  | Gastrointestinal effects                                                                                                    | 0.30                               |                                          | No   | Sum of ratios by target organ $\leq 1$         |
| Thallium      | 1.2                         | 6.12                                 | Gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver, and<br>kidneys                         | 0.20                               |                                          | No   | Sum of ratios by target organ $\leq 1$         |
|               |                             | Gastroin                             | testinal Effects Sum of Ratios:                                                                                             | 0.50                               |                                          |      |                                                |
| Vascular Effe | ects                        |                                      |                                                                                                                             |                                    |                                          |      |                                                |
| Antimony      | 8.4                         | 28.2                                 | Longevity, blood glucose, and cholesterol                                                                                   | 0.30                               |                                          | No   | Sum of ratios by target organ $\leq$ 1         |
|               |                             | V                                    | ascular Effects Sum of Ratios:                                                                                              | 0.30                               |                                          |      |                                                |
|               |                             |                                      |                                                                                                                             |                                    |                                          |      |                                                |

### Table 6-30. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for Unrestricted (Residential) Land Use.

| Parameter     | EPC <sup>a</sup><br>(mg/kg) | RRC<br>FWCUG<br><sup>b</sup> (mg/kg) | Target Organ                                                                                                             | Ratio of EPC to<br>RRC FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification                      |
|---------------|-----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|------|----------------------------------------|
| Renal Effects |                             |                                      |                                                                                                                          |                              |                                          |      |                                        |
| Thallium      | 1.2                         | 6.12                                 | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.20                         |                                          | No   | Sum of ratios by target organ $\leq 1$ |
|               |                             |                                      | <b>Renal Effects Sum of Ratios:</b>                                                                                      | 0.20                         |                                          |      |                                        |
| Liver Effects |                             |                                      |                                                                                                                          |                              |                                          |      |                                        |
| Thallium      | 1.2                         | 6.12                                 | Temporary hair loss,<br>gastrointestinal effects, central<br>nervous system effects, lungs,<br>heart, liver, and kidneys | 0.20                         |                                          | No   | Sum of ratios by target organ $\leq 1$ |
|               |                             |                                      | Liver Effects Sum of Ratios:                                                                                             | 0.20                         |                                          |      |                                        |
| Skin and Eye  | Effects                     |                                      |                                                                                                                          |                              |                                          |      |                                        |
| None          |                             |                                      |                                                                                                                          |                              |                                          |      |                                        |
|               |                             | SI                                   | kin and Eye Effects Sum of Ratios:                                                                                       | 0.13                         |                                          |      |                                        |

#### Table 6-30. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for Residential Land Use (continued).

<sup>a</sup> denotes EPC is the maximum concentration. <sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1, only child FWCUG is shown as this is lower than adult for noncancer effects.

 $\leq$  denotes less than or equal to. COC denotes chemical of concern. EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient. mg/kg denotes milligrams per kilogram. RRC denotes Residential Receptor Child. SAIC denotes Science Applications International Corporation.

| Parameter      | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | RRA<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to RRA<br>FWCUG | % Contribution to the Total Sum | COC? | COC Justification      |
|----------------|-----------------------------|----------------|--------------------------------------|---------------------------------|---------------------------------|------|------------------------|
| Antimony       | 8.4                         | 0.96           | NA                                   | NA                              |                                 | No   | Not carcinogenic       |
| Silver         | 116                         | ND             | NA                                   | NA                              |                                 | No   | Not carcinogenic       |
| Thallium       | 1.2                         | ND             | NA                                   | NA                              |                                 | No   | Not carcinogenic       |
| Benzo(a)pyrene | 0.067                       |                | 0.221                                | 0.3                             |                                 | No   | Sum of ratios $\leq 1$ |

#### Table 6-31. Summary of COC Evaluation of Cancer Risk in Sediment (0 to 0.5 foot) for Unrestricted (Residential) Land Use.

Cancer Risk Sum of Ratios: 0.38

<sup>a</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>5</sup> for adult as this is lower than the child excess cancer risk values.

c denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte.

 $\leq$  denotes less than or equal to.

BSV denotes background screening value.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

RRA denotes Residential Receptor Adult.

| Parameter                       | EPC <sup>a</sup><br>(mg/kg) | NGT<br>FWCUG<br><sup>b</sup> (mg/kg) | Target Organ                                                                                                                | Ratio of<br>EPC to<br>NGT<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification                      |
|---------------------------------|-----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------|----------------------------------------|
| Neurotoxicity                   | y Effects                   |                                      |                                                                                                                             |                                    |                                    |      |                                        |
| Thallium                        | 1.2                         | 477                                  | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.0025                             | 100%                               | No   | Sum of ratios by target organ $\leq 1$ |
|                                 |                             | Neuroto                              | xicity Effects Sum of Ratios:                                                                                               | 0.0025                             |                                    |      |                                        |
| Gastrointesti                   | nal Effects                 |                                      |                                                                                                                             |                                    |                                    |      |                                        |
| Silver                          | 116                         | 31,049                               | Gastrointestinal effects                                                                                                    | 0.0037                             | 60%                                | No   | Sum of ratios by target organ $\leq 1$ |
| Thallium                        | 1.2                         | 477                                  | Gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys                         | 0.0025                             | 40%                                | No   | Sum of ratios by target organ $\leq 1$ |
|                                 |                             | Gastrointe                           | stinal Effects Sum of Ratios:                                                                                               | 0.0063                             |                                    |      |                                        |
| Vascular Eff                    | ects                        |                                      |                                                                                                                             | -                                  |                                    |      | -                                      |
| Antimony                        | 8.4                         | 1,753                                | Longevity, blood glucose, and cholesterol                                                                                   | 0.0048                             | 100%                               | No   | Sum of ratios by target organ $\leq 1$ |
| Vascular Effects Sum of Ratios: |                             |                                      |                                                                                                                             | 0.0048                             |                                    |      |                                        |
|                                 |                             |                                      |                                                                                                                             |                                    |                                    |      |                                        |

### Table 6-32. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for the National Guard Trainee.

### Table 6-32. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for the National Guard Trainee (continued).

|           |                         | NGT                  |              | Ratio of<br>EPC to |                  |      |                          |
|-----------|-------------------------|----------------------|--------------|--------------------|------------------|------|--------------------------|
|           | <b>EPC</b> <sup>a</sup> | FWCUG                |              | NGT                | % Contribution   |      |                          |
| Parameter | (mg/kg)                 | <sup>b</sup> (mg/kg) | Target Organ | FWCUG              | to the Total Sum | COC? | <b>COC Justification</b> |

**Renal Effects** 

| Thallium | 1.2 | 477 | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.0025 | 100% | No | Sum of ratios by target organ $\leq 1$ |
|----------|-----|-----|-----------------------------------------------------------------------------------------------------------------------------|--------|------|----|----------------------------------------|
|          |     |     | and kidleys                                                                                                                 |        |      |    |                                        |

Renal Effects Sum of Ratios: 0.0025

#### Liver Effects

| Thallium 1.2 477 c<br>a | Temporary hair loss,<br>gastrointestinal effects,<br>central nervous system<br>effects, lungs, heart, liver,<br>and kidneys | 0.0025 | 100% | No | Sum of ratios by target organ $\leq 1$ |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|------|----|----------------------------------------|
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|------|----|----------------------------------------|

Liver Effects Sum of Ratios: 0.0025

Skin and Eye Effects

| None |  |  |  |  |  |  |  |
|------|--|--|--|--|--|--|--|
|------|--|--|--|--|--|--|--|

Skin and Eye Effects Sum of Ratios: 0.0027

Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

### Table 6-32. Summary of COC Evaluation of Noncancer Effects in Sediment (0 to 0.5 foot) for the National Guard Trainee (continued).

<sup>*a*</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1.

 $\leq$  denotes less than or equal to.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient.

mg/kg denotes milligrams per kilogram.

NGT denotes National Guard Trainee.

| Parameter      | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | NGT<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to NGT<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification      |
|----------------|-----------------------------|----------------|--------------------------------------|---------------------------------|------------------------------------|------|------------------------|
| Antimony       | 8.4                         | 0.96           | NA                                   | NA                              |                                    | No   | Not carcinogenic       |
| Silver         | 116                         | ND             | NA                                   | NA                              |                                    | No   | Not carcinogenic       |
| Thallium       | 1.2                         | ND             | NA                                   | NA                              |                                    | No   | Not carcinogenic       |
| Benzo(a)pyrene | 0.067                       |                | 4.77                                 | 0.02                            |                                    | No   | Sum of ratios $\leq 1$ |

### Table 6-33. Summary of COC Evaluation of Cancer Risk in Sediment (0 to 0.5 foot) for the Commercial Industrial Land Use and the Military Training Land Use.

Cancer Risk Sum of Ratios: 0.02

<sup>a</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

<sup>c</sup> denotes phenanthrene is shown with its maximum concentration. It could not be evaluated due to lack of screening values and toxicity values to develop screening values.

--- denotes no BSV is available for this analyte.

 $\leq$  denotes less than or equal to.

BSV denotes background screening value.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram.

NA denotes not applicable, no FWCUG for cancer or other risk-screening criteria.

NGT denotes National Guard Trainee.

SAIC denotes Science Applications International Corporation.

NGT FWCUG represents potential criteria for the Industrial Receptor

| Parameter                   | EPC <sup>a</sup><br>(mg/kg) | RRC<br>FWCUG <sup>b</sup><br>(mg/kg) | Target Organ                                                            | Ratio of<br>EPC to<br>RRC<br>FWCUG | %<br>Contribution<br>to the Total<br>Sum | COC? | COC Justification                      |
|-----------------------------|-----------------------------|--------------------------------------|-------------------------------------------------------------------------|------------------------------------|------------------------------------------|------|----------------------------------------|
| Vascular Effect             | s                           |                                      |                                                                         |                                    |                                          |      |                                        |
| Arsenic                     | 6.6                         | 46.3                                 | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications | 0.14                               | 100%                                     | No   | Sum of ratios by target organ $\leq 1$ |
|                             |                             |                                      | Vascular Effects Sum of Ratios:                                         | 0.14                               |                                          |      |                                        |
| Skin and Eye E              | ffects                      |                                      |                                                                         |                                    |                                          |      |                                        |
| Arsenic                     | 6.6                         | 46.3                                 | Hyperpigmentation, keratosis,<br>and possible vascular<br>complications | 0.14                               | 100%                                     | No   | Sum of ratios by target organ $\leq 1$ |
|                             |                             | Skir                                 | n and Eye Effects Sum of Ratios:                                        | 0.14                               |                                          |      |                                        |
| <sup>a</sup> denotes EPC is | the maximum                 | concentration                        |                                                                         |                                    |                                          |      |                                        |

#### Table 6-34. Summary of COC Evaluation of Noncancer Effects in Surface Water for Unrestricted (Residential) Land Use.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1, only child FWCUG is shown as this is lower than adult for noncancer effects.

 $\leq$  denotes less than or equal to.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient.

mg/kg denotes milligrams per kilogram.

RRC denotes Residential Receptor Child.

#### Table 6-35. Summary of COC Evaluation of Cancer Risk in Surface Water for Unrestricted (Residential) Land Use.

| Parameter | EPC <sup>a</sup><br>(mg/kg) | BSV<br>(mg/kg) | RRA<br>FWCUG <sup>b</sup><br>(mg/kg) | Ratio of EPC<br>to RRA<br>FWCUG | % Contribution to the<br>Total Sum | COC? | COC Justification      |
|-----------|-----------------------------|----------------|--------------------------------------|---------------------------------|------------------------------------|------|------------------------|
| Arsenic   | 6.6                         | 3.2            | 11                                   | 0.60                            | 100%                               | No   | Sum of ratios $\leq 1$ |

#### Cancer Risk Sum of Ratios: 0.60

<sup>*a*</sup> denotes EPC is the maximum concentration.

 $\leq$  denotes less than or equal to.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

mg/kg denotes milligrams per kilogram.

RRA denotes Residential Receptor Adult.

| Table 6-36. Summary of COC Evaluation of Noncancer Effects in Surface Water for the Commercial Industrial La | ıd Use and |
|--------------------------------------------------------------------------------------------------------------|------------|
| Military Training Land Use.                                                                                  |            |

| Parameter        | EPC <sup>a</sup><br>(µg/L) | NGT<br>FWCUG<br><sup>b</sup> (µg/L) | Target Organ | Ratio of<br>EPC to<br>NGT<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification |  |
|------------------|----------------------------|-------------------------------------|--------------|------------------------------------|------------------------------------|------|-------------------|--|
| Vascular Effects |                            |                                     |              |                                    |                                    |      |                   |  |

| Arsenic | 6.6 670 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.01 | 100% | No | Sum of ratios by target organ $\leq 1$ |
|---------|---------|-------------------------------------------------------------------------|------|------|----|----------------------------------------|
|---------|---------|-------------------------------------------------------------------------|------|------|----|----------------------------------------|

#### Vascular Effects Sum of Ratios: 0.01

#### Skin and Eye Effects

| Arsenic | 6.6 | 670 | Hyperpigmentation,<br>keratosis, and possible<br>vascular complications | 0.01 | 100% | No | Sum of ratios by target organ $\leq 1$ |
|---------|-----|-----|-------------------------------------------------------------------------|------|------|----|----------------------------------------|
|---------|-----|-----|-------------------------------------------------------------------------|------|------|----|----------------------------------------|

#### Skin and Eye Effects Sum of Ratios: 0.01

<sup>*a*</sup> denotes EPC is the maximum concentration.

<sup>b</sup> denotes FWCUG is noncarcinogenic FWCUG at HQ of 1.

 $\leq$  denotes less than or equal to.

 $\mu g/L$  denotes micrograms per liter.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

HQ denotes hazard quotient.

NGT denotes National Guard Trainee.

### Table 6-37. Summary of COC Evaluation for Cancer Risk in Surface Water for the Commercial Industrial Land Use and the Military Training Land Use.

| Parameter | EPC <sup>a</sup><br>(µg/L) | BSV<br>(µg/L) | NGT<br>FWCUG <sup>b</sup><br>(µg/L) | Ratio of EPC<br>to NGT<br>FWCUG | % Contribution<br>to the Total Sum | COC? | COC Justification      |
|-----------|----------------------------|---------------|-------------------------------------|---------------------------------|------------------------------------|------|------------------------|
| Arsenic   | 6.6                        | 3.2           | 42                                  | 0.16                            | 100%                               | No   | Sum of ratios $\leq 1$ |

#### Cancer Risk Sum of Ratios: 0.16

<sup>b</sup> denotes FWCUG is excess cancer risk at 10<sup>-5</sup>.

 $\leq$  denotes less than or equal to.

 $\mu g/L$  denotes micrograms per liter.

COC denotes chemical of concern.

EPC denotes exposure point concentration.

FWCUG denotes Facility-Wide Cleanup Goal per the Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final (SAIC, 2010).

NGT denotes National Guard Trainee.

<sup>&</sup>lt;sup>*a*</sup> denotes EPC is the maximum concentration.

## Table 6-38. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use for each Exposure Media.

| Receptor per Land Use and<br>Exposure Point                                         | COPO                   | COCs Identified <sup>b</sup> |                          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------|------------------------------|--------------------------|--|--|--|--|--|--|
| SURFACE SOIL                                                                        |                        |                              |                          |  |  |  |  |  |  |
| Surface Soil (0 to 1 foot bgs)                                                      |                        |                              |                          |  |  |  |  |  |  |
|                                                                                     | Antimony               | Benzo(a)anthracene           | Arsenic                  |  |  |  |  |  |  |
|                                                                                     | Arsenic                | Benzo(a)pyrene               | Benzo(a)anthracene       |  |  |  |  |  |  |
| Unrestricted (Residential)                                                          | Cadmium                | Benzo(b)fluoranthene         | Benzo(a)pyrene           |  |  |  |  |  |  |
| -Based on MDC                                                                       | Copper                 | Dibenzo(a,h)anthracene       | Benzo(b)fluoranthene     |  |  |  |  |  |  |
|                                                                                     | Mercury                | Indeno(1,2,3-cd)pyrene       | Dibenzo(a,h)anthracene   |  |  |  |  |  |  |
|                                                                                     | Silver                 | Thallium                     | All carcinogenic         |  |  |  |  |  |  |
| Surface Soil (0 to 1 foot bgs)                                                      |                        |                              |                          |  |  |  |  |  |  |
| Commercial Industrial                                                               | Arsenic Benzo(a)pyrene |                              | Arsenic                  |  |  |  |  |  |  |
| Land Use                                                                            | Thallium               |                              | Benzo(a)pyrene           |  |  |  |  |  |  |
| -Based on MDC                                                                       | Thattian               |                              | All carcinogenic         |  |  |  |  |  |  |
| Deep Surface Soil (0 to 1 feet bgs)                                                 |                        |                              |                          |  |  |  |  |  |  |
|                                                                                     | Arsenic                | Benzo(a)pyrene               | Arsenic                  |  |  |  |  |  |  |
| Military Training Land Use                                                          | Barium                 | Benzo(b)fluoranthene         | Cobalt                   |  |  |  |  |  |  |
| -Based on MDC ISM results for 0 to 1 feet                                           | Cadmium                | Dibenzo(a,h)anthracene       | Benzo(a)pyrene           |  |  |  |  |  |  |
|                                                                                     | Cobalt                 |                              | All carcinogenic based   |  |  |  |  |  |  |
| Deep Surface Soil (1 to 5 feet bgs)                                                 |                        |                              |                          |  |  |  |  |  |  |
| Military Training Land Use                                                          | Arsenic                | Benzo(a)pyrene               | Arsenic                  |  |  |  |  |  |  |
| <i>-Based on site-wide results for 1 to 5 feet and 95% UCL for Discrete samples</i> | Barium                 | Benzo(b)fluoranthene         | Cobalt<br>Benzo(a)pyrene |  |  |  |  |  |  |
|                                                                                     | Cadmium                | Dibenzo(a,h)anthracene       | All carcinogenic based   |  |  |  |  |  |  |
|                                                                                     | Cobalt                 |                              |                          |  |  |  |  |  |  |

## Table 6-38. Summary of COCs identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use for each Exposure Media.

| Receptor per Land Use and<br>Exposure Point                                                                             |          | СОР  | COCs Identified <sup>b</sup> |                                                                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------|------|------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| SUBSURFACE SOIL                                                                                                         |          |      |                              |                                                                           |  |  |  |  |  |
| Subsurface Soil (1 to 13 foot bgs)                                                                                      |          |      |                              |                                                                           |  |  |  |  |  |
|                                                                                                                         | Antimony |      | Benzo(a)anthracene           |                                                                           |  |  |  |  |  |
| Unrestricted (Residential)                                                                                              | Arsenic  |      | Benzo(a)pyrene               | Arsenic                                                                   |  |  |  |  |  |
| Land Use<br>(1 to 13 feet bgs)                                                                                          | Copper   |      | Benzo(b)fluoranthene         | Benzo(a)pyrene<br>All carcinogenic based                                  |  |  |  |  |  |
| 95% UCL for Discrete samples                                                                                            | Thallium |      | Dibenzo(a,h)anthracene       | Ŭ                                                                         |  |  |  |  |  |
|                                                                                                                         | Vanadium |      |                              |                                                                           |  |  |  |  |  |
| <b>Commercial Industrial</b>                                                                                            | Arsenic  |      | Benzo(a)anthracene           | Arsenic                                                                   |  |  |  |  |  |
| Land Use<br>(1 to 13 feet bgs)                                                                                          | Thallium |      | Benzo(a)pyrene               | Benzo(a)pyrene<br>Dibenzo(a,h)anthracene<br><i>All carcinogenic based</i> |  |  |  |  |  |
| -Based on site-wide results and 95% UCL for Discrete samples                                                            |          |      | Dibenzo(a,h)anthracene       |                                                                           |  |  |  |  |  |
| Subsurface Soil (4 to 7 foot bgs)                                                                                       |          |      | •                            |                                                                           |  |  |  |  |  |
| <b>Military Training Land Use</b><br>-Based on site-wide results for 5<br>to 9 feet and 95% UCL for<br>Discrete samples | Arsenic  |      |                              | Arsenic<br>Carcinogenic based                                             |  |  |  |  |  |
| Sediment (0 to 0.5 foot bgs)                                                                                            | -        |      |                              |                                                                           |  |  |  |  |  |
| Unrestricted (Residential) Land                                                                                         | Antimony | Thal | llium                        |                                                                           |  |  |  |  |  |
| Land Use, and Military<br>Training Land Use                                                                             | Silver   | Benz | zo(a)pyrene                  | None                                                                      |  |  |  |  |  |
| Surface Water                                                                                                           |          |      |                              |                                                                           |  |  |  |  |  |
| Unrestricted (Residential) Land<br>Use, Commercial Industrial<br>Land Use, and Military<br>Training Land Use            |          |      |                              | None                                                                      |  |  |  |  |  |

<sup>a</sup> denotes COPCs identified by screening.

<sup>b</sup> denotes COCs identified by screening.

bgs denotes below ground surface. COC denotes chemical of concern.

COPC denotes chemical of potential concern.

### 7.0 SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT

Descriptions in this section and items such as the list of species are based on the 2008 Integrated Natural Resource Management Plan (INRMP) and have not been updated to reflect any changes noted in the 2014 INRMP. However, information presented in this section is still relevant and adequately describes general-current ecological conditions and does not affect the analysis completed in this RI. Ecological receptors that were to be included in the ecological risk assessment were presented in the RVAAP Facility-Wide Ecological Risk Assessment Work Plan (USACE, 2003). These selected receptors have not changed and should be considered with completing an ecological risk assessment. This SLERA evaluates the potential for adverse effects posed to ecological receptors from potential releases at the Sand Creek Site. This SLERA is consistent with the ERA process described in the EPA Ecological Risk Assessment Guidance for Superfund (EPA, 1997) and the Ohio EPA Ecological Risk Assessment Guidance Document (Ohio EPA, 2008), hereafter referred to as the EPA Guidance and Ohio EPA Guidance, respectively. Other supporting documents used in the preparation of this SLERA include the RVAAP Facility-Wide Ecological Risk Assessment Work Plan (USACE, 2003) and the Risk Assessment Handbook, Volume II Environmental Evaluation (USACE, 2010).

A SLERA presents a conservative analysis of the potential for ecological risk. The Ohio EPA Guidance describes four levels of ERA: (1) Level I Scoping, (2) Level II Screen, (3) Level III Baseline, and (4) Level IV Field Baseline. This SLERA for the Sand Creek Site includes the equivalent of Ohio EPA's Level I Scoping through Level III Baseline. Following the Level III Baseline, a determination is made whether to move to a Level IV Field Baseline (often referred to as a baseline ERA), which requires additional site-specific exposure and effects information, and often uses less conservative assumptions. A summary of the ecological evaluation and analysis process is presented in tabular form at the end of this section.

### 7.1 Scope and Objectives

The goal of the SLERA is to evaluate the potential for adverse ecological effects to ecological receptors from SRCs at the Sand Creek Site. This objective is met by characterizing the ecological communities in the vicinity of the site, determining the particular contaminants present, identifying pathways for receptor exposure, and estimating the magnitude of the likelihood of potential adverse effects to identified receptors. The SLERA addresses the potential for adverse effects to the vegetation, wildlife, aquatic life (i.e., sediment-dwelling organisms), threatened and endangered species, and wetlands or other sensitive habitats associated with the site.

The objective of this SLERA is to provide an estimate of the potential for adverse ecological effects associated with contamination resulting from former activities at the Sand Creek Site. The results of the SLERA will contribute to the overall characterization of the site and may be used to determine the need for additional investigations or to develop, evaluate, and select appropriate remedial alternatives. Guidance documents used to perform the SLERA include the general guidelines of the *Tri-Service Procedural Guidelines for Ecological Risk Assessments* (Wentsel et al., 1996), as well as the EPA Guidance (2010a), *EPA Region 5 Biological Technical Assistance Group (BTAG) Ecological Risk Assessment Bulletin No. 1* (EPA, 1996b), and the Ohio EPA Guidance (2008). The SLERA fits into steps 1 and 2 of the EPA Guidance and Level I through a maximum of Level III evaluation using the Ohio EPA Guidance process.

The SLERA uses site-specific analyte concentration data for surface soil, sediment, and surface water from the Sand Creek Site. Risks to ecological receptors were evaluated by performing a multistep screening process in which, after each step, the detected analytes in the media were either deemed to pose negligible risk and eliminated from further consideration or carried forward to the next step in the screening process to a conclusion of being a chemical of potential ecological concern (COPEC). COPECs are analytes whose concentrations are great enough to pose potential adverse effects to ecological receptors. Following the determination of COPECs, an ecological CSM is developed that describes the selection of receptors, definition of exposure pathways, and selection of assessment and measurement endpoints. Potential impacts were estimated using generic receptors that would be exposed to these media.

### 7.2 Problem Formulation

The problem formulation step of the SLERA includes descriptions of habitats, biota, threatened and endangered species, selection of EUs, and identification of COPECs.

### 7.2.1 Ecological Site Description

The Sand Creek Site extends along the embankment of Sand Creek for approximately 1,200 feet, and occupies a total area of approximately 1 acre. The bank slopes from east to west towards the Sand Creek 40 to 60 degrees from horizontal. Prior to the 2003 RA, the site was overgrown with mature trees and ground level vegetation. The RA cleared large areas of vegetation, which were then reseeded with hydroseed and mulched. The RI field activities included areas adjacent to the top of the slopes and along the floodplain at the bottom of the slopes adjacent to the AOC. The total area investigated for the RI consisted of the 1 acre AOC (approximate) and about an additional acre of land adjacent to the AOC.
The Sand Creek Site is primarily within the dry midsuccessional cold-deciduous shrubland alliance, while the area immediately adjacent to the creek is within the *Fraxinus pennsylvanica-Ulmus Americana-Celtis* Temporarily Flooded Forest Alliance (AMEC, 2008). The dry midsuccessional cold-deciduous shrubland alliance is associated with a majority of coverage by shrubs interspersed with relatively few large trees. The dominant species of this alliance include gray dogwood, northern arrowwood, blackberry, hawthorn, and multiflora rose. The Temporarily Flooded Forest Alliance is associated with floodplains near streams and rivers and other temporarily flooded areas. Green ash, American elm, hackberry, and red maple are the dominant species, with black walnut, white ash, swamp white oak, cottonwood, and black willow also present. The vegetation alliances and plant communities at the Sand Creek Site are presented in **Figures 7-1** and **7-2**, respectively (AMEC, 2008).

## 7.2.1.1 Special Interest Areas and Sensitive Areas

Special Interest Areas include communities that host state-listed species, are representative of historic ecosystems, or are otherwise noteworthy. The *Updated Integrated Natural Resources Management Plan at the Ravenna Training Logistics Site* (AMEC, 2008) was reviewed for information related to Special Interest and Sensitive Areas at the AOC. No Special Interest Areas were identified at the AOC. The AOC has not specifically been surveyed for threatened or endangered species. No federally listed species have been identified on the facility. No sensitive habitats were identified on or near the AOC.

## 7.2.1.2 Wetlands

Jurisdictional wetlands delineation has not been conducted at the AOC. A planning level survey for wetlands was conducted for the entire facility. According to the planning level survey data, no wetlands were identified on the AOC (AMEC, 2008). Wetlands were identified in the surrounding area to the west, northwest, and south of the Sand Creek Site as shown in **Figure 7-3** (AMEC, 2008)

## 7.2.1.3 Animal Populations

The plant communities at the former RVAAP provide diverse habitats that support many species of animals. Through casual observations and various studies, the following number of species have been identified at the facility: 35 land mammals, 214 birds, 34 reptiles and amphibians, 46 fish (including 2 hybrids), 4 crayfish, 17 molluscs (clams), 12 aquatic snails, 45 terrestrial snails, 64 damselflies and dragonflies, 64 butterflies, 793 moths, and 800 beetles (AMEC, 2008).

Approximately 25 percent of the site is covered by open shrub land habitat. Common bird species that could be expected to use the forest/riparian habitat adjacent to the creek include the song sparrow (*Melospiza melodia*), gray catbird (*Dumetella carolinensis*), and rufous-sided towhee (*Pipilo erythrophthalmus*). Woodland bird species, such as the wood thrush

(*Hylocichla mustlina*) may also utilize the forested areas at and adjacent to the Sand Creek Site. Other forest and forest-edge birds that may use the site include the red-eyed vireo (*Vireo olivaceous*), yellow-throated vireo (*Vireo flavifrons*), eastern wood-pewee (*Contopus virens*) and Acadian flycatcher (*Empidonax virescens*), in addition to permanent residents typified by the tufted titmouse (*Parus bicolor*), black-capped chickadee (*Parus atricapillus*), American crow (*Corvus brachyrhynchos*), blue jay (*Cyanocitta cristata*), and red-bellied (*Melanerpes carolinus*) and downy (*Picoides pubescens*) woodpeckers (ODNR, 1997).

Common large mammals include white-tailed deer (*Odocoileus virginianus*), raccoon (*Procyon lotor*), and woodchuck (*Marmota monax*), while eastern cottontail (*Sylvilagus floridanus*), white-footed mouse (*Peromyscus leucopus*), and short-tailed shrew (*Blarina brevicauda*) are common small mammals (ODNR, 1997).

Sand Creek is an aquatic habitat adjacent to the AOC. A very narrow floodplain that is seasonally inundated occupies the land between the bottom of the embankment and Sand Creek. The floodplain and creek border likely support several species of amphibians, notably salamanders and frogs. Fish are likely present in Sand Creek adjacent to the AOC. Thirty-two and 34 species of fish were identified in the former RVAAP stream habitats during surveys performed in 1999 and 2003, respectively (AMEC, 2008). Fish species that may be found in Sand Creek include black crappie (*Poxomis nigromaculatus*), common shiner (*Luxilus cornutus*), and yellow perch (*Perea flavescens*).

# 7.2.1.4 Threatened and Endangered Species Information

The relative isolation and protection of habitat at RVAAP has created an important area of refuge for a number of plant and animal species considered rare by the State of Ohio. Since this RI was originally prepared, the INRMP has been updated in 2014 and some of the information in this RI regarding natural resources need to be updated per the 2014 INRMP. The 2014 INRMP identifies one federally-listed species, Northern long-eared bat (*Myotis septentrionalis*) as occurring but not residing on the facility. To date, 77 state-listed species are confirmed to be on the former RVAAP property and are listed in **Table 2-1** (INRMP, 2008). Species information identified in Table 2-1 was based on the 2008 INRMP and will be updated in future documents. However, this data is still applicable for purposes of this RI. The Sand Creek Site has not been specifically surveyed for threatened or endangered species; however, none are known to exist at the AOC.

## 7.2.1.5 Selection of Exposure Units

From the ecological assessment viewpoint, an EU is the area where ecological receptors potentially are exposed to the site constituents. Although some ecological receptors are likely to gather food, seek shelter, reproduce and move around, spatial boundaries of the ecological EU are the same as the spatial boundaries of aggregates defined for historical use, nature and extent of contamination, fate and transport, and the HHRA. Although some ecological receptors are likely to gather food, seek shelter, reproduce, and move around, spatial boundaries of the ecological EUs are the same as the spatial boundaries of aggregates defined for nature and extent, fate and transport, and the HHRA. These proposed EUs for Sand Creek are as follows:

- Terrestrial EU—Soil at Sand Creek Site
- Sediment EU—Sediment from the narrow floodplain between Sand Creek and the ridge
- Surface water EU—Surface water in Sand Creek

## 7.2.2 Selection of COPECs

The available data sets for use in the SLERA consist of the confirmation soil, sediment, and surface water samples collected after the RA was performed in 2003, the two surface water samples collected as part of the 2003 FWBWQS, and the surface soil, sediment, and subsurface soil samples collected for this RI. This section provides a discussion on the media samples that were selected and the rationale as to why they were chosen for evaluation of ecological risks at the Sand Creek Site. A list of the media samples used for the SLERA is presented in **Table 7-1**.

It was determined that only the 0- to 1-foot sampling interval for surface soil will be evaluated for the SLERA because most ecological exposure occurs within the top 1 foot of soil and is assumed to represent the zone of maximum exposure for most ecological receptors. In addition, as a historical former disposal site, it is expected that much of the native soil has been reworked, removed, or used as cover material during dumping activities, which would likely decrease the attractiveness to burrowing receptors.

The confirmation soil samples from the 2003 RA showed elevated concentrations (i.e., greater than the BSVs) of heavy metals in the northern third of the site with a few widely scattered hits of other contaminants (heavy metals, SVOCs, explosives and propellants) over the remainder of the site. The confirmation sediment samples collected from the neighboring floodplain and Sand Creek reported arsenic levels above its BSV. Additionally, low levels of propellants and/or explosives were detected in the full suite sediment and surface water samples (MKM, 2004). These results guided and informed the sampling effort for the current RI.

Surface and subsurface soil samples were collected as part of the RI field activities. Surface samples were collected from 0 to 1 foot using ISM. Subsurface samples were collected from various intervals (1 to 5 feet, 9 to 13 feet, 13 to 17 feet, and 17 to 20 feet) using a modified

ISM approach. Although the discrete confirmation soil samples from the 2003 RA were available, the ISM data collected for the RI were considered to be the most relevant for estimating ecological exposure for the SLERA because they are the most recently collected data and therefore, provide the best representation of current site conditions. Additionally, the ISM approach provides a better estimate of average concentrations than discrete samples. Based on this evaluation for the surface soil media, only the ISM samples collected for the RI were used in the SLERA.

For sediment, 12 discrete confirmation samples collected as part of the 2003 RA are available as are the 2 ISM sampling units collected during the RI field effort. The ISM samples were collected along the length of the bank adjacent to the affected soil units and are considered to represent the most relevant data for evaluating ecological risk for the same reasons as described for surface soil. Therefore, the ISM sediment samples collected for the RI were considered to be more applicable for inclusion in the SLERA.

For surface water, data are available from the three samples collected as part of the 2003 RA and the two samples collected during the 2003 FWBWQS. All five surface water samples were evaluated for this SLERA for the purpose of supporting the decision to not collect surface water samples as part of the RI sampling event and to further confirm the results of the 2003 FWBWQS that indicated that surface water at the former RVAAP has not been impacted from historical activities at the facility.

From the chemical results of samples described above, a COPEC selection process was performed to develop a subset of SRCs. These chemicals are also present at sufficient frequencies, concentrations, and spatial areas to pose a potential risk to ecological receptors. COPECs were identified by using methods described for Level II Screening in the Ohio EPA Guidance (2008). Identification of COPECs entails a multistep process that begins with the detected SRCs that are identified in the site characterization process, then proceeds to a data evaluation, media evaluation, and media screening as part of the Level II Screen. This selection process is described in more detail in the following sections.

# 7.2.2.1 Data Organization

Chemical analytical data as well as all previous and ongoing investigations were reviewed and evaluated for quality, usefulness, and uncertainty. Data identified as being of acceptable quality for use in the SLERA were summarized in a manner that presents the pertinent information to be applied in the SLERA. All data used in the SLERA were validated, and no data was identified as being rejected.

The data for each chemical were sorted by medium. Chemicals not detected at least once in a medium were not included in the SLERA. Available background data for each medium were provided in the FWCUG Report (SAIC, 2010).

## 7.2.2.2 Data Evaluation

The data evaluation of SRCs normally entails two components: (1) a frequency of detection analysis and (2) an evaluation of common laboratory contaminants. The purpose of the frequency of detection analysis is to eliminate from further consideration any SRCs detected in 5 percent or less of the samples for a given medium, excluding SRCs present in multiple media or deemed to be persistent, bioaccumulative, and toxic (PBT). However, for this site, no frequency-of-detection screening was performed for soil, surface water, or sediment because fewer than 20 samples were available for these data sets. Also, frequency of detection is not an appropriate criterion for ISM samples.

Common laboratory contaminants include acetone, 2-butanone (methyl ethyl ketone), carbon disulfide, methylene chloride, toluene, and phthalate esters. If blanks contained detectable concentrations of these contaminants, then the sample results were considered positive results in accordance with the QSM 4.1 (DOD, 2009). Laboratory contaminants are typically identified (and rejected) using data qualifiers. The analytical data included qualifiers from the analytical laboratory QC or from the data validation process that reflect the level of confidence in the data.

# 7.2.2.3 Media Evaluation

The media evaluation was performed after the frequency of detection and common laboratory contaminant evaluation, using the SRCs that were not eliminated during those two steps. The purpose of the media evaluation is to determine whether SRCs have impacted media associated with the site. The evaluation methods were media specific and included comparison against BSVs for all media. The MDCs of SRCs in soil, sediment, and surface water were compared to selected BSVs and eliminated from further consideration in the Level II Screen if the MDCs were less than BSVs and the SRCs were not PBT compounds. If the MDCs of SRCs exceeded BSVs, and/or the SRCs were PBT compounds, the SRCs were carried forward to the media-screening step.

# 7.2.2.4 COPEC Selection Criteria

The criteria used to identify COPECs in the SLERA are described in the following sections:

# **Comparison to ESVs**

The MDCs of chemicals detected in various media were compared with ecological screening values (ESVs) for ecological endpoints following recommendations obtained from the Ohio EPA Guidance (2008). Chemicals that exceed the ESVs, or for which no ESVs are available,

were retained as COPECs. The following ESV hierarchy was used for the ecological evaluation:

#### Soil

For soils, the MDC of each COPEC was compared to soil screening values. The hierarchy of sources of soil screening values, in order of preference, was as follows:

- Ecological Soil Screening Levels (EcoSSLs) (EPA, 2010) online updates from http://www.epa.gov/ecotox/ecossl/
- ESLs, EPA Region 5, August 2003
- Oak Ridge National Laboratory (ORNL): Efroymson, R.A., G.W. Suter II, B.E. Sample, and D.S. Jones, 1997. *Preliminary Remediation Goals for Ecological Endpoints*, ES/ER/TM-162/R2
- Los Alamos National Laboratory (LANL): EcoRisk Database, Release 2.3, September, 2010.
- Talmage et al., 1999. *Nitroaromatic Munitions Compounds: Environmental Effects and Screening Values, Rev. Environ. Contamin. Toxicol.*, 161: 1–156

#### **SEDIMENT**

For sediment, the MDC of each COPEC was compared to sediment screening values. The hierarchy of sources of sediment screening values, in order of preference, was as follows:

- MacDonald et al., 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems, Arch. Environ. Contam. Toxicol. 39: 20–31, Threshold Effect Concentration (TEC)
- ESLs (EPA, 2003)
- ORNL (Efroymson et al., 1997a)
- LANL, 2010
- Talmage et al., 1999.

#### SURFACE WATER

For surface water, the MDCs of COPECs are to be compared to surface water screening values. The hierarchy for surface water screening values, in order of preference, was as follows:

• Ohio Administrative Code (OAC) 3745-1, *Ohio River Basin Aquatic Life Criteria*, *OMZA*, March 6, 2011. (Based on total recoverable metals and assuming a hardness

value of 100 mg/L for hardness dependent criteria, iron and nitrate/nitrite criteria are based on protection of agricultural use.)

- ESLs (EPA, 2003)
- ORNL (Efroymson et al., 1997b)
- LANL, 2010
- Talmage et al., 1999
- ORNL, 1987

The ESVs used for the SLERA are presented in Appendix G.

#### **Essential Nutrients**

Evaluating essential nutrients is a special form of risk-based screening applied to certain ubiquitous elements that are generally considered to be required nutrients. Essential nutrients such as calcium, iron, magnesium, potassium, and sodium are usually eliminated as COPECs because they are generally considered to be innocuous in environmental media. Other essential nutrients, including chloride, iodine, and phosphorus, may be eliminated as COPECs, if their presence in a particular medium is unlikely to cause adverse effects to biological health.

#### **PBT Pollutants**

The PBT compounds listed in the Ohio EPA Guidance, including chemicals whose log octanol-water partition coefficient ( $K_{ow}$ ) values are greater than or equal to 3, are retained as COPECs. However, if the chemical's ESV is based on an endpoint that is protective of bioaccumulation effects, the chemical may be eliminated as a COPEC if its MDC is below its ESV (Ohio EPA, 2008). Although they typically have log  $K_{ow}$  values greater than 3, PAHs, including carbazole, a PAH heterocycle, exhibit little tendency to biomagnify in food chains, despite their high lipid solubility, possibly due to their tendency to be rapidly metabolized by most organisms (Eisler, 1987; EPA, 2010). Low molecular weight PAHs (i.e., anthracene and phenanthrene) are subject to chemical degradation and biodegradation. The hydrophobic, higher molecular weight PAHs (i.e., benzo[a]pyrene) show a high affinity for binding to dissolved humic materials and tend to have rapid biotransformation rates, which may lessen or negate bioaccumulation and food chain transfer for these types of compounds (Eisler, 1987). For these reasons, PAHs are not considered PBT chemicals.

## 7.2.2.5 Summary of COPEC Selection

The results of the COPEC screening are presented in **Tables 7-2** through **7-4** for surface soil, sediment, and surface water, respectively. The tables present the following information for each medium:

• SRC (as identified in Section 4.0)

- Range of detected concentrations
- Range of detection limits
- Mean concentration (for media with more than one sample)
- BSV
- ESV
- HQ
- Determination as to whether the chemical is a PBT compound (soil and sediment only)
- Determination as to whether the chemical is a COPEC

The HQ is calculated as the detected concentration divided by the ESV. An HQ greater than 1 indicates that the concentration in the medium exceeds the conservative ESV, and may indicate that a potential ecological threat exists. Chemicals with HQs less than 1 are considered to be of low concern, and are not carried forward as COPECs, unless the chemical is a PBT pollutant, and its screening value is not protective of food chain effects.

A description and summary of the COPECs identified in each medium are presented in the following sections:

#### Soil COPEC Selection

A total of 54 chemicals were identified as SRCs in the RI surface soil data set following the data screening process in Section 4.0 and were further evaluated in the SLERA. The SRCs in surface soil consisted of 15 metals, 1 general chemistry parameter, 3 explosives compounds, 6 pesticides, and 29 SVOCs. One metal, 1 general chemistry parameter, 2 explosives, and 13 SVOCs were eliminated because they were not PBT compounds, and their MDCs were lower than their ESVs. Three additional pesticide PBT compounds were eliminated during the toxicity screen because they were detected at concentrations less than ESVs that are protective of food chain effects. Following the screen, 14 inorganic chemicals, 1 propellant compound, 3 pesticides, and 16 SVOCs were identified as COPECs (**Table 7-2**). Two pesticides and eight SVOCs were selected as COPECs solely because they are PBT pollutants (i.e., their detected concentrations did not exceed their ESVs). The one propellant compound (nitroguanidine) was selected as a COPEC because it lacked an ESV.

**Table 7-5** at the end of this section presents the distribution of COPEC concentrations by analytical unit (i.e., metals, SVOCs, propellants, and pesticides). All soil sampling units had at least one chemical that failed the BSV (metals only) and/or toxicity screening criteria.

## Sediment COPEC Selection

A total of 42 chemicals were identified as SRCs in the RI sediment data set following the data screening process in Section 4.0 and were further evaluated in the SLERA. The SRCs in sediment consisted of 11 metals, 1 general chemistry parameter, 1 explosive compound, 12 pesticides/PCBs, and 15 SVOCs. Two metals and 13 SVOCs were eliminated because they were not PBT compounds, and their MDCs were lower than their ESVs. Following the toxicity screen, 8 inorganic chemicals, 1 general chemistry parameter, 1 explosives compound, 14 pesticides/PCBs, and 4 SVOCs were identified as COPECs (**Table 7-3**). Eleven chemicals were selected as COPECs solely because they are PBT pollutants (i.e., their detected concentrations did not exceed their ESVs). The sediment sample from sampling unit SCsd-070 (SCsd-070M-0001-SD), collected along the floodplain along the northern portion of the AOC, contained 16 COPECs that exceeded screening criteria (9 metals, 6 pesticides/PCBs, and 1 SVOC). Sediment sample SCsd-071M-0001-SD from sampling unit SCsd-071, collected along the floodplain at the southern portion of the AOC, had only three COPECs (all metals).

#### Surface Water COPEC Selection

A total of 11 chemicals were identified as SRCs in the surface water data sets from the 2003 RA and the 2003 FWBWQS following the data screening process in Section 4.0 and were further evaluated in the SLERA. The SRCs in surface water consisted of 11 metals, 2 SVOCs, and 2 nutrient parameters. All of the metals and SVOC SRCs were screened out and no COPECs were identified because they were detected at concentrations lower than their ESVs (**Table 7-4**). The detected nitrate/nitrite and phosphate results were collected as water quality parameters during the 2003 FWBWQS. Nitrate and phosphate are nutrients that may cause algal blooms at elevated concentrations, which can be problematic for water bodies, particularly lentic systems. However, they are typically not evaluated as part of a SLERA and are removed from further consideration for ecological risks.

#### **COPEC Selection Conclusions**

The Ohio EPA Guidance states, "For a site to present a potential for hazard, it must exhibit the following three conditions: (a) contain COPECs in media at detectable and biologically significant concentrations, (b) provide exposure pathways linking COPECs to ecological receptors, and (c) have endpoint species that either utilize the site, are not observed to utilize the site, but habitat is such that the endpoints species should be present, are present nearby, or can potentially come into contact with site-related COPECs." This Level II Screen has shown that these three conditions are met at media of concern (surface soil and sediment) at the Sand Creek Site.

The Level II Screen identifies site-specific receptors, relevant and complete exposure pathways, and other pertinent information (Ohio EPA, 2008). These components represent preliminary information for a Level III Baseline. The following section presents the ecological

CSM, including selection of site-specific ecological receptor species, relevant and complete exposure pathways, and candidate ecological assessment endpoints and measures.

## 7.2.3 Ecological Conceptual Site Model

The ecological CSM depicts and describes the known and expected relationships among the stressors, pathways, and assessment endpoints that are considered in the risk assessment, along with a rationale for their inclusion. Two ecological CSMs are presented for this Level II Screen. One ecological CSM is associated with the media screening of the Level II Screen (**Figure 7-4**). The other ecological CSM (**Figure 7-5**) represents a preliminary CSM for the Level III Baseline. The ecological CSMs for the Sand Creek Site were developed using the available site-specific information and professional judgment. The contamination mechanism, source media, transport mechanisms, exposure media, exposure routes, and ecological receptors for the ecological CSMs are described below.

## 7.2.3.1 Contamination Source

The contamination source includes releases from historic dumping that occurred at the Sand Creek Site. Section 1.3 of this RI report describes the types of historical operations that took place at the site.

## 7.2.3.2 Source Medium

The source medium at the Sand Creek Site is soil. For the purposes of the SLERA, surface soil is defined as 0 to 1 foot bgs. Contaminants released from historic dumping operations were deposited directly into the surrounding soil.

## 7.2.3.3 Transport Mechanisms

Transport mechanisms at the site include volatilization into the air, biota uptake, erosion to surface water and sediment, and leaching to groundwater. Biota uptake is a transport mechanism because some of the identified SRCs are known to accumulate in biota, which may act as a vehicle to spatially disperse contaminants, as well as represent a secondary exposure medium for upper trophic level receptors that prey on the biota. The deposition of eroded soils containing SRCs into surface water and sediment is also a valid transport mechanism for both ecological CSMs.

# 7.2.3.4 Exposure Media

Sufficient time has elapsed for contaminants in the source medium to have migrated to potential exposure media, resulting in possible exposure of plants and animals that come in contact with these media. Potential exposure media include air, surface soil, food chain, surface water, and sediment. Subsurface soil includes soil at depths that ecological receptors typically do not come into contact with, and is not being evaluated at the AOC. Groundwater is not considered an exposure medium because ecological receptors are unlikely to contact

groundwater. If groundwater daylights into surface water as a seep or spring, it is evaluated as surface water media. Soil, sediment, surface water, and biota comprising prey items for higher trophic level receptors are the four principal exposure media for the Sand Creek Site.

#### 7.2.3.5 Exposure Routes

Exposure routes are functions of the characteristics of the media in which the sources occur, and reflect how both the released chemicals and receptors interact with those media. For example, chemicals in surface water may be dissolved or suspended as particulates and be highly mobile, whereas those same constituents in soil may be much more stationary. The ecology of the receptors is important because it dictates their home range, whether the organism is mobile or immobile, local or migratory, burrowing or aboveground, plant eating, animal eating, or omnivorous.

For the Level II Screen CSM (**Figure 7-4**), specific exposure routes were not identified because the screen is not receptor specific and only focuses on comparison of MDCs of chemicals in the exposure media against published ecological toxicological benchmark concentrations derived for those media. However, the Level III Baseline ecological CSM (**Figure 7-5**) identifies specific exposure routes and indicates whether the exposure routes from the exposure media to the ecological receptors are major or minor. Major exposure routes are evaluated quantitatively, whereas minor routes are evaluated qualitatively. The Level III Baseline ecological CSM (**Figure 7-5**) shows major exposure routes of soil, surface water, and sediment to ecological receptors and an incomplete exposure route of groundwater. Ecological receptors are assumed not to come into direct contact with groundwater.

The major exposure routes for chemical toxicity from surface soil include ingestion (for terrestrial invertebrates, voles, shrews, robins, foxes, and hawks) and direct contact (for terrestrial plants and invertebrates). The ingestion exposure routes for voles, shrews, robins, foxes, and hawks include soil, as well as plant and/or animal food (i.e., food chain), that was exposed to the surface soil. Minor exposure routes for surface soil include direct contact and inhalation of fugitive dust. The major exposure routes for surface water include ingestion (as drinking water) and direct contact (for aquatic biota and benthic invertebrates). Minor exposure pathways for surface water and sediment include direct contact and inhalation (for muskrats, ducks, mink, and herons). The major exposure routes for sediment include ingestion (for aquatic biota, muskrats, ducks, mink, and herons) and direct contact (for aquatic biota and benthic invertebrates). The ingestion exposure routes for aquatic biota (including vertebrate mammals and birds) include sediment and surface water (as applicable) as well as plant and/or animal food (food chain) that were exposed to the sediment or surface water.

Exposure to groundwater is an incomplete pathway for all terrestrial and aquatic ecological receptors because receptors typically do not come into direct contact with groundwater. If the

groundwater outcrops via seeps or springs into wetlands or ditches, it becomes part of the surface water and would be evaluated in the surface water pathway.

## 7.2.4 Ecological Receptors

For the Level II Screen, specific ecological receptors were not identified, but terrestrial and aquatic biotas are considered as a whole. However, for the Level III Baseline evaluation, terrestrial, semiaquatic, and aquatic ecological receptors are identified as part of the ecological CSM (**Figure 7-5**). The terrestrial receptors include plants, terrestrial invertebrates (earthworms), voles, shrews, robins, foxes, and hawks. The aquatic receptors include benthic invertebrates and aquatic biota. Aquatic herbivore receptors are represented by the muskrat and the mallard duck. Semiaquatic carnivores include mink and herons. These receptors are discussed in more detail in Section 7.2.4.1.

## 7.2.4.1 Selection of Site-Specific Ecological Receptor Species

The selection of ecological receptors for the site-specific analysis screen was based on plant and animal species that are likely to occur in the terrestrial and aquatic habitats at the site. Three criteria were used to identify the site-specific receptors:

- Ecological Relevance—The receptor has or represents a role in an important function such as energy fixation (i.e., plants), nutrient cycling (i.e., earthworms), and population regulation (i.e., hawks). Receptor species were chosen to include representatives of all applicable trophic levels identified by the ecological CSM for the site. These species were selected to be predictive of assessment endpoints (including protected species/species of special concern and recreational species).
- **Susceptibility**—The receptor is known to be sensitive to the chemicals detected at the site, and given their food and habitat preferences, their exposure are expected to be high. The species have a likely potential for exposure based upon their residency status, home range size, sedentary nature of the organism, habitat compatibility, exposure to contaminated media, exposure route, and/or exposure mechanism compatibility. Ecological receptor species were also selected based on the availability of toxicological effects and exposure information.
- Management Goals— The receptor represents a valued component of the AOC's ecological significance. Furthermore, as a significant natural resource, its presence should be managed in a manner that is compatible with the military mission at the former RVAAP (AMEC, 2008).

At the Sand Creek Site, the following types of ecological receptors are likely to be present: terrestrial plants, terrestrial invertebrates, meadow voles (*Microtus pennsylvanicus*), short-tailed shrews (*Blarina brevicauda*), American robins (*Turdus migratoris*), red foxes (*Vulpes* 

*vulpes*), red-tailed hawks (*Buteo jamaicensis*), sediment-dwelling biota, aquatic biota, muskrats (*Ondatra zibenthicus*), mallard ducks (*Anas platyrhynchos*), mink (*Mustella vison*), and great blue herons (*Ardea herodias*). Each of these receptors is described in the following sections for terrestrial exposures and for aquatic and semiaquatic exposures:

#### 7.2.4.2 Terrestrial Exposure Classes and Receptors

Terrestrial exposures, receptors, and justification for their relevance at the Sand Creek Site are presented below:

#### TERRESTRIAL VEGETATION EXPOSURE TO SOIL

Terrestrial vegetation exposure to soil is applicable to the Sand Creek Site. Terrestrial plants have ecological relevance because they represent the base of the food web and are the primary producers that turn energy from the sun into organic material (plants) that provides food for many animals. There is sufficient habitat present for them at the site. In addition, plants are important in providing shelter and nesting materials to many animals, thus, plants are a major component of habitat. Plants provide natural cover and stability to soil and stream banks, thereby reducing soil erosion.

Terrestrial plants are susceptible to toxicity from chemicals. Plants have roots that are in direct contact with surface soil, which provides them with direct exposure to contaminants in the soil. They also can have exposure to contaminants via direct contact on the leaves. There are published toxicity benchmarks for plants (Efroymson et al., 1997b), and there are regulatory statutes for plants because of their importance in erosion control.

#### TERRESTRIAL INVERTEBRATE EXPOSURE TO SOIL

Terrestrial invertebrate exposure to soil is applicable to soils for the Sand Creek Site. Earthworms represent the receptor for the terrestrial invertebrate class, and there is sufficient habitat present for them on site. Earthworms have ecological relevance because they are important for decomposition of detritus and for energy and nutrient cycling in soil (Efroymson et al., 1997c). Earthworms are probably the most important of the terrestrial invertebrates for promoting soil fertility due to the volume of soil that they process.

Earthworms are susceptible to exposure to and toxicity from COPECs in soil. Earthworms are nearly always in contact with soil and ingest soil, which results in constant exposure. Earthworms are sensitive to various chemicals. Toxicity benchmarks are available for earthworms (Efroymson et al., 1997b). Although management goals for earthworms are not immediately obvious, the role of earthworms in soil fertility and as a prey item for other organisms is significant. Thus, there is sufficient justification to warrant earthworms as a candidate receptor for the Sand Creek Site.

## MAMMALIAN HERBIVORE EXPOSURE TO SOIL

Mammalian herbivore exposure to soil is applicable to the Sand Creek Site. Cottontail rabbits and meadow voles represent mammalian herbivore receptors, and there is suitable habitat present for them at the site. Both species have ecological relevance by consuming vegetation, which helps in the regulation of plant populations and in the dispersion of some plant seeds. Small herbivorous mammals such as cottontail rabbits and voles are prey items for top terrestrial predators.

Both cottontail rabbits and meadow voles are susceptible to exposure to and toxicity from COPECs in soil and vegetation. Herbivorous mammals are exposed primarily through ingestion of plant material and incidental ingestion of contaminated surface soil containing chemicals. Exposures by inhalation of COPECs in air or on suspended particulates, as well as exposures by direct contact with soil, were assumed to be negligible. Dietary toxicity benchmarks are available for many COPECs for mammals (Sample et al., 1996), and there are management goals for rabbits because they are an upland small game species protected under Ohio hunting regulations. There are no regulatory statutes for meadow voles at the AOC. Meadow voles have smaller home ranges than rabbits, which makes them potentially more susceptible to localized contamination. Therefore, they are a more conservative selection as a representative mammalian herbivore than rabbits, and are selected as candidate receptors for the Sand Creek Site.

## INSECTIVOROUS MAMMAL AND BIRD EXPOSURE TO SOIL

Insectivorous mammal and bird exposure to soil is applicable to the Sand Creek Site. Shorttailed shrews and American robins represent the receptors for the insectivorous mammal and bird terrestrial exposure class, respectively. There is sufficient, suitable habitat present at the site for these receptors. Both species have ecological relevance because they help to control aboveground invertebrate community size by consuming large numbers of invertebrates. Shrews and robins are a prey item for terrestrial top predators.

Both short-tailed shrews and American robins are susceptible to exposure to and toxicity from COPECs in soil, as well as contaminants in vegetation and terrestrial invertebrates. Insectivorous mammals such as short-tailed shrews and birds such as American robins are primarily exposed by ingestion of contaminated prey (i.e., earthworms, insect larvae, and slugs), as well as ingestion of soil. In addition, shrews ingest a small amount of leafy vegetation, and the robin's diet consists of 50 percent each of seeds and fruit. Dietary toxicity benchmarks are available for mammals and birds (Sample et al., 1996). Both species are recommended as receptors because there can be different toxicological sensitivity between mammals and birds exposed to the same contaminants. There are regulatory statutes for robins because they are federally protected under the *Migratory Bird Treaty Act of 1993*, as amended, and are consistent with the former Camp Ravenna's policies and management goals (AMEC,

2008). There are no specific regulatory statutes for shrews at the MRS. Based on the regulatory statutes for robins, plus the susceptibility to contamination and ecological relevance for both species, there is sufficient justification to warrant shrews and robins as candidate receptors for the Sand Creek Site.

#### TERRESTRIAL TOP PREDATORS

Exposure of terrestrial top predators is applicable to the Sand Creek Site. Red foxes and redtailed hawks represent the mammal and bird receptors for the terrestrial top predator exposure class, and there is a limited amount of suitable habitat available for them at the site. Both species have ecological relevance; as representatives of the top of the food chain for the site terrestrial EUs, they control populations of prey animals such as small mammals and birds.

Both red foxes and red-tailed hawks are susceptible to exposure to and toxicity from COPECs in soil, vegetation, and/or animal prey. Terrestrial top predators feed on small mammals and birds that may accumulate constituents in their tissues following exposure at the site. There is a potential difference in toxicological sensitivity between mammals and birds exposed to the same COPECs so it is prudent to examine a species from each taxon (Mammalia and Aves, respectively). Red foxes are primarily carnivorous but consume some plant material. The red-tailed hawk consumes only animal prey. The fox may incidentally consume soil. There are regulatory statutes for both species. Laws (Ohio trapping season regulations for foxes, and federal protection of raptors under the *Migratory Bird Treaty Act of 1993*, as amended) and the former RVAAP's policies and management goals also protect these species (AMEC, 2008). In addition, both species are susceptible to contamination and have ecological relevance as top predators in the terrestrial ecosystem. Thus, there is sufficient justification to warrant these two species as candidate receptors for the Sand Creek Site.

## 7.2.4.3 Aquatic and Semiaquatic Exposure Classes and Receptors

The aquatic and semiaquatic exposures, receptors, and justification for their relevance at the Sand Creek Site are presented below:

## EXPOSURE OF AQUATIC BIOTA TO WATER

Exposure of aquatic biota to water is applicable to the Sand Creek Site. Aquatic biota (i.e., aquatic plants, invertebrates, and fish) represent the ecological receptors for the aquatic biota exposure class, and aquatic habitat is available at this site. Aquatic biotas have ecological relevance because they represent the range of living organisms in the aquatic ecosystem and they provide food for various predators.

Aquatic biotas are susceptible to exposure to and toxicity from COPECs in surface water. The exposure concentration for aquatic biota is assumed to be equal to the measured environmental concentration because the biotas have constant contact with water and the aquatic toxicity benchmarks that are used are expected to protect aquatic life from all exposure pathways,

including ingestion of surface water as well as contaminated plants and animals. Toxicity benchmarks are available for aquatic biota, but the OWQS, Chapter 3745-1 of the OAC (Ohio EPA, 2011), must also be met.

There are regulatory statutes for aquatic biota in laws that specify Ohio water quality standards to support designated uses (i.e., survival and propagation of aquatic life) for waters of the state. In addition, aquatic biotas are susceptible to contamination by virtue of continual exposure in water, and they have ecological relevance within the aquatic and terrestrial ecosystems. Thus, there is sufficient justification to warrant aquatic biota as a candidate receptor for the Sand Creek Site.

#### EXPOSURE OF SEDIMENT-DWELLING BIOTA TO SEDIMENT

Sediment-dwelling biota exposure to sediment is applicable to the site-specific analysis. Benthic invertebrates such as aquatic insect larvae like caddisflies (*Trichoptera*), mayflies (*Ephemeroptera*), and midges (*Chironomidae*), as well as noninsects such as crayfish (*Decapoda*), snails (*Gastropoda*), and clams and bivalves (*Pelycypoda*), represent the receptors for the sediment-dwelling biota aquatic exposure class. These biota have ecological relevance because they provide food for many aquatic species and also for some terrestrial mammals and birds such as raccoons, mallards, and herons.

Benthic invertebrates are susceptible to exposure to and toxicity from, COPECs in sediment. These biotas have direct contact with sediment and sediment pore water. Toxicity benchmarks are available for benthic invertebrates.

There are regulatory statutes for sediment-dwelling biota because the condition of these biological communities is linked to assessment of Ohio water quality use attainment in streams. These biota are susceptible to contamination by virtue of continual exposure in sediment, and they have ecological relevance as a major food source for aquatic biota. Thus, there is sufficient justification to warrant sediment-dwelling biota as a candidate receptor for the Level III Baseline.

#### HERBIVORE EXPOSURE TO WATER, SEDIMENT, AND THE AQUATIC FOOD WEB

Aquatic herbivores like muskrats and mallard ducks are exposed to water and sediment. Therefore, these exposures are applicable to the Sand Creek Site. There is also suitable habitat for them at the AOC. Muskrats ingest aquatic vegetation. Mallard ducks are surface-feeding ducks that obtain much of their food by dabbling in shallow water and filtering through soft mud with their bills. Their food consists mostly of seeds of aquatic plants as well as aquatic invertebrates (EPA, 1993). Animal matter accounts for the majority of the diet for breeding female ducks during the spring and summer, but decreases to less than 10 percent of the diet during the winter. Mallards have ecological relevance as important components of the aquatic

food web. As aquatic herbivores, muskrats and mallards help maintain the size and composition of the aquatic vegetation community.

Muskrats and mallards are susceptible to exposure to and toxicity from COPECs in surface water and aquatic vegetation. The potential for exposure to contaminants is high because they consume aquatic and sediment-dwelling plants that can accumulate high concentrations of some chemicals from water. In addition, these species can have further exposure via ingestion of contaminants in surface water that they use for a drinking water source and incidentally ingested sediment. Since there is a potential difference in the toxicological sensitivity of mammals and birds exposed to the same COPECs, one mammal and one bird were examined for exposure to water, sediment, and the aquatic food chain. Dietary toxicity benchmarks for many inorganic and some organic substances are available for mammals and birds.

There are regulatory statutes for muskrats and mallards. For example, there are Ohio trapping season regulations for muskrats, and mallards are federally protected under the *Migratory Bird Treaty Act of 1993*, as amended, and are consistent with the former RVAAP's policies and management goals (AMEC, 2008). Mallard ducks are also federally protected as a game species under the *Migratory Bird Hunting and Conservation Stamp Act of 1934*, as amended. Both species are susceptible to COPECs, especially via ingestion exposure, and they have ecological relevance. Thus, there is sufficient justification to warrant these receptors for the Sand Creek Site.

#### Semiaquatic Carnivores

Exposure of predators to aquatic biota is applicable to the Sand Creek Site because PBT chemicals are present at the AOC. There is also suitable habitat for these receptors at the site. Exposure evaluation for piscivores (fish-eating predators) is required per the Ohio EPA Guidance (2008) when a PBT compound or a COPEC with no screening benchmark is found in surface water or sediment. Mink and great blue herons are semiaquatic carnivores selected to represent mammalian and bird receptors for the fish-eating predator exposure class. These semiaquatic carnivores feed predominantly in and along the riparian zone along the banks of streams. Both species have ecological relevance because they are important components of the aquatic food web representing the top predators. As top predators, they help limit the population size for some aquatic and some sediment-dwelling biota communities.

Both species are susceptible to exposure to and toxicity from COPECs in surface water, aquatic biota, and sediment-dwelling biota. The potential for exposure to COPECs is high for these two species because they consume fish, which can accumulate high concentrations of some chemicals from water. In addition, both species can have further exposure via ingestion of COPECs in surface water that is used for a drinking water source. Dietary toxicity benchmarks are available for mammals and birds. There can be differences in toxicological sensitivity

between mammals and birds exposed to the same COPEC, so both species are appropriate for consideration.

There are regulatory statutes for both species because regulations protect both species and are consistent with the former RVAAP's policies and management goals (AMEC, 2008). For example, mink are regulated by Ohio trapping regulations because they are fur-bearing mammals. Great blue herons are federally protected under the *Migratory Bird Treaty Act* of 1993, as amended. Both species are susceptible to contamination, especially via ingestion exposure routes, and they have ecological relevance as predators. Thus, there is sufficient justification to warrant evaluating these two receptors as candidate receptors for the Sand Creek Site.

## 7.2.4.4 Relevant and Complete Exposure Pathways

Relevant and complete exposure pathways for the ecological receptors at the Sand Creek Site were described in Section 7.2.3. As previously discussed, there are relevant and complete exposure pathways for various ecological receptors including terrestrial vegetation and invertebrates; aquatic and sediment-dwelling biota; and terrestrial and aquatic herbivores, insectivores, and carnivores. Thus, these types of receptors could be exposed to COPECs in abiotic media at the Sand Creek Site.

#### 7.2.5 Ecological Endpoint (Assessment and Measurement) Identification

The protection of ecological resources, such as habitats and species of plants and animals, is a primary motivation for conducting SLERAs. Key aspects of ecological protection are presented as general management goals. These are general goals established by legislation or agency policy that are based on societal concern for the protection of certain environmental resources. For example, environmental protection is mandated by a variety of legislation and government agency policies (i.e., CERCLA and the *National Environmental Policy Act*). Other legislation includes the *ESA 16 U.S.C. 1531–1544* (1993, as amended) and the *Migratory Bird Treaty Act of 1993*. To evaluate whether a general management goal has been met, assessment endpoints, measures of effects, and decision rules are discussed below:

There are two general management goals for the Sand Creek Site. However, the assessment endpoints differ between the general screen and the site-specific analysis screen. The general management goals for the SLERA are as follows:

• General Management Goal 1: Protect terrestrial plant and animal populations from adverse effects due to the release or potential release of chemical substances associated with past site activities.

• General Management Goal 2: Protect aquatic plant and animal populations and communities from adverse effects due to the release or potential release of chemical substances associated with past site activities.

Ecological assessment endpoints are selected to determine whether these general management goals are met at the unit. An ecological assessment endpoint is a characteristic of an ecological component that may be affected by exposure to a stressor (i.e., COPEC). Assessment endpoints are "explicit expressions of the actual environmental value that is to be protected" (EPA, 1992). Assessment endpoints often reflect environmental values that are protected by law, provide critical resources, or provide an ecological function that would be significantly impaired if the resource was altered. Unlike the HHRA process, which focuses on individual receptors, the SLERA focuses on populations or groups of interbreeding nonhuman, nondomesticated receptors. Accordingly, assessment endpoints generally refer to characteristics of populations and communities. In the SLERA process, risks to individuals are assessed only if they are protected under the ESA or other species-specific legislation, or if the species is a candidate for listing as a threatened or endangered species.

The Ohio EPA Guidance (2008) was used to select assessment endpoints since an assessment endpoints list is not available. For the Level II Screen evaluation, the assessment endpoints are any potential adverse effects on ecological receptors, where receptors are defined as any plant or animal population, communities, habitats, and sensitive environments. Although the assessment endpoints for the Level II Screen are associated with general management goals 1 and 2, specific receptors are not identified with the assessment endpoints.

**Table 7-6** shows the general management goals for terrestrial and aquatic resources, associated assessment endpoints, measures of effect, and decision rules by assessment endpoint number. Furthermore, the table provides definitions of assessment endpoints 1, 2, 3, and 4 (terrestrial receptors) and 5, 6, 7, and 8 (aquatic receptors). As stated, the assessment endpoint table includes a column describing the conditions for making a decision depending on whether the HQ is less than or more than 1. If the HQ is greater than 1, the scientific management decision point (SMDP) options from Ohio EPA Guidance (2008) are provided (i.e., no further action, risk management, monitoring, remediation, or further investigation).

For the Level III Baseline evaluation, the assessment endpoints are more specific and stated in terms of types of specific ecological receptors associated with each of the two general management goals. Assessment endpoints 1, 2, 3, and 4 entail the growth, survival, and reproduction of terrestrial receptors such as vegetation and terrestrial invertebrates, herbivorous mammals, worm-eating/insectivorous mammals and birds, and carnivorous top predator mammals and birds, respectively. Assessment endpoints 1 through 4 are associated with General Management Goal 1, protection of terrestrial populations and communities.

Assessment endpoint 5 deals with the growth, survival, and reproduction of sediment-dwelling biota, which is associated with General Management Goal 2, protection of aquatic populations and communities. Assessment endpoints 6, 7, and 8 are also associated with General Management Goal 2, and deal with the growth, survival, and reproduction of aquatic biota, aquatic herbivores, and semiaquatic carnivores, respectively.

The assessment endpoints are evaluated through the use of measurement endpoints. The EPA defines measurement endpoints as ecological characteristics used to quantify and predict change in the assessment endpoints. They consist of measures of receptor and population characteristics, measures of exposure, and measures of effect. For example, measures of receptor characteristics include parameters such as home range, food intake rate, and dietary composition. Measures of exposure include attributes of the environment such as contaminant concentrations in soil, sediment, surface water, and biota. The measurement endpoints of effect for the Level II Screen evaluation consist of the comparison of the MDCs of each contaminant in each medium to ESV benchmarks for SRCs in soil and sediment, and OWQS (Ohio EPA, 2011) for surface water.

Measurement endpoints for the Level III Baseline evaluation include the comparison of predicted doses of chemicals in various receptor animals such as voles, shrews, American robins, and aquatic biota to Toxicity Reference Values (TRVs).

In the Level II Screen, MDCs in soil or sediment at each EU were compared to default soil or sediment screening values that are expected not to cause harm to ecological populations. The MDCs in surface water were compared to Ohio WQC. The Level II Screen used the Ohio EPA Guidance (2008) for selecting screening values for soil and sediment, and the OWQS (Ohio EPA, 2011) for surface water.

The COPECs that were retained after the Level II Screen are potentially subject to a Level III Baseline analysis with exposures that are more representative of the exposures expected for the representative receptors. The Level III Baseline analysis includes evaluation of exposure of a variety of receptors to the reasonable maximum exposure (RME) concentrations of COPECs at each EU, using default dietary and uptake factors. The representative receptors are evaluated at this step.

For the Level III Baseline evaluation, the decision rules for COPECs came from Ohio EPA Guidance (2008) for chemicals. Briefly, for COPECs, the first decision rule is based on the ratio (or HQ) of the dose to a given receptor species (i.e., a vole, representing herbivorous mammals) associated with a chemical's concentration in the environment (numerator) to the ecological effects or TRV (denominator) of the same chemical. A ratio of 1 or smaller means

that ecological risk is negligible while a ratio of greater than 1 means that ecological risk from that individual chemical is possible and that additional investigation should follow to confirm or refute this prediction. The second decision rule is that if "no other observed significant adverse effects on the health or viability of the local individuals or populations of species are identified" and the HI does not exceed 1, "the site is highly unlikely to present significant risks to endpoint species" (Ohio EPA, 2008). There are three potential outcomes for the Level III Baseline evaluation: (1) no significant risks to endpoint species so no further analysis is needed, (2) conduct field baseline assessment to quantify adverse effects to populations of representative species that were shown to be potentially impacted based on hazard calculations in the Level III Baseline evaluation, or (3) remedial action taken without further study.

## 7.2.6 Level II Screen Weight of Evidence Discussion

Prior to making the determination as to whether a Level III Baseline is warranted, it is appropriate to evaluate various lines of evidence that might suggest whether or not additional ecological investigation is needed at this AOC. Due to the highly conservative nature of the Level II Screen, the identification of COPECs does not necessarily indicate that the potential for adverse effects is realistic at this site. Therefore, although any chemical with an HQ greater than 1 must be identified as a COPEC (Ohio EPA, 2008), HQs less than 10 represent a low potential for environmental effects, HQs from 10 up to but less than 100 represent a significant potential that effects could result from greater exposure, and HQs greater than 100 represent the greatest potential for expected effects (Wentsel et al., 1996). It should be noted that the Ohio EPA considers HQs greater than 1 to be potentially significant. It should also be noted that HQs are not measures of risk, are not population-based statistics, and are not linearly scaled statistics. Therefore, an HQ above 1, even exceedingly so, does not definitively indicate that there is even one individual expressing the toxicological effect associated with a given chemical to which it was exposed (Tannenbaum, 2005; Bartell, 1996). Therefore, the findings of the Level II Screen are discussed in additional detail in this section to support final recommendations for this stage of the SLERA process.

## 7.2.6.1 Surface Soil Weight of Evidence Discussion

As presented in Section 7.2.2.5, a total of 34 COPECs was identified in surface soil. Ten of these, however, were detected at concentrations below their conservative ESVs, and were only selected as COPECs because they were identified as PBT chemicals. One chemical (nitroguanidine) was selected as a COPEC because no ESV was identified. All surface soil ISM sampling units had at least one COPEC present that exceeded its screening criteria. Some sampling units were obviously more greatly impacted than others, however. **Table 7-7** presents the concentrations of all COPECs by surface soil ISM sampling unit, and **Table 7-8** presents the HQs associated with each COPEC in the individual sampling units.

For metals, the only inorganic chemical that exceeded an HQ of 100 was mercury, which was detected at elevated concentrations in multiple ISM sampling units. Several other metals had HQs greater than 10 (but less than 100), including antimony, cadmium, copper, lead, and silver. Because antimony, cadmium, copper, lead and silver are not identified as PBT chemicals, food chain effects are not considered to be significant, and proceeding to a Level III Baseline evaluation for these chemicals is not considered necessary. For these metals, localized impacts to ecological receptors cannot be ruled out where elevated concentrations are present. However, due to the minimal area of the combined ISM sampling units that make up the EU for the AOC as a whole (2.6 acres), it is unlikely that populations of receptors (which are the endpoints of concern for the ERA) would be affected. Nonmotile (i.e., plants) or small range (i.e., soil invertebrates, small mammals, etc.) could potentially be affected on a local scale, but population compensatory mechanisms as well as avoidance behavior that many organisms exhibit in the presence of contamination would likely result in few, if any, population-level impacts. The one propellant compound, nitroguanidine, could not be evaluated because no ESV was identified. The compound was detected in one out of two samples at a concentration marginally exceeding its reporting limit (**Table 7-7**). Propellant compounds typically are not bioaccumulative, and this chemical was not identified as a PBT compound. Therefore, although the presence of this chemical represents a small uncertainty in this SLERA, nitroguanidine is unlikely to pose a significant threat to ecological receptors.

Three pesticides were identified as COPECs, two of which (alpha-chlordane and lindane) were only selected as COPECs because they are PBT chemicals. Heptachlor was the only pesticide with an HQ above 1 for one sample (**Table 7-8**), and the HQ does not exceed unity when rounded. Although pesticides were used at the former RVAAP, pest control was consistent with standard and legal application procedures at the time. Due to their relatively low concentrations, and the lack of an obvious site-related source such as a spill, these chemicals are considered to be of low significance to ecological receptors.

Sixteen SVOCs were selected as COPECs. Eight of these SVOCs (1,2,4-trichlorobenzene, 1,2dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-methylnaphthalene, dibenzofuran, di-n-butyl phthalate, and pentachlorophenol) were only selected as COPECs because they are considered PBT compounds. The HQs for these chemicals ranged from 0.0008 to 0.25. The presence of these chemicals at these low concentrations suggests that their potential to result in adverse ecological effects is minimal. Six PAHs consisting of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and pyrene as well as bis(2-ethylhexyl)phthalate were detected at several ISM sampling units, resulting in HQs that were all below 5 (**Table 7-8**). PAHs are anthropogenic compounds that are commonly found in the environment due to their widespread generation from the incomplete combustion of fossil fuels. Although PAHs may bioaccumulate in lower trophic level organisms, they are readily metabolized by higher order organisms and are not considered PBT compounds in this SLERA.

Bis(2-ethylhexyl)phthalate is a common laboratory contaminant, and its presence in a single sample resulting in an HQ that marginally exceeds 1 is not considered a significant threat to ecological receptors. Therefore, bis(2-ethylhexyl)phthalate is not considered to be COPECs that require further evaluation for ecological purposes.

The final SVOC COPEC, carbazole, is a heterocycle, which is a PAH in which one of the carbons within the aromatic structure is substituted by a nitrogen atom. Carbazole occurs as a natural constituent of creosote and coal tar (Agency for Toxic Substances and Disease Registry, 2002), and is often collocated with PAHs in the environment. Carbazole was detected in 9 of the 18 ISM sampling units at concentrations ranging from 0.034 to 0.61 mg/kg (**Table 7-7**). Unlike the PAHs, carbazole had very high HQs (maximum HQ of 7,600) in many ISM sampling units (**Table 7-8**) owing to its very low ESV of 0.00008 mg/kg, which is approximately five orders of magnitude lower than PAHs such as benzo(a)pyrene (ESV of 1.1 mg/kg). Given the structural similarity of carbazole to PAHs, the appropriateness of using such a conservative ESV is highly questionable, particularly in light of the fact that soil toxicity studies have shown carbazole exhibits similar toxic responses as PAHs in soil invertebrates (Wassenberg et al., 2005; Sverdrup et al., 2001, 2002a, and 2002b). Therefore, the presence of carbazole represents an uncertainty at the site, but further investigation of this chemical in soil for ecological purposes alone is not recommended.

# 7.2.6.2 Sediment Weight of Evidence Discussion

As presented in Section 7.2.2.5, 29 COPECs were identified in sediment. Eleven of these, however, were detected at concentrations below their conservative ESVs, and were only selected as COPECs because they were identified as PBT chemicals. One chemical (nitroguanidine) was selected as a COPEC because no ESV was identified. Sediment sample SCsd-070M-0001-SD contained 16 COPECs that exceeded screening criteria (8 metals, 1 explosive compound, 6 pesticides/PCBs, and 1 SVOC), while sediment sample SCsd-071M-0001-SD had only three COPECs (all metals) based on concentrations above the screening criteria. **Table 7-9** presents the concentrations of all COPECs by sediment sampling unit, and **Table 7-10** presents the HQs associated with each COPEC in the individual ISM sampling units.

Antimony at sampling unit SCsd-070 and thallium at both sediment ISM sampling units had HQs greater than 10 (but less than 100). Because silver, antimony, and thallium are not identified as PBT chemicals, food chain effects are not considered to be significant, and proceeding to a Level III Baseline evaluation is not considered necessary. Several other non-PBT metals had HQs below 5, and are not considered to be significant.

The MDC for silver was detected over 200 times greater than its ESV in sediment sample SCsd-070M-0001-SD. The MDC for silver also resulted in an HQ greater than 100 and indicates a potential for adverse effects. Silver was not detected in the other sediment sample (SCsd-071M-0001-SD), but was detected at elevated concentrations in soil, particularly surface soil samples from ISM sampling units SCss-060 through SCss-064 which are upgradient of sediment sampling unit SCsd-070. Localized impacts to ecological receptors cannot be ruled out where elevated concentrations, such as the silver concentration at sampling unit SCsd-070, are present; however, due to the small size of the sampling units (and the AOC as a whole), it is unlikely that populations of receptors (which are the endpoints of concern for the ERA) would be affected. Nonmotile (i.e., hydric-adapted vegetation) or small range (i.e., benthic invertebrates, small mammals, etc.) could potentially be affected on a local scale, but population compensatory mechanisms as well as avoidance behavior that many organisms exhibit in the presence of contamination would likely result in few, if any, population-level impacts. The single propellant compound, nitroguanidine, could not be evaluated because no ESV was identified. The compound was detected in both sediment samples at a MDC of 1.2 mg/kg (**Table 7-9**). Propellant compounds typically are not bioaccumulative, and this chemical was not identified as a PBT compound. Therefore, although the presence of this chemical represents a small uncertainty in this SLERA, nitroguanidine is unlikely to pose a significant threat to ecological receptors.

Two PCBs and 12 pesticides were identified as COPECs in sediment, 8 of which were only selected as COPECs because they are PBT chemicals. For those chemicals that exceed screening values, all HQs were below 5 and are not considered to be significant (**Table 7-10**). Pesticides were likely routinely used at the former RVAAP for pest control consistent with standard and legal application procedures at the time. Due to their relatively low concentrations, and the lack of an obvious site-related source, PCBs, and pesticides are considered to be of low significance to ecological receptors.

Four SVOCs were selected as COPECs, three of which (1,2-dichlorobenzene, 1,4-dichlorobenzene, and di-n-butyl phthalate) were only selected as COPECs because they are considered PBT compounds. The HQs for these chemicals ranged from 0.1 to 0.3. The HQ for the one SVOC selected as a COPEC because it exceeded its ESV (2-methylnapthalene) was below 5 and is not considered to be significant (**Table 7-10**).

# 7.2.7 Level II Screen Recommendations

Most of the COPECs detected in surface soil at the Sand Creek Site were detected at concentrations that are unlikely to be ecologically significant. Elevated concentrations of several COPECs (primarily metals and SVOCs) were detected in soil. Exposure to some of these COPECs may result in localized impacts to ecological receptors, but for all COPECs except mercury, no population-level impacts are expected due to the relatively low

concentrations and/or because the small spatial area where elevated concentrations were detected are unlikely to result in exposure to multiple organisms. Mercury, however, was detected at elevated concentrations in several surface soil ISM sampling units. Mercury is a potentially bioaccumulative metal, and its presence over a relatively large percentage of the AOC may result in exposure to higher order receptors through direct as well as indirect (i.e., food chain) pathways. Therefore, with the exception of mercury, no further investigation of COPECs in surface soil (0 to 1 foot) at the AOC is recommended. A Level III Baseline is recommended for mercury in soil to estimate ecological hazards to specific target receptors.

Several chemicals identified as COPECs in sediment overlapped the list of COPECs for soil, but most chemicals were detected at concentrations that are unlikely to be ecologically significant. Some metals, particularly silver (and to a lesser extent antimony and thallium), had elevated HQs, which indicate a potential for adverse effects. Because of the numerous conservative assumptions typical of ERAs, and several resulting uncertainties associated with HQ calculation, HQs only provide order-of-magnitude estimates of the potential for adverse effects, not exact measurements of actual effects on receptor organisms. Additionally, the COPECs in sediment are not PBT chemicals so food chain effects are considered unlikely, and any impacts are expected to be localized. Population-level effects due to exposure to contaminated sediment are not considered likely. Therefore, no further investigation is recommended for any of the COPECs detected in sediment at the AOC.

# 7.3 Level III Baseline Evaluation

The objective of a Level III Baseline evaluation is to estimate hazards to representative endpoint species using a deterministic risk assessment approach (Ohio EPA, 2008). This evaluation is performed in accordance with the ecological CSM presented during the Level II Screen step (Section 7.2.3), modified based on recommendations from the Level II Screen. According to the recommendations from the Level II Screen, the scope of the Level III Baseline evaluation is limited to only evaluating mercury food chain effects in soil. A revised Level III Baseline ecological CSM reflecting this scope is presented in **Figure 7-6**.

## 7.3.1 Exposure Assessment

An estimate of the nature, extent, and magnitude of potential exposure of assessment receptors to COPECs that are present at or migrating from the site is presented in this section, considering both current and reasonably plausible future use of the site. Exposure characterization is critical in further evaluating the risk of chemicals identified as COPECs during the screening process (Section 7.2.2). The exposure assessment has been conducted by linking the magnitude (concentration) and distribution (locations) of the contaminants detected in the media sampled during the investigation, evaluating pathways by which chemicals may

be transported through the environment, and determining the points at which organisms found in the study area may contact contaminants.

#### 7.3.2 Exposure Analysis

An exposure analysis was performed that combines the spatial and temporal distribution of the ecological receptors with those of the COPECs to evaluate exposure. The exposure analysis focuses on the bioavailable chemicals and the means by which the ecological receptors are exposed (i.e., exposure pathways). The focus of the analysis is dependent on the assessment receptors being evaluated as well as the assessment and measurement endpoints.

Exposure pathways consist of four primary components: (1) source and mechanism of contaminant release, (2) transport medium, (3) potential receptors, and (4) exposure route. A chemical may also be transferred between several intermediate media before reaching the potential receptor. All of these components are described in the ecological CSM (Section 7.2.3). If any of these components is not complete, then contaminants in the affected media do not constitute an environmental risk at the site. The major fate and transport properties associated with typical site contaminants are described in subsequent sections. These properties directly affect a contaminant's behavior in each of the exposure pathway components.

Ecological routes of exposure for biota may be direct (bioconcentration) or through the food web via the consumption of contaminated organisms (biomagnification). Direct exposure routes include dermal contact, absorption, inhalation, and ingestion. Examples of direct exposure include animals incidentally ingesting contaminated soil or sediment (i.e., during burrowing or dust-bathing activities), animals ingesting surface water, plants absorbing contaminants by uptake from contaminated sediment or soil, and the dermal contact of aquatic organisms with contaminated surface water or sediment. Given the scarcity of available data for wildlife dermal and inhalation exposure pathways, potential risk from these pathways is not estimated in this SLERA. In addition, these pathways are generally considered to be incidental for most species, with the possible exceptions of burrowing animals and dust-bathing birds.

Food web exposure can occur when terrestrial or aquatic fauna consume contaminated biota. Examples of food web exposure include animals at higher trophic levels consuming plants or animals that bioaccumulate contaminants.

Bioavailability is an important contaminant characteristic that influences the degree of chemical-receptor interaction. The bioavailability of a chemical refers to the degree to which a receptor is able to absorb a chemical from the environmental medium. A chemical's bioavailability is a function of several physical and chemical factors such as grain size, organic

carbon content, water hardness, and pH. Unless site-specific data are available, bioavailability is conservatively assumed to be 100 percent.

Daily doses of COPECs for vertebrate receptors were calculated using standard exposure algorithms. These algorithms incorporate species-specific natural history parameters (i.e., feeding rates, water ingestion rates, dietary composition, etc.) and also use site-specific area use factors (AUFs), as follows:

$$Total \ Daily \ Dose = \left(\frac{\left(\left[Soil_{j} * IR_{soil}\right] + \left[Water_{j} * IR_{water}\right] + \left[\sum_{i=1}^{N} B_{ji} * P_{i} * IR_{food}\right]\right)}{Body \ Weight}\right) * AUF \ Eq. \ 7.1$$

where:

| Soil <sub>j</sub>   | =   | Concentration of COPEC "j" in soil                            |  |  |  |  |
|---------------------|-----|---------------------------------------------------------------|--|--|--|--|
| Water               | j = | Concentration of COPEC "j" in surface water                   |  |  |  |  |
| B <sub>ji</sub>     | =   | Concentration of COPEC "j" in food type "i"                   |  |  |  |  |
| IR <sub>soil</sub>  | =   | Soil ingestion rate                                           |  |  |  |  |
| IR <sub>water</sub> | =   | Surface water ingestion rate                                  |  |  |  |  |
| IR <sub>food</sub>  | =   | Food ingestion rate                                           |  |  |  |  |
| Pi                  |     | = Proportion of food type <sub>i</sub> in receptor diet       |  |  |  |  |
| AUF                 |     | = Area Use Factor (equal to area of EU/home range of receptor |  |  |  |  |
| Body Weight         |     | Body weight of receptor                                       |  |  |  |  |

If sediment was a medium of concern, sediment could be evaluated by replacing soil in Equation 7.1 for aquatic or semiaquatic receptors. Because soil is the only medium of concern for this AOC, the exposure equation for terrestrial organisms is as follows:

Total average daily dose =  $ADD_P + ADD_A + ADD_S x AUF x TUF$ 

where:

| ADD <sub>P</sub> | = | Average daily dose by ingestion of plant matter (mg/kg body wt/d)  |
|------------------|---|--------------------------------------------------------------------|
| ADD <sub>A</sub> | = | Average daily dose by ingestion of animal matter (mg/kg body wt/d) |
| ADDs             | = | Average daily dose by ingestion of soil (mg/kg body wt/d)          |
| AUF              | = | Area Use Factor (unitless)                                         |
| TUF              | = | Temporal Use Factor (unitless)                                     |
|                  |   |                                                                    |

Feeding and drinking rates for site receptors have been established for the former RVAAP and are described in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003). To estimate dose associated with ingested food items, concentrations of COPECs in the vegetation or prey in the species' diet is estimated using bioaccumulation factors (BAFs)

(sometimes referred to as bioconcentration factors [BCFs]). BAFs are based on regression models or scalar variables that reflect the potential for the COPECs to be present in food items at concentrations different from (usually greater than) the ambient environment. Differences in concentration are due to chemical-specific properties of the COPEC that affect its tendency to bioaccumulate in tissue, balanced by the innate ability of the species to regulate body burden levels of the chemical via metabolic and excretory processes.

Selection of appropriate BAFs is a critical component to food chain modeling. General approaches for BAF selection have been discussed in Sample and Suter (1994), EPA (1999a), U.S. Army Environmental Command (USAEC) (2005), and the Ohio EPA Guidance (2008). An approach that is consistent with these sources was followed in the selection of BAFs for the former RVAAP. The general hierarchy for selection of BAFs based on types of sources is as follows:

- Use of regression equations derived from paired field- or laboratory-based measurements.
- Ratio-derived BAFs developed based on paired data of tissue concentrations compared to media concentrations where the BAF is equal to the tissue concentration divided by the concentration in the abiotic medium.
- Modeled equilibrium partitioning-derived BAFs based on physical or chemical characteristics.
- Assumptions based on values common to chemical class.

Both the USAEC (2005) and the EPA (1999a) support the use of ratio BAFs in preference to equilibrium partitioning-based BAFs, which are typically calculated based on factors such as log  $K_{ow}$  values, fraction of organic carbon in soil, or percent of lipids in invertebrates. Other general recommendations provided in the Ohio EPA Guidance (2008) were also followed, including the following:

- For selection of ratio-based BAFs, median values are selected over maximum or other high-end BAFs.
- BAFs for PAH accumulation into mammalian prey are assumed to equal 0 due to the high metabolic breakdown of PAHs in mammals.

Regression equations used to calculate prey tissue concentrations of a specific chemical typically take the following general equation form:

$$Ln (C_{food}) = slope value x ln (C_{abiotic_media}) + intercept value Eq. 7.2$$

where:

 $C_{food}$  = Concentration of chemical in food type  $C_{abiotic\_media}$  = Concentration of chemical in abiotic media

Ratio BAFs can be generally presented as follows:

 $C_{\text{food}} = BAF x (C_{\text{abiotic}_media})$  Eq. 7.3

where:

| C <sub>food</sub> | = | Concentration of chemical in food type     |
|-------------------|---|--------------------------------------------|
| Cabiotic_media    | = | Concentration of chemical in abiotic media |
| BAF               | = | Bioaccumulation Factor                     |

BAFs calculated based on equilibrium partitioning typically use a physical constant of a chemical to generate a BAF. A generalized form for this calculation would be as follows:

 $Log (BAF) = slope value x Log (K_{ow}) + intercept value Eq. 7.4$ 

where:

 $Log (BAF) = Log of the BAF for chemical in food type K_{ow} = Octanol-water partition coefficient$ 

BAFs calculated based on equilibrium partitioning are applied in the same fashion as ratiobased BAFs to generate a tissue concentration value.  $K_{ow}$  values needed for BAFs based on equilibrium partitioning are obtained using the  $K_{ow}$  WIN application in EPA's EPI Suite software (http://www.epa.gov/oppt/exposure/pubs/episuite.htm).

Finally, where ratio-based BAFs are missing and where no equilibrium partitioning method has been developed for calculating BAFs, other methods, such as using BAFs for chemicals in the same class as surrogates, may be presented for establishing ratio-based BAFs. The hierarchies used to select BAFs specific to the various types of biota are presented below:

Soil-to-plants BAFs are also used to evaluate sediment-to-plant uptake at the former RVAAP. Soil-to-plants BAFs are selected using the following specific hierarchy of sources:

- EcoSSLs (EPA, 2010) selected regressions
- Efroymson, R.A., B.E. Sample, and G.W. Suter, 2001. Uptake of Inorganic Chemicals From Soil by Plant Leaves: Regressions of Field Data, Environ. Toxicol. Chem. 20: 2561–2571
- EcoSSLs (EPA, 2010) recommended nonregression BAFs
- International Atomic Energy Agency (IAEA) (1994) BAFs

• Baes, C.E., R.D. Sharp, A.L. Sjoreen, and R.W. Shor, 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture, ORNL-5786, September

Soil-to-invertebrates BAFs are selected using the following hierarchy of sources:

- EcoSSLs (EPA, 2010) selected regressions
- Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, and Ashwood, 1998a. *Development and Validation of Bioaccumulation Models for Earthworms*, ES/ER/TM-220 regressions
- Sample et al. (1998) median BAFs
- Equilibrium BAF calculation method in EPA (2010a) based on Jager, T., 1998. "Mechanistic Approach for Estimating Bioconcentration of Organic Chemicals in Earthworms," *Environ. Toxicol. Chem.*, 17: 2080–2090

Soil-to-mammals BAFs are selected using the following hierarchy or sources:

- EcoSSLs (EPA, 2010) or Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, 1998, *Development and Validation of Bioaccumulation Models for Small Mammals*, ES/ER/TM-219 selected regressions
- EcoSSLs (EPA, 2010) referenced BAFs (Note: per EPA [2010], a BAF of zero is used for all PAHs, trinitrotoluene, and RDX.)
- Sample et al. (1998b) median BAFs
- IAEA (1994) BAFs
- Baes et al. (1984) BAFs (these values were often updated in the newer IAEA [1994] publication)
- EPA (1999b) Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, EPA530-D-99-001A, November (maximum calculated BAFs/BCFs for feeding guilds)

The BAFs used for mercury are presented in **Table 7-11**.

## 7.3.2.1 Terrestrial Ecological Receptor Species

The exposed ecological receptors for the Level III Baseline were identified in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003) based on three criteria, including their ecological relevance, susceptibility to the contaminants likely to be found at the AOC, and consistency with RVAAP management goals, including protection of threatened

and endangered species. Based on these criteria, the following terrestrial receptors were selected for evaluation, representing specific taxonomic and foraging guilds likely to be found at the site:

- Vegetation
  - Variety of grasses, forbs, and trees
- Soil-dwelling invertebrates
  - Earthworms
- Mammalian herbivores
  - Meadow vole
- Worm-eating and/or insectivorous mammals and birds
  - Short-tailed shrew
  - American robin
- Terrestrial top predators
  - Red-tailed hawk
  - Barn owl (a threatened and endangered species)
  - Red fox

These receptors are likely to be present at the facility and were selected consistent with Ohio EPA Guidance (2008). Evaluation of these receptors addresses the assessment endpoints presented in Level II Screen evaluation (Section 7.2.3). For the Level III Baseline, plants and invertebrates are not quantitatively assessed, as the protection of soil plants and invertebrates was already addressed by the comparisons to ESVs in the Level II Screen evaluation . Justification for selection of ecological receptors and their associated exposure parameters are presented in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003) and are summarized in **Table 7-12**.

## 7.3.2.2 Exposure Characterization Summary

The estimated chemical intakes for each exposed receptor group under each exposure pathway and scenario are presented in the ecological risk assessment tables in **Appendix H**. These intake estimates are combined with the COPEC toxicity values, discussed in the following section, to derive estimates and characterize potential ecological risk.

# 7.3.3 Toxicity Assessment

The toxicity assessment primarily describes the development of TRVs. TRVs provide a reference point for the comparison of toxicological effects upon exposure to a contaminant and are compared against calculated receptor doses. TRVs are not used for evaluating plants or invertebrates, which are evaluated in terms of potential hazards at a community scale rather than a species scale.

# 7.3.3.1 Development of Toxicity Reference Values

TRVs focusing on the growth, survival, and reproduction of species and/or populations have been developed for the Sand Creek Site SLERA. Empirical data are available for the specific receptor-endpoint combinations in some instances. The No Observed Adverse Effect Level (NOAEL) is a dose of each COPEC that produced no known adverse effects in the test species. The NOAEL was judged to be an appropriate toxicological endpoint since it would provide the greatest degree of protection to the receptor species. In addition, the Lowest Observed Adverse Effect Level (LOAEL) was used as a point of comparison for risk management decisions. The LOAEL is the lowest concentration in a laboratory test setting that is associated with an effect, and is considered to be a more realistic (although still conservative) endpoint. In instances where data are unavailable for a site-associated COPEC, toxicological information for surrogate chemicals or groups of chemical was used. Safety factors were used to adjust for these differences and extrapolate risks to the site's receptors at the NOAEL and/or LOAEL endpoint. This process is described in the following paragraphs.

Because the measurement endpoint ranges from the NOAEL to the LOAEL, preference is given to chronic studies noting concentrations at which no adverse effects were observed and those for which the lowest concentrations associated with adverse effects were observed. Where data are unavailable for the exposure of a receptor to a COPEC, data for a surrogate chemical or group of chemicals may be considered.

TRVs are developed separately for birds and mammals; it is inappropriate to apply TRVs across classes (i.e., a TRV for a bird species may not be used to estimate hazard for a mammal species). In instances where TRVs for multiple avian or mammalian species are supported, the TRV for the most similar species to the measurement receptor based on feeding strategy and physiological attributes were used. For example, a mammalian TRV for mercury based on both mink and mouse test species data are available. The mink TRV was used in the food chain model to evaluate the terrestrial mammalian carnivore (i.e., the red fox), while the mouse TRV was used for the short-tailed shrew and meadow vole due to closer taxonomic similarity and foraging patterns.

TRVs represent NOAELs and LOAELs with the safety factors presented in Wentsel et al. (1996), applied to toxicity information that was derived from studies other than no effects or

lowest effects studies (Figure 7-7). Because NOAELs and LOAELs for the selected wildlife receptor species are based on data from test species that are usually different from the species of concern, the previous ERA often applied a mathematical adjustment to the TRVs using a power function of the ratio of species body weights (i.e., Sample et al., 1996). This practice is often referred to as allometric scaling. Alternately, uncertainty factors have also been used to adjust the TRVs when the toxicity values were based on a different species from the evaluated receptor to account for the potential differences in species' chemical sensitivities. However, in recent years, these practices have been discouraged by most scientific and regulatory groups. Recent reviews of these practices (Ohio EPA, 2008; Allard et al., 2009) have concluded that the use of allometric scaling of TRVs does not reflect a sound application of toxicological or ecological risk practices because supporting data for this practice are limited, and the ratio relationships used for the mathematical conversions were developed based on acute (rather than chronic) toxicity data. Allard et al. (2009) also concluded that uncertainty factors based on an arbitrary multiplier should not be used without a scientific basis for their application. Therefore, the use of toxicity data without adjustments as reported in the literature is regarded as the most technically sound approach and is adopted for this SLERA. The TRVs used for the Level III Baseline are summarized in **Tables 7-13** and **7-14** for mammals and birds, respectively.

## 7.3.3.2 Risk Characterization

The risk characterization phase integrates information on exposure, exposure-effects relationships, and defined or presumed target populations. The result is a determination of the likelihood, severity, and characteristics of adverse effects to environmental stressors present at a site. Because potential adverse effects to terrestrial and aquatic plants and invertebrates have been qualitatively assessed during the Level II Screen (Section 7.2.2), the Level III Baseline risk characterization focuses on potential impacts to assessment receptors.

For the semi-quantitative predictive assessment, TRVs and average daily doses (ADDs) were calculated and used to generate food chain HQs (Wentsel et al., 1996). HQs are calculated by summing intake doses across all exposure pathways for each chemical for a given receptor to generate an ADD and dividing by the TRV. HQs for those chemicals that have a similar mode of toxicological action are typically summed to account for cumulative effects.

# 7.3.3.3 Hazard Estimation for Terrestrial Wildlife

The hazard estimation was performed through a series of quantitative HQ calculations that compare receptor-specific exposure doses with TRVs. The same HQ guidelines for assessing the risk posed from contaminants described in Section 7.2.6.

The HQs for mercury are based on both NOAEL and LOAEL values that were calculated for all six representative receptor species: the meadow vole, short-tailed shrew, American robin,

red-tailed hawk, barn owl, and red fox. Only the more conservative NOAEL-based HQs were calculated for the barn owl receptor because it represents a threatened species. The MDC and average concentration of all the sampling units were used as EPCs, and HQs were also calculated for each sampling unit individually to determine where potential hazards occur. Two results tables were created; **Table 7-15** and **Table 7-16**. The first table (**Table 7-15**) assumed that the receptors used the site 100 percent of the time, and an AUF adjustment was not performed. The American robin was the only receptor that had an HQ that exceeded 1. Both the NOAEL- and LOAEL-based HQs exceeded 1 for ISM sampling units SCss-057, -058, -059, -060, and -061, and NOAEL-based HQs exceeded 1 for sampling units SCss-062 and -063. For the second table (Table 7-16), an adjusted AUF was used to calculate the HQs based on the size of each of the sampling units and the sum of the area of all the sampling units that constitute the EU (2.6 acres) was used in the adjusted AUFs for the MDC and average concentrations. The adjusted AUFs were calculated by dividing the EU area by the home range of each of the receptors. Using this approach, no individual ISM sampling unit had an HQ greater than 1, although the site as a whole exceeded 1 for the robin for both the NOAEL- and LOAEL-based HQs, using both the maximum and average concentrations. The adjusted AUF used to calculate the HQs for the maximum and average concentrations for the robin in **Table** 7-16 was 4.2 (i.e., the EU area [2.6 acres] divided by the robin home range [0.618 acres]).

## 7.3.4 Uncertainty Analysis

Several factors contribute to the overall variability and uncertainty inherent in ERAs. Variability is due primarily to measurement error and natural variability of chemical concentrations in environmental media. Laboratory media analyses, sampling design/methods, and receptor study design are the major sources of this kind of error. Uncertainty, on the other hand, is associated primarily with deficiency or irrelevancy of effects, exposure, or habitat data to actual ecological conditions at the site. Species physiology, feeding patterns, and nesting behavior are poorly predictable. Therefore, all toxicity information derived from toxicity testing, field studies, or observation have uncertainties associated with them. Laboratory studies conducted to obtain site-specific, measured information often suffer from poor relevance to the actual exposure and uptake conditions on site (i.e., bioavailability, exposure, assimilation, etc.) are generally greater under laboratory conditions as compared to field conditions. Calculating an estimated value based on a large number of assumptions is often the only alternative to the accurate, albeit costly, methods of direct field or laboratory observation, measurement, and/or testing. Finally, habitat- or sitespecific species may be misidentified if, for example, the observational assessment results are based on only one or even two brief site reconnaissance surveys.

The uncertainty analysis describes many of the major assumptions made for the SLERA. When discernible, the direction of bias caused by each assumption (i.e., whether the uncertainty

results in an overestimate or underestimate of risk) is provided as well. Where possible, a description of recommendations for minimizing the identified uncertainties is also presented if the SLERA progresses to higher level assessment phases. The most important uncertainties associated with this SLERA are discussed in the following paragraphs.

#### 7.3.4.1 Assumptions of Bioavailability

The assumption that COPECs are 100 percent bioavailable likely overestimates the potential for adverse effects. The duration that has lapsed since the contaminant release affects bioavailability as the contaminant becomes sequestered or transformed within the environmental media. Sequestration, transformation, and bioavailability are influenced by medium characteristics including pH, temperature, and organic carbon content.

# **7.3.4.2** Use of Laboratory-Derived or Empirically Estimated Partitioning and Transfer Factors

The use of laboratory-derived or empirically estimated partitioning and transfer factors to predict COPEC concentrations in plants, invertebrates, and prey species, likely overestimates potential risks. As discussed previously, the incorporation of COPECs into the food chain is influenced by the characteristics of the exposure medium, which likely differs from that used in the laboratory to derive partitioning and transfer factors.

#### 7.3.4.3 Use of Laboratory-Derived Toxicity Reference Values

The use of laboratory-derived TRVs may overestimate or underestimate the potential for adverse effects. The method of administration of the contaminant in the laboratory is typically different than that experienced in the wild by the receptors. Also, laboratories typically use "naïve" organisms in their toxicity testing, which are likely to be much more sensitive to toxicants than organisms living in the wild or at the site, which have likely developed resistances or have otherwise adapted to ambient concentrations of chemicals in their environment.

#### 7.3.4.4 Use of the HQ Method to Estimate Risks to Populations or Communities

The calculation of HQs also introduces uncertainty. The following limitations associated with HQs (Tannenbaum et al., 2003) are noted:

- HQs are not measures of risk.
- HQs are not population based.
- HQs are not linearly scaled.
- HQs are often produced that are unrealistically high and toxicologically impossible (i.e., estimated HQs greater than 1,000, although HQs generated for the Sand Creek

Site SLERA do not appear to fall into this category, with the possible exception of carbazole).

• Trace soil concentrations of inorganic chemicals (including concentrations well below BSVs) can lead to HQ threshold exceedances.

Therefore, HQs greater than 1 do not mean that adverse ecological effects are occurring or may occur in the future.

# 7.3.4.5 Sampling and Analytical Limitations

It is not possible to completely characterize the nature and extent of contamination on any site. Uncertainties arise from limits on the number of locations that can be sampled. The sampling protocol used at the Sand Creek Site, however, was designed to optimize efficiency of the sampling effort and reduce uncertainty by providing coverage of the affected area using an ISM sampling approach that is designed to provide a more realistic estimate of the average concentrations of chemicals at the site.

# 7.3.4.6 Identifying BSV Chemicals

Metals are judged to be present at concentrations comparable to background if the MDC does not exceed the BSV. The comparison of "average" concentrations as represented by ISM sampling results to a BSV that is based on discrete background samples may be inappropriate because the distributions of data produced by the two methods are typically different (USACE, 2009). The direction of bias is unknown. However, because the BSVs are intended to be conservative representatives of BSVs, comparing an ISM result to the BSV should typically provide the information necessary to make a sound decision as to whether the chemical is present at concentrations greater than BSVs.

# 7.3.5 Level III Baseline Conclusions and Recommendations

Mercury in soil was the only COPEC recommended to be evaluated under the Level III Baseline evaluation following the Level II Screen (Section 7.2.7). Food chain modeling was used to estimate ecological hazards to six avian and mammalian representative species to address assessment endpoints designed to be protective of terrestrial receptors (the protection of plants and terrestrial invertebrates were assessment endpoints that were previously addressed during the Level II Screen, which evaluates direct toxicity). ADDs of mercury were calculated for the six receptor species and compared to TRVs to calculate an HQ. Only the robin had an HQ greater than 1, which indicates that potential hazards may exist to omnivorous birds foraging at the site. The robin HQ calculated for the entire Sand Creek Site using the average concentration of the sampling units was 1.8 using the LOAEL TRV. The HQs calculated for the individual sampling units exceeded 1 at surface soil ISM sampling units SCss-061 (both NOAEL and LOAEL HQs) and sampling units SCss-062
and SCss-063 (NOAEL HQs only). When AUFs were incorporated into the calculation, however, none of the individual sampling units had HQs greater than 1.

It is important to state that the finding of HQs greater than 1 does not necessarily indicate that adverse impacts are occurring. The food chain model has several conservative assumptions deliberately incorporated into its calculations to reduce the likelihood of producing a finding that no risk exists, when in fact a risk might be present (i.e., a "Type II" error). However, the potential for adverse effects associated with exposure to mercury must take the conservative nature of these factors into account. For example, the food chain model assumes that mercury is 100 percent bioavailable. In reality, when a chemical is released to the environment, it reacts with other compounds and is affected by ambient conditions that often reduce the chemical's ability to be absorbed by and/or retained in an organism. For example, metals released to terrestrial systems often sorb to soil, reducing their bioavailability. Furthermore, the toxicity studies upon which TRVs are based are highly conservative. These studies typically use naive (i.e., laboratory) organisms comprised of a single genetic strain that have no inherent resistance to chemical insults. Nonlaboratory organisms have both a more diverse genetic makeup and exposure history to ambient levels of chemicals (both natural and anthropogenic in origin) that favor the development of resistances to chemical exposure in nature. Furthermore, the life history characteristics of the affected receptor(s) must be considered. Like most insectivorous birds, the robin is a transient (or seasonal) migrant. Some individuals migrate south to warmer climates during the winter, and individuals that remain during the colder months are nomadic, moving from area to area based on food supplies. Therefore, the assumption that the robin spends 100 percent of its time at the Sand Creek Site over the course of a year is highly conservative. A final point of emphasis is that the endpoint of concern for a non-threatened or endangered species, such as the robin, is protection of the population (see **Table 7-6**). The Sand Creek Site is only approximately 1 acre in size, while the home range for an individual robin is approximately 0.9 acres. Therefore, it is highly unlikely that sufficient exposure would occur to multiple individuals (i.e., a local population of robins) within this 1-acre area such that adverse population effects would occur.

Because the site as a whole had HQs less than 1 for all the receptors evaluated using the LOAEL derived TRV and considering AUFs, no additional evaluations or investigations from an ecological perspective are warranted at this AOC. The only HQ greater than 1 was for mercury for the robin and it was based on very conservative exposure parameters. Considering the EPC, localized impacts to omnivorous birds associated with exposure to mercury are not likely at the AOC. Because the conservative assumptions of the food chain model, adverse effects to insectivorous birds as a result of exposure to mercury in soil are not considered likely. Although the HQ was greater than 1 for the robin, which indicates that potential hazards could exist to omnivorous birds foraging exclusively at the site. It is important to state that the

finding of HQs greater than 1 does not necessarily indicate that adverse impacts are occurring. Additionally, the size of the entire AOC would only support one breeding pair of the American robin. The AOC is not large enough to support very many birds, especially as foraging habitat. Therefore, no further evaluation from an ecological risk perspective is warranted.



Figure 7-1 Vegetation Alliance Map

Project Number: 133616



Figure 7-2 Plant Community Map

Project Number: 133616



Figure 7-3 Surveyed Wetlands Map



029

SC/RVAAP

IS/AE/RIFS/RIFS

rcgisprod3\MAMMS\Ra

pbtrpgi01\a

File Path

Date:

Figure 7-4 Ecological Conceptual Site Model for Level II Screen



Figure 7-5 Preliminary Ecological Conceptual Site Model for Level III Baseline



Figure 7-6 Refined Ecological Conceptual Site Model for Level III Baseline

# Figure 7-7 Procedural Flow Chart for Deriving Toxicity Reference Values from Class-Specific Toxicity Data



|                    |                          |                 | Depth of Sample |      |                                                                       |
|--------------------|--------------------------|-----------------|-----------------|------|-----------------------------------------------------------------------|
| Sample Location    | Sample Number            | Sample Date     | (feet           | bgs) | Analyses                                                              |
| Surface Soil Sampl | les Used in the Ecologic | al Risk Assessn | nent            |      |                                                                       |
| SCss-057           | SCss-057D-0001-SO        | 9/24/10         | 0               | 1    | VOCs                                                                  |
| SCss-057           | SCss-057M-0001-SO        | 9/24/10         | 0               | 1    | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome |
| SCss-058           | SCss-058M-0001-SO        | 9/23/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-059           | SCss-059M-0001-SO        | 9/23/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-060           | SCss-060M-0001-SO        | 9/23/10         | 0               | 1    | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-061           | SCss-061M-0001-SO        | 9/23/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-062           | SCss-062M-0001-SO        | 9/22/10         | 0               | 1    | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-063           | SCss-063M-0001-SO        | 9/22/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-064           | SCss-064M-0001-SO        | 9/22/10         | 0               | 1    | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-065           | SCss-065M-0001-SO        | 9/22/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-066           | SCss-066M-0001-SO        | 9/22/10         | 0               | 1    | Explosives, Metals, SVOCs, Hex. Chrome                                |
| SCss-067           | SCss-067M-0001-SO        | 9/21/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-068           | SCss-068D-0001-SO        | 9/21/10         | 0               | 1    | VOCs                                                                  |
| SCss-068           | SCss-068M-0001-SO        | 9/21/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-069           | SCss-069M-0001-SO        | 9/24/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-072           | SCss-072M-0001-SO        | 11/9/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-073           | SCss-073M-0001-SO        | 11/9/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |
| SCss-074           | SCss-074M-0001-SO        | 11/9/10         | 0               | 1    | Explosives, Metals, SVOCs                                             |

# Table 7-1. Ecological Risk Assessment Data Set for Surface Soils, Sediment, and Surface Water.

## Table 7-1. Ecological Risk Assessment Data Set for Surface Soils, Sediment, and Surface Water (continued).

| Sample Location   | Sample Number                                           | Sample<br>Date | Depth of<br>Sample<br>(feet bgs) |     | Analyses                                                                                          |  |  |  |  |
|-------------------|---------------------------------------------------------|----------------|----------------------------------|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|
| SCss-075          | SCss-075M-0001-SO                                       | 11/9/10        | 0                                | 1   | Explosives, Metals, SVOCs                                                                         |  |  |  |  |
| SCss-076          | SCss-076M-0001-SO                                       | 11/9/10        | 0                                | 1   | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome                             |  |  |  |  |
| Sediment Samples  | Sediment Samples Used in the Ecological Risk Evaluation |                |                                  |     |                                                                                                   |  |  |  |  |
| SCsd-070          | SCsd-070M-0001-SD                                       | 9/28/10        | 0                                | 0.5 | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome                             |  |  |  |  |
| SCsd-071          | SCsd-071D-0001-SD                                       | 9/28/10        | 0                                | 0.5 | VOCs                                                                                              |  |  |  |  |
| SCsd-071          | SCsd-071M-0001-SD                                       | 9/28/10        | 0                                | 0.5 | Exp/Prop, Metals, Pesticides, PCBs, SVOCs, Total Cyanide, Hex. Chrome                             |  |  |  |  |
| Surface Water San | nples Used in the Ecolog                                | gical Risk Eva | luation                          |     |                                                                                                   |  |  |  |  |
| S-7               | FSW-SW-011-0000                                         | 6/24//03       | NA                               | NA  | Explosives, Metals, PCBs, Pesticides, SVOCs, Total Cyanide, Ammonia, Phosphorus, Nitrate          |  |  |  |  |
| S-7               | FSW-SW-051-0000                                         | 9/17/03        | NA                               | NA  | Explosives, Metals, SVOCs                                                                         |  |  |  |  |
| SCsw-001          | SCsw-001-0001-SW                                        | 9/18/03        | NA                               | NA  | Exp/Prop, Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals, PCB, Pesticides, SVOCs, VOCs |  |  |  |  |
| SCsw-002          | SCsw-002-0001-SW                                        | 9/18/03        | NA                               | NA  | Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals                                         |  |  |  |  |
| SCsw-003          | SCsw-003-0001-SW                                        | 9/18/03        | NA                               | NA  | Field Tests <sup>a</sup> , Gen Chem <sup>b</sup> , Metals                                         |  |  |  |  |

<sup>a</sup> denotes field tests for surface water included conductivity, pH, oxygen, temperature, and turbidity.

<sup>b</sup> denotes general chemistry included analysis for asbestos.

bgs denotes below ground surface.

Exp denotes explosives.

Gen. Chem. denotes general chemistry.

Hex. Chrome denotes hexavalent chromium.

NA denotes not applicable.

PCB denotes polychlorinated biphenyl.

Prop denotes propellants.

SVOC denotes semivolatile organic compound.

VOC denotes volatile organic compound.

|                                   |        | Range of Values, mg/kg |              |    |        |             |         |                 |               |        |                   |                     |
|-----------------------------------|--------|------------------------|--------------|----|--------|-------------|---------|-----------------|---------------|--------|-------------------|---------------------|
|                                   | De     | etected Co             | ncentrations |    | Repor  | ting Limits | DCV 3   |                 |               |        |                   |                     |
| Site-Related Chemical             | Min    | VQ                     | Max          | VQ | Min    | Max         | (mg/kg) | ESV"<br>(mg/kg) | Below<br>ESV? | HQ     | PBT? <sup>a</sup> | COPEC? <sup>c</sup> |
| General Chemistry                 |        |                        |              |    |        |             |         |                 |               |        |                   |                     |
| Cyanide, Total                    | 0.3    | J                      | 0.39         | J  | 0.39   | 0.39        |         | 1.33            | Yes           | 0.3    | No                | No (b)              |
| Inorganics                        |        |                        |              |    |        |             |         |                 |               |        |                   |                     |
| Antimony                          | 0.75   |                        | 17.1         |    | 0.28   | 5.5         | 0.96    | 0.27            | No            | 63     | No                | Yes                 |
| Arsenic                           | 4.5    |                        | 36.6         |    | 0.46   | 9.1         | 15.4    | 18              | No            | 2.0    | No                | Yes                 |
| Barium                            | 1.5    |                        | 764          |    | 0.028  | 0.55        | 88.4    | 330             | No            | 2.3    | No                | Yes                 |
| Beryllium                         | 0.41   |                        | 1.1          |    | 0.024  | 0.24        | 0.88    | 21              | Yes           | 0.05   | No                | No (b)              |
| Cadmium                           | 0.057  |                        | 12.9         |    | 0.021  | 0.43        | 0       | 0.36            | No            | 36     | No                | Yes                 |
| Chromium                          | 0.26   |                        | 188          |    | 0.064  | 1.3         | 17.4    | 26              | No            | 7.2    | No                | Yes                 |
| Cobalt                            | 6.7    |                        | 19.7         |    | 0.05   | 1           | 10.4    | 13              | No            | 1.5    | No                | Yes                 |
| Copper                            | 0.49   |                        | 726          |    | 0.2    | 4.1         | 17.7    | 28              | No            | 26     | No                | Yes                 |
| Lead                              | 0.88   |                        | 405          |    | 0.14   | 2.8         | 26.1    | 11              | No            | 37     | No                | Yes                 |
| Mercury                           | 0.026  |                        | 24.6         |    | 0.008  | 0.85        | 0.036   | 0.00051         | No            | 48,235 | Yes               | Yes                 |
| Nickel                            | 0.083  | J                      | 48.2         |    | 0.062  | 1.2         | 21.1    | 38              | No            | 1.3    | No                | Yes                 |
| Selenium                          | 0.13   |                        | 3.1          |    | 0.43   | 8.5         | 1.4     | 0.52            | No            | 6.0    | No                | Yes                 |
| Silver                            | 0.095  | J                      | 256          |    | 0.057  | 60          | 0       | 4.2             | No            | 61     | No                | Yes                 |
| Thallium                          | 0.14   | J                      | 3.2          | J  | 0.28   | 2.8         | 0       | 1               | No            | 3.2    | No                | Yes                 |
| Zinc                              | 0.96   |                        | 373          |    | 0.12   | 2.4         | 61.8    | 46              | No            | 8.1    | No                | Yes                 |
| <b>Explosives and Propellants</b> |        |                        |              |    |        |             |         |                 |               |        |                   |                     |
| 2,4,6-Trinitrotoluene             | 0.26   | J                      | 3.9          |    | 0.43   | 0.44        |         | 6.4             | Yes           | 0.6    | No                | No (b)              |
| 2-Amino-4,6-Dinitrotoluene        | 0.26   | J                      | 0.26         | J  | 0.43   | 0.44        |         | 2.1             | Yes           | 0.1    | No                | No (b)              |
| Nitroguanidine                    | 0.64   |                        | 0.64         |    | 0.16   | 0.25        |         | NA              | Yes           | NA     | No                | Yes                 |
| Pesticides                        |        | •                      |              |    |        |             |         |                 |               |        |                   |                     |
| 4,4'-DDD                          | 0.0014 | J                      | 0.0023       | J  | 0.0024 | 0.0024      |         | 0.021           | Yes           | 0.11   | Yes               | No (d)              |
| 4,4'-DDT                          | 0.0015 | J                      | 0.0017       | J  | 0.0024 | 0.0024      |         | 0.021           | Yes           | 0.08   | Yes               | No (d)              |
| alpha-Chlordane                   | 0.0015 | J                      | 0.0015       | J  | 0.0024 | 0.0041      |         | 0.224           | Yes           | 0.01   | Yes               | Yes                 |
| Heptachlor                        | 0.001  | T                      | 0.0081       | I  | 0.0024 | 0.0024      |         | 0.00598         | No            | 14     | Yes               | Yes                 |

# Table 7-2. Summary of Screening Results for COPECs in Surface Soil (0 to 1 foot).

|                              |        | Range of Values, mg/kg |              |    |         |            |         |         |        |        |                   |                     |
|------------------------------|--------|------------------------|--------------|----|---------|------------|---------|---------|--------|--------|-------------------|---------------------|
|                              | Det    | tected Co              | ncentrations |    | Reporti | ing Limits | DCVa    | ECVa    | Dolorr |        |                   |                     |
| Site-Related Chemical        | Min    | VQ                     | Max          | VQ | Min     | Max        | (mg/kg) | (mg/kg) | ESV?   | HQ     | PBT? <sup>a</sup> | COPEC? <sup>c</sup> |
| Lindane                      | 0.0013 | J                      | 0.0013       | J  | 0.0024  | 0.0024     |         | 0.005   | Yes    | 0.26   | Yes               | Yes                 |
| Methoxychlor                 | 0.0016 | J                      | 0.0016       | J  | 0.0024  | 0.0024     |         | 0.0199  | Yes    | 0.08   | Yes               | No (d)              |
| Semivolatile Organic Compour | nds    |                        |              |    |         |            |         |         |        |        |                   |                     |
| 1,2,4-Trichlorobenzene       | 0.027  | J                      | 0.027        | J  | 0.41    | 0.43       |         | 20      | Yes    | 0.001  | Yes               | Yes                 |
| 1,2-Dichlorobenzene          | 0.028  | J                      | 0.11         | J  | 0.41    | 0.43       |         | 2.96    | Yes    | 0.04   | Yes               | Yes                 |
| 1,3-Dichlorobenzene          | 0.031  | J                      | 0.031        | J  | 0.41    | 0.43       |         | 37.7    | Yes    | 0.0008 | Yes               | Yes                 |
| 1,4-Dichlorobenzene          | 0.022  | J                      | 0.27         | J  | 0.41    | 0.43       |         | 20      | Yes    | 0.01   | Yes               | Yes                 |
| 2-Methylnaphthalene          | 0.045  | J                      | 0.53         |    | 0.41    | 0.43       |         | 3.24    | Yes    | 0.2    | Yes               | Yes                 |
| Acenaphthene                 | 0.029  | J                      | 0.44         |    | 0.41    | 0.43       |         | 29      | Yes    | 0.02   | No                | No (b)              |
| Acenaphthylene               | 0.029  | J                      | 0.16         | J  | 0.41    | 0.43       |         | 29      | Yes    | 0.006  | No                | No (b)              |
| Anthracene                   | 0.026  | J                      | 1.1          |    | 0.41    | 0.43       |         | 29      | Yes    | 0.04   | No                | No (b)              |
| Benzo(a)anthracene           | 0.027  | J                      | 2.6          |    | 0.41    | 0.43       |         | 1.1     | No     | 2.4    | No                | Yes                 |
| Benzo(a)pyrene               | 0.026  | J                      | 2.4          |    | 0.41    | 0.43       |         | 1.1     | No     | 2.2    | No                | Yes                 |
| Benzo(b)fluoranthene         | 0.039  | J                      | 4.8          |    | 0.41    | 0.43       |         | 1.1     | No     | 4.4    | No                | Yes                 |
| Benzo(g,h,i)perylene         | 0.031  | J                      | 0.69         |    | 0.41    | 0.43       |         | 1.1     | Yes    | 0.6    | No                | No (b)              |
| Benzo(k)fluoranthene         | 0.027  | J                      | 1.4          |    | 0.41    | 0.43       |         | 1.1     | No     | 1.3    | No                | Yes                 |
| Benzoic Acid                 | 0.39   | J                      | 0.57         | J  | 0.99    | 2.1        |         | 1       | Yes    | 0.6    | No                | No (b)              |
| Bis(2-Ethylhexyl)phthalate   | 0.1    | J                      | 1.7          |    | 1       | 1.1        |         | 0.925   | No     | 1.8    | Yes               | Yes                 |
| Carbazole                    | 0.034  | J                      | 0.61         |    | 0.41    | 0.43       |         | 0.00008 | No     | 7,625  | No                | Yes                 |
| Chrysene                     | 0.049  | J                      | 2.7          |    | 0.41    | 0.43       |         | 1.1     | No     | 2.5    | No                | Yes                 |
| Dibenzo(a,h)anthracene       | 0.055  | J                      | 0.28         | J  | 0.41    | 0.43       |         | 1.1     | Yes    | 0.25   | No                | No (b)              |
| Dibenzofuran                 | 0.027  | J                      | 0.33         | J  | 0.41    | 0.43       |         | 6.1     | Yes    | 0.05   | Yes               | Yes                 |
| Diethyl Phthalate            | 0.069  | J                      | 0.14         | J  | 0.41    | 0.43       |         | 100     | Yes    | 0.001  | No                | No (b)              |
| Di-n-Butyl Phthalate         | 0.082  | J                      | 0.47         |    | 0.41    | 0.43       |         | 200     | Yes    | 0.002  | Yes               | Yes                 |
| Fluoranthene                 | 0.04   | J                      | 4.3          |    | 0.41    | 0.43       |         | 29      | Yes    | 0.15   | No                | No (b)              |
| Fluorene                     | 0.031  | J                      | 0.47         |    | 0.41    | 0.43       |         | 29      | Yes    | 0.02   | No                | No (b)              |
| Indeno(1,2,3-cd)pyrene       | 0.025  | J                      | 0.81         |    | 0.41    | 0.43       |         | 1.1     | Yes    | 0.7    | No                | No (b)              |

# Table 7-2. Summary of Screening Results for COPECs in Surface Soil (0 to 1 foot) (continued).

## Table 7-2. Summary of Screening Results for COPECs in Surface Soil (0 to 1 foot) (continued).

|                       |                         | Range of Values, mg/kg |      |                         |      |              |         |         |      |       |                   |                     |
|-----------------------|-------------------------|------------------------|------|-------------------------|------|--------------|---------|---------|------|-------|-------------------|---------------------|
|                       | Detected Concentrations |                        |      | <b>Reporting Limits</b> |      | <b>BSV</b> a | FSV a   | Below   |      |       |                   |                     |
| Site-Related Chemical | Min                     | VQ                     | Max  | VQ                      | Min  | Max          | (mg/kg) | (mg/kg) | ESV? | HQ    | PBT? <sup>a</sup> | COPEC? <sup>c</sup> |
| Isophorone            | 0.051                   | J                      | 0.2  | J                       | 0.41 | 0.43         |         | 139     | Yes  | 0.001 | No                | No (b)              |
| Naphthalene           | 0.028                   | J                      | 0.33 | J                       | 0.41 | 0.43         |         | 29      | Yes  | 0.01  | No                | No (b)              |
| Pentachlorophenol     | 0.4                     | J                      | 0.52 | J                       | 1    | 1.1          |         | 2.1     | Yes  | 0.2   | Yes               | Yes                 |
| Phenanthrene          | 0.026                   | J                      | 3.4  |                         | 0.41 | 0.43         |         | 29      | Yes  | 0.1   | No                | No (b)              |
| Pyrene                | 0.035                   | J                      | 4    |                         | 0.41 | 0.43         |         | 1.1     | No   | 3.6   | No                | Yes                 |

<sup>a</sup> denotes see Appendix G.

<sup>b</sup> denotes chemicals with MDCs lower than the BSV are not considered to be site related (background values are for inorganics only).

<sup>c</sup> denotes selection of COPECs.

Yes denotes COPEC exceeds the ESV and BSV or is a PBT pollutant.

No(a) denotes COPEC is not a PBT pollutant or site related (MDC is less than BSV).

No(b) denotes COPEC is not a PBT pollutant or site related (MDC is less than ESV).

No(c) denotes COPEC is an essential nutrient.

No (d) denotes even though the chemical is bioaccumulative, the ESV is protective of food chain effects.

--- denotes no BSV is available.

BSV denotes background screening value.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

J denotes reported result is an estimated value.

HQ denotes hazard quotient

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

NA denotes not applicable.

PBT denotes persistent, bioaccumulative, and toxic.

VQ denotes validation qualifier.

#### Range of Values, mg/kg **Reporting Limits Detected Concentrations** BSV<sup>a</sup> ESV<sup>a</sup> Below VQ VQ (mg/kg) Min Min ESV? HQ **Site-Related Chemical** Max Max (mg/kg) I **General Chemistry** 0.1 0.32 0.36 0.39 0.39 No 3.6 Cyanide, Total I No T ---Inorganics 0.45 1.4 0.36 23 Antimony 8.4 1.4 0 No No 75.7 231 0.14 0.14 123 48 No 4.8 No Barium 73 Beryllium 0.41 0.47 0.061 0.061 0.38 0.006 No Yes 0.19 2.7 0 0.99 2.7 0.11 0.11 No No Cadmium 40.9 107 0.32 0.32 18.1 43.4 No 2.5 No Chromium 27.6 16.6 53.7 1 31.6 1.7 Yes Copper 1 No 7.2 104 0.71 0.71 27.4 35.8 No 2.9 No Lead 0.049 0.3 0.059 0.18 1.7 No 0.008 0.0081 No Mercury 20 21.1 0.31 0.31 17.7 22.7 0.9 Nickel Yes No 57 0.5 Silver 116 116 0.29 0 No 232 No 27 1.1 1.2 0.71 0.71 0.89 0.044 No No Thallium **Explosives and Propellants** 0.69 1.2 0.16 0.16 NA Yes NA No Nitroguanidine ---**Polychlorinated Biphenyls** 0.0598 Arochlor 1254 0.15 0.15 0.051 0.051 2.5 Yes No ---0.094 1.6 Yes Arochlor 1262 0.094 0.051 0.051 0.0598 No ---Pesticides 0.00061 0.0034 0.0024 0.0024 0.00488 4,4'-DDD 0.7 Yes J ---Yes 0.0043 4,4'-DDE 0.004 Yes 0.0043 0.0041 ---0.00316 No 1.4 4,4'-DDT 0.00091 0.0068 0.0024 0.0024 0.00416 No 1.6 Yes J ---Yes alpha-Chlordane 0.0023 0.0023 0.004 0.0041 0.00324 0.7 I \_\_\_ Yes beta-BHC 0.0012 0.0012 0.004 0.0041 0.006 Yes 0.2 Yes I I ---

# Table 7-3. Summary of Screening Results for COPECs in Sediment (0 to 0.5 foot).

### Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

| PBT?ª | COPEC? <sup>c</sup> |
|-------|---------------------|
|       |                     |
|       | Yes                 |
|       |                     |
|       | Yes                 |
| 1     | Yes                 |
| 1     | No (b)              |
|       | Yes                 |
| I     | Yes                 |
| S     | Yes                 |
| I     | Yes                 |
| I     | Yes                 |
| 1     | No (b)              |
| 1     | Yes                 |
| 1     | Yes                 |
|       |                     |
| I     | Yes                 |
|       |                     |
| s     | Yes                 |
| s     | Yes                 |
|       |                     |
| s     | Yes                 |
|       |                     |

Yes

Pyrene

0.04

T

0.089

#### Range of Values, mg/kg **Detected Concentrations Reporting Limits** BSV<sup>a</sup> ESV<sup>a</sup> Below VO VQ **Site-Related Chemical** Min Max Min Max (mg/kg) (mg/kg) ESV? HQ P delta-BHC 0.0017 0.0017 T 0.0024 0.0024 7.15 Yes 0.0002 Yes ---0.0046 0.0046 0.0024 0.0024 0.0019 No 2.4 Yes Dieldrin \_\_\_ 0.0055 0.0055 0.004 0.0041 34.6 0.0002 Yes Endosulfan Sulfate Yes \_\_\_ 0.004 0.0041 0.48 0.0063 0.0063 Yes 0.01 Yes Endrin Aldehyde ---0.004 0.0041 Yes gamma-Chlordane 0.0078 0.0078 0.00324 No 2.4 ---0.002 0.0057 0.0024 0.0024 0.6 Yes Yes Heptachlor 0.01 ---0.0021 0.0024 0.0024 Yes 0.2 Yes Methoxychlor 0.0016 T 0.0136 T ---Semivolatile Organic Compounds 0.044 0.4 0.294 1,2-Dichlorobenzene 0.044 0.41 Yes 0.1 Yes I I \_\_\_ 0.41 1,4-Dichlorobenzene 0.04 0.04 0.4 0.318 Yes Yes T 0.1 \_\_\_ 0.043 0.4 0.41 0.0202 2-Methylnaphthalene 0.043 No 2.1 Yes T T \_\_\_ 0.057 0.057 0.4 0.41 0.108 0.5 No Benzo(a)anthracene Yes T T ---0.4 0.41 0.15 Benzo(a)pyrene 0.067 T 0.067 T Yes 0.4 No ---0.4 0.41 No Benzo(b)fluoranthene 0.046 0.11 10.4 0.01 I Yes ---0.41 0.4 0.17 0.026 0.026 Yes 0.2 No Benzo(g,h,i)perylene ---0.4 0.047 0.047 0.41 0.24 0.2 No Benzo(k)fluoranthene Yes T T ---0.027 0.4 0.41 0.166 Chrysene 0.07 Yes 0.4 No T I ---Di-n-Butyl Phthalate 0.11 T 0.3 0.4 0.41 1.114 Yes 0.3 Yes T ---No Fluoranthene 0.047 0.089 0.4 0.41 0.423 Yes 0.2 ---0.026 0.026 0.4 0.41 0.2 0.1 No Indeno(1,2,3-cd)pyrene T I Yes ---Naphthalene 0.029 0.029 0.4 0.41 0.176 Yes 0.2 No T T \_\_\_ 0.4 0.41 0.204 Phenanthrene 0.027 J 0.053 Yes 0.3 No T \_\_\_

0.4

# Table 7-3. Summary of Screening Results for COPECs in Sediment (0 to 0.5 foot) (continued).

0.41

0.195

\_\_\_

Yes

0.5

| PBT? <sup>a</sup> | COPEC? <sup>c</sup> |
|-------------------|---------------------|
| Yes               | Yes                 |
|                   |                     |
| Yes               | Yes                 |
| Yes               | Yes                 |
| Yes               | Yes                 |
| No                | No (b)              |
| Yes               | Yes                 |
| No                | No (b)              |

# Table 7-3. Summary of Screening Results for COPECs in Sediment (0 to 0.5 foot) (continued).

<sup>a</sup> denotes see Appendix G.

- <sup>b</sup> denotes chemicals with MDCs lower than the BSV are not considered to be site related (background values are for inorganics only).
- <sup>c</sup> denotes selection of COPECs.
- Yes denotes COPEC exceeds the ESV and BSV or is a PBT pollutant.
- No(a) denotes COPEC is not a PBT pollutant or site related (MDC is less than BSV).
- No(b) denotes COPEC is not a PBT pollutant or site related (MDC is less than ESV).
- No(c) denotes COPEC is an essential nutrient.
- --- denotes no BSV available.
- BSV denotes background screening value.
- COPEC denotes chemical of potential ecological concern.
- ESV denotes ecological screening value.
- J denotes reported result is an estimated value.
- HQ denotes hazard quotient
- MDC denotes maximum detected concentration.
- mg/kg denotes milligrams per kilogram.
- NA denotes not applicable.
- PBT denotes persistent, bioaccumulative, and toxic.
- VQ denotes validation qualifier.

# Table 7-4. Summary of Screening Results of COPECs in Surface Water.

|                               | Range of Values, µg/L |                         |      |    |                         |     |                |       |        |                     |
|-------------------------------|-----------------------|-------------------------|------|----|-------------------------|-----|----------------|-------|--------|---------------------|
|                               | De                    | Detected Concentrations |      |    | <b>Reporting Limits</b> |     | DCV a          | ECV a | Dolory |                     |
| Site-Related Chemical         | Min                   | VQ                      | Max  | VQ | Min                     | Max | ыз v<br>(µg/L) | μg/L) | ESV?   | COPEC? <sup>c</sup> |
| Inorganics                    |                       |                         |      |    |                         |     |                |       |        |                     |
| Antimony                      | 2.9                   |                         | 2.9  |    | 1.9                     | 6   | 0              | 190   | Yes    | No(b)               |
| Arsenic                       | 2.2                   |                         | 6.6  |    | 2                       | 4.9 | 3.2            | 150   | Yes    | No(b)               |
| Chromium                      | 0.66                  |                         | 1.4  |    | 10                      |     | 0              | 11    | Yes    | No(b)               |
| Cobalt                        | 0.4                   |                         | 0.4  |    | 1.6                     | 5   | 0              | 24    | Yes    | No(b)               |
| Lead                          | 2.9                   |                         | 2.9  |    | 2                       | 8   | 0              | 6.4   | Yes    | No(b)               |
| Silver                        | 1.1                   |                         | 1.1  |    | 2.5                     | 5   | 0              | 1.3   | Yes    | No(b)               |
| Vanadium                      | 0.5                   |                         | 0.5  |    | 0.5                     | 5   | 0              | 44    | Yes    | No(b)               |
| Semivolatile Organic Compound | s                     |                         |      |    |                         |     |                |       |        |                     |
| Bis(2-Ethylhexyl)phthalate    | 2.1                   |                         | 2.1  |    | 4.9                     | 12  | NA             | 8.4   | Yes    | No(b)               |
| Di-n-Butyl Phthalate          | 3.85                  |                         | 3.85 |    | 4.9                     | 11  | NA             | 9.7   | Yes    | No(b)               |
| Nutrients                     |                       |                         |      |    |                         |     |                |       |        |                     |
| Phosphorus                    | 430                   |                         | 430  |    | NA                      |     |                | NA    | NA     | No                  |
| Nitrate/Nitrite               | 130                   |                         | 130  |    | NA                      |     |                | NA    | Yes    | No                  |

<sup>a</sup> denotes see Appendix G.

<sup>b</sup> denotes chemicals with MDCs lower than the BSV are not considered to be site related (background values are for inorganics only).

<sup>c</sup> denotes selection of COPECs.

Yes denotes COPEC is site related and exceeds its BSV.

No(a) denotes COPEC is not a PBT pollutant or site related (MDC is less than BSV).

*No(b) denotes COPEC is not a PBT pollutant or site related (MDC is less than ESV).* 

No(c) denotes COPEC is an essential nutrient.

µg/L denotes micrograms per liter.

BSV denotes background screening value.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

J denotes reported result is an estimated value.

MDC denotes maximum detected concentration.

NA denotes not applicable.

PBT denotes persistent, bioaccumulative, and toxic.

VQ denotes validation qualifier.

Т

|                 | Number of COPECs that Fail Screening Criteria |            |            |       |  |  |  |  |  |
|-----------------|-----------------------------------------------|------------|------------|-------|--|--|--|--|--|
| Sample Location | Metals                                        | Propellant | Pesticides | SVOCs |  |  |  |  |  |
| SCss-057        | 4                                             | 1          | 1          | 0     |  |  |  |  |  |
| SCss-058        | 7                                             | 0          | 0          | 2     |  |  |  |  |  |
| SCss-059        | 3                                             | 0          | 0          | 6     |  |  |  |  |  |
| SCss-060        | 10                                            | 0          | 0          | 7     |  |  |  |  |  |
| SCss-061        | 11                                            | 0          | 0          | 3     |  |  |  |  |  |
| SCss-062        | 11                                            | 0          | 0          | 1     |  |  |  |  |  |
| SCss-063        | 10                                            | 0          | 0          | 1     |  |  |  |  |  |
| SCss-064        | 8                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-065        | 3                                             | 0          | 0          | 1     |  |  |  |  |  |
| SCss-066        | 4                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-067        | 1                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-068        | 1                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-069        | 2                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-072        | 2                                             | 0          | 0          | 1     |  |  |  |  |  |
| SCss-073        | 7                                             | 0          | 0          | 1     |  |  |  |  |  |
| SCss-074        | 9                                             | 0          | 0          | 1     |  |  |  |  |  |
| SCss-075        | 4                                             | 0          | 0          | 0     |  |  |  |  |  |
| SCss-076        | 4                                             | 0          | 0          | 0     |  |  |  |  |  |

# Table 7-5. COPEC Distribution by Sampling Unit in Surface Soil.

Screening criteria include the BSV and the ESV screening steps.

BSV denotes background screening value.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

SVOC denotes semivolatile organic compound.

This page intentionally left blank.

| General Management Goals                                                                                | Assessment Endpoint                                                                                                                                                                                                                                                                    | Measures of Effect                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Management Goal 1:<br>The protection of terrestrial populations, communities,<br>and ecosystems | Assessment Endpoint 1: Growth, survival, and reproduction of<br>plant and soil invertebrate communities and tissue<br>concentrations of contaminants low enough such that higher<br>trophic levels that consume them are not at risk.<br>Receptors: plants and earthworms.             | Measures of Effect 1:<br>Plant and earthworm soil toxicity benchmarks and measured<br>RME concentrations of constituents in soil.                                                                                                                                                                                                                                                                                                           | Decision Rule<br>If HQs, define<br>soil to soil tox<br>invertebrates,<br>been met and<br>HQs are >1, a<br>decide what is<br>resources, mo<br>related COPE<br>Level III and                |
|                                                                                                         | Assessment Endpoint 2:<br>Growth, survival, and reproduction of herbivorous mammal<br>populations and low enough concentrations of contaminants in<br>their tissues so that higher trophic level animals that consume<br>them are not at risk.<br>Receptor: meadow vole.               | Measures of Effect 2:<br>Estimates of receptor home range area, body weights, feeding<br>rates, and dietary composition based on published<br>measurements of endpoint species or similar species; modeled<br>COPEC concentrations in food chain based on measured<br>concentrations in physical media; chronic dietary NOAELs<br>applicable to wildlife receptors based on measured responses<br>of similar species in laboratory studies. | Decision Rule<br>If HQs, based<br>from COPEC<br>corresponding<br>herbivorous m<br>is met, and the<br>reached, at wh<br>further action,<br>the environme<br>applicable me<br>IV Field Base |
|                                                                                                         | Assessment Endpoint 3:<br>Growth, survival, and reproduction of worm-eating and<br>insectivorous mammal and bird populations and low enough<br>concentrations of contaminants in their tissue so that predators<br>that consume them are not at risk.<br>Receptors: shrews and robins. | Measures of Effect 3:<br>Estimates of receptor home range area, body weights, feeding<br>rates, and dietary composition based on published<br>measurements of endpoint species or similar species; modeled<br>COPEC concentrations in food chain based on measured<br>concentrations in physical media; chronic dietary NOAELs<br>applicable to wildlife receptors based on measured responses<br>of similar species in laboratory studies. | Decision Rule<br>If HQs based<br>from COPEC<br>corresponding<br>eating and ins<br>then Assessme<br>the HQs are ><br>decide what is<br>resources, mo<br>related COPE<br>Level III and      |
|                                                                                                         | Assessment Endpoint 4:         Growth, survival, and reproduction of carnivorous mammal and bird populations.         Receptor: red-tailed hawk and red fox.                                                                                                                           | Measures of Effect 4:<br>Estimates of receptor home range area, body weights, feeding<br>rates, and dietary composition based on published<br>measurements of endpoint species or similar species; modeled<br>COPEC concentrations in food chain based on measured<br>concentrations in physical media; chronic dietary NOAELs<br>applicable to wildlife receptors based on measured responses<br>of similar species in laboratory studies. | Decision Rule<br>If HQs based<br>from COPEC<br>corresponding<br>carnivorous m<br>Assessment E<br>HQs are >1, a<br>decide what is<br>resources, mo<br>related COPE<br>Level III and        |

# Table 7-6. General Management Goals, Ecological Assessment Endpoints, Measures of Effect, and Decision Rules during Level II Screening.

#### **Decision Rule**

#### lle for Assessment Endpoint 1:

ned as the ratios of COPEC RME concentrations in surface oxicity benchmarks for adverse effects on plants and soil s, are less than or equal to 1, then Assessment Endpoint 1 has d plants and soil-dwelling invertebrates are not at risk. If the an SMDP is reached, at which point it will be necessary to is needed: no further action, risk management of ecological ionitoring of the environment, remediation of any site usage– ECs and applicable media, or further investigation such as a d Level IV Field Baseline.

#### lle for Assessment Endpoint 2:

ed on ratios of estimated exposure concentrations predicted C RME concentrations in surface soil to dietary limits ing to NOAEL TRV benchmarks for adverse effects on mammals are less than or equal to 1, Assessment Endpoint 2 he receptors are not at risk. If the HQs are >1, an SMDP is which point it will be necessary to decide what is needed: no n, risk management of ecological resources, monitoring of ment, remediation of any site usage–related COPECs in media, or further investigation such as a Level III and Level seline.

### lle for Assessment Endpoint 3:

d on ratios of estimated exposure concentrations predicted C RME concentrations in surface soil to dietary limits ing to NOAEL TRV benchmarks for adverse effects on wormissectivorous mammals and birds is less than or equal to 1, nent Endpoint 3 is met, and these receptors are not at risk. If >1, a SMDP is reached, at which point it will be necessary to is needed: no further action, risk management of ecological ionitoring of the environment, remediation of any site usage– ECs in applicable media, or further investigation such as a 1 Level IV Field Baseline.

## lle for Assessment Endpoint 4:

d on ratios of estimated exposure concentrations predicted C RME concentrations in surface soil to dietary limits ng to NOAEL TRV benchmarks for adverse effects on mammals and birds are less than or equal to 1, then Endpoint 4 is met, and the receptors are not at risk. If the a SMDP is reached, at which point it will be necessary to is needed: no further action, risk management of ecological ionitoring of the environment, remediation of any site usage– ECs in applicable media, or further investigation such as a d Level IV Field Baseline.

| Table 7-6. General Management Goals, Ecological Assessme | nt Endpoints, Measures of Effect, and Dec | cision Rules during Level II Screening | ng (continued) |
|----------------------------------------------------------|-------------------------------------------|----------------------------------------|----------------|
|----------------------------------------------------------|-------------------------------------------|----------------------------------------|----------------|

| General Management Goals                                                                                | Assessment Endpoint                                                                                                                                                                                                                                                                             | Measures of Effect                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>General Management Goal 2:</b><br>The protection of aquatic populations, communities, and ecosystems | Assessment Endpoint 5:<br>Survival, reproduction, and diversity of benthic invertebrate<br>communities, as well as low enough concentrations of<br>contaminants in their tissues so that higher trophic level animals<br>that consume them are not at risk.<br>Receptor: benthic invertebrates. | Measures of Effect 5:<br>Measured concentration of contaminants in sediment and<br>sediment toxicity thresholds, i.e., consensus-based TECs, EPA<br>Region 5 ESLs, and Ohio EPA sediment reference values.                                                                                                                                         | Decision Rule<br>If HQs based<br>sediment toxic<br>Endpoint 5 is<br>HQs are > 1, a<br>decide what is<br>resources, mo<br>related COPE<br>Level III and        |
|                                                                                                         | Assessment Endpoint 6:<br>Growth, survival, and reproduction of aquatic biota (including<br>fish, plants, invertebrates).<br>Receptor: aquatic biota.                                                                                                                                           | Measures of Effect 6:<br>Measured concentrations of contaminants in surface water and<br>Ohio EPA Chemical-Specific Water Quality Criteria.                                                                                                                                                                                                        | <b>Decision Rule</b><br>If HQs based<br>to aquatic biot<br>Assessment E<br>are > 1, a SMI<br>what is needed<br>resources, mo<br>related COPE<br>Level III and |
|                                                                                                         | Assessment Endpoint 7:<br>Growth, survival, and reproduction of aquatic herbivores that                                                                                                                                                                                                         | Measures of Effect 7:<br>Estimates of receptor home range area, body weights, feeding                                                                                                                                                                                                                                                              | Decision Rule<br>If HQs based                                                                                                                                 |
|                                                                                                         | Receptors: muskrats and mallards.                                                                                                                                                                                                                                                               | rates, and dietary composition based on published<br>measurements of endpoint species or similar species; modeled<br>COPEC concentrations in food chain based on measured<br>concentrations in physical media; chronic dietary NOAELs<br>applicable to wildlife receptors based on measured responses<br>of similar species in laboratory studies. | and sediment<br>benchmarks for<br>birds are less<br>the receptors a<br>which point it<br>action, risk ma<br>environment,<br>applicable me<br>IV Field Base    |
|                                                                                                         | Growth, survival, and reproduction of riparian carnivorous                                                                                                                                                                                                                                      | Estimates of receptor home range area, body weights, feeding                                                                                                                                                                                                                                                                                       | If HQs based                                                                                                                                                  |
|                                                                                                         | mammal and bird communities that feed on aquatic organisms.                                                                                                                                                                                                                                     | rates, and dietary composition based on published<br>measurements of endpoint species or similar species; modeled                                                                                                                                                                                                                                  | from COPEC<br>corresponding                                                                                                                                   |
|                                                                                                         | Receptors: mink and herons.                                                                                                                                                                                                                                                                     | COPEC concentrations in food chain based on measured<br>concentrations in physical media; chronic dietary NOAELs<br>applicable to wildlife receptors based on measured responses<br>of similar species in laboratory studies.                                                                                                                      | riparian carniv<br>has been met a<br>> 1, a SMDP<br>what is needed<br>receptors, mor<br>related COPE<br>Level III and                                         |

COPEC denotes chemical of potential ecological concern.

ESL denotes ecological screening value.

HQ denotes Hazard Quotient.

NOAEL denotes no observed adverse effect level.

RME denotes reasonable maximum exposure.

SMDP denotes Scientific Management Decision point.

TEC denotes Threshold Effect Concentration.

TRV denotes Toxicity Reference Value.

#### **Decision Rule**

#### lle for Assessment Endpoint 5:

d on ratios of COPEC RME concentrations in sediment-toscicity benchmarks are less than or equal to1, then Assessment s met and sediment-dwelling organisms are not at risk. If the , a SMDP is reached, at which point it will be necessary to is needed: no further action, risk management of ecological ionitoring of the environment, remediation of any site usage– ECs in applicable media, or further investigation such as a d Level IV Field Baseline.

### lle for Assessment Endpoint 6:

d on ratios of COPEC RME concentrations in surface water ota toxicity benchmarks are less than or equal to 1, then Endpoint 6 is met and the receptors are not at risk. If the HQs MDP is reached, at which point it will be necessary to decide led: no further action, risk management of ecological nonitoring of the environment, remediation of any site usage– ECs in applicable media, or further investigation such as a d Level IV Field Baseline.

#### ıle 7:

d on ratios of COPEC RME concentrations in surface water at to dietary limits corresponding to NOAEL TRV for adverse effects on aquatic herbivorous mammals and s than or equal to 1, then Assessment Endpoint 7 is met and s are not at risk. If the HQs are > 1, a SMDP is reached, at it will be necessary to decide what is needed: no further management of ecological receptors, monitoring of the t, remediation of any site usage–related COPECs in media, or further investigation such as a Level III and Level seline.

#### ıle 8:

d on ratios of estimated exposure concentrations predicted C RME concentrations in surface water to dietary limits ing to NOAEL TRV benchmarks for adverse effects on invores is less than or equal to 1, then Assessment Endpoint 8 t and these receptor populations are not at risk. If the HQs are P is reached, at which point it will be necessary to decide ed: no further action, risk management of ecological onitoring of the environment, remediation of any site usage ECs in applicable media, or further investigation such as a 1 Level IV Field Baseline.

# Table 7-7. Summary of COPECs in Surface Soil Sampling Units.

|                              |            |         | Sample Location:  | SCss-05     | 7M      | SCss-0     | 58M         | SCss-0    | 59M         | SCss-0     | 50M     | SCss-061     | М     | SCss-06     | 2M      |
|------------------------------|------------|---------|-------------------|-------------|---------|------------|-------------|-----------|-------------|------------|---------|--------------|-------|-------------|---------|
|                              |            |         | Sample Number:    | SCss-057M-0 | 0001-SO | SCss-058M· | -0001-SO    | SCss-059M | -0001-SO    | SCss-060M- | 0001-SO | SCss-061M-00 | 01-SO | SCss-062M-0 | 0001-SO |
|                              |            |         | Sample Date:      | 24-Sep-     | -10     | 23-Sep     | <b>b-10</b> | 23-Sej    | <b>b-10</b> | 23-Sep     | -10     | 23-Sep-1     | 0     | 22-Sep-     | ·10     |
|                              |            |         | Depth (feet bgs): | 0–1         |         | 0-1        | [           | 0-1       | L           | 0-1        |         | 0–1          | -     | 0–1         |         |
| COPEC                        | Background | ESV     | Units             | Result      | VQ      | Result     | VQ          | Result    | VQ          | Result     | VQ      | Result       | VQ    | Result      | VQ      |
| Inorganics                   |            |         |                   | 1           | 1       |            | 1           |           | 1           |            | 1       |              | -     |             |         |
| Antimony                     | 0.96       | 0.27    | mg/kg             |             |         | 3.1        |             |           |             | 1.5        |         | 17.1         |       | 3.7         |         |
| Arsenic                      | 15.4       | 18      | mg/kg             |             |         |            |             |           |             |            |         | 21.2         |       | 36.6        |         |
| Barium                       | 88.4       | 330     | mg/kg             |             |         | 127        |             |           |             | 163        |         | 764          |       | 226         |         |
| Cadmium                      | 0          | 0.36    | mg/kg             | 0.41        | J       | 1.9        |             |           |             | 3.6        |         | 12.9         |       | 2.3         |         |
| Chromium                     | 17.4       | 26      | mg/kg             | 174         |         | 143        |             | 30.9      |             | 33.5       |         | 77.6         |       | 106         |         |
| Cobalt                       | 10.4       | 13      | mg/kg             | 13.2        |         |            |             | 12.2      |             |            |         |              |       |             |         |
| Copper                       | 17.7       | 28      | mg/kg             | 25.3        |         | 33.7       |             | 17.8      |             | 42.8       |         | 188          |       | 63.7        |         |
| Lead                         | 26.1       | 11      | mg/kg             | 12.1        | J       | 139        |             |           |             | 134        |         | 405          |       | 141         |         |
| Mercury                      | 0.036      | 0.00051 | mg/kg             | 15.1        |         | 11.1       |             | 24.6      |             | 8.8        |         | 2.7          |       | 0.5         |         |
| Nickel                       | 21.1       | 38      | mg/kg             |             |         | 21.7       |             | 26.4      |             |            |         | 30.7         |       | 37.6        |         |
| Selenium                     | 1.4        | 0.52    | mg/kg             |             |         | 0.83       | J           |           |             | 0.63       |         |              |       | 3.1         |         |
| Silver                       | 0          | 4.2     | mg/kg             | 12.9        |         | 3.8        |             |           |             | 47.9       | J       | 256          |       | 145         |         |
| Thallium                     | 0          | 1       | mg/kg             | 3.2         | J       | 1.7        |             | 1.8       |             | 1.7        |         | 2.4          |       | 1.4         |         |
| Zinc                         | 61.8       | 46      | mg/kg             | 94          |         | 269        |             | 59.9      |             | 234        |         | 373          |       | 111         |         |
| Propellants                  |            |         |                   |             |         |            |             |           | •           | -          |         |              |       |             |         |
| Nitroguanidine               |            | NA      |                   | 0.64        |         | NS         |             | NS        |             | NS         |         | NS           |       | NS          |         |
| Pesticides                   |            |         |                   |             |         |            |             |           |             |            |         |              |       |             |         |
| alpha-Chlordane <sup>a</sup> |            | 0.224   | mg/kg             |             |         | NS         |             | NS        |             | NS         |         | NS           |       | NS          |         |
| Heptachlor                   |            | 0.00598 | mg/kg             | 0.0081      | J       | NS         |             | NS        |             | NS         |         | NS           |       | NS          |         |
| Lindane <sup>a</sup>         |            | 0.005   | mg/kg             |             |         | NS         |             | NS        |             | NS         |         | NS           |       | NS          |         |

|                                     |            |         | Sample Location:  | SCss-05     | 7M      | SCss-0    | 58M      | SCss-0    | 59M      | SCss-06    | 50M     | SCss-06     | 1M      | SCss-0    | 62M      |
|-------------------------------------|------------|---------|-------------------|-------------|---------|-----------|----------|-----------|----------|------------|---------|-------------|---------|-----------|----------|
|                                     |            |         | Sample Number:    | SCss-057M-( | 0001-SO | SCss-058M | -0001-SO | SCss-059M | -0001-SO | SCss-060M- | 0001-SO | SCss-061M-0 | )001-SO | SCss-062M | ·0001-SO |
|                                     |            |         | Sample Date:      | 24-Sep-     | -10     | 23-Sej    | p-10     | 23-Sej    | p-10     | 23-Sep     | -10     | 23-Sep-     | -10     | 22-Sep    | )-10     |
|                                     |            |         | Depth (feet bgs): | 0–1         |         | 0-1       | l        | 0-1       | 1        | 0–1        |         | 0–1         |         | 0-1       | L        |
| COPEC                               | Background | ESV     | Units             | Result      | VQ      | Result    | VQ       | Result    | VQ       | Result     | VQ      | Result      | VQ      | Result    | VQ       |
| Semivolatile Organic Com            | pounds     | _       |                   |             |         |           |          |           |          |            |         |             |         |           |          |
| 1,2,4-Trichlorobenzene <sup>a</sup> |            | 20      | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| 1,2-Dichlorobenzene <sup>a</sup>    |            | 2.96    | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| 1,3-Dichlorobenzene <sup>a</sup>    |            | 37.7    | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| 1,4-Dichlorobenzene <sup>a</sup>    |            | 20      | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| 2-Methylnaphthalene <sup>a</sup>    |            | 3.24    | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| Benzo(a)anthracene                  |            | 1.1     | mg/kg             |             |         |           |          | 1.8       |          | 2.6        |         |             |         |           |          |
| Benzo(a)pyrene                      |            | 1.1     | mg/kg             |             |         |           |          | 1.5       |          | 2.4        |         |             |         |           |          |
| Benzo(b)fluoranthene                |            | 1.1     | mg/kg             |             |         |           |          | 2.3       |          | 4.8        |         | 1.7         |         |           |          |
| Benzo(k)fluoranthene                |            | 1.1     | mg/kg             |             |         |           |          |           |          | 1.4        |         |             |         |           |          |
| Bis(2-Ethylhexyl)phthalate          |            | 0.925   | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| Carbazole                           |            | 0.00008 | mg/kg             |             |         | 0.078     | J        | 0.61      |          | 0.59       |         | 0.12        | J       | 0.045     | J        |
| Chrysene                            |            | 1.1     | mg/kg             |             |         |           |          | 1.6       |          | 2.7        |         |             |         |           |          |
| Dibenzofuran <sup>a</sup>           |            | 6.1     | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| Di-n-Butyl Phthalate <sup>a</sup>   |            | 200     | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| Pentachlorophenol <sup>a</sup>      |            | 2.1     | mg/kg             |             |         |           |          |           |          |            |         |             |         |           |          |
| Pyrene                              |            | 1.1     | mg/kg             |             |         | 1.3       |          | 3         |          | 4          |         | 1.5         |         |           |          |

# Table 7-7. Summary of COPECs in Surface Soil Sampling Units (continued).

|                                     |            |         | Sample Location:  | SCss-063M         | SCss-0      | 64M         | SCss-0    | 65M         | SCss-0     | 66M         | SCss-06    | 57M     | SCss-06    | 58M     |
|-------------------------------------|------------|---------|-------------------|-------------------|-------------|-------------|-----------|-------------|------------|-------------|------------|---------|------------|---------|
|                                     |            |         | Sample Number:    | SCss-063M-0001-SC | ) SCss-064M | -0001-SO    | SCss-065M | -0001-SO    | SCss-066M- | -0001-SO    | SCss-067M- | 0001-SO | SCss-068M- | 0001-SO |
|                                     |            |         | Sample Date:      | 22-Sep-10         | 22-Sej      | <b>p-10</b> | 22-Sep    | <b>b-10</b> | 22-Sep     | <b>b-10</b> | 21-Sep     | -10     | 21-Sep     | -10     |
|                                     |            |         | Depth (feet bgs): | 0–1               | 0-1         | l           | 0-1       | l           | 0-1        | l           | 0–1        |         | 0–1        |         |
| COPEC                               | Background | ESV     | Units             | Result VQ         | Result      | VQ          | Result    | VQ          | Result     | VQ          | Result     | VQ      | Result     | VQ      |
| Inorganics                          |            |         |                   |                   |             |             |           |             |            |             |            |         |            |         |
| Antimony                            | 0.96       | 0.27    | mg/kg             | 2.8               | 0.75        |             |           |             |            |             |            |         |            |         |
| Arsenic                             | 15.4       | 18      | mg/kg             | 16.2              |             |             |           |             |            |             |            |         |            |         |
| Barium                              | 88.4       | 330     | mg/kg             | 180               | 128         |             |           |             |            |             |            |         |            |         |
| Cadmium                             | 0          | 0.36    | mg/kg             | 2.8               | 0.69        |             | 0.12      |             | 0.41       |             | 0.071      |         | 0.057      |         |
| Chromium                            | 17.4       | 26      | mg/kg             | 39.9              | 187         |             | 30.8      |             | 38.6       |             | 24.7       |         | 24.2       |         |
| Cobalt                              | 10.4       | 13      | mg/kg             |                   |             |             |           |             |            |             |            |         |            |         |
| Copper                              | 17.7       | 28      | mg/kg             | 95.5              | 726         |             | 21.4      |             |            |             |            |         |            |         |
| Lead                                | 26.1       | 11      | mg/kg             | 109               | 131         |             | 37        |             | 37.1       |             | 35.5       |         | 29.8       |         |
| Mercury                             | 0.036      | 0.00051 | mg/kg             | 0.55              | 0.078       |             | 0.029     |             | 0.07       |             | 0.026      |         | 0.031      |         |
| Nickel                              | 21.1       | 38      | mg/kg             | 27.6              | 48.2        |             | 22        |             | 25.6       |             | 21.3       |         |            |         |
| Selenium                            | 1.4        | 0.52    | mg/kg             | 1.9               | 0.48        |             |           |             |            |             |            |         |            |         |
| Silver                              | 0          | 4.2     | mg/kg             | 120               | 0.95        |             | 1.3       |             |            |             |            |         |            |         |
| Thallium                            | 0          | 1       | mg/kg             | 2.7               | 1.1         |             | 0.76      |             | 0.72       |             | 0.97       |         | 0.62       |         |
| Zinc                                | 61.8       | 46      | mg/kg             | 303               | 235         |             | 68.8      |             | 61.6       |             | 49.7       |         | 48.2       |         |
| Propellants                         |            |         |                   |                   |             |             |           |             |            |             |            |         |            |         |
| Nitroguanidine                      |            | NA      |                   | NS                | NS          |             | NS        |             | NS         |             | NS         |         | NS         |         |
| Pesticides                          |            |         |                   |                   |             |             |           |             |            |             |            |         |            |         |
| alpha-Chlordane <sup>a</sup>        |            | 0.224   | mg/kg             | NS                | NS          |             | NS        |             | NS         |             | NS         |         | NS         |         |
| Heptachlor                          |            | 0.00598 | mg/kg             | NS                | NS          |             | NS        |             | NS         |             | NS         |         | NS         |         |
| Lindane <sup>a</sup>                |            | 0.005   | mg/kg             | NS                | NS          |             | NS        |             | NS         |             | NS         |         | NS         |         |
| Semivolatile Organic Co             | mpounds    |         |                   |                   |             |             |           |             |            |             |            |         |            |         |
| 1,2,4-Trichlorobenzene <sup>a</sup> |            | 20      | mg/kg             |                   |             |             |           |             |            |             |            |         |            |         |
| 1,2-Dichlorobenzene <sup>a</sup>    |            | 2.96    | mg/kg             |                   |             |             |           |             |            |             |            |         |            |         |
| 1,3-Dichlorobenzene <sup>a</sup>    |            | 37.7    | mg/kg             |                   |             |             |           |             |            |             |            |         |            |         |

|                                   |            | S       | Sample Location:  | SCss-06     | 3M     | SCss-0     | 64M     | SCss-0    | 65M         | SCss-0     | 66M     | SCss-06     | 7M      | SCss-0    | 68M         |
|-----------------------------------|------------|---------|-------------------|-------------|--------|------------|---------|-----------|-------------|------------|---------|-------------|---------|-----------|-------------|
|                                   |            | S       | Sample Number:    | SCss-063M-0 | 001-SO | SCss-064M- | 0001-SO | SCss-065M | -0001-SO    | SCss-066M- | 0001-SO | SCss-067M-0 | 0001-SO | SCss-068M | -0001-SO    |
|                                   |            |         | Sample Date:      | 22-Sep-     | 10     | 22-Sep     | -10     | 22-Sep    | <b>b-10</b> | 22-Sep     | -10     | 21-Sep-     | 10      | 21-Sej    | <b>b-10</b> |
|                                   |            |         | Depth (feet bgs): | 0–1         |        | 0–1        |         | 0-1       |             | 0–1        |         | 0–1         |         | 0-1       | l           |
| COPEC                             | Background | ESV     | Units             | Result      | VQ     | Result     | VQ      | Result    | VQ          | Result     | VQ      | Result      | VQ      | Result    | VQ          |
| 1,4-Dichlorobenzene <sup>a</sup>  |            | 20      | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| 2-Methylnaphthalene <sup>a</sup>  |            | 3.24    | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Benzo(a)anthracene                |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Benzo(a)pyrene                    |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Benzo(b)fluoranthene              |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Benzo(k)fluoranthene              |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Bis(2-Ethylhexyl)phthalate        |            | 0.925   | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Carbazole                         |            | 0.00008 | mg/kg             | 0.1         | J      |            |         | 0.034     |             |            |         |             |         |           |             |
| Chrysene                          |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Dibenzofuran <sup>a</sup>         |            | 6.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Di-n-Butyl Phthalate <sup>a</sup> |            | 200     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Pentachlorophenol <sup>a</sup>    |            | 2.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |
| Pyrene                            |            | 1.1     | mg/kg             |             |        |            |         |           |             |            |         |             |         |           |             |

# Table 7-7. Summary of COPECs in Surface Soil Sampling Units (continued).

# Table 7-7. Summary of COPECs in Surface Soil Sampling Units (continued)

|                                     |            |         | Sample Location:  | SCss-06     | 9M      | SCss-0    | 72M      | SCss-0    | 73M         | SCss-07    | 74M     | SCss-07    | ′5M     | SCss-0     | 76M     |
|-------------------------------------|------------|---------|-------------------|-------------|---------|-----------|----------|-----------|-------------|------------|---------|------------|---------|------------|---------|
|                                     |            |         | Sample Number:    | SCss-069M-0 | )001-SO | SCss-072M | -0001-SO | SCss-073M | -0001-SO    | SCss-074M- | 0001-SO | SCss-075M- | 0001-SO | SCss-076M- | 0001-SO |
|                                     |            |         | Sample Date:      | 24-Sep-     | 10      | 9-Nov     | -10      | 9-Nov     | <b>7-10</b> | 9-Nov      | -10     | 9-Nov-     | 10      | 9-Nov      | -10     |
|                                     |            |         | Depth (feet bgs): | 0–1         |         | 0-1       | L        | 0-1       | L           | 0–1        |         | 0–1        |         | 0–1        |         |
| COPEC                               | Background | ESV     | Units             | Result      | VQ      | Result    | VQ       | Result    | VQ          | Result     | VQ      | Result     | VQ      | Result     | VQ      |
| Inorganics                          | ·          |         |                   |             |         |           |          |           |             |            |         |            |         |            |         |
| Antimony                            | 0.96       | 0.27    | mg/kg             |             |         | 0.89      |          | 2.9       |             | 1.4        |         | 1.3        |         | 3.1        |         |
| Arsenic                             | 15.4       | 18      | mg/kg             |             |         |           |          | 21.8      |             | 18.3       |         | 12.4       |         | 10.3       |         |
| Barium                              | 88.4       | 330     | mg/kg             |             |         |           |          | 94.3      |             | 96.1       |         |            |         |            |         |
| Cadmium                             | 0          | 0.36    | mg/kg             |             |         | 0.3       |          | 0.63      |             | 1.6        |         | 0.85       |         | 0.65       |         |
| Chromium                            | 17.4       | 26      | mg/kg             |             |         | 32        |          | 130       |             | 88.4       |         | 81         |         | 188        |         |
| Cobalt                              | 10.4       | 13      | mg/kg             |             |         |           |          | 10.8      |             | 19.7       |         |            |         |            |         |
| Copper                              | 17.7       | 28      | mg/kg             |             |         |           |          | 24.3      |             | 67         |         |            |         |            |         |
| Lead                                | 26.1       | 11      | mg/kg             |             |         |           |          | 50.3      |             | 140        |         | 13.2       |         | 18.2       |         |
| Mercury                             | 0.036      | 0.00051 | mg/kg             | 0.061       |         | 0.063     |          | 0.27      |             | 0.13       |         | 0.054      |         | 0.049      |         |
| Nickel                              | 21.1       | 38      | mg/kg             |             |         | 21.7      |          | 32.7      |             | 25.9       |         | 21.8       |         | 25.3       |         |
| Selenium                            | 1.4        | 0.52    | mg/kg             |             |         | 1.6       |          | 2.4       |             | 0.98       |         | 1.4        |         | 2.2        |         |
| Silver                              | 0          | 4.2     | mg/kg             | 0.52        |         | 2.7       |          | 2         |             | 0.69       |         | 0.095      |         | 0.11       |         |
| Thallium                            | 0          | 1       | mg/kg             | 1.1         |         |           |          |           |             | 0.23       | J       | 0.14       | J       | 0.73       |         |
| Zinc                                | 61.8       | 46      | mg/kg             |             |         | 54.4      |          | 86.1      |             | 147        |         | 50.1       |         | 46.9       |         |
| Propellants                         |            | -       |                   |             |         | -         |          |           |             |            |         | -          | -       |            |         |
| Nitroguanidine                      |            | NA      |                   | NS          |         | NS        |          | NS        |             | NS         |         | NS         |         | NS         |         |
| Pesticides                          |            | -       |                   |             |         |           |          |           |             |            |         | -          |         |            |         |
| alpha-Chlordane <sup>a</sup>        |            | 0.224   | mg/kg             | NS          |         | NS        |          | NS        |             | NS         |         | NS         |         |            |         |
| Heptachlor                          |            | 0.00598 | mg/kg             | NS          |         | NS        |          | NS        |             | NS         |         | NS         |         |            |         |
| Lindane <sup>a</sup>                |            | 0.005   | mg/kg             | NS          |         | NS        |          | NS        |             | NS         |         | NS         |         |            |         |
| Semivolatile Organic Co             | npounds    |         |                   |             |         |           |          |           |             |            |         |            |         |            |         |
| 1,2,4-Trichlorobenzene <sup>a</sup> |            | 20      | mg/kg             |             |         |           |          |           |             |            |         |            |         |            |         |
| 1,2-Dichlorobenzene <sup>a</sup>    |            | 2.96    | mg/kg             |             |         |           |          |           |             |            |         |            |         |            |         |
| 1,3-Dichlorobenzene <sup>a</sup>    |            | 37.7    | mg/kg             |             |         |           |          |           |             |            |         |            |         |            |         |

|                                   |            | S       | ample Location:   | SCss-06     | 9M      | SCss-02    | 72M     | SCss-0    | 073M     | SCss-0    | 74M      | SCss-07     | 5M      | SCss-07    | 76M     |
|-----------------------------------|------------|---------|-------------------|-------------|---------|------------|---------|-----------|----------|-----------|----------|-------------|---------|------------|---------|
|                                   |            | S       | ample Number:     | SCss-069M-0 | 0001-SO | SCss-072M- | 0001-SO | SCss-073M | -0001-SO | SCss-074M | -0001-SO | SCss-075M-0 | 0001-SO | SCss-076M- | 0001-SO |
|                                   |            |         | Sample Date:      | 24-Sep-     | -10     | 9-Nov      | -10     | 9-Nov     | v-10     | 9-Nov     | -10      | 9-Nov-      | 10      | 9-Nov      | -10     |
|                                   |            | ]       | Depth (feet bgs): | 0–1         |         | 0–1        |         | 0-        | 1        | 0-1       | t        | 0–1         |         | 0–1        |         |
| COPEC                             | Background | ESV     | Units             | Result      | VQ      | Result     | VQ      | Result    | VQ       | Result    | VQ       | Result      | VQ      | Result     | VQ      |
| 1,4-Dichlorobenzene <sup>a</sup>  |            | 20      | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| 2-Methylnaphthalene <sup>a</sup>  |            | 3.24    | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Benzo(a)anthracene                |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Benzo(a)pyrene                    |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Benzo(b)fluoranthene              |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Benzo(k)fluoranthene              |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Bis(2-Ethylhexyl)phthalate        |            | 0.925   | mg/kg             |             |         | 1.7        |         |           |          |           |          |             |         |            |         |
| Carbazole                         |            | 0.00008 | mg/kg             |             |         |            |         | 0.058     | J        | 0.057     | J        |             |         |            |         |
| Chrysene                          |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Dibenzofuran <sup>a</sup>         |            | 6.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Di-n-Butyl Phthalate <sup>a</sup> |            | 200     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Pentachlorophenol <sup>a</sup>    |            | 2.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |
| Pyrene                            |            | 1.1     | mg/kg             |             |         |            |         |           |          |           |          |             |         |            |         |

# Table 7-7. Summary of COPECs in Surface Soil Sampling Units (continued).

Detects in bold exceed ESV; detects in italic exceed BSV or indicate that a BSV isn't available.

<sup>a</sup> denotes MDC is below ESV; COPEC is retained for bioaccumulative effects.

--- denotes BSV is not available.

bgs denotes below ground surface.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

J denotes reported result is an estimated value.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

ND denotes not detected.

NS denotes not sampled.

VQ denotes validation qualifier.

| Sample Location:             | SCss-057M             | SCss-058M             | SCss-059M             | SCss-060M             | SCss-061M             | SCss-062M             | SCss-063M             | SCss-064M             | SCss-065M             |
|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Sample Number:               | SCss-057M-0001-<br>SO | SCss-058M-0001-<br>SO | SCss-059M-0001-<br>SO | SCss-060M-0001-<br>SO | SCss-061M-0001-<br>SO | SCss-062M-0001-<br>SO | SCss-063M-0001-<br>SO | SCss-064M-0001-<br>SO | SCss-065M-0001-<br>SO |
| Sample Date:                 | 24-Sep-10             | 23-Sep-10             | 23-Sep-10             | 23-Sep-10             | 23-Sep-10             | 22-Sep-10             | 22-Sep-10             | 22-Sep-10             | 22-Sep-10             |
| Depth (feet bgs):            | 0–1                   | 0–1                   | 0–1                   | 0–1                   | 0–1                   | 0–1                   | 0–1                   | 0–1                   | 0–1                   |
| COPEC                        | HQ                    |
| Inorganics                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Antimony                     |                       |                       |                       | 5.6                   | 63.3                  | 13.7                  | 10.4                  |                       |                       |
| Arsenic                      |                       |                       |                       |                       | 1.2                   | 2.0                   |                       |                       |                       |
| Barium                       |                       |                       |                       |                       | 2.3                   |                       |                       |                       |                       |
| Cadmium                      | 1.1                   | 5.3                   |                       | 10.0                  | 35.8                  | 6.4                   | 7.8                   | 1.9                   |                       |
| Chromium                     | 6.7                   | 5.5                   | 1.2                   | 1.3                   | 3.0                   | 4.1                   | 1.5                   | 7.2                   | 1.2                   |
| Cobalt                       | 1.0                   |                       |                       |                       |                       |                       |                       |                       |                       |
| Copper                       |                       | 1.2                   |                       | 1.5                   | 6.7                   | 2.3                   | 3.4                   | 25.9                  |                       |
| Lead                         |                       | 12.6                  |                       | 12.2                  | 36.8                  | 12.8                  | 9.9                   | 11.9                  | 3.4                   |
| Mercury                      | 29,608                | 21,765                | 48,235                | 17,255                | 5,294                 | 980                   | 1,078                 | 153                   |                       |
| Nickel                       |                       |                       |                       |                       |                       |                       |                       | 1.3                   |                       |
| Selenium                     |                       |                       |                       |                       |                       | 6.0                   | 3.7                   |                       |                       |
| Silver                       | 3.1                   |                       |                       | 11.4                  | 61.0                  | 34.5                  | 28.6                  |                       |                       |
| Thallium                     | 3.2                   | 1.7                   | 1.8                   | 1.7                   | 2.4                   | 1.4                   | 2.7                   | 1.1                   |                       |
| Zinc                         | 2.0                   | 5.8                   | 1.3                   | 5.1                   | 8.1                   | 2.4                   | 6.6                   | 5.1                   | 1.5                   |
| Propellants                  |                       |                       |                       |                       | -                     |                       |                       |                       | -                     |
| Nitroguanidine               |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Pesticides                   |                       |                       |                       |                       | -                     |                       |                       |                       | -                     |
| alpha-Chlordane <sup>a</sup> |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Heptachlor                   | 1.4                   |                       |                       |                       |                       |                       |                       |                       |                       |
| Lindane <sup>a</sup>         |                       |                       |                       |                       |                       |                       |                       |                       |                       |

Table 7-8. Hazard Quotients for COPECs in Surface Soil Sampling Units.

| Sample Location:                    | SCss-057M         | SCss-058M         | SCss-059M         | SCss-060M         | SCss-061M         | SCss-062M         | SCss-063M         | SCss-064M         | SCss-065M         |
|-------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample Number:                      | SCss-057M-0001-SO | SCss-058M-0001-SO | SCss-059M-0001-SO | SCss-060M-0001-SO | SCss-061M-0001-SO | SCss-062M-0001-SO | SCss-063M-0001-SO | SCss-064M-0001-SO | SCss-065M-0001-SO |
| Sample Date:                        | 24-Sep-10         | 23-Sep-10         | 23-Sep-10         | 23-Sep-10         | 23-Sep-10         | 22-Sep-10         | 22-Sep-10         | 22-Sep-10         | 22-Sep-10         |
| Depth (feet bgs):                   | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               |
| COPEC                               | HQ                |
| Semivolatile Organic Com            | pounds            |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,2,4-Trichlorobenzene <sup>a</sup> |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,2-Dichlorobenzene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,3-Dichlorobenzene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,4-Dichlorobenzene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2-Methylnaphthalene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Benzo(a)anthracene                  |                   |                   | 1.6               | 2.4               |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                      |                   |                   | 1.4               | 2.2               |                   |                   |                   |                   |                   |
| Benzo(b)fluoranthene                |                   |                   | 2.1               | 4.4               | 1.5               |                   |                   |                   |                   |
| Benzo(k)fluoranthene                |                   |                   |                   | 1.3               |                   |                   |                   |                   |                   |
| Carbazole                           |                   | 975               | 7,625             | 7,375             | 1,500             | 563               | 1,250             |                   | 425               |
| Chrysene                            |                   |                   | 1.5               | 2.5               |                   |                   |                   |                   |                   |
| Dibenzofuran <sup>a</sup>           |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Di-n-Butyl Phthalate <sup>a</sup>   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Pentachlorophenol <sup>a</sup>      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Pyrene                              |                   | 1.2               | 2.7               | 3.6               | 1.4               |                   |                   |                   |                   |

 Table 7-8. Hazard Quotients for COPECs in Surface Soil Sampling Units (continued).

| Sample Location:                    | SCss-066M         | SCss-067M         | SCss-068M         | SCss-069M         | SCss-072M         | SCss-073M         | SCss-074M         | SCss-075M         | SCss-076M         |
|-------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample Number:                      | SCss-066M-0001-SO | SCss-067M-0001-SO | SCss-068M-0001-SO | SCss-069M-0001-SO | SCss-072M-0001-SO | SCss-073M-0001-SO | SCss-074M-0001-SO | SCss-075M-0001-SO | SCss-076M-0001-SO |
| Sample Date:                        | 22-Sep-10         | 21-Sep-10         | 21-Sep-10         | 24-Sep-10         | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          |
| Depth (feet bgs):                   | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               |
| COPEC                               | HQ                |
| Inorganics                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Antimony                            |                   |                   |                   |                   |                   | 10.7              | 5.2               | 4.8               | 11.5              |
| Arsenic                             |                   |                   |                   |                   |                   | 1.2               | 1.0               |                   |                   |
| Barium                              |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Cadmium                             | 1.1               |                   |                   |                   |                   | 1.8               | 4.4               | 2.4               | 1.8               |
| Chromium                            | 1.5               |                   |                   |                   | 12                | 5.0               | 3.4               | 3.1               | 7.2               |
| Cobalt                              |                   |                   |                   |                   |                   |                   | 1.5               |                   |                   |
| Copper                              |                   |                   |                   |                   |                   |                   | 2.4               |                   |                   |
| Lead                                | 3.4               | 3.2               | 2.7               |                   |                   | 4.6               | 12.7              |                   |                   |
| Mercury                             | 137               |                   |                   | 120               | 124               | 529               | 255               | 106               | 96                |
| Nickel                              |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Selenium                            |                   |                   |                   |                   | 3.1               | 4.6               |                   |                   | 4.2               |
| Silver                              |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Thallium                            |                   |                   |                   | 1.1               |                   |                   |                   |                   |                   |
| Zinc                                |                   |                   |                   |                   |                   | 1.9               | 3.2               |                   |                   |
| Propellants                         |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Nitroguanidine                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Pesticides                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| alpha-Chlordane <sup>a</sup>        |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Heptachlor                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Lindane <sup>a</sup>                |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Semivolatile Organic Comp           | ounds             |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,2,4-Trichlorobenzene <sup>a</sup> |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,2-Dichlorobenzene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 1,3-Dichlorobenzene <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |

 Table 7-8. Hazard Quotients for COPECs in Surface Soil Sampling Units (continued).

| Sample Location:                  | SCss-066M         | SCss-067M         | SCss-068M         | SCss-069M         | SCss-072M         | SCss-073M         | SCss-074M         | SCss-075M         | SCss-076M         |
|-----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sample Number:                    | SCss-066M-0001-SO | SCss-067M-0001-SO | SCss-068M-0001-SO | SCss-069M-0001-SO | SCss-072M-0001-SO | SCss-073M-0001-SO | SCss-074M-0001-SO | SCss-075M-0001-SO | SCss-076M-0001-SO |
| Sample Date:                      | 22-Sep-10         | 21-Sep-10         | 21-Sep-10         | 24-Sep-10         | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          | 9-Nov-10          |
| Depth (feet bgs):                 | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               | 0–1               |
| COPEC                             | HQ                |
| 1,4-Dichlorobenzene <sup>a</sup>  |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 2-Methylnaphthalene <sup>a</sup>  |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Benzo(a)anthracene                |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Benzo(b)fluoranthene              |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Benzo(k)fluoranthene              |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Bis(2-Ethylhexyl)phthalate        |                   |                   |                   |                   |                   | 1.8               |                   |                   |                   |
| Carbazole                         | 425               |                   |                   |                   |                   |                   | 725               | 713               |                   |
| Chrysene                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Dibenzofuran <sup>a</sup>         |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Di-n-Butyl Phthalate <sup>a</sup> |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Pentachlorophenol <sup>a</sup>    |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Pyrene                            |                   |                   |                   |                   |                   |                   |                   |                   |                   |

| Table 7-8. H | Iazard Quotients fo | r COPECs in Surface | Soil Sampling U | nits (continued). |
|--------------|---------------------|---------------------|-----------------|-------------------|
|--------------|---------------------|---------------------|-----------------|-------------------|

Only results that exceeded BSVs and ESVs are present.

Cells in bold exceed an HQ of 10.

Shaded cells exceed an HQ of 100.

<sup>a</sup> denotes MDC is below ESV; COPEC is retained for bioaccumulative effects.

bgs denotes below ground surface.

BSV denotes background screening value.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

HQ denotes hazard quotient.

MDC denotes maximum detected concentration.

|                |       | 5     | Sample Location:               | nple Location: SCsd- |                                | SCsd-071M |                                |  |
|----------------|-------|-------|--------------------------------|----------------------|--------------------------------|-----------|--------------------------------|--|
|                |       |       | Sample Number:<br>Sample Date: |                      | SCsd-070M-0001-SD<br>28-Sep-10 |           | SCsd-071M-0001-SD<br>28-Sep-10 |  |
|                |       |       |                                |                      |                                |           |                                |  |
|                |       |       | Depth (feet bgs):              | 0-0.5                |                                | 0-0.5     |                                |  |
| COPEC          | BSV   | ESV   | Units                          | Result               | VQ                             | Result    | VQ                             |  |
| Inorganics     |       |       |                                |                      |                                |           |                                |  |
| Antimony       | 0     | 0.36  | mg/kg                          | 8.4                  |                                | 0.45      | J                              |  |
| Barium         | 123   | 48    | mg/kg                          | 231                  |                                | 75.7      |                                |  |
| Cadmium        | 0     | 0.99  | mg/kg                          | 2.7                  |                                | 0.19      |                                |  |
| Chromium       | 18.1  | 43.4  | mg/kg                          | 40.9                 |                                | 107       |                                |  |
| Copper         | 27.6  | 31.6  | mg/kg                          | 53.7                 |                                |           |                                |  |
| Lead           | 27.4  | 35.8  | mg/kg                          | 104                  |                                |           |                                |  |
| Mercury        | 0.059 | 0.18  | mg/kg                          | 0.3                  |                                |           |                                |  |
| Nickel         | 17.7  | 22.7  | mg/kg                          | 21.1                 |                                | 20        |                                |  |
| Selenium       | 1.7   | 0.9   | mg/kg                          | 1.4                  | J                              |           |                                |  |
| Silver         | 0     | 0.5   | mg/kg                          | 116                  |                                |           |                                |  |
| Thallium       | 0.89  | 0.044 | mg/kg                          | 1.2                  |                                | 1.1       |                                |  |
| Propellants    |       |       |                                |                      |                                |           |                                |  |
| Nitroguanidine |       | NA    | mg/kg                          | 0.69                 |                                | 1.2       |                                |  |

# Table 7-9. Summary of COPECs in Sediment Sampling Units.

|                                 |     | 5                              | Sample Location: | SCsd-070M                      |    | SCsd-071M                      |    |
|---------------------------------|-----|--------------------------------|------------------|--------------------------------|----|--------------------------------|----|
|                                 |     | Sample Number:<br>Sample Date: |                  | SCsd-070M-0001-SD<br>28-Sep-10 |    | SCsd-071M-0001-SD<br>28-Sep-10 |    |
|                                 |     |                                |                  |                                |    |                                |    |
| COPEC                           | BSV | ESV                            | Units            | Result                         | VQ | Result                         | VQ |
| Polychlorinated Biphenyls       | S   |                                |                  |                                |    |                                |    |
| Arochlor 1254                   |     | 0.0598                         | mg/kg            | 0.15                           |    |                                |    |
| Arochlor 1262                   |     | 0.0598                         | mg/kg            | 0.094                          |    |                                |    |
| Pesticides                      |     |                                |                  |                                |    |                                |    |
| 4,4'-DDD <sup>a</sup>           |     | 0.00488                        | mg/kg            |                                |    |                                |    |
| 4,4'-DDE                        |     | 0.00316                        | mg/kg            | 0.0043                         |    |                                |    |
| 4,4'-DDT                        |     | 0.00416                        | mg/kg            | 0.0068                         |    |                                |    |
| alpha-Chlordane <sup>a</sup>    |     | 0.00324                        | mg/kg            |                                |    |                                |    |
| beta-BHC <sup>a</sup>           |     | 0.006                          | mg/kg            |                                |    |                                |    |
| delta-BHC <sup>a</sup>          |     | 7.15                           | mg/kg            |                                |    |                                |    |
| Dieldrin                        |     | 0.0019                         | mg/kg            | 0.0046                         |    |                                |    |
| Endosulfan Sulfate <sup>a</sup> |     | 34.6                           | mg/kg            |                                |    |                                |    |
| Endrin Aldehyde <sup>a</sup>    |     | 0.48                           | mg/kg            |                                |    |                                |    |
| gamma-Chlordane                 |     | 0.00324                        | mg/kg            | 0.0078                         |    |                                |    |
| Heptachlor <sup>a</sup>         |     | 0.6                            | mg/kg            |                                |    |                                |    |
| Methoxychlor <sup>a</sup>       |     | 0.0136                         | mg/kg            |                                |    |                                |    |

# Table 7-9. Summary of COPECs in Sediment Sampling Units (continued).

| Table 7-9. Summary of COPECs in Sediment Sampling Units (continued | Table 7-9. | Summary | of COPECs in | Sediment Samplin | g Units (continued) |
|--------------------------------------------------------------------|------------|---------|--------------|------------------|---------------------|
|--------------------------------------------------------------------|------------|---------|--------------|------------------|---------------------|

|       |     | Sample Location:  |       | SCsd-070M         |    | SCsd-071M         |    |
|-------|-----|-------------------|-------|-------------------|----|-------------------|----|
|       |     | Sample Number:    |       | SCsd-070M-0001-SD |    | SCsd-071M-0001-SD |    |
|       |     | Sample Date:      |       | 28-Sep-10         |    | 28-Sep-10         |    |
|       |     | Depth (feet bgs): |       | 0–0.5             |    | 0–0.5             |    |
| COPEC | BSV | ESV               | Units | Result            | VQ | Result            | VQ |

#### Semivolatile Organic Compounds

| 1,2-Dichlorobenzene <sup>a</sup>  | 0.294  | mg/kg |       |  |  |
|-----------------------------------|--------|-------|-------|--|--|
| 1,4-Dichlorobenzene <sup>a</sup>  | 0.318  | mg/kg |       |  |  |
| 2-Methylnaphthalene               | 0.0202 | mg/kg | 0.043 |  |  |
| Di-n-Butyl Phthalate <sup>a</sup> | 1.114  | mg/kg |       |  |  |

Detects in bold exceed ESV.

Detects in italic exceed BSV or indicate that a BSV isn't available (applicable to metals only).

<sup>a</sup> denotes MDC is below ESV; COPEC is retained for bioaccumulative effects.

bgs denotes below ground surface.

BSV denotes background screening value.

COPEC denotes chemical of potential ecological concern.

ESV denotes ecological screening value.

J denotes reported result is an estimated value.

MDC denotes maximum detected concentration.

mg/kg denotes milligrams per kilogram.

NA denotes not available.

ND denotes not detected.

VQ denotes validation qualifier.

This page intentionally left blank
| Sample Location:                | SCsd-070M         | SCsd-071M         |
|---------------------------------|-------------------|-------------------|
| Sample Number:                  | SCsd-070M-0001-SD | SCsd-071M-0001-SD |
| Sample Date:                    | 28-Sep-10         | 28-Sep-10         |
| Depth (feet bgs):               | 0–0.5             | 0-0.5             |
| COPEC                           | HQ                | HQ                |
| Inorganics                      |                   |                   |
| Antimony                        | 23                | 1                 |
| Barium                          | 5                 | 2                 |
| Cadmium                         | 3                 |                   |
| Chromium                        |                   | 2                 |
| Copper                          | 2                 |                   |
| Lead                            | 3                 |                   |
| Mercury                         | 2                 |                   |
| Nickel                          |                   |                   |
| Selenium                        | 2                 |                   |
| Silver                          | 232               |                   |
| Thallium                        | 27                | 25                |
| Propellants                     |                   |                   |
| Nitroguanidine                  |                   |                   |
| Polychlorinated Biphenyls       |                   |                   |
| Arochlor 1254                   | 3                 |                   |
| Arochlor 1262                   | 2                 |                   |
| Pesticides                      |                   |                   |
| 4,4'-DDD <sup>a</sup>           |                   |                   |
| 4,4'-DDE                        | 1                 |                   |
| 4,4'-DDT                        | 2                 |                   |
| alpha-Chlordane <sup>a</sup>    |                   |                   |
| beta-BHC <sup>a</sup>           |                   |                   |
| delta-BHC <sup>a</sup>          |                   |                   |
| Dieldrin                        | 2                 |                   |
| Endosulfan Sulfate <sup>a</sup> |                   |                   |
| Endrin Aldehyde <sup>a</sup>    |                   |                   |

| Table 7-10. | Summary of Haz | ard Quotients for CO | <b>PECs in Sediment</b> | Sampling Units. |
|-------------|----------------|----------------------|-------------------------|-----------------|
|-------------|----------------|----------------------|-------------------------|-----------------|

| Sample Location:                  | SCsd-070M         | SCsd-071M         |
|-----------------------------------|-------------------|-------------------|
| Sample Number:                    | SCsd-070M-0001-SD | SCsd-071M-0001-SD |
| Sample Date:                      | 28-Sep-10         | 28-Sep-10         |
| Depth (feet bgs):                 | 0-0.5             | 0-0.5             |
| COPEC                             | HQ                | HQ                |
| gamma-Chlordane                   | 2                 |                   |
| Heptachlor <sup>a</sup>           |                   |                   |
| Methoxychlor <sup>a</sup>         |                   |                   |
| Semivolatile Organic Compounds    |                   |                   |
| 1,2-Dichlorobenzene <sup>a</sup>  |                   |                   |
| 1,4-Dichlorobenzene <sup>a</sup>  |                   |                   |
| 2-Methylnaphthalene               | 2                 |                   |
| Di-n-Butyl Phthalate <sup>a</sup> |                   |                   |

# Table 7-10. Summary of Hazard Quotients for COPECs in Sediment Sampling Units (continued).

Cells in bold exceed an HQ of 10.

Shaded cells exceed an HQ of 100.

<sup>a</sup> denotes MDC is below ESV; COPEC is retained for bioaccumulative effects.

bgs denotes below ground surface.

COPEC denotes chemical of potential ecological concern.

HQ denotes hazard quotient.

MDC denotes maximum detected concentration.

| Table 7-11. | Bioaccumulation | Factors or 1 | Regression | Equations | Used t | to Model U | ptake. |
|-------------|-----------------|--------------|------------|-----------|--------|------------|--------|
|             |                 |              |            |           |        |            |        |

| COPEC<br>in Soil | Soil-to-Plant BAF            | Source                               | Soil-to-Earthworm BAF        | Source               | Soil-to-Mammal<br>BAF | Source               |
|------------------|------------------------------|--------------------------------------|------------------------------|----------------------|-----------------------|----------------------|
| Inorganics       |                              |                                      |                              |                      |                       |                      |
| Mercury          | ln (AGP)=0.54(ln[soil])-1.00 | Efroymson et al. (2001) <sup>a</sup> | ln (EW)=0.33(ln[soil])+0.078 | Sample et al. (1998) | 0.192                 | Sample et al .(1998) |
|                  |                              |                                      |                              |                      | GL 00 0561 0571       |                      |

<sup>a</sup> denotes Efroymson, R.A., et al., 2001, Uptake of Inorganic Chemicals from Soil by Plant Leaves: Regressions of Field Data, Environ. Tox. Chem., 20: 2561–2571.

<sup>b</sup> denotes Sample, B.E., et al., 1998, Development and Validation of Bioaccumulation Models for Earthworms, ES/ER/TM-220.

<sup>c</sup> denotes Sample, B.E., et al., 1998, Development and Validation of Bioaccumulation Models for Small Mammals, ES/ER/TM-219. The "General: 90th Percentile" was used because of uncertainties regarding the type of mammalian prey items.

AGP denotes aboveground plant tissue concentration.

BAF denotes Bioaccumulation Factor.

COPEC denotes chemical of potential ecological concern.

EW denotes earthworm tissue concentration.

| Ecological<br>Receptor Species                  | Class/Order              | Average<br>Body<br>Weight <sup>a</sup><br>(kg) | Average<br>Home<br>Range <sup>a</sup><br>(ha) | DietarySoil/Sed.IntakeaIntake(kg[dw]/day)(kg[dw]/day) |                      | Water<br>Intake<br>(L/day) <sup>a</sup> | Temporal<br>Use<br>Factor | Trophic<br>Level | Dietary<br>Composition <sup>a</sup><br>(percent) |
|-------------------------------------------------|--------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------|-----------------------------------------|---------------------------|------------------|--------------------------------------------------|
| Short-tailed shrew<br>(Blarina brevicauda)      | Mammalia/<br>Insectivora | 0.017                                          | 0.39                                          | 0.00952 0.0012<br>(13%)                               |                      | 0.0038                                  | 1                         | Insectivore      | Terr. Inverts.:<br>87<br>Plants: 13              |
| American robin<br>( <i>Turdus migratorius</i> ) | Aves/<br>Passeriformes   | 0.081                                          | 0.25                                          | 0.0972                                                | 0.0972 0.00486 (5%)  |                                         | 1                         | Omnivore         | Terr. Inverts.:<br>50<br>Plants: 50              |
| Meadow vole<br>(Microtus<br>pennsyvanicus)      | Mammalia/<br>Rodentia    | 0.033                                          | 0.027                                         | 0.01089                                               | 0.01089 0.00022 (2%) |                                         | 1                         | Herbivore        | Plants: 100                                      |
| Red-tailed hawk<br>(Buteo jamaicensis)          | Aves/<br>Falconiformes   | 1.13                                           | 697                                           | 0.1243                                                | 0                    | 0.06441                                 | 1                         | Carnivore        | Animals: 100                                     |
| Barn owl<br>(Tyto alba)                         | Aves/<br>Strigiformes    | 0.466                                          | 250                                           | 0.05825                                               | 0                    | 0.0163                                  | 1                         | Carnivore        | Animals: 100                                     |
| Red fox<br>(Vulpes vulpes)                      | Mammalia/<br>Carnivora   | 4.69                                           | 596                                           | 0.324                                                 | 0.009<br>(2.8%)      | 0.399                                   | 1                         | Carnivore        | Animals: 95.4<br>Plants: 4.6                     |

| Table 7-12. Exposure rarameters for Representative Ecological Receptors. |
|--------------------------------------------------------------------------|
|--------------------------------------------------------------------------|

<sup>a</sup> denotes reference to RVAAP Facility-Wide Ecological Risk Work Plan, April 2003.

ha denotes hectare.

kg denotes kilograms.

kg[dw]/day denotes kilograms per day dry weight.

L/day denotes liters per day.

Terr. Inverts. denotes terrestrial invertebrates.

| COPEC              | Toxicity<br>Value | NOAEL<br>(mg/kg/d) | Test<br>Species | Source               | Toxicity<br>Value | LOAEL<br>(mg/kg/d) | Test<br>Species | Source               |
|--------------------|-------------------|--------------------|-----------------|----------------------|-------------------|--------------------|-----------------|----------------------|
| Inorganics         |                   |                    |                 |                      |                   |                    |                 |                      |
| Mercury<br>(mink)  |                   | 1                  | mink            | Sample et al. (1996) | 1.0 (NOAEL)       | 5                  | mink            | Sample et al. (1996) |
| Mercury<br>(mouse) |                   | 13                 | mouse           | Sample et al. (1996) |                   | 132                | mouse           | Sample et al. (1996) |

#### Table 7-13. Toxicity Reference Values for Mammals.

Reference: Sample, B.E., D.M. Opresko, and G.W. Suter II, Toxicological Benchmarks for Wildlife, 1996 Revision, Risk Assessment Program Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1996).

COPEC denotes chemical of potential ecological concern.

LOAEL denotes lowest observed adverse effect level.

mg/kg/day denotes milligrams per kilogram per day.

NOAEL denotes no observed adverse effect level.

#### Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

#### Table 7-14. Toxicity Reference Values for Birds.

| COPEC      | Toxicity<br>Value | NOAEL<br>(mg/kg/d) | Test<br>Species | Source               | Toxicity<br>Value | LOAEL<br>(mg/kg/d) | Test<br>Species   | Source               |  |
|------------|-------------------|--------------------|-----------------|----------------------|-------------------|--------------------|-------------------|----------------------|--|
| Inorganics |                   |                    |                 |                      |                   |                    |                   |                      |  |
| Mercury    |                   | 0.45               | Japanese quail  | Sample et al. (1996) |                   | 0.9                | Japanese<br>quail | Sample et al. (1996) |  |

Reference: Sample, B.E., D.M. Opresko, and G.W. Suter II, Toxicological Benchmarks for Wildlife, 1996 Revision, Risk Assessment Program Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

COPEC denotes chemical of potential ecological concern.

LOAEL denotes lowest observed adverse effect level.

mg/kg/day denotes milligrams per kilogram per day.

NOAEL denotes no observed adverse effect level.

|               | Moroury FDC |          | Short-Tailed Shrew |          | American Robin |          | ow Vole  | Red-Tai  | led Hawk | led Hawk Barn Ow |       | Cottontail Rabbit |          | Red Fox  |          |
|---------------|-------------|----------|--------------------|----------|----------------|----------|----------|----------|----------|------------------|-------|-------------------|----------|----------|----------|
| Source of EPC | (mg/kg)     | NOAEL    | LOAEL              | NOAEL    | LOAEL          | NOAEL    | LOAEL    | NOAEL    | LOAEL    | NOAEL            | LOAEL | NOAEL             | LOAEL    | NOAEL    | LOAEL    |
| Maximum:      | 24.6        | 2.62E-01 | 2.58E-02           | 1.02E+01 | 5.10E+00       | 6.53E-02 | 6.43E-03 | 1.15E+00 | 5.77E-01 | 1.31E+00         | NA    | 2.36E-02          | 2.33E-03 | 3.65E-01 | 7.30E-02 |
| Average:      | 3.6         | 8.55E-02 | 8.42E-03           | 3.66E+00 | 1.83E+00       | 2.05E-02 | 2.02E-03 | 1.69E-01 | 8.45E-02 | 1.92E-01         | NA    | 6.27E-03          | 6.18E-04 | 5.48E-02 | 1.10E-02 |
| SCss-057      | 15.1        | 1.90E-01 | 1.87E-02           | 7.67E+00 | 3.83E+00       | 4.82E-02 | 4.75E-03 | 7.09E-01 | 3.54E-01 | 8.05E-01         | NA    | 1.66E-02          | 1.63E-03 | 2.25E-01 | 4.50E-02 |
| SCss-058      | 11.1        | 1.57E-01 | 1.55E-02           | 6.47E+00 | 3.23E+00       | 3.99E-02 | 3.93E-03 | 5.21E-01 | 2.60E-01 | 5.92E-01         | NA    | 1.34E-02          | 1.32E-03 | 1.66E-01 | 3.32E-02 |
| SCss-059      | 24.6        | 2.62E-01 | 2.58E-02           | 1.02E+01 | 5.10E+00       | 6.53E-02 | 6.43E-03 | 1.15E+00 | 5.77E-01 | 1.31E+00         | NA    | 2.36E-02          | 2.33E-03 | 3.65E-01 | 7.30E-02 |
| SCss-060      | 8.8         | 1.37E-01 | 1.35E-02           | 5.72E+00 | 2.86E+00       | 3.47E-02 | 3.42E-03 | 4.13E-01 | 2.07E-01 | 4.69E-01         | NA    | 1.14E-02          | 1.12E-03 | 1.32E-01 | 2.64E-02 |
| SCss-061      | 2.7         | 7.44E-02 | 7.33E-03           | 3.20E+00 | 1.60E+00       | 1.74E-02 | 1.71E-03 | 1.27E-01 | 6.34E-02 | 1.44E-01         | NA    | 5.21E-03          | 5.13E-04 | 4.13E-02 | 8.27E-03 |
| SCss-062      | 0.5         | 3.64E-02 | 3.58E-03           | 1.55E+00 | 7.75E-01       | 6.68E-03 | 6.58E-04 | 2.35E-02 | 1.17E-02 | 2.67E-02         | NA    | 1.86E-03          | 1.83E-04 | 8.09E-03 | 1.62E-03 |
| SCss-063      | 0.55        | 3.77E-02 | 3.72E-03           | 1.61E+00 | 8.06E-01       | 7.04E-03 | 6.94E-04 | 2.58E-02 | 1.29E-02 | 2.93E-02         | NA    | 1.96E-03          | 1.93E-04 | 8.86E-03 | 1.77E-03 |
| SCss-064      | 0.078       | 1.84E-02 | 1.81E-03           | 7.55E-01 | 3.78E-01       | 2.40E-03 | 2.36E-04 | 3.66E-03 | 1.83E-03 | 4.16E-03         | NA    | 6.37E-04          | 6.28E-05 | 1.43E-03 | 2.86E-04 |
| SCss-065      | 0.029       | 1.31E-02 | 1.29E-03           | 5.24E-01 | 2.62E-01       | 1.40E-03 | 1.37E-04 | 1.36E-03 | 6.81E-04 | 1.55E-03         | NA    | 3.67E-04          | 3.61E-05 | 5.95E-04 | 1.19E-04 |
| SCss-066      | 0.07        | 1.77E-02 | 1.74E-03           | 7.25E-01 | 3.63E-01       | 2.26E-03 | 2.22E-04 | 3.29E-03 | 1.64E-03 | 3.73E-03         | NA    | 6.00E-04          | 5.91E-05 | 1.30E-03 | 2.60E-04 |
| SCss-067      | 0.026       | 1.26E-02 | 1.24E-03           | 5.04E-01 | 2.52E-01       | 1.31E-03 | 1.29E-04 | 1.22E-03 | 6.10E-04 | 1.39E-03         | NA    | 3.45E-04          | 3.40E-05 | 5.42E-04 | 1.08E-04 |
| SCss-068      | 0.031       | 1.34E-02 | 1.32E-03           | 5.37E-01 | 2.69E-01       | 1.45E-03 | 1.42E-04 | 1.45E-03 | 7.27E-04 | 1.65E-03         | NA    | 3.80E-04          | 3.75E-05 | 6.31E-04 | 1.26E-04 |
| SCss-069      | 0.061       | 1.69E-02 | 1.66E-03           | 6.89E-01 | 3.45E-01       | 2.09E-03 | 2.06E-04 | 2.86E-03 | 1.43E-03 | 3.25E-03         | NA    | 5.55E-04          | 5.47E-05 | 1.15E-03 | 2.29E-04 |
| SCss-072      | 0.063       | 1.71E-02 | 1.68E-03           | 6.98E-01 | 3.49E-01       | 2.13E-03 | 2.10E-04 | 2.96E-03 | 1.48E-03 | 3.36E-03         | NA    | 5.65E-04          | 5.57E-05 | 1.18E-03 | 2.36E-04 |
| SCss-073      | 0.27        | 2.88E-02 | 2.83E-03           | 1.21E+00 | 6.07E-01       | 4.74E-03 | 4.67E-04 | 1.27E-02 | 6.34E-03 | 1.44E-02         | NA    | 1.29E-03          | 1.27E-04 | 4.51E-03 | 9.02E-04 |
| SCss-074      | 0.13        | 2.21E-02 | 2.17E-03           | 9.16E-01 | 4.58E-01       | 3.17E-03 | 3.12E-04 | 6.10E-03 | 3.05E-03 | 6.93E-03         | NA    | 8.51E-04          | 8.38E-05 | 2.28E-03 | 4.57E-04 |
| SCss-075      | 0.054       | 1.62E-02 | 1.59E-03           | 6.59E-01 | 3.29E-01       | 1.96E-03 | 1.93E-04 | 2.53E-03 | 1.27E-03 | 2.88E-03         | NA    | 5.18E-04          | 5.11E-05 | 1.03E-03 | 2.06E-04 |
| SCss-076      | 0.049       | 1.56E-02 | 1.54E-03           | 6.36E-01 | 3.18E-01       | 1.86E-03 | 1.83E-04 | 2.30E-03 | 1.15E-03 | 2.61E-03         | NA    | 4.91E-04          | 4.84E-05 | 9.43E-04 | 1.89E-04 |

Table 7-15. Wildlife Hazard Quotients for Mercury in Surface Soil with No AUF Adjustment.

HQs were calculated without AUFs.

Shaded cells indicate an HQ greater than 1 when rounded.

AUF denotes Area Use Factor.

EPC denotes exposure point concentration.

HQ denotes hazard quotient.

LOAEL denotes lowest observed adverse effect level.

mg/kg denotes milligrams per kilogram.

NA denotes the barn owl represents a threatened species; therefore, effects are based only on the more conservative NOAEL value.

NOAEL denotes no observed adverse effect level

#### Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

|               | Morouwy EDC | Short-Tai | led Shrew | American Robin |          | Meadov   | w Vole   | Red-Tailed Hawk |          | Barn Owl |       | Cottontail Rabbit |          | Red Fox  |          |
|---------------|-------------|-----------|-----------|----------------|----------|----------|----------|-----------------|----------|----------|-------|-------------------|----------|----------|----------|
| Source of EPC | (mg/kg)     | NOAEL     | LOAEL     | NOAEL          | LOAEL    | NOAEL    | LOAEL    | NOAEL           | LOAEL    | NOAEL    | LOAEL | NOAEL             | LOAEL    | NOAEL    | LOAEL    |
| Maximum:      | 24.6        | 2.62E-01  | 2.58E-02  | 1.02E+01       | 5.10E+00 | 6.53E-02 | 6.43E-03 | 1.76E-03        | 8.82E-04 | 5.59E-03 | NA    | 8.12E-03          | 7.99E-04 | 6.52E-04 | 1.30E-04 |
| Average:      | 3.6         | 8.55E-02  | 8.42E-03  | 3.66E+00       | 1.83E+00 | 2.05E-02 | 2.02E-03 | 2.58E-04        | 1.29E-04 | 8.17E-04 | NA    | 2.15E-03          | 2.12E-04 | 9.79E-05 | 1.96E-05 |
| SCss-057      | 15.1        | 1.39E-02  | 1.37E-03  | 8.69E-01       | 4.34E-01 | 4.82E-02 | 4.75E-03 | 2.88E-05        | 1.44E-05 | 9.12E-05 | NA    | 1.52E-04          | 1.49E-05 | 1.07E-05 | 2.14E-06 |
| SCss-058      | 11.1        | 6.14E-03  | 6.04E-04  | 3.92E-01       | 1.96E-01 | 2.13E-02 | 2.10E-03 | 1.13E-05        | 5.66E-06 | 3.58E-05 | NA    | 6.53E-05          | 6.43E-06 | 4.22E-06 | 8.43E-07 |
| SCss-059      | 24.6        | 7.55E-03  | 7.44E-04  | 4.57E-01       | 2.28E-01 | 2.14E-02 | 2.11E-03 | 1.54E-05        | 7.71E-06 | 4.88E-05 | NA    | 7.10E-05          | 6.99E-06 | 5.70E-06 | 1.14E-06 |
| SCss-060      | 8.8         | 3.42E-03  | 3.37E-04  | 2.21E-01       | 1.10E-01 | 1.14E-02 | 1.12E-03 | 5.52E-06        | 2.76E-06 | 1.75E-05 | NA    | 3.42E-05          | 3.37E-06 | 2.06E-06 | 4.12E-07 |
| SCss-061      | 2.7         | 2.33E-03  | 2.29E-04  | 1.55E-01       | 7.77E-02 | 7.44E-03 | 7.32E-04 | 2.21E-06        | 1.10E-06 | 6.99E-06 | NA    | 2.04E-05          | 2.01E-06 | 8.42E-07 | 1.68E-07 |
| SCss-062      | 0.5         | 1.74E-03  | 1.71E-04  | 1.15E-01       | 5.76E-02 | 4.38E-03 | 4.31E-04 | 6.26E-07        | 3.13E-07 | 1.98E-06 | NA    | 1.11E-05          | 1.10E-06 | 2.52E-07 | 5.04E-08 |
| SCss-063      | 0.55        | 4.48E-03  | 4.41E-04  | 2.97E-01       | 1.49E-01 | 7.04E-03 | 6.94E-04 | 1.71E-06        | 8.54E-07 | 5.41E-06 | NA    | 2.92E-05          | 2.88E-06 | 6.86E-07 | 1.37E-07 |
| SCss-064      | 0.078       | 4.73E-03  | 4.66E-04  | 3.02E-01       | 1.51E-01 | 2.40E-03 | 2.36E-04 | 5.25E-07        | 2.62E-07 | 1.66E-06 | NA    | 2.05E-05          | 2.02E-06 | 2.40E-07 | 4.80E-08 |
| SCss-065      | 0.029       | 3.40E-03  | 3.35E-04  | 2.12E-01       | 1.06E-01 | 1.40E-03 | 1.37E-04 | 1.98E-07        | 9.88E-08 | 6.26E-07 | NA    | 1.20E-05          | 1.18E-06 | 1.01E-07 | 2.02E-08 |
| SCss-066      | 0.07        | 3.88E-03  | 3.82E-04  | 2.46E-01       | 1.23E-01 | 2.26E-03 | 2.22E-04 | 4.01E-07        | 2.00E-07 | 1.27E-06 | NA    | 1.64E-05          | 1.62E-06 | 1.85E-07 | 3.70E-08 |
| SCss-067      | 0.026       | 2.19E-03  | 2.16E-04  | 1.37E-01       | 6.83E-02 | 4.32E-04 | 4.25E-05 | 1.63E-08        | 8.15E-09 | 5.16E-08 | NA    | 1.04E-06          | 1.02E-07 | 8.46E-09 | 1.69E-09 |
| SCss-068      | 0.031       | 2.33E-03  | 2.29E-04  | 2.03E-01       | 1.01E-01 | 4.75E-04 | 4.68E-05 | 1.94E-08        | 9.72E-09 | 6.16E-08 | NA    | 1.14E-06          | 1.13E-07 | 9.85E-09 | 1.97E-09 |
| SCss-069      | 0.061       | 8.62E-04  | 8.49E-05  | 5.46E-02       | 2.73E-02 | 6.88E-04 | 6.77E-05 | 3.82E-08        | 1.91E-08 | 1.21E-07 | NA    | 1.67E-06          | 1.64E-07 | 1.79E-08 | 3.58E-09 |
| SCss-072      | 0.063       | 2.30E-03  | 2.27E-04  | 1.46E-01       | 7.31E-02 | 2.13E-03 | 2.10E-04 | 2.22E-07        | 1.11E-07 | 7.04E-07 | NA    | 9.56E-06          | 9.41E-07 | 1.04E-07 | 2.08E-08 |
| SCss-073      | 0.27        | 7.20E-03  | 7.09E-04  | 4.71E-01       | 2.36E-01 | 4.74E-03 | 4.67E-04 | 1.77E-06        | 8.83E-07 | 5.59E-06 | NA    | 4.06E-05          | 3.99E-06 | 7.35E-07 | 1.47E-07 |
| SCss-074      | 0.13        | 8.85E-03  | 8.71E-04  | 5.70E-01       | 2.85E-01 | 3.17E-03 | 3.12E-04 | 1.36E-06        | 6.82E-07 | 4.32E-06 | NA    | 4.28E-05          | 4.21E-06 | 5.97E-07 | 1.19E-07 |
| SCss-075      | 0.054       | 2.48E-03  | 2.44E-04  | 1.57E-01       | 7.84E-02 | 1.96E-03 | 1.93E-04 | 2.16E-07        | 1.08E-07 | 6.85E-07 | NA    | 9.95E-06          | 9.80E-07 | 1.03E-07 | 2.05E-08 |
| SCss-076      | 0.049       | 3.56E-03  | 3.50E-04  | 2.24E-01       | 1.12E-01 | 1.86E-03 | 1.83E-04 | 2.92E-07        | 1.46E-07 | 9.23E-07 | NA    | 1.40E-05          | 1.38E-06 | 1.40E-07 | 2.80E-08 |

Table 7-16. Wildlife Hazard Quotients for Mercury in Surface Soil Using an AUF Adjustment.

HQs were calculated using sampling unit-specific AUFs. The summed areas for all sampling units were used to calculate the maximum and average EPC HQs.

Shaded cells indicate an HQ greater than 1 when rounded.

AUF denotes Area Use Factor.

EPC denotes exposure point concentration.

HQ denotes hazard quotient.

LOAEL denotes lowest observed adverse effect level.

mg/kg denotes milligrams per kilogram.

NA denotes the barn owl represents a threatened species; therefore, effects are based only on the more conservative NOAEL value.

NOAEL denotes no observed adverse effect level

#### Shaw Environmental & Infrastructure, Inc. Revised and Updated by USACE, Louisville District

# 8.0 SUMMARY OF CONCLUSIONS

This chapter summarizes the results of the RI field activities conducted at the Sand Creek Site between September and November 2010. The scope of this investigation is to complete the assessment of the extent of contamination and the potential impact to human health and the environment for the purpose of reaching a remedial action decision. As a result of the field sampling efforts and the evaluation and analysis of environmental data collected during the field sampling effort, the objectives of the RI have been satisfied.

#### 8.1 Summary of Data Used in the Remedial Investigation

Environmental samples have been collected at the Sand Creek Site since 1996 to assess the potential impact from historical disposal activities associated with the AOC. Available and relevant data include the environmental media sampled at the Sand Creek Site during the 2003 RA that consisted of surface soil, sediment, and surface water. Additionally, a sediment sample and two surface water samples were collected adjacent to the AOC during the 2003 FWBWQS. Between September 21 and November 9, 2010, samples were collected for the RI that included surface soil, sediment, and subsurface soil. During the time between the 2003 RA and the RI field activities, a streamlined approach was developed to evaluate data usability that involved two primary considerations: (1) representativeness with respect to current AOC conditions and (2) sample collection methods (i.e., discrete vs. ISM).

All available sample data were evaluated to determine suitability for use in the various key RI data screens that include evaluation of nature and extent of contamination, fate and transport modeling, and human and ERAs. For the 2003 RA, samples included discrete surface soil within the AOC boundaries, sediment samples from the floodplain adjacent to the AOC and within Sand Creek, and surface water samples from the Sand Creek. Discrete surface water samples and an ISM sediment sample were collected in the Sand Creek adjacent to the AOC as part of the 2003 FWBWQS. The collection of surface soil and sediment samples using ISM and subsurface soil samples using a modified ISM approach were conducted for the RI field activities. Site conditions have changed minimally since 2003. Therefore, the aforementioned data from these sampling events were incorporated into the nature and extent of contamination evaluation. Only the samples collected during the 2010 RI, with the exception of surface water samples from the 2003 RA and the 2003 FWBWQS, were screened for SRCs and carried forward into the risk assessment since ISM is considered to provide a more representative spatial distribution within each sampling unit. The surface water samples from the 2003 RA and 2003 FWBWQS were carried forward to the risk assessment to support the conclusions in the DQO Report (Shaw, 2009) that historical site activities at the site have not impacted the quality of Sand Creek.

#### 8.2 Summary of Nature and Extent of Contamination

The majority of the SRCs identified in the environmental media evaluated for nature and extent of contamination (surface soil, subsurface soil, sediment, and surface water) occurred at the northern portion of the AOC. Between the 2003 RA and RI data, a total of 58 SRCs was identified in surface soil (0 to 1 foot). Subsurface soils were collected during the RI only, and a total of 64 SRCs was identified in the five sample intervals between 1 and 20 feet bgs. A total of 50 SRCs were identified in sediment between the 2003 RA (0 to 1 foot), the 2003 FWBWQS (0 to 0.5 foot), and the RI data sets (0 to 0.5 foot). Eleven SRCs consisting of inorganics, SVOCs, and two nutrient parameters were identified in surface water between the two samples collected for the 2003 FWBWQS. The spatial distribution of the SRCs, particularly inorganics, is consistent among the environmental media and the types of methods used to collect the samples (i.e., discrete vs. ISM).

In surface soils collected during the RI, the greatest concentrations of inorganic, SVOCs, and explosives and propellants SRCs occurred at the northern portion of the AOC where historical disposal activities occurred and where the majority of the RA was conducted in 2003. Explosives were detected at two locations at the northern portion of the AOC. The detections of inorganics and SVOCs were well distributed across the site. However, the greatest concentrations occurred in the northern third portion of the AOC along the slope. The number of detected inorganics and SVOCs and elevated concentrations generally decreased the further south the samples were collected at the AOC.

A total of 22 soil borings was advanced during the RI field activities and subsurface samples were collected at a maximum depth of 20 feet over five depth intervals (1 to 5 feet, 5 to 9 feet, 9 to13 feet, 13 to 17 feet, and 17 to 20 feet) at nine of the soil boring locations. Bedrock was not encountered at any of the borings. Three explosives concentrations were detected at one soil boring location (SCsb-049) at 1 to 5 feet bgs along the slope at the northern portion of the AOC. The spatial distribution of inorganics and SVOCs was similar to that of surface soil with the greatest concentrations detected along and adjacent to the slope at the northern one-third of the AOC. The greatest number of detects and the greatest concentrations for both inorganics and SVOCs were typically found in the 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet sample intervals. However, the number of detections and concentrations generally decreased with the sample distance to the south at the AOC and with boring depth.

For the borings where VOCs, pesticides and PCBs were analyzed, the boring locations with the greatest number of detects were SCsb-038 and SCsb-048 at the 1- to 5-foot sample intervals. These borings were advanced in the northern portion of the AOC.

Similar to surface soils, the greatest concentrations of SRCs in the two ISM sediment samples collected for the RI occurred at the northern portion of the AOC. The SRCs included primarily

inorganics, SVOCs, and pesticides. Two PCB analytes were detected in the northern floodplain sediment sampling unit. One propellant (nitrocellulose) was detected in the both sediment sampling units. The majority of the SRCs identified in sediment during the 2003 RA were detected north of the former rail bed and correlate with the results from the RI. Only one ISM sediment sample was collected adjacent to the AOC during the 2003 FWBWQS, and the exact location of the ISM sampling unit is not known; therefore, the distribution of detected contaminants identified during this event cannot be evaluated.

A total of 11 SRCs was identified in surface water during the 2003 FWBWQS. The two surface water samples collected during this survey were collected at the same location adjacent to the AOC during separate sample events. These SRCs include seven inorganics, two SVOCs, and two nutrient parameters. No SRCs were identified in any of the three surface water samples collected as part of the 2003 RA. A cursory review of the overall surface water data collected along the Sand Creek as part of the 2003 FWBWQS indicates that detected analyte concentrations in the samples collected adjacent to the AOC are consistent with the other surface water samples collected both upstream and downstream of the site. Based on these results, it appears that surface water conditions downstream of the AOC have not been impacted by historical disposal activities at the Sand Creek Site.

#### 8.3 Contaminant Fate and Transport Summary

Contaminant fate and transport analyses were conducted for the chemicals detected in the impacted media (surface soil, subsurface soil, sediment, and surface water) at the Sand Creek Site. The sources of contamination of the impacted media at the site are presumed to be the existing surface soil which debris was previously disposed on top of but may also be remaining subsurface debris identified during the 2010 DGM survey. SESOIL modeling was performed for constituents identified as CMCOPCs after screening against the 1,000-year travel time criteria. Modeling was performed to predict concentrations of constituents in the leachate immediately beneath the selected source areas, just above the water table. Fate and transport analysis indicates that SRCs may leach from soil into the groundwater beneath the source. The CMCOPCs identified as having the potential for impacting groundwater and surface water include 2,4,6-trinitrotoluene and 2-amino-4,6-dinitrotoluene, 1,4-dichlorobenzene, carbazole, pentachlorophenol, benzene, alpha-BHC, and beta-BHC.

#### 8.4 Human Health Risk Assessment Summary

A human health risk assessment (HHRA) was performed to evaluate whether site conditions may pose a risk to current or future human receptors and to identify which, if any site conditions need to be addressed in the FS. The data sets used for the risk assessment process were primarily from the RI and included the ISM surface soil and sediment samples and subsurface samples. The surface water samples from the 2003 RA and the 2003 FWBWQS were also used. Also, the RI included data that was used to evaluate the need for restrictions such as land-use controls.

The Sand Creek Site is located in the central portion of the facility. The AOC is not currently used for military training activities but may receive periodic foot traffic during maintenance, restoration, and security activities. The most likely future land use for the AOC is the Military Training. The Representative Receptor for this Land Use is the NGT per the *USACE's Facility-Wide Human Health Risk Assessment Manual* (HHRAM - USACE, 2005b) and the 2014 Risk Assessment Tech Memo. This anticipated future Land Use, in conjunction with the evaluation of Unrestricted (Residential) Land Use, form the basis for identifying chemicals of concern (COCs) in this RI. Unrestricted (Residential) Land Use is included to evaluate COCs for Unrestricted (Residential) Land Use at the AOC, as required by the CERCLA process and as outlined in the HHRAM (USACE, 2005b).

A third Land Use was also included in this revised RI. The third Land Use, Commercial Industrial Land Use was identified in the Risk Assessment Tech Memo as a means to evaluate the site to determine if it is suitable for full-time, permanent employees. According to the Risk Assessment Tech Memo (NGB, 2014), if the criteria for the Commercial Industrial Land Use is met, then no additional remedial actions are required except for the development of Land Use Controls through the CERCLA process (FS, PP, ROD, etc.). The Military Training Land Use is the primary Land Use and is protective of all activities that the OHARNG may conduct on the site except for full-time, permanent-occupational use. Evaluation of the three Land Uses in the RI will allow better risk management decisions in an FS is needed.

The Sand Creek Site was considered as a single EU based on the future land use. Although the site is being evaluated as a single EU, soil data collected within and adjacent to the AOC were aggregated by depth intervals since different future use receptors with different depths of potential exposure are required to be evaluated. This RI includes analyses to determine potential risks at various depths from contact with deep surface soil and subsurface soil intervals for the NGT. The soil intervals for Unrestricted (Residential) Land Use and Commercial Industrial Land Use were also assessed. Sediment samples collected for the RI and previously collected surface water samples were evaluated in the same manner for the identified receptors. The purpose of evaluating the receptors in this manner is to provide information for further evaluation in the FS, if required, and to determine the best remedial action to meet the evaluation criteria. The COPC identification was completed for the following data sets:

- Resident Receptor (Adult and Child)—Surface soil (0–1 foot bgs)
- Industrial Receptor—Surface soil (0–1 foot bgs)

- National Guard Trainee Deep Surface soil (0–4 feet bgs)
- Resident Receptor (Adult/Child)—Subsurface soil (1–13 feet bgs)
- Industrial Receptor —Subsurface soil (1–13 feet bgs)
- National Guard Trainee—Subsurface soil (4–7 feet bgs))
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Sediment
- Resident Receptor (Adult and Child), Industrial Receptor, and National Guard Trainee—Surface water.

The COPCs were further assessed in the HHRA to determine if they were COCs and needed further evaluation in an FS, the next step in the CERCLA process. The following presents the COCs that were identified per Land Use and per exposure medium.

#### <u>COCs in Surface Soil and Deep Surface Soil</u>

Surface soil for Unrestricted (Residential) Land Use and the Commercial Industrial Land Use is defined as the 0- to 1-foot interval. The COC determination for each receptor was determined separately for noncancer (by target organ/critical effect) and for cancer risks. The COCs were identified using the maximum detected concentration for each COPC at any of the ISM locations and not by individual ISM location.

#### COCs Unrestricted (Residential/Commercial Industrial Land Uses in Surface Soil

Only arsenic was identified as a COCs based on noncancer effects for the Unrestricted (Residential) Land Use receptors (based on the child) in surface soil (**Table 6-38**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These were determined using the maximum concentration of any of the ISM surface soil results for each COPC for the Unrestricted (Residential) Land Use.

No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in surface soil (**Table 6-38**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene for the Commercial Industrial Land Use. These COCs were based on the maximum detected concentration for each COPC at any of the ISM locations and not by ISM location.

#### COCs Military Training Land Use in Deep Surface Soil

Deep surface soil for the Military Training Land Use receptors is defined as the 0- to 4-foot interval. Samples from this interval include the ISM surface soil samples from 0 to 1 foot and the subsurface samples from the 1- to 5-foot interval were also used.

No COCs based on noncancer effects were identified for the Military Training Land use in the surface samples using ISM maximum sample concentrations in the 0- to 1 foot interval (**Table 6-38**). Three COCs were identified based on cancer risks and using the SOR. These were arsenic, cobalt, and benzo(a)pyrene for the Military Training Land Use.

In the discrete samples from the 1 to 5 foot interval, the 95% UCL was estimated and used in the calculations. No COCs based on noncancer effects were identified for the Military Training Land Use in the deep surface samples (1-to 5 foot interval) using the 95% UCL (**Table 6-38**). Four COCs were identified based on cancer risks and using the SOR for this interval. These were arsenic, cobalt, benzo(a)pyrene, and benzo(b)fluoranthene for the Military Training Land Use.

#### COCs Unrestricted (Residential) Land Use in Subsurface Soil

Based on the results of this HHRA, there are several COCs identified in the subsurface soil for the Unrestricted (Residential) Land Use. These were identified using the 95% UCL or the MDC (if it was larger than the 95% UCL) for each COPCs regardless of location. No COCs based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in subsurface soil. ISM DU from 1 to 5 feet, 5 to 9 feet, and 9 to 13 feet.

No COCs based on noncancer effects were identified for the Unrestricted (Residential) Land Use receptors in surface soil (**Table 6-38**). Two COCs were identified based on cancer risks and using the SOR. These were arsenic and benzo(a)pyrene. These were determined using the maximum concentration of any of the ISM surface soil results for each COPC.

### COCs in Subsurface Soil for the Commercial Industrial Land Use

No COCs based on noncancer effects were identified for the Commercial Industrial Land Use receptors in subsurface soil. Four COCs were identified based on cancer risks and using the SOR. These were arsenic, benzo(a)anthracene, dibenzo(a,h)anthracene, and benzo(a)pyrene. These COCs were derived using the 95% UCL for each COC at any of the ISM locations and not for each individual ISM locations. This type of re-assessment should be completed in the FS, so that the minimum area to be evaluated can be focused where there is the most contamination. This would help focus the FS so that only the contaminated areas are evaluated.

### COCs in Subsurface Soil for the Military Training Land Use

Subsurface soil for the National Guard Trainee is defined as the 4- to 7-foot interval. Samples from the 4- to 7-foot interval include the subsurface samples from 5 to 9 feet since the sample intervals overlap. No COCs were identified for the Military Training Land Use in the subsurface interval for the NGT (should have been only 4-to7 feet but this also included data from 5-to 9 feet).

#### COCs in Sediment Summary for all Land Uses

**No COCs** were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the sediment at the AOC. This media does not require further evaluation in an FS. A "No further Action" (NFA) determination is obtained for sediment at the Sand Creek Site.

#### Surface Water Summary

**No COCs** were identified for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, or Military Training Land Use in the surface water. This media does not require further evaluation in an FS. An NFA determination is obtained for surface water at the Sand Creek Site.

### **Conclusions**

Results of the HHRA indicate the presence of several COCs in surface soil and subsurface soil for Unrestricted (Residential) Land Use, Commercial Industrial Land Use, and Military Training Land Use. Arsenic and benzo(a)pyrene are the primary risk drivers. These COCs should be further evaluated in an FS to determine the appropriate remedial actions for soil at this AOC.

No COCs were identified in sediment or surface water at the Sand Creek Disposal Road Landfill. An NFA determination is indicated for both sediment and surface water and an FS is not warranted.

### 8.5 Summary of Ecological Risk Assessment

A screening level ecological risk assessment (SLERA) was conducted to evaluate the potential for adverse ecological effects to ecological receptors from SRCs at the Sand Creek Site and to determine if any ecological receptors need to be recommended for further evaluation in the FS. The SLERA included characterizing the ecological communities in the vicinity of the site, determining the particular contaminants present, identifying pathways for receptor exposure, and estimating the magnitude of the likelihood of potential adverse effects to identified receptors. Site-specific analyte concentration data for surface soil, sediment, and surface water from the Sand Creek Site were included in the SLERA. The ecological receptor species selected for evaluation in the SLERA were identified in the *RVAAP Facility-Wide Ecological Risk Assessment Work Plan* (USACE, 2003).

The SLERA was prepared in accordance with the Ohio Environmental Protection Agency (2008) *Ecological Risk Assessment Guidance Document* Level I Scoping through Level III Baseline. The Level I Scoping is designed to efficiently determine whether further ecological risk should be evaluated at a particular site. The Level II Screen is to be completed after the full nature and extent of the site contamination has been determined. The purpose of a Level

II Screen is to select the list of detected chemicals per media as appropriate, evaluate aquatic habitats potentially impacted by the site, and if necessary, revise the conceptual site model, complete a list of ecological receptors, identify chemicals of potential ecological concern (COPECs) and nonchemical stressors, and other tasks required for further ecological evaluation of the site and impacted habitats. The purpose of a Level III Baseline is to identify the potential for ecological harm at a site. Specifically, the Level III Baseline is a formal ecological risk assessment process that includes an exposure assessment, toxicity assessment, risk characterization, and an uncertainty analysis. Potential ecological hazards are evaluated by using the COPECs and nonchemical stressors identified in a Level II Screen, generic receptors, direct contact evaluations, and food-web models that are provided in the guidance document.

Mercury in surface soil was the only COPEC recommended to be evaluated under the Level III Baseline evaluation following the Level II Screen. The only species identified as having a hazard quotient (HQ) greater than 1 associated with mercury was the robin, which indicates that potential hazards could exist to omnivorous birds foraging exclusively at the site. It is important to state that the finding of HQs greater than 1 does not necessarily indicate that adverse impacts are occurring. Additionally, the size of the entire AOC would only support one breeding pair of the American robin. The AOC is not large enough to support very many birds, especially as foraging habitat. Therefore, no further evaluation from an ecological risk perspective is warranted.

### 8.6 Conceptual Site Model

A discussion of the preliminary CSM, based on previous data and historical information identified prior to the RI activities is presented in this RI. This section provides an update to the preliminary CSM based on the analytical results of the RI field data, an evaluation of nature and extent of contamination, fate and transport, and risk evaluations associated with human health and ecological receptors. Elements of this revised CSM include the following:

- Primary and secondary contaminant sources and release mechanisms
- Contaminant migration pathways and discharge points
- Potential receptors with unacceptable risk
- Uncertainties

### 8.6.1 Primary and Secondary Contaminant Sources and Release Mechanisms

Little information is available regarding the historical operations at the Sand Creek Site except that the AOC was used by the Army as an open dump for concrete, wood, asbestos debris, lab bottles, 55-gallon drums and fluorescent light tubes. An RA was conducted by MKM in 2003

that included the removing of all existing unconsolidated surface debris, the limited removal of subsurface debris, transportation and disposal of debris and site restoration. The remaining subsurface debris as well as some visible remaining surface debris is identified as the primary contaminant sources for the Sand Creek Site.

Analysis of data collected by MKM following the RA and as part of the RI identified surface soil (0 to 1 foot bgs) as the primary source of contamination, in particular surface soil at the northern portion of the AOC along the slope and soils adjacent to the top of slope. Inorganics (antimony, arsenic, copper, mercury, silver, and thallium) and PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene) were identified at concentrations that were sufficient to be considered COCs. Surface soils appear to be a secondary source of contamination as arsenic, lead, benzo(a)pyrene, and benzo(b)fluoranthene were identified as COCs in subsurface soils (1 to 20 feet bgs) at the northern portion of the site where the COCs in surface soil were identified. No COCs were identified for sediment or surface water situated downgradient of the AOC, however, fate and transport analysis suggested that the SRCs detected in the sediments and surface water may have originated from these soil sources.

The mechanisms for releases of contaminants at the site include the following:

- Much of the native soil was reworked, removed, or used as cover material during historical dumping activities. Overland surface flow from the reworked areas following rain events and snowmelt may have contaminated the downgradient surface soils at the AOC.
- The SRCs in the subsurface soil (greater than 1 foot bgs) appear to have originated from the fill material placed after the native soil was disturbed and the fill material were placed along the embankment and slopes of the Sand Creek.
- The source of the SRCs measured in the sediment is assumed to be surface soil (0 to 1 foot bgs).
- The SRCs measured in the surface water could potentially have derived from the surface soil and sediment, dissolved in the rainwater and snowmelt running off the land surface and Sand Creek slopes. It could also have originated from the surface and subsurface soils, whose chemical constituents may have been dissolved in the rainwater and snowmelt infiltrating vertically downwards to the groundwater and then discharging to the Sand Creek.

Groundwater samples were not collected during the RI, and no historical groundwater data exists for the site. Fate and transport modeling was used to determine the potential for the SRCs present in surface and subsurface soils to migrate vertically downwards and impact

groundwater quality underneath the AOC and eventually the surface water quality in the nearby Sand Creek. Although the model is considered conservative and various assumptions were used in place of unknown parameters, 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 1,4-dichlorobenzene, carbazole, pentachlorophenol, benzene, alpha-BHC, and beta-BHC were identified as SRCs that have to the potential to leach from surface soil to groundwater at the site and ultimately to the Sand Creek.

#### 8.6.2 Contaminant Migration Pathways and Discharge Points

One of the principal migration pathways at the Sand Creek Site is infiltration through the unsaturated soil (approximately 13 feet thick) to the underlying groundwater that has the potential to cause SRCs to leach from surface and subsurface soils into groundwater present in the unconsolidated water-bearing zone. Due to the very heterogeneous nature of the unconsolidated glacial materials, groundwater flow patterns within the unconsolidated water-bearing zone are difficult to predict. Site-specific groundwater data are not available at the AOC.

Some of the precipitation falling as rainfall and snow leaves the site as surface runoff to the Sand Creek, carrying dissolved SRCs that are present in the surface soil at the site. The fraction of the precipitation that does not leave the AOC as surface runoff infiltrates into the subsurface. Some of the infiltrating water is lost to the atmosphere as evapotranspiration. The remainder of the infiltrating water recharges the groundwater. The rate of infiltration and eventual recharge of the groundwater is controlled by soil cover, ground slope, saturated hydraulic conductivity of the soil, and meteorological conditions.

In theory, the infiltrating water leaches the contaminated soil impacted with SRCs and carries the dissolved SRCs to deeper soil and groundwater. The factors that affect the leaching rate include the amount of infiltration, the SRCs' solubility in water and partitioning between solids and water. The impacted groundwater would eventually discharge to the surface water in Sand Creek, carrying dissolved SRCs with it.

#### **8.6.3 Potential Receptors**

This section summarizes the potential Receptors identified for the Sand Creek Site and the COCs identified for each of the receptors. The revised CSM that includes the distribution of the COCs for three Land Uses: Unrestricted (Residential), Commercial Industrial, and Military Training is presented in **Figure 6-38**.

Given the potential future use of the site for Military Training, the National Guard Trainee was selected as the most Representative Receptors. The NGT was conservatively evaluated for potential exposure for deep surface soil (0 to 4 feet bgs); and was further evaluated for potential exposures associated with subsurface soils (4 to 7 feet bgs), sediment, and surface water.

Arsenic and benzo(a)pyrene, along with a few other chemicals were identified as COCs for all three Land Uses in surface and subsurface soils. See **Table 6-38** for a list of all COCs. The exposure risks associated with several of the COCs are from the evaluation of potential additive effects calculated from the maximum EPCs at the AOC from exposure to multiple chemicals that can cause the same effect (i.e., cancer) or affect the same target organ.

The only ecological receptor identified for the Sand Creek Site was the American robin, an avian species. The American robin is a worm-eating and insectivorous species that may forage at the AOC and is therefore, potentially exposed to SRCs in soil.

#### 8.6.4 Uncertainties

There are various sources of uncertainty that are inherent when evaluating a CSM. Uncertainties identified for the Sand Creek Site include the following:

- Operational records for the site are incomplete. A RA was completed at the AOC in 2003. However, residual waste materials are still visible on the ground surface and evident in the subsurface as a result of a 2010 DGM investigation.
- Groundwater beneath the Sand Creek Site was not evaluated as part of the RI field activities; therefore, SRCs for groundwater were not identified. Fate and transport modeling was used to determine the potential for the SRCs present in surface and subsurface soils to migrate vertically downwards and impact groundwater quality underneath the AOC and eventually the surface water quality in the nearby Sand Creek. Throughout the screening and modeling processes, conservative approaches were used, which may overestimate the contaminant concentration in the leachate for migration from observed soil concentrations.
- There are various sources of uncertainty in the evaluation of exposure and human health risk. These uncertainties generally relate to sampling considerations, the determination of EPCs, and the selection of appropriate receptors. There are numerous uncertainties related to the FWCUGs/RSLs, including exposure assumptions and toxicity values. These uncertainties are inherent to the use of these values, and are similar for all assessments using them.
- Uncertainty, with regards to ecological risk evaluation, is associated primarily with deficiency or irrelevancy of effects, exposure, or habitat data to actual ecological conditions at the site. Species physiology, feeding patterns, and nesting behavior are poorly predictable. Therefore, all toxicity information derived from toxicity testing, field studies, or observations have uncertainties associated with them.

#### 8.7 Recommendations

Based on the RI results, the Sand Creek Site has been adequately characterized and the project objectives have been achieved. Surface and subsurface soil and sediment samples were collected during the RI field activities to define the nature and extent of contamination and support the preparation of an FS and a subsequent Record of Decision for the AOC. Therefore, the recommended path forward is to proceed to the FS phase of the CERCLA process. The FS will evaluate remedial alternatives to address the COCs identified in surface and subsurface soil only. The FS will include a Risk Management Evaluation to fully assess each COCs before proceeding to the alternative analysis for human health. Since no COPECs in soil were identified in the ERA, no additional remedial actions are warranted at the AOC from an ecological perspective. Because no COCs or COPECs were identified in sediment or surface water no analysis of remedial activities in a FS is not warranted for sediment or surface water at the Sand Creek Site.

The COCs identified for each potential exposure medium per exposure interval for three Land Uses: Unrestricted (Residential), Commercial Industrial, and Military Training., the associated land use receptor scenarios and the recommended cleanup goals based on the most likely future land use and unrestricted land uses are summarized in **Table 6-38**. Primary risk drivers for all three Land Uses were arsenic and benzo(a)pyrene based on carcinogenic effects.

In addition to the FS to assess soils at the AOC, further analysis of the groundwater should be conducted for this AOC. An analysis of remedial alternatives for surface and subsurface soil is recommended based on fate and transport results of the leaching potential to groundwater that is associated with the identified CMCPOCs for these media. Evaluation of groundwater at the AOC should be conducted as part of the Facility Wide Groundwater Investigation (RVAAP-66).

## 9.0 **REFERENCES**

Agency for Toxic Substances and Disease Registry, 2002. *Toxicological Profile for Creosote*, U.S. Department of Health and Human Services, Atlanta, GA, September, Online.

Allard, P., A. Fairbrother, B.K. Hope, R.N. Hull, M.S. Johnson, L. Kapustka, G. Mann, B. McDonald, and B.E. Sample, 2009, *Recommendations for the Development and Application of Wildlife Toxicity Reference Values, Integrated Environmental Assessment and Management* 6: 28–37.

AMEC Earth and Environmental, Inc. (AMEC), 2008. *Updated Integrated Natural Resources Management Plan at the Ravenna Training Logistics Site, Portage and Trumbull Counties, Ohio*, Prepared for the Ohio Army National Guard, March.

Baes, C.F. and R.D. Sharp, 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models, Journal of Environmental Quality, 12: 17–28.

Baes, C.E., R.D. Sharp, A.L. Sjoreen, and R.W. Shor, 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture, ORNL-5786, September.

Bartell, S.M., 1996. "*Ecological/Environmental Risk Assessment Principles and Practices*," Kulluru, R., Bartell, S., Pitblado, R., et al. (eds.), Risk Assessment and Management Handbook, McGraw-Hill, NY.

Burrows, E.P., D.H. Rosenblatt, W.R. Mitchell, and D.L. Parmer, 1989. *Organic Explosives and Related Compounds: Environmental and Health Considerations*, U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick, MD.

Camp Ravenna Joint Military Training Center (Camp Ravenna), 2010. Rare Species List.

Efroymson, R.A., G.W. Suter II, B.E. Sample, and D.S. Jones, 1997a. *Preliminary Remediation Goals for Ecological Endpoints*, Oak Ridge National Laboratory, Report No. ES/ER/TM-162/R2.

Efroymson, R.A., G.W. Suter II, A.C. Wooten, and M.E. Will, 1997b. *Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants, 1997 Revision*, Oak Ridge National Laboratory, Report No. ES/ER/TM-85/R3.

Efroymson, R.A., G.W. Suter II, and M.E. Will, 1997c. *Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process, 1997 Revision*, Oak Ridge National Laboratory, Report No. ES/ER/TM-126/R2.

Efroymson, R.A., B.E. Sample, and G.W. Suter, 2001. *Uptake of Inorganic Chemicals From Soil by Plant Leaves: Regressions of Field Data, Environ. Toxicol. Chem.* 20: 2561–2571.

Eisler, R., 1987. *Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review*, U.S. Fish and Wildlife Service Biological Report 85 (1.11), May.

Fetter, C.W., 1992. Contaminant Hydrogeology, McMillan Publishing Company, New York.

Howard, P.H., R.S. Boethling, W.F. Jarvis, W.M. Meylan, and E.M. Michalenko, 1991. *Environmental Degradation Rates*, Lewis Publishers, Inc., Chelsea, MI.

International Atomic Energy Agency (IAEA), 1994. *Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments*, Technical Reports Services No. 364, June 24.

Jager, T., 1998. "Mechanistic Approach for Estimating Bioconcentration of Organic Chemicals in Earthworms," *Environ. Toxicol. Chem.*, 17: 2080–2090.

Kammer, H.W., 1982. A Hydrogeologic Study of the Ravenna Arsenal, Eastern Portage & Western Trumbull Counties, Ohio (Master Thesis), Kent State University Graduate College, August.

Los Alamos National Laboratory (LANL), 2010. ECORISK Database (Release 2.5), Environmental Restoration Project, Los Alamos National Laboratory, Los Alamos, NM, September.

Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt, 1990. *Handbook of Chemical Property Estimation Methods*, American Chemical Society, Washington, D.C.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger, 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems, Arch. Environ. Contam. Toxicol., 39: 20–31.

MidwestRegionalClimateCenter,2000.http://mrcc.isws.illinois.edu/climate\_midwest/mwclimate\_data\_summaries.htm.

MKM Engineers, Inc. (MKM), 2004. *Remedial Design/Removal Action Plan for RVAAP-34 Sand Creek Disposal Road Landfill, Ravenna Army Ammunition Plant, Ravenna, Ohio,* Prepared for U.S. Army Joint Munitions Command, Rock Island, Illinois, March.

Oak Ridge National Laboratory (ORNL), 1987. Water Quality Criteria for White Phosphorus, Final Report, AD-ORNL-6336, August.

Ohio Army National Guard (OHARNG), 2008. AOC-MRS RTLS Master Plan Reuse Priorities, Revision 1, December 8.

Ohio Department of Natural Resources (ODNR), 1997. *Species and Plant Communities Inventory, Ravenna Army Ammunition Plant*, Prepared by ODNR, Division of Natural Areas and Preserves in Cooperation with The Nature Conservancy, Ohio Chapter.

Ohio Environmental Protection Agency (Ohio EPA), 2004. Director's Final Findings and Orders (DFFO) for RVAAP. June 10.

Ohio EPA, 2008. *Ecological Risk Assessment Guidance Document*, Division of Emergency and Remedial Response, Columbus, OH, April.

Ohio EPA, 2011. *State of Ohio Water Quality Standards*, Chapter 3745-1 of the Administrative Code, March 16.

Science Applications International Corporation (SAIC), 1996. *Preliminary Assessment for the Characterization of Areas of Contamination, Ravenna Army Ammunition Plant, Ravenna, Ohio*, Prepared for U.S. Army Corps of Engineers, Nashville District, February.

SAIC, 2001. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio, March.

SAIC, 2005. *Phase I Remedial Investigation Report for the Ramsdell Quarry Landfill at the Ravenna Army Ammunition Plant, Ravenna, Ohio*, Prepared for the U.S. Army Corps of Engineers, Louisville District, September.

SAIC, 2010. *Final Facility Wide Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio*, Prepared for the U.S. Army Corps of Engineers, Louisville District, March 23.

SAIC, 2011. Remedial Investigation/Feasibility Study Report for the RVAAP-13 Building 1200 at the Ravenna Army Ammunition Plant, RVAAP, Ravenna, Ohio, Contract No. W912QR-04-D-0028, Delivery Order 001, Draft, February 4.

Sample, B.E. and G.W. Suter, II, 1994. *Estimating Exposure of Terrestrial Wildlife to Contaminants*, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ES/ER/TM-125.

Sample, B.E., D.M. Opresko, and G.W. Suter II, 1996. *Toxicological Benchmarks for Wildlife: 1996 Revision*, Prepared for the U.S. Department of Energy by Health Sciences Research Division, Oak Ridge National Laboratory.

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, 1998b. *Development and Validation of Bioaccumulation Models for Small Mammals*, ES/ER/TM-219.

Schroeder, P.R., C.M. Lloyd, P.A. Zappi, and N.M. Aziz, 1984. The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide.

Shaw Environmental & Infrastructure, Inc. (Shaw), 2009. Final Data Quality Objectives Report for the RVAAP-34 Sand Creek Disposal Road Landfill, Version 1.0, Ravenna Army Ammunition Plant, Ravenna, Ohio, July.

Shaw, 2010. Final Sampling and Analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site, Version 1.0, Ravenna Army Ammunition Plant, Ravenna, Ohio, February.

Shaw, 2011. Final Digital Geophysical Mapping Report for the RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site, Version 1.0, Ravenna Army Ammunition Plant, Ravenna, Ohio, January.

Sverdrup, L.E., A.E. Kelley, P.H. Krogh, T. Nielson, J. Jensen, J.J Scott-Fordsmand, and J. Stenersen, 2001. *Effects of Eight Polycyclic Aromatic Hydrocarbon Compounds on the Survival and Reproduction of the Springtail Folsomia fimetaria L. (Collembola, Isotomidae), Environmental Toxicity and Chemistry*, Volume 20, No. 6, Pages 1332–1338.

Sverdrup, L.E., A.E. Kelley, P.H. Krogh, T. Nielson, J. Jensen, J.J Scott-Fordsmand, and J. Stenersen, 2002b. *Relative Sensitivity of Three Terrestrial Invertebrate Tests to Polycyclic Aromatic Compounds, Environmental Toxicity and Chemistry*, Volume 21, No. 9, Pages 1927–1933.

Sverdrup, L.E., J. Jensen, A.E. Kelley, P.H. Krogh, and J. Stenersen, 2002a. *Effects of Eight Polycyclic Aromatic Hydrocarbon Compounds on the Survival and Reproduction of the Enchyrtraeus crypticus (Oligochaeta, Clitellata), Environmental Toxicity and Chemistry*, Volume 21, No. 1, Pages 109–114.

Talmage, S.S., D.M. Opresko, C.J. Maxwell, C.J. Welsh, F.M. Cretella, P.H. Reno, and F.B. Daniel, 1999. *Nitroaromatic Munitions Compounds: Environmental Effects and Screening Values, Rev. Environ. Contamin. Toxicol.*, 161: 1–156.

Tannenbaum, L.V., 2005. A Critical Assessment of the Ecological Risk Assessment Process: A Review of Misapplied Concepts, Integrated Environmental Assessment and Management, 1(1): 66–72.

Tannenbaum, L.V., M.S. Johnson, and M. Bazar, 2003. *Application of the Hazard Quotient Method in Remedial Decisions: A Comparison of Human and Ecological Risk Assessments, Human and Ecological Risk Assessment*, Volume 9, No. 1, Pages 387–401.

U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM), 1998. *Relative Risk Site Evaluation for Newly Added Sites at the Ravenna Army Ammunition Plant, Ravenna, OH*, Hazardous and Medical Waste Study No. 37-EF-5360-99.

U.S. Army Corps of Engineers (USACE), 1998. Phase I Remedial Investigation Report for the Phase I Remedial Investigation of High Priority Areas of Concern at the Ravenna Army Ammunition Plant, Ravenna, Ohio, February.

USACE, 2002. *Louisville Chemistry Guideline*, Louisville District, Environmental Engineering Branch, Revision 5, June.

USACE, 2003. RVAAP Facility Wide Ecological Risk Assessment Work Plan, Final, April 21.

USACE, 2004. Facility-Wide Groundwater Monitoring Program Plan for the Ravenna Army Ammunition Plant, Ravenna, Ohio, Final, September.

USACE, 2005a. Facility-Wide Biological and Water Quality Study 2003, Ravenna Army Ammunition Plant, Final, November.

USACE, 2005b. Ravenna Army Ammunition Plant Facility-Wide Human Health Risk Assessor Manual, Amendment 1, December 1.

USACE, 2009. Implementation of Incremental Sampling (IS) of Soil for the Military Munitions Response Program, Interim Guidance 09-02, Environmental and Munitions Center of Expertise, July 20.

USACE, 2010. *Risk Assessment Handbook, Volume II Environmental Evaluation*, Engineer Manual EM-200-1-4, December.

USACE, 2012. U.S. Army Corps of Engineers Ravenna Army Ammunition Plant Position Paper for the Application and Use of Facility-Wide Cleanup Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio, Revised February 2012.

U.S. Army Environmental Command (USAEC), 2005. A Guide to Screening Level Ecological risk Assessment: Technical Document for Ecological Risk Assessment, Department of the Army, U.S. Army Biological Technical Assistance Group.

U.S. Census Bureau, 2011. http://www.census.gov/, December.

U.S. Department of Defense (DOD), 2009. *Quality Systems Manual for Environmental Laboratories*, Final Version 4.1, DOD Environmental Data Quality Workgroup, April 22.

U.S. Environmental Protection Agency (EPA), 1988. *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final*, EPA/540/G-89/004, OSWER Directive 9355.3-01, October.

EPA, 1992. *Framework for Ecological Risk Assessment*, Risk Assessment Forum, EPA/630/R-92/001, Washington, D.C.

EPA, 1993. *Wildlife Exposure Factors Handbook*, Vols. I and II, Office of Research and Development, Washington, DC, EPA/600/R-93/187a.

EPA, 1994. *Guidance for the Data Quality Objectives Process, EPA QA/G4*, Prepared for The Office of Research and Development, Washington, D.C., EPA/600/R-96/055, September.

EPA, 1996a. Soil Screening Guidance: Technical Background Document, EPA DocumentNumber:EPA/540/R-95/128,July1996:http://www.epa.gov/superfund/health/conmedia/soil/toc.htm#p5.

EPA, 1996b. Region 5 Biological Technical Assistance Group (BTAG) Ecological Risk Assessment Bulletin No. 1, Chicago, Illinois.

EPA, 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, EPA/540-R-97-006.

EPA, 1999a. Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles for Superfund Sites, OSWER Directive 9285.7-28P, October.

EPA, 1999b. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, EPA530-D-99-001A, November.

EPA, 2003. U.S. EPA Region 5 RCRA Ecological Screening Levels (ESLs), Website version last updated August 22, 2003: http://www.epa.gov/reg5rcra/ca/edql.htm.

EPA, 2007. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Analytical Protocols, Revision 6, February.

EPA, 2010. *Guidance for Developing Ecological Soil Screening Levels*, Office of Solid Waste and Emergency Response, Directive 92857.7-55, Washington, D.C., SSL values on line at: http://epa.gov/ecotox/ecossl/index.html.

EPA, 2015. *Regional Screening Levels (RSLs)*, Website Version Last Updated November, 2015: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration\_table/index.htm.

EPA, 2012. *Drinking Water Contaminants*, Website Version Last Updated March 6, 2012: http://water.epa.gov/drink/contaminants/index.htm.

U.S. Geological Survey, 2007. Toxic Substances Hydrology Program, Definitions http://toxics.usgs.gov/definitions/biodegradation.html.

Wassenberg, D.M., A.L. Nerlinger, L.P. Battle, and T.D. Giulio (Wassenberg et al.), 2005. *Effects of the Polycyclic Aromatic Hydrocarbon Heterocycles, Carbazole and Dibenzothiophene, on in Vivo and In Vitro Cyp1A Activity and Polycyclic Aromatic Hydrocarbon-Derived Embryonic Deformities, Environmental Toxicity and Chemistry,* Volume 24, No. 10, Pages 2526–2532.

Waterloo Hydrogeologic, Inc., 2004. UnSat Suite Plus, Version 2.2.0.3.

Wentsel, R.S., T.W. LaPoint, M. Simini, R.T. Checkai, D. Ludwig, and L.W. Brewer (Wentsel et al.), 1996. *Tri-Service Procedural Guidelines for Ecological Risk Assessments*, U.S. Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, Maryland.

# Appendix A Field Documentation

**Field Logs** 

This page intentionally left blank.

Lage 1 of 3 th Soil / Sediment Field Logsheet Shaw Shaw E&I Site Name: Rowana, OH Sand Greek Disposel Road Landfill Project #: 133616 Sample Location Sketch: Sample ID: 5Css-057m-0001-50 N Sample Type\*: SUR \*: SED=Sediment; SUR=Surface soil) Creek SUB=Subsurface Soil: OTH=Other. grab=Grab, comp=Composite 9/24/10 Date Sampled: Ν b Time Sampled: 1105 n D D 0 1 fait Depth (ft bgs): Tocation of 50 50-55-057dA, ms/MD Ø Ô Physical description: **D**-4 0= node for 5055-057m-0001-MD Silt, Clay, trace sand 0 O 12 node for 5635-057m -0001-50 ms Analyses requested: TAL metals, Explosives, 5'VOCS, Here Cr., Pestides, PCBS, Cyanide, \$ = node for 3035-057m-0001-50 Propellants. Photograph Log #: M AN PID: Calibration Date: A/A O2/LEL: NA Calibration Date: NA Cleer, Sunny Weather: °F 80 Temperature: Stainless Steel push probe Sampling Equipment: Equipment Decontamination Technique: Liquinox, Isopropyl Alcohol, DI rinse 3655-057A-0001-MS QC Samples: 5C35-057m-0001-MD Analytical Laboratory: CT Laboratory Comments: Thick regitation, steep torrain Rasnack Joseph Date: 9/24/10 Field Technician: (Print)

page 2 of 3 AD

|        | Soil / Sed                                                           | iment Field Logsheet                 |  |  |  |  |  |
|--------|----------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
|        | Shaw "Shaw E & I                                                     |                                      |  |  |  |  |  |
|        | Site Name: Ravenna, OH Sard Creek Land                               | Project #: 133616                    |  |  |  |  |  |
|        | Sample ID: 5033-057m-0001-56 MS                                      | Sample Location Sketch:              |  |  |  |  |  |
|        | Sample Type*: SuR                                                    |                                      |  |  |  |  |  |
|        | *: SED=Sediment: SUR=Surface soil;                                   |                                      |  |  |  |  |  |
|        | SUB=Subsurface Soil; OTH=Other.                                      | See you                              |  |  |  |  |  |
|        | Date Sampled: 9104100                                                | Der pocestic.                        |  |  |  |  |  |
|        | Time Sampled: 1(35                                                   | Sample skeetch.                      |  |  |  |  |  |
|        | Depth (ft bas):                                                      |                                      |  |  |  |  |  |
| GHR    | Physical description: Analyses:                                      |                                      |  |  |  |  |  |
| 82     | TAL Metals, Explosives, 500CS, Hex Cr.<br>Disticides, PCBS, Cochiele |                                      |  |  |  |  |  |
| $\cap$ | Propulants                                                           |                                      |  |  |  |  |  |
| Đơ     | Analyses requested: Physical discription                             |                                      |  |  |  |  |  |
|        | Silt, Clay, trace Send                                               | Photograph Log #: NA                 |  |  |  |  |  |
|        | PID: NA                                                              | Calibration Date: NA                 |  |  |  |  |  |
|        | 02/LEL: NA                                                           | Calibration Date: NA                 |  |  |  |  |  |
|        | Weather: Clear, Sonry                                                |                                      |  |  |  |  |  |
|        | Temperature: <u>%0</u> °F                                            |                                      |  |  |  |  |  |
|        | Sampling Equipment: 5 famless 54                                     | el push probe                        |  |  |  |  |  |
|        | Equipment Decontamination Technique:                                 | oquinox, Isopropyl Alcohol, DI rinse |  |  |  |  |  |
|        | QC Samples: This is MS Sampl                                         | il for 5(35-057m-0001.50             |  |  |  |  |  |
| ľ      | Analytical Laboratory: CT Laborator                                  | ios                                  |  |  |  |  |  |
| · [    | Comments: Thick regulation                                           | Steep terrain                        |  |  |  |  |  |
|        | Field Technician: (Print) Soseph Ras                                 | Snack Date: 9/24/10                  |  |  |  |  |  |

page 3 of 34 Logsheet

| Soil / | Sediment | Field | Logsheet |
|--------|----------|-------|----------|
|--------|----------|-------|----------|

| Shaw ~ Shaw E & I                                                                                         |                                       |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| Site Name: Ravenna, OH Sind Creek<br>Landfill                                                             | Dispesed Revel<br>Project #: 133616   |
| Sample ID: 5C55-057m -0001 - MD                                                                           | Sample Location Sketch:               |
| Sample Type*: Sur                                                                                         |                                       |
| *: SED=Sediment: &UR=Surface soil><br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite        | See post                              |
| Date Sampled: 9/24/10                                                                                     | ter Loc                               |
| Time Sampled: 1240                                                                                        | Sant Skerten                          |
| Depth (ft bgs):                                                                                           |                                       |
| Physical description:<br>Silt, Clay, trace sand                                                           |                                       |
| Analyses requested:<br>TAL Metels, Explosives, SVOCs<br>Hex Cr, Pesticidus, PCBS, Cyonine,<br>Properfants | Photograph Log #: ملم                 |
| PID: NA                                                                                                   | Calibration Date: NA                  |
| O2/LEL: NA-                                                                                               | Calibration Date: NA                  |
| Weather: Clear, Song, h                                                                                   | Dindy                                 |
| Sampling Equipment:                                                                                       |                                       |
| Equipment Decontamination Technique: Lia                                                                  | yuinox, Isopropy   Alcohol, DZ rains? |
| QC Samples: This MD simple for                                                                            | 5C55-057m-0001-50                     |
| Analytical Laboratory: CT Laborado                                                                        | ries                                  |
| Comments: Thick vagtetion,                                                                                | Steep terrain                         |
| Field Technician: (Print) Seph Ra                                                                         | snack Date: 9/24/10                   |

| Soil / See<br>Shaw " Shaw E & I                                                                    | diment Field Logsheet      |
|----------------------------------------------------------------------------------------------------|----------------------------|
| Site Name: Ravenna, OH Road                                                                        | Cardfill Project #: 133616 |
| Sample ID: 5C55-057d - 0001-50                                                                     | Sample Location Sketch:    |
| Sample Type*: SoR                                                                                  |                            |
| *: SED=Sediment; SUR=Surface soil;)<br>SUB=Subsurface Soil; OTH=Other.<br>grab_Grab_comp=Composite |                            |
| Date Sampled: 9/24/19                                                                              | -                          |
| Time Sampled: $m_{s} = 1300 \text{ mp} = 1310$                                                     | - See Pri pich             |
| Depth (ft bgs):                                                                                    | l locor                    |
| Physical description:<br>Clay, Silt, trace<br>Sand                                                 | - Gumple Sketch            |
| Analyses requested:                                                                                |                            |
| VOCS                                                                                               | Photograph Log #: MA       |
|                                                                                                    | Calibration Date: NA       |
| O2/LEL: NA                                                                                         | Calibration Date: NA       |
| Weather: Windy Junny                                                                               | Het                        |
| Temperature: 90 ° F                                                                                |                            |
| Sampling Equipment: TIGra Care                                                                     |                            |
| Equipment Decontamination Technique:                                                               | <br>//Д                    |
| QC Samples: 3033-057d-0001                                                                         | d-MS, 5C55-057d-0001d-MD   |
| Analytical Laboratory: CT Labor                                                                    | atorios                    |
| Comments: Steep terrain                                                                            |                            |

poor 1 of 3

|                                                                                                                          | Soil / Sedi                 | ment Field Logsheet                                    |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| Shaw "Shaw E & I                                                                                                         | Sad Cark I                  | Deposed Road                                           |
| Site Name: Kavenna, OH                                                                                                   | Jana Creat P                | and fill Project #: 133616                             |
| Sample ID: SC55 - 058 m                                                                                                  | - 0001-50                   | Sample Location Sketch:                                |
| Sample Type*: Sur                                                                                                        |                             | Creek                                                  |
| *: SED=Sediment; SUR=Surface so<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite<br>Date Sampled: 9/23/10 | <u>)</u>                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| Time Sampled: 1340                                                                                                       |                             | X X X X X X X X X X X X X X X X X X X                  |
| Depth (ft bgs): 1 feet                                                                                                   |                             |                                                        |
| Physical description:<br>Bilt, Clay, frace                                                                               | l sand                      |                                                        |
| Analyses requested:                                                                                                      | 1                           | /* A X A A A A A A                                     |
| TAL hetels, Exp<br>SVOCS                                                                                                 | (051112)                    | Photograph Log #: NA                                   |
| PID: NA                                                                                                                  | I                           | Calibration Date:                                      |
| 02/LEL: NA                                                                                                               |                             | Calibration Date: NA                                   |
| Weather: Clear, r                                                                                                        | ot, hunic                   | 1, slight breeze                                       |
| Temperature: 90                                                                                                          | °F                          |                                                        |
| Sampling Equipment: 5 <                                                                                                  | 5 push                      | probe                                                  |
| Equipment Decontamination T                                                                                              | echnique:                   | theirex, Isopropy/ Alcohol, DI rinse                   |
| 93 - 20 Samples:                                                                                                         | 5m - 0001 - 50              |                                                        |
| Analytical Laboratory: CT                                                                                                | Labores                     | teries                                                 |
| Comments:                                                                                                                | turroi.n,                   | construction dubris, thick                             |
| Voxtetre                                                                                                                 | 2                           |                                                        |
| Field Technician: (Print)                                                                                                | Jeseph                      | Rasrock Date: 9/23/10                                  |
|                                                                                                                          | X = Node .f.<br>O = node .f | er 5C35-058m-0001-50<br>Der 5C35-085m-0001-50          |
|                                                                                                                          | 1 = node                    | ter 5055 - 058m - 0001 - 50 (Army Dup.)                |

| Shaw Shaw E&I                                                                                      | reek Disposel                  |
|----------------------------------------------------------------------------------------------------|--------------------------------|
| Site Name: Kavinna OH Rd.                                                                          | Lordfill Project #: 133616     |
| Sample ID: 555-085m-0001-50                                                                        | Sample Location Sketch:        |
| Sample Type*: Sur                                                                                  |                                |
| *: SED=Sediment; SCR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite | See page 1                     |
| Date Sampled: 9 23 10                                                                              | for sight                      |
| Time Sampled: 1445                                                                                 | sôte diagram                   |
| Physical description:<br>Silt, clay, trace Sand<br>Analyses requested:                             |                                |
| TAL Metals, Explosives,                                                                            | // A                           |
| 54005                                                                                              | Photograph Log #: NA           |
| PID: NA                                                                                            | Calibration Date: NA           |
| 02/LEL: NA                                                                                         | Calibration Date: NA           |
| Weather: Hot humid                                                                                 |                                |
| Temperature: 90 ° F                                                                                |                                |
| Sampling Equipment:                                                                                |                                |
| Equipment Decontamination Technique:                                                               | Allei are in and alabel NT     |
| OC Samples: TT                                                                                     | ATUNOK, Dopropyi Miconor, DI M |
| Analytical Laboratory                                                                              | ter 5(55-020m - 0001-30        |
| Analylical Laboratory: CT Labor                                                                    | alles                          |
| Comments: Step tarrain,                                                                            | thick regetation               |
|                                                                                                    |                                |
|                                                                                                    |                                |

Page 2 of 3

| Soil / Sec                           | liment Field Logsheet                         |
|--------------------------------------|-----------------------------------------------|
| Shaw Shaw E & I                      |                                               |
| Site Name: Ravenna, OH Sard Cree     | K Disposel<br>and Landifill Project #: 133616 |
| Sample ID: 5 (55 - 058m - 0001 - S   | Sample Location Sketch:                       |
| Sample Type*: SOR                    |                                               |
| *: SED=Sediment, SUR=Surface soil;)  |                                               |
| SUB=Subsurface Soil; OTH=Other.      | See page                                      |
| grab=Grab, comp=Composite            |                                               |
| Date Sampled: $1/23/10$              | For Localion                                  |
| Time Sampled: 1535                   | = DKetch.                                     |
| Depth (ft bgs):                      |                                               |
| Physical description:                |                                               |
| Analyses requested:                  |                                               |
| TAL Nutals, Explosives,<br>Sulocs    | Photograph Log #: NA                          |
| PID: NA                              | Calibration Date: NA                          |
| 02/LEL: NA                           | Calibration Date: NA                          |
| Weather: Clear, hot, humic           | 1, Slight breeze                              |
| Temperature: 90 ° F                  |                                               |
| Sampling Equipment: Steinless 5      | iteel push probe                              |
| Equipment Decontamination Technique: | Icinox, Isopropyl Alcohol, DI rinse           |
| QC Samples: This is the Army         | Dup. for<br>SCSS -058 m - 0001 - 50           |
| Analytical Laboratory: CT Labora     | terles                                        |
| Comments: Steep terraine, H          | nick vegetation.                              |
|                                      | 0                                             |
Shaw Shaw E & I

| Site Name: Ravenna, OH Sard Creck                                                                  | Disposed Rood Project #: 133616                                            |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Sample ID: 5C55 - 059m - 0001 - 50                                                                 | Sample Location Sketch:                                                    |
| Sample Type*: ຽບຂ                                                                                  |                                                                            |
| *: SED=Sediment; SUR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite | X X X X Concrete                                                           |
| Date Sampled: 9/23/10<br>Time Sampled: 1140                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                      |
| Depth (ft bgs): 1 foot<br>Physical description:<br>Silt, clay, trace sand                          | X X X X X X X                                                              |
| Analyses requested:<br>TAL McHals, Explosives<br>SVOCS                                             | $X = ncde  \text{Sc} = 5C_{55} - 059_{m} - 0001 - 50$ Photograph Log #: NA |
| PID: NA                                                                                            | Calibration Date: NA                                                       |
| O2/LEL: NA                                                                                         | Calibration Date: ┧/Д                                                      |
| Weather: Clear, Sunny, hum                                                                         | id, warm                                                                   |
| Temperature: 85 ° F                                                                                |                                                                            |
| Sampling Equipment: Stanless Ste                                                                   | el push probe                                                              |
| Equipment Decontamination Technique: Alc                                                           | inox, Isopropyl Alcohol, DI rinse                                          |
| QC Samples: None                                                                                   |                                                                            |
| Analytical Laboratory: CT Laborat                                                                  | ories                                                                      |
| Comments: Steep Terroin,                                                                           | Thick Vegetation, Construction                                             |
| Field Technician: (Print) Jeseph Ras                                                               | snack Date: 9/23/16                                                        |

| Site Name: Ravenna, OH Sand Cru                                                                                             | 2K Disposel Project #: 133616                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID: 5C55 - 060m - 0001 - 50                                                                                          | Sample Location Sketch:                                                                                                                                                                                                       |
| Sample Type*: SUR                                                                                                           |                                                                                                                                                                                                                               |
| *: SED=Sediment; SUR=Surface soll;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite<br>Date Sampled: 9123/10 | K X X X X B                                                                                                                                                                                                                   |
| Time Sampled: 1020                                                                                                          |                                                                                                                                                                                                                               |
| Depth (ft bgs): 1 Foot                                                                                                      | X X J                                                                                                                                                                                                                         |
| Physical description:<br>5:14, Clay, trace sond<br>Analyses requested:<br>TAL Met-Rs, Explosives,<br>SVOCS, Hex Chrome      | $\frac{ x  \times  x  \times  x  \times  x }{ x  \times  x }$ $\frac{ x  \times  x  \times  x  \times  x }{ x  \times  x  \times  x }$ Photograph Log #: NA |
| PID: NA                                                                                                                     | Calibration Date: NA                                                                                                                                                                                                          |
| 02/LEL: NA                                                                                                                  | Calibration Date: NA                                                                                                                                                                                                          |
| Weather: Clear, humid, ligh                                                                                                 | + breeze                                                                                                                                                                                                                      |
| Temperature: 75 ° F                                                                                                         |                                                                                                                                                                                                                               |
| Sampling Equipment: Stainloss Stee                                                                                          | el push probe                                                                                                                                                                                                                 |
| Equipment Decontamination Technique:                                                                                        | Icinex, isopropyl Alcohel, DI rinse                                                                                                                                                                                           |
| QC Samples: None                                                                                                            |                                                                                                                                                                                                                               |
| Analytical Laboratory: CT Laborat                                                                                           | iori es                                                                                                                                                                                                                       |
|                                                                                                                             |                                                                                                                                                                                                                               |

| Soil / Sedi                                                                                        | iment Field Logsheet                                   |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Site Name: Ravenna, OH Sand Creek                                                                  | Disposed fill Project #: 133616                        |
| Sample ID: 5Css -061m - 0001 - 50                                                                  | Sample Location Sketch:                                |
| Sample Type*: Sur                                                                                  | Eveek                                                  |
| *: SED=Sediment; &UR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite |                                                        |
| Time Sampled: 0915                                                                                 | X X X X                                                |
| Depth (ft bgs): 1 fast<br>Physical description:<br>Silt, clay, frace sand                          | X X X X X X X X X X X X X X X X X X X                  |
| Analyses requested:<br>TAL Metals, Explasives,<br>SVOCS                                            | X = hade for 5055-061m-0001-50<br>Photograph Log #: NA |
| PID: NA                                                                                            | Calibration Date: NA                                   |
| O2/LEL: NA                                                                                         | Calibration Date: NA                                   |
| Weather: Foggy, cool, humidae                                                                      | , light breeze                                         |
| Temperature: 65 ° F                                                                                |                                                        |
| Sampling Equipment: Stainless Stee                                                                 | el push probe                                          |
| Equipment Decontamination Technique: AI                                                            | cinox, isopropyl alcohol, DI rinse                     |
| QC Samples: Nove                                                                                   |                                                        |
| Analytical Laboratory: CT Labrate                                                                  | ries                                                   |
| Comments: Streep terrain, m                                                                        | adverately thick regestration.                         |
| Field Technician: (Print) Joseph Ra                                                                | snack Date: 9/23/10                                    |

| Hex Chare Senel                                                                                                             | 2                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Soil / Sec                                                                                                                  | liment Field Logsheet                                                                                          |  |
| Shaw Shaw E&I                                                                                                               | and Creek Pisposat                                                                                             |  |
| Site Name: Kavenna, OI-                                                                                                     | Rd. Lavarra Project #: 133616                                                                                  |  |
| Sample ID: 5('55-062'm-000(-50                                                                                              | Sample Location Sketch:                                                                                        |  |
| Sample Type*: SUR                                                                                                           | River                                                                                                          |  |
| *: SED=Sediment; SUR=Surface soll;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite<br>Date Sampled: 9/22/10 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                        |  |
| Time Sampled: /(,30                                                                                                         | $   \times \times \times \otimes \times \times / \times$ |  |
| Depth (ft bgs): \ િામ                                                                                                       |                                                                                                                |  |
| Physical description:<br>Primary Silt, Seme<br>Cray, trace Sound<br>Analyses requested:<br>TAL Metals, Explosives,          | X=node for 5C=S-062m-0001-50<br>@=large tree                                                                   |  |
| SVOCS, Hex Chrome                                                                                                           | Photograph Log #: NA                                                                                           |  |
| PID: N/A                                                                                                                    | Calibration Date: NA                                                                                           |  |
| 02/LEL: NA                                                                                                                  | Calibration Date: NA                                                                                           |  |
| Weather: Cloudy, humid                                                                                                      | Warm                                                                                                           |  |
| Temperature: 85-90° F                                                                                                       | ······································                                                                         |  |
| Sampling Equipment: Stall Push probe                                                                                        |                                                                                                                |  |
| Equipment Decontamination Technique: Alcinox, Isopropyl, DI Rinse                                                           |                                                                                                                |  |
| QC Samples: None                                                                                                            |                                                                                                                |  |
| Analytical Laboratory: CT (chart                                                                                            | cries                                                                                                          |  |
| Comments: If carry Vegetation,                                                                                              | dense soil, hard                                                                                               |  |
| te abtein Sem                                                                                                               | ples                                                                                                           |  |
| Field Technician: (Print)                                                                                                   | Rasnack Date: 9/22/11                                                                                          |  |

| Soil / Sed                                                         | iment Field Logsheet                        |  |
|--------------------------------------------------------------------|---------------------------------------------|--|
| Shaw E&I                                                           |                                             |  |
| Site Name: Ravenna, OH Digos                                       | Cruck<br>al Rol. Landfill Project #: 133616 |  |
| Sample ID: 5C35-063m-0001-50                                       | Sample Location Sketch: $N \longrightarrow$ |  |
| Sample Type*: SvR                                                  | River                                       |  |
| *: SED=Sediment; &UR=Surface soil;                                 | doutria                                     |  |
| SUB=Subsurface Soil; OTH=Other.                                    | X X X X X                                   |  |
| grab=Grab, comp=Composite                                          | X X X OX X X                                |  |
| Date Sampled: 9 22/10                                              | X X X X X X                                 |  |
| Time Sampled: 1510                                                 | XXXXX                                       |  |
| Depth (ft bgs):                                                    | X X X X X X                                 |  |
| Physical description:<br>Mosfly Silty Soils<br>Some Clay and fill. | X=node for<br>5(-5-063m-0001-50             |  |
| Analyses requested:                                                |                                             |  |
| - TAL Metals                                                       |                                             |  |
| <ul> <li>Explosives</li> <li>SVOCs</li> </ul>                      | Photograph Log #: NA                        |  |
| PID: NA                                                            | Calibration Date: NA                        |  |
| 02/LEL: NA                                                         | Calibration Date: NA                        |  |
| Weather: Partly cloudy                                             | humid                                       |  |
| Temperature: 85+ °F                                                |                                             |  |
| Sampling Equipment: Stainless Steel 5 push probe                   |                                             |  |
| Equipment Decontamination Technique:                               |                                             |  |
| QC Samples: None                                                   |                                             |  |
| Analytical Laboratory: CT Labora                                   | teries                                      |  |
| Comments: Very high regetation, steep terrain                      |                                             |  |
| Field Technician: (Print) Joseph F                                 | Date: 9/22/10                               |  |

| Shaw E&I Hex C                          | Frame Sample                       |
|-----------------------------------------|------------------------------------|
| Site Name: Rayenna , 614 54             | d Cruck Disposed Project #: 133616 |
| Sample ID: $5C_{35} - 064m - 0001 - 50$ | Sample Location Sketch:            |
| Sample Type*: Str                       |                                    |
| *: SED=Sediment; &UR=Surface soil;      | - River                            |
| SUB=Subsurface Soil; OTH=Other.         | X X X                              |
| grab=Grab, comp=Composite               | X X X X                            |
| Date Sampled: 9/2/10                    | XXXXXXXXX                          |
| Time Sampled: 1350                      | X X X X X                          |
| Depth (ft bgs):                         | 12 10 10 10 1X                     |
| Physical description:                   | X = node for                       |
| Mixel, Clay & Shird San                 | $5C_{55} - 064m - 0001 - 50$       |
| materice + Some ner                     | ster                               |
| TAL Medels, Explosives,                 |                                    |
| SVOCS, Hex Chrome                       | Photograph Log #: NA               |
| PID: NA                                 | Calibration Date: NA               |
| O2/LEL: NA                              | Calibration Date: NA               |
| Weather: Party doudy                    | very hamid                         |
| Temperature: 85-90 ° F                  | <u> </u>                           |
| Sampling Equipment: State               | Shal and a life                    |
|                                         | -reel push probe                   |
|                                         | Alcinox, iso propyl, DI rinse      |
| QC Samples: None                        |                                    |
| Analytical Laboratory: CT L             | sborcsteries                       |
| Comments: Viry Strep                    | terrain, rocky sail                |
|                                         |                                    |
|                                         |                                    |
| Field Technician: (Print)               | Date: Shart                        |

| Soil / Sed                             | iment Field Logsheet                        |
|----------------------------------------|---------------------------------------------|
| Shaw ~ Shaw E & I                      |                                             |
| Site Name: Ravinna, OH Sard            | 1. Lond fill Project #: (33616              |
| Sample ID: 5C35 -065m20001-50          | Sample Location Sketch: $N \longrightarrow$ |
| Sample Type*: <i>ち</i> ょ尺              | D'und                                       |
| *: SED=Sediment; SUR=Surface soil;     | Kiver                                       |
| SUB=Subsurface Soil; OTH=Other.        | K X X X                                     |
| Date Sampled: 9/22/10                  | K X X X X                                   |
| Time Sampled: 1125                     | X X X X X X                                 |
| Depth (ft bas):                        | X X X X X X                                 |
| Physical description:                  | x x                                         |
| Clay, mixed standy +                   | X = node fer                                |
| S(HY<br>Analyses requested:            | - 5055 069 m -0001 - 50                     |
| To Match E desives                     |                                             |
| SVOCS                                  | Photograph Log #: ハム                        |
| PID: NA                                | Calibration Date: NA                        |
| O2/LEL: NA                             | Calibration Date: NA                        |
| Weather: party cloudy, h               | wnie                                        |
| Temperature: 85 ° F                    |                                             |
| Sampling Equipment: Stainless 5        | teel push probe                             |
| Equipment Decontamination Technique: A | Iconox Scrub, isopopyl, DI vinse            |
| QC Samples: Norle                      |                                             |
| Analytical Laboratory: CT Labra-       | teries                                      |
| Comments: Steep turraine,              | thick regetation                            |
| Field Technician: (Print) Joseph K     | )<br>Asnack Date: 9/22/10                   |

| Soil / Sed                           | liment Field Logsheet              |
|--------------------------------------|------------------------------------|
| Shaw E&I Hex C                       | Thrane Sample                      |
| Site Name: Ravenna, OH Jarde         | Creek Disposed Project #: 133616   |
| Sample ID: 5055 -0660m - 0001 - 50   | Sample Location Sketch:            |
| Sample Type*: SUR                    |                                    |
| *: SED=Sediment; &UR=Surface soil; ) |                                    |
| SUB=Subsurface Soil; OTH=Other.      | X X X X X X                        |
| grab=Grab, comp=Composite            |                                    |
| Date Sampled: 9/22/10                |                                    |
| Time Sampled: 1005                   |                                    |
| Depth (ft bgs):                      |                                    |
| Physical description:                | X = sample locations               |
| Silty Sand and                       | for 5055-066 m-0001-50             |
| trace serve met                      | _                                  |
| Analyses requested:                  | N                                  |
| SVOC'S, Hex Chrome                   | Photograph Log #: NA               |
| PID: NA                              | Calibration Date: NA               |
| 02/LEL: NA                           | Calibration Date: NA               |
| Weather: Rain (scattered)            | Partly cloudy, humid.              |
| Temperature: 80° °F                  |                                    |
| Sampling Equipment:                  | ush R Hobe                         |
| Equipment Decontamination Technique: | Alconox scrub, isopropyl, di riase |
| QC Samples:                          |                                    |
| Analytical Laboratory:               |                                    |
| Commonitor                           | n yery                             |
| Jonninenis: Steep terraine           |                                    |
|                                      |                                    |
| Field Technician: (Print) 🚬 🔍 Resne  | $rck$ Date: $q/_{22}$              |

| Shaw | Shaw | E&I |
|------|------|-----|

| Site Name: Ravenna, OH                                                                                                                                                                                                                                                                       | Project #: 133616                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Sample ID: 5555-067 m-0001 50                                                                                                                                                                                                                                                                | Sample Location Sketch:                               |  |
| Sample Type*: MT Surface Soil                                                                                                                                                                                                                                                                | River                                                 |  |
| *: SED=Sediment: SUR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite<br>Date Sampled: 9/21/10<br>Time Sampled: 1610<br>Depth (ft bgs): 1 foort<br>Physical description:<br>Hrace wet, Sand,<br>Clay<br>Analyses requested:<br>Tal Mut-Is, Explosives,<br>5VOCS | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |
| PID: NA                                                                                                                                                                                                                                                                                      | Calibration Date: NA-                                 |  |
| 02/LEL: NA                                                                                                                                                                                                                                                                                   | Calibration Date:                                     |  |
| Weather: Clear Sunny                                                                                                                                                                                                                                                                         |                                                       |  |
| Temperature: 50 ° F                                                                                                                                                                                                                                                                          |                                                       |  |
| Sampling Equipment: Pusk prebe                                                                                                                                                                                                                                                               | (Steinless stell) to 1                                |  |
| Equipment Decontamination Technique:                                                                                                                                                                                                                                                         |                                                       |  |
| QC Samples: None                                                                                                                                                                                                                                                                             |                                                       |  |
| Analytical Laboratory:                                                                                                                                                                                                                                                                       |                                                       |  |
| Comments: Net seil near                                                                                                                                                                                                                                                                      | Miver.                                                |  |
| Field Technician: (Print) Joseph Re                                                                                                                                                                                                                                                          | osnaek Date: 9/21/10                                  |  |

Page 1 of 4

| Soil / Sediment Field Logsh | ieet |
|-----------------------------|------|
|-----------------------------|------|

|                                    | Soil / Sed                                                                                                                                                | iment Field Logsheet                                                                                     |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
|                                    | Site Name: Ravenna, OH Sand Creek Dispose Road Project #: 133616                                                                                          |                                                                                                          |  |  |
|                                    | Sample ID: 5C35 -068m-0001-50                                                                                                                             | Sample Location Sketch: N                                                                                |  |  |
|                                    | Sample Type*: ろぃヱ                                                                                                                                         | Creek                                                                                                    |  |  |
|                                    | *: SED=Sediment; SUR=Surface soils                                                                                                                        | AOX DO X DO Y DOX DOX                                                                                    |  |  |
|                                    | SUB=Subsurface Soil; OTH=Other.<br>grab=Grab. comp=Composite                                                                                              | AOX A OX AOX AOX                                                                                         |  |  |
|                                    | Date Sampled: 9/21/10                                                                                                                                     | AOX AOX AOX A X DOX                                                                                      |  |  |
|                                    | Time Sampled: 1200                                                                                                                                        | AOX AOX AOX AOX                                                                                          |  |  |
|                                    | Depth (ft bgs): \ £4.                                                                                                                                     |                                                                                                          |  |  |
| Phy<br>T <sup>7</sup><br>Re<br>Ana | Physical description: Analyses requested?<br>TAL Metels, Explosives, SUDES,<br>Pesticidos, PCB5, Cyanide, Propellants                                     | X=node for 5Css-068n-0001-50<br>O=node for 5Css-086m-0001-50<br>D=node for 5Css-086m-0001-50 (Army Dup.) |  |  |
|                                    | Analyses requested: Discription :                                                                                                                         | [] = Vac sample locations<br>(see proje 4)                                                               |  |  |
|                                    | Photograph Log #: NA                                                                                                                                      |                                                                                                          |  |  |
|                                    | PID: NA                                                                                                                                                   | Calibration Date: NA                                                                                     |  |  |
|                                    | O2/LEL: NA                                                                                                                                                | Calibration Date: NA                                                                                     |  |  |
|                                    | Weather: Clear                                                                                                                                            |                                                                                                          |  |  |
|                                    | Temperature: 60-80 °F                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                    |  |  |
|                                    | Sampling Equipment: Push probe                                                                                                                            | - to l'                                                                                                  |  |  |
|                                    | Equipment Decontamination Technique:                                                                                                                      |                                                                                                          |  |  |
|                                    | QC Samples: 5C35-086m-0001-50 # 20<br>SC35-068m-0001-50 (Army dup)<br>Analytical Laboratory: CT Loboratories<br>Comments: Joil varies from clay to Jondy. |                                                                                                          |  |  |
|                                    |                                                                                                                                                           |                                                                                                          |  |  |
|                                    |                                                                                                                                                           |                                                                                                          |  |  |
|                                    | Field Technician: (Print)                                                                                                                                 | asnack Date: 9/21/10                                                                                     |  |  |

Page Z of 4

| Shaw Shaw E&I |  |
|---------------|--|

| Site Name: Ravinha, OH Sind Crack La                                                               | Pisposul Project #: 133616               |
|----------------------------------------------------------------------------------------------------|------------------------------------------|
| Sample ID: 5055-086m-0001-50                                                                       | Sample Location Sketch:                  |
| Sample Type*: Sul2                                                                                 |                                          |
| *: SED=Sediment; &UR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite | See front Sketch                         |
| Date Sampled: 9 21 10                                                                              | Gemple                                   |
| Time Sampled: 131ら                                                                                 |                                          |
| Depth (ft bgs):                                                                                    |                                          |
| Physical description:<br>Mixed Clay w/ Sand                                                        |                                          |
| Analyses requested:<br>TAL Metals, Explosives,                                                     |                                          |
| JUOCS                                                                                              | Photograph Log #: 🔥                      |
| PID: NA                                                                                            | Calibration Date: №A                     |
| O2/LEL: NA                                                                                         | Calibration Date: NA                     |
| Weather: Clear                                                                                     |                                          |
| Temperature: <b>%</b> O ° F                                                                        |                                          |
| Sampling Equipment: Stainless S                                                                    | Heel Rush Probe (MB)                     |
| Equipment Decontamination Technique: Lia                                                           | winox, Esopropyl Alcohol, DI water rinse |
| QC Samples: This is QA Sample                                                                      | for 5C35-068m-0001-50                    |
| Analytical Laboratory: CT Laborate                                                                 | rics                                     |
| Comments: Steep terrain,                                                                           | Soil veries from elay to sandy           |
| Field Technician: (Print)                                                                          | Date: 9/21/10                            |

page 30f 4

| Site Name: Roverna OH Bard Creek Rood                                                              | Landfill Project #: 13616                |
|----------------------------------------------------------------------------------------------------|------------------------------------------|
| Sample ID: 565 - 068 m - 0001 - 50 Army                                                            |                                          |
| Sample Type*: 542                                                                                  |                                          |
| *: SED=Sediment; SUR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite | See people site                          |
| Date Sampled: 9 21 0                                                                               | Skett                                    |
| Time Sampled: 1450                                                                                 |                                          |
| Depth (ft bgs): 1 ft.                                                                              |                                          |
| Physical description:<br>Mixed Clay w/ Sand                                                        |                                          |
| Analyses requested:                                                                                |                                          |
| TAL metals, Explosives,                                                                            | Photograph Log #:                        |
| 51005                                                                                              |                                          |
| PID: NA                                                                                            | Calibration Date: NA                     |
| 02/LEL: NA                                                                                         | Calibration Date: NA                     |
| Weather: Clear, Sunny                                                                              |                                          |
| Temperature: <del>%</del> 0 ° F                                                                    |                                          |
| Sampling Equipment: Stainless S                                                                    | teel Rush probe                          |
| Equipment Decontamination Technique: Lic                                                           | quinax, Isopropyl Alcohol, HCl, DI rinse |
| QC Samples: This is QA San                                                                         | nple for 5C55-068m-0001-50               |
| Analytical Laboratory: CT Laborat                                                                  | erits                                    |
| Comments: Site-ep terrain, Sei                                                                     | 1 varies from elay to sard               |
|                                                                                                    |                                          |

page 4 of 4

|                                    | Soil / Sedimen         | t Field Logsh          | neet                 |                                         |       |
|------------------------------------|------------------------|------------------------|----------------------|-----------------------------------------|-------|
| Shaw E&I<br>Site Name: Rovenna OH  | Sond Creek N<br>Rood L | >isposel<br>andfi'll F | Project #:           | 133614                                  |       |
| Sample ID: 5035-068d -0            | 001-50 Sam             | ple Location Sk        | etch:                |                                         |       |
| Sample Type*: SUR                  |                        |                        |                      |                                         |       |
| *: SED=Sediment; &UR=Surface soil; |                        |                        |                      | ١                                       |       |
| SUB=Subsurface Soil; OTH=Other.    |                        | $\leq a$               | past                 | 1.0                                     |       |
| Date Sampled:                      |                        | Jee                    | Sau                  | mpl                                     |       |
|                                    |                        | •                      | Ser 11               | $\langle \wedge$                        |       |
| Time Sampled: 1503                 |                        |                        | 10000                | Ich                                     |       |
| Depth (ft bgs): I C4.              |                        |                        | SKO                  | Nac                                     |       |
| Physical description:              |                        |                        | v                    |                                         |       |
| Miked Chay wy<br>Sard              |                        |                        |                      |                                         |       |
| Analyses requested:                |                        |                        |                      |                                         |       |
| Vocs                               | Phot                   | ograph Log #:          | an                   |                                         |       |
| PID: NA                            | Calib                  | oration Date:          | MA                   |                                         |       |
| 02/LEL: NA                         | Calib                  | ration Date:           | MA                   |                                         |       |
| Weather: Clear                     |                        |                        |                      |                                         |       |
| Temperature: SO                    | °F                     |                        |                      |                                         |       |
| Sampling Equipment:                | to Cold                |                        |                      |                                         |       |
| Equipment Decontamination Tec      | hnique: NA             |                        |                      |                                         |       |
| QC Samples: SC - 086 c             | 1-0001-50 @            | 1505 ; 5Cs             | s-068d-00<br>(Army D | 101 - 50 @ 1                            | 510   |
| Analytical Laboratory:             | - Laborat              | eries                  | •                    |                                         |       |
| Comments: Strep -                  | regrain                |                        |                      | . — — — — — — — — — — — — — — — — — — — |       |
|                                    |                        |                        |                      | ····                                    |       |
| Field Technician: (Print)          | seph Ra                | snock                  |                      | Date: タ                                 | 21/10 |

| Site Name: Raven na, OH Sand Cr<br>Rong                                                                                   | zek Disposal<br>1. Landfill Project #: 133616                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID: 5C35 - 069 m -0001-5                                                                                           | Sample Location Sketch: N>                                                                                                                              |
| Sample Type*: Sur                                                                                                         | XXX                                                                                                                                                     |
| *: SED=Sediment; &UR=Surface soil)<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite<br>Date Sampled: 92410 | x x x x x dupth<br>x x x x x x dupth                                                                                                                    |
| Time Sampled: 1020                                                                                                        |                                                                                                                                                         |
| Depth (ft bgs): 1. J. F. See below<br>Physical description:<br>5:11, Clay, trace sound.                                   | $\frac{depin}{10} \times \times$ |
| Analyses requested:<br>TAL Metals, SVOCs,<br>Explosives                                                                   | X = node for sample 5055-069m-0001-50<br>* See comment below rejarding depth.<br>Photograph Log #: NA                                                   |
| AU :DIA                                                                                                                   | Calibration Date: NA                                                                                                                                    |
| 02/LEL: NA                                                                                                                | Calibration Date: NA                                                                                                                                    |
| Weather: Clear, Sunny, Br                                                                                                 | eezy                                                                                                                                                    |
| Temperature: 75 ° F                                                                                                       |                                                                                                                                                         |
| Sampling Equipment: Stainless St<br>Equipment Decontamination Technique:                                                  | ect push probe<br>MO Allanor, Isopropyl Alcohol, DI rinse                                                                                               |
| QC Samples: None                                                                                                          | Loguinex                                                                                                                                                |
| Analytical Laboratory: CT Labora                                                                                          | taries                                                                                                                                                  |
| Comments: Havel debris underlying                                                                                         | ng surface. Collection depth 4-6"                                                                                                                       |
| except where wall an                                                                                                      |                                                                                                                                                         |

| Othe Name P all Sand Creek           | D'sposel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Name: Kavenna, OH Road          | Cordfill Project #: 133616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample ID: 5Csd-070m -0001-SD        | Sample Location Sketch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Type*: SEP                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *: SED=Sediment;)SUR=Surface soil;   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SUB=Subsurface Soil; OTH=Other.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| grab=Grab, comp=Composite            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Sampled: 9/28/10                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Time Sampled: 1420                   | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Depth (ft bgs): 🥻 "                  | C. U.U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Physical description:                | and the second sec |
| Med bran Sediment                    | Al and a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| My Mixed 7.01                        | A x=nade fer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analyses requested:                  | 5csd-070m-0001-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the Cr. Pesticides, PCB, Cycride     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Propillants                          | Photograph Log #: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PID: NA                              | Calibration Date: VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 02/LEL: NA                           | Calibration Date: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Weather: Claudy, drizzle, cool       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Temperature: 55 ° F                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sampling Equipment: Stainless Sta    | el push probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Equipment Decontamination Technique: | guinox, Isopropyl Alcohol, DI rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC Samples: Nore                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analytical Laboratory: CT Laboratory | heles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| END.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Johnments: Slick fands be            | ank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

page lof 2

| Shaw~ | Shaw | E&I |
|-------|------|-----|

| Sample ID: 5(5d -071 m -0001 - 5D                                                                                   | Sample Location Sketch:                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Sample Type*: SED                                                                                                   |                                                                                                                         |
| *: SED=Sediment;)SUR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite                  | $ \begin{array}{c} Creck \\ \hline \\ $ |
| Date Sampled: 9/28/10                                                                                               | = SCSd-071m-0001-SD                                                                                                     |
| Time Sampled: 1325<br>Depth (ft bgs): 6 "<br>Physical description:<br>Light brown / dark brown<br>Sediment w/ mixed | A Sample area<br>for<br>BCSd-071d-0001-SD<br>(pag 2)                                                                    |
| Analyses requested:<br>TAL metals, Explosives, Svocs, Hox Cr.<br>Pesticidus, PCPs, Cyanide,<br>Papellants           | Photograph Log #: NA                                                                                                    |
| PID: NA                                                                                                             | Calibration Date: NA                                                                                                    |
| 02/LEL: NA                                                                                                          | Calibration Date: 🗸                                                                                                     |
| Weather: How OP Cloudy, d                                                                                           | rizzle, cool                                                                                                            |
| Temperature: 55 ° F                                                                                                 |                                                                                                                         |
| Sampling Equipment: Stanless Sta                                                                                    | el push probe                                                                                                           |
| Equipment Decontamination Technique: $\mathcal{L}_{\mathcal{L}}$                                                    | quinox, Isopropyl Alcohol, DI rinse                                                                                     |
| QC Samples: None                                                                                                    |                                                                                                                         |
| Analytical Laboratory: CT Labor                                                                                     | steries                                                                                                                 |
| Comments: Nor GR Sedimer                                                                                            | of Sample                                                                                                               |
|                                                                                                                     | <b>.</b>                                                                                                                |
|                                                                                                                     |                                                                                                                         |

Page 2 of 2

| Shaw E&I                                                                                           |                            |
|----------------------------------------------------------------------------------------------------|----------------------------|
| Site Name: Ravenna, OH Sord Creck                                                                  | Landfill Project #: 13361L |
| Sample ID: 5Csd-0710 .0001 - 50                                                                    | Sample Location Sketch:    |
| Sample Type*: SED                                                                                  |                            |
| *: 6ED=Sediment; SUR=Surface soil;<br>SUB=Subsurface Soil; OTH=Other.<br>grab=Grab, comp=Composite | Josef                      |
| Date Sampled: 9/ 28/10                                                                             | ] Gee 1                    |
| Time Sampled: (340                                                                                 | 1 Emple skutch             |
| Depth (ft bgs): 6                                                                                  | Get when                   |
| Physical description:<br>Light brown / dark brown<br>Sediment w/ mixed<br>Clay                     |                            |
| Analyses requested:                                                                                |                            |
| VOC-S                                                                                              | Photograph Log #: 🔨        |
| PID: NA                                                                                            | Calibration Date: ハト       |
| 02/LEL: NA                                                                                         | Calibration Date: NA       |
| Weather: Chudy, drizzle,                                                                           | Cool                       |
| Temperature: 55 ° F                                                                                |                            |
| Sampling Equipment: Terra Cor                                                                      | R                          |
| Equipment Decontamination Technique:                                                               | NA                         |
| QC Samples: Norl                                                                                   |                            |
| Analytical Laboratory: CT Caborat                                                                  | eries                      |
| Comments: Sediment Som                                                                             | de                         |
|                                                                                                    |                            |
| Field Technician: (Print) Jseph Ra                                                                 | snack Date: 7/28/10        |
|                                                                                                    |                            |

| 5017 300                             | diment Field Logsheet     |
|--------------------------------------|---------------------------|
| Shaw" Shaw E & I SA                  | ND CREEN                  |
| Site Name: RAVENNA, OH               | LAWOFUL Project #: 133616 |
| Sample ID: 505 - 0720 - 0001 - 50    | Sample Location Sketch:   |
| Sample Type*: Suc                    |                           |
| *: SED=Sediment: SUR=Surface soil:   |                           |
| SUB=Subsurface Soil; OTH=Other.      |                           |
| grab=Grab, comp=Composite            | XXX XXX                   |
| Date Sampled: 11910                  |                           |
| Time Sampled: 1128                   |                           |
| Depth (ft bgs): / f+.                | 1 LXXXXX                  |
| Physical description:                |                           |
| CLAM MIXED W SAND                    |                           |
| Analyses requested:                  |                           |
| TAL METALS, SUDE'S                   | X-NODE FOR 555-072m-0601  |
| EXPLOSIVE3                           | Photograph Log #:         |
| PID: MA                              | Calibration Date:         |
| 02/LEL: MA                           | Calibration Date:         |
| Weather: CLEVAR                      |                           |
| Temperature: 65°°F                   |                           |
| Sampling Equipment: PUSH PR.         | BE TO IFT.                |
| Equipment Decontamination Technique: | DI, ISOPROPYC             |
| QC Samples: $\Lambda / \Lambda$      |                           |
| Analytical Laboratory:               | TBORATORIES               |
|                                      |                           |
| Comments: SOIL VARIES                | FROM CLAY TO SANDY        |
| Comments: SOIL VARIES                | FROM CLAY TO SANDY        |

PAGE 1 OF3

| Soil / Se                                                    | diment Field Logsheet               |
|--------------------------------------------------------------|-------------------------------------|
| Shaw Shaw E & I                                              | MZ CRAR                             |
| Site Name: RAVENINA OH                                       | HAMPEUL Project #: 133616           |
| Sample ID: 5C55-073m - 0001-                                 | Sample Location Sketch:             |
| Sample Type*: Suc                                            | X-node for Scss. 173, m-6001-50 , y |
| *: SED=Sediment; SUR=Surface soil;                           | O - nodo top score v v v v v v      |
| SUB=Subsurface Soil; OTH=Other.                              | 5055-073m-0001-50 F. 1 P.           |
| grab=Grab, comp=Compositę                                    | (ARINY DUP)                         |
| Date Sampled: 1 9 10                                         |                                     |
| Time Sampled: 1410                                           |                                     |
| Depth (ft bgs):                                              |                                     |
| Physical description:                                        |                                     |
| MIX OF CLAY & SAM                                            |                                     |
| Analyses requested:                                          |                                     |
| TAL METALS, SUDC'S                                           |                                     |
| EXPLUSIVES                                                   | Photograph Log #: MA                |
| PID: MA                                                      | Calibration Date: ///               |
| 02/lel: NA                                                   | Calibration Date: MA                |
| Weather: CLEMA                                               |                                     |
| Temperature: $65^{\circ}$ ° F                                |                                     |
| Sampling Equipment: PVSH PRoBC                               | To Ift.                             |
| Equipment Decontamination Technique:                         | DI, ISOPROPYC                       |
| QC Samples: $5 C s - d 7 m - 0 c c$<br>5 C s - d 7 m - 0 c c | DI-SO<br>DOI-SO (ARMY DUP)          |
| Analytical Laboratory: CT                                    | ABORATORIES                         |
| Comments: SOIL VMR123 P                                      | POM CLAR TO SANDY                   |
| Field Technician: (Print)                                    | HAVENS Date: 11 9 10                |

PAGE ZOF 3

|                                    | Soil / Sedi | iment Field Log                        | gsheet     |                                                                                                                  |                                         |
|------------------------------------|-------------|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Shaw Shaw E & I                    |             |                                        |            |                                                                                                                  |                                         |
| Site Name: RAVENNA, OI             | A SAW       | M FICC                                 | Project #: | 1330                                                                                                             | 08(0                                    |
| Sample ID: SC35 -087n              | n -0001-50  | Sample Location                        | Sketch:    |                                                                                                                  |                                         |
| Sample Type*: SUR                  |             |                                        |            |                                                                                                                  |                                         |
| *: SED=Sediment; SUR=Surface soil; | <u> </u>    | SPE                                    | PAGE       | For                                                                                                              | ?                                       |
| SUB=Subsurface Soil; OTH=Other.    |             | 300                                    | 17100      | , , , , , , , , , , , , , , , , , , , ,                                                                          | 0                                       |
| grab=Grab, comp=Composite          |             | SAMPLE                                 | LORATIO    | N SK                                                                                                             | ETCH                                    |
| Date Sampled: 11 9 10              | I           |                                        | 0,1        |                                                                                                                  |                                         |
| Time Sampled: $\sqrt{500}$         |             |                                        | x          |                                                                                                                  |                                         |
| Depth (ft bgs):   ff,              |             |                                        |            |                                                                                                                  |                                         |
| Physical description:              |             |                                        |            |                                                                                                                  |                                         |
| MIX OF CLAY                        | E SAND      | Þ                                      |            |                                                                                                                  |                                         |
| Analyses requested:                |             |                                        |            |                                                                                                                  |                                         |
| TAL METALS, SU                     | loc's       |                                        |            | and the second | *************************************** |
| EX PEUSIVES                        |             | Photograph Log #                       | <b>#:</b>  |                                                                                                                  |                                         |
| PID: MA                            |             | Calibration Date:                      |            |                                                                                                                  |                                         |
| 02/LEL: NA                         |             | Calibration Date:                      |            |                                                                                                                  |                                         |
| Weather: CLEM                      |             |                                        |            | na na fan an sin an fan sin an sin  |                                         |
| Temperature: 65°                   | °F          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |                                                                                                                  |                                         |
| Sampling Equipment: $\rho_{G}$     | SH PRO      | SE TA IF                               | 2          |                                                                                                                  |                                         |
| Equipment Decontamination Tec      | hnique:     | QUARK I                                | > 1 150P   | PODYI                                                                                                            |                                         |
| QC Samples: THIJ IS I              | QA SAN      | PLE FAR                                | SCISS -07  | 3a -non                                                                                                          |                                         |
| Analytical Laboratory:             | 1- ABar     | ATARIER                                |            | <u> </u>                                                                                                         |                                         |
| Comments: Soil VAR                 | IB FRA      | 2m CLAY                                | TO SA      | MDY                                                                                                              |                                         |
| Field Technician: (Print)          | Kilo        | Lhalana 1                              |            | Date:                                                                                                            | 11 9 10                                 |
|                                    | <u> </u>    | 11.11.11.11.                           |            |                                                                                                                  |                                         |

PRE 30F3

| Soil / Sedi                                | ment Field Logsheet            |
|--------------------------------------------|--------------------------------|
| Shaw Shaw E & I                            | SAM) CREEK                     |
| Site Name: RAVENNA OH                      | GANDFILL Project #: 133616     |
| Sample ID: SCSJ -073m -0001-50             | Sample Location Sketch:        |
| Sample Type*: ろいた                          |                                |
| *: SED=Sediment; SUR=Surface soil;         | SEE PAGE I FOR                 |
| SUB=Subsurface Soil; OTH=Other.            | ELE SYFICK                     |
| grab=Grab, comp=Composite                  | Since Shertan                  |
| Date Sampled: 11 9 co                      |                                |
| Time Sampled: 1500                         |                                |
| Depth (ft bgs):                            |                                |
| Physical description:                      |                                |
| MIX OF SLAY & SAND                         |                                |
| Analyses requested:<br>TAL METAUS, SVOC'S, |                                |
| EXPLOSIVES                                 | Photograph Log #: NA           |
| pid: NA                                    | Calibration Date: NA           |
| 02/LEL: NA                                 | Calibration Date:              |
| Weather: CLEAR                             |                                |
| Temperature: 65° ° F                       |                                |
| Sampling Equipment: PUSH PA                | 20BE TO LFT.                   |
| Equipment Decontamination Technique:       | QUINDE, DI SOPROPYL            |
| QC Samples: (AP2MX VUP)<br>TIX /S IS Q/C S | SAMPLE FOR SCSS -073M -0001-50 |
| Analytical Laboratory: CT LABOR            | ATORIES                        |
| Comments: Soic VMRIES FR                   | UM CLAY TO SANDY               |
| Field Technician: (Print) KYVE             | LHAVENS Date: 11910            |

| Soil / Sed                           | iment Field Logsheet                                 |
|--------------------------------------|------------------------------------------------------|
| Shaw <sup>~</sup> Shaw E & I         | 0 60450                                              |
| Site Name: RAVENNA, OH               | Project #: 133616                                    |
| Sample ID: SCSJ -074m -0001-5        | Sample Location Sketch:                              |
| Sample Type*: SUR                    |                                                      |
| *: SED=Sediment; SUR=Surface soil;   | $ \begin{array}{ccc} & & & \\ & & & \\ \end{array} $ |
| SUB=Subsurface Soil; OTH=Other.      |                                                      |
| grab=Grab, comp=Composite            |                                                      |
| Date Sampled: I( q to                |                                                      |
| Time Sampled: 1532                   |                                                      |
| Depth (ft bgs):                      |                                                      |
| Physical description:                |                                                      |
| MIX OF CLAY, SILT & Ful              |                                                      |
| SAND                                 |                                                      |
| Analyses requested:                  | X- NODE FOR SCSS-074-0-0001-50                       |
| PXPLASIN-2                           | Photograph Log #:                                    |
|                                      |                                                      |
| MA                                   | Calibration Date. N/4                                |
| 02/LEL: MA                           | Calibration Date: NA                                 |
| Weather: CLEMR                       |                                                      |
| Temperature: 65 ° F                  |                                                      |
| Sampling Equipment: PVSH P/20/       | BE TO IFT.                                           |
| Equipment Decontamination Technique: | IQUINON, DI, ISOPROPYC                               |
| QC Samples:                          |                                                      |
| Analytical Laboratory: CT LABO       | RATORICS                                             |
| Comments: SOIL VARIES FR             | OM CLAY, SILT, TO SAND                               |
| Field Technician: (Print) KTLE H     | AVENS Date: 4/9/10                                   |

|                                                                                                                                                                                                                   | O man of                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   | AN CREEK                                                                                                                              |
| Site Name: RAVENNA DIA                                                                                                                                                                                            | LANFIL Project #: 133616                                                                                                              |
| Sample ID: 5055-075m-0001-50                                                                                                                                                                                      | Sample Location Sketch:                                                                                                               |
| Sample Type*: SUR                                                                                                                                                                                                 |                                                                                                                                       |
| *: SED=Sediment; SUR=Surface soil;                                                                                                                                                                                |                                                                                                                                       |
| SUB=Subsurface Soil; OTH=Other.                                                                                                                                                                                   |                                                                                                                                       |
| grab=Grab, comp=Composite                                                                                                                                                                                         |                                                                                                                                       |
| Date Sampled: 11 9 10                                                                                                                                                                                             |                                                                                                                                       |
| Time Sampled: 1048                                                                                                                                                                                                |                                                                                                                                       |
| Depth (ft bgs):                                                                                                                                                                                                   |                                                                                                                                       |
| Physical description:                                                                                                                                                                                             |                                                                                                                                       |
| CLAX MIXED W SAND                                                                                                                                                                                                 |                                                                                                                                       |
| Analyses requested:                                                                                                                                                                                               |                                                                                                                                       |
| TAL METALS, SVOCS                                                                                                                                                                                                 | A NOVE FOR SESS OFSIN - COUTSE                                                                                                        |
| PVPULLIAZ                                                                                                                                                                                                         | Photograph Log #: N/A                                                                                                                 |
|                                                                                                                                                                                                                   |                                                                                                                                       |
| PID: MA                                                                                                                                                                                                           | Calibration Date: NA                                                                                                                  |
| PID: NA<br>O2/LEL: NA                                                                                                                                                                                             | Calibration Date: NA<br>Calibration Date: NA                                                                                          |
| PID: MA<br>O2/LEL: NA<br>Weather: CLEAM                                                                                                                                                                           | Calibration Date: NA<br>Calibration Date: NA                                                                                          |
| PID: MA<br>O2/LEL: MA<br>Weather: COM<br>Temperature: 63 ° F                                                                                                                                                      | Calibration Date: NA<br>Calibration Date: NA                                                                                          |
| PID: NA<br>O2/LEL: NA<br>Weather: COM<br>Temperature: C3 ° F<br>Sampling Equipment: PUSH (Roll                                                                                                                    | Calibration Date: NA<br>Calibration Date: NA<br>SE To I                                                                               |
| PID: NA<br>O2/LEL: NA<br>Weather: COM<br>Temperature: C3 ° F<br>Sampling Equipment: PUSH PROM<br>Equipment Decontamination Technique:                                                                             | Calibration Date: NA<br>Calibration Date: NA<br>Calibration Date: NA<br>SE TO I<br>DI TSOPROPIC                                       |
| PID: MA<br>O2/LEL: MA<br>Weather: COM<br>Temperature: C3 ° F<br>Sampling Equipment: PUSH PROM<br>Equipment Decontamination Technique:<br>QC Samples: MA                                                           | Calibration Date: NA<br>Calibration Date: NA<br>Calibration Date: NA<br>SE TO I<br>DI , TSOPROPTC                                     |
| PID: MA<br>O2/LEL: MA<br>Weather: CARM<br>Temperature: C3 ° F<br>Sampling Equipment: PUSH PROM<br>Equipment Decontamination Technique:<br>CARMAN<br>Analytical Laboratory: CA MA                                  | Calibration Date: NA<br>Calibration Date: NA<br>Calibration Date: NA<br>SE TO I<br>DI TSOPROPIC<br>BORATORIES                         |
| PID: MA<br>O2/LEL: MA<br>Weather: CARM<br>Temperature: C3 ° F<br>Sampling Equipment: PUSH PROM<br>Equipment Decontamination Technique:<br>QC Samples: MA<br>Analytical Laboratory: CT MA<br>Comments: SOIC MARIES | Calibration Date: NA<br>Calibration Date: NA<br>Calibration Date: NA<br>SE TO I<br>DI , ISOPROPIC<br>BORATORIES<br>FROM CLAY TO SANDY |

| Soll / Sed                           | Iment Field Logsheet               |
|--------------------------------------|------------------------------------|
| Shaw "Shaw E&I                       |                                    |
| Site Name: RAVENNA OH LAND           | CCENC Project #: 133616            |
| Sample ID: SC 55 - 076m - 0001-50    | Sample Location Sketch:            |
| Sample Type*: SVR                    |                                    |
| *: SED=Sediment; SUR=Surface soil;   |                                    |
| SUB=Subsurface Soil; OTH=Other.      |                                    |
| grab=Grab, comp=Composite            |                                    |
| Date Sampled: 1/ 9 10                |                                    |
| Time Sampled: 1000                   |                                    |
| Depth (ft bgs):                      |                                    |
| Physical description:                |                                    |
|                                      |                                    |
| Analyses requested:                  | X - NOVE FOR SCSS- 07400 - 0001 SU |
| TAL METAL>                           |                                    |
| Ex(Losives avoc)                     | Photograph Log #: MA               |
| PID: MA                              | Calibration Date: NA               |
| 02/LEL: NA                           | Calibration Date: NA               |
| Weather: CLEMR                       |                                    |
| Temperature: $(6^{\circ})^{\circ}$ F |                                    |
| Sampling Equipment: PUSH PRoB        | ETOI                               |
| Equipment Decontamination Technique: | DI ISOPROPYL                       |
| QC Samples: MA                       |                                    |
| Analytical Laboratory: CT            | LABORATORIES                       |
| Comments: SOILS VARY                 | FROM CLAY TO SANDY                 |
| · · · · · ·                          |                                    |
| Field Technician: (Print)            | HAVENS Date: 11 9 10               |
|                                      |                                    |

7

| HTRW DRILL                            | DISTRICT            |                |              |                     |          |           | SPS             | S-HOL     |             |                |
|---------------------------------------|---------------------|----------------|--------------|---------------------|----------|-----------|-----------------|-----------|-------------|----------------|
| 1. COMPANY NAME                       | 1. COMPANY NAME     |                |              | 2. DRILL CONTRACTOR |          |           |                 |           | SHEET       | $\sum$         |
| 3 PROJECT                             | EQI                 | Front          |              | <u></u>             |          |           |                 |           | C           |                |
| RVAAP - MI Sampling (Ra               | avenna A/E: 133616) |                | F            | lavenna.            | Ohio     |           |                 |           |             |                |
| 5. NAME OF DRILLER                    |                     |                | 6. MANUI     | ACTURER'S           | DESIGNA  | TION OF D | RILL            |           |             |                |
| Jerenyl.                              |                     |                | Goe          | nobe                | , 66     | 200       | T               |           |             |                |
| 7. SIZE AND TYPES OF DRILLING AND SAM | PLING EQUIPMENT     |                | 8. HOLED     | CATION              | Te       | /         |                 |           |             |                |
| hegrelad 2017 Trac                    | Knountal rig        |                |              |                     |          |           |                 |           | <u>.</u>    |                |
| ·                                     | <u> </u>            |                | 91           | 50'                 |          |           |                 |           |             |                |
| <u> </u>                              |                     |                | 10. DATE:    | STARTED             |          |           | 11.             | DATE CO   | WPLETED     |                |
|                                       |                     |                | 9/2          | 2(10)               |          |           |                 | 1/22      | 2/16        |                |
| 12. OVERBURDEN THICKNESS              |                     |                | 15. DEPTH    | OF GROUN            | DWATER   | ENCOUNT   | ERED            |           |             |                |
|                                       |                     |                | 16 DEDTL     |                     |          | DSED TIM  |                 | DRILLING  | COMPLE      |                |
| A AA                                  |                     |                |              |                     |          |           |                 | CIGLEING  | CONFLE      |                |
| 14. TOTAL DEPTH OF HOLE               |                     |                | 17. OTHER    | R WATER LE          | VEL MEAS | UREMENT   | S (SPECI        | FY)       |             |                |
| 201                                   |                     | ·              |              |                     |          |           |                 | •         |             |                |
| 18. GEOTECHNICAL SAMPLES              | DISTURBED           | UNDISTUR       | RBED         | 19. OTA             | LNUMBER  | R OF CORE | BOXES           |           |             |                |
| 20. SAMPLES FOR CHEMICAL ANALYSIS     | VOC                 | METALS         | OTHER (      | SPECIFY)            | OTHER    | (SPECIFY) | OTHE            | R (SPECIF | Y) 21. TO   | TALCOF         |
|                                       |                     |                | Oxpla        | sives               | 50       | C         |                 |           | RECOV       | ERY A          |
| 22. DISPOSITION OF HOLE               | BACKFILLED MO       | DNITORING WELL | OTHER (S     | SPECIFY)            | 23. 5    | IGNATURE  | OF INSF         | ECTOR     | - 20        | ~13            |
|                                       | Bentonite           |                |              |                     |          | Stary     |                 |           |             |                |
| LOCATION SKETCH/COMMENTS              |                     |                | 2            |                     | SCA      | LE:       | é               | <u>ノ</u>  |             |                |
|                                       |                     |                |              |                     |          |           |                 | .         |             |                |
| 'Y                                    |                     |                |              |                     | +        |           |                 |           |             |                |
| 96                                    |                     |                |              |                     |          |           |                 | l         |             |                |
|                                       |                     | /              |              |                     | 1        |           |                 |           |             |                |
|                                       |                     | 1.1/1          |              |                     | 1        |           | <b>††</b>       |           |             |                |
|                                       |                     |                |              |                     | ++       |           | Ed              |           | 1/2         | $\overline{n}$ |
|                                       |                     | ├//            |              |                     |          |           | $  \rightarrow$ | کې        |             | $\frac{1}{1}$  |
|                                       |                     |                | $\mathbb{K}$ | -07                 | 5        | ¥         |                 |           | -99         | 1              |
|                                       |                     | AR             |              |                     | ┨        | /         |                 |           | <u>-</u> Y_ |                |
|                                       |                     | /M             |              |                     | ∔-       | /         | ╞               |           |             |                |
|                                       |                     | /              |              |                     | /        | /         |                 |           |             |                |
|                                       |                     | 1/             |              |                     |          |           | ļļ              |           |             |                |
|                                       |                     | /              |              |                     |          |           |                 |           |             |                |
|                                       | 1                   |                |              |                     |          |           |                 | -Maria    |             |                |
|                                       |                     |                |              |                     | /        |           |                 |           |             |                |
|                                       |                     | †<br>          |              | 1                   |          |           |                 | ·         |             |                |
|                                       |                     | +              |              | /                   | ++       |           | <b> </b>        |           |             |                |
|                                       |                     | ┟╌╍╍┠╍╍╍┠╍╍╍╸  |              |                     | ┼──┼     |           | ╞╼╍╌┠           |           |             |                |
|                                       |                     | <u>├</u>       |              |                     | ┼──┼╴    |           | <b>├</b> ┣      |           |             |                |
|                                       |                     | <u></u>        |              | /                   | +        |           |                 |           |             |                |
|                                       |                     |                |              |                     | <u> </u> |           |                 |           |             | ļ              |
|                                       |                     |                |              | 1                   | 1 1      | i         | į 1             | i         | 1 2         |                |
|                                       |                     |                |              |                     |          | ENO       |                 |           |             |                |

(Q)

|              |                                                                                                                                                                                          | HTRW                                                                                                             | DRILLING                               | i LOG        |         |        | 5G56-035                                           |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|---------|--------|----------------------------------------------------|
| PROJEC       | T<br>RVAAI                                                                                                                                                                               | P - MI Sampling (Ravenna A/E: 13                                                                                 | INSP<br>33616) S. T                    | Samy, B. Ht. | lipsin  |        | SHEET SHEET                                        |
| ELEV.<br>(a) | ELEV.         DEPTH         DESCRIPTION OF MATERIAL         FIELD SCREENING<br>RESULTS         GEOTECH SAMPLE OR<br>CORE BOX NO.         ANALYTICAL<br>SAMPLE NO.         BLOW CO<br>(g) |                                                                                                                  |                                        |              |         |        | REMARKS<br>(h)                                     |
|              | 2                                                                                                                                                                                        | Brown, dry sand<br>fr med to sm<br>gravel to sm gravel<br>sorzamic material<br>(100 tz)                          | 0.0 jpm                                | NA           | -\$P\$( | NA     | SCSL-BSM-<br>ODI-SO                                |
|              |                                                                                                                                                                                          | Gray, drydense<br>M-F Sand, slag                                                                                 | 0.0 ppm                                | NIA-         | (APZ    | NÐ     | 1105<br>SCSG -0357M<br>6007-50                     |
|              | 2 8 4                                                                                                                                                                                    | (ittle ruch i glass<br>(EII)                                                                                     |                                        |              |         |        | 50% sul reuvez<br>1110                             |
| 2            |                                                                                                                                                                                          | Gray, Moist, duise<br>Sundy, silt                                                                                | 0.0 jpm                                | NA           | øp#3    | ــΑ لر | SC55.0035147-<br>0023-50<br>50% gut ne ung<br>1115 |
| シーマー         |                                                                                                                                                                                          | Graywet dense<br>Silts sand (13.14')                                                                             | 0.0 ppm                                | NA           | 4444    | NA     | 5/55-035M-<br>0004-50                              |
|              |                                                                                                                                                                                          | dense, fine sand,<br>little sitt<br>light Brown, MOIST                                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | NA           | per C   | NA     | 50% recurez<br>1720<br>SCsb-035M-                  |
| PROIFC       | 18                                                                                                                                                                                       | dense, fine Sand,<br>little 5, 1+ (17-18.57)<br>(hay net dense 5, 1+4)<br>Clay (18.5-16)<br>hant brown/gray, may | <u></u>                                |              |         | HOLENO | 0005-50<br>7135 reuvez<br>1125                     |
|              | RVAAF                                                                                                                                                                                    | - MI Sampling (Ravenna A/E: 13                                                                                   | 3616)                                  |              |         | Sc     | 56-035                                             |

| HTRW DRIL                                                 | LING LOG                               | DISTRICT                              |                                         |                                       | HOLE NUMBER            |
|-----------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|------------------------|
| 1. COMPANY NAME                                           |                                        | 2. DRILL CONTR                        | RACTOR                                  |                                       | SHEET SHEET            |
| The Shaw Group - Sha                                      | w E&I                                  | Fron                                  | tz Drilling                             |                                       | / OF C                 |
| B. PROJECT<br>R\/ΔΔΡ - MI Sampling                        | (Ravenna &/E· 133616)                  |                                       | 4. LOCATION                             | Ohio                                  |                        |
|                                                           |                                        |                                       | 6 MANUFACTURER'S                        | DESIGNATION OF DRILL                  |                        |
| Teronyl.                                                  |                                        |                                       | Geonita                                 | (6200T                                |                        |
| 7. SIZE AND TYPES OF DRILLING AND S                       | AMPLING EQUIPMENT                      |                                       | 8. HOLE LOCATION                        |                                       |                        |
| Creonde 6620                                              | of Trackman                            | ted Rig                               | 565-0                                   | <u> </u>                              |                        |
|                                                           |                                        | 0                                     | 9. SURFACE ELEVATIO                     | N<br>d                                |                        |
|                                                           |                                        |                                       | 10. DATE STARTED                        | 11. DAT                               | E COMPLETED            |
| 12. OVERBURDEN THICKNESS                                  | ······                                 | · · · · · · · · · · · · · · · · · · · | 15. DEPTH OF GROUN                      | DWATER ENCOUNTERED                    |                        |
| AAH                                                       |                                        |                                       | -13                                     |                                       |                        |
| L3. DEPTH DRILLED INTO ROCK                               |                                        |                                       | 16. DEPTH TO WATER                      | AND ELAPSED TIME AFTER DRI            | LLING COMPLETED        |
|                                                           | ······································ |                                       |                                         |                                       | ·                      |
| ZO                                                        |                                        |                                       |                                         | A                                     |                        |
| 18. GEOTECHNICAL SAMPLES                                  | DISTURBED                              | UNDISTU                               | RBED 19. OTAL                           | NUMBER OF CORE BOXES                  |                        |
| M                                                         |                                        |                                       |                                         | NA                                    |                        |
| 20. SAMPLES FOR CHEMICAL ANALYSI                          | s <u>voc</u>                           | METALS                                | OTHER (SPECIFY)                         | OTHER (SPECIFY) OTHER (S              | PECIFY) 21. TOTAL CORE |
|                                                           |                                        |                                       | CL pWSIVO                               | SUBC Mexa                             | vorgener %             |
| 22. DISPOSITION OF HOLE                                   | Data An 11-                            | AA                                    |                                         | 23. SIGNATURE OF INSPECT              |                        |
| LOCATION SKETCH/COMMENT                                   | · · · · · · · · · · · · · · · · · · ·  | ///                                   | IVA                                     | SCALE:                                | F                      |
|                                                           |                                        |                                       |                                         |                                       |                        |
|                                                           |                                        |                                       |                                         | <b></b>                               |                        |
|                                                           |                                        |                                       |                                         |                                       |                        |
| de /                                                      |                                        |                                       |                                         |                                       |                        |
| 2 / 1                                                     |                                        |                                       |                                         |                                       |                        |
|                                                           |                                        |                                       | **************************************  | ++++++                                |                        |
|                                                           |                                        |                                       | +                                       | ++++++++                              | +-+/+                  |
| A                                                         | 036/                                   |                                       |                                         |                                       |                        |
| J Dor                                                     |                                        |                                       |                                         |                                       | -/                     |
|                                                           |                                        |                                       | ·                                       | ļ/                                    | 4                      |
|                                                           |                                        |                                       |                                         |                                       |                        |
|                                                           | 9                                      |                                       |                                         |                                       |                        |
|                                                           |                                        |                                       |                                         |                                       |                        |
|                                                           |                                        |                                       |                                         |                                       |                        |
|                                                           |                                        | -+++                                  | +                                       |                                       |                        |
|                                                           |                                        |                                       | ·                                       | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | 5-0-T1                 |
|                                                           |                                        |                                       |                                         |                                       | gna                    |
|                                                           |                                        |                                       |                                         | 1                                     |                        |
|                                                           |                                        |                                       |                                         |                                       |                        |
| 7                                                         | N. I                                   |                                       |                                         |                                       |                        |
|                                                           |                                        |                                       |                                         | <b>·</b> ᠯ───┤───┤───┤                |                        |
|                                                           |                                        |                                       | +-+/+                                   | · <u></u>                             |                        |
|                                                           |                                        |                                       | + + + - + - + - + - + - + - + - + - + - | +                                     |                        |
|                                                           |                                        |                                       |                                         |                                       |                        |
| RVAAD - MI Sampling                                       | (Ravenna &/F. 133616)                  |                                       |                                         | COL-M                                 | xla                    |
| PROJECT<br>RVAAP - MI Sampling<br>ENG FORM 5056-R. AUG 94 | (Ravenna A/E: 133616)                  |                                       | <u>  /     </u>                         | HOLE NO.<br>SCSD-03                   | C (Proponent: CECW-EG) |

|              |                        | HTRW                                                                                                            | DRILL                      | INC         | G LOG                                    |                                 | <u> </u>        | HOLE NUMBER                         |
|--------------|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|-------------|------------------------------------------|---------------------------------|-----------------|-------------------------------------|
| PROJEC       | ст                     |                                                                                                                 |                            | INSP        | ECTOR                                    |                                 |                 | SHEET SHEET                         |
|              | RVAAF                  | P - MI Sampling (Ravenna A/E: 13                                                                                | 3616)                      | 5.          | Barry, R.                                | Harrsn                          | $\sim$          | 2 OF 2                              |
| ELEV.<br>(a) | DEPTH<br>(b)           | DESCRIPTION OF MATERIAL<br>(c)                                                                                  | FIELD SCRE<br>RESUL<br>(d) | ENING<br>TS | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT      | REMARKS<br>(h)                      |
|              | 1 2 3 2                | Bidum, dry, med-fine<br>Sand, trace med-sm<br>gravel & organic<br>Mostriel (rosts),<br>stacy, brick (Fill mast) | 0.06                       | pm          | NA                                       | ()097 <u></u> -                 | NA              | SLSS-B6M-<br>0202-50                |
|              |                        | Briven, dry M-F<br>Soind, tare gravel<br>(SM-med)                                                               | 0.0 p                      | m           | NA                                       | \$002                           | NA              | SC55-036M-<br>0712-50               |
|              | 4<br>10<br>11<br>12    | Black/gray Sine<br>Sand, little sity,<br>take smgrand, glass<br>(9-11.57)<br>Browndry, M-F Sand                 | رم<br>رم                   | m           | 71/A-                                    | \$P\$3 '                        | NA-             | 1320<br>SCS-036M-<br>ON3-50         |
| 13'<br>V     | 13-11<br>14-11<br>16-1 | W/ Sm rochs, Gravel<br>(11.5-12<br>Gray, wet clay (13-14)<br>Gray/light brown,<br>wet s, Ity clay<br>(14-17)    | י <b>)</b><br>ס.סף         | prn         | 7v4>                                     | <i>1544</i>                     | NA-             | 937<br>Sest- BOM<br>2004-SD         |
|              | 17                     | Gray wet, dense<br>Siltz elay                                                                                   | 0.0                        | ppn         | NA                                       | Ø945                            | NA              | 1320<br>Xsb-UBBM<br>OVOJ-SD<br>1325 |
| PROJEC       | 70-                    |                                                                                                                 | L                          |             |                                          | <u> </u>                        | HOLE NO.        | 1-026                               |
|              |                        |                                                                                                                 | (0100                      |             |                                          | <u> </u>                        | $\underline{-}$ | D VSD                               |

|                                                      |              | ACTOP                |                             | <u>DUSG-037</u>      |
|------------------------------------------------------|--------------|----------------------|-----------------------------|----------------------|
| The Shaw Group - Shaw E&I                            | Front        | z Drilling           |                             | OF 7                 |
| 3. PROJECT                                           |              | 4. LOCATION          |                             |                      |
| RVAAP - MI Sampling (Ravenna A/E: 133616)            |              | Ravenna, C           | Dhio                        |                      |
| 5. NAME OF DRILLER                                   |              | 6. MANUFACTURER'S D  | ESIGNATION OF DRILL         |                      |
| Jeremy L.                                            |              | acond                | se 662001                   |                      |
| 7. SIZE AND TYPES OF DRILLING AND SAMPLING EQUIPMENT | . 1          | 8. HOLE LOCATION     |                             |                      |
| regnose 602001 Tacking                               | Ated hg      |                      |                             |                      |
|                                                      |              | 9641                 |                             |                      |
| · · · · · · · · · · · · · · · · · · ·                |              | 10. DATE STARTED     | 11. DATE                    | COMPLETED            |
|                                                      |              | 9/22/1               | 10   9                      | 22 (10               |
| 12. OVERBURDEN THICKNESS                             |              | 15. DEPTH OF GROUND  | WATER ENCOUNTERED           |                      |
|                                                      |              | - 13'                | <u>659 !</u>                |                      |
|                                                      |              | 16. DEPTH TO WATER A | UND ELAPSED TIME AFTER DRIL |                      |
| 14. TOTAL <u>D</u> EPTH OF HOLE                      |              | 17. OTHER WATER LEVE | EL MEASUREMENTS (SPECIFY)   |                      |
| 20'                                                  |              | NA                   |                             |                      |
| 18. GEOTECHNICAL SAMPLES DISTURBED                   | UNDISTUR     | BED 19. OTAL N       | UMBER OF CORE BOXES         | •                    |
| N/K                                                  | METALO       |                      | $\mathcal{N}^{\lambda}$     | 5000                 |
| 20. SAMPLES FOR CHEMICAL ANALYSIS                    | IVIETALS     | BUDGHER (SPECIFY)    | PESTIGOR POD'               | RECOVERY CORE        |
| 22. DISPOSITION OF HOLE BACKFILLED N                 |              | OTHER (SPECIFY)      | 23. SIGNATURE OF INSPECTO   | DR .                 |
| Centrate.                                            |              |                      | Stall                       |                      |
| LOCATION SKETCH/COMMENTS                             |              | L                    | SCALE:                      |                      |
| M/IIIIII                                             |              |                      |                             |                      |
| ┍┼┟─┼─┼─┼╱╀─┼─┼─┼─┼─┼─                               | $\leftarrow$ |                      |                             |                      |
| ++++++++++++++++++++++++++++++++++++++               | +            |                      |                             | <u></u>              |
| A A A A A A A A A A A A A A A A A A A                |              |                      |                             | <b></b>              |
|                                                      |              |                      |                             | <u> </u>             |
|                                                      |              |                      |                             |                      |
|                                                      |              | 2                    | CA-U-D38                    |                      |
|                                                      |              |                      | 3935                        |                      |
|                                                      |              |                      |                             |                      |
| ╺┼╼╏┼╍┼╍┼╍┼╍┼╍┼╍┼                                    |              |                      |                             | +                    |
| ╼ <u>┼╍</u> ┟┽╍╌┼╍╌┼╍╌┼╍╌┼╍╌┼╍╌┼╍╌┼╍╌┼               |              |                      |                             |                      |
|                                                      | -++          | ·/                   |                             |                      |
|                                                      | - <b>  ,</b> | /                    |                             | <b></b>              |
|                                                      |              |                      |                             | <u> </u>             |
|                                                      |              |                      |                             |                      |
|                                                      |              |                      |                             |                      |
|                                                      |              |                      |                             | <u> </u>             |
|                                                      | +            | ┝╼╍╁╼╍╁              |                             | <u>+</u>             |
| ╶┼╁┼╩╋╌┼╍┼╍┼╍┼╍┼╍┼╍┼                                 | +/+          |                      |                             | ┟╍╍┟╍╍┼╍╍            |
| ─ <del>┼╄┽─╄┈┼┈┼┈┼┈┼┈┼┈┼┊</del> <u>┾</u>             | ¥            |                      |                             | <b>  </b>            |
|                                                      |              |                      |                             |                      |
|                                                      |              |                      |                             | <b> </b>             |
| <u>SC\$6-034</u>                                     |              |                      |                             |                      |
| PROJECT                                              |              |                      | HOLENO.                     | 27                   |
| KVAAP - IVII Sampling (Kavenna A/E: 133616)          |              |                      | Share R                     | 15T                  |
|                                                      |              |                      |                             | (Froponent: CECW-EG) |
|                                                      |              |                      |                             |                      |

din in

• • ·

|              |                | HTRW                                                 | ORILLI                | NG        | LOG                                      |                                 |            | HOLE NUMBER                           | ].             |
|--------------|----------------|------------------------------------------------------|-----------------------|-----------|------------------------------------------|---------------------------------|------------|---------------------------------------|----------------|
| PROJEC       | RVAA           | P - MI Sampling (Ravenna A/E: 13                     | 3616)                 |           | Barry R                                  | Hains                           | m          | SHEET SHEET                           |                |
| ELEV.<br>(a) | DEPTH<br>(b)   | DESCRIPTION OF MATERIAL<br>(c)                       | FIELD SCREE<br>RESULT | NING<br>S | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT | REMARKS<br>(h)                        |                |
|              |                | Blach Brown (mottled)                                | 0.0 pr                | nn)       | NA                                       | ppp1                            | NA-        | SLSJ-037M-<br>0001-50                 |                |
|              | 2-             | Law Silt's gravel<br>(metal debras)                  |                       | i         |                                          |                                 | -          | 50 (VOC @ 23')                        |                |
|              | 3-             |                                                      |                       | l         |                                          |                                 |            | 5655-0501-2001 (1<br>5655-050M-0001   | (tup)<br>(dup) |
|              | M              |                                                      |                       |           |                                          |                                 |            | 5(55-937M-2001                        | -50(0)         |
|              | 6              | Dash Siven/gray,<br>dry birck (coalash?)             | 0.0pp                 | m         | NA-                                      | \$\$P                           | NA         | SC53-037m-0WZ                         |                |
|              | 7              | Bachfine samelul                                     |                       |           |                                          |                                 |            | Same zone for<br>better verwer        |                |
|              | 5              | 11Hogravel (fill, was<br>ash (C. 5-8) w/ 1+          | s                     |           |                                          |                                 |            | 253% Nermey Or<br>7045                | Enul           |
|              |                | Brown, fine sand,<br>Lare sitt grand,                | 0.0 pp                | m         | NA-                                      | 0/0/3 '                         | NA         | 555-37M-202                           |                |
|              | 11-            | Moist                                                |                       |           |                                          |                                 |            | 40% verener                           |                |
|              | 12-            |                                                      |                       |           |                                          |                                 |            | 1000                                  |                |
| S.F.         | 13-<br>114-    | Brown, wet dense,                                    | 0.0 pp                | (a)       | NA-                                      | \$                              | NA         | Scsb-B7th                             |                |
|              | 1              | si It, gravel                                        |                       |           |                                          |                                 |            | WUT SC                                |                |
|              | 16             |                                                      |                       |           |                                          |                                 |            | 125                                   |                |
|              | 17-            | (Ary, wet dense,<br>Silt clay (17-19)                | 0.0                   | Im        | Na                                       | Øxd                             | NA         | S(53-03776<br>-1705-50                |                |
|              | 19             | Brunkraix wet dense                                  |                       |           |                                          |                                 |            |                                       |                |
| PROJE        | 120            | Line sand, little silt<br>(19-201)                   |                       |           |                                          |                                 | HOLE NO.   | 1100                                  | Ē              |
| EN           | RVAA<br>G FORM | P - MI Sampling (Ravenna A/E: 13<br>15056A-R. AUG 94 | 3616)                 |           |                                          |                                 |            | <u>SS-US/</u><br>(Proponent: CECW-EG) | 1              |

•

| HTRW DRILLI                                                                                                                   | NG LOG              | DISTRICT            | <u> </u>    |                 | -                 |               | HOL<br>Cob- | E NUMBER  |     |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------|-----------------|-------------------|---------------|-------------|-----------|-----|--|
| 1. COMPANY NAME                                                                                                               |                     | 2. DRILL CONTRACTOR |             |                 |                   |               | SHEET SHEET |           |     |  |
| The Shaw Group - Shaw                                                                                                         | E&I                 | Fron                | tz Drilling |                 | <u></u>           |               | 1           | OF Z      |     |  |
| RVAAP - MI Sampling (Ra                                                                                                       | avenna A/E: 133616) |                     | F           | Ravenna,        | Ohio              |               |             |           |     |  |
| 5. NAME OF DRILLER                                                                                                            |                     |                     | 6. MANU     | FACTURER'S      | DESIGNATION OF DI | RILL          |             |           |     |  |
| 7. SIZE AND TYPES OF DEPLUING AND SAM                                                                                         |                     |                     | R HOLEL     | 2002            | x 6620            |               |             |           |     |  |
| George (1-200                                                                                                                 | TTRackma            | ntelnia             |             | \$-Q            | 38                |               |             |           |     |  |
|                                                                                                                               | <u> </u>            | 0                   | 9. SURFA    | CE ELEVATIO     | N                 |               |             |           |     |  |
| ······                                                                                                                        |                     |                     | 10. DATE    | G1<br>STARTED   |                   | ►<br>11. DATE | COMPLETED   |           |     |  |
|                                                                                                                               |                     |                     | = 91        | 22/1            | 0                 | 9/2           | 22/1        | 0         |     |  |
| 12. OVERBURDEN THICKNESS                                                                                                      |                     |                     | 15. DEPTI   | I OF GROUN      | DWATER ENCOUNT    | ERED          |             |           |     |  |
| 13. DEPTH DRILLED INTO ROCK                                                                                                   |                     | <u> </u>            | 16. DEPTI   | TO WATER        | AND ELAPSED TIME  | AFTER DRILL   | ING COMPLE  | TED       | -   |  |
| NA                                                                                                                            |                     |                     |             | $\underline{N}$ | <u>A</u>          |               |             |           |     |  |
| 14. TOTAL DEPTH OF HOLE                                                                                                       |                     |                     | 17. OTHE    | R WATER LEV     | /EL MEASUREMENT:  | 5 (SPECIFY)   |             |           |     |  |
| 18. GEOTECHNICAL SAMPLES                                                                                                      | DISTURBED           | UNDISTU             | RBED        | 19. OTAL        | NUMBER OF CORE    | BOXES         |             |           |     |  |
| , NAF                                                                                                                         | 1/05                |                     | OTITE       | CDECIEV)        |                   | OTUED (CDI    |             |           |     |  |
| 20. SAMPLES FOR CHEMICAL ANALYSIS                                                                                             | FDUP VIL            |                     | Coplasi     | VCS             | resticides        | POD3          | RECOV       | /ERY      | %   |  |
| 22. DISPOSITION OF HOLE                                                                                                       | BACKFILLED          | NONITORING WELL     | OTHER       | SPECIFY)        | 23. SIGNATURE     | OF INSPECTO   | DR          |           |     |  |
|                                                                                                                               | Bentoute            | ······              |             |                 | X 1/2/1           | B-            | ant         |           |     |  |
|                                                                                                                               |                     |                     | 1 1         |                 |                   |               |             |           | 1   |  |
|                                                                                                                               |                     |                     | /           | <u> </u>        | <u> </u>          |               |             |           |     |  |
|                                                                                                                               | A                   |                     | /           |                 |                   | <br>          |             |           |     |  |
|                                                                                                                               |                     |                     | +/+         |                 | 10                |               |             |           |     |  |
|                                                                                                                               |                     |                     |             |                 |                   |               |             |           |     |  |
| ├ <del></del> <u></u> | X                   |                     | /           |                 |                   |               |             |           |     |  |
|                                                                                                                               | ·····               | ++/                 | <u>'</u>    |                 | +                 |               |             |           | +}  |  |
|                                                                                                                               |                     | + $+$ $+$ $+$       |             |                 |                   |               |             |           |     |  |
|                                                                                                                               |                     | A                   | <u></u>     | 565             | 6-038             |               |             |           | +{  |  |
|                                                                                                                               |                     | -07-                |             | F T             |                   |               |             |           |     |  |
|                                                                                                                               | <u> </u>            | /                   |             |                 | +                 |               | +           |           |     |  |
|                                                                                                                               |                     |                     | +           |                 | ++                | <u> </u>      | +           |           | 1   |  |
|                                                                                                                               | +++++++++           |                     |             |                 | +                 |               |             |           | 1   |  |
|                                                                                                                               |                     |                     |             |                 |                   |               |             |           | -   |  |
| 31111                                                                                                                         |                     |                     |             |                 | +                 |               |             |           |     |  |
| S III                                                                                                                         |                     | 1/1                 |             |                 |                   |               |             |           |     |  |
|                                                                                                                               | ······              |                     |             |                 |                   |               |             |           |     |  |
|                                                                                                                               |                     | 1 1                 | 155         | 120             | ind               |               |             |           |     |  |
|                                                                                                                               |                     |                     |             |                 | 1                 |               |             |           |     |  |
|                                                                                                                               |                     |                     |             |                 |                   |               | I           |           |     |  |
| PROJECT<br>RVAAP - MI Sampling (R                                                                                             | Avenna A/F: 133616) |                     |             |                 | HOLE NO.          | i - m         | 6           |           |     |  |
| ENG FORM 5056-R. AUG 94                                                                                                       |                     |                     |             |                 |                   | בע_מ          | Propone     | nt: CECW- | EG) |  |

се 2

ð

14 2

ý,

|              |                   | HTRW                                                                                | ORILLING                          | i LOG                                    |                                   | <u></u>           | HOLE NUMBER                                                       |
|--------------|-------------------|-------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|-------------------|-------------------------------------------------------------------|
| PROJEC       | т                 | ······································                                              | SHEET SHEET                       |                                          |                                   |                   |                                                                   |
|              | RVAAF             | <sup>o</sup> - MI Sampling (Ravenna A/E: 13                                         | 3616) SB                          | am, R.Ho                                 | um San                            |                   | Z OF Z                                                            |
| ELEV.<br>(a) | DEPTH<br>(b)      | DESCRIPTION OF MATERIAL<br>(c)                                                      | FIELD SCREENING<br>RESULTS<br>(d) | GEOTECH SAMPLE OF<br>CORE BOX NO.<br>(e) | R ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                                                    |
|              | 1 2 1             | Doskstown<br>Char wal gray/bown<br>M-F SND, brace<br>gravel (shale)<br>(1-2')       | 0.01pm                            | NA                                       | 0,001                             | MA                | SCSb-038m-0001<br>-SO<br>SCSL-038m-0001<br>-MS<br>(CSL-038m-0001- |
|              | 5 4 5             | Light brown, M-F<br>Sano, trace gravel c<br>Silt & roots (oganic<br>material) (2-5) |                                   |                                          |                                   |                   | MS MSD<br>4015 BPW<br>4015 TO 5                                   |
|              | 6 7               | Light bown, dry, dense,<br>FINESAND, thate since<br>gravel                          | O. Oygan<br>W                     | MA                                       | 1990Z                             | m                 | SCs6-038M-<br>0002-50                                             |
|              | 8 9 9<br>9 111111 | lall and she                                                                        |                                   |                                          | 20.00                             |                   | ΛΛΛΟ                                                              |
| -            |                   | Light brown long,<br>Jense, FINE SAND,<br>brace small gravel                        | 0.0ppm                            | NA                                       | 0993                              | NA                | SCS6-038m - E<br>0003-50                                          |
|              | 2                 |                                                                                     |                                   |                                          |                                   |                   | 1115                                                              |
|              | <u> </u>          | Gray impist, denser<br>SILTY CLAY:                                                  | 0.0 pm                            | NA                                       | ØØØY                              | NA                | SC55-038m-<br>0004-50                                             |
|              | 6                 |                                                                                     |                                   |                                          |                                   |                   | 1170                                                              |
|              | 12                | gray, molst, buse, SILTICLAY<br>(17-18)<br>gray, wet idense, cuty<br>(13-19)        | a opp                             | NK                                       | ô995                              | NA                | SC15-038m-<br>2005-50 x2(2A)<br>SC1-0812 8031M-2005-50(P)         |
|              |                   | gray, wet, durie, sill yang<br>(19-20)                                              | · · · ·                           | p. 1                                     |                                   |                   | FULSVILL OUPTOA M25                                               |
| PROJEC       | त<br>RVAAF        | P - MI Sampling (Ravenna A/F: 13                                                    | 3616)                             | ·. *                                     | ···· ,                            |                   | ib-Ø38                                                            |
| ENG          | G FORM            | 5056A-R. AUG 94                                                                     | ·····                             |                                          |                                   |                   | (Proponent: CECW-EG)                                              |

•

er Maria

| HTRW DRILL                            | ing log                               | DISTRICT                |                                                                 |                    |                                       | S SL         | e numbe<br>- 6 🛣 | :R<br>9 |
|---------------------------------------|---------------------------------------|-------------------------|-----------------------------------------------------------------|--------------------|---------------------------------------|--------------|------------------|---------|
| 1. COMPANY NAME                       |                                       | 2. DRILL CONTR          | ACTOR                                                           |                    |                                       | SHEET        | <u> </u>         | SHEET   |
| The Shaw Group - Shaw                 | E&I                                   | Front                   | z Drilling                                                      |                    |                                       | 1            | OF .             | 1       |
| RVAAP - MI Sampling (R                | avenna A/E: 133616)                   |                         | 4. LOCATION<br>Ravenna                                          | Ohio               |                                       |              |                  |         |
| 5. NAME OF DRILLER                    |                                       |                         | 6. MANUFACTURER'S                                               | DESIGNATION OF D   | RILL                                  |              |                  |         |
| Jeremy                                |                                       |                         | Geopol                                                          | z (2070            | DT                                    |              |                  |         |
| 7. SIZE AND TYPES OF DRILLING AND SAM | IPLING EQUIPMENT                      |                         | 8. HOLE LOCATION                                                | DCATION /          |                                       |              |                  |         |
| Geoprobe GGODT                        | - Track man                           | ted ng                  | <u>SC55-</u>                                                    | 5-939              |                                       |              |                  |         |
| Į I                                   | U U                                   | $\mathcal{I}$           | 9. SURFACE ELEVATIO                                             | yri                |                                       |              |                  |         |
|                                       |                                       |                         | 769.                                                            |                    | 44 0 475                              |              |                  |         |
|                                       |                                       |                         | 10. DATE STARLED<br>9/21/20<br>15. DEPTH OF GROUNDWATER ENCOUNT |                    | 11. DATE COMPLETED                    |              |                  |         |
| 12. OVERBURDEN THICKNESS              |                                       |                         |                                                                 |                    | [ <u>V/ C</u><br>ERED                 | 1/10         |                  |         |
| NA                                    |                                       |                         | NA                                                              |                    |                                       |              |                  |         |
| 13. DEPTH DRILLED INTO ROCK           |                                       |                         | 16. DEPTH TO WATER                                              | R AND ELAPSED TIME | AFTER DRILL                           | ING COMPLE   | TED              |         |
| IVA                                   |                                       |                         | Ant                                                             |                    |                                       | A            |                  |         |
| 14. TOTAL DEPTH OF HOLE               |                                       |                         | 17. OTHER WATER LE                                              | VEL MEASUREMENT    | S (SPECIFY)                           |              |                  |         |
|                                       | DISTURRED                             | HNDISTU                 |                                                                 |                    | POVES                                 |              |                  |         |
| A A                                   |                                       |                         | 19. UIA                                                         | 1/A                | DUAES                                 |              |                  |         |
| 20. SAMPLES FOR CHEMICAL ANALYSIS     | VOC                                   | METALŞ                  | OTHER (SPECIFY)                                                 | OTHER (SPECIFY)    | OTHER (SPE                            | CIFY) 21. TO | TALCOR           |         |
|                                       |                                       | $\overline{}$           | Explaires is                                                    | pcs                |                                       | RECO         | VERY /C          | 0%      |
| 22. DISPOSITION OF HOLE               | BACKFILLED M                          | ONITORING WELL          | OTHER (SPECIFY)                                                 | 23. SIGNATURE      | OF INSPECTO                           | R            |                  |         |
|                                       | Vbentonite                            |                         | l                                                               | Still              | 0fry                                  |              |                  |         |
| LOCATION SKETCH/COMMENTS              |                                       |                         |                                                                 | SCALE:             |                                       |              |                  |         |
|                                       | 1                                     |                         | - /                                                             |                    |                                       |              |                  |         |
|                                       |                                       | TIKT                    |                                                                 |                    |                                       |              |                  |         |
|                                       |                                       | ┼ <del>╱</del> ┨┽╱╌┤╌╌╴ | ├                                                               | +                  |                                       |              |                  |         |
|                                       | + + + + + + + + + + + + + + + + + + + |                         | ├/                                                              | +                  |                                       |              | <u>├</u>         |         |
| <u> </u>                              |                                       | ++                      | Hard                                                            |                    |                                       |              | <u> </u>         |         |
|                                       |                                       | <u></u>                 | 1 KHL                                                           | Sb-Ø9              |                                       |              |                  |         |
|                                       |                                       |                         |                                                                 |                    |                                       |              |                  |         |
| $\sqrt{N}$                            |                                       | ,                       | I/   T                                                          |                    |                                       |              |                  |         |
|                                       |                                       |                         | <u> </u>                                                        |                    |                                       |              |                  |         |
|                                       |                                       | ++                      |                                                                 |                    |                                       |              |                  |         |
| - <u>\</u> _}/+}/                     |                                       | ·                       | ┼┼                                                              |                    |                                       |              |                  |         |
|                                       |                                       | ₋                       | <u> </u>                                                        | +                  | <b> </b>                              |              |                  |         |
|                                       |                                       |                         | <b>  </b>                                                       |                    |                                       |              |                  |         |
|                                       |                                       |                         | +                                                               |                    |                                       |              |                  |         |
|                                       |                                       |                         |                                                                 |                    |                                       |              |                  |         |
|                                       | *                                     | ╈╍╍╆╍╍╆╍╄               | † <u>†</u> <u>†</u> <u>†</u>                                    | +                  | <b>  </b>                             |              | <b> </b>         |         |
| _ <del>V</del> V-++-++                |                                       | +                       | <u> </u>                                                        |                    | <u></u> †                             |              | ├ <u></u> ┼      |         |
| <u>~~~</u>                            |                                       | ┼╍╍┼╍╍┾╍╍╄              | <u></u><br><u></u><br><u></u><br>+}<br>}                        | +                  |                                       |              | ┟                |         |
|                                       | <u> </u>                              | . <u> </u>              | <u> </u>                                                        |                    | <b> </b>                              |              | <b>├</b>         |         |
|                                       |                                       | <u>         </u>        | <b> </b>                                                        |                    | <b> </b>                              | <b> </b>     | ļļ.              |         |
| <u>KIIII</u>                          |                                       |                         |                                                                 |                    |                                       |              |                  |         |
|                                       |                                       |                         |                                                                 |                    |                                       |              |                  |         |
|                                       |                                       |                         | 11-1                                                            |                    | †                                     |              | <b> </b>         |         |
| PROJECT                               | ┶┈┙┙╌┙                                |                         |                                                                 | HOLE NO.           | ـــــــــــــــــــــــــــــــــــــ | LL           | i                | l       |
| RVAAP - MI Sampling (F                | avenna A/E: 133616)                   |                         |                                                                 | Sr.st-             | Ø39                                   |              |                  |         |
| ENG FORM 5056-R AUG 04                |                                       |                         |                                                                 |                    |                                       | (Propope     | nt: CECI         | N-EG    |

|                                                                                        |              | HTRW I                                                      | HOLE NUMBER                |                                   |                          |            |                                     |         |
|----------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|----------------------------|-----------------------------------|--------------------------|------------|-------------------------------------|---------|
| PROJECT INSPECTOR<br>DVAAD MI Sampling (Dourses A/E-122010) S'-RCUM A R UCCUSON P MOGO |              |                                                             |                            |                                   |                          |            | SHEET SHEET                         | -       |
| ELEV.<br>(a)                                                                           | DEPTH<br>(b) | DESCRIPTION OF MATERIAL                                     | FIELD SCREENING<br>RESULTS | GEOTECH SAMPLE OF<br>CORE BOX NO. | ANALYTICAL<br>SAMPLE NO. | BLOW COUNT | REMARKS                             |         |
|                                                                                        | 1 2 2 3      | Brown, FINE SAND;<br>brace Silte<br>gravel, denx, dry       | O.Oppn                     | (e)<br>NA                         | (†)<br>ØD01              | NA         | SC 56-039m-<br>0001-50              |         |
|                                                                                        |              | х.                                                          |                            |                                   |                          |            | 1660                                |         |
|                                                                                        |              | Brown/gray mottled,<br>dry, dense, Former<br>SILTY Janp (8) | 0.0pp                      | NA                                | ,000 Z                   | NA         | SC 56-239 m-<br>0002-50             |         |
|                                                                                        | 00 00 00     |                                                             |                            |                                   |                          |            | 1610                                |         |
|                                                                                        |              | Light Brown, dry,<br>dence, SILTY SAM                       | бé⊖ ppm                    | NA                                | ,000]                    | NA         | SC 56-039 m<br>000 3 - 50           |         |
|                                                                                        |              |                                                             |                            |                                   |                          |            | 11/15                               |         |
|                                                                                        |              | Gray, dry, dense,<br>SILT                                   | 0.01pm                     | NA                                | 0004                     | NA .       | SC56-079 m-<br>0004 - 50            |         |
|                                                                                        |              | wwwwwww                                                     | ~~~~~                      |                                   |                          |            | 1625                                |         |
|                                                                                        |              |                                                             |                            |                                   |                          |            |                                     |         |
|                                                                                        |              | CLAY (17-19)                                                | O O gpm                    | NR                                | 10005                    | NA         | 2005 - SO                           | 1030    |
|                                                                                        | 19-          | SILTY CLAY<br>(17-19)                                       |                            |                                   |                          |            | Moist soil, may be getting close to | Eventer |
| EN                                                                                     | RVAA         | P - MI Sampling (Ravenna A/E: 13<br>5056A-R. AUG 94         | SC Sb-1                    | (Proponent: (FCW-FG)              |                          |            |                                     |         |

| HTRW DRILL                             | ING LOG             | District       |                     |                     |                  | HOLE NOM                               |
|----------------------------------------|---------------------|----------------|---------------------|---------------------|------------------|----------------------------------------|
| 1. COMPANY NAME                        | -0.                 | 2. DRILL CONTR | ACTOR               |                     |                  | SHEET                                  |
| The Snaw Group - Shaw                  | E&I                 | Front          | z Drilling          |                     |                  |                                        |
| s. rkultu<br>RVAAP - MI Sampling (R    | avenna A/F· 133616) |                | 4. LOCATION         | Ohio                |                  |                                        |
| 5. NAME OF DRILLER                     |                     |                | 6 MANUFACTURE       | S DESIGNATION OF I  |                  |                                        |
|                                        |                     |                | Banan               | (4.70)              |                  |                                        |
| 7. SIZE AND TYPES OF DRILLING AND SAM  | IPLING EQUIPMENT    |                | 8. HOLE OCATION     | . 0000 2            |                  | ······································ |
| Geopole 4520 DTT                       | Fackmounted         | ng             | SCSD-Ø              | 1¢                  |                  |                                        |
| V                                      |                     | 0              | 9. SURFACE ELEVAT   | ION                 | ·····            |                                        |
|                                        |                     |                | SSAA                | 9/1                 |                  |                                        |
|                                        |                     |                | 9774                | <i>a</i> 7          | 11. DATE COI     | MPLETED                                |
| 12. OVERBURDEN THICKNESS               |                     |                | 15. DEPTH OF GRO    | INDWATER ENCOUNT    |                  | 1/10                                   |
| NA                                     |                     |                | n nA                |                     |                  |                                        |
| 13. DEPTH DRILLED INTO ROCK            | . <u></u>           |                | 16. DEPTH TO WAT    | ER AND ELAPSED TIM  | E AFTER DRILLING | COMPLETED                              |
| NA                                     |                     |                | Λ/                  | A                   |                  |                                        |
| 14. TOTAL DEPTH OF HOLE                |                     |                | 17. OTHER WATER     |                     | TS (SPECIFY)     |                                        |
|                                        | DISTURRED           |                |                     |                     | POVEC            |                                        |
| 10. GEOTECHINICAL SAIVIPLES            |                     | 0101510        | 19.01               | AL NUIVIBER OF LORE | DUXES            |                                        |
| 20. SAMPLES FOR CHEMICAL ANALYSIS      | voc                 | METALS         | OTHER (SPECIFY)     | OTHER (SPECIFY)     | OTHER (SPECIF    | Y) 21. TOTAL CO                        |
|                                        |                     |                | Exprosive           | Stoc                | Regade           | RECOVERY                               |
| 22. DISPOSITION OF HOLE                | BACKFILLED          | ONITORING WELL | OTHER (SPECIFY)     | 23. SIGNATURE       | OF INSPECTOR     | retarts                                |
| ······································ | BentoniteV          |                |                     | Sup                 | they_            |                                        |
| LOCATION SKETCH/COMMENTS               |                     |                |                     | SCALE:              | <u> </u>         |                                        |
|                                        |                     |                | 1 D                 |                     |                  |                                        |
|                                        |                     | 10             |                     |                     |                  |                                        |
|                                        |                     |                | ///////             |                     |                  |                                        |
|                                        |                     |                | <u> </u> /+-        | -++                 | · <del>  </del>  |                                        |
|                                        | ├┼╱┼┼               |                | ┝━━-┼━━-┟╱━-┼╼      |                     |                  |                                        |
|                                        | ····                |                | <i>  </i>           |                     |                  |                                        |
|                                        |                     | <u>}</u>       |                     |                     | ·                |                                        |
|                                        |                     |                |                     |                     |                  |                                        |
| $\langle   \mathcal{R}        $        |                     |                |                     |                     |                  |                                        |
|                                        |                     |                | BASC E              | + argo              |                  |                                        |
|                                        |                     |                |                     |                     |                  |                                        |
|                                        |                     | +-+-+/-        |                     |                     |                  |                                        |
| <u> </u>                               | ├                   | +              | <u> </u>            |                     | <u> </u>         |                                        |
| 78-11-1-1-                             | ·····               | <u>       </u> | ┟                   |                     |                  |                                        |
|                                        | <u></u>             | <u> </u>       | <b>  </b>           |                     | ·                |                                        |
|                                        | ll                  |                |                     |                     | <u> </u>         |                                        |
|                                        |                     |                |                     |                     |                  |                                        |
| VMITT                                  |                     | <del>  -</del> |                     |                     |                  |                                        |
|                                        |                     | ╶╁╍╍╌╁╼╍┾╁╍╼╍  | <u> </u>            |                     | ***********      |                                        |
|                                        |                     | ╶┼╍╍╌┼╍╍╌      |                     |                     | +                | ╍┾╍╍┝╍╍┼                               |
| ╺᠆╄╲┼╌╫──┼┽┼╌┼──                       | <u> </u>            | ╶╁╍╍╾┟╍╍╴      | ┟┈╍╍╸┠╌╸╌╸┠╴╸╸╸╴┝╸╸ |                     | +                |                                        |
| }                                      | <u> </u>            | ╶┼╍╌┼╍╌╢┼╍╍╸   | ┟                   | -+                  |                  |                                        |
|                                        |                     |                |                     |                     |                  |                                        |
| DDOUTCT                                |                     |                |                     |                     |                  |                                        |

|              |              |                                                               | HOLE NUMBER                       |                                          |                                 |                   |                                     |  |
|--------------|--------------|---------------------------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-------------------|-------------------------------------|--|
| PROJE        | .т           | **************************************                        | SHEET SHEET                       |                                          |                                 |                   |                                     |  |
|              | RVAAF        | P - MI Sampling (Ravenna A/E: 13                              | 3616) <i>S</i> .                  | Barry, Paul                              | M.R.Ha                          | ung               | Z OF Z                              |  |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                                | FIELD SCREENING<br>RESULTS<br>(d) | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                      |  |
|              | A 111        | Brown, Juy, med<br>Jenie, M-F SND<br>trace gravel             | 0.0 ppn                           | NA                                       | ØØØI                            | NA                | SCSb0410m-<br>0001-SO               |  |
|              | m y l        |                                                               |                                   |                                          |                                 |                   | 1525                                |  |
|              |              | Brown, dry, dense<br>FINE SANG tette<br>Silt, bace grave      | 0.0 ppm                           | NA                                       | 0ØØU                            | MA                | SCSL-040 m -<br>2002-50<br>VOC (66) |  |
|              | B 8          |                                                               |                                   |                                          | - 22                            |                   | Dup-SCSL-082m-<br>8002-50<br>1535   |  |
|              | S 5 5        | Bram, ory dense,<br>SILITY SAMD                               | 0.0 jm                            | NA                                       | <i>p</i> 903                    | NA                | SC16-090-M-<br>2003-50              |  |
|              | R-           | -                                                             |                                   |                                          |                                 |                   | 1540                                |  |
|              |              | Brown, dry, dense, SILTY<br>SAND (13-14)<br>Grow, dry, dense, | 0.0 ppm                           | NA                                       | 0004                            | NA                | USB-040m.<br>0004-50                |  |
|              |              | SIET<br>(14-17)                                               |                                   |                                          |                                 |                   | 1545                                |  |
|              |              | Gray, dy. dense,<br>SILTY CLAY                                | 0.0.ppm                           | NA                                       | ØÇØS                            | NA                | 1 ( sb-040 m-<br>0005-50            |  |
|              |              |                                                               |                                   |                                          |                                 |                   | 1/550                               |  |
| PROJE        | RVAA         | P - MI Sampling (Ravenna A/E: 13                              | 33616)                            |                                          |                                 | HOLE NO.          | -040                                |  |
| EN           | IG FORM      | 1 5056A-R. AUG 94                                             |                                   |                                          |                                 |                   | (Proponent: CECW-EG)                |  |
| H              | rrn           | / DI                    | RIL             | LLI           | N(       | GΙ           | 0.           | G            |             |                                                  | -130-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |           |                 |                   |            |             |          |               |              |                                        | - 14           |
|----------------|---------------|-------------------------|-----------------|---------------|----------|--------------|--------------|--------------|-------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------|-------------------|------------|-------------|----------|---------------|--------------|----------------------------------------|----------------|
| 1. COMPAN      | Y NAME        |                         |                 |               | <u> </u> |              |              |              |             | 2.1                                              | DRILL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONTRA          | CTOR      |                 |                   | ··         |             |          |               | _ <u> </u> > | SHEET                                  | ŗψ             |
| Th             | e Shaw        | Group                   | o – Sh          | naw I         | E&I      |              |              |              |             |                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rontz          | z Drilli  | ng              |                   |            |             |          |               |              | 1                                      | OF             |
| 3. PROJECT     |               |                         |                 |               |          |              |              |              |             | ·                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 4. LO     | CATIO           | N                 | ·······    |             |          |               | ·            |                                        | ·              |
| R۱             | 'AAP - N      | ЛI Sam                  | ıpling          | g (Ra         | iven     | na A/        | Έ <b>:</b> 1 | 3361         | l6)         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ              |           | Ra              | avenna            | , Ohic     |             |          |               |              |                                        |                |
| 5. NAME OF     | DRILLER       |                         |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 6. M/     | ANUFA           | CTURER'           | S DESIG    | NATIO       | N OF D   | RILL          |              |                                        |                |
| Jea            | Cmo           | 1                       |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Ġ         | 207             | niz               |            |             |          |               |              |                                        |                |
| 7. SIZE AND    | TYPES OF      | DRILLING                | G AND           | SAM           | PLING    | EQUIP        | MENT         |              |             | _                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 8. HO     | LELO            | CATION            |            |             |          |               |              | ······································ |                |
| NOM            | te b          | 610                     | DT              | 1             | Ja       | N            | na           | 1 de         | d           | nq                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $\langle$ | $\mathcal{C}$   | -6-4              | 547        | -           |          |               |              |                                        |                |
| Į              |               |                         |                 |               |          |              |              |              |             | $\mathcal{I}$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 9. SŨ     | RFACE           | ELEVATI           | ON         |             | r        |               |              |                                        |                |
|                |               |                         | ,               |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | 53              | 1 Art             | - 9        | <u>68</u>   | ,        |               |              |                                        |                |
|                |               |                         |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 10. D     | ATES            |                   |            |             |          | 11.           | DATE CO      | MPLETE                                 | 2              |
|                |               |                         | _               |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 7         | 12              | <u>1 (</u>        | )          |             |          |               | 12           | 1/1                                    | Ø              |
| 12. OVERBU     | RDEN THI      | CKNESS                  |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 15. D     | EPTH            | OF GROU           | NDWAT      | ER ENC      | COUNTI   | ERED          |              |                                        |                |
| <u> </u>       | 17            |                         |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | $\underline{N}$ | <u>n</u>          |            |             |          |               |              |                                        |                |
| 13. DEPTH I    | RILLED IN $A$ | TO ROCK                 | ¢               |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 16. D     | ЕРТН            | TO WATE           | RANDE      | LAPSE       | D TIME   | AFTER         | DRILLING     | G COMPL                                | ETED.          |
| /              | VN            |                         |                 | _             |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 | $\mathcal{N}_{i}$ | A .        |             |          |               |              |                                        |                |
| 14. IOTAL [    | EPIHOFI       | HOLE                    |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 17.0      | THER            | water L           | EVEL MI    | ASURE       | MENT     | S (SPEC       | IFY)         |                                        |                |
| 19 GEOTES      |               | MDICC                   |                 |               |          |              | STIIDE       | FD           |             | <del>.                                    </del> | IINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | RED       |                 | //                | 193        |             | 0000     | OVEC          |              |                                        |                |
| TO GEOLEC      |               |                         |                 | ŀ             |          | 01.          |              |              |             | +                                                | ONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |           |                 | 19.01/            |            | DER OF      | CORE     | DUXES         |              |                                        |                |
| 20. SAMPLE     | S FOR CHE     | MICAL                   | ANAINS          | SIS           |          | V            | DC DC        |              | T           | ME                                               | TALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | OTI       | IER (S          | PECIFY)           |            | ,<br>ER (SP | ECIFY)   | OTHE          | R (SPECI     | -Y)   71   1                           | ΟΤΔΙ           |
|                | 51011011      |                         |                 |               |          |              |              |              |             | ·····                                            | and the second s |                | E.Se      | plo             | 5.100             | Se         | 2C          | 7        |               |              | RECO                                   | OVERY          |
| 22. DISPOSI    | TION OF H     | IOLE                    |                 |               |          | BACK         | FILLED       |              | M           | ONITOR                                           | RING W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ELL            | TO        | IER (S          | PECIFY)           | 23         | . SIGN      | ATURE    | OF INSI       | PECTOR       |                                        |                |
|                |               |                         |                 | ľ             | 1        | Uni          | ín,          | ŧe           |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   | -<br>-     | 21          | -le      | a             |              |                                        |                |
| LOCATIO        | I SKETCH      | I/COMI                  | MENT            |               |          | 0            |              |              | 1           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |           |                 |                   |            | ALE:        |          | ~             | £            |                                        |                |
| <u> </u>       | 71            | $\frac{1}{1}$           | <u> </u>        |               |          | 1            |              | 1            | T           |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>∖</b>       |           |                 |                   |            | 1           | 1        |               |              |                                        |                |
|                |               | ļļ.                     |                 |               | 1        |              |              | ļ            | ļ           | <u> </u>                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\overline{1}$ |           |                 |                   |            | <u> </u>    | ļ        |               |              |                                        |                |
| 1/ V           |               |                         |                 |               |          |              |              |              | E           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 | ļ                 |            | 1           |          |               |              | ļ                                      |                |
|                |               | 1                       | 1               | 1             | T        |              |              | [            | 1           | 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν              |           |                 |                   | 1          | 1           | 1        | Î             |              |                                        | 1              |
| NOS            |               | ++                      |                 | f             |          |              |              | <u>+</u> -   |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }              |           |                 |                   |            | +           |          |               |              |                                        |                |
|                |               | ++                      | <u></u>         |               | ļ        |              |              |              | <b>T</b>    | 1                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                 |                   |            | <u> </u>    | <u> </u> |               |              |                                        |                |
|                |               |                         |                 | $\square$     | <u></u>  |              | l            | 16           | <u></u>     | <u> </u>                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /              |           |                 |                   |            | <u> </u>    | ļ        |               |              |                                        |                |
|                |               |                         | X               | / /4          |          |              |              |              | ļ           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   | 1          |             |          |               |              |                                        |                |
|                |               |                         | 1               | 7             |          |              |              | -            | +           | 1                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |           |                 |                   |            | 1           |          |               |              |                                        |                |
|                |               | $+ \chi$                | /               | <u> </u>      |          |              |              |              |             |                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |                 |                   |            | †           | <u> </u> |               |              |                                        |                |
|                |               | $\vdash$                | 19              | Cit-          | art      |              | -4           | 7            |             | /                                                | $4 \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sim$         | ┉         | _               | - 1               |            | ł           | MAN      | *             |              |                                        |                |
|                |               |                         | $\sum$          |               |          | $\Theta$     |              | <u> </u>     |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\geq$         |           |                 | <u> </u>          | $\pm \geq$ | ₽_          | ph       | 2             |              |                                        |                |
|                |               | 1                       | 1               |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            |             |          |               |              |                                        |                |
|                | 7             |                         |                 |               |          |              |              |              | 1           | 7                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            | 1           | 1        |               |              |                                        |                |
|                | AK-           | ++                      |                 |               |          |              |              |              | +-/         | +                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                 |                   |            | +           | +        |               |              |                                        | - <del> </del> |
| <u> </u>       |               | $\leftarrow \downarrow$ |                 | 10            | s        |              | <u> </u>     | <u> </u>     | . <u> -</u> | <b></b>                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                 |                   |            | +           |          |               |              |                                        |                |
|                |               | $ \Sigma $              | 17              | 1 D           |          | ļ            |              | $\geq$       | 1           | <u> </u>                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |                 |                   |            | 1           | ļ        |               |              |                                        |                |
| $\mathbf{X}$   |               |                         |                 |               |          |              |              | /            |             | 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            |             |          |               |              |                                        |                |
| $\neg \forall$ |               | Ť                       | Ż               | $\overline{}$ |          |              |              | /            | - <b>-</b>  | Ì                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | †-        |                 |                   |            | T           | 1        | T T           |              |                                        |                |
|                |               | 19                      |                 | -             |          |              | /            | <del> </del> |             | +                                                | ┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |                 |                   |            | +           | +        | <del>  </del> |              |                                        | +              |
|                | <u> </u>      | + 4                     |                 |               | 7        |              | <b>[</b>     |              |             | <b></b>                                          | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                 |                   |            | +           |          | ┝             |              |                                        |                |
|                |               |                         |                 |               |          | $\mathbb{N}$ |              |              |             | <u> </u>                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |                 |                   |            | <u> </u>    |          | ļ]            |              |                                        |                |
|                | ,             |                         |                 |               | 1        | 1            |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            |             |          | ]             |              |                                        |                |
|                | 0             | †f                      | $\triangleleft$ |               |          | <br>         | †<br>        |              |             | - <u>}-</u>                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                 |                   |            |             |          | †İ            |              |                                        |                |
|                |               | ++                      | F               | $\searrow$    |          |              | <b> </b> -   |              |             | +                                                | ╂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |                 |                   |            |             | +        |               |              |                                        |                |
| 1 1            |               |                         |                 | $\square$     | l        | <u>i</u>     | [            |              | 1           | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            |             |          |               |              |                                        |                |
| BOIECT         |               |                         |                 |               |          |              |              |              |             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                   |            |             |          |               |              |                                        |                |

|              |                                           | HTRW                                                    | DRILL                       | ING         | LOG                                      |                                 |                   | SC51-041-50             |
|--------------|-------------------------------------------|---------------------------------------------------------|-----------------------------|-------------|------------------------------------------|---------------------------------|-------------------|-------------------------|
| PROJEC       | RVAAP                                     | - MI Sampling (Ravenna A/E: 13                          | 33616)                      |             | Bary, F                                  | ). Macca                        | mr. A. Hem        | SHEET SHEET             |
| ELEV.<br>(a) | DEPTH<br>(b)                              | DESCRIPTION OF MATERIAL<br>(c)                          | FIELD SCRE<br>RESULT<br>(d) | ENING<br>TS | GEOTECH SAMPLE OF<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)          |
|              | 2                                         | Brun, dry, dense,<br>M-F SAND, trace<br>Silt & graved   | 6-0                         |             | NA                                       | ØØØI                            | ля                | SC56-041m-<br>00012-50  |
|              |                                           | N                                                       |                             |             |                                          |                                 |                   | 1425                    |
|              |                                           | Brann, dry; Jense,<br>FINE SAND prace                   | <i>Э.</i> О                 |             | NA                                       | ØØØZ                            | NA                | SCS1-041m-<br>0002-50   |
|              | 1<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ing Date grate                                          |                             |             |                                          |                                 |                   | MS/MSD<br>1435          |
|              |                                           | Brown, dry; dense,<br>FINE SAND; trace<br>Silt & gravel | 0.0                         |             | NA                                       | \$¢63                           | NA                | SC sb-Ø41m-<br>60Ø 3-So |
|              | 12-                                       |                                                         |                             |             |                                          |                                 |                   | 7440                    |
|              |                                           | Gray, Jry, Jense<br>SILT                                | 0.0                         |             | NA                                       | <i>\$\$</i> \$\$                | NA                | SCsb-Ø41m-<br>ØØØ 4- 50 |
|              |                                           |                                                         |                             |             |                                          |                                 |                   | 1450                    |
|              | 13-11                                     | Gray, Jry, Jense<br>SILTY CLAY                          | Q, Q                        |             | NK                                       | ØØØ5                            | NA                | SCSL-041m<br>0905-50    |
|              | n-                                        |                                                         |                             |             |                                          |                                 |                   | 1455                    |
| PROJEC       | π<br>RVAAP                                | - MI Sampling (Ravenna A/E: 13                          | 33616)                      |             |                                          |                                 | HOLE NO.          | - \$41                  |

:

|                                        | ING LUG                               |                                               |             |                |                      |                |        |             | S          | 6-04       | ٢   |
|----------------------------------------|---------------------------------------|-----------------------------------------------|-------------|----------------|----------------------|----------------|--------|-------------|------------|------------|-----|
| 1. COMPANY NAME                        |                                       | 2. DRILL CONTR                                | ACTOR       |                |                      |                |        |             | SHEET      | SI         | IEE |
| The Shaw Group - Shaw                  | E&I                                   | Fron                                          | tz Drilling |                |                      |                |        |             |            | OF L       |     |
| 3. PROJECT<br>RV/AAD _ MI Compliane /D | avanna A/E. 1226161                   |                                               | 4. LOCA     | FION<br>Rovers | ^                    | hio            |        |             |            |            |     |
|                                        |                                       |                                               | C MANU      | Tavenn         | $\frac{1}{1}$        |                |        |             |            |            |     |
| S. NAIVE OF DRILLER                    |                                       | -                                             | B. WAIN     | JFACIURE       | K S DE               | SIGNATION      | OFDR   | ILL.        |            |            |     |
| 7. SIZE AND TYPES OF DRILLING AND SAM  | PLING FOUIPMENT                       |                                               | S. HOLE     | LOCATION       | <u>,64</u>           | 001            |        |             |            |            |     |
| Frender 6670 DT TVG                    | ril papulated                         | <i>I</i> ia                                   | <           | Cab-           | 194                  | 7              |        |             |            |            |     |
| coopran or a gr ero                    |                                       | ~ <u>9</u>                                    | 9. SURF     | ACE ELEVAT     | TION                 |                |        |             |            |            |     |
|                                        |                                       |                                               | 9           | 711            |                      |                |        |             |            |            |     |
| . <u></u>                              | · · · · · · · · · · · · · · · · · · · | ·····                                         | 10. DAT     | E STARTED      |                      |                |        | 11. DATE C  | OMPLETE    | D          |     |
|                                        |                                       |                                               |             | $\frac{1}{2}$  | ( / A                | 0              |        | 9/2         | r (ro      |            |     |
| 12. OVERBURDEN THICKNESS               |                                       |                                               | 15. DEP     | TH OF GRO      | UND                  | WATER ENC      | OUNTER | RED         |            |            |     |
|                                        |                                       |                                               |             | /V/            | 4                    |                |        |             |            |            |     |
| 13. DEPTH DRILLED INTO ROCK            |                                       |                                               | 16. DEP     | TAW OT H       | TER AI               | ND ELAPSED     | TIME A | FTER DRILLI | NG COMP    | LETED      |     |
|                                        |                                       |                                               | 17.07       |                | H                    | MEAGUOS        | AENITC | (CRECITY)   |            |            |     |
| $\gamma \Lambda^{l}$                   |                                       |                                               | 17.0IH      | CR VVAIER      | LEVE                 | LIVIEASURE     | VIENIS | (SPECIFY)   |            |            |     |
| 18. GEOTECHNICAL SAMPLES               | DISTURBED                             | UNDISTU                                       | RBED        | 19:01          | <u>V ≁1</u><br>TAĽ N | UMBER OF       | CORFR  | OXES        |            |            |     |
| NR                                     |                                       |                                               |             | 7              | - Α/                 | A              |        |             |            |            |     |
| 20. SAMPLES FOR CHEMICAL ANALYSIS      | voc                                   | METALS                                        | OTHEF       | (SPECIFY)      |                      | OTHER (SPE     | CIFY)  | OTHER (SPE  | CIFY) 21.  | TOTAL CORE |     |
|                                        | $\checkmark$                          | $\checkmark$                                  | Upter 1     | Sives -        | 1                    | Chrale<br>OCA- |        | ropellan    | REC        | OVERY LOC  | 2   |
| 22. DISPOSITION OF HOLE                | BACKFILLED M                          | ONITORING WELL                                | OTHEF       | (SPECIFY)      |                      | 23. SIGNA      | TURE   | FINSPECTO   | 2          |            |     |
|                                        | Visentonite                           |                                               | <u> </u>    |                |                      | <u> </u>       | 1      | . 00        |            |            |     |
| LOCATION SKETCH/COMMENTS               | ,                                     | ,                                             |             |                |                      | SCALE:         |        | D           |            |            |     |
|                                        |                                       | 1 1/1                                         |             |                |                      |                |        |             |            |            | Τ   |
|                                        |                                       | ++/                                           | 1           |                |                      |                |        |             |            |            |     |
| <u>//</u> <u>/</u> <u>/</u> /          | ╎──┤┤╴┞──┼──┼──                       | ┼╾╾┼╴                                         |             |                |                      |                |        |             |            |            |     |
|                                        | <b>├</b> /                            | /                                             |             |                |                      |                |        |             |            |            |     |
|                                        | 140                                   |                                               | ļ           |                |                      |                |        |             |            |            |     |
|                                        |                                       |                                               |             |                |                      |                |        |             |            |            |     |
|                                        |                                       |                                               |             |                |                      |                |        |             |            |            |     |
|                                        | /                                     | ++                                            |             |                |                      |                |        |             |            |            |     |
|                                        | ┼╍╍┼╍╍┼╍╍┟╍╸/┼╍╍                      |                                               | ·           |                |                      |                |        |             |            |            |     |
| <u> </u> \_ /  <i>A</i> ^ ,            | 19-1-1/-                              | ·                                             | <b>  </b>   |                |                      |                |        |             |            |            |     |
| NRP 1                                  | /////                                 | <u>                                      </u> | <u> </u>    |                |                      |                |        |             |            |            | 1   |
|                                        |                                       |                                               |             |                |                      |                |        |             |            |            |     |
|                                        |                                       |                                               | 1           |                |                      |                |        |             |            |            | 1   |
| <15-++-++                              | <u> </u>                              | -+++                                          | ++          | +              | +                    |                |        |             |            |            | +   |
|                                        | ┼┼┦┼                                  | +                                             | +           | +              |                      |                |        |             |            |            |     |
|                                        | <u> </u>                              | <u> </u>                                      | <b></b>     |                |                      |                |        |             |            |            |     |
| XIICO                                  |                                       |                                               |             |                |                      |                |        |             |            |            |     |
|                                        | R-                                    |                                               |             |                | T                    |                |        |             |            |            |     |
|                                        |                                       |                                               | - AL        | 17             |                      |                |        |             |            |            | 1   |
|                                        | ┨───┥───┤                             | ++++                                          | <u>7-4-</u> | 4 <b>6-</b>    |                      |                |        |             |            |            | +-  |
|                                        | <u> </u>                              |                                               |             |                |                      |                |        |             |            |            |     |
|                                        | <u> </u> <u> </u> <u> </u>            |                                               | ·           |                |                      |                |        |             |            |            |     |
|                                        |                                       |                                               |             |                |                      |                |        |             |            |            |     |
|                                        |                                       |                                               | 1           |                |                      | ·              |        |             |            |            |     |
| PROJECT                                |                                       | _iii                                          | _iL         |                | -+                   | HOLEN          | 0,     | لن          | <u>L</u> _ |            |     |
|                                        |                                       |                                               |             |                | 1                    | $\sim$         | (      | 1 -         |            |            |     |

|              | <u> </u>     |                                                                  |                                | . <u>.</u>         |                                        |                                   |                   | HOLE NUMB                                | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|--------------|------------------------------------------------------------------|--------------------------------|--------------------|----------------------------------------|-----------------------------------|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |              | HTRW                                                             | DRILLI                         | NGLO               | DG                                     |                                   |                   | S( 10-0                                  | DH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROJEC       | T<br>RVAAI   | P - MI Sampling (Ravenna A/E: 13                                 | 3616)                          | INSPECTOR<br>BRIAN | s P.                                   | NCCARTO                           | H                 | SHEET<br>J OF                            | SHEET<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                                   | FIELD SCREEN<br>RESULTS<br>(d) | ING GEOTE<br>CO    | CH SAMPLE O<br>RE BOX NO.<br>(e)       | R ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                           | and the second s |
|              | 1 3 4        | Brown, f-m SAND,<br>w/ 1.5" gravel,<br>trace root wait.,<br>Dry  | 0,0                            |                    | NA                                     | ØØØI                              | NA                | SCab - 7<br>- \$\$\$\$\$\$<br>1330       | 50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 5 6 7 0      | Brown, FINESAND,<br>brace gravel, dry<br>(59)                    | 0.0                            | ^                  | NA                                     | \$\$\$\$<br>\$                    | •                 | SCsb-642<br>6002-50<br>(5-9')<br>1335    | 2m-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 9            | Brown, FSANDEday<br>(8-9.5')<br>Cray, SILTY U.AM, d<br>(9.5-13') | 0.0<br>Y                       | ∧                  | JA                                     | 0003<br>Collect<br>VOC            |                   | SC56-042<br>ØØØ3-50<br>(9-13)<br>1345    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 12-11        | Circuy, SULTY CLAY<br>dry (13-17)                                | 0.0                            |                    |                                        | ØØ 4                              |                   | SG6-042<br>6004 - 54<br>(13-177)<br>1350 | 2m-<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 16           | (17-20')                                                         | 0.0                            |                    |                                        | 0005                              |                   | SC56-64<br>0005-50<br>(17-20<br>1400     | 2m-<br>0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROJEC       | T<br>RVAAI   | P - MI Sampling (Ravenna A/E: 13                                 | 3616)                          |                    | ······································ |                                   | HOLE NO.          | Sb-py2<br>(Proponent: CEC)               | W/FG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

٩,

•

,

| HTRW DRILLI                              | NG LOG                                  | DISTRICT                   |                      |                         |                      |               | HO<br>S C    | Sh-      | BER<br>CCJ 3 |
|------------------------------------------|-----------------------------------------|----------------------------|----------------------|-------------------------|----------------------|---------------|--------------|----------|--------------|
| 1. COMPANY NAME<br>The Shaw Group - Shaw | <br>E&I                                 | 2. DRILL CONTR<br>Front    | ACTOR<br>tz Drilling |                         |                      |               | SHEET        | OF       | SHEET        |
| 3. PROJECT                               |                                         |                            | 4. LOCATI            | ION                     | ·                    |               | L            |          |              |
| RVAAP - MI Sampling (Ra                  | avenna A/E: 133616                      | 5)                         | F                    | Ravenna, (              | Ohio                 |               |              |          |              |
| 5. NAME OF DRILLER                       |                                         |                            | 6. MANU              | FACTURER'S I            | DESIGNATION OF DRILL | L             |              |          |              |
| 7 SIZE AND TYPES OF DRILLING AND SAM     |                                         | ·                          | Ceop                 | ade (                   | 620DT                |               |              |          |              |
| Gumala 6670 m                            | (vall ma                                | 4 d Cia                    | SC NOLE L            | SS-OL                   | (3                   |               |              |          |              |
| _ cuembe - 401                           | munw                                    | nce rj                     | 9. SURFA             | CE ELEVATION            | ·                    |               |              |          |              |
|                                          |                                         |                            | 97                   | 73 /                    |                      |               |              |          |              |
|                                          |                                         | 5                          | 10. DATE             | STARTED                 | ~                    | 11. DATE<br>7 | COMPLETE     | 0        |              |
| 12. OVERBURDEN THICKNESS                 |                                         |                            | 15. DEPTI            | H OF GROUNI             | DWATER ENCOUNTERE    | /_/           | 0            |          |              |
| NA                                       |                                         |                            |                      |                         | NA_                  | _             |              |          |              |
| 13. DEPTH DRILLED INTO ROCK              |                                         |                            | 16. DEPTI            | H TO WATER              | AND ELAPSED TIME AF  | TER DRILL     | ING COMPL    | ETED     |              |
|                                          |                                         |                            |                      |                         | NY                   |               | ng           |          |              |
| 14. TOTAL DEPTH OF HOLE $7 \times 1$     |                                         |                            | 17. OTHE             | R WATER LEV             | EL MEASUREMENTS (S   | PECIFY)       |              |          |              |
|                                          | DISTURBED                               | UNDISTU                    | RBED                 | 19 0741                 |                      | XES           |              |          |              |
| NA                                       | *************************************** |                            | ·~~~~~~~             | 1                       |                      |               |              |          |              |
| 20. SAMPLES FOR CHEMICAL ANALYSIS        | VOC                                     | METALS                     | OTHER                | (SPECIFY)               | OTHER (SPECIFY) 0    | THER (SP      | ECIFY) 21. T | TOTAL CO | ORE          |
|                                          |                                         | $\sim$                     | č×ρ                  | 63:000                  | SUDG                 |               | RECO         | OVERY    | 100 %        |
| 22. DISPOSITION OF HOLE                  | BACKFILLED                              | MONITORING WELL            | OTHER                | (SPECIFY)               | 23. SIGNATURE OF     |               | DR           |          |              |
| LOCATION SKETCH/COMMENTS                 |                                         |                            | · ·                  |                         | SCALE:               |               |              |          |              |
|                                          |                                         |                            |                      |                         |                      |               | T I          |          |              |
|                                          | Z                                       |                            |                      | r de                    | OUG Foil             |               |              |          |              |
|                                          |                                         |                            | ++-                  |                         |                      |               | +            |          |              |
|                                          | <b>  </b>                               |                            | <u>k</u>             | <u> </u>                | L                    |               | <b> </b>     |          |              |
|                                          |                                         | /                          |                      | 255                     | 5073 (               | atio          | 1            |          |              |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
|                                          |                                         |                            |                      | $\overline{\mathbf{N}}$ |                      |               |              |          |              |
|                                          |                                         |                            | +                    | $\vdash$                |                      |               | +            |          |              |
|                                          |                                         |                            | +                    | +-+                     | <u> </u>             |               | +            |          |              |
| K-+-+-X                                  | 154                                     |                            |                      | +                       | $\rightarrow$        |               |              |          |              |
|                                          | K                                       |                            |                      | <u> </u>                | <u>↓</u>             |               |              |          |              |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
| $\nabla$                                 |                                         |                            |                      | $\overline{\mathbf{V}}$ |                      |               | T            |          |              |
|                                          |                                         |                            | + +                  | 1                       | <u>  </u>            |               | +            |          |              |
|                                          | <u> </u>                                |                            | + / -                |                         | +++-                 |               | +            |          |              |
| <u> +</u> η¥-√/ +                        | <b>┼┼┼</b> ┼                            |                            | ¥                    |                         | ++++                 |               | ++           |          | +            |
| └ <u></u>                                | <b>↓↓</b> ↓                             |                            |                      |                         | <b>┼┼┼</b> ┼-        |               |              |          | <b></b>      |
|                                          | <u> </u>                                | $ \downarrow \downarrow /$ |                      |                         | <u> </u>             |               | ļļ           |          | <b></b>      |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
|                                          |                                         |                            |                      |                         |                      |               |              |          |              |
|                                          |                                         |                            |                      |                         | +                    |               |              |          | †            |
| PROJECT                                  |                                         |                            | <u> </u>             | <u> </u>                | HOLE NO.             |               |              | <b>_</b> |              |
| RVAAP - MI Sampling (F                   | avenna A/E: 13361                       | 6)                         |                      |                         | Sc St-               | 643           |              |          |              |
| ENG FORM 5056-P ALIG 94                  | - · · · · · · · · · · · · · · · · · · · |                            |                      |                         | ·                    |               | (Propo)      | nent: C  | FCW-EG)      |

|              |                 |                                                                                                  |                                   |                                          |                                 |                   | HOLE NUMBER                   | ] |
|--------------|-----------------|--------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-------------------|-------------------------------|---|
| PROIE        |                 |                                                                                                  |                                   |                                          |                                 |                   | SCSB-043                      | - |
| PROJEC       | RVAAF           | P - MI Sampling (Ravenna A/E: 13                                                                 | 3616) <u>S</u>                    | Barry, F                                 | P.M.Caro                        | in R. Han         | SHEET SHEET                   |   |
| ELEV.<br>(a) | DEPTH<br>(b)    | DESCRIPTION OF MATERIAL<br>(c)                                                                   | FIELD SCREENING<br>RESULTS<br>(d) | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                |   |
|              |                 | Light boun, Jry, bose,<br>FINE SAND, br. gravel                                                  | 0.0 ppm                           | NA                                       | Sce<br>Remarks                  | NA                | SESL-043-006<br>-50           |   |
|              |                 |                                                                                                  |                                   |                                          |                                 |                   | 1100                          |   |
|              |                 |                                                                                                  |                                   | NA                                       | Ser<br>Remarki                  |                   | SCS6-043m-0<br>11 05          |   |
|              |                 | Bown, Morst, Jense<br>F.SAND, Littlesilt                                                         | Оло ерт                           | NA                                       | Se e<br>Remarko                 |                   | SCsb-043m-<br>1115            |   |
|              |                 | Gray, Moist, dense,<br>SILI (12-14.31)<br>L. brown, moist, dense,<br>FINE SANDESILT<br>(14.3-16) | Or Offer                          | VA                                       | S-ce<br>Revarks                 |                   | SCSb-043m-000<br>M20          |   |
|              | 18              | Gray, moist, dense,<br>CLAY                                                                      | 0.0 ppm                           | NA                                       | Sce<br>Remarks                  |                   | SCSb-043m-00<br>1135          |   |
| PROJEC       | RVAAI<br>G FORM | P - MI Sampling (Ravenna A/E: 13<br>5056A-R. AUG 94                                              | 3616)                             |                                          |                                 | HOLE NO.<br>SC SL | - 043<br>(Proponent: CECW-EG) |   |

| HTRW DRILLING LOG                                                                                                                          | DISTRICT          |                      |                              | HOLE NUMBER          |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|------------------------------|----------------------|
| 1. COMPANY NAME                                                                                                                            | 2. DRILL CONTRACT | TOR                  |                              | SHEET SHEET          |
| The Shaw Group - Shaw E&I                                                                                                                  | _Erontz-[         | Drilling N/A         |                              | 1 OF 2               |
| 3. PROJECT                                                                                                                                 | T T               | 4. LOCATION          |                              |                      |
| 5 NAME OF DRIVER                                                                                                                           |                   | Ravenna, U           |                              | ·····                |
| THE RASSIACK KUEILAVENT DAWN                                                                                                               | MICOD             | Anc 11.              | IN ANGEGO                    |                      |
| 7. SIZE AND TYPES OF DRILLING AND SAMPLING EQUIPMENT                                                                                       |                   | 8. HOLE LOCATION     | VB BUY (VC                   |                      |
| 3" HAND AUTOGR -                                                                                                                           |                   | <(<1-104             | Ч                            |                      |
|                                                                                                                                            |                   | 9. SURFACE ELEVATION |                              |                      |
|                                                                                                                                            |                   | 958'                 |                              |                      |
|                                                                                                                                            |                   | 10. DATE STARTED     | 11. DATE                     | COMPLETED            |
|                                                                                                                                            |                   | 15 DEPTH OF CROUNE   |                              |                      |
| 2C'(MAX DG0 TI)                                                                                                                            |                   | 24.5                 | WATER ENCOUNTERED            |                      |
| 13. DEPTH DRILLED INTO ROCK                                                                                                                |                   | 16. DEPTH TO WATER   | AND ELAPSED TIME AFTER DRILL | LING COMPLETED       |
| NA                                                                                                                                         |                   | NA-                  |                              |                      |
| 14. TOTAL DEPTH OF HOLE                                                                                                                    |                   | 17. OTHER WATER LEV  | EL MEASUREMENTS (SPECIFY)    |                      |
| 5'                                                                                                                                         |                   | NA                   |                              |                      |
| 18. GEOTECHNICAL SAMPLES                                                                                                                   |                   | 19. OTAL             |                              |                      |
| 20 SAMPLES FOR CHEMICAL ANALYSIS VOC                                                                                                       | METALS            |                      | OTHER (SPECIEY) LOTHER (SPE  | FCIEY) 21 TOTAL CORE |
|                                                                                                                                            | 7 10              | SHUDSINES            | SUOLS NA                     | A RECOVERY / DO %    |
| 22. DISPOSITION OF HOLE BACKFILLED M                                                                                                       | ONITORING WELL    | OTHER (SPECIFY)      | 23, SIGNATURE OF ANSPECTO    | DR                   |
|                                                                                                                                            | NA (C             | CAROUT               | Dart                         | <u>`</u>             |
| LOCATION SKETCH/COMMENTS                                                                                                                   |                   | ····· ·· ·· ·· ·· ·  | SCALE: NITS                  | 5                    |
|                                                                                                                                            |                   |                      | 7 1 1 1 1                    |                      |
|                                                                                                                                            | + + +             |                      | <u></u>                      | <u></u>              |
|                                                                                                                                            | F-494.            | _++                  |                              | <u> </u>             |
| └── <u>↓</u> <u>┤</u> <u>╷</u> | <u> </u>          |                      | <u> /SCISS+057</u>           | MEGNA                |
| <u> </u>                                                                                                                                   |                   | Z                    |                              |                      |
|                                                                                                                                            |                   | a                    |                              |                      |
|                                                                                                                                            |                   | 1/1/                 |                              |                      |
|                                                                                                                                            |                   |                      |                              | +                    |
| └ <del>──┼──┼──┼──┼──┼──┼</del> <u>─</u> ┼∕─┼──┼                                                                                           | Dort              | //                   |                              |                      |
|                                                                                                                                            | $\leftarrow$      |                      |                              | <u></u>              |
| ┝──┼──┼──┼──┼──┼──┝╹╱┼──┼──┼                                                                                                               | ++                |                      |                              |                      |
| MGAUNE                                                                                                                                     | ·                 | -1501-               |                              |                      |
| Veren                                                                                                                                      | tren              | /~,                  |                              |                      |
|                                                                                                                                            |                   | / / / /              |                              |                      |
|                                                                                                                                            |                   |                      |                              |                      |
|                                                                                                                                            |                   | /                    |                              | +++++                |
|                                                                                                                                            | 5-044171          |                      |                              | <b>+</b>             |
| │┼┼┼┼ <i>-</i> ┼┼─┼                                                                                                                        | ┼┼┟-/┤            |                      |                              |                      |
|                                                                                                                                            | <u>↓↓_//↓</u>     |                      |                              | <b></b>              |
|                                                                                                                                            |                   |                      |                              |                      |
|                                                                                                                                            |                   |                      | TOS = TOP UF                 | SLOPE                |
|                                                                                                                                            | $\frac{1}{2}$     |                      | BOK = ROTTIM                 | JE SI MC             |
| ┝╍╍╆╍╍╆╍╍╆╍╍╆╍╍╆                                                                                                                           | 1/ 1 1            |                      |                              | <u>+~~+~~+~~+~~-</u> |
| PROJECT                                                                                                                                    | <u>r I I I</u>    | <u> </u>             | HOLE NO.                     |                      |
| RVAAP - MI Sampling (Ravenna A/E: 133616)                                                                                                  |                   |                      | 5656-044                     |                      |
| ENG FORM 5056-R. AUG 94                                                                                                                    |                   |                      |                              | (Proponent: CECW-EG) |

. \*

т. 2

|              |              | HTRW [                                                              | ORILLING                          | i LOG        |                                   |                   | HOLE NUMBER                                          |   |
|--------------|--------------|---------------------------------------------------------------------|-----------------------------------|--------------|-----------------------------------|-------------------|------------------------------------------------------|---|
| PROJEC       | .т           |                                                                     | INSPE                             |              |                                   |                   | SHEET SHEET                                          |   |
|              | RVAAF        | P - MI Sampling (Ravenna A/E: 13                                    | 3616)                             | <u>All</u>   |                                   |                   | 2 OF 2                                               |   |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                                      | FIELD SCREENING<br>RESULTS<br>(d) | CORE BOX NO. | R ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                                       |   |
|              |              | Loamy, darh ogganic<br>svil<br>dense, brown, moist<br>silty clay    | 0.0 ppm                           | NA           | NA-                               | NA                | No sample<br>collected for<br>0-1' interval          |   |
|              |              | dense tight brinn<br>moist sity day w/<br>dark material<br>(1-2.5') | 0.0 ррт                           |              | SC56-044                          |                   | SCSJ-044<br>VIA composite<br>ME for 1-5'<br>Interval |   |
|              | 2            | douse, down brown<br>Sitty day<br>(2.5-3.101)                       | 0.0 ppm                           |              |                                   |                   |                                                      |   |
|              |              | gray, moist, dense<br>sitty day (3.5-4.5')                          | 0.0 ppm                           |              |                                   |                   |                                                      |   |
| ∑            |              | wet, brown, sands<br>s.1+<br>EOBE5                                  | 0.0 pm                            |              |                                   |                   | gwate 4.5'                                           |   |
| PROJEC       | RVAAF        | P - MI Sampling (Ravenna A/E: 13                                    | 3616)                             | <u> </u>     |                                   | HOLE NO.          | 5-044                                                |   |
| ENG          | G FORM       | 5056A-R. AUG 94                                                     |                                   |              |                                   |                   | (Proponent: CECW-EG)                                 | J |
|              |              | Sample # 5                                                          | C36-04                            | 4m-000       | 1-50                              | C 15:             | 5                                                    |   |

---

| HTRW DRILL                            | ING LOG               | District                               |                       |                      |              |                      |              |            |                                              | 5      | iC=1            | 5 - C          | 04 <u>5</u>                              | 5     |
|---------------------------------------|-----------------------|----------------------------------------|-----------------------|----------------------|--------------|----------------------|--------------|------------|----------------------------------------------|--------|-----------------|----------------|------------------------------------------|-------|
| 1. COMPANY NAME                       | E 2.1                 | 2. DRILL C                             | ONTRACTOR             |                      | 1.0          |                      |              |            |                                              | SHE    | ET              |                | SH                                       | IEET  |
| 3 PROJECT                             | EQI                   | *                                      |                       |                      | 113-         |                      |              |            |                                              |        | all a start     | OF             | 2                                        |       |
| RVAAP - MI Sampling (R                | avenna A/E: 133616    | )                                      | 4.1                   | Rave                 | enna, (      | Ohio                 |              |            |                                              |        |                 | •              |                                          |       |
| 5. NAME OF DRILLER                    | <i>c</i> i            | -                                      | 6. N                  | IANUFACT             | URER'S C     | DESIGNAT             | ION OF E     | RILL       |                                              |        |                 |                |                                          |       |
| Jae Kasnack, Kyl                      | e Havens              |                                        |                       | AMS                  | 5            | Hand                 |              | <u>ser</u> |                                              |        |                 |                |                                          |       |
| 7. SIZE AND TYPES OF DRILLING AND SAN | IPLING EQUIPMENT      |                                        | 8. H                  | OLE LOCA             |              | AUS                  |              |            |                                              |        |                 |                |                                          |       |
| - nova Hu                             | grv                   | ······································ | 9. S                  | URFACE EL            | EVATION      | <u>v 12</u>          |              |            |                                              |        |                 |                |                                          |       |
|                                       |                       |                                        |                       | 95                   | 8            |                      |              |            |                                              |        |                 |                |                                          |       |
|                                       |                       |                                        | 10.                   | DATE STAF            | RTED         |                      |              | 11.        | DATEC                                        |        | ETED            |                |                                          |       |
| 12. OVERBURDEN THICKNESS              |                       | <u>.</u>                               | 15.                   | DEPTH OF             | GROUND       | WATER F              | NCOUNT       |            | 112                                          | 5/10   |                 |                |                                          |       |
| 25' (max De                           | oth)                  |                                        | 15.                   | N                    | A            |                      | neoon        |            |                                              |        |                 |                |                                          |       |
| 13. DEPTH DRILLED INTO ROCK           |                       |                                        | 16.                   | DEPTH TO             | WATER        | AND ELAP             | SED TIM      | E AFTER    | RDRILLI                                      | NG CO  | MPLET           | red            |                                          |       |
| NA                                    |                       |                                        |                       | /                    | NA<br>       |                      |              |            |                                              |        |                 |                |                                          |       |
| 14. IUTAL DEPTH OF HOLE               |                       |                                        | 17.                   | OTHER WA             | A A          | EL MEASU             | REMEN        | IS (SPE    | LIFY)                                        |        |                 |                |                                          |       |
| -<br>18. GEOTECHNICAL SAMPLES         | DISTURBED             | UNE                                    | ISTURBED              | 1                    | 9. OTAL      | NUMBER               | OF CORE      | BOXES      | ;                                            |        | _               |                |                                          |       |
| NA                                    |                       |                                        |                       |                      | /            | VA                   |              |            |                                              | ·····  |                 |                |                                          |       |
| 20. SAMPLES FOR CHEMICAL ANALYSIS     | VOC                   | METALS                                 |                       | HER (SPEC            | JFY)         | OTHER (              | SPECIFY)     | ОТН        | ER (SPEC                                     | CIFY)  | 21. TO<br>RECO\ | TAL CO<br>/ERY |                                          | _     |
| 22. DISPOSITION OF HOLE               | BACKFILLED            | MONITORING W                           | ELL OT                | Y Plos,<br>HER (SPEC | 175<br>(IFY) | 23. SIG              | NATURE       | OF JNS     | V-)<br>Spector                               | [<br>B |                 |                | 100                                      | -<br> |
|                                       |                       | NA                                     | E                     | trest                |              | 2                    | Zu           | A          | Z                                            | ,<br>  | æ               |                | ĺ                                        | 1     |
| LOCATION SKETCH/COMMENTS              | ·                     |                                        |                       |                      |              | SCAL                 | -            | ITS        |                                              |        |                 |                |                                          |       |
|                                       | $\left[ \right] $     |                                        |                       |                      |              |                      |              |            |                                              |        |                 |                |                                          | T     |
|                                       |                       |                                        |                       |                      |              |                      |              |            |                                              |        |                 | ·              | <b></b>                                  | T     |
|                                       |                       | K                                      |                       |                      |              |                      |              | 1          | 11                                           |        |                 |                |                                          | +-    |
|                                       | 1                     |                                        |                       |                      |              |                      |              | +          | <u> </u>                                     |        |                 |                |                                          | +     |
|                                       |                       |                                        | - 4                   | 37-                  |              |                      |              |            | $\left  \right $                             |        |                 |                |                                          | ╈     |
|                                       |                       |                                        | $\leq \mid \mid \mid$ | $\neg \neg$          |              |                      |              | +          |                                              |        |                 |                |                                          | +     |
|                                       | ₩                     |                                        | $\rightarrow$         |                      | $\mathbf{N}$ |                      |              |            | ╂                                            |        |                 |                |                                          | +     |
|                                       | <del>}-  - </del> - - |                                        |                       | $\rightarrow$        |              | $\searrow$           |              |            |                                              |        |                 |                |                                          | +     |
|                                       | ₿ <u> </u>            |                                        |                       |                      | $\mathbf{h}$ | $\vdash$             | $\searrow$   | 1/         | ┼┼                                           |        |                 |                |                                          | +     |
|                                       | ├ <b>┢त</b> -À        | <u>+-</u>                              |                       |                      |              | $\vdash \rightarrow$ | $\downarrow$ | 4          | <b>  </b>                                    |        |                 |                |                                          |       |
| /_//_/_/_                             | ↓ <u>ġ</u> ′/↓        |                                        |                       |                      |              | <b> </b>             | _ <u>I</u>   |            |                                              |        |                 |                |                                          | +     |
| $ /  \partial  /   / $                | V/ head               |                                        |                       |                      |              |                      | Д            | <u> </u>   | <u>                                     </u> |        |                 |                |                                          |       |
| 1 Gr / L                              | 1 hat                 | /                                      |                       |                      | _            |                      |              |            |                                              |        |                 |                |                                          | 1     |
|                                       | 1 Moder 1             | Ø                                      |                       |                      |              |                      |              |            |                                              | ]      |                 |                |                                          | 1     |
|                                       |                       | K                                      |                       | 15                   |              |                      |              |            |                                              | [      |                 |                |                                          |       |
| 7                                     |                       | 3                                      | 650-0                 |                      | 1            | 05                   |              |            |                                              |        |                 |                |                                          | T     |
|                                       |                       |                                        |                       |                      |              |                      |              |            |                                              |        |                 |                |                                          | Ì     |
|                                       |                       |                                        |                       | $\neg \forall$       |              | <u>├</u>             |              |            | ††                                           |        |                 |                |                                          | Ť     |
| ╾╍┧╍╍┧╍╍┝╍╍┝╍╍┝╍                      | ┟╍╍╍┼╍╍╍┼╺╍╍╍┼        |                                        |                       | 1-                   |              |                      |              |            |                                              |        | اعد             | _              |                                          | +     |
|                                       | ┟╍╍╌┟╍╍╍┼╍╍╍┠╍╍╍┟     | +                                      |                       | <u> </u>             |              | <u> </u>             |              | 2~~        |                                              | e      | <u>Q</u> 7      |                | e al | 4     |
|                                       | <u> </u>              |                                        | $\rightarrow \neq$    |                      |              | ┠                    |              | <u>sos</u> | F-1                                          | 2011   | m               | <u>0+</u>      | 2                                        | 4     |
|                                       |                       |                                        |                       |                      |              |                      |              | <u> </u>   |                                              |        |                 |                |                                          | L     |
| PROJECT                               |                       |                                        |                       |                      |              | ( HOLE               | NO.          |            |                                              |        |                 |                |                                          |       |

|              |              | HTRW I                                                         | DRILL                      | ING         | GLOG                                     |                                 |        |              |                                  |                            | 7 |
|--------------|--------------|----------------------------------------------------------------|----------------------------|-------------|------------------------------------------|---------------------------------|--------|--------------|----------------------------------|----------------------------|---|
| PROJEC       |              |                                                                |                            | INSP        |                                          |                                 |        | <del>.</del> |                                  |                            | _ |
|              | RVAAP        | - MI Sampling (Ravenna A/E: 13                                 | 3616)                      | 4           | JAJ.                                     |                                 | Æ      |              | 2 0                              | OF Z                       |   |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                                 | FIELD SCRE<br>RESUL<br>(d) | ENING<br>TS | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW ( | COUNT<br>g)  | REM<br>(                         | ARKS<br>h)                 |   |
|              |              | Organics loam,<br>silty clay wij<br>some mixed<br>white debris | 90.6                       | pm          | NA                                       | NA                              | N      | Α            | No Se<br>Collice<br>for<br>int   | erval                      |   |
|              |              | dense light<br>brown silty w/<br>Mixed while<br>debris         | 0.06                       | pm          |                                          | 5Csb-045                        |        |              | SC50-<br>Via<br>MI fe<br>inderve | 045<br>composite<br>2 1-5' |   |
|              |              | black dense<br>material, with<br>mixed white maker             | 0.0                        | ppn         |                                          |                                 |        |              |                                  |                            |   |
|              |              | greg mixed silt<br>and clay w/ mixed<br>white material         | 0.0                        | opm         |                                          |                                 |        |              |                                  |                            |   |
|              |              | - Hit Refusal                                                  |                            |             |                                          |                                 |        | Į.           |                                  |                            |   |
| PROJEC       | RVAAF        | 2 - MI Sampling (Ravenna A/E: 13                               | 3616)                      |             |                                          |                                 | HOLE   | NO.<br>LSL-  | 045                              |                            | - |
| ENC          | J FORM       | 5056A-R. AUG 94<br>Sample# =                                   | SCsb                       | ,           | 045m - c                                 | 0001-5                          | 50     | e            | (Proponent:                      | CECW-EG)                   |   |

|                    | Н              | TF            | ?W              | <u>D</u>     | RI         |                | IN                     | GI                                           | 0.            | G        |                    | DIS        | TRICT             |               |                |             |                    |            |                     |           |             |             |                     | Ś            | нош<br>55- | - 0 <sup>6</sup> | iber<br>16 |
|--------------------|----------------|---------------|-----------------|--------------|------------|----------------|------------------------|----------------------------------------------|---------------|----------|--------------------|------------|-------------------|---------------|----------------|-------------|--------------------|------------|---------------------|-----------|-------------|-------------|---------------------|--------------|------------|------------------|------------|
| 1. C               | омра<br>Т      | NY NA<br>he S | ме<br>haw       | Grou         | S - αι     | haw            | E&I                    |                                              |               |          |                    | 2. [       |                   | ONTR<br>Front | ACTOR          | line        | <i>(</i> )(        | x /        | 50                  | 9/:       | sah         | 0           | ·                   | SHE          | EET<br>Â   | OF               | s          |
| 3. P               | ROJEC          | r             |                 |              |            |                |                        |                                              |               | -        |                    |            |                   |               | 4. L           | OCAT        | ON N               | <u> </u>   | 2                   | -/        | - 1/1       |             | 1                   |              |            |                  |            |
|                    | R              | VAA           | P - N           | 1l Sar       | nplir      | ng (Ra         | aven                   | na A,                                        | /E:1          | 3361     | .6)                |            |                   |               |                | F           | Raver              | ına, I     | Ohio                |           |             |             |                     |              |            |                  |            |
| 5. N<br>Ø A        | AME C          | OF DRI        | LLER            | <b>-</b> 16. | r 11       | And            | 2.1 1                  | IN A A                                       | 6             |          | Δ                  | ~ ~        | . 1.20            | 0             | 6. N           | ANUI<br>A A | FACTU              | RER'S I    | DESIGN              | ATION     | OFD         | RILL        |                     |              |            |                  |            |
| <u> 5月</u><br>7.51 | IFFN<br>IZE AN | D TYP         | LANC<br>ES OF I |              |            | D SAM          | PLING                  | EOUIP                                        | い<br>MENT     | עני      | SAV )              | 36         | <u>iu x</u>       | 10            | 8.1            | HOLE L      | 1 ><br>0CATI(      | <u></u>    |                     |           |             |             |                     |              |            |                  |            |
| 2                  | ·" ]           | Im            |                 | ANI          | GG         | L              |                        |                                              |               |          |                    |            |                   |               | 5              | 5( \$       | 5-6                | DY 6       | -                   |           |             |             |                     |              |            |                  |            |
|                    |                | <u> </u>      |                 |              |            | - 42           |                        |                                              |               |          |                    |            |                   |               | 9. S           | URFA        | CE ELEV            | ATION      | 1                   |           |             |             |                     |              |            |                  |            |
|                    |                |               |                 |              |            |                |                        |                                              |               |          |                    |            |                   |               | 10             | 15          | S'                 |            |                     |           |             | 11          | DATE                | COMP         |            |                  |            |
|                    |                |               |                 |              |            |                |                        |                                              |               |          |                    |            |                   |               | 10.<br>9       | and and a   |                    | ED         |                     |           |             | 11.<br>G    | 251                 | D D          |            |                  |            |
| 12.                | OVERB          | URDE          | NTHK            | KNESS        | ;          |                | ~                      |                                              |               |          |                    |            |                   |               | 15.            | DEPT        | 1 OF GI            | ROUNE      | WATE                | R ENC     | OUNT        | ERED        |                     |              |            |                  |            |
|                    | > 5            | - /           | (M              | 'A¥          | De         | 277            | 1 <u>)</u>             |                                              |               |          |                    |            |                   |               | 6              | ÛA          |                    |            |                     |           |             |             |                     |              |            |                  |            |
| 13.1               | DEPTH          | DRILL         | ED IN           | 'O RO(       | СК         |                |                        |                                              |               |          |                    |            |                   |               | 16.            | DEPTI       | 1 TO W             | ATER       | AND EL              | APSE      | ) TIME      | AFTEF       | DRILL               | ING CC       | MPLET      | ſED              |            |
| 14.                | NH<br>TOTAL    | DEPT          | HOFH            | OLE          |            |                |                        |                                              | ·             |          |                    |            |                   |               | N<br>17.       | OTHE        | RWAT               | ER LEV     | EL MEA              | SURE      | MENT        | S (SPEC     | CIFY)               |              |            |                  |            |
|                    | 5'             | -             |                 | -            |            |                |                        |                                              |               |          |                    |            |                   |               | N              | A           | -                  |            |                     |           |             | •           |                     |              |            |                  |            |
| 18.                | GEOTE          | CHNIC         | AL SA           | MPLES        |            |                |                        | DI                                           | STURE         | BED      |                    |            | UNI               | DISTU         | RBED           |             | 19.                | OTAL       | NUMB                | ER OF     | CORE        | BOXES       |                     |              |            |                  |            |
| 20                 | SAMP           | ES FO         | R CHE           | MICAI        | ΔΝΔΙ       | <u>Y515</u>    |                        | v                                            |               |          | <u> </u>           | ME         | TALS              |               | 0              | THER (      |                    | Y)         | OTHE                | R (SPF    | CIFY)       | отн         | R (SPF              | CIFY)        | 21. TO     | TALC             |            |
|                    | ~· ······      |               |                 |              |            |                |                        | <u>.</u>                                     | m-            | ·        |                    | ~          | /                 |               | Gq             | PLUS        | -JVC               | 5          | SV                  | oCs       |             | C           | +6                  |              | RECOV      | /ERY             | 10         |
| 22.                | DISPO          | SITION        | I OF H          | OLE          |            |                |                        | BACK                                         | FILED         |          | MC                 | NITOP      | RING W            | /ELL          | 0              | THER (      | SPECIF             | Y) •       | - 23                | SIGNA     | TURE        | OFINS       | PECTO               | R            |            |                  | <u> </u>   |
| • -                |                |               |                 |              |            |                | L                      | ~                                            |               | -û       |                    | NA         |                   |               | Gri            | 1001        |                    |            |                     | $\square$ | -7          |             | 5-                  | /            |            |                  |            |
| LO                 |                | ON SK         | ETCH            | /CON         | /IMEN      | ITS            |                        |                                              |               | <u> </u> |                    | ·          | a                 |               |                |             |                    |            | SC.                 | ALE:      | NT          | <u>₹</u> _  | $\underline{\circ}$ |              |            |                  |            |
| MÜ                 | TE 1           | Ĺ             | hs              | M            | bot        | 5m             | D                      | FRA                                          | 25(           | 10       | jaa                | <u>FIG</u> | )                 |               | <u>}</u>       |             | <u> </u> ]         |            |                     |           |             |             |                     |              |            |                  | ļ          |
|                    | D              | RU            | 007             | - 6          | <i>M</i> i | 5              | <u> </u>               |                                              | ļ`            | <u> </u> | 1                  |            | $\leq$            | <u> </u>      |                | 1           | l                  |            |                     |           |             |             |                     |              |            |                  | <u> </u>   |
|                    | 19             | $(\Lambda$    | Du              | $\sim$       |            | <u> </u>       | <u> </u>               |                                              | _             | =25      |                    |            |                   |               |                | $\Box$      |                    |            |                     |           |             |             |                     |              |            |                  | <u> </u>   |
|                    |                |               |                 |              | -          |                |                        |                                              |               | T        | 205                |            | 1                 |               |                |             |                    | m          | $\geq 0$            | a         | D           | a           | D                   | $\mathbf{M}$ | 51         | 55-              | 6          |
|                    |                |               |                 | ~            | -          |                | T                      |                                              |               |          |                    |            |                   |               |                |             | $\mathbf{\lambda}$ |            |                     | ,         |             |             |                     |              | ~~         |                  |            |
|                    |                | ~             | -               |              |            | <br> <br> <br> | ΠÌ                     |                                              |               |          |                    |            |                   | y             |                | 2           | 1                  |            |                     |           |             |             | 1                   | V            |            |                  |            |
|                    |                |               |                 |              |            |                | $\left  \right\rangle$ | 1                                            |               | 1        | 150                | 54         | VTI               | F 7-          | 5              | <u>h.n</u>  | 57                 |            |                     |           |             |             | )                   | 1            |            |                  |            |
|                    |                |               |                 |              |            |                | 1-1                    | 1                                            | †             | ¢        | \$ <del>````</del> | <b>*</b>   |                   |               |                |             |                    |            |                     |           |             |             | #                   | \$           |            |                  |            |
|                    |                |               |                 |              |            | <u> </u>       | <u> </u> 1             | $\uparrow \uparrow$                          | <br>          |          | +                  | <u> </u>   | t-f               |               |                |             |                    | 1          |                     |           |             |             |                     | <b> </b>     |            |                  |            |
|                    |                |               |                 |              |            |                |                        | 1                                            | <u> </u>      | +        |                    | <u> </u>   | <u> </u>          | _¢            | 10             |             | 44                 | $\uparrow$ |                     |           |             |             |                     |              |            |                  | <u></u>    |
|                    |                |               |                 |              |            | <u> </u>       | H                      | 10-1                                         | <u> </u>      | <br>     | <br>               | 6          | ET                |               | حب             | 2.0         | 10                 | $\neg$     |                     |           |             |             |                     |              |            |                  |            |
|                    |                |               |                 |              |            |                |                        |                                              | <u> </u>      |          | <u> </u>           | <b>S</b>   | $\left  \right  $ |               |                |             |                    | }          |                     |           |             |             |                     |              |            |                  |            |
|                    |                |               |                 |              |            | 1              |                        | ++                                           | <del> }</del> |          |                    | <br>       | 1                 | <del> </del>  |                | <br>        |                    |            | $\left\{ -\right\}$ |           |             |             |                     |              |            |                  |            |
|                    |                | _=            |                 |              |            |                |                        | +-+                                          |               | +        |                    | <u> </u>   | Ι¥.               | ┼             |                |             |                    |            |                     |           |             |             |                     |              |            |                  |            |
|                    |                |               |                 |              | <b> </b>   | <u> </u>       |                        | <u> </u>                                     | <u>{</u> {-   | <b></b>  |                    | <u> </u>   | <u> </u>          |               |                |             |                    |            | -+                  |           |             |             |                     |              |            |                  |            |
|                    |                |               |                 |              |            | <b> </b>       | ┼                      | <u> </u>                                     | 4-1           | ļ        | <u> </u>           | <u> </u>   |                   | 10            | 5              |             | 5                  |            | 2                   |           |             |             |                     |              |            |                  |            |
|                    |                |               | <br>            |              | <b> </b>   | <u> </u>       | <b> </b>               | <b> </b>                                     | Η.            | <u>}</u> |                    | _          | -                 | -             | <u><u></u></u> |             | F                  | <br>       |                     |           |             |             |                     |              |            |                  | ļ          |
|                    |                |               | <br>            |              | ļ          |                | ļ                      |                                              | 17            | $\vdash$ |                    |            | <u>  '</u>        | 27            | Ĭ              | <br>        | ļ                  |            |                     |           |             |             |                     |              |            |                  |            |
|                    |                |               | <br>            | <br>         | ļ<br>      |                |                        | <u>†                                    </u> | <b> </b>      |          | F                  | <u> </u>   | ļ                 | ļ             |                | <br>        | ļ                  |            |                     | Ŗ         | <u>DS :</u> | <u>+</u> Bi | 277                 | 221          | Œ          | SL               | 91         |
|                    |                |               | <br>            |              | <u> </u>   |                | ļ                      | <br>                                         | ļ             | ļ        |                    | ļ          | <br>              | ļ             |                | <br>        | ļ                  | <br>       |                     |           | 15-         | 7           | þ?                  | æ.           | Su         | ßE               | ļ          |
|                    |                |               |                 | e,           | <u> </u>   |                |                        | <u> </u>                                     |               |          |                    |            |                   |               |                |             |                    |            |                     |           | L           | l           |                     |              |            | L                | <u> </u>   |
| PR                 | OJEC           | Γ             |                 |              |            |                |                        | _                                            | _             | _        |                    |            |                   |               | _              | _           |                    | _          | I HŌ                | DLE N     | ο.          |             |                     |              |            |                  |            |



| HTRW DRILLI                            | NG LOG                                        | DISTRICT                                              |                                  |              |                                              | v            |            |               |                          | OLE NUM    | VIBER          |
|----------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------|--------------|----------------------------------------------|--------------|------------|---------------|--------------------------|------------|----------------|
| 1. COMPANY NAME                        |                                               | 2. DRILL CONTI                                        | RACTOR                           |              |                                              |              |            | +             | <u>SHEET</u>             | .5-6       | <u>29</u><br>s |
| The Shaw Group - Shaw                  | E&I                                           | Fron                                                  | <del>tz Drillin</del> g <i>j</i> | NA-6         | 9/3                                          | 54/10        |            |               | t                        | OF         |                |
| 3. PROJECT                             |                                               |                                                       | 4. LOCATIC                       | )N           | <u></u>                                      |              | *i         |               |                          |            |                |
| RVAAP - IVII Sampling (Ra              | Ivenna A/E: 133616)                           |                                                       | E MANUE                          | avenna,      | Onio                                         |              |            |               |                          |            |                |
| BURN MCLARTHY VALLY                    | HALLIND DA                                    | NO CASO                                               | 0. WANDER                        | 1 S          | DESIGNA                                      | HON OF L     | RILL       |               |                          |            |                |
| 7. SIZE AND TYPES OF DRILLING AND SAMI | PLING EQUIPMENT                               |                                                       | 8. HOLE LO                       | CATION       |                                              |              |            |               |                          |            |                |
| 3" HAND AUGGL                          |                                               |                                                       | <u> </u>                         | <u>25-00</u> | 17                                           |              |            |               |                          |            |                |
|                                        |                                               |                                                       | 9. SURFACE                       |              | N                                            |              |            |               |                          |            |                |
|                                        |                                               |                                                       | 10. DATE S                       | TARTED       |                                              |              | 11.        | DATE C        | OMPLET                   | ED         |                |
|                                        |                                               |                                                       | 9/201                            | 10           |                                              |              | 91         | 29/           | $\overline{\mathcal{O}}$ |            |                |
| 12. OVERBURDEN THICKNESS               | ``                                            |                                                       | 15. DEPTH                        | OF GROUNI    | DWATER                                       | ENCOUNT      | TERED      |               |                          |            |                |
| 73' (MAY DEP)                          | <u>н)                                    </u> |                                                       | NA                               | -            |                                              |              |            |               |                          |            |                |
| 13. DEPTH DRILLED INTO ROCK            |                                               |                                                       | 16. DEPTH                        | TO WATER     | AND ELAI                                     | PSED TIM     | E AFTEF    | R DRILLI      | NG COMI                  | PLETED     |                |
| 14. TOTAL DEPTH OF HOLE                |                                               | ٠                                                     | 17. OTHER                        | WATER LEV    | EL MEAS                                      | UREMENT      | rs (sper   | CIFY)         |                          |            |                |
| 3' (STEPPED OUT 3                      | TIMES FROM I                                  | 5+LOCATION                                            | NA                               | _            |                                              |              |            | -             |                          |            |                |
| 18. GEOTECHNICAL SAMPLES               | DISTURBED                                     | UNDISTU                                               | RBED                             | 19. OTAL     | NUMBER                                       | OF CORE      | BOXES      | ;             |                          |            |                |
|                                        |                                               | METALS                                                |                                  |              | OTHER                                        | (SPECIEV)    | OTH        | ED (SDE       |                          | TOTAL      | CODE           |
| 20. SAMPLES FOR CHEMICAL ANALISIS      | NA                                            |                                                       | EXP                              | 12011)       | 51.10                                        | $\lambda CS$ | 1          |               | RE                       | COVERY     | LORE<br>Ir N   |
| 22. DISPOSITION OF HOLE                | BACKFILLED                                    | MONITORING WELL                                       | OTHER (S                         | PECIFY)      | 23.51                                        | GNATUR       | OFINS      | SPECTO        | R                        | <u></u>    | 10.            |
|                                        |                                               |                                                       | Grav.                            | 1            | $\sum$                                       | $\geq$       | 17         | Ē             | <u> </u>                 |            |                |
| LOCATION SKETCH/COMMENTS               |                                               |                                                       |                                  |              | SCAL                                         | ENT          | r          | $\mathcal{D}$ |                          |            |                |
|                                        |                                               | 16 610                                                | 1 1 4                            | -1           |                                              |              | 1          |               |                          |            | T              |
|                                        | 25 Depter                                     |                                                       | 1                                | NI           | Te-                                          | CIDY         | 5752       | brat          | 702)                     | NAR        | h.c            |
|                                        | - 285                                         |                                                       | $\uparrow$                       |              |                                              | The          | h.         |               | - 117                    |            |                |
|                                        | BUS                                           | 17                                                    | ++++                             |              |                                              | 4 F110       | 100        | 1(            | AL                       | <u>س د</u> | 43             |
|                                        |                                               |                                                       | +++                              |              |                                              |              | +          | ++            |                          |            |                |
|                                        |                                               |                                                       | +                                |              |                                              |              | +          | ++            |                          |            | +              |
|                                        |                                               | $A \rightarrow + - + - + - + - + - + - + - + - + - +$ | <u> </u>                         |              |                                              | n <u>p</u> 6 | <u>far</u> | 24            | XAI                      | 242        | +-             |
|                                        |                                               |                                                       |                                  |              | <u>↓</u> ↓                                   | Sass         | <u>+0</u>  | 61            |                          |            |                |
|                                        | N HE                                          | MM                                                    | <u> </u>                         |              |                                              |              |            | ļ             |                          |            |                |
|                                        | \ ve                                          | Je DADAN                                              | <u> </u>                         |              | <u>                                     </u> |              |            | ļ             |                          |            |                |
| 2                                      | e                                             |                                                       |                                  |              |                                              |              |            |               |                          |            |                |
|                                        |                                               | Sid                                                   | 4047                             | $\mathbf{N}$ |                                              |              |            |               |                          |            |                |
|                                        |                                               |                                                       |                                  | 1            |                                              |              | 1          | T             |                          | ·          | 1              |
|                                        |                                               | E                                                     | ++                               | <u>X</u>     | 1                                            |              |            | +             |                          |            | †              |
|                                        |                                               | -/                                                    | ++                               |              | ┟──┼╸                                        |              | +          | $\dashv$      | - /                      |            | +              |
|                                        | · <u>}</u> <u>}</u>                           | <del>/                                    </del>      | ┽╍╍┽                             |              | +                                            |              | +          | +             |                          |            | +              |
|                                        | └── <u>┼</u> ┥ <u>┥</u>                       | <u> </u>                                              | -+                               |              |                                              |              |            | ╂╂            |                          |            | +              |
|                                        | ┝───┤──┤                                      |                                                       |                                  |              |                                              |              |            |               |                          |            | +              |
|                                        |                                               |                                                       |                                  |              | <u> </u>                                     |              |            | ļļ            |                          |            |                |
|                                        | 2                                             |                                                       |                                  |              | BOI                                          | - 40         | ton        | hul           | sin                      |            | -              |
|                                        |                                               |                                                       |                                  |              | tra =                                        | then         | 01         | 5/2           | <u>م</u>                 |            |                |
|                                        |                                               |                                                       |                                  |              |                                              | 2-1-0        | T          | 19            |                          |            | T              |
|                                        |                                               |                                                       | 1 1 1                            | 1            | 1 1                                          | i (          | i .        | 1 1           | · i                      | i .        | j.             |

,



| HTRW DRILL                        | ING LOG                               |                |                    |                                        | SC-50-048                      |
|-----------------------------------|---------------------------------------|----------------|--------------------|----------------------------------------|--------------------------------|
| 1. COMPANY NAME                   |                                       | 2. DRILL CONTR | RACTOR             | ······································ | SHEET SHEE                     |
| The Shaw Group - Shaw             | r E&I                                 | Eron           | tz Drilling NA     |                                        | I OF Z                         |
| 3. PROJECT                        | · ·                                   |                | 4. LOCATION        |                                        |                                |
| RVAAP - MI Sampling (R            | avenna A/E: 133616)                   |                | Ravenna            | , Ohio                                 |                                |
| 5. NAME OF DRILLER                | N.P.K                                 |                | 6. MANUFACTURER    | S DESIGNATION OF DRILL                 |                                |
| ryle Havens, a                    | be hasnach                            |                | HIID               | Hand Arc                               | jlr                            |
|                                   |                                       |                | 8. HOLE LOCATION   | 1 sh = 048                             |                                |
| S muna p                          | tuger                                 |                | 9. SURFACE ELEVATI |                                        |                                |
|                                   |                                       |                | 9541               |                                        |                                |
|                                   |                                       |                | 10. DATE STARTED   | 11. DATE                               | E COMPLETED                    |
|                                   |                                       |                | 9129               | 10                                     | 9/29/10                        |
| 12. OVERBURDEN THICKNESS          |                                       |                | 15. DEPTH OF GROU  | NDWATER ENCOUNTERED                    |                                |
| <u>&gt; 5' (ma</u>                | x. Lepth)                             |                | N/A                |                                        |                                |
| 13. DEPTH DRILLED INTO ROCK       |                                       |                | 16. DEPTH TO WATE  | R AND ELAPSED TIME AFTER DRIL          | LING COMPLETED                 |
| 14. TOTAL DEPTH OF HOLE           |                                       |                | 17. OTHER WATER I  | EVEL MEASUREMENTS (SPECIFY)            |                                |
| 35                                |                                       |                | A/                 | A                                      |                                |
| 18. GEOTECHNICAL SAMPLES          | DISTURBED                             | UNDISTU        | RBED 19.01         |                                        | and Part                       |
| NA                                |                                       |                | (Al                | MA POSS, CY                            | more, ropen                    |
| 20. SAMPLES FOR CHEMICAL ANALYSIS | VOC                                   | METALS         | OTHER (SPECIFY)    | OTHER (SPECIFY) OTHER (SP              | PECIFY) 21. TOTAL CORE         |
|                                   | PACKEULED                             |                | Explos N 2>        | SVOCS retici                           | de Sheluvert 100               |
| 22. DISPOSITION OF HOLE           | BACKFILLED                            | A/A            | OTHER (SPECIFY)    | 23. SIGNATURE OF INSPECT               | 2 .                            |
| OCATION SKETCH/COMMENTS           |                                       |                | Grasip             | SCALE: NICS                            |                                |
|                                   | · · · · · · · · · · · · · · · · · · · |                |                    |                                        |                                |
|                                   | <u> </u>                              |                |                    | -+++++++                               | <u></u>                        |
|                                   |                                       |                |                    |                                        |                                |
|                                   |                                       |                |                    |                                        |                                |
| N .                               |                                       |                |                    |                                        |                                |
|                                   |                                       | +/++           |                    |                                        |                                |
|                                   |                                       | +/             | +->++              |                                        | +                              |
|                                   |                                       | A+             | ╧╧                 |                                        | +                              |
|                                   |                                       | ′∔∔-∕          | <u> </u>           |                                        | +                              |
|                                   | X / Bas /                             |                |                    |                                        |                                |
|                                   |                                       | Heavy /        |                    |                                        |                                |
| A05                               |                                       | anchemit       |                    | 175                                    |                                |
|                                   |                                       |                | origing            | 1 1 2                                  | +++-                           |
| ++++/                             |                                       | +/+            | R 10-0             | 48-1-1                                 | ++                             |
|                                   |                                       |                | Y P                | +/+′                                   | +                              |
| <u>/_</u> /_/                     |                                       |                |                    |                                        |                                |
|                                   |                                       | 4              | ////               |                                        |                                |
|                                   |                                       |                | 5650-048           | 40'                                    |                                |
|                                   |                                       |                | 5C50-048           | 1401<br>TOS                            |                                |
|                                   | 5                                     |                | 5050-048           | 40 <sup>1</sup><br>765                 |                                |
|                                   | 50                                    |                | 50.50-048          | 140 <sup>1</sup><br>105                |                                |
|                                   | 50                                    |                | 5C50-048           | / 40 <sup>1</sup><br>                  | Tes-Top-of                     |
|                                   | 50                                    |                | 5C50-048           | 705                                    | TCS-Top of<br>BOS R. Um        |
|                                   | 50                                    |                | 5C50-0+8           | 10 <sup>1</sup><br>105                 | FCS - Fop of<br>BOS- Rottern o |
|                                   | 50                                    |                | 50.50-048          | 10 <sup>1</sup><br>10 <sup>5</sup>     | FCS - Fop of<br>BOS- Bottem o  |



|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                |                  |                 |            |               |            |          |             |            | 5Cs           | ib - 04  | }   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-----------|----------------------|----------------|------------------|-----------------|------------|---------------|------------|----------|-------------|------------|---------------|----------|-----|
| 1. COMPANY NAME     | Constant Character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1           |                  |           | 2. DR                | ILL CONTR      | ACTOR            |                 | NA         |               |            |          |             | SH         | EET           | SH       | (EI |
| Ine Sna             | w Group - Shav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / Ł&I         |                  |           | <u> </u>             | 4-rom          | z Dril           | inng '          |            |               | <u>-</u> . |          |             |            | 1             | OF 2     | -   |
| RVAAP -             | MI Sampling (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ravenna ∆     | /E: 1334         | 516)      |                      |                | 4.10             | JCATIO<br>R:    | N<br>avenn | a. Ohi        | ō          |          |             |            |               |          |     |
| 5. NAME OF DRILLEI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                | 6. M             |                 | ACTURF     | R'S DESI      | GNATION    | OF DI    | RILL        |            |               |          |     |
| Kyle                | Howens,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Je            | Resi             | rack      | -                    |                |                  | β               | Hm <       |               | Han        | d        | Auges       | ~          |               |          |     |
| 7. SIZE AND TYPES C | F DRILLING AND SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MPLING EQUIP  | MENT             |           |                      |                | 8. H             | OLE LO          | CATION     | <u> </u>      | 1 10-1 4   |          | <u> </u>    |            |               |          | -   |
| 3"                  | tand Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SRE           |                  |           |                      |                |                  |                 | 3          | Cst           | > ~ 0      | 49       |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                | 9.50             | URFACE          |            | FION          |            |          |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                |                  |                 | 7-20       | 2             |            |          |             |            |               |          | _   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                | 10.1             | DATES           | 91x        | مالا          |            |          | 11. DA<br>9 | 1291       |               |          |     |
| 12. OVERBURDEN T    | HICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |           |                      |                | 15.1             | DEPTH           | OF GRO     |               | TER ENC    | OUNT     | RED         | 511        |               |          | _   |
| >5                  | (max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dept          | h)               |           |                      |                |                  |                 | N          | A             |            |          |             |            |               |          |     |
| 13. DEPTH DRILLED   | NTO ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |           |                      |                | 16.1             | DEPTH           |            | ER AND        | ELAPSED    | D TIME   | AFTER DR    | ILLING C   | OMPLET        | TED      | ~   |
| 14. TOTAL DEPTH O   | HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |           |                      | -              | 17.0             | OTHER           |            | LEVEIN        | EASLIRF    | MENT     | S (SPECIFY  | )          |               |          | _   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | _                |           |                      |                | 1                | JA-             |            |               |            |          |             |            |               |          |     |
| 18. GEOTECHNICAL    | SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI            | STURBED          |           |                      | UNDISTU        | RBED             |                 | 19.0       |               | ABER OF    | CORE     | BOXES       |            |               |          |     |
|                     | IEMICAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/            | V                |           | META                 | 15             | 0                | HER (CI         | PECIEVI    | NA            | HER (SPI   | CIEVI    | OTHER /     | SPECIEV)   | 21 70         |          | -   |
| SAMI LES FUR U      | LIVINCAL ANALI 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  |           | V                    |                | F                | des             | N25        |               | 51/00      | 5        | NA          |            | RECOV         | IALCORE  | 2   |
| 22. DISPOSITION OF  | HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACK          | FILLED           | м         | ONITORIN             | IG WELL        | OT               | HER (SI         | PECIFY)    |               | 3. SIGNA   | TURE     | OF HUSPEC   | TOR        | .I            |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           | NA                   |                | G                | rout            | +          |               | $\leq$     | f.       | AF          | $\leq$     |               | 2        |     |
| OCATION SKET        | CH/COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                  |           |                      |                |                  |                 |            |               | SCALE:     | N        | 'TS         |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           | /                    |                |                  |                 |            |               |            |          |             | 1          |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      | $\overline{/}$ |                  |                 |            |               |            |          |             |            |               |          |     |
| N                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                |                  |                 |            |               |            |          |             |            | †             |          | -   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +             | $\leftarrow$     |           | ł/ſ                  |                | $\left  \right $ |                 |            |               |            |          |             |            | <del>  </del> |          | -   |
| ++                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      | $\rightarrow$  | $\vdash$         | -\$             | C35        | -0            | 43         |          |             |            | ┼╌╌┤          |          | -   |
|                     | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +/            | $\vdash$         |           |                      | <u> </u>       | <u> </u>         | $\rightarrow$   | $ \forall$ |               |            |          |             |            |               |          | -   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14            |                  | /         | L/                   | 201            |                  |                 | -          | 4             |            |          |             |            | ļ             |          | -   |
|                     | XACU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1             |                  | _/        |                      | DUSE           | 1-01             | E7              |            | $\bot$        |            |          |             |            |               |          | _   |
|                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                  | $\Lambda$ | )*°/                 | R              |                  |                 |            |               | X          |          |             |            |               |          |     |
| 16                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bo.           | $\boldsymbol{X}$ |           | 77                   |                |                  |                 |            | $\overline{}$ |            |          |             |            |               |          | 1   |
|                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 7                | 11        | 1                    |                |                  |                 |            |               |            |          |             |            |               |          |     |
|                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ \neq$      | 1.6              | #-/-      | ++-                  |                | 171              |                 | -/         |               |            | <u> </u> |             |            | +             |          | -   |
|                     | ∕┼┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +/-           | -1 <sup>m</sup>  | 4         | ++                   | $\rightarrow$  | f                |                 | +          |               |            |          |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4             | -4-              |           |                      | A              | ┼┼               | $ \rightarrow $ |            |               |            | +        |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ļ                |           | -4                   | 700            |                  |                 |            |               |            | Ļ        |             |            | <b>_</b>      |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>      | ļ <u> </u>       |           |                      |                | 10               |                 |            |               |            | ļ        |             |            | ļ             |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           | 1                    |                | <b>\`</b>        |                 |            |               |            |          |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  | 1         | Π                    | /              |                  | T               |            |               |            |          |             |            |               |          |     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  | /         | $ \top $             | /              | 11               |                 |            |               |            |          |             |            |               |          |     |
|                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>       | /                |           | $\vdash \mathcal{A}$ |                | <u></u> +†       |                 |            |               |            |          |             |            | 105           | - TOP C  | 7   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\rightarrow$ | /                |           | F                    |                | <u> </u>         |                 | ·          |               |            |          | <u> </u>    | B          | 5-            | Retter   | -   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | $\bowtie$        | Å         | <b>}</b> }-          |                | <b>├</b>         |                 |            |               |            |          |             |            |               | <b>├</b> | -   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |           |                      |                |                  |                 |            |               |            |          |             |            |               |          | -   |
|                     | MI Samaline /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pavonno ^     | /5-122/          | 5151      |                      |                |                  |                 |            |               | HULE N     |          | 50 - L      | $\sim n^2$ | 19            |          |     |
|                     | THE REPORT OF THE PARTY OF THE | vaveiiild A   | / Ľ. 1331        | 0101      |                      |                |                  |                 |            | 1             |            |          | 1-50        | ~~~7       |               |          |     |

|              |                           | HTRW [                                                                        | DRILLING                          | i LOG                                    |                                 |                   | HOLE NUMBER<br>SCSB-049                                 |   |
|--------------|---------------------------|-------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-------------------|---------------------------------------------------------|---|
| PROJEC       | RVAAF                     | P - MI Sampling (Ravenna A/E: 13)                                             | 3616) INSPE                       |                                          | $\geq$                          | C                 | SHEET SHEET<br>Z OF Z                                   |   |
| ELEV.<br>(a) | DEPTH<br>(b)              | DESCRIPTION OF MATERIAL<br>(c)                                                | FIELD SCREENING<br>RESULTS<br>(d) | GEOTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                                          |   |
|              |                           | Damp dark brown<br>loarn will miked<br>Clay and ergenics                      | 0.0ppm                            | NA                                       | NØ                              | NA                | No sample<br>collected<br>for<br>0-1' interval          |   |
|              |                           | Damp dourk bismin<br>loam w/ mixed<br>Clay and<br>plastic debris              | 0.0 ppm                           |                                          | 5C5D-049                        |                   | SCSb-049<br>Via composite<br>MI for<br>1-5'<br>interval |   |
|              |                           | Damp light brown<br>Elay W/miked<br>dark brown silt                           | 0.0ppm                            |                                          |                                 |                   |                                                         |   |
|              | с. с<br>1111/111/111/111/ | Demp/wet light<br>brown to dark<br>brown clay w/<br>some grey clay<br>(trace) | 0.0ppm                            |                                          |                                 |                   |                                                         |   |
|              |                           | wet<br>A Light brown /<br>grey day, W/<br>Some dark silt                      | O.O Ppm                           |                                          |                                 |                   |                                                         |   |
| PROJE        |                           | NI Someling /Deverse A/F-4                                                    | 22616)                            |                                          |                                 |                   | b-049                                                   | + |
| EN           | G FORM                    | - IVII Sampling (Kavenna A/E: 1:<br>5056A-R. AUG 94                           | וסדסכמ                            | ·                                        |                                 |                   | (Proponent: CECW-EG)                                    |   |
|              | San                       | ple# SCsb- C                                                                  | 549m - C                          | 001-50                                   |                                 | 1025              | <del>,</del>                                            |   |

|                                          | NCLOC                     | DISTRICT                                      |                      |                              | HOLE NUMB               |
|------------------------------------------|---------------------------|-----------------------------------------------|----------------------|------------------------------|-------------------------|
|                                          |                           |                                               |                      |                              | S(55-0.                 |
| 1. COMPANY NAME<br>The Shaw Group - Shaw | E 8.1                     | 2. DRILL CONTR                                | ACTOR                | Jo - Kila                    | SHEET                   |
| 3. PROJECT                               |                           |                                               |                      | 20972913                     |                         |
| RVAAP - MI Sampling (Ra                  | avenna A/E: 133616)       |                                               | Ravenna              | , Ohio                       |                         |
| 5. NAME OF DRILLER                       | ~                         | -                                             | 6. MANUFACTURER      | DESIGNATION OF DRILL         |                         |
| MCLARTHY, HARRISON                       | CRISPS                    |                                               | Ams                  |                              |                         |
| 7. SIZE AND TYPES OF DRILLING AND SAM    | PLING EQUIPMENT           |                                               | 8. HOLE LOCATION     | 6                            |                         |
| > HANDANLIGE                             |                           |                                               | 9. SURFACE ELEVATION | N                            |                         |
|                                          |                           |                                               | 9541                 |                              |                         |
|                                          |                           |                                               | 10. DATE STARTED     | 11. D.                       | ATE COMPLETED           |
|                                          |                           |                                               | 9/29/10              |                              | 29/13                   |
| 74,51/ MAY NRAT                          | 1)                        |                                               | NA                   | VDWATER ENCOUNTERED          |                         |
| 13. DEPTH DRILLED INTO ROCK              |                           |                                               | 16. DEPTH TO WATE    | R AND ELAPSED TIME AFTER D   | RILLING COMPLETED       |
| NA                                       |                           |                                               | NA                   |                              |                         |
| 14. TOTAL DEPTH OF HOLE                  |                           |                                               | 17. OTHER WATER L    | EVEL MEASUREMENTS (SPECIF    | Y)                      |
| 18. GEOTECHNICAL SAMPLES                 | DISTURBED                 | UNDISTU                                       | RBED 19. OTA         | L NUMBER OF CORE BOXES       |                         |
| \<br>\                                   |                           |                                               | N                    | <b>}</b> −                   |                         |
| 20. SAMPLES FOR CHEMICAL ANALYSIS        | VOC                       | METALS                                        | OTHER (SPECIFY)      | OTHER (SPECIFY) OTHER        | (SPECIFY) 21. TOTAL COP |
|                                          | PACKEINED                 |                                               | EXPLOSIVE-S          | SING                         | RECOVERY                |
| 22. DISPOSITION OF HOLE                  | BACKPIELED                |                                               | (MANT                | - SIGNATORE OF INSP          | CIOR<br>*               |
| LOCATION SKETCH/COMMENTS                 | <u>_</u>                  | <u></u>                                       |                      | SCALE:                       | F                       |
|                                          |                           |                                               |                      |                              |                         |
|                                          |                           |                                               |                      |                              |                         |
|                                          |                           |                                               |                      |                              |                         |
|                                          |                           | ++                                            |                      | 4- <del>\</del> <u>8</u> +-+ |                         |
|                                          |                           |                                               | F//                  |                              |                         |
|                                          |                           |                                               |                      | <u> </u>                     | x                       |
|                                          | <u> </u>                  | $\downarrow$                                  | Jo2M                 |                              |                         |
|                                          |                           | 35                                            | PAI                  |                              |                         |
|                                          |                           |                                               |                      |                              |                         |
|                                          | 4                         | ng Abou                                       |                      | 1 9 m                        | IGRID                   |
|                                          | N Joer                    |                                               |                      | I SC                         | 55-063                  |
|                                          |                           |                                               |                      |                              |                         |
|                                          |                           |                                               |                      |                              |                         |
|                                          |                           | $+\psi$                                       |                      |                              |                         |
|                                          |                           | ╡╌┼╌╴╴                                        | <b>7</b>             | <u> </u>                     |                         |
|                                          | 255-05                    | 4-+                                           |                      |                              |                         |
|                                          | <u></u>                   | + /                                           |                      |                              |                         |
|                                          |                           | $\downarrow \downarrow \downarrow \downarrow$ | <u> </u>             |                              |                         |
|                                          | $\rightarrow \rightarrow$ |                                               | ·                    |                              |                         |
|                                          |                           |                                               | <b>.   </b>          |                              |                         |
|                                          | ~                         |                                               | ļ                    |                              |                         |
|                                          |                           |                                               |                      |                              |                         |



| HTRW DRILL                            | ING LOG               | DISTRICT        |                |                  |                  |              |              | b - 051  | 1  |
|---------------------------------------|-----------------------|-----------------|----------------|------------------|------------------|--------------|--------------|----------|----|
| 1. COMPANY NAME                       |                       | 2. DRILL CONTR  |                |                  |                  |              | SHEET        |          | FF |
| The Shaw Group - Shaw                 | - E&I                 | Front           | z Dritting     | N4               |                  |              | J I          | OF 2     |    |
| 3. PROJECT                            |                       |                 | 4. LOCATION    |                  |                  | ·            | L 4          |          |    |
| RVAAP - MI Sampling (R                | avenna A/E: 133616)   |                 | Ra             | venna,           | Ohio             |              |              |          |    |
| 5. NAME OF DRILLER                    |                       | · ·             | 6. MANUFA      | CTURER'S         | DESIGNATION OF I | RILL         |              |          |    |
| Kyk Hourens,                          | )or Kasnack           |                 | A              | MS               | Hond             | Auger        | /            |          |    |
| 7. SIZE AND TYPES OF DRILLING AND SAM | IPLING EQUIPMENT      |                 | 8. HOLE LOC    | ATION            |                  | (            |              |          |    |
| 3" Hand,                              | Arger                 |                 |                | 30               | sb-05            | {            |              |          |    |
|                                       |                       |                 | 9. SURFACE     | ELEVATION        | N                |              |              |          |    |
|                                       |                       |                 | 10. DATE ST    | ARTED            |                  | 11. DATE     | COMPLETED    | )        |    |
|                                       |                       |                 | 7              | 2 9/1            | 0                |              | 1/29/1       | 0        |    |
| 12. OVERBURDEN THICKNESS              |                       |                 | 15. DEPTH C    | DF GROUNI<br>∧i∧ | DWATER ENCOUN    | ERED         |              |          |    |
| 13. DEPTH DRILLED INITO POCK          | 120+h/                |                 | 16 DEPTU T     | O WATER          | AND ELADEED TIN  | F AFTED DBU  | UNG COMP!    |          |    |
| NA                                    |                       |                 | TO DEPINI      | NA               | AND ELAPSED TIM  | L AFIEK UKIL | LING CUIVIPL | LIED     |    |
| 14. TOTAL DEPTH OF HOLE               |                       |                 | 17. OTHER V    | WATER LEV        | EL MEASUREMEN    | S (SPECIFY)  |              |          | -  |
| <u> </u>                              |                       |                 | <u> </u>       | VF               |                  |              |              |          |    |
| 18. GEOTECHNICAL SAMPLES              | DISTURBED             | UNDISTUF        | RED            | 19. OTAL<br>A    | NUMBER OF CORE   | BOXES        |              |          |    |
|                                       |                       | METALS          |                | ECIEV)           | T                | OTHER (CD    | ECIEV Int -  |          | _  |
| 20. SAMPLES FOR CHEMICAL ANALYSIS     |                       |                 | Fralm          | jues             | SIOCS            | Lex 1        | Cvr. RECC    | VERY     | ~  |
| 22. DISPOSITION OF HOLE               | BACKFILLED MC         | NITORING WELL   | OTHER (SP      | ECIFY)           | 23. SIGNATUR     | OF INSPECTO  | to           | ,,,,,    | -  |
|                                       |                       | NA              | Gran           | -                |                  | and A        | ¥~           | $-\ell$  |    |
| LOCATION SKETCH/COMMENTS              |                       |                 | 1              |                  | SCALE:           | 175          |              |          |    |
|                                       |                       |                 |                |                  |                  |              |              |          |    |
| n      /                              |                       | C               |                |                  | <u></u>          | 1            |              |          | +  |
|                                       |                       | <u> 255-067</u> |                |                  | <u></u>          |              | +            | +        | ł  |
| N                                     | ┼──┼┼──┼┟──┤───       | $\searrow$      | <u> </u>       |                  | ┣━━━┥╋━━━        |              |              |          | +  |
|                                       | <u>     </u>          |                 | <b> </b>       |                  | <u> </u>         |              |              | ·        | 1  |
|                                       |                       |                 |                |                  |                  |              |              |          |    |
|                                       |                       |                 | SUSPK          | 51               |                  |              |              |          |    |
|                                       | 1 1/ 00-              |                 |                |                  |                  | 1 1          |              |          | t  |
|                                       | ╎╂╌╎╌╢┠╌╎╌╎           |                 | <u>├</u> ├     |                  | <u> </u>         | +            | +            |          | +  |
|                                       | <del>╎╎╴╎╶╷╎╎╴</del>  | <b>├-/</b>      |                |                  | <u> </u>         |              |              | +        | +  |
|                                       | ╎┼╌┿╸┼┼┼╌┼╌┼┝╾╌╵      |                 | <u> </u>       |                  | <b>  </b>        |              | <u> </u>     |          | ╪  |
|                                       |                       | 1405            |                | ·                | ļ                |              |              |          | -  |
|                                       | R                     |                 |                |                  |                  |              |              |          |    |
|                                       | 602 3                 |                 |                |                  | T T T            |              | h tu         |          | -  |
|                                       |                       |                 |                |                  | 705 -            | Top o        | +->6         | P        | t  |
| +++++++                               | +-++++-+-+-++++++++++ | ├               |                |                  |                  |              | +            | El-ha    | +  |
|                                       | 1-1-1-13              | <u> </u>        |                |                  | 309-             | Better       | at           | PEPE     | ļ  |
|                                       |                       |                 |                |                  |                  |              |              |          | -  |
|                                       |                       |                 |                |                  |                  |              |              |          | Ī  |
|                                       |                       | <u>├── ┼</u>    | <u>├</u>       |                  | <del> </del>     | ++           |              | +        | †  |
| ╶╌╆╍╍╋╍╍╋╍╍╋╍╍                        | <u> </u>              | ┟──┼──          | <u> </u>       |                  | ┟╾╍╌┟╼╼╾┥╼╼╸     |              |              |          | +  |
| ┈╍┼╍╌╌┼╍╌┼╍╌┼╍                        | <u> </u>              | +++             |                |                  | <u> </u>         |              |              |          | +  |
|                                       | <u>V</u>              | 501             |                |                  |                  |              |              |          | J  |
|                                       | Ye                    |                 |                |                  |                  |              |              |          |    |
| PROJECT                               | <u> </u>              | ·               | - ئېرىكە يېرىپ | <u> </u>         | HÔLE NO.         | nd low       |              | <u></u>  | -  |
| RVAAP - MI Sampling (R                | avenna A/E: 133616)   |                 |                |                  |                  | SCsb.        | -051         |          |    |
| ENG FORM 5056-R. AUG 94               | avenina // E. 199010) |                 |                |                  | l                | JUSP         | (Propon      | ent: CEC | w- |

HOLE NUMBER **HTRW DRILLING LOG** 5Csb-051 PROJECT INSPECTOR SHEET SHEET RVAAP - MI Sampling (Ravenna A/E: 133616) 2 OF Z GEOTECH SAMPLE OR FIELD SCREENING ANALYTICAL ELEV. DEPTH DESCRIPTION OF MATERIAL BLOW COUNT REMARKS RESULTS CORE BOX NO. SAMPLE NO. (a) (b) (c) (g) (h) (f) (d) (e) Light brown dry No Sample collected for 0-1' interval loan w/ 0.0ppm NA NA NP mixed organics 5C\$-051 Light brown silt, Scoot via composite MI for O.O PPM dry, "/ sparse clay 1-5 2 Light brown drug 0.0 ppm w/ mixed 5:1+ grey clay 3 Light brown dry silt w/ mixed 0.0 ppm grey clay Grey clay, dry 0.0ppr EURC HOLENO. SCSD-051 PROJECT RVAAP - MI Sampling (Ravenna A/E: 133616) ENG FORM 5056A-R. AUG 94 051 (20 (Proponent: CECW-EG) Sample #: 5C5b-049m-0001-So @ 1130 5 (sb - 051 m - 0001 - ms @ 1135 5Csb - 051m - 0001 - mD @ 1140

| HTRW DRILL                            | HTRW DRILLING LOG                                 |                       |                     |                       |                 | HOLE          | NUMBER   |  |
|---------------------------------------|---------------------------------------------------|-----------------------|---------------------|-----------------------|-----------------|---------------|----------|--|
| 1. COMPANY NAME                       |                                                   | 2. DRILL CONTR        | ACTOR               | > / 1                 |                 | SHEET         | SHE      |  |
| The Shaw Group - Shaw                 | E&I                                               | Eren                  | tz Drilling NA      |                       |                 | t             | of Z     |  |
| 3. PROJECT                            | . /=                                              |                       | 4. LOCATION         |                       |                 |               |          |  |
| RVAAP - MI Sampling (R                | avenna A/E: 133616                                | )                     | Ravenna,            |                       |                 |               |          |  |
| 5. NAME OF DRILLER                    | Car                                               |                       | 6. MANUFACTURER'S   | RILL                  |                 |               |          |  |
| 7. SIZE AND TYPES OF DRILLING AND SAM |                                                   |                       | 8. HOLE LOCATION    |                       |                 |               |          |  |
| 2" LIME AVER                          | _                                                 |                       | 51-6-05             | 2                     |                 |               |          |  |
| S ARND TOULCO                         |                                                   |                       | 9. SURFACE ELEVATIO | N                     |                 |               |          |  |
|                                       |                                                   |                       | 954'                |                       |                 |               |          |  |
|                                       |                                                   |                       | 10. DATE STARTED    |                       | 11. DATE (      | COMPLETED     |          |  |
|                                       |                                                   |                       | 4/29/10             |                       |                 | 9/13          |          |  |
| 2 S' (MASC) COM                       | 2                                                 |                       | 15/DEPTH OF GROON   | RED                   |                 |               |          |  |
| 13. DEPTH DRILLED INTO ROCK           | 1)                                                |                       | 16. DEPTH TO WATER  | AFTER DRILLI          | NG COMPLETE     | D             |          |  |
| NA                                    |                                                   |                       | NA                  |                       |                 |               |          |  |
| 14. TOTAL DEPTH OF HOLE               | <u> </u>                                          |                       | 17. OTHER WATER LEV | EL MEASUREMENTS       | S (SPECIFY)     | · · · · · · · |          |  |
| 5'                                    |                                                   |                       | NA                  |                       |                 |               |          |  |
| 18. GEOTECHNICAL SAMPLES              | DISTURBED                                         | UNDISTU               | RBED 19. OTAL       | NUMBER OF CORE I      | BOXES           |               |          |  |
| 20. SAMPLES FOR CHEMICAL ANALYSIS     | VOC                                               | METALS                | OTHER (SPECIFY)     | OTHER (SPECIFY)       | OTHER (SPF      | CIFY) 21 TOT  | AL CORF  |  |
|                                       | NA                                                | 1                     | Explosies           | Since                 |                 | RECOVE        | RY / (A) |  |
| 22. DISPOSITION OF HOLE               | BACKFILLED                                        | MONITORING WELL       | OTHER (SPECIFY)     | 23. SIGNATURE         | OFINSPECTO      | R             | /••      |  |
|                                       |                                                   |                       | GRANT               |                       | 1 =             | >             |          |  |
| LOCATION SKETCH/COMMENTS              |                                                   | 1                     |                     | SCALE: NT             | 50              |               |          |  |
|                                       |                                                   |                       |                     |                       |                 |               |          |  |
|                                       |                                                   |                       |                     |                       |                 |               |          |  |
|                                       | <u> </u>                                          |                       | 1                   |                       |                 |               |          |  |
|                                       | <u>├</u>                                          | n    /                | +-+-                |                       |                 |               |          |  |
|                                       | ↓ <b>↓</b> / <b>↓</b> /                           | A                     | k                   | $\sim$                |                 |               |          |  |
|                                       | / /                                               |                       | S(5-)               | bi-i N                |                 |               |          |  |
|                                       |                                                   |                       | 8 /                 | $\mathcal{N}$         |                 |               |          |  |
|                                       |                                                   |                       |                     |                       |                 | N             |          |  |
|                                       | 1 / 3                                             | 717111                |                     |                       |                 |               |          |  |
|                                       | 177                                               | 111 1                 | I.M. 111            |                       |                 | -11           |          |  |
|                                       |                                                   |                       | the total           |                       |                 |               |          |  |
|                                       |                                                   |                       | 10°20-1-1-1         |                       |                 |               |          |  |
|                                       |                                                   |                       | ſ  <i></i>          | <u> </u>              |                 |               |          |  |
|                                       | $  \underline{A} c \underline{O}   \underline{A}$ | [                     | <u> </u>            | ļ                     |                 |               | ·        |  |
|                                       | 1/171/1                                           |                       | シる                  |                       |                 |               |          |  |
|                                       | V                                                 |                       | 2 2                 |                       |                 |               |          |  |
|                                       | 1                                                 | /                     |                     |                       |                 |               |          |  |
|                                       | <u> </u>                                          | F                     | <b>∀/-/</b> -/>     | <u>+</u> +            |                 |               |          |  |
| -+-+                                  | ┼╍┼╍┼╌╢╌╢                                         |                       | +                   |                       |                 |               |          |  |
|                                       | ┼╌┽╌┼╱┼╱┤                                         | <u>   &amp; &gt;(</u> | \$5-PJA/            | +                     |                 |               |          |  |
|                                       | <u> ¥.</u> /                                      |                       | ↓ <i>\↓_</i> ↓      | <u>  _   _   _</u> ]} | <u> 05 7 60</u> | Dom 0         | ESUI     |  |
|                                       |                                                   |                       |                     |                       | 07 = ZO         | COES          | WE       |  |
|                                       |                                                   |                       |                     |                       |                 |               |          |  |
|                                       |                                                   |                       |                     | 1 1 1                 |                 |               |          |  |
| PROJECT                               |                                                   |                       |                     | HOLE NO.              | 200             | - II          |          |  |



|                                                                                                                              | ING LOG                                      | DISTRICT         | DISTRICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|--|--|--|
| 1. COMPANY NAME                                                                                                              |                                              | 2. DRILL CONTR   | 2. DRILL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                            |  |  |  |
| The Shaw Group - Shaw                                                                                                        | E&I                                          | -Front           | -Frontz-Drilling NA 50 9/29/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                            |  |  |  |
| 3. PROJECT<br>RVAAP - MI Sampling (P                                                                                         | avenna A /F· 122616)                         |                  | 4. LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ohio                   |                            |  |  |  |
| 5. NAME OF DRILLER                                                                                                           | avenna A/E. 133010)                          | MA               | 6. MANUFACTURER'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESIGNATION OF DRILL   |                            |  |  |  |
| McCerthin Harris                                                                                                             | . Crisos                                     |                  | Ams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                            |  |  |  |
| 7. SIZE AND TYPES OF DRILLING AND SAM                                                                                        |                                              | 8. HOLE LOCATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              |                  | 566-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53                     |                            |  |  |  |
|                                                                                                                              |                                              |                  | 9. SURFACE ELEVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JIN                    |                            |  |  |  |
|                                                                                                                              |                                              |                  | 10. DATE STARTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:                     | . DATE COMPLETED           |  |  |  |
|                                                                                                                              |                                              |                  | 9/29/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                      | 129/10                     |  |  |  |
| 12. OVERBURDEN THICKNESS $\sim C \int $ | \                                            |                  | 15. DEPTH OF GROUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DWATER ENCOUNTERED     | / /                        |  |  |  |
| 13. DEPTH DRILLED INTO ROCK                                                                                                  | )                                            |                  | 16. DEPTH TO WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND ELAPSED TIME AFT   | R DRILLING COMPLETED       |  |  |  |
| NA                                                                                                                           |                                              |                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                            |  |  |  |
| 14. TOTAL DEPTH OF HOLE                                                                                                      | · · · · · · · · · · · · · · · · · · ·        |                  | 17. OTHER WATER LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VEL MEASUREMENTS (SPI  | CIFY)                      |  |  |  |
|                                                                                                                              | DISTURRED                                    |                  | NA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                            |  |  |  |
| LO. GLOT CONVICAL SAIVIFLES                                                                                                  |                                              | NA-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>.</b>               |                            |  |  |  |
| 20. SAMPLES FOR CHEMICAL ANALYSIS                                                                                            | voc                                          | METALS           | OTHER (SPECIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OTHER (SPECIFY) OTI    | IER (SPECIFY) 21. TOTAL CO |  |  |  |
|                                                                                                                              | BACKEULED                                    |                  | CTHER ISPECIEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUCS                   | RECOVERY                   |  |  |  |
| 22. DISPUSITION OF HULE                                                                                                      |                                              | (TRUENISFECIFI)  | Za, SIGNATURE OF IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brecton                |                            |  |  |  |
| LOCATION SKETCH/COMMENTS                                                                                                     | L                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCALE: ATT             | -5                         |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | +                          |  |  |  |
|                                                                                                                              |                                              |                  | MEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TUD LOCAT              | Jun 5(55-065               |  |  |  |
|                                                                                                                              | ┝╍╍┝╍╲┤ <mark>╲</mark> ┲╌┝╍╍┝╍╸              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                      | +                          |  |  |  |
|                                                                                                                              |                                              | 563-0            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                      |                            |  |  |  |
|                                                                                                                              | 2                                            | - 662            | <u>├{</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ,                          |  |  |  |
|                                                                                                                              | Ž                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | N                          |  |  |  |
| -+                                                                                                                           | 2                                            |                  | _/_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | ///                        |  |  |  |
|                                                                                                                              | N-44-                                        |                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                      |                            |  |  |  |
| ····                                                                                                                         | <u>r   k</u>                                 |                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļļ                     | <b>_</b>                   |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              | <u>├</u>                                     | <u>\$71</u>      | <b>└───</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -+++++                 |                            |  |  |  |
| 9                                                                                                                            |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
| 6                                                                                                                            |                                              | R                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              | Session Session                              | 054              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |  |  |  |
|                                                                                                                              |                                              | 054              | Image: state | Rince Kint             |                            |  |  |  |
|                                                                                                                              | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 054              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ROS \ge ROT$          | Tom of Suse                |  |  |  |
|                                                                                                                              | Sess                                         | -05Y             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOS > BOT<br>TDS = TDS | TOM OF SLOPE               |  |  |  |
|                                                                                                                              | Sis                                          | 054              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOS > BOT<br>TOS = TOS | TOM OF SLOVE               |  |  |  |



|                                          | ING LUG                               |                         |                                              |             |                  |           | _            | _        | 5C=     | 5b-c                                   | 54     |
|------------------------------------------|---------------------------------------|-------------------------|----------------------------------------------|-------------|------------------|-----------|--------------|----------|---------|----------------------------------------|--------|
| 1. COMPANY NAME<br>The Shaw Group - Shaw | , E&I                                 | 2. DRILL CONTR<br>Eront | ACTOR                                        | NA          | ······           |           |              | SHE      | ET      | OF 2                                   | HEET   |
| 3. PROJECT                               |                                       |                         | 4. LOCATIO                                   | DN          |                  |           |              |          |         |                                        |        |
| RVAAP - MI Sampling (R                   | avenna A/E: 133616                    | 5)                      | R                                            | lavenna, (  | Ohio             |           |              |          |         |                                        |        |
| 5. NAME OF DRILLER                       | × 0                                   |                         | 6. MANUF                                     | ACTURER'S   | DESIGNATION      |           |              |          |         | ······································ |        |
| Kyle Howens,                             | Joe Kasroc                            | <u></u>                 |                                              | AMS         | Hand             | <u> </u>  | - SKI        | <u> </u> |         |                                        |        |
| 7. SIZE AND TYPES OF DRILLING AND SAN    |                                       |                         | 8. HOLE LO                                   |             | Fel .            | 554       |              |          |         |                                        |        |
| <u> </u>                                 | myer                                  |                         | 9. SURFAC                                    | E ELEVATION | ~ <u>&gt;D</u> ~ |           |              |          |         |                                        |        |
|                                          |                                       |                         | 91                                           | 58 '        | -                |           |              |          |         |                                        |        |
|                                          | ·····                                 |                         | 10. DATE S                                   | STARTED     |                  | 11        | . DATE (     | OMPL     | ETED    |                                        |        |
|                                          |                                       |                         |                                              | 1/29/1      | 0                |           | 9].          | 29/1     | 0       |                                        |        |
| 12. OVERBURDEN THICKNESS                 | toot)                                 |                         | 15. DEPTH                                    | OF GROUND   | WATER ENCO       | JNTERED   | •            |          |         |                                        |        |
| 13. DEPTH DRILLED INTO ROCK              | up in/                                | <u> </u>                | 16. DEPTH                                    |             |                  |           | R DRILL      | NGCO     | MPI FTF | D                                      |        |
| NA                                       |                                       |                         | 1                                            | N4          | 3                |           |              |          |         |                                        |        |
| 14. TOTAL DEPTH OF HOLE                  |                                       |                         | 17. OTHER                                    | WATER LEY   | EL MEASUREM      | ENTS (SPE | CIFY)        |          |         |                                        |        |
| 5'                                       | · · · · · · · · · · · · · · · · · · · |                         |                                              | N.          | 11               |           |              |          |         |                                        |        |
| 18. GEOTECHNICAL SAMPLES                 | DISTURBED                             | UNDISTU                 | RBED                                         | 19. OTAL    | NUMBER OF CO     | ORE BOXE  | 5            |          |         |                                        |        |
| 20. SAMPLES FOR CHEMICAL ANALYSIS        | voc 1                                 | METALS                  | OTHER (S                                     | SPECIFY)    | OTHER (SPEC      | FY) OTH   | ER (SPE      | CIFY)    | 21, TOT | AL CORF                                | *      |
|                                          |                                       | V                       | Erdo                                         | SNIS        | 5000             | S I       | NA           |          | RECOVE  | RY 10                                  | o %    |
| 22. DISPOSITION OF HOLE                  | BACKFILLED                            |                         | OTHER (                                      | SPECIFY)    | 23. SIGNAT       | URE OF IN | SPECTO       |          |         |                                        | 1      |
|                                          |                                       | NK                      | Gra                                          | ut          | 9                | A.        | 4-1-         | 5-       |         | _e                                     |        |
| LOCATION SKETCH/COMMENTS                 | ·                                     | ·····                   |                                              |             | SÇALE:           |           | <del>,</del> |          |         |                                        |        |
|                                          |                                       |                         |                                              |             |                  |           |              | ·        |         |                                        |        |
|                                          |                                       |                         | LSCS                                         | کان ۹- ک    |                  |           |              |          |         |                                        |        |
| N                                        |                                       |                         |                                              |             |                  |           |              |          |         |                                        |        |
|                                          |                                       |                         |                                              |             |                  |           |              |          |         |                                        |        |
|                                          |                                       | 1 ton                   | 1 7                                          |             |                  |           |              |          |         |                                        |        |
|                                          |                                       | W jos                   | 1 1                                          |             |                  |           |              |          |         |                                        |        |
| -++/+-++                                 | +++++/                                | N/2 N                   | <b>{</b> } <i>f</i>                          |             |                  |           |              |          |         |                                        |        |
|                                          | ┼──┼┼──╎                              | /*   ·   -              | <u> </u>                                     |             |                  |           |              |          |         |                                        |        |
|                                          |                                       | //-                     | <u>                                     </u> |             |                  |           |              |          |         |                                        |        |
| <b>  </b> -/- <b> </b>                   | -/po1/-/                              | /                       | <b> /  </b>                                  |             | <b>├</b>         |           |              |          |         |                                        |        |
| <u> </u>                                 | 1/10/1                                |                         |                                              |             | -                |           |              |          |         |                                        |        |
|                                          | / SCS                                 | Nor 10                  |                                              |             |                  |           | <u> </u>     |          |         |                                        |        |
|                                          |                                       | 110                     |                                              |             |                  |           |              |          |         | ·                                      |        |
| 1 Cart                                   |                                       | 10                      |                                              |             | 4                | 05=       | 10           | pd       | f :     | SEP                                    | e      |
| 1717717                                  | 1-1-1-1                               | 71 1                    |                                              |             | B                | 25 =      | R            | then     | A       | · H                                    | , do   |
|                                          | <u> </u>                              | 1++/                    | <u>+</u>                                     |             |                  |           |              |          |         |                                        | perse- |
| -++-++/                                  | <u> </u>                              | +++/+-                  | <del>  </del>                                |             |                  |           | +            |          |         |                                        |        |
| -+ <del>//////</del> //                  | <u> </u>                              |                         | <del>}</del>                                 |             |                  |           |              |          |         |                                        |        |
|                                          | <u> </u>                              |                         | <u> </u>                                     |             | ╞                |           |              |          |         |                                        |        |
|                                          |                                       | /                       |                                              |             | ┝                |           |              |          |         |                                        |        |
|                                          | POLA                                  |                         | ļ                                            |             | ļļ.              |           |              |          |         |                                        |        |
|                                          |                                       |                         |                                              |             |                  |           |              |          |         |                                        |        |
| PROJECT                                  |                                       | -                       |                                              |             | HOLE NO          | - 1       |              | -il      |         |                                        |        |
|                                          |                                       |                         |                                              |             |                  | -         |              |          |         |                                        |        |

|              |              | HTRW                                            | DRILLING                          | 6 LOG                                    |                                 |                   | HOLE NUMBER                                   |
|--------------|--------------|-------------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-------------------|-----------------------------------------------|
| PROJEC       | T            |                                                 | INSP                              | ECTOR                                    |                                 | /                 | SHEET SHEET                                   |
|              | RVĄAP        | P - MI Sampling (Ravenna A/E: 13                | 3616) 🧹                           | - JAA                                    | K                               | $\sim c$          | 2 OF 2                                        |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                  | FIELD SCREENING<br>RESULTS<br>(d) | GEØTECH SAMPLE OR<br>CORE BOX NO.<br>(e) | ANALYTICAL<br>SAMPLE NO.<br>(f) | BLOW COUNT<br>(g) | REMARKS<br>(h)                                |
|              |              | Light brown silly<br>Clay wij mixed<br>organics | 0.0 ppm                           | NA                                       | AV                              | NA                | NO Semple<br>Gilected<br>Gor<br>O-1' interval |
|              |              | Light brown/grey                                |                                   |                                          | 57csb-05                        | ¥                 | 5Csb-054                                      |
|              |              | cry, ary                                        | 0.0 ppm                           |                                          |                                 |                   | MI for<br>1-5' interval                       |
|              | 2            | Light brown/ grey<br>Clay, dry                  | 0.0 ppm                           |                                          |                                 |                   |                                               |
|              |              | Light brown / gray<br>Clay, dry                 | O.Oppm                            |                                          |                                 |                   |                                               |
|              |              | Light brown /<br>grey clay, dry                 | 0.0 ppm                           |                                          |                                 |                   |                                               |
| PROJE        |              | P - MI Sampling (Ravenna A/E: 13                | 33616)                            |                                          |                                 | HOLE NO.          | C3b-054                                       |
| EN           | g form       | 5056A-R. AUG 94                                 |                                   |                                          |                                 |                   | (Proponent: CECW-EG)                          |
|              | Simp         | le \$ 5€sb-05                                   | 4m-00                             | 01-50 (                                  | @ 123                           | 35                |                                               |

| HIKW DRILL                                   | ING LOG                                        |                                                        |                          |              |                       |                                              | 5(56-055   |            |           |               |        |  |
|----------------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------|--------------|-----------------------|----------------------------------------------|------------|------------|-----------|---------------|--------|--|
| COMPANY NAME                                 |                                                | 2. DRILL CONTR                                         | ACTOR                    |              |                       |                                              |            | SHEET      | r         | SHEET         |        |  |
| PROJECT                                      | EQ.I                                           | Front                                                  | z Urilling               |              |                       |                                              |            | 9          | OF        | 2             |        |  |
| RVAAP - MI Sampling (R                       | avenna A/E: 133616)                            |                                                        | 4. LOCATION<br>Bayenna ( |              |                       |                                              | Ohio       |            |           |               |        |  |
| NAME OF DRILLER                              |                                                |                                                        | 6. MANUFACTURER'S DESI   |              |                       |                                              |            |            |           | ···           |        |  |
| OF RASNACK . KYLE HA                         | VENS DAVID                                     | MISPO                                                  | AMS HAND AUGGE           |              |                       |                                              |            |            |           |               |        |  |
| SIZE AND TYPES OF DRILLING AND SAM           | IPLING EQUIPMENT                               | <u> </u>                                               | 8. HOLE L                | DCATION      |                       | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |            |            |           |               | $\neg$ |  |
| 3" HAND ANGER                                |                                                |                                                        | SCS                      | 5-05         | 5                     |                                              |            |            | •         |               |        |  |
|                                              |                                                |                                                        | 9. SURFAC                |              | N                     |                                              |            |            |           |               |        |  |
|                                              |                                                |                                                        | 93                       | <u>s'</u>    |                       |                                              |            |            |           |               |        |  |
|                                              |                                                |                                                        | ala                      | TARIED       |                       |                                              |            |            | ED        |               |        |  |
| 2. OVERBURDEN THICKNESS                      |                                                |                                                        | 15. DEPTH                | OF GROUN     | DWATER EN             |                                              | 10-5       | <u>110</u> |           |               | $\neg$ |  |
| > 5' (MAX DEPTH)                             | )                                              |                                                        | KIL                      | <b>-</b>     |                       |                                              |            |            |           |               |        |  |
| 3. DEPTH DRILLED INTO ROCK                   |                                                | 16. DEPTH                                              | TO WATER                 | AND ELAPSE   | D TIME AFTE           | R DRILL                                      | NG COM     | PLETED     |           |               |        |  |
| NA                                           |                                                | NA                                                     | -                        |              |                       |                                              |            |            |           |               |        |  |
| 14. TOTAL DEPTH OF HOLE                      |                                                |                                                        | 17. OTHE                 | WATER LEV    | EL MEASUR             | EMENTS (SPE                                  | CIFY)      |            |           |               | 1      |  |
|                                              | DISTURRED                                      |                                                        |                          | - 10 0771    | MILINADED O           | CODE 2017                                    |            |            |           | ····          |        |  |
| A A                                          |                                                |                                                        |                          | 19.01AL      | NUMBER O              | " COKE BOXE                                  | 3          |            |           |               |        |  |
| 1 V F 1<br>20. SAMPLES FOR CHEMICAL ANALYSIS | voc                                            | METALS                                                 | OTHER (                  | SPECIFY)     | OTHER (SP             | ECIFY) OTH                                   | IER (SPE   | CIFY) 21   | . TOTAL C | ORE           |        |  |
|                                              |                                                | <u> </u>                                               | SVO                      | -5           | Expli                 | SUCH H                                       | 641        | RE         | COVERY    | ЮŨ            | %      |  |
| 22. DISPOSITION OF HOLE                      | BACKFILLED                                     | MONITORING WELL                                        | OTHER (                  | SPECIFY)     | 23. SIGN              | ATURE OF IN                                  | SPECTO     | R          |           |               |        |  |
| ······                                       |                                                | NA                                                     | Conor                    | IT           |                       | 211                                          |            |            |           |               |        |  |
| LOCATION SKETCH/COMMENTS                     | ,                                              |                                                        |                          |              | SCALE:                | NTS                                          | 0          | >          |           |               |        |  |
|                                              |                                                |                                                        |                          |              |                       |                                              |            |            |           |               |        |  |
| ····                                         | 1//                                            |                                                        | 651                      |              | <u>+</u>              | +                                            |            |            |           | <u>†</u>      |        |  |
|                                              | ┼╌/┼──┼/─┼                                     | -/+                                                    | $\rightarrow$            | $\sim$       | <u></u>               |                                              |            |            |           | ++            |        |  |
|                                              | <b>↓/ -                                   </b> | /                                                      | 8                        |              | ₽/                    | 1-15(                                        | 55-        | - 126      | -117      | G             | T      |  |
|                                              | //                                             |                                                        | ¥                        |              |                       | Ţ                                            |            |            |           | <u> </u>      | 1      |  |
|                                              |                                                |                                                        |                          | 1            | $\left  \eta \right $ |                                              |            |            |           |               |        |  |
|                                              |                                                |                                                        | 6                        | =  /         | /                     |                                              |            |            |           |               |        |  |
|                                              | 11 01 /                                        |                                                        |                          | ///          | /                     |                                              |            |            |           |               |        |  |
|                                              | 1-10/1-1/-1                                    |                                                        | <u> </u>                 | -//          | +                     |                                              |            |            |           | ++            |        |  |
|                                              | <u>├\/</u> /                                   | -HCM2                                                  |                          | -/-/-        | <u> </u>              |                                              | k){/       |            |           | +             |        |  |
|                                              |                                                | -VERIN                                                 | <u>NIVI-</u>             | <i>-</i> /-/ | <u> </u>              |                                              | *          |            |           | ╪             |        |  |
|                                              | 2/6/                                           |                                                        | ļ                        | /            | <u> </u>              |                                              | <u>/</u> ] |            |           | <u></u>       |        |  |
|                                              |                                                |                                                        |                          |              |                       |                                              |            |            |           |               |        |  |
|                                              |                                                |                                                        |                          | D C          |                       |                                              | +          |            | ·         |               |        |  |
|                                              | 1/ 1                                           |                                                        | AT.                      | n            | 1                     | 1                                            | 1          |            |           |               |        |  |
| - <u>++-/</u>                                | <del>/</del>                                   |                                                        | $\frac{1}{10}$           |              | <u>†</u>              |                                              |            |            |           | <del>  </del> |        |  |
| -+                                           | <u> </u>                                       |                                                        | +/+7-                    |              | +                     |                                              |            |            |           | ┼┼            |        |  |
| - <del>  / /</del> ///                       | <u> </u>                                       |                                                        | +≁⊬                      |              | <b></b>               |                                              |            |            |           | ┼             |        |  |
| ////_                                        |                                                | et thet                                                | ¥                        |              |                       |                                              |            |            |           |               |        |  |
|                                              |                                                | 2455101                                                | 1/                       |              | 17bs                  | = 701                                        | POK        | SU         | 19E       |               |        |  |
|                                              |                                                | 117                                                    | /                        |              | RIDS                  | = Ron                                        | TON        | JUE        | SUN       | <u></u>       |        |  |
| <u></u>                                      |                                                | $\forall \uparrow \uparrow \uparrow \uparrow \uparrow$ |                          | ALTA         |                       |                                              | -          |            |           |               |        |  |
|                                              |                                                |                                                        |                          | Caller       |                       |                                              |            |            |           | ┼╍╍┼╍         |        |  |
|                                              |                                                |                                                        |                          | U Y LL       |                       |                                              |            | l. l       |           |               | _      |  |
| PROJECT /                                    |                                                |                                                        |                          |              | I HOLE I              | VU.                                          |            |            |           |               |        |  |

·

Y

|              |              | HOLE NUMBER                                                                            |                |      |         |               |             |                     |                                                    |                       |
|--------------|--------------|----------------------------------------------------------------------------------------|----------------|------|---------|---------------|-------------|---------------------|----------------------------------------------------|-----------------------|
| PROJEC       | л            |                                                                                        | INSPE          | CTOR | -       |               |             |                     | SHEET                                              | > SHEET               |
|              | RVAAI        | P - MI Sampling (Ravenna A/E: 13                                                       | 3616)          |      |         | 0.010170      |             |                     | 2 OF                                               | 2                     |
| ELEV.<br>(a) | DEPTH<br>(b) | DESCRIPTION OF MATERIAL<br>(c)                                                         | RESULTS<br>(d) | CORE | BOX NO. | SAMPLE<br>(f) | ICAL<br>NO. | BLOW COUNT<br>(g)   | REMARKS<br>(h)                                     |                       |
|              |              | dry to moist light<br>brown silty clay<br>w/ wganics                                   | 0.v ppm        | N    | A-      | NA            |             | NA                  | NO SAMPLE (<br>AT 0-1'INTR                         | CULGUTETS             |
|              |              | light brown s, Hy<br>clay, lovse, dry<br>(1-3')                                        | o.Sppm         |      |         | Lsb-          | .055        |                     | SCSS-OST<br>composite:<br>Surgare M<br>Sor 1-5'int | via<br>sus<br>I lilli |
|              |              | SAME                                                                                   | 0.0 pm         |      |         |               |             |                     |                                                    |                       |
|              |              | moist, Touse to dense<br>bourn a brown si Itz<br>clay crud gray clay<br>Mixed. (4-5-3) | 0.0 ppm        |      |         |               |             |                     |                                                    |                       |
|              |              | SAME                                                                                   | 0.0ppm         |      |         | Ņ             |             |                     |                                                    |                       |
| PROJEC       | RVAA         | P - MI Sampling (Ravenna A/E: 13                                                       | 3616)          |      |         |               |             | HOLE NO.<br>SC55- ( | 055                                                |                       |
| ENG          | g Form       | 5056A-R. AUG 94                                                                        |                |      |         |               |             |                     | (Proponent: CEC                                    | W-EG)                 |
|              |              | Sample # .                                                                             | 5Csb - C       | 55   | m -0    | $\infty$      | - 5         | o C                 | 1205                                               |                       |

| HTRW DRILLI                            | NG LOG                                                                                                         | DISTRICT                               |                                                 | HOLE NUMBER             |                                              |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------|----------------------------------------------|
| 1. COMPANY NAME                        | and a second | 2. DRILL CONTR                         | ACTOR                                           |                         | SHEET SHEET                                  |
| The Shaw Group - Shaw E                | &I                                                                                                             | Fron                                   | tz Drilling                                     |                         | ) OF 2                                       |
| 3. PROJECT                             | (mma A/E, 122C1C)                                                                                              |                                        | 4. LOCATION                                     |                         |                                              |
|                                        | venna A/E: 133616)                                                                                             |                                        | Rav<br>C MANUFAC                                |                         |                                              |
| THE ANSING KNIE                        | HAVENS DAV                                                                                                     | IN CRICAN                              | D. WANOFAC                                      |                         |                                              |
| 7. SIZE AND TYPES OF DRILLING AND SAMP | LING EQUIPMENT                                                                                                 | O GREST                                | 8. HOLE LOCA                                    | TION                    |                                              |
| 3" HAND ANGGR                          |                                                                                                                |                                        | SCS5.                                           | - 056                   |                                              |
|                                        |                                                                                                                |                                        | 9. SURFACE E                                    | LEVATION                |                                              |
|                                        | ······                                                                                                         |                                        | 901                                             | / ·                     |                                              |
|                                        |                                                                                                                |                                        | 10. DATESTA                                     | (D                      |                                              |
| 12. OVERBURDEN THICKNESS               | \                                                                                                              | ·                                      | 15. DEPTH OF                                    | GROUNDWATER ENCOUNT     | TERED                                        |
| > 5' (MAX DEPTH                        | )                                                                                                              |                                        | NA                                              |                         |                                              |
| 13. DEPTH DRILLED INTO ROCK            |                                                                                                                |                                        | 16. DEPTH TO                                    | WATER AND ELAPSED TIM   | E AFTER DRILLING COMPLETED                   |
| NA-                                    |                                                                                                                | ·                                      | NA                                              |                         |                                              |
| 14. TOTAL DEPTH OF HOLE                |                                                                                                                |                                        | 17. OTHER W                                     | ATER LEVEL MEASUREMEN   | IS (SPECIFY)                                 |
| 18. GEOTECHNICAL SAMPLES               | DISTURBED                                                                                                      | UNDISTU                                |                                                 | 19. OTAL NUMBER OF CORE | BOXES                                        |
| NA                                     |                                                                                                                |                                        |                                                 |                         |                                              |
| 20. SAMPLES FOR CHEMICAL ANALYSIS      | voc                                                                                                            | METALS                                 | OTHER (SPE                                      | CIFY) OTHER (SPECIFY)   | OTHER (SPECIFY) 21. TOTAL CORE               |
|                                        |                                                                                                                | $\checkmark$                           | EXPLOS                                          | ves svols               | NA- RECOVERY/JD %                            |
| 22. DISPOSITION OF HOLE                | BACKFILLED                                                                                                     | A A                                    | C (D) IT                                        | CIFY) -23 SIGNATURE     | DENSPECTOR                                   |
| LOCATION SKETCH/COMMENTS               | <u>}</u>                                                                                                       |                                        | I CALUUT                                        | SCALE: 1-               | Ly                                           |
|                                        |                                                                                                                |                                        |                                                 |                         |                                              |
|                                        |                                                                                                                |                                        |                                                 |                         | <del>}}</del>                                |
| ┝                                      | -/A                                                                                                            | 2                                      |                                                 |                         | <del></del>                                  |
|                                        |                                                                                                                |                                        | PUL                                             |                         | <u></u>                                      |
|                                        |                                                                                                                |                                        |                                                 | $\times$                | KSt. 668 MIGUD                               |
|                                        |                                                                                                                |                                        |                                                 |                         |                                              |
|                                        | . u / /                                                                                                        |                                        |                                                 | 6/1                     |                                              |
|                                        |                                                                                                                | SCSS-0                                 | \$2                                             |                         |                                              |
|                                        |                                                                                                                | 6                                      |                                                 |                         |                                              |
|                                        | 1 8                                                                                                            |                                        |                                                 |                         |                                              |
|                                        |                                                                                                                |                                        | ++/+-/                                          | 4                       |                                              |
|                                        | -4/-1\$9                                                                                                       | +                                      | <u>  / /</u>                                    |                         | <u>                                     </u> |
| -                                      |                                                                                                                | , <u> </u>                             | ↓ <i>/</i> ↓ <i>/</i> ↓                         |                         | <u> </u>                                     |
|                                        | V X L                                                                                                          | 4                                      | <u>/</u>                                        |                         |                                              |
|                                        |                                                                                                                | $\downarrow$ $\downarrow$ $\downarrow$ | 141                                             |                         |                                              |
|                                        | f                                                                                                              | [ P ]                                  | V III                                           |                         |                                              |
|                                        |                                                                                                                | 1/1                                    | ii                                              |                         |                                              |
|                                        |                                                                                                                | ++//                                   | †                                               |                         | <u> </u>                                     |
|                                        |                                                                                                                | +/-//                                  | ┼╍╍┼╍╍┾╍                                        |                         | <u> </u>                                     |
|                                        |                                                                                                                | +-//                                   | · <u></u> <u></u> + <u></u> <u></u> } <u></u> } |                         | <u> </u>                                     |
| ╀╍┾╍┾╍┾╍┾╍┝                            |                                                                                                                |                                        | +                                               | told                    |                                              |
| ·····                                  |                                                                                                                | XV                                     |                                                 | 103 = NP C              | A SLUYE                                      |
|                                        |                                                                                                                |                                        |                                                 | BOS - BODO              | m (FSLOPE)                                   |
| PROJECT<br>BV/AAD - MI Sampling (Pa    | Venna A/F· 122616)                                                                                             |                                        |                                                 | HOLE NO.                |                                              |
|                                        | venila AyL. 155010)                                                                                            |                                        |                                                 |                         | (Proponent: (ECW-EG)                         |



This page intentionally left blank.

**Chains of Custody** 

This page intentionally left blank.

| Ī        | Rev. 4/2           | 2010                                               | N OF CI   | OF CUSTODY |                                         |                                         |                                           |            |             |                                 |                        |                                  |                                        | Pa       | ge1      |                                                                 | of             | 3              |                       |                                                 |                              |  |  |
|----------|--------------------|----------------------------------------------------|-----------|------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|------------|-------------|---------------------------------|------------------------|----------------------------------|----------------------------------------|----------|----------|-----------------------------------------------------------------|----------------|----------------|-----------------------|-------------------------------------------------|------------------------------|--|--|
|          | Compa              | Company: SHAW E & I                                |           |            |                                         |                                         |                                           | 7          |             |                                 |                        |                                  | 1230 Lange Court, Baraboo, WI 53913 Re |          |          |                                                                 |                |                |                       |                                                 | Crispo                       |  |  |
|          | Project            | Project Contact: David Crispo ([] LABORATO         |           |            |                                         |                                         | RIES                                      |            |             |                                 |                        | 608-356-2760 Fax 608-356-2766 EM |                                        |          |          |                                                                 |                |                |                       | AIL: david.crispo@shawgrp.com<br>mpany: SHAWE&I |                              |  |  |
| 1        | Teleph             | one: 61                                            | 7-834-'   | 5230       | *************************************** | *************************************** |                                           |            |             |                                 | www.ctiaboratories.com |                                  |                                        |          |          |                                                                 |                |                | Address: Randolph, MA |                                                 |                              |  |  |
|          | Folder #: 81543    |                                                    |           |            |                                         |                                         | Program:                                  |            |             |                                 |                        |                                  |                                        |          |          |                                                                 |                |                |                       |                                                 |                              |  |  |
| ļ        | Project            | Company: SHAW E&J INC                              |           |            |                                         |                                         | Solid Waste Other                         |            |             |                                 |                        |                                  |                                        | vA       | JES      | EMAIL.                                                          |                |                |                       |                                                 |                              |  |  |
|          | Project            | Project #: 133616 Project: RAVAAP IRP              |           |            |                                         |                                         |                                           | 3<br>]<br> |             |                                 |                        |                                  |                                        |          |          |                                                                 | Company:       |                |                       |                                                 |                              |  |  |
|          | Locatio            | .ocation: RAVENNA, OH Logged By: JLS PM: ET        |           |            |                                         |                                         |                                           | i<br>i     | PO # 621620 |                                 |                        |                                  |                                        |          |          |                                                                 | Addre          | Address:       |                       |                                                 |                              |  |  |
|          | Sample             | ampled By:                                         |           |            |                                         |                                         | ***** *****<br>************************** |            |             |                                 |                        |                                  |                                        |          | is resno | I unent of invoice as ner CT Laboratories' terms and conditions |                |                |                       |                                                 |                              |  |  |
|          | <u> </u>           |                                                    |           |            |                                         | ۲.<br>۲                                 | ſ                                         |            | -           |                                 |                        |                                  |                                        |          |          |                                                                 | <i>jor pug</i> |                | 7                     | Trans                                           |                              |  |  |
|          | Client S           | lient Special Instructions                         |           |            |                                         |                                         | ┝                                         | 1          | <u> </u>    | ANALIJES K                      |                        |                                  |                                        | EQU      | JEST     |                                                                 |                | <u> </u>       |                       |                                                 | Normal RUSH*                 |  |  |
|          |                    |                                                    |           |            |                                         |                                         |                                           | }          |             |                                 |                        |                                  |                                        |          |          | 1                                                               |                |                | 2                     | <b>MSD</b>                                      | Date Needed:                 |  |  |
|          |                    |                                                    |           |            |                                         | _                                       |                                           |            |             | ium                             |                        |                                  |                                        |          |          |                                                                 |                |                | aine                  | <b>MSM</b>                                      | Rush analysis requires prior |  |  |
| ļ        |                    |                                                    |           |            |                                         | 1 Š                                     | stals                                     | es         | 1           | om                              |                        | 8                                |                                        |          | nts      |                                                                 |                |                | ont                   | ed N                                            | CT Laboratories' approval    |  |  |
|          | Matrix             |                                                    |           |            |                                         | ed?                                     | Ъ                                         | osiv       | പ്പ         | ਤਿ                              | 8                      | cide                             |                                        | ide      | ella     |                                                                 |                | 1              | <b> </b>              | mat                                             | Surcharges:                  |  |  |
|          | GW – gro           | undwater                                           | SW - sur  | face water | WW - wastewater DW - drinking water     | lter                                    | AL                                        | ₽Į         | Įğ          | ex                              | 181                    | esti.                            | l e l                                  | yanı     | ð        |                                                                 | Ì              |                | otal                  | esig                                            | 24 nr 200%<br>2-3 days 100%  |  |  |
|          | <b>S</b> - soil/se | ediment                                            | SL - slud | lge<br>    | A - air M - misc/waste                  | <u> </u>                                |                                           | ļ ÉÌ       | 5           |                                 | >                      | Ľ Ľ                              | A                                      | Ú,       | Ē        |                                                                 |                | l              | Ĕ                     |                                                 | 4-9 days 50%                 |  |  |
|          | Colle<br>Date      | Collection Matrix Grab/ Comp Sample ID Description |           |            |                                         | 1                                       |                                           |            |             | Fill in Spaces with Bottles per |                        |                                  |                                        |          |          | les p                                                           | er Te          | est            |                       |                                                 | CT Lab ID #                  |  |  |
|          | 09.21.10           | 1100                                               | 5         | grab       | SCsb-043m-0001-SO                       | N                                       | x                                         | x          | x           | <u> </u>                        |                        | 1                                | <u></u>                                | [        | <u> </u> | ]                                                               |                |                | 1                     |                                                 | 850257                       |  |  |
|          | 09.21.10           | 1105                                               | S         | grab       | SCsb-043m-0002-SO                       | N                                       | x                                         | x          | x           | <u> </u>                        | <u> </u>               | †—–                              | 1                                      | <b> </b> |          |                                                                 |                |                | 1                     |                                                 | 850302                       |  |  |
| Î        | 09.21.10           | 1115                                               | S         | grab       | SCsb-043m-003-SO                        | N                                       | x                                         | x          | x           |                                 |                        |                                  |                                        |          |          |                                                                 |                |                | 1                     |                                                 | 850303.                      |  |  |
|          | 09.21.10           | 1120                                               | S         | grab       | SCsb-043m-0004-SO                       | N                                       | x                                         | x          | x           |                                 |                        |                                  |                                        |          |          |                                                                 |                |                | 1                     |                                                 | 850304                       |  |  |
| ĺ        | 09.21.10           | 1135                                               | S         | grab       | SCsb-043m-0005-SO                       | N                                       | x                                         | x          | x           |                                 |                        |                                  | <u> </u>                               |          |          | <u> </u>                                                        |                | _              |                       |                                                 | 850305                       |  |  |
| <u> </u> | 09.21.10           | 1330                                               |           | grab       | SCsb-042m-0001-SO                       | N                                       | x                                         | x          | x           | <b> </b>                        | L                      | <u> </u>                         | <u> </u>                               | <b> </b> | -        | <b> </b>                                                        |                |                |                       |                                                 | 850366                       |  |  |
|          | 09.21.10           | 1335                                               |           | grab       | SCsb-042m-0002-SO                       | <u>N</u>                                | <b>X</b> -                                | X          | <u>x</u>    | <b>L</b>                        | <b> </b>               | ļ                                | <u> </u>                               | [        |          | [                                                               |                |                |                       |                                                 | 850307                       |  |  |
| ļ        | 09.21.10           | 1345                                               |           | grab       | SCsb-042m-0003-50-                      | <b>N</b>                                | *                                         | *          | X           | <u> </u>                        | <b> </b>               | <u> </u>                         | <u> </u>                               | l        |          |                                                                 |                | Ratind: 14     |                       |                                                 | 850308                       |  |  |
|          | 09.21.10           | 1350                                               |           | grab       | SCsb-042m-0004-SO                       | N                                       | <u>x</u>                                  | x          | x           | <u> </u>                        |                        | <u> </u>                         | <b> </b>                               | <b> </b> |          | <b> </b>                                                        |                |                |                       | )<br>                                           | 880309                       |  |  |
|          | 09.21.10           | 1400                                               |           | grab       | SCsb-042m-0005-SO                       | <u>N</u>                                | x                                         | X          | X           |                                 | ŀ                      | <u> </u>                         |                                        |          |          |                                                                 |                |                |                       |                                                 | 200310                       |  |  |
| ┦        | 09.21.10           | 1425                                               |           | grab       | SCab 041m-0001-50                       | $+ \frac{N}{N}$                         |                                           |            | X           | ╡────                           |                        | ┨                                | ┥                                      |          |          |                                                                 |                |                |                       | v                                               | 00000                        |  |  |
| age      | 59.21.10           | 1400                                               |           | grad       | 5CSD-041M-0002-50                       |                                         |                                           | <u>x</u>   |             | <u> </u>                        | !                      | <u> </u>                         | <u> </u>                               | L        | <u> </u> |                                                                 |                |                | <u> </u>              |                                                 | 100012                       |  |  |
| 90       | Relingens          | red By:                                            | A         | (1119      | Date/Time                               | Date/Time Received By:                  |                                           |            |             |                                 |                        |                                  |                                        | 6        | ~        | Dat                                                             | e/Tim          | e              |                       | Lab Use Only                                    |                              |  |  |
| 57       | 1 mille            |                                                    |           |            | Mid2.101010                             | · <br>-                                 |                                           |            |             |                                 | 44                     | A                                | ┣                                      | <u> </u> | <b>\</b> |                                                                 |                | mperature 44.5 |                       |                                                 |                              |  |  |
|          | Received           | ecerved by: Date/Time                              |           |            |                                         |                                         | Received for Laboratory                   |            |             |                                 |                        | by:                              |                                        |          | X)       | Dat                                                             |                | \$10,          | D                     |                                                 | oler# 7 Coolers              |  |  |
| l        |                    |                                                    |           |            |                                         | <u> </u>                                | _                                         |            |             |                                 |                        |                                  | <u> </u>                               | 7        | Υ        |                                                                 | The            | SAM B          |                       |                                                 |                              |  |  |
|          |                    |                                                    |           |            |                                         |                                         |                                           |            |             |                                 |                        |                                  |                                        | (        | J        |                                                                 |                |                |                       | 7                                               | 100 Price                    |  |  |

1
| [        | Rev. 4/                      | 2010                             |                       | ·                          |                | Снаг                              | N OF CI            | USTO                   | DDY       | ,      | · <u>·</u> ···  |                    |                     |                      |                        |                           | Pag                                  | ze 2                   |                       | of                  | 3                                                                                  |
|----------|------------------------------|----------------------------------|-----------------------|----------------------------|----------------|-----------------------------------|--------------------|------------------------|-----------|--------|-----------------|--------------------|---------------------|----------------------|------------------------|---------------------------|--------------------------------------|------------------------|-----------------------|---------------------|------------------------------------------------------------------------------------|
|          | Compa<br>Project             | any: SH<br>Contac                | AW E<br>t: Davi       | & I<br>d Cris <sub>I</sub> | 00             | CT LABORAT                        | 0 R I E            | <u>}</u>               |           |        | 123             | 30 La<br>60        | ange ()<br>)8-356   | Court<br>-2761<br>ww | ;, Bar<br>) F<br>w.ctl | aboo,<br>ax 608<br>aborat | WI 53913<br>3-356-2766<br>tories.com | Report<br>EMAI<br>Comp | To: I<br>L: d<br>any: | David<br>avid<br>SH | Crispo<br>.crispo@shawgrp.com<br>AW E & I                                          |
|          | Teleph<br>Project<br>Project | ione: 61<br>: Name:<br>: #: 1336 | 7-834-5<br>RVAA<br>16 | 5230<br>.P A/E             |                | Lab Use<br>Place Header S         | Only<br>ticker Her | e:                     | )         |        | Pr<br>QS<br>Sol | ogra<br>M<br>lid V | am:<br>RCI<br>Vaste | RA<br>(              | SDV<br>Other           | VA                        | NPDES                                | Invoice<br>EMAI        | ss: 1<br>To:*<br>L:   | kand                | lolph, MA                                                                          |
|          | Locatio                      | on: RAV                          | VENN                  | A, OH                      |                | 4                                 | 5                  | (~                     |           |        | PC              | )#6                | 2162                | 0                    |                        |                           |                                      | Comp.<br>Addre         | any:<br>ss:           |                     | ·                                                                                  |
|          | Sample                       | ed By:                           |                       |                            |                |                                   |                    |                        |           |        |                 |                    | ×                   | Party                | listed                 | is respo                  | msible for pay                       | ment of inv            | oice as               | per CT              | Laboratories' terms and conditions                                                 |
|          | Client S                     | Special II                       | nstructi              | ons                        |                |                                   |                    |                        |           |        |                 | ANA                | ALYS                | ES R                 | EQU                    | JEST                      | ED                                   |                        |                       |                     | Turnaround Time                                                                    |
|          | Matrix:<br>GW - gro          | bundwater                        | SW - sur              | face water                 | WW - wast      | ewater <b>DW</b> - drinking water | iltered? Y/N       | [AL Metals             | xplosives | vocs   | lex Chromium    | 'OCs               | esticides           | CBs                  | yanide                 | ropellants                |                                      |                        | otal # Containers     | esignated MS/MSD    | Normal RUSH*<br>Date Needed:<br>                                                   |
|          | S - soil/se                  | ediment                          | SL - slud             | ge                         | <b>A</b> - air | M - misc/waste                    |                    | <u> </u>               | <u>ш</u>  | N.     |                 | >                  | <u>с</u>            |                      | 0                      | <u> </u>                  |                                      |                        | H                     |                     | 4-9 days 50%                                                                       |
|          | Date                         | Time                             | Matrix                | Grab/<br>Comp              | Sam            | ple ID Description                |                    |                        |           |        |                 | Fill               | in Sp               | aces                 | s witi                 | h Bott                    | les per Tes                          | st                     |                       |                     | Lab use only                                                                       |
|          | 09.21.10                     | 1440                             | S                     | grab                       | S              | Csb-041m-0003-SO                  | N                  | x                      | x         | x      |                 |                    |                     |                      |                        |                           |                                      |                        |                       |                     | 850313                                                                             |
|          | 09.21.10                     | 1450                             | S                     | grab                       | S              | Csb-041m-0004-SO                  | N                  | x                      | x         | x      |                 |                    |                     | -                    |                        | <u> </u>                  |                                      |                        |                       |                     | 850314                                                                             |
|          | 09.21.10                     | 1455                             | S                     | grab                       | <u>S</u>       | Csb-041m-0005-SO                  | N                  | x                      | X         | x      | ļ               |                    | <b></b>             | <u> </u>             |                        | ∔                         |                                      |                        |                       |                     | 850315                                                                             |
|          | 09.21.10                     | 1525                             |                       | grab                       |                | Csb-040m-0001-SO                  | N                  | <u>x</u>               | X         | X      |                 |                    | <u> </u>            |                      | <u> </u>               | <u>  </u>                 | ╏──┤──┼                              | _{                     |                       |                     | 850316                                                                             |
|          | 09.21.10                     | 1535                             |                       | grab                       |                | Csb-040m-0002-50                  | N                  |                        | X         | X      |                 |                    | ╂──                 |                      |                        |                           | -   -                                |                        | ┝╶┥                   |                     | 850317                                                                             |
|          | 09.21.10                     | 1545                             | - S                   | grab                       |                | Csb-040m-0003-30                  |                    | X                      |           | X      |                 |                    | ┨                   |                      |                        | +                         | ┝╌╀─┼                                |                        | $\left  - \right $    |                     | 250218                                                                             |
|          | 09.21.10                     | 1550                             | S                     | grab                       | S              | Csb-040m-0005-SO                  |                    | $\frac{1}{\mathbf{v}}$ | ×         | A<br>X |                 |                    | <u> </u>            |                      |                        |                           | ╎╌╎═╪╴                               |                        |                       |                     | 000319                                                                             |
|          | 09.21.10                     | 1600                             | s                     | grab                       | S              | Csb-039m-0001-SO                  | N                  | x                      | X         | x      |                 | · ·                |                     |                      | ╂                      |                           |                                      |                        | ┞┈┩                   |                     | 880311                                                                             |
|          | 09.21.10                     | 1610                             | S                     | grab                       | S              | Csb-039m-0002-SO                  | N                  | x                      | x         | x      |                 |                    |                     |                      |                        |                           |                                      | _                      |                       |                     | 850320                                                                             |
|          | 09.21.10                     | 1615                             | S                     | grab                       | S              | Csb-039m-0003-SO                  | N                  | x                      | x         | x      |                 |                    | 1                   | <del> </del>         | †                      | +                         | ┼╴┼╶┼                                |                        |                       | <u> </u>            | 850323                                                                             |
| P        | 09.21.10                     | 1625                             | S                     | grab                       | S              | Csb-039m-0004-SO                  | N                  | x                      | x         | x      |                 |                    | <u> </u>            | 1                    | †                      | †                         | ┟╶╎═╀╴                               | _                      |                       |                     | 800324                                                                             |
| age 9058 | Relinque                     | Bed By:<br>by:                   | 01                    | 100                        | leg            | Date/Time<br>Date/Time            | Receive<br>Receive | ed By:<br>ed for       | Labo      | rator  | y by:           |                    |                     |                      |                        | )                         | Date/Time                            | 10                     | )                     | Ice<br>Ter<br>Co    | Lab Use Only<br>Present (Pes) No<br>nperature <u>245</u><br>oler # <b>7Coo(ms)</b> |
|          |                              |                                  |                       |                            |                |                                   |                    |                        |           |        |                 |                    |                     |                      | $\left(\right)$        |                           | 1                                    | . 🗸                    |                       | 9/                  | 23/10 1105 PMC                                                                     |

| Rev. 4/2           | 2010        |                      |            |           | (                    | CHAIN                | OF CL             | JSTC       | DDY                 | ,             |        |           |              |          |            |                           |        | Pa      | ge           | _3_          | _               | of         | 3                                      |
|--------------------|-------------|----------------------|------------|-----------|----------------------|----------------------|-------------------|------------|---------------------|---------------|--------|-----------|--------------|----------|------------|---------------------------|--------|---------|--------------|--------------|-----------------|------------|----------------------------------------|
| Compa              | ny: SH      | AW E                 | & I        |           |                      |                      |                   | ł          |                     |               | 123    | 30 La     | nge C        | Court    | t, Bar     | aboo,                     | WI 5   | 53913   | Rep          | ort Ta       | : D             | avid       | l Crispo                               |
| Proiect            | Contact     | t: Davi              | d Crisp    | 0         | CT LABOR             | AT (                 | ) R I E           | 5          | 100                 | 20.000        |        | 60        | 8-356        | -276(    | ) F        | ax 60                     | 3-356  | -2766   | EM           | AIL:         | da              | avid<br>CU | crispo@shawgrp.com                     |
| Tolenh             | one: 61'    | 7_831_5              | 320        | -         |                      |                      |                   |            |                     |               | -<br>[ |           |              | ww       | w.ctl      | abora                     | tories | .com    | Ade          | dress        | iy.<br>S:F      | Sil        | dolph. MA                              |
|                    | one. 01/    | /-03 <del>4-</del> 0 | 230        |           | L<br>Place H         | ab Use (<br>eader St | )nly<br>icker Hen | e:         |                     |               | Pro    | ogra      | m:           |          | <b>~</b>   |                           |        |         |              |              |                 |            |                                        |
| Project            | Name:       | RVAA                 | PA/E       |           |                      |                      |                   | <b>5</b>   |                     | -             |        | M<br>Id M | RCI<br>Iosto | א<br>ר   | 5DV<br>The | VA                        | NPI    | DES     |              | Dice To      | 0:*             |            |                                        |
| Project            | #: 13361    | 16                   |            |           |                      |                      | ny.               | $\bigcirc$ |                     | ÷ .           |        |           | aste         |          | Jiner      |                           |        |         | $\int Eivi$  | AIL:<br>npan | v:              |            |                                        |
| Locatio            | n: RAV      | /ENN/                | A, OH      |           |                      | 4\                   | J C               | -          |                     |               | PC     | )#6       | 2162         | 0        |            |                           |        | -       | Add          | dress        |                 |            |                                        |
| Sample             | ed By:      |                      |            |           |                      | 0.                   |                   |            |                     |               |        | -,        |              | Dartu    | listad     | ie roene                  |        | for no  | ummt of      |              |                 |            | T I above tarios' torus and conditions |
|                    |             |                      |            |           | L                    |                      |                   | 1          |                     |               |        |           |              |          |            |                           |        | jor pug | ment oj      | THOOLE       | : us p          |            |                                        |
| Client S           | pecial Ir   | istructi             | ons        |           |                      |                      | }                 | ┝          |                     | <u> </u>      |        |           | LYS          | ES R     | EQU        | JEST                      | ED 7   |         | <del>-</del> |              |                 | _          | Turnaround Time<br>Normal RUSH*        |
|                    |             |                      |            |           |                      |                      |                   |            |                     | ]             |        |           |              | )        |            |                           |        | ,       | 9            |              | 2               | 4SD        | Date Needed:                           |
|                    |             |                      |            |           |                      |                      |                   |            |                     | ]             | un     |           |              | 1        |            |                           |        |         |              |              | ine             | ISA        |                                        |
|                    |             |                      |            |           |                      |                      | N N               | tals       | s                   | ]             | omi    |           | φ)           | )        |            | nts                       |        |         |              |              | ont             | ed N       | CT Laboratories' approval              |
|                    |             |                      |            |           |                      |                      | sd?               | Me         | siv                 | <sup>2</sup>  | hr     |           | ide          |          | -ge        | ellar                     |        |         |              |              | <b>u</b>        | nate       | Surcharges:                            |
| <b>GW</b> – grou   | undwater    | SW - sur             | face water | WW - wasi | ewater DW - drinking | water                | ter               | AL         | olq                 | ğ             | X      | N N       | stic         | m m      | l in       | ope                       | •      |         |              |              | E               | 50         | 24 hr 200%                             |
| S - soil/see       | diment      | SL - slud            | ge         | A - air   | M - misc/wast        | e                    | E                 | Η          | Ш<br>Ш              | S             | Η̈́    | Ĭ         | Pe           |          | 12         | $\mathbf{P}_{\mathbf{r}}$ | í í    |         |              | F            | ₽               | ñ          | 4-9 days 50%                           |
| Colle              | ction       | Matrix               | Grab/      | Sam       | ple ID Descripti     | on                   |                   |            |                     |               |        | Fill      | in Sp        | aces     | s wit      | h Boti                    | iles p | er Te   | st           |              |                 |            | CT Lab ID #                            |
| 09.21.10           | 1630        | s                    | grab       | S         | Csb-039m-0005-SO     |                      |                   | x          | x                   | x             | [      |           |              | 1        | -          | <b></b>                   | T_T    |         | ~            |              | 1               |            | Lab use only                           |
| 09.21.10           | 1535        | S                    | grab       | S         | Csb-082m-0002-SO     | <u>`</u>             | N                 | x          | $\frac{\lambda}{x}$ | $\frac{x}{x}$ |        |           |              | ╂──      | <u> </u>   |                           | ┤─┤    | +       |              |              | 1               |            | 857376                                 |
| 09.21.10           | 1345        | S                    | grab       | S         | Csb-083m-0003-SO     |                      | N                 | x          | x                   | x             |        | ·         |              | <u> </u> | +          | +                         | ┝─┦    |         |              | - 1 1        | 1               |            | 850322                                 |
| 09.21.10           | 1345        | S                    | grab       | S         | Csb-042d-0003-SO     |                      | N                 | ╀──        |                     |               |        | x         |              | †        | †          |                           | ┼─┤    |         |              | +-3          | 3               |            | 850908                                 |
| 09.21.10           | 1535        | S                    | grab       | S         | Csb-040d-0002-SO     |                      | N                 |            |                     | <u>†</u>      |        | x         | 1            | †        | †—         |                           |        |         |              | - 3          | 3               |            | 850418                                 |
| 09.21.10           | 1610        | S                    | grab       | S         | Css-067m-0001-SO     |                      | N                 | x          | x                   | x             |        |           |              |          | T          |                           |        |         |              | 1            | 1               | _          | 850425                                 |
| 09.21.10           | 1200        | S                    | grab       | S         | Css-068m-0001-SQ_    |                      | N                 | X          | X                   | X             |        |           |              |          |            |                           |        |         |              |              | 1               |            | 850426                                 |
| 09.21.10           | 1500        | S                    | grab       |           | Css-068d-0001-SO     | ₩₩₩₩₩₩₩₩₩₩₩₩<br>     | N                 |            |                     |               | s      | X         |              |          | -          |                           |        |         | ·            |              | 3               |            | 80442 -                                |
| 09.21.10           | 1315        | S                    | grab       | S         | Css-086m-0001-SO     |                      | N                 | x          | x                   | x             |        | <br>      | L            | <u> </u> | <u> </u>   | <u> </u>                  |        |         |              | 1            |                 |            | 850446                                 |
| 09.21.10           | 1505        | S                    | grab       | . S       | Css-086d-0001-SO     |                      | N                 |            | ·                   |               |        | x         | ╞╴╴╴         |          |            |                           |        |         |              |              | 3               |            | 850458,                                |
| 09.21.10           | 1640        | GW                   | grab       |           | 5Cqc-001-0001-TB     |                      | N                 | <u> </u>   | <br>                | <br>          |        | x         | }            | <u> </u> |            |                           |        |         |              |              | 3               |            | 80464                                  |
| 09.21.10           | 1640        |                      | grab       |           |                      |                      | N                 | <b>X</b>   | X                   | x             |        |           |              | <u> </u> |            | <u> </u>                  |        |         |              |              | ∎  <br>         |            | 850471                                 |
| Relinquist         | hed B       | Mh                   | ad         | 、<br>、    | Date/Time            | n.                   | Receive           | d By:      |                     |               |        |           |              |          | -          |                           | Dat    | e/Tin   | ne<br>N      |              |                 | T          | Lab Use Only                           |
| Th                 | n/]-        | 144                  | 2          | T         | M. Law               |                      | <br>              |            |                     |               |        |           |              |          | 11         | <u>}</u> _                |        | t       | -+           |              | $ \rightarrow $ | 1C6<br>To  | monarature 4                           |
| <b>Bec</b> eived I | by <b>!</b> | -                    | $\bigcirc$ | •         | Date/Time            |                      | Receive           | d for      | Labo                | rator         | y by:  |           |              | 0        | ¥          | ノ                         | Dat    | e/Tin   | 33           | 10           |                 | Co         | poler # <u>Coolers</u>                 |
|                    |             |                      |            |           |                      |                      | <b></b>           | -          |                     | <u> </u>      |        | <u> </u>  |              |          | -1)-       |                           |        |         | + +*         | 0            | <u>+</u>        | 9/         | 23,10 1105 PML                         |

| Rev. 4/2010                                                                           | CHAIN                                                                                             | OF CI             | JST        | DDY   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |              |              |              |                  |                                                    | Pa          | ge1               |                       | _ of         | 1                                                         |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------------|--------------|--------------|------------------|----------------------------------------------------|-------------|-------------------|-----------------------|--------------|-----------------------------------------------------------|
| Company: SHAW E & I                                                                   |                                                                                                   |                   |            | A     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12            | 30 La        | inge C       | Court        | , Bar        | aboo,            | WI 5                                               | 3913        | Report<br>EMAI    | <b>To</b> : 1<br>L: d | Davi<br>avic | d Crispo<br>d.crispo@shaw@rp.com                          |
| Project Contact: David Crispo                                                         | CI THROKHIO                                                                                       | JKIF              | <b>)</b> : | 1 th  | and the second s | -             | 6(           | 18-356       | -2760<br>WW1 | v.ctla       | ax 608<br>aborat | tories.                                            | 2766<br>com | Comp              | any                   | SH           | IAW E & I                                                 |
| Telephone: 617-834-5230                                                               | Lab Use C<br>Place Header St                                                                      | Only<br>icker Her | <u>.</u>   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pr            | ogra         | m:           |              |              |                  |                                                    |             | Addre             | 255;                  | Ran          | dolph, MA                                                 |
| Project Name: RVAAP A/E                                                               | Tuce Header Se                                                                                    |                   | 3          | )     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q9<br>  So    | 5M<br>Iid V  | RCF<br>Vaste | AS<br>C      | SDV<br>)ther | VA               | NPC                                                | DES         | Invoice<br>EMAI   | e To:*<br>I           |              |                                                           |
| Project #: 133616                                                                     | $\langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \rangle \rangle \rangle$ | ગુડુટ             |            | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>) # 6</u> | 7167         | <u> </u>     |              |                  |                                                    |             | Comp              | any:                  | ;            |                                                           |
| Location: RAVENNA, OH                                                                 |                                                                                                   | )                 |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | J#0          | 2102         |              |              |                  |                                                    |             | Addre             | ess:                  |              |                                                           |
| Sampled By:                                                                           | L                                                                                                 |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | *            | Party        | listed       | is respo         | nsible f                                           | or pay      | ment of inv       | oice as               | per C        | CT Laboratories' terms and conditions                     |
| Client Special Instructions                                                           |                                                                                                   | 1                 | <u> </u>   | ·     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ-            | AN/          | LYS          | ES R         | EQU          | JEST             | ED                                                 |             |                   | 4                     |              | Turnaround Time<br>Normal RUSH*                           |
|                                                                                       |                                                                                                   | 1                 |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |              |              |              |              |                  |                                                    |             |                   | ers                   | MSD          | Date Needed:                                              |
|                                                                                       |                                                                                                   | N'N               | etals      | 'es   | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | omiun         |              | S            |              |              | nts              |                                                    |             |                   | Contain               | ed MS/       | Rush analysis requires prior<br>CT Laboratories' approval |
| Matrix:                                                                               |                                                                                                   | ered?             | ΓW         | losiv | SCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - L           | Cs           | ticide       | Se la        | nide         | pella            | 1                                                  |             |                   | al # C                | ignat        | Surcharges:<br>24 hr 200%                                 |
| GW – groundwater SW - surface water WW - was<br>S - soil/sediment SL - sludge A - air | stewater DW - drinking water<br>M - misc/waste                                                    | Filt              | TA         | Exp   | SVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | He            | NOV          | Pes          | PCI          | Cya          | Pro              |                                                    |             | _                 | Tot                   | Des          | 2-3 days 100%<br>4-9 days 50%                             |
| Collection<br>Date Time Matrix Grab/<br>Comp Sam                                      | ple ID Description                                                                                |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Fill         | in Sp        | aces         | witl         | n Bott           | les pe                                             | er Te       | st                |                       |              | CT Lab ID #<br>Lab use only                               |
| 09.22.10 1005 S grab S                                                                | 6Css-066m-0001-SO                                                                                 | N                 | x          | x     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x             | [            |              |              |              |                  |                                                    | _           |                   |                       |              | 80487                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                | 6Csb-036m-0001-SO                                                                                 | N                 | X          | X     | $\frac{\mathbf{x}}{\mathbf{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X             |              |              | <b> </b>     |              |                  | ┝─┤                                                |             |                   |                       |              | 80488                                                     |
| 09.22.10 1350 S grab S                                                                | 6Css-064m-0001-50                                                                                 | <br>              |            | x     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{x}{x}$ | <u></u>      |              | ┣──          | ┣            | +                | ╞━─┼                                               | -+          |                   |                       |              | S0489                                                     |
|                                                                                       |                                                                                                   |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>     |              |              | <b> </b>     |                  | $\left\{ \begin{array}{c} \\ \end{array} \right\}$ |             |                   |                       |              | 0\0710                                                    |
|                                                                                       |                                                                                                   |                   | <u> </u>   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ļ            |              |              | <u> </u>     | Į                |                                                    |             |                   |                       |              |                                                           |
|                                                                                       | Reportante o,                                                                                     |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <br>         |              |              | ┨───         |                  |                                                    |             |                   |                       |              |                                                           |
|                                                                                       |                                                                                                   |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |              |              |              |                  |                                                    |             |                   | State in which        |              |                                                           |
|                                                                                       |                                                                                                   |                   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |              |              |              | <u> </u>         |                                                    |             |                   |                       |              |                                                           |
|                                                                                       |                                                                                                   |                   |            |       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |              | <u> </u>     |              | ├            | +                | ┟─┟                                                |             |                   |                       |              |                                                           |
| Reinguished By: A-MAN                                                                 | Date/Time<br>9:22:0/1744                                                                          | Receive           | ed By:     | L     | 4 <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>I</u>      | L            | <u> </u>     | <br>/        | <br>a        | <u> </u>         | Date                                               | /Tim        | <br>2<br><b>\</b> | <u> </u>              | Ic           | Lab Use Only<br>re Present (Yes) No                       |
| Received by:                                                                          | Date/Time                                                                                         | Receive           | ed for     | Labo  | orator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y by:         |              |              | 6            | V            | )                | Date<br>O                                          | Tim<br>A    | 3/10              | D                     | Te<br>C      | emperature <u>24.5</u><br>ooler # <u>7 Coolers</u>        |
|                                                                                       |                                                                                                   | <u></u>           |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |              |              | U            |                  | <u> </u>                                           | 1           |                   |                       |              | 9/23/10 NOS PML                                           |

| Rev. 4/2010                                                                                                     | CHAIN                                   | OF CL                                       | JSTC               | עסכ       |            |                  |                             | -                           |                      |                      |                           |                        | Pa                   | ge                           | 1                             | of                       | 4                                                                                |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------|-----------|------------|------------------|-----------------------------|-----------------------------|----------------------|----------------------|---------------------------|------------------------|----------------------|------------------------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Crispo                                                            |                                         | )                                           | <b>)</b><br>*****  | ****      | ****       | 123              | 30 La<br>60                 | nge C<br>8-356              | ourt,<br>2760<br>wwv | Bara<br>Fa<br>v.ctla | aboo,<br>ax 608<br>iborat | WI 5<br>-356-<br>ories | 3913<br>2766<br>.com | Repor<br>EMA<br>Com          | t To:<br>IL: c<br>pany        | David<br>lavid.<br>: SHA | Crispo<br>.crispo@shawgrp.com<br>AW E & I<br>.comb MA                            |
| Telephone: 617-834-5230<br>Project Name: RVAAP A/E<br>Project #: 133616<br>Location: RAVENNA, OH<br>Sampled By: | ************************************    | ********<br>  INC<br>P<br>PM: E'<br>******* | ****<br>T<br>***** | ****      | ****       | Pro<br>QS<br>Sol | ogra<br>M<br>lid W<br>) # 6 | m:<br>RCR<br>Vaste<br>2162( | C<br>C               | SDW<br>Other         | / <b>A</b>                | NPI                    | DES                  | Invoid<br>EMA<br>Com<br>Addi | e To:"<br>IL:<br>pany<br>ess: |                          |                                                                                  |
|                                                                                                                 |                                         |                                             | 1                  |           |            |                  | <u>.</u>                    |                             | Party I              | listea i             | s <u>respo</u>            | nsiple                 | for pay              | ment of in                   | noice a:                      | T per CT                 | Laboratories terms and conditions                                                |
| Client Special Instructions<br>Matrix:<br>GW – groundwater SW - surface water WW - was                          | tewater DW - drinking water             | iltered? Y/N                                | FAL Metals         | xplosives | VOCs       | lex Chromium     | ANA<br>OCs                  | 'esticides                  | CBs R                | yanide d             | ropellants                | <u>ED</u>              |                      |                              | otal # Containers             | esignated MS/MSD         | Turnaround Time         Normal       RUSH*         Date Needed:                  |
| S - soil/sediment     SL - sludge     A - air       Collection     Matrix     Grab/<br>Comp     Sam             | m - misc/waste                          | <u> </u>                                    |                    | ш         | S<br>S     |                  | >  <br>Fill                 | <br>in Sp                   | aces                 | with                 | Bott                      | ]<br>les p             | er Te                | st                           |                               |                          | 4-9 days 50%<br>CT Lab ID #<br>Lah use only                                      |
| 09.22.10 1125 S grab S                                                                                          | 6Css-065m-0001-SO                       | N                                           | x                  | x         | x          |                  |                             |                             |                      | <br>                 | 1                         |                        |                      |                              | T                             |                          | 851475                                                                           |
| 09.22.10 1510 S grab S                                                                                          | SCss-063m-0001-SO                       | N                                           | x                  | x         | X          |                  |                             |                             | [                    |                      | 1                         |                        |                      |                              | 1                             |                          | 851476                                                                           |
| 09.22.10 1005 S grab S                                                                                          | 6Css-066m-0001-SO                       | Ν                                           | x                  | x         | x          | x                |                             | NOS                         | Am                   | ph                   | nec                       | d                      | se                   | e coc                        | 81                            | 543                      | 851477                                                                           |
| - 09.22.10 1105 S grab S                                                                                        | Csb-035m-0001-SO                        | N                                           | x                  | x         | x          |                  | _                           |                             |                      |                      |                           |                        | et                   | 9-2                          | 3-10                          |                          | 851478                                                                           |
| 09.22.10 1110 S grab S                                                                                          | Csb-035m-0002-SO                        | N                                           | x                  | x         | X          |                  |                             |                             |                      |                      |                           |                        |                      |                              |                               |                          | 851479                                                                           |
| 09.22.10 1115 S grab S                                                                                          | Csb-035m-0003-SO                        | N                                           | x                  | X         | x          |                  |                             |                             |                      |                      |                           |                        |                      |                              |                               |                          | 857480                                                                           |
| 09.22.10 1120 S grab S                                                                                          | Csb-035m-0004-SO                        | N                                           | X                  | <u>x</u>  | x          |                  | L                           | <u> </u>                    |                      |                      | <b> </b>                  |                        |                      |                              |                               |                          | 887481                                                                           |
| 09.22.10 1125 S grab S                                                                                          | Csb-035m-0005-SO                        | N                                           | x                  | <u>x</u>  | x          |                  |                             | <u> </u>                    |                      |                      | ļ                         |                        |                      |                              |                               | L                        | 851482                                                                           |
| 09.22.10 1305 S grab S                                                                                          | 6Csb-036m-0001-SO                       | <u>N</u>                                    | X                  | X         | X          | x                |                             | No                          | 50                   | m Pl                 | e 1                       | rec                    | d                    | see                          | doc                           | 815                      | 43887483                                                                         |
| 09.22.10 1310 S grab S                                                                                          | Csb-036m-0002-SO                        | N                                           | x                  | x         | x          |                  | <br>                        | <u> </u>                    | L                    | ļ.,                  | <u> </u>                  |                        |                      | <u>etk</u>                   | 9-28                          | -10                      | 851484                                                                           |
| 09.22.10 1315 S grab S                                                                                          | 6Csb-036m-0003-SO                       | N                                           | x                  | <u>x</u>  | x          |                  |                             | <u> </u>                    | <u> </u>             |                      | <u> </u>                  |                        |                      |                              | _                             |                          | 851485                                                                           |
| 09.22.10 1320 S grab S                                                                                          | Csb-036m-0004-SO                        | N                                           | x                  | x         | x          |                  | <br>                        | ļ                           |                      | <br>                 | <u> </u>                  |                        |                      |                              |                               | <br>                     | 851486                                                                           |
| 09.22.10 1325 S grab S                                                                                          | 6Csb-036m-0005-SO                       | N                                           | X                  | X         | <b>X</b> . |                  | <u> </u>                    |                             |                      |                      |                           |                        |                      |                              |                               | Ļ                        | 851487                                                                           |
| Relipcidished by:                                                                                               | Date/Time<br>69.33.10/1710<br>Date/Time | Receive<br>Receive                          | ed By:             | Labo      | rator      | y by:            |                             |                             |                      | Q                    | $\sum$                    | Dat<br>Dat             | e/Tin<br>e/îl în     |                              | us                            | Ice<br>Ter<br>Coo        | Lab Use Only<br>Present $(es)$ No<br>mperature $-43$<br>oler $\#$ $5$ Cob $(us)$ |
|                                                                                                                 |                                         | _                                           |                    |           |            |                  | •                           |                             |                      |                      | V                         | -                      | 1                    |                              |                               |                          | 1/24/10 1040 PAIL                                                                |

| Por 4/                             | 2010                |                       |                    |                     | Стьт                                          |                    | ,<br>10774    | <u>ארזר</u> |         |                  |                   |                 |                     |                       |                            |                             | Par                 |                   | 2                         |               | of                   | 1                                                                                                                       |
|------------------------------------|---------------------|-----------------------|--------------------|---------------------|-----------------------------------------------|--------------------|---------------|-------------|---------|------------------|-------------------|-----------------|---------------------|-----------------------|----------------------------|-----------------------------|---------------------|-------------------|---------------------------|---------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Kev. 4/2                           | 2010                |                       |                    | <u></u>             |                                               | N OF CL            | JSTC          | צענ         |         |                  |                   |                 |                     |                       |                            |                             | ra                  | <u>5e</u>         |                           |               | <u> </u>             | 4                                                                                                                       |
| Compa<br>Project                   | any: SH<br>Contac   | AW E<br>t: Davi       | & I<br>id Crisp    | 00                  | CT LABORAT                                    | O R I E            | 5             |             | 27. Jan | 123              | 80 La<br>60       | nge C<br>8-356- | ourt<br>2760<br>www | , Bar<br>) F<br>w.ctl | aboo,<br>'ax 608<br>aborat | WI 53<br>3-356-2<br>tories. | 3913<br>2766<br>com | EM.<br>Con        | ort To:<br>AIL:<br>npany  | D<br>da<br>y: | avid<br>avid.<br>SHA | Crispo<br>crispo@shawgrp.com<br>AW E & I                                                                                |
| Teleph<br>Project                  | one: 61<br>Name:    | 7-834-}<br>RVAA       | 5230<br>AP A/E     |                     | Lab Use<br>Place Header S                     | Only<br>ticker Her | e:            | j           |         | Pro<br>QS<br>Sol | ogra<br>M<br>id W | m:<br>RCR       | XA                  | SDV<br>)the           | VA<br>·                    | NPD                         | ES                  | Add<br>Invo<br>FM | tress:<br>ice To:<br>A II | : F           | Rand                 | olph, MA                                                                                                                |
| Project<br>Locatio                 | :#:1336]<br>on: RAV | 16<br>venn.           | A, OH              |                     | Č                                             | x\5'               | $\mathcal{O}$ |             | i       | PC               | ) # 6             | 2162(           | )                   |                       |                            |                             |                     | Con<br>Add        | npany<br>tress:           | y:            |                      |                                                                                                                         |
| Sample                             | ed By:              |                       |                    |                     |                                               | v                  |               |             |         |                  |                   |                 | Party               | listed                | is respo                   | <del>nsible f</del>         | or pay              | ment of           | invoice i                 | as j          | ver CT               | Laboratories' terms and condition                                                                                       |
| Client S                           | pecial It           | nstructi              | ions               |                     | · · · · · · · · · · · · · · · · · · ·         |                    | Ţ             |             |         |                  | ΔΝΙΔ              |                 |                     | FOI                   | IFST                       | FD                          |                     |                   |                           |               |                      | Turnaround Time                                                                                                         |
| Cheff                              | pectar in           | 1011 400              |                    |                     |                                               |                    |               |             |         | m                |                   |                 |                     |                       |                            |                             |                     |                   | iners                     |               | IS/MSD               | Normal RUSH*<br>Date Needed:                                                                                            |
| Matrix:<br>GW – gro<br>S - soil/se | undwater<br>ediment | SW - sui<br>SL - sluc | rface water<br>lge | WW - was<br>A - air | tewater DW - drinking water<br>M - misc/waste | Filtered? Y/N      | TAL Metals    | Explosives  | svocs   | Hex Chromi       | vocs              | Pesticides      | PCBs                | Cyanide               | Propellants                |                             |                     |                   | Total # Conta             |               | Designated M         | Rush analysis requires prio.<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50% |
| Colle<br>Date                      | ection<br>Time      | Matrix                | Grab/<br>Comp      | Sam                 | ple ID Description                            |                    |               |             |         |                  | Fill              | in Sp           | aces                | wit                   | h Bott                     | les pe                      | er Te               | st                |                           |               |                      | CT Lab ID #<br>Lab use only                                                                                             |
| 09.22.10                           | 1030                | S                     | grab               | S                   | Csb-037m-0001-SO                              | N                  | x             | x           | x       |                  |                   |                 |                     |                       |                            |                             |                     |                   | 1                         |               |                      | 887450                                                                                                                  |
| 09.22.10                           | 1030                | S                     | grab               | 5                   | 6Csb-037d-0001-SO                             | N                  |               |             |         |                  | x                 |                 |                     |                       |                            |                             |                     |                   | 3                         |               |                      | 881 495                                                                                                                 |
| 09.22.10                           | 1030                | S                     | grab               |                     | Csb-080d-0001-SO                              | N                  |               |             |         |                  | X                 |                 |                     |                       |                            |                             |                     |                   | 3                         |               |                      | 851497                                                                                                                  |
| 09.22.10                           | 1030_               | <del>- S</del> -      | grab-              | S                   | <del>Csb-037m-0001-SQ</del>                   |                    | x             | x           | x       |                  |                   | senc            | 1 4                 | R                     |                            | er c                        | lies                | +                 | 1                         |               |                      |                                                                                                                         |
| 09.22.10                           | 1030                | S                     | grab               |                     | Csb-080m-0001-SO                              | N                  | x             | x           | x       |                  |                   |                 |                     | 1                     | •                          |                             |                     |                   | 1                         | _             |                      | 851498                                                                                                                  |
| 09.22.10                           | 1045                | S                     | grab               | S                   | Csb-037m-0002-SO                              | N                  | X             | X           | X       |                  |                   |                 |                     |                       | _                          |                             |                     |                   | 1                         | _             |                      | 851502                                                                                                                  |
| 09.22.10                           | 1050                | S                     | grab               | S                   | Csb-037m-0003-SO                              | N                  | X             | X           | X       |                  |                   |                 |                     |                       |                            |                             |                     |                   |                           |               |                      | 851503                                                                                                                  |
| 09.22.10                           | 1055                |                       | grab               | 5                   | Csb-03/m-0004-50                              | N                  | X             | X           | X       |                  |                   |                 |                     |                       |                            |                             |                     |                   |                           |               |                      | 857504                                                                                                                  |
| 09.22.10                           | 1015                | 6                     | grab               |                     | Csb-03711-0003-50                             | N                  | X             | X           |         |                  |                   |                 |                     |                       |                            |                             |                     |                   |                           | +             |                      | 851505                                                                                                                  |
| 09.22.10                           | 1110                | 5                     | grab               | 5                   | Cob 028m 0002 SO                              |                    | X             | X           | X       |                  |                   |                 |                     |                       |                            |                             |                     |                   | 3                         | _             | <u>X</u>             | 857506                                                                                                                  |
| 09.22.10                           | 1110                | <u> </u>              | grab               |                     | Csb-038m-0002-50                              |                    | X             | X           | X       |                  |                   |                 |                     |                       |                            |                             |                     |                   |                           | +             |                      | 857507                                                                                                                  |
| 09.22.10                           | 1120                | S                     | grab               | G                   | Csb-038m-0004-SO                              |                    |               |             |         |                  |                   |                 |                     |                       | -                          |                             |                     |                   | 1                         | +             |                      | 057800                                                                                                                  |
| Relinguis<br>Received              | hed By              | M                     | M                  | F                   | Date/Time<br>Date/Time<br>Date/Time           | Receive            | ed By:        | Labo        | orator  | y by:            |                   |                 | <b>)</b>            |                       | $\downarrow$               | Date<br>Date                | /Tim<br>/Tim        | e<br>1            | 0                         |               | Ice<br>/ Ten         | Lab Use Only<br>Present Yes No<br>operature 44.3                                                                        |
| [                                  |                     |                       |                    | · · · · ·           |                                               |                    |               |             |         |                  |                   |                 |                     | <u> </u>              | F                          |                             | 110                 |                   | 14UD                      | )             | Coc                  | 9/24/10 1020 PMC                                                                                                        |

| Rev. 4/2010                                                                                    | CHAIN                                           | of Cu                    | STO        | DY             |          |              |            |                       |                      |                      |                               |                            | Pag              | e3                     |                       | of                           | 4                                                                                                                                                           |
|------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|------------|----------------|----------|--------------|------------|-----------------------|----------------------|----------------------|-------------------------------|----------------------------|------------------|------------------------|-----------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Crispo                                           | CT LABORATO                                     | RIE                      | 1          | t+t            |          | 123          | 604<br>604 | 1ge Co<br>3-356-<br>, | ourt,<br>2760<br>wwv | Bara<br>Fa<br>v.ctla | iboo, V<br>ax 608-<br>iborato | VI 53<br>-356-2<br>ories.c | 913<br>766<br>om | Report<br>EMAI<br>Comp | To: L<br>L: d<br>any: | David<br>avid<br>SHA<br>Rand | Crispo<br>.crispo@shawgrp.com<br>AW E & I<br>Jolph MA                                                                                                       |
| Telephone: 617-834-5230<br>Project Name: RVAAP A/E                                             | Lab Use O<br>Place Header Stie                  | nly<br>:ker Here         | .ζ         | /              |          | Pro<br>QS    | ogra:<br>M | m:<br>RCR             | A                    | SDW                  | A I                           | NPDI                       | ES               | Invoice                | e To:*                |                              |                                                                                                                                                             |
| Project #: 133616<br>Location: RAVENNA, OH                                                     | 9                                               | 5                        | ()         | l              |          | PC           | ) # 62     | aste<br>21620         | )                    | ner.                 |                               |                            | -                | Comp                   | any:<br>ess:          |                              |                                                                                                                                                             |
| Sampled By:                                                                                    |                                                 |                          |            |                | ł        |              |            | *1                    | Party                | listed i             | is respon                     | ısible fo                  | r payn           | tent of inv            | oice as               | per Cl                       | Laboratories' terms and conditions                                                                                                                          |
| Client Special Instructions                                                                    |                                                 |                          |            | •              |          |              | ANA        | LYSE                  | ES R                 | EQU                  | ESTE                          | D                          |                  |                        |                       |                              | Turnaround Time                                                                                                                                             |
| Matrix:<br>GW - groundwater SW - surface water WW - w<br>S - soil/sediment SL - sludge A - air | astewater DW - drinking water<br>M - misc/waste | Filtered? Y/N            | TAL Metals | Explosives     | SVOCs    | Hex Chromium | vocs       | Pesticides            | PCBs                 | Cyanide              | Propellants                   |                            |                  |                        | Total # Containers    | Designated MS/MSD            | Normal RUSH*<br>Date Needed:<br><br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50% |
| Collection Matrix Grab/ Sat                                                                    | mple ID Description                             |                          |            |                |          |              | Fill       | in Sp                 | aces                 | with                 | n Bottl                       | les pe                     | r Tes            | t                      | 1                     | 1                            | CT Lab ID #                                                                                                                                                 |
| Date Time Matrix Comp Sal                                                                      | SCsb-038m-0005-SO                               | N                        | Y          | Y              | x        |              | بدل.       | - <u></u>             |                      |                      |                               | ۔<br>المہ ما               | ~ P7             | -1                     | 1                     |                              | SISIA                                                                                                                                                       |
| 09.22.10 1125 S grab                                                                           | SCsb-038d-0004-SO                               | N                        | <u>^</u>   |                | <u> </u> |              | X          |                       | 6                    | 1000                 | <u>/ / S</u>                  |                            |                  |                        | 3                     |                              | 851512                                                                                                                                                      |
| 09.22.10 1125 S grab                                                                           | SCsb-081m-0004_SO 10 004                        | N                        | x          | x              |          |              |            |                       |                      |                      |                               |                            | _                |                        | 3                     |                              | 851 513                                                                                                                                                     |
| 09.22.10 1545 S grab                                                                           | DA1sb-056m-0001-SO                              | N                        | x          | <sup>.</sup> Х |          |              |            |                       |                      | 1                    |                               |                            |                  |                        | 1                     |                              | 81514                                                                                                                                                       |
| 09.22.10 1550 S grab                                                                           | DA1sb-056m-0002-SO                              | N                        | x          | x              |          |              |            |                       |                      |                      |                               |                            |                  |                        | 1                     |                              | \$ 515                                                                                                                                                      |
| 09.22.10 1555 S grab                                                                           | DA1sb-056m-0003-SO                              | N                        | X          | x              |          |              |            |                       |                      |                      |                               |                            |                  |                        | 1                     |                              | 87576                                                                                                                                                       |
| 09.22.10 1600 S grab                                                                           | DA1sb-056m-0004-SO                              | N                        | x          | x              |          |              |            |                       |                      | -                    |                               |                            |                  |                        | 1                     |                              | 87517                                                                                                                                                       |
| 09.22.10 1605 S grab                                                                           | DA1sb-055m-0001-SO                              | <u>N</u>                 | X          | ×              |          | -            |            |                       | 1                    |                      |                               |                            |                  |                        |                       |                              | 87518                                                                                                                                                       |
| 09.22.10 1610 S grab                                                                           | DA1sb-054m-0002-SO                              | N                        | x          | x              | ļ        | <u> </u>     |            |                       | <b> </b>             | <u> </u>             |                               |                            |                  | _                      | 1                     |                              | 81517                                                                                                                                                       |
| 09.22.10 1615 S grab                                                                           | DA1sb-055m-0003-SO                              | N                        | x          | x              | Ì        |              |            | <b> </b>              |                      |                      | -                             | ┟──╎-                      | _                |                        | <u>1</u><br>  1       |                              | 801520                                                                                                                                                      |
| 09.22.10 0800 <b>g</b> grab                                                                    | SCqc-002-0001-TB                                |                          |            |                | <u>.</u> |              |            | <u> </u>              |                      |                      |                               |                            |                  | _                      |                       | <b> </b>                     | KID21                                                                                                                                                       |
| 09.22.10 1715 <b>Grad</b> grab                                                                 | SCqc-002-0001-EK                                |                          | X          |                | X        | <u> </u>     |            | <b> </b>              | +                    | -                    |                               | ┝──┤-                      |                  |                        | 1                     |                              | 810dy                                                                                                                                                       |
| Relinquished by:                                                                               | Date/Time<br>Date/Time<br>Date/Time             | IN<br>Receive<br>Receive | ed By      | Labo           | n A      | ry by:       | <br>:      |                       |                      | T                    | $\hat{h}$                     | Date                       | /Tim             | e<br>e                 |                       | Ic<br>Te                     | Lab Use Only e Present $(165)$ No emperature $(14.3)$                                                                                                       |
|                                                                                                |                                                 |                          |            |                |          |              |            |                       | Ľ.                   | 4                    | ソ                             | 9                          | 124              | 'yus                   |                       | C                            | oler # 5 Coolers                                                                                                                                            |

4.85 - 14

| Rev. 4/2010                   |           |                             |                    | CHAIN                                                                                                            | OF CU            | JSTC          | DDY       | (                               |              |             |                  |                        |                      |                                        |                            | Pag              | e4                              | -                     | _of_                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|-----------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------|---------------------------------|--------------|-------------|------------------|------------------------|----------------------|----------------------------------------|----------------------------|------------------|---------------------------------|-----------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company: SF<br>Project Contac | IAW E     | & I<br>id Cris <sub>j</sub> | 00                 | CT LABORAT(                                                                                                      | ) R I E          | 5             | 1.        | tia_                            | 123          | 30 La<br>60 | inge C<br>)8-356 | Court,<br>-2760<br>wwv | Bara<br>Fa<br>v.ctla | aboo, <sup>1</sup><br>ax 608<br>aborat | WI 53<br>-356-2<br>ories.c | 913<br>766<br>om | Report<br>EMAI<br>Comp<br>Addre | To: I<br>L: d<br>any: | David<br>avid.<br>SH/<br>Rand | Crispo<br>crispo@shawgrp.com<br>AW E & I<br>olph. MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tetephone: 6                  | 17-834-3  | 5230<br>DA (F               |                    | Lab Use C<br>Place Header Sti                                                                                    | mly<br>icker Her | e:            | /         |                                 | Pr           | ogra        | m:               |                        | CD14                 | T A                                    | NIDIN                      | 70               |                                 |                       | nai iu                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name                  | KVAA      | AP A/E                      |                    |                                                                                                                  | $\sim$           | 6             |           |                                 | Sol          | lid V       | RCF<br>Vaste     | CA<br>C                | SDW<br>Other         | A<br>                                  | NPDI                       | -                | Invoice<br>EMAI                 | To:*<br>L:            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project #: 1336               | )16<br>   |                             |                    | 0                                                                                                                | 51               |               |           |                                 | PC           | ) # 6       | 2162             | 0                      |                      | - <b>·</b>                             |                            |                  | Comp                            | any:                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Location: RA                  | VENN.     | A, OH                       |                    | 6                                                                                                                |                  |               |           |                                 |              |             |                  |                        |                      |                                        | <u> </u>                   |                  | Addre                           | ss:                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled By:                   |           |                             |                    |                                                                                                                  |                  |               |           |                                 |              |             |                  | Party i                | listed i             | is res <del>p</del> or                 | nsible fo                  | r payn           | ent of inve                     | Mće as                | per CT                        | Laboratories' terms and conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Client Special I              | nstructi  | ions                        |                    |                                                                                                                  |                  |               |           | т—                              | ,<br>        | ANA         | LYS              | ES R                   | EQU                  | ESTE                                   | ED                         |                  | ·····                           |                       |                               | Turnaround Time<br>Normal RUSH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matrix:<br>GW – groundwater   | SW - sur  |                             | r <b>WW</b> - wast | ewater <b>DW</b> - drinking water                                                                                | iltered? Y/N     | [AL Metals    | xplosives | VOCs                            | lex Chromium | 'OCs        | esticides        | CBs                    | yanide               | ropellants                             |                            |                  |                                 | otal # Containers     | esignated MS/MSD              | Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S - soil/sediment             | SL - sluc | lge<br>Grab/                | <b>A</b> - air     | M - misc/waste                                                                                                   | <u> </u>         |               | ГШ        | 1 S                             |              |             | <u>р</u>         |                        | 0                    | <u>~)</u>                              | <u>_</u>                   |                  |                                 | -                     | <u> </u>                      | 4-9 days 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date Time                     | Matrix    | Comp                        | Samj               | ole ID Description                                                                                               |                  | <u> </u>      |           |                                 | <b>,</b>     | Fill        | l in Sp          | aces                   | with                 | n Bottl                                | les pei                    | Tes              | t<br>                           |                       |                               | Lab use only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09.23.10 1020                 | S<br>S    | grab                        |                    | Css-060m-0001-SO                                                                                                 | N                |               | X         | $\frac{\mathbf{x}}{\mathbf{x}}$ | X            |             |                  | <u> </u>               |                      |                                        |                            |                  |                                 |                       |                               | 851526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 09.23.10 0915                 | s         | grab                        | D                  | A1sb-059m-0201-SO                                                                                                | N<br>N           | $\frac{x}{x}$ | X         | $\frac{x}{x}$                   | x            | [           | x                | x                      | x                    | x                                      |                            |                  |                                 | 1                     | ·                             | Solad /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 09.23.10 1400                 | S         | grab                        | DA                 | A1sb-064m-0201-SO                                                                                                | N                | x             | x         | x                               | x            |             | x                | x                      | x                    | x                                      |                            |                  |                                 | 1                     | <u> </u>                      | 867529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9-23-10                       | S         | G                           | SCsb-              | 081d-0005-SO                                                                                                     |                  |               |           |                                 |              | x           |                  |                        |                      |                                        |                            |                  |                                 |                       |                               | 852193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               |           |                             | see m              | emo etk 9-28-10                                                                                                  | <u> </u>         | <u> </u>      |           | <u> </u>                        | <u> </u>     | <u> </u>    | <u> </u>         |                        |                      |                                        |                            |                  | _                               | ]]                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                             |           |                             |                    |                                                                                                                  |                  | ┨──           | <u>.</u>  |                                 |              |             |                  |                        |                      |                                        |                            |                  |                                 |                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |           |                             |                    | and the second |                  | ┼──           |           | ┼                               |              |             | 1                |                        |                      | +                                      | ╞═╪╴                       | ╡╴               |                                 |                       |                               | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                               |           |                             |                    | <u> </u>                                                                                                         |                  |               | •         | +                               |              |             |                  |                        |                      | +                                      |                            | +                |                                 |                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |           |                             |                    |                                                                                                                  |                  | <b>_</b>      |           | 1                               |              |             |                  |                        |                      |                                        |                            |                  |                                 |                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>]</u>                      |           | <u> </u>                    |                    |                                                                                                                  |                  |               |           |                                 |              |             |                  |                        |                      |                                        |                            |                  |                                 | $\left  - \right $    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinglished By:              | MA        | MA                          |                    | Date/Time<br>09.23.10/1710                                                                                       | Receive          | d By:         | :         | <u> </u>                        |              | <u> </u>    |                  | <u> </u>               |                      |                                        | Date/                      | /Time            |                                 |                       | lce                           | Lab Use Only<br>Present Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Received by:                  |           |                             |                    | Date/Time                                                                                                        | Receive          | ed for        | Lab       | orator                          | y by:        |             |                  | Î                      | $\mathcal{A}$        |                                        | Date                       | Time             | 10 14                           | 45                    | Cor                           | $\frac{1}{5} \frac{1}{5} \frac{1}$ |
|                               |           |                             |                    |                                                                                                                  |                  |               |           |                                 |              |             |                  | $\Lambda$              | -                    |                                        | 1                          |                  |                                 |                       |                               | 9/24/10 1040 PMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ſ    | Rev. 4/2                                 | 2010                                   |                               |                         |                     | ·                                      |                                                 | CHAIN                                  | I OF CI             | JSTC       | DD                                    | Y .    |                  |                             |                             |                         |                      |                           | F                              | age                   | 1_                               |                                   | of_                           | 4                                                                                                                                                                      |
|------|------------------------------------------|----------------------------------------|-------------------------------|-------------------------|---------------------|----------------------------------------|-------------------------------------------------|----------------------------------------|---------------------|------------|---------------------------------------|--------|------------------|-----------------------------|-----------------------------|-------------------------|----------------------|---------------------------|--------------------------------|-----------------------|----------------------------------|-----------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Compa<br>Project                         | ny: SH<br>Contac                       | AW E<br>t: Davi               | & I<br>d Crisp          | >0                  | (1)                                    | ABO                                             | RATO                                   | ) R I E             | 5          | 4                                     |        | 123              | 30 La<br>60                 | nge C<br>8-356              | Court,<br>-2760<br>www  | Bara<br>Fa<br>v.ctla | aboo,<br>ax 608<br>iborat | WI 539<br>-356-270<br>ories.co | 13 Ra<br>56 El<br>m C | eport T<br>MAIL<br>ompa<br>ddres | Co: E<br>.: da<br>.: da<br>.: ny: | David<br>avid.<br>SHA<br>Sand | Crispo<br>crispo@shawgrp.com<br>AW E & I<br>olph MA                                                                                                                    |
|      | Telepho<br>Project<br>Project<br>Locatio | one: 61<br>Name:<br>#: 1336<br>on: RAV | 7-834-:<br>RVAA<br>16<br>/ENN | 5230<br>.P(A/E<br>A, OH | Fol<br>Co<br>Pro    | ************************************** | **********<br>81583<br>HAW E&<br>VAAP IF<br>JLS | ************************************** | *******<br>******** | *****      | • • • • • • • • • • • • • • • • • • • | ***    | Pro<br>QS<br>Sol | ogra<br>M<br>lid W<br>) # 6 | m:<br>RCF<br>/aste<br>2162( |                         | SDW<br>ther          | /A<br>                    | NPDES                          | 5 In<br>El<br>C<br>A  | MAIL<br>ompa<br>ddres            | To:*<br>;:<br>iny:<br>ss:         |                               |                                                                                                                                                                        |
|      | Sample                                   | ed By:                                 |                               |                         | **                  |                                        | ********                                        | **********                             | ********            | *****      | :*:*:*<br>:<br>:<br>:                 | ***    |                  |                             | *                           | Party l                 | isted                | is respo                  | nsible for <sub>l</sub>        | ayment                | of invoi                         | ice as                            | per CT                        | Laboratories' terms and conditions                                                                                                                                     |
|      | Client S                                 | pecial II                              | nstructi                      | ions                    | (                   |                                        |                                                 |                                        |                     | ļ          |                                       |        |                  | ANA                         | LYSI                        | ES RI                   | EQŲ                  | EST                       | ED                             |                       |                                  |                                   |                               | Turnaround Time                                                                                                                                                        |
|      | Matrix:<br>GW - grou<br>S - soil/se      | undwater                               | SW - sur<br>SL - slud         | face water              | WW - was<br>A - air | stewater I                             | DW - drinkir<br>A - misc/wa                     | ng water<br>Iste                       | Filtered? Y/N       | TAL Metals | Explosives                            | svocs  | Hex Chromium     | vocs                        | Pesticides                  | PCBs                    | Cyanide              | Propellants               |                                |                       |                                  | Total # Containers                | Designated MS/MSD             | Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50%                                                |
|      | Colle<br>Date                            | ction<br>Time                          | Matrix                        | Grab/<br>Comp           | Sam                 | ple ID                                 | Descrip                                         | tion                                   |                     |            |                                       | _1     | 1                | Fill                        | in Sp                       | aces                    | with                 | ı Bott                    | les per '                      | Гest                  | 4 L                              | I                                 |                               | CT Lab ID #<br>Lab use only                                                                                                                                            |
| i.e. | 09.23.10                                 | 1340                                   | S                             | grab                    | 5                   | Css-058r                               | n-0001-SC                                       | )                                      | N                   | x          | x                                     | x      |                  | No                          | <b>h</b> i                  | heli                    | leg                  | 1,                        |                                |                       |                                  | 1                                 |                               |                                                                                                                                                                        |
|      | 09.23.10                                 | 1445                                   | S                             | grab                    | 5                   | SCss-085r                              | n-0001-SC                                       | )                                      | N                   | x          | x                                     | x      |                  | X                           | br.                         | ind                     | inde                 | J                         |                                |                       |                                  | 1                                 |                               |                                                                                                                                                                        |
|      | 09.23.10                                 | 0900                                   | S                             | grab                    | D                   | A1sb-057                               | m-0201-S                                        | 0                                      | N                   | X          | X                                     |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 851823                                                                                                                                                                 |
|      | 09.23.10                                 | 0905                                   | S                             | grab                    | D                   | A1sb-057                               | m-0202-S                                        | 0                                      | N                   | X          | x                                     |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 851859                                                                                                                                                                 |
|      | 09.23.10                                 | 0910                                   | S                             | grab                    | D                   | A1sb-057                               | m-0203-S                                        | 0                                      | N                   | x          | x                                     |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 851860                                                                                                                                                                 |
|      | 09.23.10                                 | 0915                                   | S                             | grab                    | D                   | A1sb-057                               | m-0204-S                                        | 0                                      | N                   | X          | x                                     |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 851861                                                                                                                                                                 |
|      | 09.23.10                                 | 0845                                   | S                             | grab                    | D                   | A1sb-058                               | m-0201-S                                        | 0                                      | N                   | x          | X                                     |        |                  |                             |                             |                         |                      | 1                         |                                |                       |                                  | 1                                 |                               | 851862                                                                                                                                                                 |
|      | 09.23.10                                 | 0850                                   | S                             | grab                    | D                   | A1sb-058                               | m-0202-S                                        | 0                                      | N                   | X          | X                                     |        |                  |                             |                             |                         |                      | <u> </u>                  |                                |                       |                                  | 1                                 |                               | 857863                                                                                                                                                                 |
| ¢    | 09.23.10                                 | 0855                                   | S                             | grab                    | D                   | A1sb-058                               | m-0203-5                                        | 0                                      | N                   | X          | <b>x</b>                              |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 857864                                                                                                                                                                 |
|      | 09.23.10                                 | 0920                                   | S                             | grab                    | D                   | A1sb-059                               | m-0202-S                                        | 0                                      | N                   | x          | x                                     |        |                  |                             |                             |                         |                      |                           |                                |                       |                                  | 1                                 |                               | 851865                                                                                                                                                                 |
|      | 09.23.10                                 | 0925                                   | S                             | grab                    | D                   | A1sb-059                               | m-0203-S                                        | 0                                      | N                   | <b>x</b>   | x                                     |        |                  |                             |                             |                         | <u>, '</u>           | 1                         |                                |                       |                                  | 1                                 |                               | 851866                                                                                                                                                                 |
| υ    | 09.23.10                                 | 0915                                   |                               | grab                    | D                   | 0A1sb-059                              | d-0201-SC                                       | <u> </u>                               | N                   | <u> </u>   | L                                     | _      |                  | X                           |                             |                         | }                    | 1                         |                                |                       |                                  | 3                                 |                               | 85867                                                                                                                                                                  |
| age  | 09.23.10                                 | 0925                                   | S                             | grab                    | D                   | A1sb-081                               | m-0203-S                                        | υ                                      | N                   | X          | X                                     |        |                  |                             | <u> </u>                    |                         | Ľ                    |                           | ļ                              |                       |                                  | 1                                 |                               | 851868                                                                                                                                                                 |
| 9234 | Relinquist                               | hed By                                 | M                             | OCO                     | \$                  | Date/T<br>046<br>Date/T                | ime<br>440/1<br>ime                             | 1640                                   | Receive             | ed By:     | Lab                                   | orator | y by:            |                             | A                           | $\widehat{\mathcal{D}}$ | )                    | C                         | Date/T                         | ime                   | ð                                | _                                 | Ice :<br>Ten<br>Coo           | $\begin{array}{c} \text{Lab Use Only} \\ \text{Present} & \text{Yes} & \text{No} \\ \text{perature} & 24.3^{\circ} \\ \text{oler #} & 4600(\text{crs}) \\ \end{array}$ |
|      |                                          |                                        |                               |                         |                     |                                        |                                                 |                                        |                     |            |                                       |        |                  |                             | U                           |                         |                      | •                         |                                | •                     |                                  |                                   | 1/25/1                        | 0 1035 \$ 9/27/10 1045                                                                                                                                                 |

| Γ    | Rev. 4/20 <sup>2</sup>                          | 10                                     |                              |                      |                     | CHAIN                                         | OF CL             | JSTC       | DY         |       |                  |                            |                             |                      |                         |                           | Pag                                  | ge2                                |                           | of_                      | 4                                                                                                                                                           |
|------|-------------------------------------------------|----------------------------------------|------------------------------|----------------------|---------------------|-----------------------------------------------|-------------------|------------|------------|-------|------------------|----------------------------|-----------------------------|----------------------|-------------------------|---------------------------|--------------------------------------|------------------------------------|---------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Company<br>Project C                            | y: SHA                                 | AW E (<br>: Davie            | & I<br>d Crisp       | 0                   | CT LABORATO                                   | ) R I E           | <u>الم</u> | 14         |       | 123              | 60 La<br>60                | nge C<br>8-356-             | ourt,<br>2760<br>wwv | , Bara<br>) F<br>w.ctla | aboo,<br>ax 608<br>aborat | WI 53913<br>3-356-2766<br>tories.com | Report<br>EMAII<br>Compa           | Fo: E<br>L: da<br>any:    | David (<br>avid.o<br>SHA | Crispo<br>crispo@shawgrp.com<br>WE&I<br>olph_MA                                                                                                             |
|      | Telephor<br>Project N<br>Project #:<br>Location | ne: 617<br>Iame: I<br>: 13361<br>: RAV | 7-834-5<br>RVAA<br>6<br>ENN/ | 230<br>PA/E<br>A, OH |                     | Lab Use (<br>Place Header St                  | Only<br>icker Her | 5)         |            |       | Pro<br>QS<br>Sol | ogra<br>M<br>id W<br>0 # 6 | m:<br>RCR<br>/aste<br>2162( | (A<br>C              | SDV<br>Other            | /A                        | NPDES                                | Invoice<br>EMAII<br>Compa<br>Addre | To:*<br>L:<br>any:<br>ss: |                          |                                                                                                                                                             |
|      | Sampled                                         | By:                                    |                              |                      |                     |                                               |                   |            |            |       |                  | •                          | *                           | Partu                | listed                  | is respe                  | meible for pay                       | ment of invo                       | vice as                   | per CT                   | Laboratories' terms and conditions                                                                                                                          |
|      |                                                 |                                        |                              |                      |                     |                                               |                   |            |            |       | L                | A NI A                     |                             | FSR                  | FOI                     | IFST                      | <br>FD                               |                                    |                           |                          | Turnaround Time                                                                                                                                             |
|      | Matrix:<br>GW – groun<br>S - soil/sedir         | dwater<br>ment                         | SW - sur<br>SL - slud        | face water<br>ge     | WW - was<br>A - air | tewater DW - drinking water<br>M - misc/waste | Filtered? Y/N     | TAL Metals | Explosives | SVOCs | Hex Chromium     | VOCs                       | Pesticides                  | PCBs                 | Cyanide                 | Propellants               |                                      |                                    | Total # Containers        | Designated MS/MSD        | Normal RUSH*<br>Date Needed:<br><br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50% |
|      | Collect                                         | ion<br>Time                            | Matrix                       | Grab/                | Sam                 | ple ID Description                            |                   |            | <b>-</b>   |       | <b>_</b>         | Fill                       | in Sp                       | aces                 | wit                     | n Bot                     | tles per Te                          | st                                 |                           |                          | CT Lab ID #<br>Lab use only                                                                                                                                 |
|      | 09.23.10                                        | 0930                                   | S                            | grab                 | D                   | A1sb-060m-0201-SO                             | N                 | x          | x          |       |                  |                            | Τ                           |                      |                         | T                         |                                      |                                    | 1                         |                          | 851819                                                                                                                                                      |
|      | 09.23.10                                        | 0935                                   | S                            | grab                 | D.                  | A1sb-060m-0202-SO                             | N                 | x          | x          | 1     | 1                |                            |                             | 1                    |                         |                           |                                      |                                    | 1                         |                          | 851876                                                                                                                                                      |
|      | 09.23.10                                        | 0940                                   | S                            | grab                 | D                   | A1sb-060m-0203-SO                             | N                 | x          | x          |       |                  |                            |                             |                      |                         |                           |                                      |                                    | 1                         |                          | 851871                                                                                                                                                      |
|      | 09.23.10                                        | 0945                                   | S                            | grab                 | D                   | A1sb-060m-0204-SO                             | N                 | x          | x          |       |                  |                            |                             |                      |                         |                           |                                      |                                    | 1                         |                          | 857872                                                                                                                                                      |
|      | 09.23.10                                        | 1030                                   | S                            | grab                 | D                   | A1sb-061m-0201-SO                             | N                 | x          | x          |       |                  |                            |                             |                      |                         |                           |                                      |                                    | 1                         |                          | 857873                                                                                                                                                      |
|      | 09.23.10                                        | 1035                                   | S                            | grab                 | D                   | A1sb-061m-0202-SO                             | N                 | x          | x          |       |                  |                            |                             |                      | _                       |                           |                                      |                                    | 1                         |                          | 851874                                                                                                                                                      |
|      | 09.23.10                                        | 1040                                   | S                            | grab                 | D                   | A1sb-061m-0203-SO                             | N                 | x          | x          |       |                  |                            | • 、                         |                      |                         |                           |                                      |                                    | 1                         |                          | 851875                                                                                                                                                      |
|      | 09.23.10                                        | 1045                                   | S                            | grab                 | D                   | A1sb-061m-0204-SO                             | N                 | x          | x          |       |                  | ļ                          |                             |                      | ļ                       | _                         |                                      |                                    | 1                         |                          | 851876                                                                                                                                                      |
|      | 09.23.10                                        | 1325                                   | S                            | grab                 | D                   | A1sb-062m-0201-SO                             | N                 | x          | X          |       |                  |                            |                             |                      |                         |                           |                                      |                                    |                           |                          | 851877                                                                                                                                                      |
|      | 09.23.10                                        | 1330                                   | S                            | grab                 | D                   | A1sb-062m-0202-SO                             | N                 | x          | . <b>X</b> |       |                  |                            |                             |                      |                         |                           |                                      |                                    | 1                         |                          | 851878                                                                                                                                                      |
|      | 09.23.10                                        | 1335                                   | S                            | grab                 | D                   | A1sb-062m-0203-SO                             | N                 | X          | x          |       |                  |                            |                             |                      |                         |                           |                                      |                                    | 1                         |                          | 851873                                                                                                                                                      |
| P    | 09.23.10                                        | 1340                                   | S                            | grab                 | D                   | A1sb-062m-0204-SO                             | N                 | X          | x          |       |                  |                            | 1                           | 1                    |                         |                           |                                      |                                    | 1                         | •                        | 87880                                                                                                                                                       |
| age  | 09.23.10                                        | 1345                                   | S                            | grab                 | D                   | A1sb-063m-0201-SO                             | N                 | X          | X          |       |                  |                            |                             | <br>                 |                         | X                         |                                      |                                    | 1                         | <b>X</b>                 | 88188                                                                                                                                                       |
| 9235 | Relinguishe                                     | Υ <sup>γ</sup>                         | MQ                           | Ð                    |                     | Date/Time                                     | Receiv<br>Receiv  | ed By      | :<br>: Lab | orato | ry by:           |                            |                             | (                    | T                       | $\overline{)}$            | Date/Tim                             |                                    |                           | Ice<br>Ter<br>Coo        | Lab Use Only<br>Present Yes No<br>nperature<br>oler #                                                                                                       |
|      |                                                 |                                        |                              |                      |                     |                                               | <u> </u>          |            |            |       |                  |                            |                             | _0_                  | F                       |                           |                                      | <u> </u>                           |                           | <u></u>                  |                                                                                                                                                             |

| ſ   | Rev. 4/2           | 2010            |           |               |           | Сн                       | IAIN O     | of Cu            | ISTC  | DY            |       |             |           |           |                |          |          | Pa             | ge3               |            | _of_                  | 4                                  |
|-----|--------------------|-----------------|-----------|---------------|-----------|--------------------------|------------|------------------|-------|---------------|-------|-------------|-----------|-----------|----------------|----------|----------|----------------|-------------------|------------|-----------------------|------------------------------------|
|     | Compa              | ny: SH          | AW E      | & I           |           |                          |            |                  | 1     |               |       | 123         | 30 La     | nge C     | lourt          | , Bar    | aboo,    | WI 53913       | Report            | To: 1      | David                 | Crispo                             |
|     | Project            | Contac          | t: Davi   | id Crisr      | 0         | CT LABORA                | 1016       | RIE              | 5     | The second    |       |             | 60        | 8-356     | -2760          | ) F      | ax 608   | 3-356-2766     | EMAI              | L: d       | avid.<br>SH           | crispo@shawgrp.com                 |
|     | Telepho            | one: 61         | 7-834-{   | 5230          |           |                          | I tao Out  |                  |       |               |       | D           |           | · · · ·   | WW             | w.cu     | abora    |                | Addre             | ss:        | Rand                  | olph, MA                           |
|     | Project            | Namo            | RVAA      | PA/F          |           | Place Head               | ler Sticke | er <b>Her</b> e  | ::    |               |       | Pro<br>OS   | ogra<br>M | m:<br>RCE | 2 4            | ടവ       | VΑ       | NPDFS          |                   | <b>T</b> * |                       | -                                  |
|     | n · ·              | 1 vanie.        | 17        |               |           |                          | A          | ĞЈ               |       |               |       | Sol         | id W      | /aste     | <u>ث</u><br>C  | Other    | •        |                | EMAI              | 10:"<br>L: |                       |                                    |
|     | Project            | #: 1335         | 10        |               |           |                          | 1,5        |                  |       |               |       | PC          | # 6       | 71670     | <u></u>        |          |          |                | Comp              | any:       |                       |                                    |
|     | Locatio            | n: RAV          | VENN.     | A, OH         |           | 6                        | <i>Ъ</i> ` |                  |       |               |       | 10          | πυ.       | 41040     | J              |          |          |                | Addre             | ss:        |                       |                                    |
|     | Sample             | d By:           |           |               |           |                          |            |                  |       |               |       |             |           | *         | Party          | listed   | is respo | nsible for pay | ment of invo      | vice as    | per CT                | Laboratories' terms and conditions |
|     | Client S           | pecial In       | nstructi  | ions          |           | ,                        |            |                  |       |               |       |             | ANA       | LYSI      | ES R           | EQU      | JEST     | ED             |                   |            |                       | Turnaround Time                    |
|     |                    |                 |           |               |           |                          |            |                  |       |               |       |             |           |           |                |          |          |                |                   |            | ß                     | Normal RUSH*<br>Date Needed:       |
|     |                    |                 |           |               |           |                          |            |                  |       |               |       | E           |           |           |                |          |          |                |                   | ners       | SWS                   |                                    |
|     |                    |                 |           |               |           |                          |            | Ş                | als   | s             |       | miu         |           |           |                |          | ß        |                |                   | ntai       | ф W                   | Rush analysis requires prior       |
|     |                    |                 |           |               |           |                          |            | C 2pq            | Met   | sive          | ູ່    | L<br>L<br>L |           | ides      |                | de       | llan     |                |                   | Ŭ<br>#     | nate                  | Surcharges:                        |
|     | Matrix:<br>GW grou | undwater        | SW - su   | rface water   | WW - wast | tewater DW - drinking wa | iter       | lltere           | AL    | xplo          | NO    | ex          | 8         | estic     | CBS            | yani     | ope      |                |                   | otal       | esi 6                 | 24 hr 200%<br>2-3 days 100%        |
|     | S - soil/se        | diment          | SL - sluc | lge           | A - air   | M - misc/waste           |            | E                | μ     | Ĥ             | ۍ     | H           | >         | <u>й</u>  | 집              | Ú        | E        |                |                   | Ĕ          |                       | 4-9 days 50%                       |
|     | Date               | Time            | Matrix    | Grab/<br>Comp | Samj      | ple ID Description       | L I        |                  |       |               |       |             | Fill      | in Sp     | aces           | witl     | n Bott   | les per Te     | st                |            |                       | CT Lab ID #<br>Lab use only        |
|     | 09.23.10           | 1345            | S         | grab          | Dł        | A1sb-063m-0201-MS        |            | N                | x     | X             |       |             |           |           |                |          | x        |                |                   | 1          | x                     | 851881                             |
| é l | 09.23.10           | 1345            | S         | grab          | DA        | A1sb-063m-0201-MD        |            | N                | x     | X             |       |             |           |           |                |          | x        |                |                   | 1          | x                     | 851881                             |
|     | 09.23.10           | 1350            | S         | grab          | D/        | A1sb-063m-0202-SO        |            | N                | x     | x             |       |             |           |           |                |          | x        |                |                   | 1          |                       | 81882                              |
|     | 09.23.10           | 1350            |           | grab          |           | A1sb-082m-0202-SO        |            | N                | X     | • <b>X</b>    |       |             |           | <u> </u>  |                |          | X        | <u> </u>       |                   | 1          |                       | 87883                              |
|     | 09.23.10           | 1355            |           | grab          | ע<br>ת    | A1sb-064d-0201-SO        |            | <br>             | X     | x             |       |             |           | <u> </u>  | <u> </u>       | <b>_</b> | X        |                |                   | 1          |                       | 2 884                              |
|     | 09.23.10           | 1405            | s         | grab          | D         | A1sb-064m-0202-SO        |            | N                | x     | Y             |       |             | λ         |           |                |          | x        |                |                   | 1          |                       | <u> </u>                           |
|     | 09.23.10           | 1410            | 5         | grab          | D         | A1sb-064m-0203-SO        |            | N                | x     | $\frac{x}{x}$ |       |             |           |           |                |          | x        |                |                   | 1          |                       | 851889                             |
|     | 09.23.10           | 1415            | s         | grab          | D         | A1sb-065m-0201-SO        |            | N                | x     | x             |       |             |           |           | <u> </u>       |          |          |                |                   | 1          | 0,000 10.0 Sava y - 1 | \$1890                             |
|     | 09.23.10           | 1420            | S         | grab          | D         | A1sb-065m-0202-SO        |            | N                | x     | x             |       |             |           |           |                |          |          |                | •                 | 1          |                       | 80 891                             |
|     | 09.23.10           | 1420            | S         | grab          | D         | A1sb-083m-0202-SO        |            | N                | x     | x             |       |             |           |           |                |          |          |                |                   | 1          |                       | 87892                              |
| Τ   | 09.23.10           | 1425            | S         | grab          | D         | A1sb-065m-0203-SO        |            | N                | x     | X             |       |             |           |           |                |          |          |                |                   | 1          |                       | 87893                              |
| age | 09.23.10           | 1430            | S         | grab          | , D/      | A1sb-066m-0201-SO        |            | Ν                | x     | X             |       |             |           |           |                |          | X        |                |                   | 1          |                       | 857894                             |
| 923 | Relinquist         | hed By:         | D A       | 110A          | A         | Date/Time                |            | Receive          | d By: |               |       |             |           |           |                | ÷        |          | Date/Tim       | e                 |            | Ico                   | Lab Use Only<br>Procent Voc No     |
| Ó   |                    | vf              | - //      | <u>1-Un</u>   | <u> </u>  | 69.24.10/10              | <b>-</b>   | <u> </u>         | 1.6   |               |       |             |           |           |                | 4        |          |                |                   |            | Ter                   | nperature                          |
|     | -Keceived          | by <del>.</del> | Ĺ         | ´ ´_          |           | Date/Time                |            | <pre>ceive</pre> | d for | Labo          | rator | у by:       |           |           | 1              | TN       | •        | Date/Tim       | 1 <sub>10</sub> - | <u>م</u>   | Co                    | oler #                             |
|     |                    |                 |           |               |           |                          |            |                  |       |               |       |             |           | 1         | ${\checkmark}$ |          |          |                | 15                |            |                       |                                    |

| Γ       | Rev. 4/2                                 | 2010                                     |                                | <u>    .                                </u> |                      | CHAIN                                         | N OF CU            | JSTC       | נסנ        | Y        |                  |                             |                             |                     |                          | <u></u>                   | P                                | age _                                         | 4_                                |                          | _of _                           | 4                                                                                                                                                       |
|---------|------------------------------------------|------------------------------------------|--------------------------------|----------------------------------------------|----------------------|-----------------------------------------------|--------------------|------------|------------|----------|------------------|-----------------------------|-----------------------------|---------------------|--------------------------|---------------------------|----------------------------------|-----------------------------------------------|-----------------------------------|--------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Compar<br>Project                        | ny: SH.<br>Contact                       | AW E<br>: Davi                 | & I<br>d Crisp                               | 0                    | CT LABORAT                                    | 0 R I E            | 5-         |            |          | 123              | 80 La<br>60                 | nge C<br>8-356-             | ourt<br>2760<br>www | , Bara<br>) Fa<br>w.ctla | aboo,<br>ax 608<br>iborat | WI 5391<br>-356-276<br>ories.com | .3 Re<br>6 EN<br>n Co                         | eport T<br>MAIL<br>ompai<br>ddres | 'o: E<br>.: da<br>ny:    | David<br>avid.c<br>SHA<br>Rando | Crispo<br>crispo@shawgrp.com<br>W E & I<br>olph_MA                                                                                                      |
|         | Telepho<br>Project<br>Project<br>Locatio | one: 612<br>Name:<br>#: 13361<br>on: RAV | 7-834-5<br>RVAA<br>.6<br>'ENN/ | 5230<br>PA/E<br>A, OH                        |                      | Lab Use<br>Place Header St                    | Only<br>ticker Her | e:<br>C    |            |          | Pro<br>QS<br>Sol | ogra<br>M<br>lid W<br>) # 6 | m:<br>RCR<br>/aste<br>2162( | A<br>C              | SDV<br>)ther             | /A<br>                    | NPDES                            | Inv<br>EN<br>Co<br>A                          | voice T<br>MAIL<br>ompa<br>ddres  | Го:*<br>;:<br>ny:<br>;s: |                                 |                                                                                                                                                         |
|         | Sample                                   | ed By:                                   |                                |                                              |                      |                                               | <u>.</u>           |            |            |          |                  |                             | *                           | Party               | listed                   | is respo                  | nsible for p                     | L<br>ayment                                   | of invoi                          | ce as                    | per CT                          | Laboratories' terms and conditions                                                                                                                      |
| ŀ       | Client S                                 | pecial Ir                                | structi                        | ons                                          |                      | <u></u>                                       |                    |            |            |          |                  | ANA                         | LYSI                        | ES R                | EQU                      | ESTI                      | ED                               |                                               |                                   | -                        |                                 | Turnaround Time                                                                                                                                         |
|         | Matrix:<br>GW – grot<br>S - soil/set     | undwater<br>diment                       | SW - sur<br>SL - slud          | face water<br>ge                             | WW - wast<br>A - air | tewater DW - drinking water<br>M - misc/waste | Filtered? Y/N      | TAL Metals | Explosives | SVOCs    | Hex Chromium     | VOCs                        | Pesticides                  | PCBs                | Cyanide                  | Propellants               |                                  | -                                             |                                   | Total # Containers       | Designated MS/MSD               | Normal RUSH*<br>Date Needed:<br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50% |
|         | Colle                                    | ction                                    | Matrix                         | Grab/                                        | Sami                 | ple ID Description                            |                    |            | <b>1</b>   |          | 1                | Fill                        | in Sp                       | aces                | witl                     | n Bott                    | les per '                        | Fest                                          | 1 1                               |                          |                                 | CT Lab ID #                                                                                                                                             |
|         | Date<br>09.23.10                         | Time<br>1435                             | S                              | Comp<br>grab                                 | D/                   | A1sb-066m-0202-SO                             | N                  | x          | x          | 1        | 1                | r                           |                             | [                   |                          | x                         |                                  | T                                             |                                   | 1                        |                                 | Lab use only                                                                                                                                            |
|         | 09.23.10                                 | 1440                                     | S                              | grab                                         | D                    | A1sb-066m-0203-SO                             | N                  | x          | x          | -        |                  |                             |                             |                     |                          | x                         |                                  | ╁┈╍┾                                          |                                   | 1                        |                                 | 85189%                                                                                                                                                  |
|         | 09.23.10                                 | 1445                                     | S                              | grab                                         | D                    | A1sb-066m-0204-SO                             | N                  | x          | x          |          |                  | ,                           |                             |                     |                          | x                         |                                  |                                               |                                   | 1                        |                                 | 851897                                                                                                                                                  |
|         | 09.23.10                                 | 1635                                     | GW                             | grab                                         | :                    | SCqc-003-0001-ER                              | N                  | x          | x          | x        |                  |                             |                             | ļ                   |                          |                           |                                  |                                               |                                   | 5                        |                                 | 851 708                                                                                                                                                 |
|         | 09.23.10                                 | 0800                                     | GW                             | grab                                         |                      | SCqc-003-0001-TB                              | N                  |            | <u> </u>   |          |                  | x                           |                             |                     |                          |                           |                                  |                                               |                                   | 1                        |                                 | 857 909                                                                                                                                                 |
|         | $\searrow$                               |                                          |                                |                                              |                      |                                               |                    |            |            |          |                  |                             |                             |                     |                          |                           |                                  |                                               |                                   |                          |                                 |                                                                                                                                                         |
| Pag     |                                          |                                          |                                |                                              |                      |                                               |                    |            |            |          |                  |                             |                             |                     |                          |                           |                                  |                                               |                                   |                          |                                 |                                                                                                                                                         |
| je 9237 | Relinguis                                | hed By                                   | 24                             | Ka                                           | 4                    | Date/Time<br>OM: QM: 10/1041                  | Receiv             | ed By:     | :          | <u> </u> |                  | <u> </u>                    | 1                           | <u> </u>            | <br>                     |                           | Date/1                           | <u>                                      </u> |                                   |                          | Ice                             | Lab Use Only<br>Present Yes No                                                                                                                          |
|         | Received                                 | by:                                      | l                              |                                              |                      | Date/Time                                     | Receiv             | ed for     | Lab        | orato    | ry by            |                             |                             |                     | J.                       | 2                         | 93                               |                                               | D<br>150                          |                          | Coe                             | nperature                                                                                                                                               |

| Rev. 4/2010                                                                                                    | CHAIN                                          | OF CL        | JSTC             | DY                              |          |                 |             |                 |                       |                          |                             |                         | Pa                   | ge_            | 1                  |                       | of                    | 12                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|------------------|---------------------------------|----------|-----------------|-------------|-----------------|-----------------------|--------------------------|-----------------------------|-------------------------|----------------------|----------------|--------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Crispo                                                           |                                                | R   E        | \$<br>}<br>***** | ****                            |          | 123             | 30 La<br>60 | nge C<br>8-356- | ourt,<br>-2760<br>wwv | , Bara<br>  Fa<br>v.ctla | aboo, '<br>ax 608<br>Iborat | WI 5<br>-356-<br>ories. | 3913<br>2766<br>.com | Re<br>EN<br>Co | port<br>MAI<br>omp | To: I<br>L: d<br>any: | David<br>avid.<br>SH/ | Crispo<br>.crispo@shawgrp.com<br>AW E & I                                                                                      |
| Telephone: 617-834-5230<br>Project Name: RVAAP A/E                                                             | Folder #: 81670                                | ****         | ****             | ****                            | ****     | ·* -<br>r<br>·S | ogra<br>M   | m:<br>RCR       | :A                    | SDW                      | <b>A</b>                    | NPE                     | DES                  | Ac<br>Inv      | ddre<br>voice      | ess: 1                | Rand                  | lolph, MA                                                                                                                      |
| Project #: 133616                                                                                              | Project: RVAAP IRP                             |              |                  |                                 |          | )<br>           | lid W       | laste           | 0                     | ther                     |                             |                         |                      |                |                    | L:<br>anv:            |                       |                                                                                                                                |
| Location: RAVENNA, OH                                                                                          | Logged By: JLS PM:                             | ET<br>****** | ****             | ****                            | ****     | C<br>* ` _      | )#6         | 2162(           | )                     |                          |                             | <u>_</u>                |                      | Ac             | ddre               | ess:                  |                       |                                                                                                                                |
| Sampled By:                                                                                                    | ······································         | ******       | ****             | ***                             | ****     | *               |             | *j              | Party I               | listed i                 | s respon                    | nsible f                | for pay              | ment i         | of inv             | oice as               | per CT                | 'Laboratories' terms and condition                                                                                             |
| Client Special Instructions                                                                                    |                                                | 4? Y/N       | Metals           | sives                           | S        | hromium         | ANA         | LYSI            | ESR                   | eQU                      | llants                      | ED                      |                      |                |                    | + Containers          | lated MS/MSD          | Turnaround Time<br>Normal RUSH*<br>Date Needed:<br><br>Rush analysis requires pric<br>CT Laboratories' approval<br>Surcharges: |
| Matrix:<br>GW - groundwater SW - surface water WW - was<br>S - soil/sediment SL - sludge A - air<br>Collection | stewater DW - drinking water<br>M - misc/waste | Filtere      | TAL              | Explo                           | SVOC     | Hex C           | voCs        | Pestici         | PCBs                  | Cyanic                   | Prope                       |                         |                      |                |                    | Total #               | Design                | 24 hr 200%<br>2-3 days 100%<br>4-9 days 50%                                                                                    |
| Date Time Matrix Comp Sam                                                                                      | ple ID Description                             |              |                  |                                 |          |                 | Fill        | in Sp           | aces                  | with                     | Bottl                       | es pe                   | er Te                | st             |                    |                       |                       | Lab use only                                                                                                                   |
| 09.28.10 1420 S grab S                                                                                         | Csd-070m-0001-SD                               | N            | x                | x                               | x        | x               |             | x               | x                     | x                        | x                           |                         |                      | _              |                    | 1                     |                       | 854000                                                                                                                         |
| 09.28.10 1325 S grab                                                                                           | Csd-071m-0001-SD                               | N            | x                | x                               | X        | x               |             | x               | X                     | x                        | x                           |                         |                      |                |                    | 1                     | - <b></b>             | 854001                                                                                                                         |
| 09.25.10 1340 5 grab                                                                                           | SCsd-071d-0001-SD                              | <u>N</u>     |                  |                                 |          |                 | X           | <u> </u>        |                       | ·                        |                             |                         |                      |                |                    | 1                     |                       | 854002                                                                                                                         |
| 09.28.10 1520 CW crab                                                                                          | SC ap 004 0001 EP                              | N            | X                | X                               | X        | •               | XE          | TIC             |                       |                          |                             |                         |                      | - +            |                    | 14                    |                       | 854 00.3                                                                                                                       |
| 09.28.10 0800 CW arab                                                                                          | SCqc-004-0001-ER                               |              | X                | <u></u>                         | <u> </u> | *               |             | <u>x</u>        | X                     | <u>x</u>                 | X                           |                         |                      |                |                    | 24                    | <u> </u>              | 854005                                                                                                                         |
| 09 29 10 1545 CW grab                                                                                          | SCqc 005 0001-FP                               | -N           | <b>v</b>         |                                 | v        | <u> </u>        | <u> </u>    | - <u>-</u>      |                       |                          |                             |                         |                      |                | 1/                 | 14                    | _                     | 854007                                                                                                                         |
| 09.29.10 0800 GW grab                                                                                          | SC0c-005-0001-ER                               |              |                  | -                               |          |                 |             | <u>  ∧</u>      |                       | <b>∧</b>                 |                             | - 1                     | <u>ni 38</u>         | ing            | *                  | 3                     | -                     | GOLMO                                                                                                                          |
| 09.29.10 0905 S grab                                                                                           | 6Csb-046m-0001-SO                              |              |                  | $\overline{\mathbf{v}}$         |          | v               |             | ┣.──            |                       |                          | $\left  - \right $          |                         |                      | —-             |                    | - 1                   |                       | 804008                                                                                                                         |
| 09.29.10 1015 S grab S                                                                                         | 6Csb-047m-0001-SO                              | N            | x x              | $\frac{\mathbf{A}}{\mathbf{X}}$ | A<br>X   | ^               | <u> </u>    |                 |                       |                          |                             |                         | -+                   | -+             |                    | 1                     |                       | <u>904007</u>                                                                                                                  |
| 09.29.10 0925 S grab S                                                                                         | 6Csb-048m-0001-SO                              |              | $\frac{x}{x}$    | x                               | x        | x               |             | x               | x                     | x                        | $\mathbf{x}$                | $\vdash$                |                      |                |                    | 1                     | -                     | 85Unu                                                                                                                          |
| 09.29.10 0940 S grab                                                                                           | SCsb-048d-0001-SO                              | <br>N        |                  |                                 |          |                 | x           |                 |                       |                          |                             |                         |                      |                |                    | 3                     |                       | 851012                                                                                                                         |
| Relinguished By                                                                                                | Date/Time<br>09.29.10 /1715<br>Date/Time       | Receive      | d By:            | Labor                           | ralory   | y by:           |             | <u> </u>        |                       | t                        | 9                           | Date                    | 2/Tim<br>/Tim        | e<br>על        | 140                | ł                     | Ice<br>Ter<br>Co      | Lab Use Only<br>Present (res) No<br>mperature 26, (.9, 2.9<br>oler # 378(5, 3635)                                              |

| Rev. 4/                          | 2010                  |                       |                |                     | CHAIN                                         | OF CU             | JSTO           | D       | Y                                                                                                              |           |             |                 |                      |                      |                            | Paş                                | ge <u>2</u> 2          |                       | _ of _                        | 2                                                                                                            |
|----------------------------------|-----------------------|-----------------------|----------------|---------------------|-----------------------------------------------|-------------------|----------------|---------|----------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------|----------------------|----------------------|----------------------------|------------------------------------|------------------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|
| Comp<br>Projec                   | any: SH<br>t Contac   | AW E<br>t: Davi       | & I<br>d Crisp | 0                   | CT LABORAT(                                   | ) R I E           | 1              | +++     | the second s | 123       | 30 La<br>60 | nge C<br>8-356- | ourt,<br>2760<br>wwv | Bara<br>Fa<br>v.ctla | boo, N<br>x 608-<br>borate | WI 53913<br>-356-2766<br>ories.com | Report<br>EMAI<br>Comp | To: I<br>L: d<br>any: | David<br>avid.<br>SHA<br>Rand | Crispo<br>crispo@shawgrp.com<br>AW E & I<br>olph_MA                                                          |
| Telepł<br>Projec                 | none: 61<br>t Name:   | 7-834-5<br>RVAA       | 5230<br>PA/E   |                     | Lab Use C<br>Place Header St                  | Only<br>icker Her | e <del>:</del> |         |                                                                                                                | Pro<br>QS | ogra<br>M   | m:<br>RCR       | A                    | SDW                  | A                          | NPDES                              | Invoice                | • To:*                | i vari va                     |                                                                                                              |
| Projec                           | t #: 1336             | 16                    |                |                     | all all                                       |                   |                |         |                                                                                                                | Sol       | id W        | /aste<br>2162(  | )<br>                | other                | . <u></u> ,                |                                    | Comp                   | L:<br>any:            |                               |                                                                                                              |
| Locati<br>Sampl                  | on: RAV<br>led By:    | ∕ĘNN≀                 | A, OH          |                     | , v                                           |                   |                |         |                                                                                                                |           |             |                 | Party                | listed i             | s respor                   | sible for pay                      | ment of inv            | voice as              | per CT                        | Laboratories' terms and conditions                                                                           |
|                                  |                       |                       |                | . <u> </u>          |                                               | -                 | Τ              |         | <u> </u>                                                                                                       |           | A NT A      |                 |                      | FOU                  | ,<br>CCTE                  |                                    |                        |                       | -<br>                         | Turnaround Time                                                                                              |
| Client                           | Special II            | istructi              | ons            |                     |                                               | N/X &             | fetals         | ives    |                                                                                                                | romium    |             | sep             |                      | eQU                  | lants                      |                                    |                        | Containers            | ated MS/MSD                   | Normal RUSH*<br>Date Needed:<br><br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges: |
| Matrix:<br>GW – gr<br>S - soil/s | oundwater<br>sediment | SW - sur<br>SL - slud | face water     | WW - was<br>A - air | tewater DW - drinking water<br>M - misc/waste | Filtered          | TALN           | Explosi | SVOCs                                                                                                          | Hex Cr    | VOCs        | Pesticio        | PCBs                 | Cyanide              | Propell                    |                                    |                        | Total #               | Design                        | 24 hr 200%<br>2-3 days 100%<br>4-9 days 50%                                                                  |
| Coll                             | lection               | Matrix                | Grab/<br>Comp  | Sam                 | ple ID Description                            |                   |                |         |                                                                                                                |           | Fill        | in Sp           | vaces                | with                 | Bott                       | les per Te                         | st                     |                       |                               | CT Lab ID #<br>Lab use only                                                                                  |
| 09.29.10                         | 0930                  | S                     | grab           |                     | Csb-084m-0001-SO                              | N                 | x              | x       | x                                                                                                              | x         |             | x               | x                    | x                    | X                          |                                    |                        | 1                     |                               | 854013                                                                                                       |
| 09.29.10                         | 0945                  | S                     | grab           | 5                   | 5Csb-084d-0001-50                             | N                 |                |         |                                                                                                                |           | x           |                 |                      | L                    |                            |                                    |                        | 3                     |                               | 854014                                                                                                       |
| 09.29.10                         | 1025                  | S                     | grab           | 5                   | Csb-049m-0001-SO                              | N                 | x              | x       | X                                                                                                              | <u> </u>  |             |                 | <u> </u>             |                      |                            | <u> </u>                           |                        | 1                     |                               | 854015                                                                                                       |
| 09.29.10                         | 1110                  | S                     | grab           | 5                   | 6Csb-050m-0001-SO                             | N                 | x              | X       | ( <u>x</u>                                                                                                     | -         | <u> </u>    |                 | -                    |                      |                            |                                    |                        | 1                     |                               | 854016                                                                                                       |
| 09.29.10                         | 1130                  | S                     | grab           |                     | Csb-051m-0001-SO                              | N                 | X              | X       |                                                                                                                | x         | ļ           |                 | <u> </u>             |                      | +                          |                                    |                        | 1                     |                               | 85401                                                                                                        |
| 09.29.10                         | 1135                  | S                     | grab           |                     | Csb-051m-0001-MS                              | N                 | x              | X       |                                                                                                                | ļ         |             |                 | <u> </u>             |                      |                            |                                    |                        | 1<br>1                |                               | 854011                                                                                                       |
| 09.29.10                         | 1140                  | S                     | grab           | S                   | Csb-051m-0001-MD                              | N                 | X              | X       | <u>( x</u>                                                                                                     |           | <u> </u>    | <u> </u>        |                      |                      | ļ. —                       |                                    |                        | 1                     |                               | 854017                                                                                                       |
| 09.29.10                         | 1155                  | S                     | grab           |                     | Csb-052m-0001-SO                              | N                 | <u>x</u>       | X       |                                                                                                                |           | <u> </u>    |                 |                      | <u> </u>             |                            |                                    |                        |                       |                               | 854012                                                                                                       |
| 09.29.10                         | 1240                  | S                     | grab           |                     | Csb-053m-0001-SO                              | N                 | X              | X       |                                                                                                                |           |             |                 | <u> </u>             |                      |                            |                                    |                        | 1                     |                               | 854011                                                                                                       |
| 09.29.10                         | 1235                  | 5                     | grab           |                     | 6Csb-054m-0001-50                             | N                 |                |         |                                                                                                                |           |             |                 |                      |                      |                            | <u> </u>                           |                        |                       |                               | 8540AU                                                                                                       |
| Pa                               |                       |                       |                |                     |                                               |                   |                | ╁╴      |                                                                                                                |           | <u> </u>    |                 |                      |                      | <u> </u>                   |                                    |                        |                       |                               |                                                                                                              |
| de 7867                          | ished By<br>M         | 21                    | Meg            | J.                  | Date/Time<br>99.89.10/1715<br>Date/Time       | Receiv<br>Receiv  | red By         | r La    | borato                                                                                                         | ry by     | ;           | ľ               |                      | \                    |                            | Date/Tin<br>Date/Tin               | ne<br>114              | - 1                   | Ice<br>Te<br>Co               | Lab Use Ogly<br>Present (Yes) No<br>mperature <u>2.6, 1.9, 2.9</u><br>poler # <u>3785, 3638, 3335</u>        |
| CT Lab                           | oratories Te          | rms and (             | Conditions     |                     |                                               |                   |                |         |                                                                                                                |           | 7           | 1               |                      |                      |                            | -                                  | _                      |                       |                               | 9/30/10 1050 js                                                                                              |

| Rev. 4/2010                                                                       |                                      |                                | CHAIN                                           | I OF CI                                       | USTO                             | DDY   |                        |           |                            | · · · ·                     |                       |                       |                           |                           | Paş                 | ge1                              |                            | _of                    | 5                                                                              |
|-----------------------------------------------------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|-------|------------------------|-----------|----------------------------|-----------------------------|-----------------------|-----------------------|---------------------------|---------------------------|---------------------|----------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------|
| Company: SHAT<br>Project Contact: I                                               | W E & I<br>David (                   | [<br>Crispo                    |                                                 | ) R I (                                       | \$                               |       | Mayrow and             | 123       | 30 La<br>60                | nge C<br>8-356              | Court<br>-276(<br>www | , Bar<br>) F<br>w.ctl | aboo,<br>ax 608<br>aborat | WI 5:<br>-356-:<br>ories. | 3913<br>2766<br>com | Report<br>EMAI<br>Comp           | To: 1<br>L: d              | David<br>lavid<br>: SH | Crispo<br>.crispo@shawgrp.com<br>AW E & I<br>Jolob, MA                         |
| Project Name: RV<br>Project #: 133616<br>Location: RAVE<br>Sampled By:            | 834-523<br>VAAP /<br>NNA, (          | 0<br>A/E<br>DH                 | **************************************          | *********<br>2I INC<br>2P<br>PM: E<br>******* | "*****<br>(*****<br>[T<br>(***** | ***** | *****<br>*****<br>**** | QS<br>Sol | ogra<br>M<br>id W<br>9 # 6 | m:<br>RCF<br>Vaste<br>2162( | RA<br>C<br>)<br>Party | SDV<br>Other          | VA                        | NPD                       | ES                  | Invoice<br>EMAI<br>Comp<br>Addre | To:*<br>L:<br>any:<br>ess: | per CT                 | T Laboratories' terms and condition                                            |
| Client Special Inst                                                               | ructions                             | 3                              |                                                 | N/X 2P                                        | Metals                           | sives | ş                      | hromium   | •<br>•                     | LYSI                        | ES R                  | EQU                   | JESTI                     | <u>ED</u>                 |                     |                                  | # Containers               | nated MS/MSD           | Turnaround Time         Normal       RUSH*         Date Needed:                |
| Matrix:<br>GW - groundwater SV<br>S - soil/sediment SL<br>Collection<br>Date Time | V - surface<br>- sludge<br>[atrix Gi | water WW-wa<br>A-air<br>mp San | astewater DW - drinking water<br>M - misc/waste | Filtere                                       | TAL                              | Explo | SVOC                   | Hex C     | ۶<br>Fill                  | in Sp                       | PCBs<br>BCBs<br>Paces | Cyani.<br>Cyani.      | ador<br>d<br>Bott         | les pe                    | er Te:              | st                               | Total                      | Desig                  | 24 hr 200%<br>2-3 days 100%<br>4-9 days 50%<br>CT Lab ID #<br>Lab use only     |
| 09.24.10 1405                                                                     | S gi                                 | ab I                           | DA1sb-067d-0201-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       |                       |                           |                           |                     |                                  |                            |                        | 852283                                                                         |
| 09.24.10 1410                                                                     | S gi                                 | ab I                           | DA1sb-067d-0202-SO                              |                                               |                                  |       |                        |           | <u>x</u>                   |                             |                       | . <u> </u>            |                           |                           |                     |                                  |                            |                        | 852284                                                                         |
| 09.24.10 1420                                                                     | S 21                                 | ab I                           | DA1sb-067d-0204-SO                              | IN<br>N                                       | -                                |       |                        |           | X                          |                             |                       |                       |                           |                           |                     |                                  |                            |                        | 0522005                                                                        |
| 09.24.10 0855                                                                     | S gi                                 | rab I                          | DA1sb-068d-0201-SO                              | N                                             |                                  |       |                        |           | $\frac{x}{x}$              |                             |                       |                       |                           |                           | +                   | _                                |                            |                        | 857287                                                                         |
| 09.24.10 0900                                                                     | S gi                                 | rab İ                          | DA1sb-068d-0202-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       |                       |                           |                           |                     |                                  |                            |                        | 857288                                                                         |
| 09.24.10 0905                                                                     | S gi                                 | ab I                           | DA1sb-068d-0203-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       | 1                     |                           |                           |                     |                                  |                            |                        | 852289                                                                         |
| 09.24.10 0910                                                                     | S gi                                 | ab I                           | DA1sb-068d-0204-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       |                       | 1                         |                           |                     |                                  |                            |                        | 852,290                                                                        |
| 09.24.10 0915                                                                     | S gi                                 | ab I                           | DA1sb-069d-0201-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       | 1                     |                           |                           |                     |                                  |                            |                        | 852291                                                                         |
| 09.24.10 0920                                                                     | S gi                                 | ab I                           | DA1sb-069d-0202-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       | †                     | 1                         |                           |                     |                                  |                            |                        | 852292                                                                         |
| 09.24.10 0925                                                                     | S gi                                 | ab I                           | DA1sb-069d-0203-SO                              | N                                             | 1                                |       |                        |           | x                          |                             |                       | 1                     |                           |                           |                     |                                  | 1                          |                        | 852293                                                                         |
| 09.24.10 0930                                                                     | S gi                                 | ab I                           | DA1sb-070d-0201-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       |                       |                           |                           |                     |                                  |                            | . •                    | 852294                                                                         |
| 09.24.10 0935                                                                     | S gi                                 | ab I                           | DA1sb-070d-0202-SO                              | N                                             |                                  |       |                        |           | x                          |                             |                       |                       |                           |                           |                     |                                  |                            |                        | 852295                                                                         |
| Religioushed Br:                                                                  | MC                                   | 4                              | Date/Time<br>04.95.10/1030<br>Date/Time         | Receive                                       | ed By:<br>ed for                 | Labo  | rator                  | y Javi    | ~                          |                             | /                     |                       | , ]                       | Date<br>Date              | /Tim                | / //6                            | -                          | Ice<br>Ter             | Lab Use Only<br>Present $\sqrt{es}$ No<br>mperature $\sqrt{5 \cdot 1^{\circ}}$ |

| Γ                | Rev. 4/2                             | 010                 |                                     |                  |                      | Снаім                                                       | I OF CU           | STC        | DY         | ,            |              |            |                |                       |                       | -                          | P                                | age                                                         | 2                       |                                              | _of_                  | 5                                                                                                                                            |
|------------------|--------------------------------------|---------------------|-------------------------------------|------------------|----------------------|-------------------------------------------------------------|-------------------|------------|------------|--------------|--------------|------------|----------------|-----------------------|-----------------------|----------------------------|----------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Compai<br>Project (                  | ny: SH.<br>Contact  | AW E<br>:: Davi                     | & I<br>d Crisp   | 0                    | CT LABORAT                                                  | ORIE              | 5          | t t        | ( <b>1</b> ) | 123          | 0 La<br>60 | nge C<br>8-356 | Court<br>-2760<br>www | , Bar<br>) F<br>w.ctl | aboo,<br>'ax 608<br>aborat | WI 5391<br>-356-276<br>ories.cor | $\begin{array}{c c} 3 & R \\ 6 & E \\ n & C \\ \end{array}$ | eport 1<br>MAII<br>ompa | Fo: F<br>L: da<br>any:                       | David<br>avid.<br>SHA | Crispo<br>crispo@shawgrp.com<br>AW E & I<br>alph_MA                                                                                          |
|                  | Telephc<br>Project I                 | one: 612<br>Name: E | 7-834-5<br>RVAA                     | 5230<br>P A/E    |                      | Lab Use (<br>Place Header St                                | Only<br>icker Her | 2:         |            |              | Pro<br>QS    | ogra<br>M  | m:<br>RCF      | RA                    | SDV                   | VA                         | NPDES                            | In                                                          | ivoice                  | ss: 1<br>То:*                                | Nanu                  | oipii, mA                                                                                                                                    |
|                  | Project :                            | #: 13361            | 6                                   |                  |                      |                                                             |                   |            |            |              | Sol          | id W       | aste           | C                     | )the                  | ſ                          |                                  |                                                             | MAII<br>ompa            | L:<br>anv:                                   |                       |                                                                                                                                              |
|                  | Location                             | n: RAV              | 'ENNA                               | A, OH            |                      |                                                             |                   |            |            |              | PC           | ) # 62     | 2162           | 0                     |                       |                            |                                  | Ā                                                           | ddre                    | ss:                                          |                       |                                                                                                                                              |
|                  | Sample                               | d Bv:               |                                     | , -              |                      |                                                             |                   |            |            |              |              |            |                | Partu                 | listød                | is resno                   | nsible for n                     | aumen                                                       | t of invo               | nice as                                      | ner CT                | Laboratories' terms and conditions                                                                                                           |
| $\left  \right $ |                                      |                     |                                     |                  |                      |                                                             | 1                 | r          |            |              |              |            |                | EC D                  | EOI                   | IECTI                      |                                  |                                                             | ,                       |                                              | <i>pti</i> <b>CI</b>  | Turnaround Time                                                                                                                              |
| ľ                | Client Sp                            | pecial In           | structi                             | ons              |                      |                                                             |                   |            |            | 1            |              |            | LIS            | ESK                   | EQU                   | JESTI                      | <u>u</u>                         |                                                             |                         |                                              | 0                     | Normal RUSH*                                                                                                                                 |
|                  | Matrix:<br>GW – grou<br>S - soil/sec | indwater<br>liment  | <b>SW</b> - sur<br><b>SL</b> - slud | face water<br>ge | WW - wast<br>A - air | tewater <b>DW</b> - drinking water<br><b>M</b> - misc/waste | Filtered? Y/N     | TAL Metals | Explosives | SVOCs        | Hex Chromium | VOCs       | Pesticides     | PCBs                  | Cyanide               | Propellants                |                                  |                                                             |                         | Total # Containers                           | Designated MS/MSI     | Date Needed:<br><br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr. 200%<br>2-3 days 100%<br>4-9 days 50% |
| _                | Collec                               | ction               | Matrix                              | Grab/            | Sam                  | ple ID Description                                          |                   |            |            |              |              | Fill       | in Sp          | paces                 | s wit                 | h Bott                     | les per T                        | ſest                                                        |                         |                                              |                       | CT Lab ID #<br>Lab use only                                                                                                                  |
| ŀ                | 09.24.10                             | <u> </u>            | S                                   | grab             | D                    | A1sb-070d-0203-SO                                           | N                 |            | [          | 1            | Γ            | x          |                | 1                     | T                     | 1                          |                                  |                                                             |                         |                                              |                       | 852296                                                                                                                                       |
|                  | 09.24.10                             | 0930                | S                                   | grab             | D.                   | A1sb-070d-0201-MS 🛹                                         | N                 |            |            |              |              | x          |                | 1                     |                       | -1                         |                                  |                                                             |                         |                                              |                       | 85224                                                                                                                                        |
|                  | 09.24.10                             | 0930                | S                                   | grab             | D                    | A1sb-070d-0201-MD                                           | N                 | 1          |            |              |              | x          |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852294                                                                                                                                       |
| F                | 09.24.10                             | 0855                | S                                   | grab             | D                    | A1sb-084d-0201-SO                                           | N                 |            |            | 1            |              | X          |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852297                                                                                                                                       |
|                  | 09.24.10                             | 0945                | S                                   | grab             | D                    | A1sb-085d-0204-SO                                           | N                 |            |            |              |              | x          |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852298                                                                                                                                       |
|                  | 09.24.10                             | 0800                | Š                                   | grab             | I                    | DA1qc-001-0001-TB                                           | N                 |            |            |              |              | x          |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852299                                                                                                                                       |
|                  | 09.24.10                             | 0800                | S                                   | grab             | Γ                    | DA1qc-002-0001-TB                                           | N                 |            | :          |              |              | Ϋ́Χ        |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852300                                                                                                                                       |
|                  | 09.24.10                             | 1350                | S                                   | grab             | D                    | A1sb-071d-0201-SO                                           | N                 |            |            |              |              | x          |                | 1                     |                       | _                          |                                  |                                                             |                         |                                              |                       | 152301                                                                                                                                       |
|                  | 09.24.10                             | 1300                | S                                   | grab             | 5                    | 5Css-057d-0001-SO                                           | N                 |            |            |              |              | x          |                |                       |                       |                            |                                  |                                                             |                         |                                              |                       | 852302                                                                                                                                       |
|                  | 09.24.10                             | 1305                | S                                   | grab             | 5                    | 6Css-057d-0001-MS                                           | N                 |            |            | _            |              | X          |                |                       |                       |                            | <u> </u>                         |                                                             |                         |                                              | <del>_</del>          | 852302                                                                                                                                       |
|                  | 09.24.10                             | 1310                | S                                   | grab             | S                    | Css-057d-0001-MD                                            | N                 |            |            | 1            | ļ            | x          |                |                       |                       |                            |                                  |                                                             |                         | <u>                                     </u> |                       | 852000                                                                                                                                       |
| U                | 09.23.10                             | 1340                | S                                   | grab             | 9                    | Css-058m-0001-SO                                            | N                 | <u>x</u>   | X          | <u>x</u>     |              |            | ļ              |                       |                       |                            |                                  |                                                             |                         |                                              | ····                  | 852322                                                                                                                                       |
|                  | 09.23.10                             | 1445                | S<br>SAL                            | grab             | 5                    | Css-085m-0001-SO                                            | N<br>Receiv       | X<br>d Bv  | X<br>      | X            |              |            | <u> </u>       |                       |                       |                            | Date/T                           | ime                                                         |                         |                                              |                       | <u>552537</u><br>Lab Use Only                                                                                                                |
| 905              |                                      | by!                 |                                     |                  | )                    | 01.25.10/1035<br>Date/Time                                  | Receiv            | ed for     | Lab        | orate        | đ            | Z          | He             | 1<br>Insi             | the                   | 1                          | Date/)                           |                                                             | Ŵ                       | 5                                            | Ice<br>Ter<br>Co      | Present $(e_5)$ No<br>mperature $\leq 5.1^{\circ}$<br>oler # $3662, 36451377$                                                                |

| Rev. 4/2010                                                                                      | Chain                                         | N OF C            | USTO         | DD         | (                                                                                                               |                       |                                |                     |                     |                        |                         |                                 | Pag               | e3                                      | 3                                      | of                     | 5                                                                                                                                       |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|---------------------|---------------------|------------------------|-------------------------|---------------------------------|-------------------|-----------------------------------------|----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Crispo                                             | CT LABORAT                                    | O R I f           | <b>}</b>     |            | the second second second second second second second second second second second second second second second se | 12                    | 230 L<br>6                     | ange (<br>08-356    | Cour<br>5-276<br>ww | t, Bar<br>Ø F<br>w.ctl | aboo,<br>ax 60<br>abora | , WI 53<br>8-356-2<br>itories.c | 913<br>766<br>com | Report<br>EMA<br>Comp                   | t To:<br>IL: d<br>pany                 | David<br>lavid<br>: SH | d Crispo<br>l.crispo@shawgrp.com<br>AW E & I                                                                                            |
| Telephone: 617-834-5230<br>Project Name: RVAAP A/E<br>Project #: 133616<br>Location: RAVENNA, OH | Lab Use (<br>Place Header St                  | Only<br>icker Her | re:          |            |                                                                                                                 | P1<br>Q3<br>Sco<br>PC | rogra<br>SM<br>olid V<br>O # 6 | am:<br>RCI<br>Vaste | RA<br>0             | SDV<br>Othe            | VA<br>r                 | NPDI                            | ES<br>-           | Addr<br>Invoice<br>EMAI<br>Comp<br>Addr | ess:<br>e To:*<br>IL:<br>pany:<br>ess: | Rano                   | dolph, MA                                                                                                                               |
| Sampled By:                                                                                      |                                               |                   |              |            |                                                                                                                 |                       |                                | ж                   | Partu               | ı listed               | is resp                 | onsible fo                      | r naum            | ent of im                               | voice as                               | ner C                  | T I aboratories' terms and conditions                                                                                                   |
| Client Special Instructions                                                                      | -                                             |                   |              |            |                                                                                                                 | 1                     | AN                             | ALYS                | ES F                | REOI                   | IEST                    | ED                              | pagin             |                                         |                                        |                        | Turnaround Time                                                                                                                         |
| Matrix:<br>GW - groundwater SW - surface water WW - was<br>S - soil/sediment SL - sludge A - air | tewater DW - drinking water<br>M - misc/waste | Filtered? Y/N     | TAL Metals   | Explosives | svocs                                                                                                           | Hex Chromium          | VOCs                           | Pesticides          | PCBs                | Cyanide                | Propellants             |                                 |                   |                                         | Total # Containers                     | Designated MS/MSD      | Normal RUSH*<br>Date Needed:<br>Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100% |
| Collection Matrix Grab/ Sam                                                                      | nle ID Description                            |                   |              |            |                                                                                                                 | L                     | L                              | l in Sr             |                     | -  <br>2 147iti        | - Bot                   |                                 | . Tool            |                                         |                                        | <u> </u>               | 4-9 days 50%                                                                                                                            |
| Date Time Comp Start                                                                             | Csc-057m-0001-SO                              |                   |              | •          |                                                                                                                 |                       | <b>1</b> • • •                 |                     |                     |                        |                         |                                 | Tesi              |                                         |                                        |                        | Lab use only                                                                                                                            |
| 09.24.10 1135 S grab S                                                                           | Css-057m-0001-MS                              | N N               | X            | X          | X                                                                                                               | X                     | -                              |                     |                     |                        |                         |                                 | _                 |                                         |                                        |                        | 802338                                                                                                                                  |
| 09.24.10 1240 S grab S                                                                           | Css-057m-0001-MD                              | N                 | x            | x          | x                                                                                                               | <b> -</b>             |                                | x                   | $\frac{\lambda}{x}$ | $\frac{x}{x}$          | x                       | +                               |                   |                                         | +                                      |                        | 857229                                                                                                                                  |
| 09.24.10 1525 S grab S                                                                           | Css-044m-0001-SO                              | N                 | x            | x          | x                                                                                                               |                       | 1                              |                     | +                   | +                      |                         |                                 | <u> </u>          |                                         |                                        |                        | 852 200                                                                                                                                 |
| 09.24.10 1405 S grab D                                                                           | A1sb-067m-0201-SO                             | N                 | x            | x          |                                                                                                                 |                       |                                |                     | †                   | +                      |                         |                                 |                   | +                                       |                                        |                        | 85737.9                                                                                                                                 |
| 09.24.10 1410 S grab D <sub>4</sub>                                                              | A1sb-067m-0202-SO                             | N                 | x            | x          |                                                                                                                 | x                     |                                |                     |                     | 1                      |                         |                                 |                   |                                         |                                        |                        | 852370                                                                                                                                  |
| 09.24.10 1415 S grab D/                                                                          | A1sb-067m-0203-SO                             | N                 | x            | x          |                                                                                                                 |                       |                                |                     |                     |                        |                         |                                 |                   |                                         |                                        |                        | 852371                                                                                                                                  |
| 09.24.10 1420 S grab D/                                                                          | A1sb-067m-0204-SO                             | N                 | x            | x          |                                                                                                                 |                       |                                |                     |                     |                        |                         |                                 |                   |                                         |                                        |                        | 852372                                                                                                                                  |
| 09.24.10 0855 S grab Dz                                                                          | A1sb-068m-0201-SO                             | N                 | x            | x          | x                                                                                                               |                       |                                | x                   | x                   | x                      | x                       |                                 |                   |                                         |                                        |                        | 852373                                                                                                                                  |
| 09.24.10 0900 S grab DA                                                                          | A1sb-068m-0202-SO                             | N                 | X            | x          |                                                                                                                 |                       |                                |                     | <u> </u>            |                        | x                       |                                 |                   |                                         |                                        |                        | 852374                                                                                                                                  |
| 09.24.10 0905 5 grab D2                                                                          | A1sb-068m-0203-SO                             | N                 | X            | x          |                                                                                                                 |                       |                                |                     |                     |                        | <b>x</b>                |                                 | _ _               |                                         |                                        |                        | 852375                                                                                                                                  |
| 09 24 10 0915 S grab D/                                                                          | A 1sb-068m-0204-SQ                            | N                 | X            | X          |                                                                                                                 |                       |                                | <b> </b>            |                     |                        | x                       |                                 |                   | <u> </u>                                |                                        |                        | 852376                                                                                                                                  |
| Relinquished by Alther                                                                           | Date/Time                                     | N<br>Reccive      | X  <br>d By: | x          | X                                                                                                               |                       |                                |                     | X                   | x                      | x                       | Date/                           | Time              |                                         |                                        | Ice                    | Lab Use Only<br>Present Ses No                                                                                                          |
| Kecoived by                                                                                      | Date/Time                                     | Receive           | d for        | Labo       | rator                                                                                                           |                       | G                              | Ð                   | J.                  | Ju                     | /                       | Date/                           | Fime<br>8/1       |                                         | 155                                    | Per<br>Coo             | mperature $\leq 5.1^{\circ}$<br>oler # $30.2, 3.45, 3772$<br>3794, 0.815                                                                |

| Rev. 4/2                             | 2010                  |                       |                          |                        |                                  | Сна                                | N OF C              | UST                          | וסכ                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                       |                   |                       |                          | ·                         |                               | Pag              | ;e                  | 4                       |                     | of                   |                                                                                                                    |
|--------------------------------------|-----------------------|-----------------------|--------------------------|------------------------|----------------------------------|------------------------------------|---------------------|------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-------------------|-----------------------|--------------------------|---------------------------|-------------------------------|------------------|---------------------|-------------------------|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|
| Compa<br>Project                     | ıny: SH<br>Contac     | AW E<br>t: Davi       | & I<br>d Crisp           | 00                     | (11                              | ABORAT                             | ORI                 | 5                            | 1 tr                                                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 12            | 230 La<br>60          | nge C<br>8-356    | Court<br>-2760<br>www | , Bara<br>) Fa<br>w.ctla | iboo,<br>ax 608<br>iborat | WI 539<br>-356-22<br>ories.co | 913<br>766<br>om | Repo<br>EMA<br>Con  | rt To<br>AIL:<br>ipan   | : D<br>da<br>y:     | avid<br>avid.<br>SH/ | Crispo<br>.crispo@shawgrp.com<br>AW E & I                                                                          |
| Telepho<br>Project                   | one: 61<br>Name:      | 7-834-5<br>RVAA       | 5230<br>.P A/E           |                        |                                  | Lab Use<br>Place Header :          | Only<br>Sticker Her | re:                          | ·                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pr<br>Q<br>So | roġra<br>SM<br>olid V | m:<br>RCF<br>aste | RA<br>C               | SDW<br>)ther             | γA                        | NPDE                          | s                | Add<br>Invoi<br>EM/ | ress:<br>ice To<br>AIL: | : K<br>>:*          | kand                 | lolph, MA                                                                                                          |
| Project<br>Locatio                   | #: 1336)<br>on: RAV   | 16<br>/ENN            | A, OH                    |                        |                                  |                                    |                     |                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC            | O#6                   | 2162              | 0                     |                          |                           |                               |                  | Con<br>Add          | ipan<br>ress:           | y:<br>:             |                      |                                                                                                                    |
| Sample                               | ed By:                |                       |                          |                        |                                  |                                    |                     |                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       | *                 | Party                 | listed i                 | s respo                   | nsible for                    | payn             | nent of i           | nvoice                  | as p                | per CT               | Laboratories' terms and conditions                                                                                 |
| Client S                             | pecial Ir             | nstructi              | ons                      |                        | •                                |                                    |                     |                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | ANA                   | LYS               | ES R                  | EQU                      | ESTI                      | ED                            |                  |                     |                         |                     |                      | Turnaround Time                                                                                                    |
| Matrix:<br>GW – grou<br>S - soil/see | undwater<br>diment    | SW - sur<br>SL - slud | face water<br>g <b>e</b> | • WW - wast<br>A - air | iewater D<br>M                   | W - drinking water<br>- misc/waste | Filtered? Y/N       | TAL Metals                   | Explosives                                                                   | SVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hex Chromium  | VOCs                  | Pesticides        | PCBs                  | Cyanide                  | Propellants               |                               |                  |                     | Total # Casterio        | I otal # Containers | Designated MS/MSD    | Normal RUSH*<br>Date Needed:<br>                                                                                   |
| Colle<br>Date                        | ction<br>Time         | Matrix                | Grab/<br>Comp            | Sam                    | ple ID I                         | Description                        |                     |                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Fill                  | in Sp             | aces                  | with                     | Bott                      | les per                       | Tes              | t                   |                         |                     |                      | CT Lab ID #<br>Lab use only                                                                                        |
| 09.24.10                             | 0920                  | S                     | grab                     | D                      | A1sb-069r                        | n-0202-SO                          | N                   | x                            | x                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   |                       |                          | X                         |                               |                  |                     |                         |                     |                      | 852378                                                                                                             |
| 09.24.10                             | 0925                  | S                     | grab                     | D/                     | A1sb-069r                        | n-0203-SO                          | N                   | x                            | x                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   |                       |                          | X                         |                               |                  |                     |                         |                     |                      | 852379                                                                                                             |
| 09.24.10                             | 0930                  | S                     | grab                     | D                      | A1sb-070r                        | n-0201-SO                          | N                   | x                            | x                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   |                       |                          | x                         |                               |                  |                     |                         |                     |                      | 852380                                                                                                             |
| 09.24.10                             | 0935                  | S                     | grab                     | D                      | A1sb-070r                        | n-0202-SO                          | N                   | X                            | X                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   |                       |                          | x                         |                               |                  |                     | _                       |                     |                      | 852381                                                                                                             |
| 09.24.10                             | 0940                  |                       | grab                     |                        | A150-070r                        | n-0203-50                          | N                   |                              | X                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       | X                 | X                     |                          | X                         |                               |                  |                     | <u>a</u>                |                     |                      | 852382                                                                                                             |
| 09.24.10                             | 0930                  | G                     | grab                     |                        | 180-070                          | n-0204-50                          |                     |                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   | <u> </u>              |                          | X                         | mi                            | 55               | , nc                | <b>X</b> ⊢              | _                   |                      | 85230                                                                                                              |
| 09.24.10                             | 0930                  | s                     | grab                     | D/                     | 1sb-070n                         | 1-0201-MD                          |                     | $\frac{\Lambda}{\mathbf{v}}$ | $\left  \begin{array}{c} \mathbf{\hat{v}} \\ \mathbf{v} \end{array} \right $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ├──           |                       |                   |                       |                          | ×<br>×                    |                               |                  | `                   | <u> </u>                | -+                  |                      | 857700                                                                                                             |
| 09.24.10                             | 1350                  | s                     | grab                     | D                      | A1sb-071r                        | n-0201-SO                          |                     | $\frac{1}{x}$                | x                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | <b>x</b>              | x                 | x                     | x                        | $\frac{x}{x}$             | <u>├</u>                      |                  |                     |                         |                     |                      | 8522011                                                                                                            |
| 09.24.10                             | 1355                  | s                     | grab                     | D                      | A1sb-071r                        | n-0202-SO                          | N                   | $\frac{1}{x}$                | x                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             |                       |                   |                       |                          |                           |                               | +                |                     |                         |                     |                      | 857285                                                                                                             |
| 09.24.10                             | 1400                  | s                     | grab                     | D                      | A1sb-071r                        | n-0203-SO                          | N                   | x                            | x                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |                   |                       |                          |                           |                               | +                |                     |                         |                     |                      | 857386                                                                                                             |
| 09.24.10                             | 1330                  | S                     | grab                     | D                      | A1sb-072r                        | n-0201-SO                          | N                   | x                            | x                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 1                     | 1                 |                       | 1                        |                           |                               | $\top$           |                     | $\top$                  | $\uparrow$          |                      | 852387                                                                                                             |
| 09.24.10                             | 1335                  | S                     | grab                     | D                      | 41sb-072r                        | n-0202-SO                          | N                   | x                            | x                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 1                     |                   | 1                     | 1                        |                           |                               |                  |                     |                         |                     |                      | 852388                                                                                                             |
| Reliptions                           | hed By<br>2 /-<br>by: | M                     | as                       | J                      | Date/Tiz<br>Date/Tiz<br>Date/Tiz | me<br>5. P/1030                    | Receive<br>Receive  | ed By<br>ed for              | :<br>· Lab                                                                   | orator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ĵ             | ~                     |                   | _                     | Λ                        | /                         | Date/                         | Time<br>Øime     | 1                   | MA                      | -                   | Ice<br>Ten           | Lab Use Only<br>Present $\underbrace{\text{Ves}}_{\text{S-}}$ No<br>nperature $\underbrace{\text{S-}}_{\text{S-}}$ |
|                                      | ,                     |                       |                          | 1 <b></b>              |                                  |                                    |                     | (                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A             |                       | He                | uð                    | ko                       | /                         | 9/                            | 78               | hr                  | /// 0                   |                     | Coo<br>ETh           | oler #3862, 3645,37<br>3794, NONE<br>4,9-28-10, 1045                                                               |

| Rev. 4/2010                                                               | ·····                 | Сна                                  | IN OF C               | UST        | DD       | Y        |                      |           |                             |                     |                        |                         |                              | Pag                 | ;e4                             | 1                              | of                     | 5                                                               |
|---------------------------------------------------------------------------|-----------------------|--------------------------------------|-----------------------|------------|----------|----------|----------------------|-----------|-----------------------------|---------------------|------------------------|-------------------------|------------------------------|---------------------|---------------------------------|--------------------------------|------------------------|-----------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Cr                          | ispo                  | CT LABORAT                           | ORI                   | [ <b>}</b> |          | the same | 12                   | 30 L<br>6 | ange (<br>)8-356            | Couri<br>-276<br>ww | t, Baı<br>0 F<br>w.ctl | aboo,<br>ax 60<br>abora | WI 53<br>8-356-2<br>tories.c | 3913<br>2766<br>com | Report<br>EMA<br>Comp           | To: I<br>IL: d                 | David<br>lavid<br>: SH | l Crispo<br>.crispo@shawgrp.com<br>AW E & I                     |
| Project Name: RVAAP A,<br>Project #: 133616                               | /E                    | Lab Use<br>Place Header S            | e Only<br>Sticker Her | e:         |          |          | Pr<br>Qs<br>So<br>PC | $\cos r$  | am:<br>RCF<br>Vaste<br>2162 | RA<br>C             | SDV<br>Othe            | VA<br>r                 | NPD                          | ES<br>-             | Addre<br>Invoice<br>EMA<br>Comp | ess:<br>e To:*<br>IL:<br>pany: | Ranc                   | lolph, MA                                                       |
| Sampled By:                                                               | L L                   |                                      |                       |            |          |          |                      |           |                             |                     |                        |                         |                              |                     | Aaar                            | ess:                           |                        | ·                                                               |
| Client Special Instructions                                               | <u> </u>              |                                      |                       | -          |          |          |                      |           | *                           | Party               | listed                 | is respo                | msible fo                    | r payn              | ient of int                     | oice as                        | per CT                 | Laboratories' terms and condition                               |
| Matrix:<br>GW - groundwater SW - surface wa                               | ster WW - was         | rewator DW-drinking water            | tered? Y/N            | AL Metals  | plosives | ocs      | x Chromium           | ANA       | ticides                     | Bs                  | unide                  | pellants                |                              |                     |                                 | al # Containers                | ignated MS/MSD         | Turnaround Time         Normal       RUSH*         Date Needed: |
| S - soil/sediment SL - sludge<br>Collection Matrix Grat                   | A-air                 | M - misc/waste                       | Filt                  | Υ          | Exl      | SV       | He                   |           | Les                         | PG<br>D             | Cya                    | Pro                     |                              |                     |                                 | Tot                            | Des                    | 2-3 days 100%<br><u>4-9 days 50%</u><br>CT Lab ID #             |
| Date Time Com<br>09.24.10 1340 S grad                                     |                       | Alsh-072m-0203 SO                    |                       |            | •        | 1        | 1                    | F111      |                             | aces                |                        | n Bott                  | les per                      | r lesi              | :<br>                           | <del>, ,</del> ,               |                        | Lab use only                                                    |
| 09.24.10 1345 S grat                                                      | $\rightarrow$ $D_{1}$ | A1sb-072m-0204-SO                    |                       | X          | x        |          |                      |           |                             |                     |                        |                         | + +                          |                     |                                 |                                | <u> </u>               | 852389                                                          |
| 09.24.10 0855 S grat                                                      | D/                    | A1sb-084m-0201-SO                    | N                     | x          | x        | x        |                      |           | x                           | x                   | x                      | x                       |                              |                     |                                 |                                |                        | 857291                                                          |
| 09.24.10 0945 S grat                                                      | • D/                  | A1sb-085m-0204-SO                    | N                     | x          | x        |          |                      |           |                             |                     |                        | x                       |                              |                     |                                 |                                |                        | 857292                                                          |
| 09.24.10 1345 S grat                                                      | DA                    | A1sb-086m-0204-SO                    | N                     | x          | x        |          |                      |           |                             |                     |                        |                         |                              |                     |                                 |                                |                        | 852393                                                          |
| 09.25.10         S         grat           09.25.10         S         grat | 5 SI                  | Csb-055m-0001-SO<br>Csb-056m-0001-SO | N<br>N                | x<br>x     | x<br>x   | x<br>x   | x                    |           |                             |                     | -                      |                         |                              |                     |                                 | -                              |                        | 852 394                                                         |
|                                                                           |                       |                                      |                       |            |          |          |                      |           |                             |                     |                        |                         |                              |                     |                                 |                                |                        |                                                                 |
|                                                                           |                       |                                      |                       |            |          |          |                      |           |                             |                     |                        |                         |                              |                     |                                 |                                |                        |                                                                 |
| Relinguished B MCA                                                        | 7                     | Date/Time<br>99-25.10/1630           | Receive               | d By:      |          |          | <u>.</u>             |           | ·                           | L                   | L                      | .t                      | Date/                        | Time                |                                 |                                | Ice                    | Lab Use Only<br>Present (es) No                                 |
|                                                                           |                       | Data /Time                           | Positiva              | J Com 1    | t _1_    | -        | r hur                |           | T                           |                     | A                      | 1                       | <b>—</b> (                   | 4.                  | 71                              | -                              | Ten                    | $reperature \leq 5.1^{\circ}$                                   |

| Rev. 4/2010                                                                                       | CHAIN                                                       | OF CU                              | JSTC       | DDY           | ,                              |                |                              |                              |                       |                       |                         |                              | Page                                            | 1                                         |                                    | _ of _                  | 1                                                                                                                       |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|------------|---------------|--------------------------------|----------------|------------------------------|------------------------------|-----------------------|-----------------------|-------------------------|------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Company: SHAW E & I<br>Project Contact: David Crispo                                              | CT LABORAT(                                                 | )                                  | 5          |               |                                | 123            | 30 La<br>60                  | nge C<br>18-356              | Court<br>-2760<br>www | , Bar<br>) F<br>w.ctl | aboo,<br>ax 60<br>abora | WI 53<br>8-356-2<br>tories.e | 3913 <sup>]</sup><br>2766 <sup>]</sup><br>com 4 | Report<br>EMAI<br>Comp                    | To: 1<br>L: d<br>any:              | David<br>lavid<br>: SHL | Crispo<br>.crispo@shawgrp.com<br>AW E & I                                                                               |
| Telephone: 617-834-5230<br>Project Name: RVAAP A/E<br>Project #: 133616<br>Location: RAVENNA, OH  | ************************************                        | ********<br>********               | ****       | ****          | k 34<br>k 34                   | Pr<br>QS<br>So | ogra<br>5M<br>lid W<br>D # 6 | ım:<br>RCF<br>/aste<br>21620 | RA<br>C               | SDV<br>)thei          | VA<br>                  | NPD                          | ES 1                                            | Addre<br>Invoice<br>EMAI<br>Comp<br>Addre | ess:<br>To:*<br>L:<br>any:<br>ess: | Kand                    | olph, MA                                                                                                                |
| Sampled By:                                                                                       | ***************************************                     | · <u>F</u> ]<br>********<br>****** | ****       | ****          | *                              |                | <u></u>                      | *                            | Party                 | listed                | is respo                | onsible fo                   | or payme                                        | nt of inv                                 | oice as                            | per CT                  | 'Laboratories' terms and conditions                                                                                     |
| Client Special Instructions                                                                       | <u> </u>                                                    |                                    |            |               |                                |                |                              | LYS                          | ES R                  | EQU                   | JEST                    | ED to                        |                                                 |                                           | ers                                | MSD                     | <b>Turnaround Time</b><br>Normal RUSH*<br>Date Needed:                                                                  |
| Matrix:<br>GW – groundwater SW - surface water WW - wast<br>S - soil/sediment SL - sludge A - air | tewater <b>DW</b> - drinking water<br><b>M</b> - misc/waste | Filtered? Y/N                      | TAL Metals | Explosives    | SVOCs                          | Hex Chromium   | VOCs                         | Pesticides                   | PCBs                  | Cyanide               | Propellants             | FP, REN, RS                  |                                                 |                                           | Total # Containe                   | Designated MS/I         | Rush analysis requires prior<br>CT Laboratories' approval<br>Surcharges:<br>24 hr 200%<br>2-3 days 100%<br>4-9 days 50% |
| Collection         Matrix         Grab/<br>Comp         Samp                                      | ple ID Description                                          |                                    |            |               |                                |                | Fill                         | in Sp                        | aces                  | witl                  | h Botl                  | les pe                       | r Test                                          |                                           |                                    |                         | CT Lab ID #                                                                                                             |
| 09.29.10 1545 GW grab 9                                                                           | SCqc-005-0001-ER                                            | N                                  | x          | x             | x                              |                | x                            | x                            | x                     | x                     | x                       |                              | - 10                                            |                                           |                                    |                         | 854738                                                                                                                  |
| 09.30.10 1200 GW grab RV                                                                          | VAAP-001-IDW-DL                                             | N                                  | 2          | v             | $\overline{\sqrt{\mathbf{v}}}$ | -              |                              |                              |                       |                       | v                       |                              | 17                                              |                                           |                                    |                         | 884734                                                                                                                  |
| 09.30.10 1230 S grab R'                                                                           | VAAP-001-IDW-SO                                             | N                                  | x          | $\frac{x}{x}$ | $\frac{1}{X}$                  | $\vdash$       | x                            |                              |                       |                       | x                       | X                            | 12                                              |                                           |                                    |                         | 884740                                                                                                                  |
|                                                                                                   |                                                             |                                    | Ŕ          |               | $\bigtriangledown$             | ~              |                              |                              |                       |                       |                         |                              | 10                                              |                                           |                                    |                         | 804/41                                                                                                                  |
|                                                                                                   |                                                             | 01-1-11                            | E TREATUR  |               | REATURE                        | 1-14-11-5      | 20RALLIST                    |                              |                       |                       |                         |                              |                                                 |                                           |                                    |                         |                                                                                                                         |
|                                                                                                   |                                                             |                                    |            |               |                                |                | <b>^</b>                     |                              |                       | <u> </u>              |                         |                              |                                                 | ++                                        |                                    |                         |                                                                                                                         |
|                                                                                                   |                                                             |                                    |            |               |                                | -              |                              |                              |                       |                       |                         |                              |                                                 |                                           |                                    |                         |                                                                                                                         |
|                                                                                                   |                                                             |                                    |            |               |                                |                |                              |                              |                       |                       |                         |                              |                                                 |                                           |                                    | <br>                    |                                                                                                                         |
| Relinquished By:                                                                                  | Date/Time<br>99.30,10/1320<br>Date/Time                     | Receive<br>Receive                 | ed By:     | Labo          | orator                         | y by:          |                              |                              | Ś                     | D                     | )                       | Date                         | /Time                                           | 1142                                      | <del>}_</del>                      | Ice<br>Ter<br>Coe       | Lab Use Outy<br>Present (Yes) No<br>nperature 3-7,2.9<br>oler # 3608, 3653                                              |
| CT Laboratories Terms and Conditions                                                              |                                                             |                                    |            |               |                                |                |                              | (                            | ſ                     |                       |                         |                              | 7                                               |                                           |                                    |                         | 10/1/10 0930                                                                                                            |

Ć

| Rev. 4/2                  | 2010               |                       |                    |                   |              |                                       | Снап               | N OF CI      | USTO         | יתכ         | Y     |          |              | `          |                  | ·          | _          |               | Pag    | e 1         |               | of         | 1                                                                                  |
|---------------------------|--------------------|-----------------------|--------------------|-------------------|--------------|---------------------------------------|--------------------|--------------|--------------|-------------|-------|----------|--------------|------------|------------------|------------|------------|---------------|--------|-------------|---------------|------------|------------------------------------------------------------------------------------|
| Compa                     | ny: SH             | AW E                  | & I                |                   |              |                                       |                    |              | <u> </u>     |             |       | 12       | 30 La        | inge (     | Court            | . Bar      | aboo       | WI 53         |        | Report      | To: I         | <br>David  | <br>Crispo                                                                         |
| Project                   | Contac             | t: Davi               | id Cris            | 00                | (T           | LABO                                  | ) R A T            | ORI          | [ }          |             | -     |          | 60           | )8-356     | -276             | ) F        | ax 608     | 8-356-2       | 766    | EMA         | L: d          | avid.      | .crispo@shawgrp.com                                                                |
| Telepho                   | one: 617           | 7.589.8               | 146                | *                 | ******       | ********                              | ********           | *****        | ****         | k i c ye ye | **    | ~<br>,   |              |            | ww               | w.ctla     | ibora      | tories.       | :om    | Addre       | ess: ]        | Rand       | lolph, MA                                                                          |
| Project                   | Name               | RVAA                  | <br>РА/Б           | F                 | older #:     | 82400                                 |                    |              |              | i<br>i      | ****  | Pr       | ogra         | im:<br>PCI | 2 ^              | SUN        | 7 <b>A</b> | NIDEN         | EC     |             |               |            | I f                                                                                |
| Ductor                    | 1 vanie.           | 17                    |                    | '   c             | ompany:      | SHAW                                  | E&I INC            |              |              | •           |       | So       | lid V        | Vaste      |                  | Other      |            |               | 60     | EMA         | e To:*<br>[L: |            |                                                                                    |
| Project                   | #: 1336            | 16                    |                    | P                 | roject: E    | RVAAP 11                              | RP                 |              |              |             |       |          | <b>\</b> #   |            |                  |            | •          |               |        | Comp        | any:          |            |                                                                                    |
| Locatio                   | on: RAV            | /ENN                  | A, OH              | L                 | ogged By     | :<br>几S                               | PM: E              | ΞT           |              |             |       |          | J#           |            |                  |            |            |               |        | Addro       | ess:          |            |                                                                                    |
| Sample                    | ed By:             |                       |                    | **                | ******       | *********                             | *******            | *******      | *****<br>*** | ****        | ****  | <u> </u> |              | k          | Party            | listed     | is respo   | msible fo     | r payn | tent of int | oice as       | per CT     | "Laboratories' terms and conditions                                                |
| Client S                  | pecial Ir          | nstructi              | ions               |                   | ł            |                                       |                    | ·            | [            |             |       | <u> </u> | ANA          | ALYS       | ES R             | EOU        | EST        | ED            |        |             | <u> </u>      |            | Turnaround Time                                                                    |
|                           |                    |                       |                    |                   |              |                                       |                    |              |              |             |       |          |              |            |                  |            |            |               |        |             | 1             | 0          | Normal RUSH*                                                                       |
| ľ                         |                    |                       |                    |                   |              |                                       |                    |              |              |             |       | 8        |              |            |                  |            |            |               |        |             | lers          | MS         |                                                                                    |
| 1                         |                    |                       |                    |                   |              |                                       |                    | z            | ls           |             |       | niu      |              |            |                  |            | ş          |               |        |             | ıtair         | MS         | Rush analysis requires prior                                                       |
|                           |                    |                       |                    |                   |              |                                       |                    | ا <b>ن ۲</b> | <u>leta</u>  | ives        | .     | Iror     |              | les        |                  |            | ant        |               |        |             | S.            | nted       | CT Laboratories' approval                                                          |
| Matrix:                   |                    |                       |                    |                   |              |                                       |                    | ered         | LN           | los         | SC    | <u></u>  | പ            | tici       | s                | hid        | pell       |               |        |             | l #           | igne       | 24 hr 200%                                                                         |
| GW – grou<br>S - soil/sec | indwater<br>diment | SW - sur<br>SL - slud | rface wate:<br>Ige | r WW-was<br>A-air | tewater      | DW - drink<br>M - misc/w              | ing water<br>/aste | Filt         | TA           | EX D        | SV[]  | He       | Š            | Pest       | PG               | Cya        | Proj       |               |        |             | Tota          | Desi       | 2-3 days 100%                                                                      |
| Colle                     | ction              | Matula                | Grab/              | C                 | -1- ID       | Desert                                | _ <b></b>          |              |              |             |       | 1        | <u>г</u> •13 |            | <u> </u>         | <u>   </u> |            | <u>_</u>      |        | I           |               |            | 4-9 days 50%                                                                       |
| Date                      | Time               | Matrix                | Comp               | Sam               | pie ID       | Descrij                               | otion              |              |              |             |       |          | Fill         | in Sp      | aces             | with       | ı Bott     | les pe        | r Tes  | t<br>       |               |            | Lab use only                                                                       |
| 11.09.10                  | 1128               | S                     | grab               | SCss-072          | m-0001-      | 50                                    |                    | N            | X            | X           | X     |          |              |            |                  | ļ          |            |               |        | _           | 1             |            | 869557                                                                             |
| 11.09.10                  | 1410               | 5                     | grab               | SCss-073          | m-0001-9     | 50                                    |                    | N            |              | X           |       | <u>.</u> |              | <u> </u>   |                  | -          |            |               |        |             | 1             |            | 869558                                                                             |
| 11.09.10                  | 1500               | s                     | grab               | SCss-087          | m-0001-      | <u>so</u>                             |                    | N            |              | X           |       |          |              |            | ļ                |            |            |               |        | _           | 1             |            | 869859                                                                             |
| 11.09.10                  | 1552               | s                     | grab               | SCss-074          | m - 0001 - 3 | 50                                    |                    | N            |              |             |       |          |              |            |                  | <u> </u>   |            |               | _      |             | 1             |            | 849560                                                                             |
| 11.09.10                  | 1040               | S                     | grab               | SCss-075          | m-0001-      | 50<br>50                              |                    | N            |              | A<br>X      |       |          |              |            |                  | -          |            |               |        |             | 1             |            | 869561                                                                             |
| 11.09.10                  | 1630               | GW                    | grab               | SCac-00           | 6-0001-1     | ER                                    |                    | N            | X            | X           | X     |          | x            | x          | x                | x          | v          | +             |        |             | 13            |            | 849562                                                                             |
| 11.09.10                  | 0800               | GW                    | grab               | SCqc-00           | 7-0001-'     | ГВ                                    |                    | N            |              |             |       | -        | X            |            |                  |            |            | ┼╸┼           |        |             | 3             |            | 864563                                                                             |
|                           |                    |                       | 0                  |                   |              |                                       |                    |              |              |             |       |          |              |            |                  |            |            |               | +      |             |               |            | ×(1) P                                                                             |
|                           |                    |                       |                    |                   |              | · · · · · · · · · · · · · · · · · · · |                    |              |              |             |       |          |              |            |                  |            |            |               |        |             |               |            |                                                                                    |
|                           |                    |                       |                    |                   |              |                                       |                    |              |              |             |       |          |              |            |                  |            |            |               |        |             |               |            |                                                                                    |
|                           |                    |                       |                    |                   |              |                                       |                    |              |              |             |       |          |              |            |                  |            |            |               |        |             |               |            |                                                                                    |
| Relinquish                | ned By:            | hi                    | V M                | ept               | Date/1       | Гіте<br>0 / <b>/ 7</b>                | 00                 | Receive      | ed By:       |             |       |          |              |            |                  |            |            | Date,         | /Time  |             |               | Ŧ          | Lab Use Only                                                                       |
| <b> </b>                  |                    | -1                    |                    | ~ <u>2</u>        |              | + Y                                   | • <del>•</del>     |              |              |             |       | -        |              |            |                  | F          |            |               |        |             |               | Ice        | Present (es) No $\frac{1}{2} \left( \frac{1}{2} + \frac{2}{2} \frac{9}{4} \right)$ |
| Received b                | by:                |                       |                    |                   | Date/1       | Time                                  |                    | Receive      | ed for       | Lab         | orato | y by:    |              |            | $\left( \right)$ | ( /        | )          | Date,         | Time   | N - DA      | ~             | ren<br>Cer | $\frac{1}{10} + \frac{2}{10} + \frac{2}{10}$                                       |
|                           |                    |                       |                    |                   |              |                                       |                    |              |              |             |       |          |              |            | $\triangleleft$  | $\geq$     | /          | <u>  (1 )</u> | 1011   | 4200        | ,             |            |                                                                                    |
|                           |                    |                       |                    |                   |              |                                       |                    |              |              |             |       |          |              |            |                  | ľ          |            | v             |        |             |               | n/lo       | 110 MWD 1130                                                                       |

# Appendix B Quality Assurance Summary Report

# **Table of Contents**

ပိ

| Acro      | iyms a | and AbbreviationsB                       | -2 |
|-----------|--------|------------------------------------------|----|
| <b>B1</b> | Proje  | ect Quality Assurance Summary            | 3  |
|           | B1.1   | Field Quality Control                    | .3 |
|           |        | B1.1.1 Readiness Review/Pre-Mobilization | .3 |
|           |        | B1.1.2 Procedures                        | .3 |
|           |        | B1.1.3 Training                          | .4 |
|           |        | B1.1.4 Equipment Calibration             | .5 |
|           |        | B1.1.5 Quality Control Samples           | .5 |
|           |        | B1.1.6 Field Records                     | .6 |
|           | B1.2   | Analytical Laboratory Quality Assurance  | .6 |
|           |        | B1.2.1 Readiness Review                  | .6 |
|           |        | B1.2.2 Procedures                        | .6 |
|           |        | B1.2.3 Laboratory Quality Control        | .7 |
|           |        | B1.2.4 Laboratory Documentation          | .7 |
|           |        | B1.2.5 Data Verification/Validation      | .7 |
|           | B1.3   | Quality Assurance Documentation          | .8 |
|           | B1.4   | References                               | .8 |

# **Acronyms and Abbreviations**

ပိ

| AOC      | Area of Concern                                            |
|----------|------------------------------------------------------------|
| CERCLA   | Comprehensive, Environmental Responsibility, Compensation  |
|          | and Liability Act                                          |
| CFR      | Code of Federal Regulations                                |
| DOD      | Department of Defense                                      |
| ELAP     | Environmental Laboratory Accreditation Program             |
| FCR      | Field Change Request                                       |
| FSAP     | Facility-Wide Sampling and Analysis Plan                   |
| FSP      | Field Sampling Plan                                        |
| FWQAPP   | Quality Assurance Project Plan                             |
| LCG      | Louisville Chemistry Guideline                             |
| M&TE     | measuring and testing equipment                            |
| NCR      | Noncomformance Report                                      |
| NELAC    | National Environmental Laboratory Accreditation Conference |
| Ohio EPA | Ohio Environmental Protection Agency                       |
| OSHA     | Occupational Safety and Health Administration              |
| QA       | quality assurance                                          |
| QC       | quality control                                            |
| QCSR     | Quality Control Summary Report                             |
| QSM      | Quality Systems Manual                                     |
| RI       | Remedial Investigation                                     |
| RVAAP    | Ravenna Army Ammunition Plant                              |
| SAIC     | Science Applications International Corporation             |
| Shaw     | Shaw Environmental & Infrastructure, Inc.                  |
| SOW      | Scope of Work                                              |
| SSHP     | Site Safety and Health Plan                                |
| USACE    | U.S. Army Corps of Engineers                               |
| USEPA    | U.S. Environmental Protection Agency                       |

# **B1 PROJECT QUALITY ASSURANCE SUMMARY**

This Project Quality Assurance Summary Report; hereafter, referred to as the QASR, has been prepared by Shaw Environmental & Infrastructure, Inc. (Shaw) to meet the quality assurance/quality control (QA/QC) objectives for the Phase I Remedial Investigation (RI) activities at the RVAAP-34 Sand Creek Disposal Road Landfill at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. These objectives were established in accordance with the Scope of Work for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area 1, and RVAAP-28 Mustard Agent Burial Site and the Sampling and Analysis Plan Addendum No.1 (hereafter referred to as "Addendum"). The Addendum supplements the Facility-Wide Sampling and Analysis Plan (FSAP) for Environmental Investigations at the RVAAP (SAIC, 2001). The FSAP provides the base documentation (i.e., technical and investigative protocols) for conducting a RI under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at the RVAAP. Field activities at the Sand Creek Disposal Road Landfill Area of Concern (AOC) were conducted in two mobilizations that occurred in October and November, 2010, respectively and included RI sampling activities for the collection of environmental media from the following matrices: surface soil, subsurface soil and sediment.

ပိ

### **B1.1 Field Quality Control**

This section outlines the implementation of procedures and practices by Shaw to ensure project QC objectives were achieved.

#### **B1.1.1 Readiness Review/Pre-Mobilization**

Shaw coordinated pre-mobilization actions to ensure the following elements of the proposed field activities were implemented prior to mobilization the field: 1) project documents and procedures were approved, controlled and properly distributed; 2) assigned personnel were trained for their intended activities; 3) mobilization and site logistics were established; 4) laboratories were notified as to when sample shipment would commence and were able to meet turn-around requirements; 5) subcontractors were properly notified to mobilize, submitted the required certifications, and were ready to begin work; and 6) QC systems were in place.

#### **B1.1.2** Procedures

Standard operating methods for field activities performed during the RI are incorporated into the governing documents for the project. The FSAP (SAIC, 2001) describes the overall approach and methodologies to be used for projects at the RVAAP, and the Addendum (Shaw, 2010) details project-specific requirements for field implementation. The United States Army Corps of Engineers (USACE), Louisville District and the Ohio Environmental Protection Agency (Ohio EPA) reviewed and approved these documents prior to implementation of RI

field activities. Clarifications and/or planned deviations from either plan in the described methods of implementation are typically documented as field change requests (FCRs); however, no FCRs were submitted for this RI effort. Any variances from the approved plans were documented as Nonconformance Reports (NCRs). There were no variances identified or FCRs submitted during the implementation of the RI at the Sand Creek Disposal Road Landfill AOC.

## **B1.1.3** Training

ů

All field personnel were required to attend a safety orientation meeting prior to working at any project site associated with the RVAAP project. The safety orientation training was documented on the Site Safety Health Plan (SSHP) Acknowledgement Form and included the following topics:

- Names of personnel responsible for site safety;
- Responsibilities for accident prevention and maintaining safe and healthful work environments;
- Procedures for reporting and correcting unsafe conditions or practices;
- Safety and health hazards on site and the means to control/eliminate those hazards;
- Personal protection equipment use and care;
- Morning safety and preparatory meeting procedures;
- Review of pertinent sections including emergency response procedures as outlined in the Emergency Response Plan and Emergency Response Training;
- Responsibilities for reporting all accidents and illnesses;
- Provisions for medical care and facilities and the names of cardiopulmonary resuscitation and first-aid trained personnel assigned to the project;
- Fire prevention;
- Housekeeping;
- Hazard Communication Program, includes discussion of Material Safety Data Sheets for hazardous chemicals used on site;
- Review of applicable Activity Hazard Analyses;
- Standard operating procedures, safety rules, and safe work practices for the project; and

• Location of safety equipment (e.g., fire extinguishers, first-aid kits, eyewash stations).

All site personnel working in regulated areas at this project were required to meet the minimum Occupational Safety and Health Administration (OSHA) training requirements as specified in 29 CFR 1926.65 and 29 CFR 1910.120. Copies of the OSHA-required training and medical records were provided to the RVAAP Facility Manager prior to commencing field activities and were maintained on-site by Shaw as well during field activities.

#### **B1.1.4 Equipment Calibration**

Several types of measuring and testing equipment (M&TE) were used during the field investigation that included the following:

- Schonstedt Model GA-52Cx magnetometer;
- Photoionization detector (MiniRAE 3000); and
- Global Positioning System (Trimble GeoXH Handheld)

ő

These M&TE consisted of both Shaw-owned and rented units from a reputable provider. Only equipment having verifiable traceability to nationally recognized standards was used in the field and was maintained in the project file. Last and next calibration recall dates were recorded and maintained for each instrument used in the instrumentation log book. Instruments were calibrated daily by the M&TE Coordinator (or designee) according to the manufacturer's instructions and frequency. Daily calibration activities and results, as well as source information for all calibration standards and reagents were documented in the logbooks dedicated to that particular piece of equipment.

Equipment that did not calibrate within manufacturer's specifications or operate properly in the field was taken out of service and was replaced promptly. Replacement equipment was placed into service upon calibration.

### **B1.1.5 Quality Control Samples**

Field QC samples collected for this project included trip blanks, equipment rinsate blanks, source water (potable and deionized), and field duplicates, as specified in the Addendum (Shaw, 2010). Field QA split samples were also collected and sent to a USACE QA laboratory for independent analysis and evaluation of analytical results by the contracted laboratory. The Shaw Field Operations Manager was responsible for implementing the QA program in the field. **Appendix C** of this Phase I RI report presents the data validation report that evaluates data quality and analytical performance with respect to field QC results.

#### **B1.1.6 Field Records**

Field data, observations, activities, and information were recorded on daily activity logs and sampling forms, and bound in 3-ring binders (i.e., logbooks). Each field team possessed a binder with applicable sampling forms and activity logs. The use of structured logbooks ensured that all necessary data were entered consistently. Logbook entries were checked for accuracy and completeness by independent reviewers. Field records were collected upon completion of the project and likewise maintained by the Shaw Field Operations Manager. Other records included equipment/material certifications and invoices, and air-bill forms.

#### **B1.2** Analytical Laboratory Quality Assurance

Shaw subcontracted CT Laboratories, Inc. of Baraboo, Wisconsin to perform chemical analysis of samples collected during this RI. CT Laboratories has current Environmental Laboratory Accreditation Program (ELAP) and National Environmental Laboratory Accreditation Conference (NELAC) accreditations and/or approvals. CT Laboratories has Navy certification approvals to meet the Department of Defense (DoD) Quality Systems Manual (QSM) Version 4.1 (DoD, 2009) requirements. QA split samples were collected and submitted to an independent USACE, Louisville District QA laboratory (Severn Trent Laboratories located in Canton, Ohio). Primary analytical direction for these projects will be obtained from the identified USEPA publication SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (EPA, 2007) and the *DoD QSM* (DoD, 2009). The *Louisville Chemistry Guideline (LCG)*, Version 5 (USACE, 2002) was used as a guidance document for data review and data validation.

#### **B1.2.1 Readiness Review**

Laboratory QA/QC activities were initiated during the readiness review. The readiness review ensured that: 1) governing documents and approved analytical methods were controlled and properly distributed; 2) CT laboratories was notified as to when sample shipment would commence and were able to meet turn-around requirements; 3) logistical coordination was established between the laboratory and the field team; and 4) the laboratory QA program was consistent and compatible with the project requirements.

#### **B1.2.2** Procedures

Prior to initiation of analytical support for this RI, CT Laboratories and Shaw reviewed and negotiated a contract based on a comprehensive laboratory Statement of Work (SOW). The laboratory SOW detailed project-specific requirements including the following:

- Parameters to be measured:
- Analytical methods;
  - Adherence to USEPA SW-846 protocols; and

- DoD QSM for Environmental Laboratories, Version 4.1 requirements;
- Project quantitation goals (sensitivity); and
- Data deliverables requirements.

All laboratory comments and questions were resolved before analytical work proceeded.

#### **B1.2.3** Laboratory Quality Control

To document laboratory data quality and to measure the quality of the analytical process, laboratory QC samples (e.g., method blanks, laboratory control samples, laboratory duplicates, and matrix spike/matrix spike duplicates) and data verification/validation were employed. The results of laboratory QC are discussed in the Project Data Validation Report in **Appendix C** of the Phase I RI. Analytical results of laboratory QC samples are included in **Appendix D** of the Phase I RI and form the basis of the data validation process.

#### **B1.2.4 Laboratory Documentation**

CT Laboratories maintains comprehensive information regarding the entire analytical process. The laboratory delivered summary data packages and electronic deliverables to Shaw consistent with those identified in the USEPA SW-846 and DoD QSM 4.1 protocols for validation and verification. Laboratory QC sample analyses were cross-referenced to the appropriate environmental field sample analyses in the laboratory deliverables.

ပိ

### **B1.2.5** Data Verification/Validation

Shaw subjected analytical data generated during this project to a rigorous process of data verification, as specified in the *Facility-Wide Quality Assurance Project Plan* (FWQAPP) (SAIC, 2001) and the Addendum (Shaw, 2009). For verification of data, criteria were established against which the analytical results were compared and from which a judgment was rendered regarding the acceptability and qualification of the data. Upon receipt of data packages from the laboratory, the information was subjected to a systematic examination following standardized checklists and procedures to ensure content, presentation, administrative validity, and technical validity (**Appendix C** of the Phase I RI). Data deficiencies or formal laboratory related nonconformances are typically documented through an NCR process, as required; however, no NCRs were issued to CT Laboratories for this project.

Following data verification, the Shaw Project Chemist performed 100 percent data validation of all field samples, a comprehensive validation of the QA split sample dataset, and a comparison of primary sample, field duplicate sample, and field QA split sample information.

### **B1.3** Quality Assurance Documentation

Primary methods for documenting QA during the RI process at the RVAAP include the completion of FCRs requiring USACE and Ohio EPA concurrence and NCRs generated in accordance with Shaw QA procedures. There were no FCRs or NCRs generated during the implementation of this RI.

### **B1.4** References

Science Applications International Corporation (SAIC), 2001. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 2001.

Shaw Environmental & Infrastructure, Inc. (Shaw). Final Sampling and Analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site, Ravenna Army Ammunition Plant, Ravenna, Ohio. February, 2010.

U.S. Department of Defense (DoD), 2009. *DoD Quality Systems Manual for Environmental Laboratories*, Version 4.1, Environmental Data Quality Workgroup. April 22, 2009.

U.S. Army Corps of Engineers (USACE), 2002. *Louisville Chemistry Guideline*, Louisville District, Environmental Engineering Branch, Revision 5. June 2002.

<sup>8</sup> U.S. Environmental Protection Agency (USEPA), 2007. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, publication SW-846, Revision 6. February 2007.

# Appendix C Data Validation Results and Usability Assessment

(Note: Data submitted on compact disc.)

Shaw Data Validation Report

This page intentionally left blank.

## **Table of Contents**

| List of Tables             | C-1 |
|----------------------------|-----|
| List of Attachments        | C-1 |
| Acronyms and Abbreviations | C-3 |

| 1.0 | Intr | oduction                         | C-5  |
|-----|------|----------------------------------|------|
|     | 1.1  | Data Review and Validation Steps | C-5  |
|     | 1.2  | Data Validation Process          | C-15 |
|     |      | 1.2.1 DOD QSM 4.1 Requirements   | C-16 |
|     |      | 1.2.2 Data Reduction             | C-18 |
|     | 1.3  | Documentation                    | C-22 |
| 2.0 | Data | a Validation Results             | C-23 |
|     | 2.1  | Data Qualifiers                  | C-23 |
|     | 2.2  | Volatile Organic Compounds       | C-27 |
|     | 2.3  | Semivolatile Organic Compounds   | C-28 |
|     | 2.4  | Polychlorinated Biphenyls        | C-32 |
|     | 2.5  | Pesticides                       | C-32 |
|     | 2.6  | Explosives                       | C-33 |
|     | 2.7  | Metals                           | C-34 |
|     | 2.8  | Completeness and Usability       | C-43 |
| 3.0 | Refe | erences                          | C-45 |

## **List of Tables**

| Table C-1 | Sample Summary Table for Remedial Investigation Samples Collected at    |      |
|-----------|-------------------------------------------------------------------------|------|
|           | Sand Creek Disposal Road Landfill                                       | C-6  |
| Table C-2 | Validation Qualifiers for VOC EPA Method 8260B and SVOC                 |      |
|           | EPA Method 8270C                                                        | C-24 |
| Table C-3 | Validation Qualifiers for Organochlorine Pesticide EPA Method 8081B and |      |
|           | PCB EPA Method 8082                                                     | C-25 |
| Table C-4 | Validation Qualifiers for Explosives (Nitroaromatics, Nitramines,       |      |
|           | and Nitrate Esters) EPA Method 8330B                                    | C-26 |
| Table C-5 | Validation Qualifiers for Metals EPA Method 6010C                       | C-27 |

# List of Attachments

Attachment 1 Data Validation Checklists

Attachment 2 Summary of Remedial Investigation Sample Data Qualifications for the Sand Creek Disposal Road Landfill This page intentionally left blank.

# **Acronyms and Abbreviations**

| %D    | percent difference                        |
|-------|-------------------------------------------|
| BFB   | bromofluorobenzene                        |
| CCB   | calibration blank                         |
| CCC   | calibration check compound                |
| CCV   | continuing calibration verification       |
| DDD   | dichloro-diphenyl-dichloroethane          |
| DDT   | dichloro-diphenyl-trichloroethane         |
| DL    | detection limit                           |
| DOD   | U.S. Department of Defense                |
| DUP   | duplicate sample                          |
| EPA   | U.S. Environmental Protection Agency      |
| GC/MS | gas chromatography/mass spectrometry      |
| ICB   | initial calibration blank                 |
| ICP   | inductively coupled plasma                |
| ICV   | initial calibration verification          |
| ISM   | incremental sampling method               |
| LCG   | Louisville Chemistry Guideline            |
| LCS   | laboratory control sample                 |
| LOD   | limit of detection                        |
| LOQ   | limit of quantitation                     |
| MB    | method blank                              |
| MS    | matrix spike                              |
| MSD   | matrix spike duplicate                    |
| PCB   | polychlorinated biphenyl                  |
| PDS   | postdigestion spike                       |
| QA    | quality assurance                         |
| QC    | quality control                           |
| QSM   | Quality Systems Manual                    |
| RF    | response factor                           |
| RI    | remedial investigation                    |
| RL    | reporting limit                           |
| RPD   | relative percent difference               |
| RSD   | relative standard deviation               |
| RVAAP | Ravenna Army Ammunition Plant             |
| SDG   | sample data group                         |
| Shaw  | Shaw Environmental & Infrastructure, Inc. |
| SPCC  | system performance check compound         |
| SVOC  | semivolatile organic compound             |
| U.S.  | United States                             |
| USACE | U.S. Army Corps of Engineers              |
| VOC   | volatile organic compound                 |
|       |                                           |
This page intentionally left blank.

## **1.0 INTRODUCTION**

This Data Validation Report presents the results of an analytical data review and verification conducted by Shaw Environmental & Infrastructure, Inc. (Shaw) in support of Phase I Remedial Investigation (RI) field activities for the area of concern RVAAP-34 Sand Creek Disposal Road Landfill (herein, referred to as the "Sand Creek Site" or "the Site") located at the Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio. Shaw subcontracted CT Laboratories, Inc. of Baraboo, Wisconsin to perform chemical analysis of samples collected during this RI. CT Laboratories has current Environmental Laboratory Accreditation Program and National Environmental Laboratory Accreditation Conference accreditations and/or approvals. CT Laboratories has Navy certification approvals to meet the United States (U.S.) Department of Defense (DOD) Quality Systems Manual (QSM), Version 4.1 (DOD, 2009) (hereafter referred to as DOD QSM 4.1) requirements. Primary analytical direction for this project was obtained from the identified U.S. Environmental Protection Agency (EPA) publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (EPA, 2007) and the DOD QSM 4.1 (DOD, 2009). The Louisville Chemistry Guideline (LCG), Version 5 (USACE, 2002) was used as a guidance document for data review and data validation.

The RI field sampling event was conducted at the Sand Creek Site between September 21, 2010 and November 9, 2010. In all, Shaw collected a total of 28 surface samples using the incremental sampling method (ISM), 78 subsurface samples using modified ISM, and 3 ISM sediment samples. The SW-846 chemical analytical procedures were followed for analyses of target analyte list metals, hexavalent chromium, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), explosives, propellants (nitrocellulose, nitroguanidine, and nitroglycerine), and cyanide for the samples collected for the RI event. **Table C-1** summarizes the samples collected, data type, associated sample data group (SDG), and the parameters analyzed.

#### 1.1 Data Review and Validation Steps

The following steps are involved in the data review, verification, and validation process:

- Step 1—Laboratory Data Review
  - The laboratory reviews its data before releasing data packages to Shaw. This review verifies that project-specific reporting requirements were satisfied.

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicates  | USACE QA Split<br>Samples | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|---------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| Surface Soil          |         |                     |                   |                   |                           |        |            |             |       |            |      |      | I                      |               |
| SCss-057M-0001-SO     | 9/24/10 | 0–1                 | 81670             |                   |                           | X      | X          | X           | X     | X          |      | X    | Х                      | Х             |
| SCss-057D-0001-SO     | 9/24/10 | 0–1                 | 81670             |                   |                           |        |            |             |       |            | X    |      |                        |               |
| SCss-058M-0001-SO     | 9/23/10 | 0–1                 | 81670             | SCss-085M-0001-SO | SCss-058M-0001-QA         | X      | X          |             | X     |            |      |      |                        |               |
| SCss-059M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      |                        |               |
| SCss-060M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      | Х                      |               |
| SCss-061M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      |                        |               |
| SCss-062M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      | Х                      |               |
| SCss-063M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      |                        |               |
| SCss-064M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | x          |             | X     |            |      |      | Х                      |               |
| SCss-065M-0001-SO     | 9/23/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      |                        |               |
| SCss-066M-0001-SO     | 9/24/10 | 0–1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      | X                      |               |
| SCss-067M-0001-SO     | 9/21/10 | 0-1                 | 81578             |                   |                           | X      | X          |             | X     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicates  | USACE QA Split<br>Samples | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|---------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCss-068M-0001-SO     | 9/21/10 | 0–1                 | 81578             | SCss-086M-0001-SO | SCss-068M-0001-QA         | x      | X          |             | X     |            |      |      |                        |               |
| SCss-068D-0001-SO     | 9/21/10 | 0–1                 | 81578             | SCss-086D-0001-SO | SCss-068D-0001-QA         |        |            |             |       |            | x    |      |                        |               |
| SCss-069M-0001-SO     | 9/24/10 | 0–1                 | 81578             |                   |                           | x      | X          |             | X     |            |      |      |                        |               |
| SCss-068M-0001-SO     | 9/21/10 | 0–1                 | 81578             | SCss-086M-0001-SO | SCss-068M-0001-QA         | x      | X          |             | x     |            |      |      |                        |               |
| SCss-072M-0001-SO     | 11/9/10 | 0–1                 | 82400-1           |                   |                           | x      | X          |             | X     |            |      |      |                        |               |
| SCss-073M-0001-SO     | 11/9/10 | 0–1                 | 82400-1           | SCss-087M-0001-SO | SCss-073M-0001-QA         | X      | X          |             | X     |            |      |      |                        |               |
| SCss-074M-0001-SO     | 11/9/10 | 0–1                 | 82400-1           |                   |                           | x      | X          |             | X     |            |      |      |                        |               |
| SCss-075M-0001-SO     | 11/9/10 | 0–1                 | 82400-1           |                   |                           | X      | X          |             | X     |            |      |      |                        |               |
| SCss-076M-0001-SO     | 11/9/10 | 0–1                 | 82400-1           |                   |                           | x      | X          | x           | X     | X          |      | X    | X                      | X             |
| Subsurface Soil       |         |                     |                   |                   |                           |        |            |             |       |            |      |      |                        |               |
| SCsb-035M-0001-SO     | 9/22/10 | 1–5                 | 81578             |                   |                           | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-035M-0002-SO     | 9/22/10 | 5–9                 | 81578             |                   |                           | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-035M-0003-SO     | 9/22/10 | 9–13                | 81578             |                   |                           | x      | X          |             | X     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate   | USACE QA Spit<br>Sample        | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|--------------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-035M-0004-SO     | 9/22/10 | 13–17               | 81578             |                   |                                | X      | x          |             | Х     |            |      |      |                        |               |
| SCsb-035M-0005-SO     | 9/22/10 | 17–20               | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-036M-0001-SO     | 9/22/10 | 1–5                 | 81578             |                   |                                | X      | x          |             | X     |            |      |      | X                      |               |
| SCsb-036M-0002-SO     | 9/22/10 | 5–9                 | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-036M-0003-SO     | 9/22/10 | 9–13                | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-036M-0004-SO     | 9/22/10 | 13–17               | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-036M-0005-SO     | 9/22/10 | 17–20               | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-037D-0001-SO     | 9/22/10 | 1–5                 | 81578             | SCsb-080D-0001-SO |                                | X      |            |             |       |            | X    |      |                        |               |
| SCsb-037M-0001-SO     | 9/22/10 | 1–5                 | 81578             | SCsb-080M-0001-SO | SCsb-037M-0001-QA <sup>1</sup> | X      | x          | x           | X     | x          |      | X    | X                      | X             |
| SCsb-037M-0002-SO     | 9/22/10 | 5–9                 | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-037M-0003-SO     | 9/22/10 | 9–13                | 81578             |                   |                                | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-037M-0004-SO     | 9/22/10 | 13–17               | 81578             |                   |                                | X      | x          |             | Х     |            |      |      |                        |               |
| SCsb-037M-0005-SO     | 9/22/10 | 17–20               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate   | USACE QA Spit<br>Sample        | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|--------------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-038M-0001-SO     | 9/22/10 | 1–5                 | 81578             |                   |                                | x      | x          |             | X     |            |      |      |                        |               |
| SCsb-038M-0002-SO     | 9/22/10 | 5–9                 | 81578             |                   |                                | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-038M-0003-SO     | 9/22/10 | 9–13                | 81578             |                   |                                | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-038M-0004-SO     | 9/22/10 | 13–17               | 81578             |                   |                                | x      | x          |             | X     |            |      |      |                        |               |
| SCsb-038M-0005-SO     | 9/22/10 | 17–20               | 81578             | SCsb-081M-0005-SO | SCsb-038M-0005-QA              | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-038D-0005-SO     | 9/22/10 | 17–20               | 81578             | SCsb-081M-0005-SO |                                |        |            |             |       |            | X    |      |                        |               |
| SCsb-039M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                   |                                | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-039M-0002-SO     | 9/21/10 | 5–9                 | 81578             |                   |                                | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-039M-0003-SO     | 9/21/10 | 9–13                | 81578             |                   |                                | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-039M-0005-SO     | 9/21/10 | 17–20               | 81578             |                   |                                | x      | X          | X           | Х     | X          |      | X    | Х                      | X             |
| SCsb-040M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                   |                                | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-040M-0002-SO     | 9/21/10 | 5–9                 | 81578             | SCsb-082M-0002-SO | SCsb-040M-0001-QA <sup>1</sup> | X      | X          | X           | Х     | X          |      | X    | Х                      | X             |
| SCsb-040D-0002-SO     | 9/21/10 | 5–9                 | 81578             |                   |                                |        |            |             |       |            | X    |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate | USACE QA Spit<br>Sample | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-----------------|-------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-040M-0003-SO     | 9/21/10 | 9–13                | 81578             |                 |                         | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-040M-0004-SO     | 9/21/10 | 13–17               | 81578             |                 |                         | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-040M-0005-SO     | 9/21/10 | 17–20               | 81578             |                 |                         | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-041M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                 |                         | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-040M-0003-SO     | 9/21/10 | 9–13                | 81578             |                 |                         | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-040M-0004-SO     | 9/21/10 | 13–17               | 81578             |                 |                         | X      | X          |             | Х     |            |      |      |                        |               |
| SCsb-040M-0005-SO     | 9/21/10 | 17–20               | 81578             |                 |                         | x      | X          |             | Х     |            |      |      |                        |               |
| SCsb-041M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                 |                         | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-041M-0002-SO     | 9/21/10 | 5–9                 | 81578             |                 |                         | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-041M-0003-SO     | 9/21/10 | 9–13                | 81578             |                 |                         | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-041M-0004-SO     | 9/21/10 | 13–17               | 81578             |                 |                         | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-041M-0005-SO     | 9/21/10 | 17–20               | 81578             |                 |                         | x      | X          |             | X     |            |      |      |                        |               |
| SCsb-042M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                 |                         | x      | X          |             | X     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate   | USACE QA Spit<br>Sample        | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|--------------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-042M-0002-SO     | 9/21/10 | 5 - 9               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-042M-0003-SO     | 9/21/10 | 9–13                | 81578             | SCsb-083M-0003-SO | SCsb-042M-0003-QA <sup>1</sup> | x      | X          | X           | X     | X          |      | x    | X                      | X             |
| SCsb-042D-0003-SO     | 9/21/10 | 9 -1 3              | 81578             |                   |                                |        |            |             |       |            | x    |      |                        |               |
| SCsb-042M-0004-SO     | 9/21/10 | 13–17               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-042M-0005-SO     | 9/21/10 | 17–20               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-043M-0001-SO     | 9/21/10 | 1–5                 | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-043M-0002-SO     | 9/21/10 | 5–9                 | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-043M-0003-SO     | 9/21/10 | 9–13                | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-043M-0004-SO     | 9/21/10 | 13–17               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-043M-0005-SO     | 9/21/10 | 17–20               | 81578             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-044M-0001-SO     | 9/24/10 | 1–5                 | 81670             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |
| SCsb-045M-0001-SO     | 9/25/10 | 1–5                 | 81670             |                   |                                | X      | X          |             | X     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate   | USACE QA Spit<br>Sample | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-------------------|-------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-046M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      | х                      |               |
| SCsb-047M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      |                        |               |
| SCsb-048M-0001-SO     | 9/29/10 | 1–5                 | 81670             | SCsb-084M-0001-SO | SCsb-048M-0001-QA       | X      | x          | Х           | x     | x          |      | x    | Х                      | X             |
| SCsb-048D-0001-SO     | 9/29/10 | 1–5                 | 81670             | SCsb-084D-0001-SO |                         |        |            |             |       |            | x    |      |                        |               |
| SCsb-049M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      |                        |               |
| SCsb-050M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | X          |             | x     |            |      |      |                        |               |
| SCsb-051M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      | Х                      |               |
| SCsb-046M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | X          |             | x     |            |      |      | Х                      |               |
| SCsb-047M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      |                        |               |
| SCsb-048M-0001-SO     | 9/29/10 | 1–5                 | 81670             | SCsb-084M-0001-SO | SCsb-048M-0001-QA       | X      | X          | X           | X     | x          |      | X    | Х                      | X             |
| SCsb-048D-0001-SO     | 9/29/10 | 1–5                 | 81670             | SCsb-084D-0001-SO |                         |        |            |             |       |            | X    |      |                        |               |
| SCsb-049M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                   |                         | X      | x          |             | x     |            |      |      |                        |               |

| Sample<br>Location ID | Date    | Depth<br>(feet bgs) | Laboratory<br>SDG | Field Duplicate | USACE QA Spit<br>Sample | Metals | Explosives | Propellants | SVOCs | Pesticides | VOCs | PCBs | Hexavalent<br>Chromium | Total Cyanide |
|-----------------------|---------|---------------------|-------------------|-----------------|-------------------------|--------|------------|-------------|-------|------------|------|------|------------------------|---------------|
| SCsb-050M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                 |                         | X      | x          |             | X     |            |      |      |                        |               |
| SCsb-051M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                 |                         | X      | x          |             | X     |            |      |      | X                      |               |
| SCsb-052M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                 |                         | X      | X          |             | x     |            |      |      |                        |               |
| SCsb-053M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                 |                         | X      | X          |             | x     |            |      |      |                        |               |
| SCsb-054M-0001-SO     | 9/29/10 | 1–5                 | 81670             |                 |                         | X      | X          |             | x     |            |      |      |                        |               |
| SCsb-055M-0001-SO     | 9/25/10 | 1–5                 | 81670             |                 |                         | X      | X          |             | x     |            |      |      |                        |               |
| Sediment              |         |                     |                   |                 |                         |        |            |             |       |            |      |      |                        |               |
| SCsd-070M-0001-SD     | 9/28/10 | 0-0.5               | 81670             |                 |                         | X      | X          | X           | x     | х          |      | X    | X                      | X             |
| SCsd-071M-0001-SD     | 9/28/10 | 0–0.5               | 81670             |                 |                         | X      | X          | X           | X     | Х          |      | x    | Х                      | X             |
| SCsd-071D-0001-SD     | 9/28/10 | 0–0.5               | 81670             |                 |                         |        |            |             |       |            | X    |      |                        |               |

<sup>1</sup> denotes the associated QA sample was submitted for metals, explosives, and SVOCs analyses only.
--- denotes not sampled.
bgs denotes below ground surface.
ID denotes identification.
PCB denotes polychlorinated biphenyl.
QA denotes quality assurance.
SDG denotes sample data group.
SVOC denotes semivolatile organic compound.
USACE denotes U.S. Army Corps of Engineers.

VOC denotes volatile organic compound.

- Step 2—Data Validation by Shaw
  - Shaw performs a detailed validation process as described in Section 1.2. Shaw also reviews all the analytical data packages for completeness, consistency, and compliance with the project quality assurance (QA) requirements presented in the RVAAP *Final Facility-Wide Sampling and Analysis Plan* (SAIC, 2001) and the project-specific *Final Quality Assurance Project Plan Addendum No.1* (Shaw, 2009). Shaw assigns data qualifiers in accordance with DOD QSM 4.1.

#### **1.2 Data Validation Process**

Shaw completed Step 2 (Data Validation) of the data review/validation process. The purpose of data validation was to evaluate the completeness, consistency, and compliance of data packages with quality objectives stated in SW-846, as well as the DOD QSM 4.1. In addition, data qualifiers were assigned based on data validation findings. The validation process reviewed the data elements listed below:

- Holding Times (VOCs, SVOCs, pesticides, PCBs, explosives, and metals)— Holding times were verified by comparing sampling dates on the chain-of-custody form with the dates of analysis and/or extraction on the analytical data sheet. The sample record documents were examined to determine if the samples had been properly preserved.
- Gas Chromatography/Mass Spectrometry (GC/MS) Tune Check (VOCs and SVOCs)—Tuning and performance criteria were reviewed to ensure that mass resolution, analyte identification, and to some extent, instrument sensitivity were within limits specified in the method, DOD QSM 4.1 and LCG. Conformance to DOD QSM 4.1 was determined using standard compounds [bromofluorobenzene (BFB) for VOCs and decafluorotriphenylphosphine for SVOCs]. The criteria provided in the LCG had to be met in all circumstances. The evaluation process involved the following steps:
  - a. Verify that the mass calibration was correct by reviewing the raw data.
  - b. Verify the data presented on each GC/MS tuning and mass calibration were compared with each mass listing submitted.
  - c. Verify that a Mass Calibration Form was completed for each 12-hour period in which samples were analyzed.
  - d. Verify that the laboratory made no transcription errors.
  - e. Verify that the appropriate number of significant figures was reported.

f. Verify that analytical calculations were error free. For example, the percent mass of m/z 443 relative to the mass of m/z 442 was calculated using the following equation:

% abundance = 
$$\frac{\text{relative abundance of } m/z \, 443}{\text{relative abundance of } m/z \, 442} \times 100$$

- Initial and Continuing Calibrations (VOCs, SVOCs, pesticides, PCBs, and explosives)—DOD QSM 4.1 requirements for satisfactory instrument calibration were established to verify that the instrument was capable of producing acceptable quantitative data prior to sample analysis. The evaluation process involved the following:
  - VOCs and SVOCs
  - a. Verify that all response factors (RFs) and their mean were calculated accurately and the RFs of the system performance check compounds (SPCCs) met the method criteria requirement.
  - b. Verify that relative standard deviations (RSDs) were calculated accurately and %RSDs of the calibration check compounds (CCCs) during initial calibration met the method requirements.
  - c. Verify that percent differences (%Ds) of the CCCs during continuing calibration verifications (CCVs) were within the method requirements.
  - Pesticides, PCBs (Aroclor-1016 and -1260), and explosives
  - a. Verify that the correlation coefficients were >0.995.
  - b. Check the calculation of %RSD, and verify that all analytical method criteria were met.

The continuing calibration demonstrated the satisfactory maintenance of the instrument on a day-to-day basis. The evaluation process involved the following:

- a. Verify the average RF.
- b. Verify the %Ds.

#### 1.2.1 DOD QSM 4.1 Requirements

Validation of the data by CT Laboratories and Shaw was based on revisions to the DOD QSM 4.1 which differs greatly from the previous versions of this document. Incorporation of the limit of detection (LOD) and limit of quantitation (LOQ) as the standards for validation has created new definitions for validation flagging that did not previously exist. The greatest

impact of these revised flagging standards particularly impacts the validation process for inorganics as can be seen in Section 2.7, Metals. Terminology of the LOD and LOQ and applicable requirements necessary for data validation based on the DOD QSM 4.1 are presented in this section.

- LOD—An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte specific and matrix specific and may be laboratory dependent.
- LOD (Clarification)—The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99 percent). At the LOD, the false negative rate (Type II error) is 1 percent.
- Determination and Verification of LOD (Requirement)—A laboratory shall establish a detection limit (DL) using a scientifically valid and documented procedure for each suite of the analyte matrix method, including surrogates. The DL shall be used to determine the LOD for each analyte and matrix as well as for all preparatory and cleanup methods routinely used on samples as follows:
  - After each DL determination, the laboratory must immediately establish the LOD by spiking a quality system matrix at approximately 2 to 3 times the DL (for a single-analyte standard) or 1 to 4 times the DL (for a multianalyte standard). This spike concentration establishes the LOD. It is specific to each combination of analyte, matrix, method (including sample preparation), and instrument configuration. The LOD must be verified quarterly. The following requirements apply to the initial DL/LOD determinations and to the quarterly LOD verifications.
  - The apparent signal-to-noise ratio at the LOD must be at least 3, and the results must meet all method requirements for analyte identification (i.e., ion abundance, second-column confirmation, or pattern recognition.) For data systems that do not provide a measure of noise, the signal produced by the validation sample must produce a result that is at least three standard deviations greater than the mean method blank (MB) concentrations.
  - If a laboratory uses multiple instruments for a given method, the LOD must be verified on each.
  - If the LOD validation fails, then the laboratory must repeat the DL determination and LOD validation at a higher concentration or perform and pass two consecutive LOD validations at a higher concentration and set the LOD at the higher concentration.

- The laboratory shall maintain documentation for all DL determinations and LOD validations.
- LOQ—The minimum levels, concentrations, or quantities of a target variable (i.e., target analyte) that can be reported with a specified degree of confidence.
- LOQ (Clarification)—The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DOD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Establishment and Validation of LOQ (Requirement)—For DOD projects, the LOQ must be set within the calibration range prior to sample analysis. At a minimum, the LOQ must be verified quarterly. The laboratory procedure for establishing the LOQ must empirically demonstrate precision and bias at the LOQ. The LOQ and associated precision and bias must meet client requirements and must be reported. If the method is modified, precision and bias at the new LOQ must be demonstrated and reported.

#### 1.2.2 Data Reduction

The data reduction process consisted of the following procedures:

- Initial Calibration (Metals)—Ensure initial calibrations demonstrated that the instrument was capable of acceptable performance at the beginning of an analytical run. The evaluation process involved the following:
  - a. Verify that the instrument was calibrated daily and each time the instrument was set up.
  - b. Verify that at least three standards and a blank were used to generate initial calibration.
  - c. Verify that the correlation coefficients were >0.995.
- CCV—Ensure CCV documented that the initial calibrations were still valid. The evaluation process involved the following:
  - a. Verify that CCVs were conducted after every 10 samples.
  - b. Verify that a CCV was conducted at the end of the analytical sequence.
  - c. Verify that the percent recoveries (%Rs) for the CCVs were within 90 to 110 percent.
- Instrument Performance (SVOCs and Pesticides)—Pesticide data packages were evaluated to verify that the total percentage breakdown of both dichloro-diphenyl-trichloroethane (DDT) and Endrin did not exceed 15 percent. The SVOC package,

however, was evaluated to verify that the total percentage breakdown of DDT did not exceed 20 percent.

- Initial Calibration Verification (ICV)—Initial calibration verifications were reviewed to verify that an ICV was prepared from a second source and that the recoveries were within acceptable ranges.
- Interelement Check Standard (Metals)—The laboratory's interelement and background correction factors were evaluated by recalculation of one or more recoveries from the raw data and verifying that the recalculated values agreed with the laboratory report. The following points were established:
  - a. No interference was observed in the Interelement Check Standard A analysis.
  - b. Eighty to 120 percent was observed for the Interelement Check Standard B analysis.
- Blanks (VOCs, SVOCs, Pesticides, PCBs, and Explosives)—Blank analytical results were assessed to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks applied to any blank associated with the samples. The evaluation process involved the following:
  - a. Prepare a MB for each preparatory batch. No target analyte was detected >1/2 RL and >1/10 the amount measured in any sample or >1/10 the regulatory limit, whichever was greater.
  - b. Review the results of all associated blanks, the summary sheet, and raw data (chromatograms and quantitation reports).
  - c. Verify that the MB analysis had been reported per matrix, per concentration level, for each instrument used to analyze samples, and for each extraction batch.
- Blanks (Metals)—Blank analytical results were assessed to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks applied to any blank associated with the samples. If a problem with any blank existed, all data associated with the sample batch were evaluated to determine whether or not there was an inherent variability in the data for the sample batch or if the problem was an isolated occurrence not affecting other data. A MB was prepared for each preparatory batch. No target analyte was detected >1/2 RL and >1/10 the amount measured in any sample or >1/10 the regulatory limit, whichever was greater.
- Blank Contamination Qualification—The validator will use the 5x or 10x rule for qualifying positive hits for analytes in the samples that also appear in the MB.

- a. "Noncommon" Laboratory Contaminants—The 5x rule is used for "noncommon" laboratory contaminants. If sample analyte concentrations are within 5 times the levels detected in the associated MB, the sample data are considered impacted, and the value reported is qualified as nondetect at the reported concentration. Associated sample detections that are reported as estimated concentrations below the RL will be qualified as nondetects at the RL. Detections that are greater than 5 times the levels in the MB should be considered analytes detected in the sample and are reported without qualification.
- b. "Common" Laboratory Contaminants—The 10x rule is employed when the contaminants are considered to be "common" laboratory contaminants (methylene chloride, acetone, toluene, 2-butanone, chloromethane, phthalate compounds, silver, and lead). If sample analyte concentrations are within 10 times the levels detected in the associated MB, the sample data are considered impacted, and the value reported is qualified as nondetect at the reported concentration. Associated sample detections that are reported as estimated concentrations below the RL will be qualified as nondetects at the RL. Detections that are greater than 10 times the levels in the MB should be considered analytes detected in the sample and are reported without qualification.
- Laboratory Control Sample (LCS)—The LCS monitored overall performance of all steps in the analytical process, including sample preparation. The evaluation included the following:
  - a. Review the summary form, and verify that the results were within the control limits.
  - b. Check the raw data to verify recoveries reported on the summary form.
- Internal Standard (VOCs and SVOCs)—Internal standard performance was evaluated to determine whether the GC/MS sensitivity and response was stable during every run. The evaluation involved the following:
  - a. Check raw data (i.e., chromatograms, quantitation lists, etc.) to verify that recoveries reported on the internal standard area summary report were within acceptable limits.
  - b. Verify that all retention times and internal standard areas were acceptable.
- Surrogate Recovery (VOCs, SVOCs, Pesticides, PCBs, and Explosives)— Surrogate recovery data were reviewed for conformance to DOD QSM 4.1 specifications. The evaluation involved the following:

- a. Check raw data to verify the recoveries reported on the surrogate recovery summary form.
- b. Determine whether any surrogate was out of specification.
- c. Determine whether the laboratory took appropriate corrective action when surrogate recoveries were outside of specification (i.e., evidence of repurging, reinjection, or reextraction).
- d. Verify that blanks did not exhibit surrogates outside the criteria.
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) (VOCs, SVOCs, Pesticides, PCBs, and Explosives)—MS/MSD analytical results were reviewed for conformance to DOD QSM 4.1 specifications. The evaluation process involved the following:
  - a. Inspect MS/MSD results.
  - b. Verify transcriptions from raw data.
  - c. Verify calculations.
- MS (Metals)—The MS analytical results were reviewed for conformance to DOD QSM 4.1 specifications. The MS recovery was verified by the following:
  - a. Review the MS recovery summary form to verify that the results were within specified limits.
  - b. Check the data, and recalculate at least one %R using the following equation:

$$\%R = (\underline{SSR - SR}) \times 100$$
SA

Where: SSR = spiked sample result SR = sample result SA = spike added

- Matrix Duplicate (Metals)—Matrix duplicate analytical results were reviewed for conformance to DOD QSM 4.1 specifications. The evaluation process involved the following:
  - a. Review the summary form, and verify that the results fall within the control limits.
  - b. Check the raw data, and recalculate one or more relative percent differences (RPDs) using the following equation:

$$RPD = \frac{|S - D| \times 100}{|S + D|/2}$$

Where:S = first sample value (original)D = second sample value (duplicate)

- c. Verify that the field blank was not used for duplicate analysis.
- Inductively Coupled Plasma (ICP) Serial Dilution (Metals)—Serial dilution data were reviewed to determine whether significant physical or chemical interferences existed due to the sample matrix.

#### **1.3 Documentation**

Shaw has prepared validation checklists for methods addressed in the DOD QSM 4.1 (VOCs, SVOCs, pesticides/PCBs, explosives, and metals). The checklists and format has been reviewed and approved by the USACE Project Chemist. The validation checklists are presented in **Attachment 1**.

## 2.0 DATA VALIDATION RESULTS

The data validation process described in Section 1.0 was completed for all analytical data provided by CT Laboratories. The Shaw reviewer was the Shaw Project Chemist, Maqsud Rahman, PhD, a qualified individual. The data validation process ensured the following:

- Data generation and reduction were conducted in a technically correct manner in accordance with the methods used.
- Data were reported in the proper units and with the correct number of significant figures.
- Calculations were verified by a valid calculation program, a spot-check verified calculation program, or 100-percent check of all hand calibrations.
- All variances from an accepted method and the rationale for the variations were documented and approved.
- Data were reviewed for transcription errors.
- Analytical data documentation was completed (i.e., analysis data file or data package) and included sample preparation/extraction records, analysis sequence list, raw data, calculations or calculation records, calibration data or records, quality control (QC) measurement results, and test results summary.
- QC measurement results are within established program specification limits, or if not, the data are appropriately qualified.
- Analytical sample holding times were met or exceptions are documented.
- All samples received were in acceptable condition.

**Attachment 1** presents the data validation documentation for all environmental and QC samples collected at the Sand Creek Site. A summary of the sample data qualifications for the RI sample results that includes the laboratory and validation qualifiers and reason codes is presented in **Attachment 2**. The following subsections summarize significant findings from the data validation process.

## 2.1 Data Qualifiers

Analytical results were reported by the laboratory in electronic format and issued to Shaw on compact disc. Data validation was performed to ensure all requested data were received and complete. Data use qualifiers were assigned to each result based on the laboratory QA review

and validation criteria. Validation qualifiers used are presented in **Tables C-2** through **C-5** for the analyses performed.

**Table C-2** summarizes the validation qualifiers for VOC and SVOC analyses by EPA SW-846 Methods 8260B and 8270C, respectively. Both methods utilize GC/MS.

| Fable C-2                                                                |
|--------------------------------------------------------------------------|
| Validation Qualifiers for VOC EPA Method 8260B and SVOC EPA Method 8270C |

| Flag                        | Flagging Criteria                                              |  |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------|--|--|--|--|--|--|
|                             | NOT fulfilling any of the following:                           |  |  |  |  |  |  |
|                             | CCV RF criteria for SPCCs                                      |  |  |  |  |  |  |
|                             | CCV % difference/drift for all analytes and surrogates         |  |  |  |  |  |  |
|                             | Internal standard validation criteria                          |  |  |  |  |  |  |
|                             | LCS recovery                                                   |  |  |  |  |  |  |
| J                           |                                                                |  |  |  |  |  |  |
|                             |                                                                |  |  |  |  |  |  |
|                             | Any of the following                                           |  |  |  |  |  |  |
|                             | MS recovery outside allowable limit                            |  |  |  |  |  |  |
|                             | MSD recovery outside allowable limit                           |  |  |  |  |  |  |
|                             | Sample result between DL and LOQ                               |  |  |  |  |  |  |
| В                           | Method blank contamination                                     |  |  |  |  |  |  |
| U                           | Nondetects                                                     |  |  |  |  |  |  |
| Ν                           | Nontarget analyte                                              |  |  |  |  |  |  |
|                             | NOT fulfilling any of the following:                           |  |  |  |  |  |  |
|                             | Tuning criteria                                                |  |  |  |  |  |  |
|                             | DDT breakdown requirement                                      |  |  |  |  |  |  |
| Flagging not<br>appropriate | Normal responses for benzidine and pentachlorophenol           |  |  |  |  |  |  |
| appropriate                 | Initial calibration requirements                               |  |  |  |  |  |  |
|                             | Second source/ICV requirements                                 |  |  |  |  |  |  |
|                             | Relative retention time requirements                           |  |  |  |  |  |  |
| CCV denotes continuing      | calibration verification.                                      |  |  |  |  |  |  |
| DDT denotes dichloro-d      | iphenyl-trichloroethane.                                       |  |  |  |  |  |  |
| DL denotes detection lim    | DL denotes detection limit.                                    |  |  |  |  |  |  |
| EPA denotes U.S. Enviro     | EPA denotes U.S. Environmental Protection Agency.              |  |  |  |  |  |  |
| ICV denotes initial calib   | ration verification.                                           |  |  |  |  |  |  |
| LCS denotes laboratory      | control sample.                                                |  |  |  |  |  |  |
| LOQ aenotes limit of que    | initiation.                                                    |  |  |  |  |  |  |
| MSD denotes matrix spike.   | MS denotes matrix spike.<br>MSD denotes matrix spike duplicate |  |  |  |  |  |  |
| RF denotes response fac.    | RF denotes response factor.                                    |  |  |  |  |  |  |

SPCC denotes system performance check compound.

SVOC denotes semivolatile organic compound.

VOC denotes volatile organic compound.

**Table C-3** summarizes the validation qualifiers for organochlorine pesticides and PCBs by EPA SW-846 Methods 8081B and 8082, respectively. Both methods utilize GC.

# Table C-3Validation Qualifiers for Organochlorine Pesticide EPA Method 8081B and PCB EPA Method8082

| Flag                | Flagging Criteria                                                  |
|---------------------|--------------------------------------------------------------------|
|                     | NOT fulfilling any of the following:                               |
|                     | CCV requirement                                                    |
|                     | LCS recovery/recoveries                                            |
|                     | Surrogate recovery/recoveries                                      |
| J                   | Any of the following:                                              |
|                     | Results between primary and secondary column RPD $\leq 40$ percent |
|                     | MS recovery/recoveries outside allowable limit                     |
|                     | MSD recovery/recoveries outside allowable limit                    |
|                     | Sample result between DL and LOQ                                   |
| В                   | Method blank contamination                                         |
| U                   | Nondetects                                                         |
| Ν                   | Nontarget analyte                                                  |
|                     | NOT fulfilling any of the following:                               |
| Flagging not        | DDT/Endrin breakdown requirement                                   |
| appropriate         | Initial calibration requirements                                   |
|                     | ICV requirements                                                   |
| CCV denotes continu | ing calibration verification.                                      |
| DDT denotes dichlor | ro-diphenyl-trichloroethane.                                       |

DDT denotes commung canoration verification. DDT denotes dichloro-diphenyl-trichloroethane. DL denotes detection limit. EPA denotes U.S. Environmental Protection Agency. ICV denotes initial calibration verification. LCS denotes laboratory control sample. LOQ denotes limit of quantitation. MS denotes matrix spike. MSD denote matrix spike duplicate. PCB denotes polychlorinated biphenyl. RPD denotes relative percent difference.

**Table C-4** summarizes the validation qualifiers for nitroaromatics, nitramines, and nitrate esters by EPA SW-846 Method 8330B. This method utilizes high performance liquid chromatography.

# Table C-4Validation Qualifiers for Explosives (Nitroaromatics, Nitramines, and Nitrate Esters) EPAMethod 8330B

| Flag                                              | Flagging Criteria                                                |  |  |  |  |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                   | NOT fulfilling any of the following:                             |  |  |  |  |  |  |  |
|                                                   | CCV requirements                                                 |  |  |  |  |  |  |  |
|                                                   | LCS recovery/recoveries                                          |  |  |  |  |  |  |  |
|                                                   | Any of the following:                                            |  |  |  |  |  |  |  |
| _                                                 | sults between primary and secondary column RPD $\leq 40$ percent |  |  |  |  |  |  |  |
| J                                                 | MS recovery/recoveries outside allowable limit                   |  |  |  |  |  |  |  |
|                                                   | MSD recovery/recoveries outside allowable limit                  |  |  |  |  |  |  |  |
|                                                   | Sample result between DL and LOQ                                 |  |  |  |  |  |  |  |
|                                                   | Soil sample triplicate RSD $\leq$ 20 percent                     |  |  |  |  |  |  |  |
| В                                                 | Method blank contamination                                       |  |  |  |  |  |  |  |
| U                                                 | Nondetects                                                       |  |  |  |  |  |  |  |
| N                                                 | Nontarget analyte                                                |  |  |  |  |  |  |  |
|                                                   | NOT fulfilling any of the following:                             |  |  |  |  |  |  |  |
| Flagging not                                      | DDT/Endrin breakdown requirement                                 |  |  |  |  |  |  |  |
| appropriate                                       | Initial calibration requirements                                 |  |  |  |  |  |  |  |
|                                                   | ICV requirements                                                 |  |  |  |  |  |  |  |
| CCV denotes continui                              | ing calibration verification.                                    |  |  |  |  |  |  |  |
| DDT denotes dichloro                              | p-diphenyl-trichloroethane.                                      |  |  |  |  |  |  |  |
| DL denotes detection                              | limit.                                                           |  |  |  |  |  |  |  |
| EPA denotes U.S. Environmental Protection Agency. |                                                                  |  |  |  |  |  |  |  |
| ICV denotes initial ca                            | ICV denotes initial calibration verification.                    |  |  |  |  |  |  |  |
| LCS denotes laborato                              | LCS denotes laboratory control sample.                           |  |  |  |  |  |  |  |
| LOQ denotes limit of                              | qunatitation.                                                    |  |  |  |  |  |  |  |
| RPD denotes relative                              | RPD denotes relative percent difference.                         |  |  |  |  |  |  |  |
| RSD denotes relative                              | RSD denotes relative standard deviation.                         |  |  |  |  |  |  |  |

**Table C-5** summarizes the validation qualifiers for metals by EPA SW-846 Method 6010C. This method utilizes ICP–atomic emission spectrometry.

| CCV denotes continuing calibration verification. |  |  |
|--------------------------------------------------|--|--|
| DL denotes detection limit.                      |  |  |
|                                                  |  |  |

Table C-5Validation Qualifiers for Metals EPA Method 6010C

DL denotes detection limit. EPA denotes U.S. Environmental Protection Agend ICV denotes initial calibration verification. LCS denotes laboratory control sample. LOQ denotes limit of quantitation.

*MS denotes matrix spike.* 

MSD denotes matrix spike duplicate.

#### 2.2 Volatile Organic Compounds

The data validation indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were in compliance with EPA SW-846 Method 8260B and DOD QSM 4.1 requirements with the following exceptions:

- SDG 81613—The MB was reported with a high surrogate recovery for toluene-d8. However, all other QC criteria were within the control limits, and no flagging was done.
- SDG 81543—The result of the sample SCsb-042D-0003-SO was reported a surrogate recovery for 4-BFB of 122 percent which was just outside the allowable

limit of 85–120 percent. Since the recovery was high and no analyte was detected in the sample, no flagging was necessary.

• SDG 82400—Acetone was detected in the MB, but was not detected in the sample. Subsequently, no flagging was necessary.

The CCV standard analyzed on November 12, 2010, had a low recovery (%D of -27 percent) of bromomethane that was outside the allowable limit of 20 percent. The compound was quantified with a "J" flag on the following samples—equipment rinsate sample SCqc-006-0001-ER and trip blank sample SCqc-007-0001-TB.

## 2.3 Semivolatile Organic Compounds

Validation of the SVOC data indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were in compliance with EPA SW-846 Method 8270C and DOD QSM 4.1 with the following exceptions:

- SDG 81613
  - CCV 1CCV24 analyzed on October 9, 2010, had recoveries outside of specified criteria for 2,4-dinitrophenol (31.6 percent high) and benzoic acid (30.1 percent high).
  - CCV 2CCV27 analyzed on October 12, 2010, had recoveries outside of specified criteria for 3,3'-dichlorobenzidine (27.4 percent high) and benzoic acid (38.1 percent high). These compounds were not detected in the associated samples, so they were not qualified.
  - CCV 2CCV30 analyzed on October 19, 2010, had a recovery outside of specified criteria for benzoic acid (32.6 percent high). The compound was not detected in the associated sample.
  - CCV 2CCV32 analyzed on October 20, 2010, had a recovery outside of specified criteria for benzoic acid (23.0 percent high). This compound was not detected in the associated samples. Thus, flagging was not necessary.
  - Sample SCss-044M-0001-SO (852362) had a low surrogate recovery for 2,4,6tribromophenol. This low surrogate recovery was confirmed by reanalysis and was qualified with a "J" flag in the sample.
  - Sample SCss-069M-0001-SO (854682) had low surrogate recoveries for surrogates 2-fluorophenol, phenol-d5, and 2-fluorobiphenyl. These low surrogate recoveries were greater than 10 percent and were confirmed by reanalysis and were qualified with a "J" flag in the samples.

- The response of the last internal standard (perylene-d12) was low (less than 50 percent of the response in the midpoint of the associated initial calibration) for the following samples: SCsb-045M-0001 (854003), SCsb-046M-0001-SO (854009), SCsb-047M-0001-SO (854010), SCsb-048M-0001-SO (854011), (SCsb-084M-0001-SO (854013), SCsb-049M-0001-SO (854015), SCsb-050M-0001-SO (854016), SCsb-051M-0001-SO (854017), SCsb-052M-0001-SO (854018), SCsb-053M-0001-SO (854019), SCsb-054M-0001-SO (854020), and SCss-069M-0001-SO (854682) due to sample matrix. The compound results calculated using this internal standard in these samples were qualified with a "J" flag.
- LCS 851609 had a high recovery of 3,3'-dichlorobenzidine. The recovery was confirmed by repeat analysis. This compound was qualified with a "J" in the associated samples. The MS and the MSD for sample 851910 (sample from another SDG) had all recoveries and RPDs within the QC limits. All surrogate recoveries were within the QC limits.
- LCS 855463 had all recoveries within the QC limits. The MS for sample SCSQ-004-0001-SO (854005) had the recovery of 3,3'-dichlorobenzidine outside the QC limits. This compound was qualified with a "J" in the parent sample. The RPDs were high for the following compounds: 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 4-nitroaniline, 4-nitrophenol, and pentachlorophenol. These compounds were not qualified in the parent samples as they were not detected, and the recoveries were within the QC limits.
- LCS 860448 had all recoveries within the QC limits. The MS and/or the MSD for sample SCsb-041M-0002-SO (850312) had recoveries outside the QC limits for the following compounds: 2,4,5-trichlorophenol, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. All RPDs were within the QC limits.
- LCS 858563 had all recoveries within the QC limits. The MS and/or the MSD for sample SCqc-001-0001-ER (854741) had recoveries outside the QC limits for the following compounds: benzyl alcohol, 1,2,4-trichlorobenzene, 1,2dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-chlorophenol, nitrobenzene, bis(2-chloroethoxy)methane, bis(2-chloroethyl)ether, hexachlorobutadiene, hexachlorocyclopentadiene, and hexachloroethane. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. The RPDs were high for the following compounds: benzyl alcohol, 1,2,4-trichlorobenzene, 1.2-

dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-nitrophenol, nitrobenzene, bis(2-chloroethyl)ether, 3,3'-dichlorobenzidine, 3-nitroaniline, hexachlorobutadiene, naphthalene, and hexachloroethane. The compounds with low recoveries and high RPDs were qualified with a "J" in the parent sample.

- LCS 861019 had all recoveries within the QC limits. The MS and/or the MSD for sample SCss-057M-0001-SO (852338) had recoveries outside the QC limits for the following compounds: benzyl alcohol, hexachlorocyclopentadiene, 4-chloroaniline, 3,3'-dichlorobenzidine, 4,6-dinitro-2-methylphenol, and pentachlorophenol. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. The RPD was high for pentachlorophenol. This compound was qualified with a "J" in the parent sample.
- SDG 82400
  - CCV 1CCV40 analyzed on November 18, 2010, had a high recovery for hexachloropropene (24.1 percent). This compound was not detected in samples, and the data were not qualified.
  - The parent sample (analytical run 71972) for the MS and the MSD was from another SDG and had low recoveries for 4-chloroaniline. This was confirmed by reanalysis, and the compound was qualified with a "J" flag in the parent sample. The RPD was high for 3'3'-dichlorobenzidine. This compound was not detected in the parent sample, and the data were not qualified. All surrogate recoveries were within the acceptable limits.
- SDG 81543
  - CCV 1CCV14 analyzed on October 5, 2010, had a recovery outside of specified criteria for 3,3'-dichlorobenzidine (27.6 percent low). This compound was qualified with a "J" in the associated samples.
  - CCV 2CCV30 analyzed on October 19, 2010, had a recovery outside of specified criteria for benzoic acid (32.6 percent high). Samples SCss-059M-0001 (851525), SCss-060M-001-SO (851526), and SCss-001M-0001-SO (851527) which had detects for benzoic acid were reanalyzed on October 25, 2010, with a CCV (1CCV26) that passed for all compounds.
  - LCS 853893 had all recoveries within the QC limits. The MS and/or the MSD for sample SCsb-041M-002-SO (850312) had recoveries outside the QC limits for the following compounds: 2,4,5-trichlorophenol, 2-nitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol, and hexachlorocyclopentadiene. The

recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. The RPDs were high for 3,3'-dichlorobenzidine and 4-chloroaniline. These compounds were not qualified in the parent sample as they were not detected and had passing recoveries.

- Samples SCsb-043M-0005-SO (850305) and SCsb-041M-0002-SO (850312) had low surrogate recoveries for 2-fluorophenol and 2,4,6-tribromophenol. The low surrogate recoveries were confirmed by reanalysis and were qualified with a "J" flag.
- LCS 854888 had all recoveries within the QC limits. The MS and/or the MSD for sample SCSB-039-0002-SO (850322) had recoveries outside the QC limits for the following compounds: 2,4,5-trichlorophenol, 2-nitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol, and hexachlorocyclopentadiene. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. All RPDs were within the QC limits.
- Sample SCsb-035M-0005-SO (851482) had a low surrogate recovery for 2,4,6tribromophenol. This low surrogate recovery was confirmed by reanalysis and was qualified with a "J" flag.
- LCS 855277 had all recoveries within the QC limits. The MS and/or the MSD for sample 851506 had recoveries outside the QC limits for the following compounds: 3,3'-dichlorobenzidine, 3-nitroaniline, 4-chloroaniline, and hexachlorocyclopentadiene. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. The RPD was high for benzoic acid. This compound was not qualified in the parent sample as it was not detected and had passing recoveries.
- Samples SCsb-036M-0003-SO (851485) SCsb-080M-0001-SO (851498), SCsb-037M-0004-SO (851504), SCsb-038M-0002-SO (851507), and SCsb-038M-003 (851508) had low surrogate recoveries for 2,4,6-tribromophenol. These low surrogate recoveries were confirmed by reanalyses and were qualified with a "J" flag in the samples.
- CCV 2CCV30 analyzed on October 19, 2010, had a recovery outside of specified criteria for benzoic acid (32.6 percent high). Samples SCss-059M-0001-SO (851525), SCss-060M-0001-SO (851526), and SCss-061M-0001-SO (851527) which had detects for benzoic acid were reanalyzed on October 25, 2010, with a CCV (1CCV26) that passed for all compounds.
- LCS 860448 had all recoveries within the QC limits. The MS and/or the MSD for sample SCsb-041M-0002-SO (850312) had recoveries outside the QC limits

for the following compounds: 2,4,5-trichlorophenol, 2,4-dinitrophenol, 4,6dinitro-2-methylphenol, and pentachlorophenol. The recoveries were confirmed by reanalysis, and parent sample results for these compounds were qualified with a "J" flag. All RPDs were within the QC limits.

 Sample SCsb-039M-0001-SO (850321) had a low surrogate recovery for 2,4,6tribromophenol. This low surrogate recovery was confirmed by reanalyses and qualified with a "J" flag in the sample.

#### 2.4 Polychlorinated Biphenyls

Validation of PCB data indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were in compliance with EPA SW-846 Method 8082 and DOD QSM 4.1 requirements. No QC outliers are reported.

## 2.5 Pesticides

Validation of pesticide data indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were in compliance with EPA SW-846 Method 8081A and DOD QSM 4.1 requirements with the following exceptions:

- SDG 81613
  - The MB 852473 analyzed on October 20, 2010, had a 4,4'-DDT detected at 0.02 micrograms per liter ( $\mu$ g/L). The compound was not detected in the associated samples. No flagging was necessary.
  - CCV 053 analyzed on October 21, 2010 had high responses of toxaphene/chlordane for the following peaks: channel A chlordane #3, toxaphene #1, #2, #3, and #4, and the surrogate decachlorobiphenyl; channel B chlordane #2, #3, and #5, toxaphene #4 and #5 and the surrogate decachlorobiphenyl. However, the total chlordane and toxaphene results were within the QC limits. Furthermore, these compounds were not detected in the associated samples.
  - LCS 855458 analyzed on October 21, 2010, had 118 percent recovery of endosulfan and was outside the allowable range of 50–110 percent. This compound was not detected in the associated samples.
  - The MS and MSD on sample SCqc-005-0001-ER had high recoveries of 138 percent and 130 percent for gamma-chlordane and were outside the allowable range of 60–125 percent. The recoveries were confirmed by reanalysis. The compound was qualified with "J" in the parent sample.

- The MB 852916 analyzed on November 9, 2010, had a 2,4,5,6-tetrachloro-mxylene (a surrogate) recovery of 67.7 percent that was just below the allowable range of 70–125 percent. The low recovery was confirmed by repeat analysis. The recovery of the second surrogate (decachlorobiphenyl) was within the acceptable limit.
- Ending toxaphene/chlordane (CCV 06 analyzed on November 10, 2010) had a low response of surrogate decachlorobiphenyl. Toxaphene and technical chlordane were not detected in the associated samples.
- The following compounds were "J" qualified because the concentration differ more than 40 percent between channel A and channel B:

| Laboratory Sample<br>Number | Sample Description | Compound              |
|-----------------------------|--------------------|-----------------------|
| 852377                      | SCss-057M-0001-SO  | Heptachlor            |
|                             |                    | 4,4'-DDD              |
| 854000                      | SCsd-070M-0001-    | Heptachlor            |
|                             | SD                 | 4,4'-DDT              |
|                             |                    | Methoxychlor          |
|                             |                    | Alpha-chlordane       |
|                             |                    | Beta-BHC              |
|                             |                    | Delta-BHC             |
|                             |                    | Endosulfan<br>sulfate |
|                             |                    | Gamma-chlordane       |
| 854010                      | SCsd-071M-000-SD   | 4,4'-DDT              |
|                             |                    | Methoxychlor          |
|                             |                    | 4,4'-DDD              |

DDD denotes dichloro-diphenyl-dichloroethane.

- DDT denotes dichloro-diphenyl-trichloroethane.
- The MS recovery on sample SCss-057-000-SO had a recovery of 57 percent for endosulfan sulfate and was outside the allowable range of 60–135 percent. This compound was qualified with "J" in the parent compound.

## 2.6 Explosives

Data validation for explosives indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were performed following EPA SW-846 Method 8330 and DOD QSM 4.1 requirements. No QC outliers were identified for SDGs 81643 and 82400. The validation of explosives data in the SDG 81613 consist of the following findings:

- SDG 81613
  - The sample SCqc-004-0001-ER had a recovery of 145 percent 1,2dinitrobenzene (the surrogate) which was above the allowable range of 70–130 percent. In the confirmation analysis, the surrogate was within the normal range. This was due to interference with the surrogate analysis by sample matrix on the primary column. The interfering contaminant elutes at a different time on the confirmation column. There were a number of miscellaneous peaks and baseline disturbances in all the samples on both column analyses.
  - The sample SCqc-005-001-ER had a recovery of 141 percent of the surrogate 1,2-dinitrobenzene which was above the allowable range of 70–130 percent. In the confirmation column analysis, the surrogate was within the normal limit. It was confirmed in the confirmation analysis that there were several extra peaks. Thus, the high surrogate recovery was due to matrix interference. No analytes were detected in the sample.
  - The sample SCsb-056M-0001-SO had no hits, but had a high recovery of the surrogate 1,2-dinitrobenzene of 130 percent (allowable range 75–127 percent). The sample was reanalyzed on the confirmation column, and the surrogate recovery was within the acceptable range. However, there were several extra peaks that appear in the confirmation column, mostly towards the end.

## 2.7 Metals

Data validation of metals indicated that the SDGs were complete (i.e., all required data elements were reported) and all analyses were performed following EPA SW-846 Method 6010C and DOD QSM 4.1 requirements with the following exceptions:

- SDG 81613
  - Barium was detected above the LOD in the initial calibration blank (ICB) 860519, but the affected sample results were greater than 5 times the amount present in the blank, so the samples were not reanalyzed. The sample results in the element were not qualified.
  - Magnesium was detected above the LOD, and aluminum, barium, calcium, and iron were detected above the ½ reporting limit (RL) in the MB (858603). The results for these elements in the associated samples were all greater than 5 times the MB results. Subsequently, the sample data were not qualified.
  - Barium was detected above the LOD in three calibration blanks (CCBs) 860524, 860528, and 860530. However, the sample results were greater than 5

times the amount present in the blanks. Subsequently, the sample results were not reanalyzed. The sample results for barium were not qualified.

- Aluminum and barium were detected above the LOD in CCB 860532.
   However, the sample results were greater than 5 times the amount present in this blank. Subsequently, the samples were not reanalyzed. The sample results for aluminum and barium were not qualified.
- Serial dilution 860525 failed (>10 percent RPD) for silver, aluminum, arsenic, barium, calcium, cadmium, cobalt, chromium, copper, magnesium, manganese, nickel, lead, thallium, and zinc. Arsenic, cadmium, and thallium were not applicable to the serial dilution test because the parent sample SCss-057M-0001-SO (852338) results for these elements were not greater than 50 times the LOQ. A postdigestion spike (PDS) (860526) was analyzed on this sample. The elements with failing PDS recoveries were qualified with a "J" flag in the parent sample.
- The MS and/or MSD for sample 850322 failed for silver, chromium, antimony, and iron. These MSs were also analyzed at two different dilutions. The first PDS (860526) analyzed had acceptable recoveries for silver, chromium, and iron. Those elements with acceptable recoveries were reported without qualification in the parent sample. The elements with failing PDS recoveries and applicable serial dilution test failures were qualified with a "J" flag in the parent sample.
- The duplicate sample (DUP) results for sample 852338 were not applicable for thallium and antimony because their results were not greater than 5 times the LOQ in the parent sample. A MSD was analyzed to demonstrate precision.
- The DUP result for sample 852338 failed the RPD limit for arsenic. The parent sample result for this element was qualified "J."
- Barium and magnesium were detected above the LOD in CCB 863787, but the sample results were greater than 5 times the amount present in this blank for these elements. Subsequently, the samples were not reanalyzed. The sample results for these two elements were not qualified.
- Serial dilution 861686 failed (>10 percent RPD) for sodium and potassium.
   Sodium and potassium were not applicable to the serial dilution test because the parent sample (852338) results for these elements were not greater than 50 times the LOQ. There was a PDS (861687) analyzed on this sample with acceptable results for these elements.

- The MS and MSD for sample 852338 failed for potassium and sodium, but the PDS (861687) had acceptable recoveries for these elements. The parent sample result was reported without qualification.
- Aluminum and magnesium were detected above the ICB 863231. However, the affected sample result was greater than 5 times the amounts present in this blank; subsequently, the sample was not reanalyzed. The sample result for these elements was not qualified.
- Serial dilution 863235 failed (>10 percent RPD) for arsenic, beryllium, calcium, cadmium, cobalt, chromium, copper, magnesium, nickel, lead, thallium, vanadium, and zinc. Arsenic, cadmium, beryllium, and thallium were not applicable to serial dilutions tests because the parent sample (852380) results for these elements were not greater than 50 times the LOQ. A PDS (862236) was analyzed on this sample. The elements with failing PDS recoveries that were qualified with as "J" flag in the parent sample were cadmium, chromium, cobalt, copper, manganese, nickel, thallium, vanadium, and zinc.
- The MS and/or MSD for sample 852380 failed for arsenic, cadmium, cobalt, chromium, nickel, thallium, vanadium, zinc, selenium, antimony, iron, silver, aluminum, and manganese. The MSs were also analyzed at a dilution. The PDS had acceptable recoveries for arsenic, antimony, silver, and aluminum. Those elements with acceptable recoveries were reported without qualification in the parent sample. The elements with failing PDS recoveries and applicable serial dilution test failures were qualified with a "J" flag in the parent sample.
- Thallium was detected above the LOD in the MB 860784. The results for this element in the associated samples were greater than 5 times the results in the MB that were not qualified in the MB result. Samples that have thallium results were less than 5 times the MB result and were qualified as nondetects.
- Barium and thallium were detected above the LOD in CCB 863238. However, the sample results were greater than 5 times the amount present in this blank for these elements, so the samples were not reanalyzed. The sample results for these two elements were not qualified.
- Barium was detected above the LOD in CCB 863240. However, the sample results were greater than 5 times the amount present in this blank for this element. Subsequently, the sample was not reanalyzed. The sample results for this element was not qualified.

- Thallium was detected above the LOD in CCB 863242, but the sample results were greater than 5 times the amount present in this blank for this element. Subsequently, the sample was not reanalyzed. The sample results for this element were not qualified. Serial dilution 864142 failed (>10 percent RPD) for sodium and potassium, but was not applicable because the sample results were not greater than 50 times the LOQ for these elements. A PDS (864143) was analyzed and had acceptable recoveries for these elements.
- The MS/MSD for sample 852380 failed for sodium and potassium. A PDS (864143) had acceptable recoveries for sodium and potassium. These elements were reported without qualification in the parent sample.
- Aluminum was detected above LOD in ICB 863250 that was analyzed prior to the sample analysis, and barium was detected above the LOD in CCB 864257. There were no affected sample results bracketed by these calibrations.
- Thallium was detected above the LOD in CCB 863259. However, the sample results were 5 times the amount present in this blank for this element, so the samples were not reanalyzed. The results for this element were qualified with a "B" flag.
- Aluminum, barium, calcium, chromium, iron, magnesium, and nickel were detected above the LOD in ICB 863780, but the sample results were greater than 5 times the amount present in this blank for these elements, so the sample were not reanalyzed. The sample result for these seven elements was not qualified.
- Zinc was detected above the LOD, and aluminum, barium, calcium, iron, magnesium, and manganese were detected above 1/2 of the RL in the MB 860786. The results for these elements in the associated samples were all greater than 5 times the MB results. Subsequently, the sample data were not qualified.
- Aluminum, magnesium, barium, calcium, chromium, and nickel were detected above the LOD in ICB 864085 that was analyzed prior to the sample analysis. There were no affected sample results bracketed by this ICB.
- Barium and iron were detected above the LOD in CCB 86091, but the sample results were greater than 5 times the amount present in this blank for these elements, so the samples were not reanalyzed. The sample results for these elements were not qualified.

- Serial dilution 864092 failed (>10 percent RPD) for beryllium, thallium, and zinc. Arsenic was not applicable to the serial dilution test because the parent sample (854017) result for this element was not greater than 50 times the LOQ. A PDS (8641014) was analyzed on this sample. The elements with failing PDS recoveries were qualified with "J" flag in the parent sample.
- The MSA and/or MSD for sample 854017 failed for thallium, zinc, nickel, magnesium, iron, copper, chromium, lead, aluminum, antimony, cadmium, and cobalt. These MSs were analyzed at a dilution. The PDS had acceptable recoveries for chromium, lead, aluminum, antimony, cadmium, and cobalt. Those elements with acceptable recoveries were reported without qualification in the parent sample. The elements with failing PDS recoveries and applicable serial dilution test failures were qualified with a "J" flag in the parent sample.
- The DUP results for sample 854017 were not applicable for antimony, cadmium, and selenium because their results were not greater than 5 times the LOQ for these elements in the parent sample. A MSD was analyzed to demonstrate the precision. The MSD exceeded the PRD criteria for cadmium and antimony. The parent sample results were qualified with a "J" flag when the difference between the original and duplicate results were greater than plus/minus RL.
- Barium, aluminum, magnesium, and iron were detected above the LOD in CCB 864094, but the sample results were greater than 5 times the amount present in the blank for these elements, so the sample were not reanalyzed. The sample results for these four elements were not qualified.
- Serial dilution 862216 failed (>10 percent RPD) for potassium, but was not applicable because the sample result was not greater than 50 times the LOQ for potassium.
- Barium was detected above ½ of the RL in the MB (864350). The result for this element in the associated sample was greater than 5 times the MB result. Subsequently, the sample data were not qualified because of MB contamination.
- SDG 81643
  - Barium and cadmium were detected above the LOD in ICB 855219 that was analyzed prior to the sample analysis, and barium, cadmium, magnesium, selenium, and zinc were detected above the LOD in CCB 857525. Only preparatory batch QC samples were bracketed by this CCB; therefore, they were reported without qualification.

- Vanadium was detected above the LOD, and aluminum, barium, cadmium, iron, and zinc were detected above ½ of the RL in the MB (853784). The results for these elements in the associated samples were all greater than 5 times the MB sample results; therefore, the sample data were not qualified.
- Barium, calcium, cadmium, magnesium, and zinc were detected above the LOD in CCB 857126, but the sample results were greater than 5 times the amount present in this blank, so the samples were not reanalyzed again. The sample results for these five elements were not qualified.
- Serial dilution 857129 failed (>10 percent RPD) for arsenic, cobalt, copper, magnesium, nickel, lead, antimony, vanadium, and zinc, and serial dilutions 857639 and 857688 failed for iron and aluminum, respectively. Arsenic and antimony were not applicable to the serial dilution test because the parent sample SCsb-041M-00-2-SO (850312) results for these elements were not greater than 50 times the LOQ. Three PDSs (857130, 857640, and 857650) were analyzed on this sample.
- The MS and/or MSD for sample SCsb-041M-00-2-SO (850312) failed for cadmium, chromium, cobalt, copper, magnesium, nickel, lead, antimony, vanadium, zinc, selenium, manganese, thallium, iron, and aluminum. These MSs were also analyzed at two different dilutions. The first PDS (846847) analyzed had acceptable recoveries for cadmium, lead, selenium, and antimony. The second PDS (857650) analyzed had acceptable recoveries for aluminum, cobalt, copper, magnesium, nickel, vanadium, and zinc. The third PDS (875640) analyzed had acceptable recoveries for iron, manganese, and thallium.
- The first serial dilution (857129) analyzed had an acceptable result for chromium. These elements were reported without qualification in the parent sample. Aluminum, barium, calcium, cadmium, magnesium, and zinc were detected above the LOD in CCB 857132, but the sample results were greater than 5 times the amount present in this blank, so the samples were not reanalyzed again. The sample results for these six elements were not qualified.
- Aluminum, barium, beryllium, calcium, cadmium, cobalt, magnesium, nickel, selenium, vanadium, and zinc were detected above the LOD in CCB 857134, but the sample results were greater than 5 times the amount present in this blank for aluminum, barium, beryllium, calcium, cadmium, cobalt, magnesium, nickel, vanadium, and zinc and less than the LOD for selenium, so the samples were not reanalyzed again. Selenium was qualified as nondetect ("U"). The remaining sample results for the rest of elements were not qualified.
- Magnesium and zinc were detected above the LOD in the CCB 857689, but only analytical QC (PDS 857650) was affected by this blank, and the sample results were greater than 5 times the amounts present in this blank, so this sample was not reanalyzed. The PDS results for these two elements were reported without qualification.
- Magnesium, vanadium, and zinc were detected above the LOD in CCB 857691, but only analytical QC (PDS 857650) was affected by this blank, and the sample results were greater than 5 times the amounts present in this blank, so this sample was not reanalyzed. The PDS results for these three elements were reported without qualification.
- Iron was detected above the LOD in two CCBs (857691 and 857693), but the sample results were greater than 5 times the amount present in these blanks, so the samples were not reanalyzed. The sample results for this element were not qualified.
- Serial dilution 855939 failed (>10 percent RPD) for potassium. A PDS (855940) was analyzed and had an acceptable result.
- The MS and MSD for sample 850312 failed for potassium. PDS (855940) had an acceptable recovery for potassium. This element was reported without qualification in the parent sample (analytical run 70642).
- Silver, barium, iron, and selenium were detected above the LOD in the ICB 856560, but the sample results were greater than 5 times the amount present in this blank for silver, barium, and selenium, so the samples were not reanalyzed again. The sample results for these three elements were not qualified with a "B." Only preparatory batch QC samples were bracketed by this ICB for iron; therefore, they were reported without qualification.
- Silver was detected above the LOD in three CCBs (856567, 856569, and 856572), but sample results were less than 5 times the concentration in the blank and were not reanalyzed. They were reported as nondetects.
- Serial dilution 856564 failed (>10 percent RPD) for aluminum, barium, beryllium, calcium, cobalt, chromium, copper, magnesium, manganese, nickel, lead, vanadium, and zinc, and serial dilution 859401 respectively failed for iron and thallium. Beryllium and thallium were not applicable to the serial dilution test because the parent sample (850322) results for these elements were not greater than 50 times the LOQ. Two PDSs (856565 and 859402) were analyzed on this sample.

- The MS and/or MSD for sample 850322 failed for aluminum, cobalt, copper, manganese, nickel, vanadium, zinc, cadmium, selenium, antimony, iron, and thallium. These MSs were also analyzed at two different dilutions. The first PDS (856565) analyzed had acceptable recoveries for aluminum, barium, beryllium, calcium, chromium, magnesium, manganese, nickel, lead, vanadium, cadmium, selenium, and antimony. Those elements with acceptable recoveries were reported without qualification in the parent sample. The elements with failing recoveries were qualified with a "J" flag in the parent sample.
- Serial dilution 856752 failed (>10 percent RPD) for potassium, but was not applicable because the sample result was not greater than 50 times the LOQ. A PDS (857202) was analyzed and had an acceptable result.
- The MS for sample 850322 failed for potassium. PDS (857202) had an acceptable recovery for potassium. This element was reported without qualification in the parent sample.
- Selenium was detected above the LOD, and barium, calcium, magnesium, and vanadium were detected above ½ of the RL in the MB (855985). The results for barium, calcium, magnesium, and vanadium in the associated samples were all greater than 5 times the MBS results; therefore, the sample data were not qualified. The results for selenium were less than 5 times the MB contamination. Selenium results less than the LOD were not qualified as nondetects ("U" qualified).
- Serial dilution 860049 failed (>10 percent RPD) for barium, beryllium, calcium, cobalt, chromium, copper, magnesium, nickel, lead, thallium, vanadium, and zinc. Beryllium and thallium were not applicable to the serial dilution test because the parent sample (851518) results for these elements were not greater than 50 times the LOQ. Three PDS (860050, 863292, and 863449) were analyzed on this sample.
- The MS and/or MSD for sample 51518 (sample from another SDG) failed for cobalt, chromium, copper, magnesium, thallium, zinc, cadmium, iron, manganese, selenium, aluminum, and antimony. The first PDS (860050) analyzed had an acceptable recovery for antimony. The second PDS (863292) analyzed had acceptable recoveries for magnesium and thallium. The third PDS (863449) analyzed had acceptable recoveries for cadmium, cobalt, chromium, copper, and zinc. The serial dilution (860049) analyzed had an acceptable result for aluminum, iron, and manganese. These elements were reported without qualification in the parent sample.

- Calcium had a failing PDS recovery on sample 851518. The serial dilution test failed for this element. Although the MS and MSD recoveries met the acceptance criteria, this element was qualified with a "J" flag in the parent sample.
- Aluminum and vanadium were detected above the LOD in CCB 860052, but the affected sample result was greater than 5 times the amount present in this blank, so the sample was not reanalyzed. The sample result for these elements was not qualified.
- Aluminum, iron, magnesium, and vanadium were detected above the LOD in ICB 862490, but the sample results were greater than 5 times the amount present in this blank for these elements, so the samples were not reanalyzed. The sample results for these four elements were not qualified.
- Barium was detected above CCB 62497, but the affected sample results were greater than 5 times the amount present in this blank, so the samples were not reanalyzed. The sample results for this element were not qualified.
- Barium and thallium were detected above the LOD in CCB 864030. Only a QC sample (PDS 863292) was bracketed by this CCB; therefore, it was reported without qualification.
- Thallium was detected above the LOD in CCB 863188, but the samples on this run were not affected by this blank contamination.
- SDG 82400
  - Aluminum, magnesium, nickel, and vanadium were detected above the LOD in CCB 871909 that was analyzed prior to the sample analysis. No affected sample results were bracketed by this CCB.
  - Arsenic and barium were detected above the LOD in CCB 871914. The affected sample (869563) was reported without qualification for arsenic because it was less than the LOD. The sample was reanalyzed for barium.
  - Barium and vanadium were detected above the LOD in CCB 871917. The affected sample (869563) was reported without qualification for vanadium because it was less than the LOD. The sample was reanalyzed for barium.
  - Vanadium was detected above the LOD in the MB (870444). The result for this element in the associated sample was less than the LOD. The sample data were not qualified because of the MB contamination.

- Barium and magnesium were detected above the LOD in CCB 874885. The associated sample results were greater than 5 times the amount present in the blank, and the samples were not reanalyzed. The sample results for these two elements were not qualified. The CCV 875742 failed high for cadmium, copper, and thallium, while CCV 875744 failed for silver, cadmium, copper, antimony, thallium, and cobalt. The associated sample (871039) was reanalyzed for these elements.
- Barium, chromium, and manganese were detected above the LOD in CCB 874261. The associated sample results were greater than 5 times the amount present in the blank, and the samples were not reanalyzed. The sample results for these three elements were not qualified.
- Barium, chromium, aluminum, and manganese were detected above the LOD in CCB 874263. The associated sample results were greater than 5 times the amount present in the blank, and the samples were not reanalyzed. The sample results for these four elements were not qualified.
- Barium, vanadium, and manganese were detected above the LOD in CCB 874898. No samples were associated with this blank.
- Selenium and vanadium were detected above the LOD in CCB 875743. No samples were associated with this blank.
- Vanadium was detected above the LOD in CCB 874905. No samples were associated with this blank.
- Silver was detected above the LOD, and aluminum, barium, calcium, iron, magnesium, and manganese were detected above <sup>1</sup>/<sub>2</sub> the RL in the MB (872318). The associated sample results for aluminum, barium, calcium, iron, magnesium, and manganese were all greater than 5 times the MB results. The sample data were not qualified for the MB contamination for these elements. The associated sample results less than 5 times the MB contamination for silver were reported as nondetect ("U" qualifier).
- The MS, MSD, and/or PDS for sample 871026 (from another SDG) failed for magnesium, manganese, and vanadium. The serial dilution test was applicable for these elements and had acceptable results. These elements were reported without qualification in the parent sample.

# 2.8 Completeness and Usability

Usable data are data that pass individual scrutiny during the validation process and are accepted for unrestricted acceptance for use in data evaluation, risk assessment, or equal

similar type usage. The completeness of field and laboratory generated analytical data was assessed using the following formula:

# $= \frac{[(usablsamples)(totabnalytes)]unusablsanalytes[(unusablsamples)(totabnalytes)]}{[(totabnalytes)]}$

Since no data were rejected, 100 percent of the data is considered valid which achieves the completeness criteria presented in Table 3-1 of the Facility-Wide Sampling and Analysis Plan (SAIC, 2001). Therefore, the completeness and usability criteria for the data collected for the Sand Creek Disposal Road Landfill RI have been satisfied.

# **3.0 REFERENCES**

Science Applications International Corporation (SAIC), 2001. *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio*, March 2001.

Shaw Environmental & Infrastructure, Inc. (Shaw), 2009. Final Quality Assurance Project Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site, Ravenna Army Ammunition Plant, Ravenna, Ohio, February, 2010.

U.S. Department of Defense (DOD), 2009. *DOD Quality Systems Manual for Environmental Laboratories*, Version 4.1, Environmental Data Quality Workgroup, April 22, 2009.

U.S. Army Corps of Engineers (USACE), 2002. *Louisville Chemistry Guideline*, Louisville District, Environmental Engineering Branch, Revision 5, June 2002.

U.S. Environmental Protection Agency (EPA), 2007. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, Publication SW-846, Revision 6, February 2007.

# Attachment 1 Data Validation Checklists

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT NITROAROMATICS AND NITRAMINE ANALYSIS CHECKLIST

|    | Project Name: Ravenna Army Ammunition Plant, Sand Creek Disposal Road Landfill |                |          |  |  |  |
|----|--------------------------------------------------------------------------------|----------------|----------|--|--|--|
|    | Laboratory: CT Laboratories                                                    |                |          |  |  |  |
|    | <b>Report No.:</b> 81613, 81543, 82400                                         |                |          |  |  |  |
|    | Analytical Method: SW-846-8330B Matrix:                                        | soil, sediment | t, water |  |  |  |
|    | Analyte: <u>Nitroaromatics and Nitromine</u> SDGs: <u>81613, 81543, 8</u>      | 82400          |          |  |  |  |
|    | SAMDIE DDEDADATION                                                             |                |          |  |  |  |
|    | SAIVII LE I KEI AKA HON                                                        | Ves            | No       |  |  |  |
| 1. | Analytical Canability                                                          | 105            | 110      |  |  |  |
|    | Was analytical capability demonstrated?                                        | [ x ]          | []       |  |  |  |
| 2. | Limit of Detection (LOD)                                                       |                |          |  |  |  |
|    | Were LODs determined and verified?                                             | [x]            | []       |  |  |  |
| 3. | Limit of Quantitation (LOQ)                                                    |                |          |  |  |  |
|    | a) Were LOQs determined and verified?                                          | [x]            | []       |  |  |  |
|    | b) Were the samples dried to a constant weight?                                | [x]            | []       |  |  |  |
|    | c) Were the dates, times and ambient temperatures recorded on a                |                |          |  |  |  |
|    | daily basis?                                                                   | [x]            | []       |  |  |  |
|    | d) Were the samples sieved and ground?                                         | [ x ]          | []       |  |  |  |
| 4. | Soil Grinding Blank                                                            |                |          |  |  |  |
|    | a) Was a grinding blank processed in-between samples?                          | [x]            | [ ]      |  |  |  |
|    | b) Were any target analyte present at $>1/2$ of the RL?                        |                |          |  |  |  |
| 5. | Soil Subsampling Process                                                       | [x]            | []       |  |  |  |
|    | a) Was any subsampling process followed?                                       |                |          |  |  |  |
| 6  | Soil Sample Triplicate                                                         |                |          |  |  |  |
| 0. | a) Was a triplicate analysis performed?                                        | []             | []       |  |  |  |
|    | b) Was the RSD $\leq 20\%$ ?                                                   |                |          |  |  |  |
| 7. | Aqueous Sample Preparation (when applicable)                                   |                |          |  |  |  |
|    | Was a SPE performed?                                                           |                |          |  |  |  |
|    | SAMPLE ANALYSIS                                                                |                |          |  |  |  |
| ø  | Sample Holding Time                                                            |                |          |  |  |  |
| 0. | Sample motuling time<br>Were samples analyzed within holding times?            | [ <b>v</b> ]   | ГI       |  |  |  |
|    | were samples analyzed within noteing times:                                    | נהן            | LJ       |  |  |  |
| 9. | Initial Calibration                                                            |                |          |  |  |  |
|    | a) Did the initial calibration consist of five or more standards?              | [x]            | [ ]      |  |  |  |
|    | b) Was the lowest standard concentration at or below the RL?                   | [ x ]          | []       |  |  |  |
|    | c) Was the apparent signal to noise ratio at the RL at least 5:1?              |                |          |  |  |  |
|    | d) Was $r \ge 0.995$ (if using linear regression)?                             |                |          |  |  |  |
|    | e) was the KSD $\leq$ 15 (if using internal standardization)?                  |                | [ ]      |  |  |  |

|     | 0         |                                                                                                                                     | Yes   | <u>No</u> |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|     | 1)        | was the lowest standard reanalyzed after the generation of the calibration curve?                                                   | [x]   | []        |
| 10. | Initial C | Calibration Verification (ICV)                                                                                                      |       |           |
|     | a)        | Was the ICV run immediately following the ICAL?                                                                                     | [ x ] | []        |
|     | b)        | Was the ICV made of a 2 <sup>nd</sup> source?                                                                                       | [ x ] | []        |
|     | c)        | Was the mid-level (2 <sup>nd</sup> source) recovery within 80-120%?                                                                 | [x]   | [ ]       |
| 11. | Continu   | ing Calibration Verification (CCV)/Mid-Point Calibration                                                                            |       |           |
|     | a)        | Was a CCV conducted prior to sample analysis?                                                                                       | [ x ] | []        |
|     | b)        | Was a CCV conducted after every ten samples or every 12 hours?                                                                      | [ x ] | []        |
|     | c)        | Was a CCV conducted after the last sample of the day?                                                                               | [x]   | []        |
|     | d)        | Did the CCV meet the minimum requirements $(D \le 20\%)$ ?                                                                          | [x]   | []        |
| 12. | Method    | Blank                                                                                                                               |       |           |
|     | a)        | Was a method blank present in every preparatory batch?                                                                              | [ x ] | []        |
|     | b)        | Were target analytes detected $>1/2$ the RL and $>1/10$ the amount measured in any sample or $1/10$ the regulatory limit (whichever |       |           |
|     |           | is greater)?                                                                                                                        | []    | [x]       |
|     | c)        | Did the method blank fail the project-specific objectives (> $1/2$                                                                  |       |           |
|     |           | the RL or > the RL)?                                                                                                                | []    | [x]       |
| 13. | Laborat   | ory Control Sample                                                                                                                  |       |           |
|     | a)        | Was an LCS present in every preparatory batch?                                                                                      | [x]   | [ ]       |
|     | b)        | Did the LCS contain all analytes to be reported?                                                                                    | [ x ] | []        |
|     | c)        | LCS: Were the percent recoveries for LCS within the limits?                                                                         | [ x ] | [ ]       |
|     |           | (Enter out of control recoveries only)                                                                                              |       |           |

#### **Identification of LCS Standard**

| Spiked Compound | LCS %R | Acceptable Range (%) |
|-----------------|--------|----------------------|
|                 |        |                      |
|                 |        |                      |
|                 |        |                      |
|                 |        |                      |

| 14. | Matrix Spike/Matrix Spike Duplicate                   |       |    |
|-----|-------------------------------------------------------|-------|----|
|     | a) MS/MSD: were the percent recoveries within limits? | [ x ] | [] |
|     | (Enter out of control recoveries only)                |       |    |
|     | b) Were the RPDs within control limits?               | [ x ] | [] |
|     |                                                       |       |    |

## Identification of Original Sample Used for QC

| Spiked compound | MS %R | MSD%R | %RPD | <b>RPD</b> Control Limits |
|-----------------|-------|-------|------|---------------------------|
| •               |       |       |      |                           |
|                 |       |       |      |                           |
|                 |       |       |      |                           |
|                 |       |       |      |                           |

#### 15. Confirmation Analysis

a) Was the RPD <40% between the two column results?

[ ] [ x ]

|     |     |                                                             | Yes | <u>No</u> |
|-----|-----|-------------------------------------------------------------|-----|-----------|
| 16. | Ana | alyte Detection                                             |     |           |
|     | a)  | Were results reported between the DL and the LOQ?           | []  | [x]       |
|     | b)  | Were results reported between the DL and the LOO flagged as |     |           |
|     | - / | estimated?                                                  | [ ] | []        |

Comments (attach additional sheets if necessary):

No surrogate recovery criteria are provided in the DoD QSM 4.1 for method 8330B. CT Laboratories surrogate limits have been used.

Validated/Reviewed by:

Name: Maqsud Rahman

Date: April 18, 2011

Signature:

Maggod Rahman

Overall Assessment of the Data Package:

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT ICP METALS ANALYSIS BY 6010B CHECKLIST

|    | Project Name: <u>Ravenna Army Ammunition Plant, Sand Creek Disposal Road Landfill</u>                                                                                                     |                                           |                 |                |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|----------------|-----------|
|    | Laboratory: <u>CT Laboratorie</u>                                                                                                                                                         | s Sampling Date:                          | Multiple        |                |           |
|    | <b>Report No.:</b> 81613, 81543, 8                                                                                                                                                        | 32400                                     |                 |                |           |
|    | Analytical Method: SW-8                                                                                                                                                                   | 46-6010B                                  | Matrix:         | soil, sedimen  | t, water  |
|    | Analyte: Metals                                                                                                                                                                           | SDGs:                                     | 81613, 81543, 8 | 82400          |           |
|    |                                                                                                                                                                                           | SAMPLE PREPAI                             | RATION          | Yes            | <u>No</u> |
| 1. | <ul> <li><u>Analytical Capability</u></li> <li>Was analytical capability demonstrations</li> </ul>                                                                                        | strated?                                  |                 | [x]            | []        |
| 2. | . <u>Limit of Detection (LOD)</u><br>Were LODs determined and veri                                                                                                                        | fied?                                     |                 | [x]            | []        |
| 3. | . <u>Limit of Quantitation (LOQ)</u><br>Were LOQs determined and verif                                                                                                                    | fied?                                     |                 | [x]            | []        |
| 4. | . <u>Instrument Detection Limit (IDL)</u><br>Was an IDL study performed?                                                                                                                  | ) study                                   |                 | [x]            | []        |
|    |                                                                                                                                                                                           | SAMPLE ANAI                               | LYSIS           |                |           |
| 5. | . <u>Sample Holding Time</u><br>Were samples analyzed within ho                                                                                                                           | lding times?                              |                 | [x]            | []        |
| 6. | <ul> <li><u>Initial Calibration</u></li> <li>Did the initial calibration consist         <ul> <li>a) One high calibration state</li> <li>b) More than one standard</li> </ul> </li> </ul> | of:<br>ndard and a blank?<br>and a blank? |                 | [ x ]<br>[ x ] | []        |

|                                                                                                                                                                                                                                                                                                                                                                      | Yes                         | No          | <u>2</u>    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------------|
| <ol> <li>Low Level Calibration Check Standard (daily after 1 point ICAL)<br/>Was the percentage "D" ≤20%?</li> </ol>                                                                                                                                                                                                                                                 | [ x ]                       | [           | ]           |
| <ul> <li>8. <u>Initial Calibration Verification (ICV)</u></li> <li>a) Was it analyzed after each ICAL and the beginning of each analytical run?</li> <li>b) Was the mid-level (2<sup>nd</sup> source) within 90-110?</li> </ul>                                                                                                                                      | [ x ]<br>[ x ]              | [           | ]           |
| 9. <u>Linear Dynamic Range or High Level Check Standard (every 6 months)</u><br>Was recovery within 90-110?                                                                                                                                                                                                                                                          | [x]                         | [           | ]           |
| <ul> <li>10. <u>Interelement Check Standard (ICS)</u> <ul> <li>a) Was ICS-A (interferents only) conducted at the beginning of the analytical sequence?</li> <li>b) Were concentrations (absolute values) of all non-spiked analytes <lod?< li=""> <li>c) Was ICS-B (interferents and target analytes) within QC limits (80-120)?</li> </lod?<></li></ul> </li> </ul> | [ x ]<br>[ x ]<br>[ x ]     | [<br>[      | ]<br>]      |
| <ul> <li>11. <u>Continuing Calibration Blank (CCB)</u> <ul> <li>a) Was a CCB conducted at least every 10 samples?</li> <li>b) Was a CCB conducted at the end of the analytical sequence?</li> <li>c) Were all analyte concentrations &gt;LOD?</li> </ul> </li> </ul>                                                                                                 | [ x ]<br>[ x ]<br>[ x ]     | [<br>[      | ]<br>]<br>] |
| <ul> <li>12. <u>Continuing Calibration Verification (CCV)</u></li> <li>a) Was a CCV conducted at least every 10 samples?</li> <li>b) Was a CCV conducted at the end of the analytical sequence?</li> <li>c) Were recoveries between 90-110%?</li> </ul>                                                                                                              | [ x ]<br>[ x ]<br>[ x ]     | [<br>[      | ]<br>]<br>] |
| <ul> <li>13. <u>Sample Quality Control</u> <ul> <li>a) <u>Method Blanks</u></li> <li>1) Was a method blank present in every preparatory batch?</li> <li>2) Were target analytes detected &gt;1/2 RL, and &gt;1/10 the amount measured in any sample or 1/10 the regulatory limit, whichever is greater?</li> </ul> </li> </ul>                                       | [ x ]<br>See validation rep | [<br>port   | ]           |
| <ul> <li>b) <u>Laboratory Control Sample (LCS)</u></li> <li>1) Was an LCS present in every preparatory batch?</li> <li>2) Did the LCS contain all analytes to be reported?</li> <li>3) Were percent recoveries for the LCS within the limits?<br/>(Enter out of control recoveries only)</li> </ul>                                                                  | [ x ]<br>[ x ]<br>[ x ]     | [<br>[<br>[ | ]<br>]<br>] |

## **Identification of LCS Standard**

| Spiked Compound | LCS %R | LCSD %R | %RPD |
|-----------------|--------|---------|------|
|                 |        |         |      |
|                 |        |         |      |
|                 |        |         |      |
|                 |        |         |      |

[x]

*Matrix Spike (MS)* Were the percent recoveries within limits?
 (Enter out of control recoveries only)

| Original Sample   | iginal Sample Batch. Spiked |           | %R    |
|-------------------|-----------------------------|-----------|-------|
|                   |                             | Element   |       |
| SCSB-041M-0002-SO | 34852                       | Antimony  | 24    |
| SCSB-041M-0002-SO | 34852                       | Cobalt    | 12    |
| SCSB-041M-0002-SO | 34852                       | Copper    | 69    |
| SCSB-041M-0002-SO | 34852                       | Nickel    | 72    |
| SCSB-041M-0002-SO | 34852                       | Vanadium  | 79    |
| SCSB-041M-0002-SO | 34852                       | Zinc      | 74    |
| SCSB-041M-0002-SO | 34852                       | Manganese | 14    |
| SCSB-041M-0002-SO | 34852                       | Thallium  | 74    |
| SCSB-041M-0002-SO | 34852                       | Potassium | 76    |
| SCSB-039M-0002-SO | 34898                       | Aluminum  | 5500  |
| SCSB-039M-0002-SO | 34898                       | Antimony  | -3    |
| SCSB-039M-0002-SO | 34898                       | Cadmium   | 78    |
| SCSB-039M-0002-SO | 34898                       | Cobalt    | 50    |
| SCSB-039M-0002-SO | 34898                       | Manganese | 1908  |
| SCSB-039M-0002-SO | 34898                       | Selenium  | 71    |
| SCSB-039M-0002-SO | 34898                       | Vanadium  | 68    |
| SCSB-039M-0002-SO | 34898                       | Zinc      | 71    |
| SCSB-039M-0002-SO | 34898                       | Thallium  | 70    |
| SCSB-039M-0002-SO | 34898                       | Potassium | 78    |
| SCSB-038M-0001-SO | 34910                       | Aluminum  | 125   |
| SCSB-038M-0001-SO | 34910                       | Antimony  | -1    |
| SCSB-038M-0001-SO | 34910                       | Cadmium   | 56    |
| SCSB-038M-0001-SO | 34910                       | Chromium  | -63   |
| SCSB-038M-0001-SO | 34910                       | Cobalt    | 63    |
| SCSB-038M-0001-SO | 34910                       | Copper    | 46    |
| SCSB-038M-0001-SO | 34910                       | Nickel    | 74    |
| SCSB-038M-0001-SO | 34910                       | Selenium  | 71    |
| SCSB-038M-0001-SO | 34910                       | Thallium  | 56    |
| SCSB-038M-0001-SO | 34910                       | Vanadium  | 75    |
| SCSB-038M-0001-SO | 34910                       | Zinc      | 74    |
| SCSB-057M-0001-SO | 35054                       | Antimony  | 26    |
| SCSB-057M-0001-SO | 35054                       | Chromium  | 59    |
| SCSB-057M-0001-SO | 35054                       | Potassium | 67    |
| SCSB-057M-0001-SO | 35054                       | Sodium    | 72    |
| SCSB-057M-0001-SO | 35055                       | Mercury   | -1099 |

Allowable range: Silver 75-120%, Rest 80-120%

|            |                                            | Yes | No    |
|------------|--------------------------------------------|-----|-------|
| <i>a</i> ) | <u>Matrix Spike Duplicate (MSD)</u>        |     |       |
|            | Were the percent recoveries within limits? | []  | [ x ] |
|            | (Enter out of control recoveries only)     |     |       |

| Original Sample   | Driginal Sample Batch. Spiked |           | %R   |
|-------------------|-------------------------------|-----------|------|
|                   |                               | Element   |      |
| SCSB-041M-0002-SO | 34852                         | Antimony  | 23   |
| SCSB-041M-0002-SO | 34852                         | Cadmium   | 12   |
| SCSB-041M-0002-SO | 34852                         | Chromium  | 57   |
| SCSB-041M-0002-SO | 34852                         | Cobalt    | 10   |
| SCSB-041M-0002-SO | 34852                         | Copper    | 63   |
| SCSB-041M-0002-SO | 34852                         | Zinc      | 74   |
| SCSB-041M-0002-SO | 34852                         | Lead      | 72   |
| SCSB-041M-0002-SO | 34852                         | Magnesium | 75   |
| SCSB-041M-0002-SO | 34852                         | Nickel    | 67   |
| SCSB-041M-0002-SO | 34852                         | Selenium  | 78   |
| SCSB-041M-0002-SO | 34852                         | Vanadium  | 74   |
| SCSB-041M-0002-SO | 34852                         | Zinc      | 68   |
| SCSB-041M-0002-SO | 34852                         | Iron      | 57   |
| SCSB-041M-0002-SO | 34852                         | Manganese | 1908 |
| SCSB-041M-0002-SO | 34852                         | Iron      | 57   |
| SCSB-041M-0002-SO | 34852                         | Manganese | 10   |
| SCSB-041M-0002-SO | 34852                         | Thallium  | 73   |
| SCSB-041M-0002-SO | 34852                         | Aluminum  | 37   |
| SCSB-041M-0002-SO | 34852                         | Potassium | 78   |
| SCSB-039M-0001-SO | 34898                         | Aluminum  | 5200 |
| SCSB-039M-0001-SO | 34898                         | Antimony  | -3   |
| SCSB-039M-0001-SO | 34898                         | Cadmium   | 78   |
| SCSB-039M-0001-SO | 34898                         | Cobalt    | 50   |
| SCSB-039M-0001-SO | 34898                         | Copper    | 70   |
| SCSB-039M-0001-SO | 34898                         | Manganese | 1908 |
| SCSB-039M-0001-SO | 34898                         | Nickel    | 78   |
| SCSB-039M-0001-SO | 34898                         | Selenium  | 70   |
| SCSB-039M-0001-SO | 34898                         | Vanadium  | 66   |
| SCSB-039M-0001-SO | 34898                         | Zinc      | 67   |
| SCSB-039M-0001-SO | 34898                         | Thallium  | 75   |
| SCSB-039M-0001-SO | 34898                         | Iron      | 136  |
| SCSB-038M-0001-SO | 34910                         | Antimony  | 0    |
| SCSB-038M-0001-SO | 34910                         | arsenic   | -7   |
| SCSB-038M-0001-SO | 34910                         | Cadmium   | 0    |
| SCSB-038M-0001-SO | 34910                         | Chromium  | -54  |
| SCSS-038M-0001-SO | 34910                         | Cobalt    | -87  |
| SCSS-038M-0001-SO | 34910                         | Copper    | -154 |
| SCSS-038M-0001-SO | 34910                         | Iron      | 72   |
| SCSS-038M-0001-SO | 34910                         | Lead      | -44  |
| SCSS-038M-0001-SO | 34910                         | Nickel    | -98  |
| SCSS-038M-0001-SO | 34910                         | Thallium  | 2    |
| SCSS-038M-0001-SO | 34910                         | Zinc      | -270 |

Allowable range: Silver 75-120%, Rest 80-120%

Yes *Matrix Spike Duplicate (MSD) or Sample Duplicate (SD)* Were the relative percent differences (RPDs) within the acceptable limit? [] (Enter out of control recoveries only) [x]

| Identification of Original | Sample Used for QC |
|----------------------------|--------------------|
|----------------------------|--------------------|

|          | 0               |                  |     |
|----------|-----------------|------------------|-----|
| Analyte  | Original Sample | Duplicate Sample | RPD |
| Selenium | 73.2            | 4.8              | 175 |
| Thallium | 60.0            | 4.1              | 174 |

<u>No</u>

|                                                                             | Yes                       | <u>No</u>  |
|-----------------------------------------------------------------------------|---------------------------|------------|
| 14. <u>Dilution Test</u>                                                    |                           |            |
| a) Was a 5-fold serial dilution conducted (one per preparatory batch)       | )?                        |            |
| b) Was there an agreement between diluted and undiluted results $(<10\%)$ ? | [ X ]                     | []         |
|                                                                             | []                        | []         |
| 15. Post Digestion Spike Addition                                           |                           |            |
| a) Was a post-digestion spike addition necessary?                           |                           |            |
| b) Were recoveries within acceptable limits?                                | [x]                       | []         |
| ·) ···································                                      | []                        | [x]        |
| 16. Method of Standard Addition (MSA)                                       |                           |            |
| a) Was MSA performed on samples when matrix interference is                 |                           |            |
| confirmed?                                                                  |                           |            |
|                                                                             | [] N/A                    | []         |
| 17. Analyte Detection                                                       |                           |            |
| a) Were any results between the DL and the LOQ?                             |                           |            |
| b) Were any results between the DL and LOQ J flagged?                       | [ x ]                     | []         |
|                                                                             | [ x ]                     | []         |
| 18. Sample Analysis                                                         |                           |            |
| a) Were samples with analyte concentrations higher than the                 |                           |            |
| calibration range (E), diluted and re-analyzed?                             |                           |            |
|                                                                             | [ x ]                     | []         |
| Comments (attach additional sheets if necessary):                           |                           |            |
| <u>/</u>                                                                    |                           |            |
| a) All calibrations criteria were completely fulfilled.                     |                           |            |
| b) There has been a number instances when matrix interference was obser     | ved.                      |            |
| c) The data appears to contain a large amount of blank contamination from   | n various metals; howev   | ver, in    |
| actuality, the data has not be impacted. The "B" qualifiers were include    | ded due to lab mix-up o   | f the MDLs |
| and LODs when the data was qualified in the lab.                            |                           |            |
| d) Details of matrix interferences and contamination are described in the d | lata verification report. |            |
|                                                                             | •                         |            |

Validated/Reviewed by:

Name: Maqsud Rahman

Date: April 18, 2011

Signature:

•

Magsud Rahman

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT POLYCHLORINATED BIPHENYL (PCB) ANALYSIS CHECKLIST

|    | Project Name: <u>Ravenna Army Ammunition Plant, Sand Creek Disposal Road Landfill</u> |                                                                                        |                                     |                |           |
|----|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|----------------|-----------|
|    | Laboratory: CT Laboratories                                                           |                                                                                        |                                     |                |           |
|    | <b>Report No.:</b> <u>81613, 8154</u>                                                 | 13, 82400                                                                              |                                     |                |           |
|    | Analytical Method: <u>SW</u>                                                          | -846 -8082                                                                             | Matrix: soil, sec                   | liment, water  |           |
|    | Analyte: PCBs                                                                         | SDGs:                                                                                  | 81613, 81543, 82400                 |                |           |
|    |                                                                                       | SAMPLE PRI                                                                             | EPARATION                           | Yes            | <u>No</u> |
| 1. | <u>Analytical Capability</u><br>Was analytical capability                             | demonstrated?                                                                          |                                     | [x]            | []        |
| 2. | Limit of Detection (LOD<br>Were LODs determined a                                     | !<br>nd verified?                                                                      |                                     | [ x ]          | []        |
| 3. | Limit of Quantitation (LO<br>Were LOQs determined an                                  | <u>2)</u><br>nd verified?                                                              |                                     | [x]            | []        |
|    |                                                                                       | SAMPLE A                                                                               | ANALYSIS                            |                |           |
| 4. | Sample Holding Time                                                                   |                                                                                        |                                     |                |           |
|    | <ul><li>a) Were samples ex</li><li>b) Were samples an</li></ul>                       | tracted within holding times<br>alyzed within holding times                            | ?<br>?                              | [ x ]<br>[ x ] | [ ]       |
| 5. | <u>DDT Breakdown</u><br>Was DDT Breakdown < 1                                         | 15%?                                                                                   |                                     | [ x ]          | []        |
| 6. | Initial Calibration:<br>a) Did the initial ca                                         | libration consist of five or r                                                         | nore standards?                     | [ x ]          | []        |
|    | b) Did the initial ca<br>criteria:                                                    | libration meet any of the th                                                           | ree acceptance                      |                |           |
|    | Option 1 - RSD                                                                        | for each analyte $\leq 20\%$ ?                                                         |                                     | [x]            | []        |
|    | Option 2 - Linea                                                                      | r least square regression r $\geq$                                                     | 0.995%?                             |                |           |
|    | <u>Option 3</u> - Non-<br>(COD) $r^2 \ge 0.99$<br>points shall be u                   | inear regression coefficient<br>(6 points shall be used for s<br>sed for third order)? | of determination<br>second order, 7 |                |           |

|     |                                                                                                                                                  | Yes   | No    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 7.  | <u>Retention Time Window</u><br>Were retention time window positions established for each analyte and<br>surrogate?                              | [x]   | []    |
| 8.  | Initial Calibration Verification (ICV):                                                                                                          |       |       |
|     | a) Was an ICV run immediately after each ICAL?                                                                                                   | [x]   | []    |
|     | b) Is the mid-level $(2^{nd} \text{ source})$ within $\pm 20\%$ of the true value?                                                               | [x]   | []    |
| 9.  | <u>Continuing Calibration Verification (CCV):</u><br>Was a CCV conducted at least every 10 samples and at the end of the<br>analytical sequence? | [x]   | []    |
| 10. | Sample Quality Control                                                                                                                           |       |       |
|     | <ul> <li><i>a)</i> <u>Method Blanks</u></li> <li>1) Was a method blank present for each preparatory batch?</li> </ul>                            | [ x ] | []    |
|     | 2) Were target analytes detected >1/2 RL, and >1/10<br>the amount measured in any sample or 1/10 the regulatory<br>limit, whichever is greater?  | []    | []    |
|     | 3) Did the method blank fail project-specific objectives<br>(>1/2 the RL or > the RL)?                                                           | []    | [ x ] |
|     | a) <u>Laboratory Control Sample (LCS)</u>                                                                                                        |       |       |
|     | 1) Was an LCS included in each preparatory batch?                                                                                                | [x]   | []    |
|     | 2) Did the LCS contain all arochlors to be reported?                                                                                             | [x]   | []    |
|     | <ul><li>Were the percent recoveries for LCS within the limits?<br/>(Enter out of control recoveries only)</li></ul>                              | [ x ] | []    |

### **Identification of LCS Standard**

| Spiked Compound | LCS %R | LCSD %R | %RPD |
|-----------------|--------|---------|------|
|                 |        |         |      |
|                 |        |         |      |
|                 |        |         |      |
|                 |        |         |      |

b) <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

| 1) | Were the percent recoveries within limits?<br>(Enter out of control recoveries only) | [ X ] | [] |
|----|--------------------------------------------------------------------------------------|-------|----|
| 2) | Were the RPD within limits?                                                          | [ x ] | [] |

2) Were the RPD within limits?

## Identification of Original Sample Used for QC

| Spiked compound | MS %R | MSD%R | %RPD |
|-----------------|-------|-------|------|
| •               |       |       |      |
|                 |       |       |      |
|                 |       |       |      |
|                 |       |       |      |

c) <u>System Monitoring Compounds (Surrogates)</u> Are surrogate recoveries within QC limits? [x] [] (Enter out of control recoveries only)

|           | %R |
|-----------|----|
|           |    |
| Sample ID |    |
|           |    |
|           |    |
|           |    |
|           |    |
|           |    |
|           |    |

#### 11. Analyte Detection

| a) | Were results reported between the DL and the LOQ?           | [ ] | [x] |
|----|-------------------------------------------------------------|-----|-----|
| b) | Were results reported between the DL and the LOQ J flagged? | [ ] | []  |

Comments (attach additional sheets if necessary):

No QC outlier to report.

Validated/Reviewed by:

|--|

Date: April 18, 2011

Signature:

Mappind Rahman

Overall Assessment of the Data Package:

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT PESTICIDE ANALYSIS CHECKLIST

|    | Project Name: <u>Ravenna Army Ammunition Plan</u>                                                                                                                                       | t, Sand Creek Disposal F                 | Road Landfill   |           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-----------|
|    | Laboratory: CT Laboratories                                                                                                                                                             | Sampling Date:                           | Various         |           |
|    | <b>Report No.:</b> 81613, 81643, 82400                                                                                                                                                  |                                          |                 |           |
|    | Analytical Method: SW-846, 8081A                                                                                                                                                        | Matrix: soil,                            | sediment, water |           |
|    | Analyte: Pesticides SDG                                                                                                                                                                 | <b>5s:</b> <u>81613, 81643, 82400</u>    | )               |           |
|    | SAMPLE PI                                                                                                                                                                               | REPARATION                               | Yes             | <u>No</u> |
| 1. | <u>Analytical Capability</u><br>Was analytical capability demonstrated?                                                                                                                 |                                          | [x]             | []        |
| 2. | Limit of Detection (LOD)<br>Were LODs determined and verified?                                                                                                                          |                                          | [x]             | []        |
| 3. | Limit of Quantitation (LOQ)<br>Were LOQs determined and verified?                                                                                                                       |                                          | [x]             | []        |
|    | SAMPLE A                                                                                                                                                                                | ANALYSIS                                 |                 |           |
| 4. | <ul> <li><u>Sample Holding Time</u></li> <li>a) Were samples extracted within holding time</li> <li>b) Were samples analyzed within holding time</li> </ul>                             | es?<br>es?                               | [ x ]<br>[ x ]  | [ ]       |
| 5. | Sample Holding Time<br>c) Were samples extracted within holding time<br>Were samples analyzed within holding times?                                                                     | es?                                      |                 |           |
| 6. | <u>DDT Breakdown</u><br>Was DDT Breakdown < 15%                                                                                                                                         |                                          | [x]             | []        |
| 7. | <ul> <li><u>Initial Calibration</u>:</li> <li>a) Did the initial calibration consist of five or</li> <li>b) Did the initial calibration meet any of the t</li> <li>criteria:</li> </ul> | r more standards?<br>three acceptance    | [ x ]           | []        |
|    | <u>Option 1</u> - RSD for each analyte $\leq 20\%$ ?                                                                                                                                    |                                          | [x]             | []        |
|    | Option 2 - Linear least square regression r                                                                                                                                             | $\geq 0.995\%$ ?                         |                 |           |
|    | <u>Option 3</u> - Non-linear regression coefficien<br>(COD) $r^2 \ge 0.99$ (6 points shall be used for<br>points shall be used for third order)?                                        | nt of determination<br>r second order, 7 |                 |           |
| 8. | <u>Retention Time Window</u><br>Were retention time window positions established f<br>surrogate?                                                                                        | for each analyte and                     |                 |           |
|    | -                                                                                                                                                                                       |                                          | [x]             | []        |

|     |                       |                                                                                                                                                                      | Yes          | <u>No</u>  |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| 9.  | Initial (<br>Is the r | <u>Calibration Verification (ICV)</u> :<br>nid-level ( $2^{nd}$ source) within $\pm 20\%$ of the true value?                                                         | [x]          | []         |
| 10. | <u>Contin</u>         | uing Calibration Verification (CCV):                                                                                                                                 |              |            |
|     | Was a<br>analyti      | CCV conducted at least every 10 samples and at the end of the cal sequence?                                                                                          | [x]          | []         |
| 11. | Sample                | e Quality Control:                                                                                                                                                   |              |            |
|     | a)                    | <u>Method Blanks</u><br>Were target analytes detected >1/2 RL, and >1/10<br>the amount measured in any sample or 1/10 the regulatory limit,<br>whichever is greater? | [ x ]See con | nments [ ] |
|     | b)                    | Common Contaminants                                                                                                                                                  |              |            |
|     | - /                   | Were any analytes present >RL?                                                                                                                                       | []           | []         |
|     | c)                    | Laboratory Control Sample (LCS)<br>Were the percent recoveries for LCS within the limits?<br>(Enter out of control recoveries only)                                  | []           | [ x ]      |

#### **Identification of LCS Standard**

| Spiked Compound       | LCS %R       | LCSD %R | %RPD |
|-----------------------|--------------|---------|------|
| LCS 855458/Endosulfan | 118 (50-110) |         |      |
|                       |              |         |      |
|                       |              |         |      |
|                       |              |         |      |

d) <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u> Were the percent recoveries within limits? (Enter out of control recoveries only)

[] [x]

| Parent Sample    | Compound        | MS %R        | MSD%R        | %RPD |
|------------------|-----------------|--------------|--------------|------|
| SCqc-005-0001-ER | Gamma-Chlordane | 138 (60-125) | 130 (60-125) |      |
|                  |                 |              |              |      |
|                  |                 |              |              |      |
|                  |                 |              |              |      |

e) <u>System Monitoring Compounds (Surrogates)</u> Are surrogate recoveries within QC limits? (Enter out of control recoveries only)

[ ] [ x ]

[x]

[]

| Sample ID            | Surrogate              | %R | Allowable |
|----------------------|------------------------|----|-----------|
| Method Blank 853916/ | 2,4,5,6-tetrachloro-m- | 67 | 70-125    |
|                      | xylene                 |    |           |
|                      |                        |    |           |
|                      |                        |    |           |
|                      |                        |    |           |
|                      |                        |    |           |
|                      |                        |    |           |

12. Results reported between the DL and the LOQ? [x]

13. Results between Channel A and Channel B over 40%?

| Sample Description | Compound                                                                                                                                       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| SCss-057M-0001-SO  | Heptachlor, 4,4'-DDD                                                                                                                           |
| SCsd-070M-0001-SD  | Heptachlor, Methoxychlor,<br>4,4'-DDT, Alpha-chlordane,<br>Beta-BHC, Delta-BHC,<br>Endosulfan sulfate, Endosulfan sulfate, Gamma-<br>chlordane |
| SCsd-071M-0001-SD  | 4,4'-DDT, Methoxychlor, 4,4'-DDD                                                                                                               |

Comments (attach additional sheets if necessary):

(a) CCV 053 on October 21 (Toxaphene/chlordane) had a high response for the following peaks: Channel A Chlordane #3, Toxaphene #1, #2, #3, #4, and the surrogate decachlorobiphenyl. Channel B: Chlordane #2, #3, #5, Toxaphene #4, #5, and the surrogate decachlorodiphenyl. However, the total chlordane and toxaphene Results were within the QC limits. Furthermore, these compounds were not detected in the associated samples.
(b) Ending CCV 06 analyzed on November 10, 2010 had a low response of surrogate decachlorobiphenyl. Toxaphene and technical chlordane were not detected in the associated samples.

Validated/Reviewed by:

Name: Maqsud Rahman

Date: April 18, 2011

Signature:

Maggod Rahman

Overall Assessment of the Data Package:

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT SEMIVOLATILE ORGANIC ANALYSIS CHECKLIST

|    | Project Name: <u>Ravenna Army Ammunition Plant, Sand Creek Disposal Road Landfill</u> |                            |                              |                 |                 |       |  |
|----|---------------------------------------------------------------------------------------|----------------------------|------------------------------|-----------------|-----------------|-------|--|
|    | Laboratory:                                                                           | CT Laborato                | ories Sampling Date:         | Multiple        |                 |       |  |
|    | Report No.:                                                                           | 81613, 8240                | 0, 81543                     |                 |                 |       |  |
|    | Analytical Met                                                                        | hod:SW                     | /-846-8270C                  | Matrix:         | soil, sediment, | water |  |
|    | Analyte:                                                                              | SVOCs                      |                              |                 |                 |       |  |
|    |                                                                                       |                            |                              |                 |                 |       |  |
|    |                                                                                       |                            | SAMPLE PREPA                 | ARATION         | Yes             | No    |  |
| 1  | Analytical Can                                                                        | ability                    |                              |                 |                 |       |  |
| 1. | Was analytical                                                                        | capability dem             | onstrated?                   |                 | [x]             | []    |  |
|    | tt us unurj tiour                                                                     | cupuoliity dom             |                              |                 |                 |       |  |
| 2. | Limit of Detec                                                                        | tion (LOD)                 |                              |                 |                 |       |  |
|    | Were LODs de                                                                          | etermined and v            | verified?                    |                 | [x]             | []    |  |
| 2  | Limit of Quanti                                                                       | tation (LOO)               |                              |                 |                 |       |  |
| э. | Were LOOs det                                                                         | termined and w             | erified?                     |                 | [ <b>x</b> ]    | ۲ I   |  |
|    |                                                                                       |                            | critica.                     |                 |                 | LJ    |  |
|    |                                                                                       |                            | SAMPLE ANA                   | LYSIS           |                 |       |  |
|    |                                                                                       |                            |                              |                 |                 |       |  |
| 4. | Sample Holdin                                                                         | <u>ig Time</u>             |                              |                 |                 |       |  |
|    | a) Were s                                                                             | samples extract            | ed within holding times?     |                 | [ x ]           | []    |  |
|    | b) were s                                                                             | samples analyz             | ed within holding times?     |                 |                 | ĹĴ    |  |
| 5. | Instrument Tur                                                                        | ning                       |                              |                 |                 |       |  |
|    | Was the DFTI                                                                          | PP tune perform            | ned at the beginning of each | 12-hour period  |                 |       |  |
|    | during which                                                                          | samples were a             | nalyzed?                     | Ĩ               | [x]             | []    |  |
|    |                                                                                       |                            |                              |                 |                 |       |  |
| 6. | Ion Mass Assig                                                                        | gnments                    | 1000                         |                 | r 1             | r )   |  |
|    | Was mass assig                                                                        | gnment based o             | on m/z 198?                  |                 |                 | ĹĴ    |  |
| 7. | Ion Abundance                                                                         | e.                         |                              |                 |                 |       |  |
|    | Indicate if DF                                                                        | <u>-</u><br>FPP ions abund | ance relative to m/z 198 bas | se peak met the |                 |       |  |
|    | ions abundance                                                                        | e criteria:                |                              | 1               |                 |       |  |
|    |                                                                                       |                            |                              |                 |                 |       |  |
|    | <u>n</u>                                                                              | <u>n/z</u>                 | Acceptance Criteria          |                 | r i             | r 1   |  |
|    | 5                                                                                     |                            | 30.0 - 60.0%                 |                 |                 |       |  |
|    | 0<br>7                                                                                | 0                          | < 2% of mass 69              |                 | [X]<br>[x]      | []    |  |
|    | 1                                                                                     | 27                         | 40-60%                       |                 |                 | []    |  |
|    | 1                                                                                     | 197                        | < 1%                         |                 | [ X ]           | []    |  |
|    | 1                                                                                     | 98                         | 100%, Base peak              |                 | [x]             | []    |  |
|    | 1                                                                                     | 99                         | 5-9%                         |                 | [x]             | []    |  |
|    | 2                                                                                     | 75                         | 5.0 - 9.0%                   |                 | [x]             | []    |  |
|    | 3                                                                                     | 65                         | >1%                          |                 | [ x ]           | []    |  |
|    | 4                                                                                     | 41                         | present but $<$ mass 443     |                 |                 | L J   |  |

|                                         | 442 > 40%<br>443 17-23% of ma                                                                                                                                                    | ss 442                                                | <u>Yes</u><br>[ x ]<br>[ x]                                 | <u>No</u><br>[ ]<br>[ ]                |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|
| 8. <u>DDT B</u><br>Was D                | <u>Breakdown</u><br>DT Breakdown <u>≤</u> 20%                                                                                                                                    |                                                       | [ x ]                                                       | []                                     |
| 9. <u>Initial (</u><br>a)               | <u>Calibration</u><br>Did the initial calibration consist of f<br>(If the calibration curve consisted of<br>of the calibration model)                                            | ive or more standards?<br>5-standards, check validity | [ x ]                                                       | []                                     |
| b)                                      | Did the following System Performan<br>(SPCC) meet the minimum mean res                                                                                                           | ce Check Compounds ponse factor (RF)?                 |                                                             |                                        |
|                                         | N-nitroso-di-n-propylamine<br>Hexachlorocyclopentadiene<br>2,4-dinitrophenol<br>4-nitrophenol                                                                                    | <u>RF</u><br>0.05<br>0.05<br>0.05<br>0.05             | [ x ]<br>[ x ]<br>[ x ]<br>[ x ]                            | [ ]<br>[ ]<br>[ ]                      |
| c)                                      | Did the RSD meet the criteria $\leq 30\%$<br>Calibration Check Compound (CCC)                                                                                                    | for the following individual ??                       | [ ~ ]                                                       |                                        |
|                                         | Base/Neutral Fraction<br>Acenaphthene<br>1,4-Dichlorobenzene<br>Hexachlorobutadiene<br>Diphenylamine<br>Di-n-octylphthalate<br>Fluoranthene<br>Benzo(a)pyrene                    |                                                       | [ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ] | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ] |
| ď)                                      | Acid Fraction<br>4-Chloro-3-methylphenol<br>2,4-Dichlorophenol<br>2-Nitrophenol<br>Phenol<br>Pentachlorophenol<br>2,4,6-Trichlorophenol<br>In addition has met one of the follow | ving options.                                         | [ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ]          | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ]        |
| <i>u)</i>                               | <ol> <li>RSD for each analyte ≤ 15%</li> <li>Linear least square regression r ≥</li> <li>Non-linear regression-coefficien</li> </ol>                                             | $\ge 0.995$<br>t r <sup>2</sup> $\ge 0.99$            | [ x ]                                                       | []                                     |
| 10. <u>Retenti</u><br>Were r<br>surroga | ion Time Window<br>retention time window position establish<br>ate?                                                                                                              | hed for each analyte and                              | [ x ]                                                       | []                                     |
| 11. <u>Evalua</u><br>Was R              | tion of relative retention time<br>RT of each target analyte within $\pm 0.06$                                                                                                   | RRT units                                             | [ x ]                                                       | []                                     |
| 12. <u>Initial (</u><br>a)              | Calibration Verification (ICV)<br>Was an ICV run immediately after e                                                                                                             | ach ICAL?                                             | [ x ]                                                       | []                                     |

|     | b)        | Is the mid-level ( $2^{nd}$ source) within $\pm 20$                    | 0% of the true value?                 | <u>Yes</u><br>[ x ]               | <u>No</u><br>[ ] |
|-----|-----------|------------------------------------------------------------------------|---------------------------------------|-----------------------------------|------------------|
| 13. | Continu   | ing Calibration Verification (CCV)                                     |                                       |                                   |                  |
|     | <u>a)</u> | Was CCV conducted every 12 hours?                                      |                                       | [x]                               | []               |
|     | h)        | Did any of SPCC meet the minimum RE                                    | Fvalues?                              | [x]                               |                  |
|     | 0)        | Did any of SI CC meet the minimum Ki                                   | values                                |                                   | LJ               |
|     |           |                                                                        | DE                                    |                                   |                  |
|     |           |                                                                        | <u>Kr</u>                             | с л                               | r 1              |
|     |           | N-nitroso-di-n-propylamine                                             | 0.05                                  |                                   |                  |
|     |           | Hexachlorocyclopentadiene                                              | 0.05                                  |                                   |                  |
|     |           | 2,4-dinitrophenol                                                      | 0.05                                  |                                   |                  |
|     |           | 4-nitrophenol                                                          | 0.05                                  | [ x ]                             | [ ]              |
|     | c)        | Did the CCC meet the minimum require followings?                       | ements (D $\leq$ 20%) for the         |                                   |                  |
|     |           | <b>Base/Neutral Fraction</b>                                           |                                       |                                   |                  |
|     |           | Acenaphthene                                                           |                                       | [x]                               | []               |
|     |           | 1 4-Dichlorobenzene                                                    |                                       | $\begin{bmatrix} x \end{bmatrix}$ | []               |
|     |           | Hexachlorobutadiene                                                    |                                       | [x]                               | []               |
|     |           | Diphenylamine                                                          |                                       | [ x ]                             |                  |
|     |           | Di n octylphthalata                                                    |                                       | [ x ]                             |                  |
|     |           | Eluorenthene                                                           |                                       |                                   |                  |
|     |           | Fluorantinene                                                          |                                       |                                   |                  |
|     |           | Benzo(a)pyrene                                                         |                                       |                                   | ĹĴ               |
|     |           | Acid Fraction                                                          |                                       |                                   |                  |
|     |           | 4-Chloro-3-methylphenol                                                |                                       | [x]                               | []               |
|     |           | 2 4-Dichlorophenol                                                     |                                       | [x]                               |                  |
|     |           | 2.4-Dichlorophenol                                                     |                                       | [x]                               |                  |
|     |           | 2-Intropretion                                                         |                                       |                                   |                  |
|     |           | Phenoi                                                                 |                                       |                                   |                  |
|     |           | Pentachiorophenol                                                      |                                       |                                   |                  |
|     |           | 2,4,6-Trichlorophenol                                                  |                                       |                                   | ĹĴ               |
|     | d)        | <u>Primary Evaluation</u> Was Drift or $D \le 20$ initial calibration? | )% calculated from the                | [ ]See<br>comments                | [x]              |
| 14  | Internal  | Standard Verification                                                  |                                       |                                   |                  |
| 1   | <u>a)</u> | Were retention times $+30$ seconds from                                | the retention time of the             |                                   |                  |
|     | u)        | mid- point standard in the ICAL?                                       | the recention time of the             | [x]                               | []               |
|     |           |                                                                        |                                       |                                   | LJ               |
|     | b)        | Were EICP areas within $-50\%$ to $+100\%$                             | % of the ICAL mid-point               |                                   |                  |
|     | 0)        | standard?                                                              | • • • • • • • • • • • • • • • • • • • | []                                | [x]              |
|     |           |                                                                        |                                       | LJ                                |                  |
| 15. | Sample    | Ouality Control                                                        |                                       |                                   |                  |
|     | a)        | Method Blanks                                                          |                                       |                                   |                  |
|     |           | 1) Was a method blank present for                                      | each preparatory batch?               | [ x ]                             | []               |
|     |           | 2) Were target analytes detected >1                                    | 1/2 RL and $>1/10$                    | []                                |                  |
|     |           | the amount measured in any sam                                         | 1/10 the regulatory                   |                                   |                  |
|     |           | limit whichever is greater?                                            | Pre of 1, 10 the regulatory           | L J                               | [v]              |
|     |           | 3) Did the method blank fail preside                                   | t specific objectives                 | LJ                                | [ ^ ]            |
|     |           | (>1/2) the DL on $(>1/2)$                                              | -specific objectives                  | []                                | [ ]              |
|     |           | (>1/2  use KL OF > use KL)?                                            |                                       | LJ                                | ĹXĴ              |
|     | 1.)       | Common Contominante                                                    |                                       |                                   |                  |
|     | D)        | Ware only onelytes areas to DL 9                                       |                                       | L J                               | []               |
|     |           | were any analytes present >KL?                                         |                                       | L J                               |                  |
|     |           |                                                                        |                                       |                                   |                  |

|    |                                                           | Yes   | <u>No</u> |
|----|-----------------------------------------------------------|-------|-----------|
| c) | LCS                                                       |       |           |
|    | 1) Was an LCS included in each preparatory batch?         | [x]   | [ ]       |
|    | 2) Did the LCS contain all analytes to be reported?       | [x]   | [ ]       |
|    | 3) Were the percent recoveries for LCS within the limits? | [ x ] | []        |
|    | (Enter out of control recoveries only)                    |       |           |

#### **Identification of LCS Standard**

| Spiked Compound                                                                                 |                | LCS %R                       | LCSD %R |     | %RPD  |
|-------------------------------------------------------------------------------------------------|----------------|------------------------------|---------|-----|-------|
|                                                                                                 |                |                              |         |     |       |
| d) <u>MS/MSD</u><br>1) W                                                                        | ere the percer | nt recoveries within limits? | [       | - ] | [ x ] |
| <ul><li>(Enter out of control recoveries only)</li><li>2) Were the RPD within limits?</li></ul> |                |                              | [       | ]   | [ x ] |

| Sample ID  | Spiked compound       | MS %R       | MSD%R       | %RPD |
|------------|-----------------------|-------------|-------------|------|
| SCSB-039M- | 2,4,5-Trichlorophenol | 39 (50-110) | 39 (50-110) | 1    |
| 0002-SO    | _                     |             |             |      |
| SCSB-039M- | 2-Nitrophenol         | 24 (40-110) | 24 (40-110) | 1    |
| 0002-SO    | _                     |             |             |      |
| SCSB-039M- | 4,6-Dinitro-2-        | 14 (30-135) | 13 (30-135) | 3    |
| 0002-SO    | methylphenol          |             |             |      |
|            |                       |             |             |      |

e) <u>System Monitoring Compounds (Surrogates)</u> Are surrogate recoveries within QC limits? (Enter out of control recoveries only)

[] [x]

|                   | %R       |          |           |          |          |           |
|-------------------|----------|----------|-----------|----------|----------|-----------|
|                   | S1       | S2       | <b>S3</b> | S4       | S5       | <b>S6</b> |
| Sample ID         | (35-125) | (45-105) | (35-105)  | (35-100) | (30-125) | (40-100)  |
| SCss-069M-0001-SO | 29       |          |           |          |          |           |
| 854362            |          |          |           |          |          |           |
| SCsb-043M-0005-SO | 27       |          | 33        |          |          |           |
| 850305            |          |          |           |          |          |           |
| SCsb-041M-0002-SO | 30       |          | 34        |          |          |           |
| 850312            |          |          |           |          |          |           |
| SCsb-035M-0005-SO | 34       |          |           |          |          |           |
| 851482            |          |          |           |          |          |           |
| SCsb-036M-0003-SO |          |          |           | 31       |          |           |
| 851485            |          |          |           |          |          |           |
| SCsb-080M-0001-SO | 14       |          | 0         |          |          |           |
| 851498            |          |          |           |          |          |           |
| SCsb-037M-0004-SO | 22       |          |           |          |          |           |
| 851504            |          |          |           |          |          |           |
| SCsb-038M-0002-SO | 15       |          |           |          |          |           |
| 851507            |          |          |           |          |          |           |
| SCsb-038M-0003-SO | 16       |          |           |          |          |           |
| 851508            |          |          |           |          |          |           |
| SCsb-039M-0001-SO | 30       |          |           |          |          |           |
| 850321            |          |          |           |          |          |           |

NOTE: S1=2,4,6-Tribromophenol, S2=2-Fluorobiphenyl, S3=2-Fluorophenol, S4=Nitrobenzene-d5, S5=p-Terphenyl-d14 S6: Phenol-d5

|     |               |                                                             | Yes | <u>No</u> |
|-----|---------------|-------------------------------------------------------------|-----|-----------|
| 16. | <u>Analyt</u> | e Detection                                                 |     |           |
|     | a)            | Were results reported between the DL and the LOQ?           | [x] | []        |
|     | b)            | Were results reported between the DL and the LOQ J flagged? | [x] | [ ]       |

#### Comments (attach additional sheets if necessary)

1. Several CCVs have exceeded allowable limit of 20% as shown below:

|                 | 1                 | 1           |                                                  |
|-----------------|-------------------|-------------|--------------------------------------------------|
| ID & date       | Compound          | %D          | Actions                                          |
| ICCV24, 10/9/10 | 2,4-dinitrophenol | 31.6% high  | Compounds not detected in samples, No qualifier  |
| ICCV2,10/0/10   | Benzoic acid      | 30.1% high  | Compound not detected in samples, No qulaifier   |
| 2CCV27, 10/9/10 | 3,3'-             | 27.4%, high | Compound not detected in samples, No qualifier   |
|                 | dichlorobenzidine |             |                                                  |
| 2CCV27, 10/9/10 | Benzoic acid      | 38.1, high  | Compound not detected in samples, No qualifier   |
| 2CCV30,10/19/10 | Benzoic acid      | 32.6%,high  | Compound not detected in samples, No qualifier   |
| 2CCV32,10/20/10 | Benzoic acid      | 23%,high    | Compound not detected in samples, No qualifier   |
| 1CCV40,11/18/10 | Hexachloropropene | 24.1%,high  | Compound not detected in samples, No qualifier   |
| 1CCV14,10/5/10  | 3,3'-             | 27.6%,low   | The compound was qualified "Q" in the associated |
|                 | dichlorobenzidine |             | samples.                                         |
| 2CCV30,10/19/10 | Benzoic acid      | 32.6%, low  | Samples SCSS-059M—0001-SO, SCSS-060M-            |
|                 |                   |             | 001-SO and SCSS-001M-0001-SO which had           |
|                 |                   |             | detects for benzoic acid were re-analyzed on     |
|                 |                   |             | October 25, 2010 with a CCV (ICCV26) that        |
|                 |                   |             | passed for al compounds.                         |
|                 |                   |             |                                                  |

2. All other outliers (internal standard, MS/MSD) are described in the report

Validated/Reviewed by:

Name: Maqsud Rahman

Signature:

Maggerd Rahman

Overall Assessment of the Data Package:

Date: April 18, 2011

#### DATA VALIDATION USING DoD QSM 4.1 US ARMY CORPS OF ENGINEERS RAVENNA ARMY AMMUNITION PLANT VOLATILE ORGANIC ANALYSIS CHECKLIST

|                                                                                                                                               | Project Name: Ravenna Army Ammunition Plant, Sand Creek Disposal Road Landfill                                                                                |                                                      |                                                                                                                                                                                                                      |                             |                                                                                        |                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                                                                               | Laboratory: CT Laboratories                                                                                                                                   |                                                      |                                                                                                                                                                                                                      |                             |                                                                                        |                                               |
|                                                                                                                                               | Report No.:                                                                                                                                                   | 81613, 82400, 8154                                   | 43                                                                                                                                                                                                                   |                             |                                                                                        |                                               |
|                                                                                                                                               | Analytical Meth                                                                                                                                               | od: SW-846-                                          | 8260B                                                                                                                                                                                                                | Matrix:                     | soil, sedimen                                                                          | t, water                                      |
|                                                                                                                                               | Analyte:                                                                                                                                                      | VOCs                                                 | Sample SDO                                                                                                                                                                                                           | Gs <u>; 81613, 81543, 8</u> | 2400                                                                                   |                                               |
|                                                                                                                                               |                                                                                                                                                               |                                                      | SAMPI F PRFPA                                                                                                                                                                                                        | RATION                      | Yes                                                                                    | No                                            |
| 1.                                                                                                                                            | <u>Analytical Capa</u><br>Was analytical c                                                                                                                    | <u>bility</u><br>capability demonstra                | ited?                                                                                                                                                                                                                | MATION                      | [x]                                                                                    | []                                            |
| 2.                                                                                                                                            | Limit of Detecti<br>Were LODs det                                                                                                                             | on (LOD)<br>ermined and verified                     | d?                                                                                                                                                                                                                   |                             | [x]                                                                                    | []                                            |
| 3.                                                                                                                                            | Limit of Quantita<br>Were LOQs dete                                                                                                                           | ation (LOQ)<br>ermined and verified                  | ?                                                                                                                                                                                                                    |                             | [x]                                                                                    | []                                            |
|                                                                                                                                               |                                                                                                                                                               |                                                      | SAMPLE ANA                                                                                                                                                                                                           | LYSIS                       |                                                                                        |                                               |
| 4.                                                                                                                                            | Sample Holding<br>a) Were sa<br>b) Were sa                                                                                                                    | g Time<br>amples preserved?<br>amples analyzed wit   | hin holding times?                                                                                                                                                                                                   |                             | [ x ]<br>[ x ]                                                                         | []                                            |
| 5.                                                                                                                                            | <ul> <li><u>Instrument Tuning:</u></li> <li>Was the BFB tune performed at the beginning of each 12-hour period during which samples were analyzed?</li> </ul> |                                                      |                                                                                                                                                                                                                      |                             |                                                                                        | []                                            |
| 6.                                                                                                                                            | . <u>Ion Mass Assignments</u> :<br>Was mass assignment based on m/z 95?                                                                                       |                                                      |                                                                                                                                                                                                                      | [ x ]                       | []                                                                                     |                                               |
| <ol> <li><u>Ion Abundance</u>:<br/>Indicate if BFB ions abundance relative to m/z 95 base peak met the ions<br/>abundance criteria</li> </ol> |                                                                                                                                                               |                                                      |                                                                                                                                                                                                                      |                             |                                                                                        |                                               |
|                                                                                                                                               | <u>m/</u><br>50<br>75<br>95<br>96<br>17<br>17<br>17                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <ul> <li><u>eptance Criteria</u></li> <li>40.0 %</li> <li>66.0 %</li> <li>8 Base Peak</li> <li>9.0%</li> <li>90% of m/z 174</li> <li>9.0% of mass 174</li> <li>101.0% of m/z 174</li> <li>9.0% of m/z 176</li> </ul> |                             | [ x ]<br>[ x ] | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ] |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                               | Yes        | <u>No</u> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-----------|
|     | No<br>170<br>50                                                                                                                                                                                                                                                                                                                                                                                                       | te: The relative ion abundance of $m/g 95/9$<br>5/177 are of critical importance. The relati<br>and 75 are of lower importance.                                                 | 96, m/z 174/176, and ve ion abumndance of m/z |            |           |
| 8.  | Init                                                                                                                                                                                                                                                                                                                                                                                                                  | ial Calibration:                                                                                                                                                                |                                               |            |           |
|     | a)                                                                                                                                                                                                                                                                                                                                                                                                                    | Did the initial calibration consist of five of                                                                                                                                  | or more standards?                            | [x]        | []        |
|     | b)                                                                                                                                                                                                                                                                                                                                                                                                                    | Did the following System Performance C<br>meet the minimum mean response factor                                                                                                 | Theck Compounds (SPCC) (RF)?                  |            |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloromethane                                                                                                                                                                   | <u>RF</u>                                     | r i        | r 1       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 Dichloroethane                                                                                                                                                              | 0.1                                           |            |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromoform                                                                                                                                                                       | 0.1                                           | [X]        |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene                                                                                                                                                                   | 03                                            |            |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,2,2-Tetrachloroethane                                                                                                                                                       | 0.3                                           | [ X ]      | []        |
|     | c)                                                                                                                                                                                                                                                                                                                                                                                                                    | Did the RSD meet the criteria $\leq 30\%$ for individual Calibration Check Compound                                                                                             | the followings each (CCC)?                    |            |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-Dichloroethene                                                                                                                                                              |                                               | [x]        | []        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloroform                                                                                                                                                                      |                                               | [x]        | []        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloropropane                                                                                                                                                             |                                               | [x]        | [ ]       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                                                                                                                                                                         |                                               | [x]        | []        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethylbenzene                                                                                                                                                                    |                                               | [x]        | []        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Vinyl chloride                                                                                                                                                                  |                                               | [ x ]      | [ ]       |
|     | d)                                                                                                                                                                                                                                                                                                                                                                                                                    | In addition, has met one of the following RSD for each analyte $\leq 15\%$<br>Linear least square regression $r \geq 0.995$<br>Non-linear regression-coefficient $r^2 \geq 0.9$ | options:<br>9                                 | [x]        | []        |
| 9.  | Ret                                                                                                                                                                                                                                                                                                                                                                                                                   | ention Time Window                                                                                                                                                              |                                               |            |           |
|     | We                                                                                                                                                                                                                                                                                                                                                                                                                    | ere retention time window positions establi                                                                                                                                     | shed for each analyte and                     |            |           |
|     | sur                                                                                                                                                                                                                                                                                                                                                                                                                   | rogate?                                                                                                                                                                         |                                               | [ x ]      | []        |
| 10. | Eva<br>Wa                                                                                                                                                                                                                                                                                                                                                                                                             | aluation of relative retention time<br>as RRT of each target analyte within $\pm 0.06$                                                                                          | 5 RRT units?                                  | [ x ]      | []        |
| 11. | Init                                                                                                                                                                                                                                                                                                                                                                                                                  | ial Calibration Verification (ICV):                                                                                                                                             |                                               |            |           |
|     | <ul> <li>176/177<br/>50 and 7</li> <li>Initial C</li> <li>a) Did</li> <li>b) Did<br/>mee</li> <li>c) Did<br/>mee</li> <li>c) Did<br/>indi</li> <li>d) In a<br/>RSI<br/>Line<br/>Nor</li> <li>Retentio<br/>Were reisurrogat</li> <li>Retentio<br/>Were reisurrogat</li> <li>Evaluati<br/>Was RR</li> <li>Initial C</li> <li>a) Wai</li> <li>b) Is ti</li> <li>2. Continui</li> <li>a) Wai</li> <li>b) Is ti</li> </ul> | Was an ICV run immediately after each                                                                                                                                           | ICAL?                                         | [x]        | []        |
|     | b)                                                                                                                                                                                                                                                                                                                                                                                                                    | Is the mid-level $(2^{nd} \text{ source})$ within $\pm 209$                                                                                                                     | % of the true value?                          | [x]        | []        |
| 12. | Co                                                                                                                                                                                                                                                                                                                                                                                                                    | ntinuing Calibration Verification (CCV):                                                                                                                                        |                                               |            |           |
|     | a)                                                                                                                                                                                                                                                                                                                                                                                                                    | Was CCV conducted every 12 hours?                                                                                                                                               |                                               | [x]        | []        |
|     | b)                                                                                                                                                                                                                                                                                                                                                                                                                    | Did any of SPCC meet the minimum RF                                                                                                                                             | values?                                       |            |           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 | <u>RF</u>                                     | <b>,</b> - | _         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloromethane                                                                                                                                                                   | 0.1                                           |            | []        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-Dichloroethane                                                                                                                                                              | 0.1                                           | [x]        | []        |

|     |      | Bromoform                                                                                                                          | 0.1                                 | $\frac{\text{Yes}}{[x]}$                           | <u>No</u>                       |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|---------------------------------|
|     |      | Chlorobenzene                                                                                                                      | 0.1                                 |                                                    |                                 |
|     |      | 1,1,2,2-Tetrachloroethane                                                                                                          | 0.3                                 | [ x ]                                              | []                              |
|     | c)   | Did the CCC meet the minimum requireme followings?                                                                                 | nts (D $\leq$ 20%) for the          |                                                    |                                 |
|     |      | 1,1-Dichloroethene<br>Chloroform<br>1,2-Dichloropropane<br>Toluene<br>Ethylbenzene<br>Vinyl chloride                               |                                     | [ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ]<br>[ x ] | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ] |
|     | d)   | <u>Primary Evaluation</u> : Was Drift or $D \le 20\%$ calibration?                                                                 | calculated from the initial         | [ ]<br>See comments                                | [ x ]                           |
| 13. | Inte | ernal Standard Verification:                                                                                                       |                                     |                                                    |                                 |
|     | a)   | Were retention times $\pm$ 30 seconds from the point standard in the ICAL?                                                         | e retention time of the mid-        | [x]                                                | []                              |
|     | b)   | Were EICP areas within -50% to + 100% o standard?                                                                                  | f the ICAL mid-point                | [x]                                                | []                              |
| 14. | San  | nple Quality Control:                                                                                                              |                                     |                                                    |                                 |
|     | a)   | Method Blanks:                                                                                                                     |                                     |                                                    |                                 |
|     |      | 1) Was a method blank present for each p                                                                                           | preparatory batch?                  | [x]                                                | []                              |
|     |      | <ol> <li>Were target analytes detected &gt;1/2 RL,<br/>measured in any sample or 1/10 the reg<br/>whichever is greater?</li> </ol> | and >1/10 the amount ulatory limit, | []                                                 | [ x ]                           |
|     |      | 3) Did the method blank fail project-species<br>(>1/2 the RL or > the RL)?                                                         | fic objectives                      | [ x ]                                              | []                              |
|     | b)   | <u>Common Contaminants</u><br>Were any analytes present >RL?                                                                       |                                     | [ x ]                                              | []                              |
|     | c)   | Laboratory Control Sample (LCS)                                                                                                    |                                     |                                                    |                                 |
|     |      | 1) Was an LCS included in each preparato                                                                                           | ry batch?                           | [ x ]                                              | []                              |
|     |      | 2) Did the LCS contain all analytes to be r                                                                                        | eported?                            | [ X ]                                              | []                              |
|     |      | 3) Were the percent recoveries for LCS we (Enter out of control recoveries only)                                                   | thin the limits?                    | [ x ]                                              | []                              |
#### **Identification of LCS Standard**

| Spiked Compound | LCS %R (80-130) | LCSD %R (80-130) | %RPD (20) |
|-----------------|-----------------|------------------|-----------|
|                 |                 |                  |           |
|                 | •               |                  |           |
|                 |                 |                  |           |
|                 |                 |                  |           |

#### d) MS/MSD

Were the percent recoveries within limits? (Enter out of control recoveries only)

[] See comments [x]

#### Identification of Original Sample Used for QC

| Spiked compound  | MS %R   | MSD%R | %RPD |
|------------------|---------|-------|------|
|                  | 70-130% |       |      |
| SCqc-006-0001-ER | 132     |       |      |
|                  |         |       |      |
|                  |         |       |      |
|                  |         |       |      |

e) <u>System Monitoring Compounds (Surrogates)</u> Are surrogate recoveries within QC limits? (Enter out of control recoveries only)

| х |
|---|
|   |

]

#### Surrogate Recoveries

| Sample ID             |                      | %Recovery |  |  |  |  |
|-----------------------|----------------------|-----------|--|--|--|--|
|                       | 4-bromofluorobenzene |           |  |  |  |  |
|                       | 85-120%              |           |  |  |  |  |
| SCsb-042D-0003-SO     | 122%                 |           |  |  |  |  |
| Method blank (856016) | 121%                 |           |  |  |  |  |
|                       |                      |           |  |  |  |  |
|                       |                      |           |  |  |  |  |

#### 15. Analyte Detection

| a) | Were results reported between the DL and the LOQ?           | [] | [x] |
|----|-------------------------------------------------------------|----|-----|
| b) | Were results reported between the DL and the LOQ J flagged? | [] | []  |

#### Comments (attach additional sheets if necessary):

SDG 81613: Method blank (856016) were reported with bromoflurobenzene (a surrogate) recovery of 121%. This was marginally outside the allowable limit of (75-120%). However, all other QC criteria were within the control Limits and no flagging was necessary.

SDG 81543: The result of the sample SCSB-042D-0003-SO were reported surrogate recovery for

bromofluorobenzene of 122% which was just outside the allowable limit of 85-120%. Since the recovery was High and no analyte was detected in the sample, no flagging was necessary.

SDG 82400: (a) The matrix spike (MS) for sample SCQC-006-0001-ER had a high recovery for

1,1-dichloroethene. The compound was not detected in the sample and the data was not qualified.

(b) The continuing calibration verification standard analyzed on November 12, 2010 had a low recovery

(%D of -27%) of bromomethane that was outside the allowable limit of 20%. The compound was qualified

With a "Q" flag on the following samples: equipment blank

Validated/Reviewed by:

Name: Maqsud Rahman

Date: April 18, 2011

Signature:

Rahman Magsud

Overall Assessment of the Data Package:

This page intentionally left blank.

|                    |                       |                            |        |       |                         |                         | Reaso  | n Code |
|--------------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|--------|
| Sample Location    | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2      |
| Surface Soil Sampl | es                    |                            | •      | •     | •                       |                         |        |        |
| SCSS-057           | SCSS-057M-0001-SO     | 1,2-Dichlorobenzene        | 0.028  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | 4,4'-DDD                   | 0.0014 | mg/kg | JP                      | J                       | DL-LOQ | Р      |
|                    | SCSS-057M-0001-SO     | 4,6-Dinitro-2-Methylphenol | 0.280  | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | 4-Chloroaniline            | 0.040  | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | Antimony                   | 1.6    | mg/kg | UMV                     | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | Arsenic                    | 8.3    | mg/kg | JYV                     | J                       | DL-LOQ | MS/SD  |
|                    | SCSS-057M-0001-SO     | Benzo(a)anthracene         | 0.046  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Benzo(a)pyrene             | 0.045  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Benzo(b)fluoranthene       | 0.072  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Benzo(k)fluoranthene       | 0.042  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Benzyl Alcohol             | 0.085  | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | Cadmium                    | 0.41   | mg/kg | JV                      | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Chrysene                   | 0.049  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Di-n-Butyl Phthalate       | 0.170  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Fluoranthene               | 0.078  | mg/kg | J                       | J                       | DL-LOQ |        |
|                    | SCSS-057M-0001-SO     | Heptachlor                 | 0.0081 | mg/kg | Р                       | J                       | Р      |        |
|                    | SCSS-057M-0001-SO     | Hexachlorocyclopentadiene  | 0.053  | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | Hexavalent Chromium        | 1.9    | mg/kg | UM                      | UJ                      | MS/MSD |        |
|                    | SCSS-057M-0001-SO     | Isophorone                 | 0.130  | mg/kg | J                       | J                       | DL-LOQ |        |

|                 | Carriela              |                        |        |       |                         |                         | Reasor                                                                                                                                                                                                                                                                                                                                                                                      | n Code |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason   1   DL-LOQ   DL-LOQ   MS/MSD   DL-LOQ   MS/MSD   DL-LOQ   MS/MSD   DL-LOQ   MS/MSD   DL-LOQ   2      |
| SCSS-057        | SCSS-057M-0001-SO     | Lead                   | 12.1   | mg/kg | М                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-057M-0001-SO     | Methoxychlor           | 0.0016 | mg/kg | JP                      | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      | Р      |
|                 | SCSS-057M-0001-SO     | Pentachlorophenol      | 0.240  | mg/kg | UMY                     | UJ                      | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                      | MS/SD  |
|                 | SCSS-057M-0001-SO     | Phenanthrene           | 0.033  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-057M-0001-SO     | Pyrene                 | 0.063  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-057M-0001-SO     | Selenium               | 1.4    | mg/kg | UMV                     | UJ                      | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-057M-0001-SO     | Thallium               | 3.2    | mg/kg | М                       | J                       | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                      |        |
| SCSS-058        | SCSS-058M-0001-SO     | 1,4-Dichlorobenzene    | 0.022  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | 2-Methylnaphthalene    | 0.370  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Acenaphthene           | 0.043  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Acenaphthylene         | 0.160  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Anthracene             | 0.300  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Benzo(ghi)perylene     | 0.170  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Benzo(k)fluoranthene   | 0.330  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Carbazole              | 0.078  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Cyanide, Total         | 0.3    | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Dibenzo(a,h)anthracene | 0.075  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Dibenzofuran           | 0.140  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Di-n-Butyl Phthalate   | 0.120  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Fluorene               | 0.190  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                 | SCSS-058M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.180  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                      |        |

|                 |                       |                            |        |       |                         |                         | Reason | Code |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2    |
| SCSS-058        | SCSS-058M-0001-SO     | Isophorone                 | 0.110  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-058M-0001-SO     | Naphthalene                | 0.240  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-058M-0001-SO     | Selenium                   | 0.83   | mg/kg | JV                      | J                       | DL-LOQ |      |
|                 | SCSS-058M-0001-SO     | Silver                     | 3.8    | mg/kg |                         | J                       | DL-LOQ |      |
| SCSS-059        | SCSS-059M-0001-SO     | 1,2-Dichlorobenzene        | 0.028  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | 1,4-Dichlorobenzene        | 0.058  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | 2-Methylnaphthalene        | 0.230  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Acenaphthylene             | 0.056  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Benzoic Acid               | 0.450  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.110  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Dibenzo(a,h)anthracene     | 0.170  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Dibenzofuran               | 0.300  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Di-n-Butyl Phthalate       | 0.180  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-059M-0001-SO     | Naphthalene                | 0.220  | mg/kg | J                       | J                       | DL-LOQ |      |
| SCSS-060        | SCSS-060M-0001-SO     | 1,2-Dichlorobenzene        | 0.078  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | 1,4-Dichlorobenzene        | 0.210  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | 2-Methylnaphthalene        | 0.350  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Acenaphthene               | 0.340  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Acenaphthylene             | 0.130  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Benzoic Acid               | 0.410  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Dibenzo(a,h)anthracene     | 0.280  | mg/kg | J                       | J                       | DL-LOQ |      |

|                 |                       |                        |         |       |                         |                         | Reason | Code |
|-----------------|-----------------------|------------------------|---------|-------|-------------------------|-------------------------|--------|------|
| Sample Location | Sample<br>Location ID | Analyte                | Result  | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2    |
| SCSS-060        | SCSS-060M-0001-SO     | Dibenzofuran           | 0.330   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Naphthalene            | 0.320   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Pentachlorophenol      | 0.520   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-060M-0001-SO     | Silver                 | 47.9    | mg/kg | JV                      | J                       | DL-LOQ |      |
| SCSS-061        | SCSS-061M-0001-SO     | 1,2,4-Trichlorobenzene | 0.00027 | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | 1,2-Dichlorobenzene    | 0.110   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | 1,3-Dichlorobenzene    | 0.031   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | 1,4-Dichlorobenzene    | 0.270   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Acenaphthene           | 0.074   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Acenaphthylene         | 0.087   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Anthracene             | 0.320   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Benzo(ghi)perylene     | 0.240   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Benzoic Acid           | 0.390   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Carbazole              | 0.120   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Dibenzo(a,h)anthracene | 0.110   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Dibenzofuran           | 0.160   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Di-n-Butyl Phthalate   | 0.300   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Fluorene               | 0.079   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.270   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Naphthalene            | 0.310   | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-061M-0001-SO     | Pentachlorophenol      | 0.400   | mg/kg | J                       | J                       | DL-LOQ |      |

|                 |                       |                        |        |       |                         |                         | Reason                                                                                                                                                                                                                                                                                                                                                                                                        | Code |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason   1   DL-LOQ   2    |
| SCSS-062        | SCSS-062M-0001-SO     | 1,2-Dichlorobenzene    | 0.041  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | 1,4-Dichlorobenzene    | 0.041  | mg/kg | J                       | J                       | DLLOQ                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                 | SCSS-062M-0001-SO     | Anthracene             | 0.056  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Benzo(a)anthracene     | 0.180  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Benzo(a)pyrene         | 0.170  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Benzo(b)fluoranthene   | 0.330  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Benzo(ghi)perylene     | 0.130  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Benzo(k)fluoranthene   | 0.130  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Carbazole              | 0.045  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Chrysene               | 0.220  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Dibenzofuran           | 0.089  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Di-n-Butyl Phthalate   | 0.140  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Fluoranthene           | 0.330  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.110  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Isophorone             | 0.130  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Naphthalene            | 0.250  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Phenanthrene           | 0.290  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-062M-0001-SO     | Pyrene                 | 0.280  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| SCSS-063        | SCSS-063M-0001-SO     | 1,2-Dichlorobenzene    | 0.050  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-063M-0001-SO     | 1,4-Dichlorobenzene    | 0.047  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                 | SCSS-063M-0001-SO     | Acenaphthene           | 0.047  | mg/kg | J                       | J                       | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                        |      |

|                 |                       |                        |        |       |                         |                         | Reasor | ı Code |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|--------|
| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2      |
| SCSS-063        | SCSS-063M-0001-SO     | Acenaphthylene         | 0.033  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Anthracene             | 0.160  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Benzo(ghi)perylene     | 0.360  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Benzo(k)fluoranthene   | 0.300  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Carbazole              | 0.100  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Dibenzo(a,h)anthracene | 0.097  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Dibenzofuran           | 0.120  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Di-n-Butyl Phthalate   | 0.220  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Fluorene               | 0.051  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.330  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Isophorone             | 0.200  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-063M-0001-SO     | Naphthalene            | 0.330  | mg/kg | J                       | J                       | DL-LOQ |        |
| SCSS-064        | SCSS-064M-0001-SO     | 2-Methylnaphthalene    | 0.096  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Anthracene             | 0.026  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Benzo(a)anthracene     | 0.078  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Benzo(a)pyrene         | 0.078  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Benzo(b)fluoranthene   | 0.120  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Benzo(ghi)perylene     | 0.066  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Chrysene               | 0.100  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Dibenzofuran           | 0.027  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-064M-0001-SO     | Di-n-Butyl Phthalate   | 0.120  | mg/kg | J                       | J                       | DL-LOQ |        |

|                 |                       |                        |        |       |                         |           | Reasor                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Code |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Qualifier | Reason   1   DL-LOQ   DL-LOQ< | 2      |
| SCSS-064        | SCSS-064M-0001-SO     | Fluoranthene           | 0.170  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-064M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.055  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-064M-0001-SO     | Isophorone             | 0.130  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-064M-0001-SO     | Naphthalene            | 0.063  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-064M-0001-SO     | Phenanthrene           | 0.160  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-064M-0001-SO     | Pyrene                 | 0.160  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| SCSS-065        | SCSS-065M-0001-SO     | Acenaphthylene         | 0.110  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Anthracene             | 0.230  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Benzo(ghi)perylene     | 0.300  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Benzo(k)fluoranthene   | 0.290  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Benzoic Acid           | 0.570  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Carbazole              | 0.034  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Dibenzofuran           | 0.037  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Di-n-Butyl Phthalate   | 0.082  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Fluorene               | 0.059  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.340  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-065M-0001-SO     | Naphthalene            | 0.029  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| SCSS-066        | SCSS-066M-0001-SO     | Fluoranthene           | 0.040  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-066M-0001-SO     | Isophorone             | 0.070  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                 | SCSS-066M-0001-SO     | Pyrene                 | 0.035  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| SCSS-067        | SCSS-067M-0001-SO     | Di-n-Butyl Phthalate   | 0.093  | mg/kg | J                       | J         | DL-LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |

|                 | Comula            |                            |        |       | l ch custom. | Validation | Reason | Reason Code |  |
|-----------------|-------------------|----------------------------|--------|-------|--------------|------------|--------|-------------|--|
| Sample Location | Location ID       | Analyte                    | Result | Units | Qualifier    | Qualifier  | 1      | 2           |  |
| SCSS-067        | SCSS-067M-0001-SO | Selenium                   | 0.18   | mg/kg | J            | J          | DL-LOQ |             |  |
| SCSS-068        | SCSS-068M-0001-SO | Bis(2-Ethylhexyl)phthalate | 0.100  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-068M-0001-SO | Di-n-Butyl Phthalate       | 0.088  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-068M-0001-SO | Isophorone                 | 0.051  | mg/kg | J            | J          | DL-LOQ |             |  |
| SCSS-069        | SCSS-069M-0001-SO | 2,4,6-Trinitrotoluene      | 0.0026 | mg/kg | JP           | J          | DL-LOQ | Р           |  |
|                 | SCSS-069M-0001-SO | 2-Methylnaphthalene        | 0.064  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Benzo(a)anthracene         | 0.062  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Benzo(a)pyrene             | 0.054  | mg/kg | JS           | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Benzo(b)fluoranthene       | 0.120  | mg/kg | JS           | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Benzo(k)fluoranthene       | 0.047  | mg/kg | JS           | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Chrysene                   | 0.061  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Di-n-Butyl Phthalate       | 0.150  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Fluoranthene               | 0.140  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Naphthalene                | 0.050  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Nickel                     | 0.083  | mg/kg | JV           | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Phenanthrene               | 0.093  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Pyrene                     | 0.120  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-069M-0001-SO | Selenium                   | 0.19   | mg/kg | JV           | J          | DL-LOQ |             |  |
| SCSS-072        | SCSS-072M-0001-SO | Benzo(a)anthracene         | 0.027  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-072M-0001-SO | Benzo(a)pyrene             | 0.026  | mg/kg | J            | J          | DL-LOQ |             |  |
|                 | SCSS-072M-0001-SO | Benzo(b)fluoranthene       | 0.039  | mg/kg | J            | J          | DL-LOQ |             |  |

|                 |                       |                            |        |       |                         |           | Reasor | n Code |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-----------|--------|--------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Qualifier | 1      | 2      |
| SCSS-072        | SCSS-072M-0001-SO     | Diethyl Phthalate          | 0.069  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-072M-0001-SO     | Di-n-Butyl Phthalate       | 0.130  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-072M-0001-SO     | Fluoranthene               | 0.046  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-072M-0001-SO     | Pyrene                     | 0.035  | mg/kg | J                       | J         | DL-LOQ |        |
| SCSS-073        | SCSS-073M-0001-SO     | 1,2-Dichlorobenzene        | 0.039  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | 2-Methylnaphthalene        | 0.240  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Acenaphthene               | 0.035  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Acenaphthylene             | 0.029  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Anthracene                 | 0.093  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Benzo(a)anthracene         | 0.370  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Benzo(a)pyrene             | 0.350  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Benzo(ghi)perylene         | 0.190  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Benzo(k)fluoranthene       | 0.200  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.190  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Carbazole                  | 0.058  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Chrysene                   | 0.400  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Dibenzo(a,h)anthracene     | 0.069  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Dibenzofuran               | 0.072  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Di-n-Butyl Phthalate       | 0.140  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Fluorene                   | 0.033  | mg/kg | J                       | J         | DL-LOQ |        |
|                 | SCSS-073M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.170  | mg/kg | J                       | J         | DL-LOQ |        |

|                 |                       |                            |        |       |                         | Validation              | Reason | ı Code |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|--------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2      |
| SCSs-073        | SCSS-073M-0001-SO     | Naphthalene                | 0.170  | mg/kg | J                       | J                       | DL-LOQ |        |
| SCSS-074        | SCSS-074M-0001-SO     | Acenaphthene               | 0.029  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Acenaphthylene             | 0.042  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Anthracene                 | 0.070  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Benzo(a)anthracene         | 0.300  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Benzo(a)pyrene             | 0.310  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Benzo(ghi)perylene         | 0.150  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Benzo(k)fluoranthene       | 0.140  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.490  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Carbazole                  | 0.057  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Chrysene                   | 0.340  | mg/kg | J                       | J                       | DL'LOQ |        |
|                 | SCSS-074M-0001-SO     | Dibenzo(a,h)anthracene     | 0.055  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Dibenzofuran               | 0.110  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Di-n-Butyl Phthalate       | 0.150  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Fluorene                   | 0.031  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-074M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.160  | mg/kg | J                       | J                       | DL-LOQ |        |
| SCSS-075        | SCSS-075M-0001-SO     | Benzo(a)anthracene         | 0.046  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-075M-0001-SO     | Benzo(a)pyrene             | 0.034  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-075M-0001-SO     | Benzo(b)fluoranthene       | 0.110  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-075M-0001-SO     | Benzo(ghi)perylene         | 0.031  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-075M-0001-SO     | Benzo(k)fluoranthene       | 0.035  | mg/kg | J                       | J                       | DL-LOQ |        |

|                 | Contractor            |                            |         |       | l al and an | Validation | Reason | Code |
|-----------------|-----------------------|----------------------------|---------|-------|-------------|------------|--------|------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result  | Units | Qualifier   | Qualifier  | 1      | 2    |
| SCSS-075        | SCSS-075M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.910   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Chrysene                   | 0.140   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Diethyl Phthalate          | 0.140   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Di-n-Butyl Phthalate       | 0.087   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Fluoranthene               | 0.300   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.025   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Phenanthrene               | 0.090   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-075M-0001-SO     | Pyrene                     | 0.200   | mg/kg | J           | J          | DL-LOQ |      |
| SCSS-076        | SCSS-076M-0001-SO     | 2-Methylnaphthalene        | 0.045   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Benzo(a)anthracene         | 0.052   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Benzo(a)pyrene             | 0.045   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Benzo(b)fluoranthene       | 0.077   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Benzo(k)fluoranthene       | 0.027   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.270   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Chrysene                   | 0.051   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Fluoranthene               | 0.081   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Naphthalene                | 0.028   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Phenanthrene               | 0.050   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-076M-0001-SO     | Pyrene                     | 0.072   | mg/kg | J           | J          | DL-LOQ |      |
| SCSS-058        | SCSS-085M-0001-SO     | 1,4-Dichlorobenzene        | 0.019   | mg/kg | J           | J          | DL-LOQ |      |
|                 | SCSS-085M-0001-SO     | 2-Amino-4,6-Dinitrotoluene | 0.00026 | mg/kg | J           | J          | DL-LOQ |      |

|                 |                       |                            |        |       |                         | Validation              | Reason | ı Code |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|--------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2      |
| SCSS-058        | SCSS-085M-0001-SO     | 2-Methylnaphthalene        | 0.320  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Acenaphthene               | 0.034  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Acenaphthylene             | 0.043  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Anthracene                 | 0.120  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Benzo(a)anthracene         | 0.380  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Benzo(a)pyrene             | 0.330  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Benzo(ghi)perylene         | 0.120  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Benzo(k)fluoranthene       | 0.180  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Carbazole                  | 0.069  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Chrysene                   | 0.360  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Dibenzo(a,h)anthracene     | 0.050  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Dibenzofuran               | 0.086  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Di-n-Butyl Phthalate       | 0.130  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Fluorene                   | 0.046  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.100  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Isophorone                 | 0.079  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Naphthalene                | 0.200  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-085M-0001-SO     | Selenium                   | 0.8    | mg/kg | JV                      | J                       | DL-LOQ |        |
| SCSs-068        | SCSS-086M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.130  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-086M-0001-SO     | Isophorone                 | 0.140  | mg/kg | J                       | J                       | DL-LOQ |        |
|                 | SCSS-086M-0001-SO     | Selenium                   | 0.22   | mg/kg | J                       | J                       | DL-LOQ |        |

|                 |                       |                            |        |       |                         |                         | Reason | Code |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|------|
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | 1      | 2    |
| SCSS-073        | SCSS-087M-0001-SO     | 1,2-Dichlorobenzene        | 0.100  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | 1,3-Dichlorobenzene        | 0.026  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | 1,4-Dichlorobenzene        | 0.048  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | 2,4-Dinitrotoluene         | 0.092  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | 2-Methylnaphthalene        | 0.330  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Acenaphthene               | 0.064  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Anthracene                 | 0.150  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Benzo(a)anthracene         | 0.390  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Benzo(a)pyrene             | 0.350  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Benzo(ghi)perylene         | 0.210  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Benzo(k)fluoranthene       | 0.170  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.950  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Carbazole                  | 0.099  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Chrysene                   | 0.390  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Dibenzo(a,h)anthracene     | 0.092  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Dibenzofuran               | 0.100  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Di-n-Butyl Phthalate       | 0.130  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Fluorene                   | 0.055  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.210  | mg/kg | J                       | J                       | DL-LOQ |      |
|                 | SCSS-087M-0001-SO     | Naphthalene                | 0.240  | mg/kg | J                       | J                       | DL-LOQ |      |

| Table C-2 (continued)                      |   |
|--------------------------------------------|---|
| Summary Table of Sample Data Qualification | S |

| Sample Location    | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason  |
|--------------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|---------|
| Subsurface Soil Sa | mples                 |                        |        |       |                         |                         | I       |
| SCSB-035           | SCSB-035M-0001-SO     | Benzo(a)anthracene     | 0.046  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Benzo(a)pyrene         | 0.042  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Benzo(b)fluoranthene   | 0.054  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Benzo(ghi)perylene     | 0.023  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Chrysene               | 0.043  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Di-n-Butyl Phthalate   | 0.093  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Fluoranthene           | 0.140  | mg/kg | J                       | J                       | DL_LOQ  |
|                    | SCSB-035M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.024  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Isophorone             | 0.210  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Naphthalene            | 0.029  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Phenanthrene           | 0.160  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0001-SO     | Pyrene                 | 0.097  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | 2-Methylnaphthalene    | 0.280  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Benzo(a)pyrene         | 0.036  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Benzo(b)fluoranthene   | 0.062  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Benzo(ghi)perylene     | 0.140  | mg/kg | J                       | J                       | D;L-LOQ |
|                    | SCSB-035M-0002-SO     | Dibenzofuran           | 0.035  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Di-n-Butyl Phthalate   | 0.110  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Fluoranthene           | 0.027  | mg/kg | J                       | J                       | DL-LOQ  |
|                    | SCSB-035M-0002-SO     | Fluorene               | 0.044  | mg/kg | J                       | J                       | DL-LOQ  |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-035        | SCSB-035M-0002-SO     | Naphthalene                | 0.110  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0002-SO     | Phenanthrene               | 0.130  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0002-SO     | Pyrene                     | 0.072  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0003-SO     | 2-Methylnaphthalene        | 0.036  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0003-SO     | Benzo(ghi)perylene         | 0.022  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0003-SO     | N-Nitroso-di-n-Propylamine | 0.070  | mg/kg | U                       | J                       | DL-LOQ |
|                 | SCSB-035M-0004-SO     | 2-Methylnaphthalene        | 0.030  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0004-SO     | Di-n-Butyl Phthalate       | 0.084  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0004-SO     | Mercury                    | 0.0077 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0005-SO     | Isophorone                 | 0.320  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-035M-0005-SO     | Mercury                    | 0.0059 | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-036        | SCSB-036M-0001-SO     | 2-Methylnaphthalene        | 0.200  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Anthracene                 | 0.030  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Benzo(a)anthracene         | 0.160  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Benzo(a)pyrene             | 0.160  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Benzo(b)fluoranthene       | 0.220  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Benzo(ghi)perylene         | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Benzo(k)fluoranthene       | 0.083  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Chrysene                   | 0.170  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Dibenzo(a,h)anthracene     | 0.060  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Dibenzofuran               | 0.046  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-036        | SCSB-036M-0001-SO     | Di-n-Butyl Phthalate   | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Fluoranthene           | 0.320  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.100  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Isophorone             | 0.073  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Naphthalene            | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Phenanthrene           | 0.190  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0001-SO     | Pyrene                 | 0.250  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0002-SO     | Di-n-Butyl Phthalate   | 0.089  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0002-SO     | Isophorone             | 0.180  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0002-SO     | Selenium               | 0.14   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | 2-Methylnaphthalene    | 0.280  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Acenaphthene           | 0.056  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Acenaphthylene         | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Dibenzo(a,h)anthracene | 0.320  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Dibenzofuran           | 0.350  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Di-n-Butyl Phthalate   | 0.190  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0003-SO     | Fluorene               | 0.064  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0004-SO     | 2-Methylnaphthalene    | 0.068  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0004-SO     | Benzo(ghi)perylene     | 0.048  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0004-SO     | Isophorone             | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0004-SO     | Naphthalene            | 0.060  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-036        | SCSB-036M-0004-SO     | Phenanthrene               | 0.038  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0004-SO     | Selenium                   | 0.53   | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | 2-Methylnaphthalene        | 0.046  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | Benzo(ghi)perylene         | 0.025  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | Cadmium                    | 0.049  | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | Mercury                    | 0.0067 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | Naphthalene                | 0.028  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-036M-0005-SO     | Phenanthrene               | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-037        | SCSB-037D-0001-SO     | 1,2-Dimethylbenzene        | 0.013  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037D-0001-SO     | Toluene                    | 0.012  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | 1,2-Dichlorobenzene        | 0.049  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | 2-Methylnaphthalene        | 0.260  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Anthracene                 | 0.032  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Antimony                   | 0.93   | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Benzo(a)anthracene         | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Benzo(a)pyrene             | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Benzo(b)fluoranthene       | 0.260  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Benzo(ghi)perylene         | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Benzo(k)fluoranthene       | 0.069  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.088  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Carbazole                  | 0.033  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-037        | SCSB-037M-0001-SO     | Chrysene               | 0.160  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Dibenzo(a,h)anthracene | 0.032  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Dibenzofuran           | 0.069  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Di-n-Butyl Phthalate   | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Fluoranthene           | 0.360  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.093  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Naphthalene            | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Phenanthrene           | 0.280  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0001-SO     | Pyrene                 | 0.280  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | 1,2-Dichlorobenzene    | 0.043  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | 1,4-Dichlorobenzene    | 0.022  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | 2-Methylnaphthalene    | 0.240  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Benzo(a)anthracene     | 0.053  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Benzo(a)pyrene         | 0.048  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Benzo(b)fluoranthene   | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Benzo(ghi)perylene     | 0.038  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Benzo(k)fluoranthene   | 0.027  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Chrysene               | 0.089  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Dibenzofuran           | 0.055  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Di-n-Butyl Phthalate   | 0.270  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-037M-0002-SO     | Fluoranthene           | 0.170  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| SCSB-037        | SCSB-037M-0002-SO     | Indeno(1,2,3-cd)pyrene     | 0.025  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0002-SO     | Naphthalene                | 0.150  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0002-SO     | Phenanthrene               | 0.190  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0002-SO     | Pyrene                     | 0.150  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0003-SO     | Antimony                   | 0.52   | mg/kg | JV                      | J                       | DL-LOQ |     |
|                 | SCSB-037M-0003-SO     | Bis(2-Ethylhexyl)phthalate | 0.120  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0003-SO     | Di-n-Butyl Phthalate       | 0.120  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0003-SO     | Isophorone                 | 0.220  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0004-SO     | 2,6-Dinitrotoluene         | 0.047  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0004-SO     | Isophorone                 | 0.310  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0005-SO     | Di-n-Butyl Phthalate       | 0.084  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0005-SO     | Isophorone                 | 0.054  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-037M-0005-SO     | Selenium                   | 0.67   | mg/kg | JV                      | J                       | DL-LOQ |     |
| SCSB-038        | SCSB-038M-0001-SO     | 2-Methylnaphthalene        | 0.097  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-038M-0001-SO     | Antimony                   | 0.16   | mg/kg | UVY                     | UJ                      | MS/SD  |     |
|                 | SCSB-038M-0001-SO     | Arsenic                    | 7      | mg/kg | Y                       | J                       | MS/SD  |     |
|                 | SCSB-038M-0001-SO     | Benzo(ghi)perylene         | 0.048  | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-038M-0001-SO     | Cadmium                    | 0.012  | mg/kg | UVY                     | UJ                      | MS/SD  |     |
|                 | SCSB-038M-0001-SO     | Cobalt                     | 22.3   | mg/kg | М                       | J                       | MS/MSD |     |
|                 | SCSB-038M-0001-SO     | Copper                     | 20.8   | mg/kg | YM                      | J                       | MS/MSD | SD  |
|                 | SCSB-038M-0001-SO     | Di-n-Butyl Phthalate       | 0.160  | mg/kg | J                       | J                       | DL-LOQ |     |

| Sample Location | Sample<br>Location ID | Analyte              | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son   |
|-----------------|-----------------------|----------------------|--------|-------|-------------------------|-------------------------|--------|-------|
| SCSB-038        | SCSB-038M-0001-SO     | Lead                 | 11.1   | mg/kg | Y                       | J                       | MS/SD  |       |
|                 | SCSB-038M-0001-SO     | Naphthalene          | 0.074  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0001-SO     | Nickel               | 24.8   | mg/kg | YM                      | J                       | MS/MSD | MS/SD |
|                 | SCSB-038M-0001-SO     | Phenanthrene         | 0.047  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0001-SO     | Selenium             | 1      | mg/kg | YM                      | J                       | MS/MSD | MS/SD |
|                 | SCSB-038M-0001-SO     | Thallium             | 2.5    | mg/kg | YM                      | J                       | MS/MSD | MS/SD |
|                 | SCSB-038M-0001-SO     | Vanadium             | 19.6   | mg/kg | Y                       | J                       | MS/SD  |       |
|                 | SCSB-038M-0001-SO     | Zinc                 | 68.7   | mg/kg | YM                      | J                       | MS/MSD | MS/SD |
|                 | SCSB-038M-0002-SO     | Di-n-Butyl Phthalate | 0.093  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0002-SO     | Isophorone           | 0.190  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0002-SO     | Selenium             | 0.53   | mg/kg | JV                      | J                       | DL-LOQ |       |
|                 | SCSB-038M-0003-SO     | Antimony             | 0.26   | mg/kg | JV                      | J                       | DL-LOQ |       |
|                 | SCSB-038M-0003-SO     | Isophorone           | 0.280  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0003-SO     | Mercury              | 0.0053 | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0003-SO     | Selenium             | 0.26   | mg/kg | JV                      | J                       | DL-LOQ |       |
|                 | SCSB-038M-0004-SO     | 2-Methylnaphthalene  | 0.072  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0004-SO     | Dibenzofuran         | 0.025  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0004-SO     | Mercury              | 0.0057 | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0004-SO     | Phenanthrene         | 0.039  | mg/kg | J                       | J                       | DL-LOQ |       |
|                 | SCSB-038M-0004-SO     | Selenium             | 0.45   | mg/kg | JV                      | J                       | DL-LOQ |       |
|                 | SCSB-038M-0005-SO     | 2-Methylnaphthalene  | 0.035  | mg/kg | J                       | J                       | DL-LOQ |       |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| SCSB-038        | SCSB-038M-0005-SO     | Selenium                   | 0.6    | mg/kg | JV                      | J                       | DL-LOQ |     |
| SCSB-039        | SCSB-039M-0001-SO     | 1,2,4-Trichlorobenzene     | 0.021  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 1,2-Dichlorobenzene        | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 1,3-Dichlorobenzene        | 0.020  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 1,4-Dichlorobenzene        | 0.019  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4,5-Trichlorophenol      | 0.130  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4,6-Trichlorophenol      | 0.130  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4-Dichlorophenol         | 0.120  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4-Dimethylphenol         | 0.100  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4-Dinitrophenol          | 0.700  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,4-Dinitrotoluene         | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2,6-Dinitrotoluene         | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2-Chloronaphthalene        | 0.023  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2-Chlorophenol             | 0.350  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2-Methylnaphthalene        | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2-Nitroaniline             | 0.023  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 2-Nitrophenol              | 0.280  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 3-Nitroaniline             | 0.022  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4,6-Dinitro-2-Methylphenol | 0.270  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4-Bromophenyl Phenyl Ether | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |

| Sample Location | Sample<br>Location ID | Analyte                     | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|-----------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| SCSB-039        | SCSB-039M-0001-SO     | 4-Chloro-3-Methylphenol     | 0.390  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4-Chloroaniline             | 0.040  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4-Chlorophenyl Phenyl Ether | 0.026  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4-Nitrobenzenamine          | 0.030  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | 4-Nitrophenol               | 0.410  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Acenaphthene                | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Acenaphthylene              | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Anthracene                  | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Antimony                    | 0.11   | mg/kg | J                       | J                       | DI-LOQ |     |
|                 | SCSB-039M-0001-SO     | Benzo(a)anthracene          | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzo(a)pyrene              | 0.023  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzo(b)fluoranthene        | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzo(ghi)perylene          | 0.022  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzo(k)fluoranthene        | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzoic Acid                | 0.300  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Benzyl Alcohol              | 0.084  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Bis(2-Chloroethoxy)methane  | 0.023  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Bis(2-Chloroethyl)ether     | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Bis(2-Chloroisopropyl)ether | 0.030  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Bis(2-Ethylhexyl)phthalate  | 0.120  | mg/kg | JH                      | J                       | DL-LOQ | HT  |
|                 | SCSB-039M-0001-SO     | Butyl Benzyl Phthalate      | 0.074  | mg/kg | UH                      | UJ                      | HT     |     |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| SCSB-039        | SCSB-039M-0001-SO     | Carbazole                  | 0.028  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Chrysene                   | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Cresols (Total)            | 0.660  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Dibenzo(a,h)anthracene     | 0.022  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Dibenzofuran               | 0.024  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Diethyl Phthalate          | 0.065  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Dimethyl Phthalate         | 0.064  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Di-n-Butyl Phthalate       | 0.160  | mg/kg | JH                      | J                       | DL-LOQ | HT  |
|                 | SCSB-039M-0001-SO     | Di-n-Octyl Phthalate       | 0.060  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Fluoranthene               | 0.026  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Fluorene                   | 0.025  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Hexachlorobenzene          | 0.028  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Hexachlorobutadiene        | 0.063  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Hexachlorocyclopentadiene  | 0.053  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Hexachloroethane           | 0.034  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.023  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Isophorone                 | 0.110  | mg/kg | JH                      | J                       | DL-LOQ | HT  |
|                 | SCSB-039M-0001-SO     | Mercury                    | 0.0072 | mg/kg | J                       | J                       | DL-LOQ |     |
|                 | SCSB-039M-0001-SO     | Naphthalene                | 0.021  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Nitrobenzene               | 0.060  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | N-Nitroso-di-n-Propylamine | 0.071  | mg/kg | UH                      | UJ                      | HT     |     |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| SCSB-039        | SCSB-039M-0001-SO     | N-Nitrosodiphenylamine     | 0.051  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | o-Cresol                   | 0.430  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Pentachlorophenol          | 0.240  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Phenanthrene               | 0.030  | mg/kg | JH                      | J                       | DL-LOQ | HT  |
|                 | SCSB-039M-0001-SO     | Phenol                     | 0.160  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0001-SO     | Pyrene                     | 0.026  | mg/kg | UH                      | UJ                      | HT     |     |
|                 | SCSB-039M-0002-SO     | 2,4,5-Trichlorophenol      | 0.130  | mg/kg | UM                      | UJ                      | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | 2-Methylnaphthalene        | 0.190  | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | 2-Nitrophenol              | 0.280  | mg/kg | UM                      | UJ                      | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | 4,6-Dinitro-2-Methylphenol | 0.270  | mg/kg | UM                      | UJ                      | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Arsenic                    | 15.6   | mg/kg |                         |                         | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Cobalt                     | 11.8   | mg/kg | М                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Di-n-Butyl Phthalate       | 0.081  | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Fluorene                   | 0.034  | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Hexachlorocyclopentadiene  | 0.052  | mg/kg | UM                      | UJ                      | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Iron                       | 31400  | mg/kg | М                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Mercury                    | 0.0069 | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Naphthalene                | 0.053  | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Pentachlorophenol          | 0.240  | mg/kg | UM                      | UJ                      | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Phenanthrene               | 0.110  | mg/kg | J                       | J                       | MS/MSD |     |
|                 | SCSB-039M-0002-SO     | Thallium                   | 0.71   | mg/kg | М                       | J                       | MS/MSD |     |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-039        | SCSB-039M-0002-SO     | Zinc                       | 56.5   | mg/kg | М                       | J                       | MS/MSD |
|                 | SCSB-039M-0003-SO     | 2-Methylnaphthalene        | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0003-SO     | Isophorone                 | 0.170  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0003-SO     | Mercury                    | 0.0057 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0003-SO     | Naphthalene                | 0.032  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0003-SO     | Phenanthrene               | 0.028  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | 2-Methylnaphthalene        | 0.088  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | Dibenzofuran               | 0.024  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | Di-n-Butyl Phthalate       | 0.092  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | Mercury                    | 0.0073 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | Naphthalene                | 0.057  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0004-SO     | Phenanthrene               | 0.049  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0005-SO     | 2-Methylnaphthalene        | 0.061  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0005-SO     | Isophorone                 | 0.090  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0005-SO     | Mercury                    | 0.0059 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0005-SO     | Naphthalene                | 0.045  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-039M-0005-SO     | Phenanthrene               | 0.036  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-040        | SCSB-040M-0001-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-040M-0001-SO     | Di-n-Butyl Phthalate       | 0.090  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0002-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-040M-0002-SO     | Bis(2-Ethylhexyl)phthalate | 0.850  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-040        | SCSB-040M-0002-SO     | Isophorone             | 0.062  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0002-SO     | Mercury                | 0.0064 | mg/kg | J                       | J                       | DL-IOQ |
|                 | SCSB-040M-0003-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-040M-0003-SO     | Isophorone             | 0.097  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0003-SO     | Mercury                | 0.0055 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0004-SO     | 2-Methylnaphthalene    | 0.082  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0004-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-040M-0004-SO     | Isophorone             | 0.088  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0004-SO     | Mercury                | 0.004  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0004-SO     | Naphthalene            | 0.057  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0005-SO     | 2-Methylnaphthalene    | 0.082  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0005-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-040M-0005-SO     | Mercury                | 0.0041 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0005-SO     | Naphthalene            | 0.051  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-040M-0005-SO     | Phenanthrene           | 0.038  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-041        | SCSB-041M-0001-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-041M-0001-SO     | Di-n-Butyl Phthalate   | 0.110  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0001-SO     | Isophorone             | 0.053  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0001-SO     | Mercury                | 0.0068 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0002-SO     | 2,4,5-Trichlorophenol  | 0.130  | mg/kg | UM                      | UJ                      | MS/MSD |
|                 | SCSB-041M-0002-SO     | 2,4-Dinitrophenol      | 0.700  | mg/kg | UM                      | UJ                      | MS/MSD |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-041        | SCSB-041M-0002-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-041M-0002-SO     | 4,6-Dinitro-2-Methylphenol | 0.270  | mg/kg | UM                      | UJ                      | MS/MSD |
|                 | SCSB-041M-0002-SO     | Hexachlorocyclopentadiene  | 0.053  | mg/kg | UM                      | UJ                      | MS/MSD |
|                 | SCSB-041M-0002-SO     | Isophorone                 | 0.110  | mg/kg | J                       | J                       | MS/MSD |
|                 | SCSB-041M-0002-SO     | Mercury                    | 0.0049 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0002-SO     | Pentachlorophenol          | 0.240  | mg/kg | UM                      | UJ                      | MS/MSD |
|                 | SCSB-041M-0003-SO     | 2-Methylnaphthalene        | 0.043  | mg/kg | J                       | J                       | DL/LOQ |
|                 | SCSB-041M-0003-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-041M-0003-SO     | Antimony                   | 0.24   | mg/kg | J                       | J                       | MS/MSD |
|                 | SCSB-041M-0003-SO     | Mercury                    | 0.0079 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0003-SO     | Naphthalene                | 0.029  | mg/kg | J                       | J                       | DL/LOQ |
|                 | SCSB-041M-0003-SO     | Phenanthrene               | 0.028  | mg/kg | J                       | J                       | DL/LOQ |
|                 | SCSB-041M-0004-SO     | 2-Methylnaphthalene        | 0.084  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0004-SO     | Mercury                    | 0.0055 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0004-SO     | Naphthalene                | 0.057  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0004-SO     | Phenanthrene               | 0.042  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0005-SO     | 2-Methylnaphthalene        | 0.080  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0005-SO     | 3,3'-Dichlorobenzidine     | 0.0150 | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-041M-0005-SO     | Mercury                    | 0.0066 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0005-SO     | Naphthalene                | 0.056  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-041M-0005-SO     | Phenanthrene               | 0.051  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-042        | SCSB-042M-0001-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-042M-0002-SO     | Isophorone             | 0.070  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0002-SO     | Mercury                | 0.0052 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0003-SO     | 2-Methylnaphthalene    | 0.049  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0003-SO     | Di-n-Butyl Phthalate   | 0.100  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0003-SO     | Naphthalene            | 0.035  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0003-SO     | Phenanthrene           | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0004-SO     | 2-Methylnaphthalene    | 0.068  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0004-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-042M-0004-SO     | Antimony               | 0.25   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0004-SO     | Dibenzofuran           | 0.024  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0004-SO     | Mercury                | 0.0059 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0004-SO     | Naphthalene            | 0.060  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0005-SO     | 2-Methylnaphthalene    | 0.073  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0005-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-042M-0005-SO     | Mercury                | 0.0044 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0005-SO     | Phenanthrene           | 0.040  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-042M-0005-SO     | Thallium               | 0.19   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-043        | SCSB-043M-0001-SO     | 3,3'-Dichlorobenzidine | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-043M-0002-SO     | Isophorone             | 0.064  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0002-SO     | Mercury                | 0.0042 | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-043        | SCSB-043M-0003-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-043M-0003-SO     | Di-n-Butyl Phthalate       | 0.240  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0003-SO     | Isophorone                 | 0.094  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0003-SO     | Mercury                    | 0.0064 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0004-SO     | 2-Methylnaphthalene        | 0.049  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0004-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-043M-0004-SO     | Isophorone                 | 0.100  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0004-SO     | Mercury                    | 0.006  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0004-SO     | Naphthalene                | 0.054  | mg/kg | J                       | J                       | DA-LOQ |
|                 | SCSB-043M-0004-SO     | Phenanthrene               | 0.037  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0005-SO     | 3,3'-Dichlorobenzidine     | 0.150  | mg/kg | UZ                      | UJ                      | CCAL   |
|                 | SCSB-043M-0005-SO     | 4,6-Dinitro-2-Methylphenol | 0.270  | mg/kg | U                       | J                       | DL-LOQ |
|                 | SCSB-043M-0005-SO     | Antimony                   | 0.11   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0005-SO     | Mercury                    | 0.007  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0005-SO     | Naphthalene                | 0.043  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-043M-0005-SO     | Phenanthrene               | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-044        | SCSB-044M-0001-SO     | Cyanide, Total             | 0.32   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-044M-0001-SO     | Di-n-Butyl Phthalate       | 0.094  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-044M-0001-SO     | Nitroguanidine             | 0.0012 | mg/kg | Р                       | J                       | Р      |
|                 | SCSB-044M-0001-SO     | Selenium                   | 0.22   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-045        | SCSB-045M-0001-SO     | 1,2-Dichlorobenzene        | 0.029  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result  | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|---------|-------|-------------------------|-------------------------|--------|
| SCSB-045        | SCSB-045M-0001-SO     | 2-Methylnaphthalene        | 0.100   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Acenaphthene               | 0.032   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Anthracene                 | 0.098   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Antimony                   | 1.3     | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Benzo(a)anthracene         | 0.260   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Benzo(a)pyrene             | 0.410   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Benzo(b)fluoranthene       | 0.630   | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Benzo(ghi)perylene         | 0.220   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Benzo(k)fluoranthene       | 0.140   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.110   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Carbazole                  | 0.067   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Chrysene                   | 0.270   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Dibenzofuran               | 0.038   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Di-n-Butyl Phthalate       | 0.220   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Fluorene                   | 0.040   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.190   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Methylene Chloride         | 0.00069 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Naphthalene                | 0.076   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-045M-0001-SO     | Selenium                   | 0.86    | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-046        | SCSB-046M-0001-SO     | 2-Methylnaphthalene        | 0.052   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Acenaphthene               | 0.086   | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte              | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-046        | SCSB-046M-0001-SO     | Anthracene           | 0.210  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Antimony             | 0.41   | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Benzo(a)anthracene   | 0.340  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Benzo(a)pyrene       | 0.290  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Benzo(b)fluoranthene | 0.520  | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Benzo(ghi)perylene   | 0.072  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Benzo(k)fluoranthene | 0.160  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Carbazole            | 0.110  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Chrysene             | 0.290  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Di-n-Butyl Phthalate | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-046M-0001-SO     | Fluorene             | 0.094  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-047        | SCSB-046M-0001-SO     | Phenanthrene         | 0.410  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | 2-Methylnaphthalene  | 0.310  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Acenaphthene         | 0.029  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Acenaphthylene       | 0.057  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Anthracene           | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Benzo(a)anthracene   | 0.290  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Benzo(a)pyrene       | 0.350  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Benzo(b)fluoranthene | 0.960  | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Benzo(ghi)perylene   | 0.074  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Benzo(k)fluoranthene | 0.330  | mg/kg | JS                      | J                       | DL-LOQ |
| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-047        | SCSB-047M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.095  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Carbazole                  | 0.060  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Chromium                   | 0.79   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Chrysene                   | 0.390  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Dibenzo(a,h)anthracene     | 0.036  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Dibenzofuran               | 0.076  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Di-n-Butyl Phthalate       | 0.190  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Fluorene                   | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.088  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Naphthalene                | 0.230  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-047M-0001-SO     | Phenanthrene               | 0.350  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-048        | SCSB-048M-0001-SO     | 4,4'-DDE                   | 0.0051 | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Acenaphthylene             | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Anthracene                 | 0.065  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Benzo(a)anthracene         | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Benzo(a)pyrene             | 0.150  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Benzo(b)fluoranthene       | 0.410  | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Benzo(k)fluoranthene       | 0.160  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Carbazole                  | 0.035  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Chrysene                   | 0.180  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Dibenzofuran               | 0.076  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result  | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|---------|-------|-------------------------|-------------------------|--------|
| SCSB-048        | SCSB-048M-0001-SO     | Dibenzofuran               | 0.093   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Di-n-Butyl Phthalate       | 0.120   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Fluoranthene               | 0.240   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Fluorene                   | 0.041   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Heptachlor                 | 0.0019  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.049   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Naphthalene                | 0.330   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-048M-0001-SO     | Phenanthrene               | 0.280   | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-049        | SCSB-049M-0001-SO     | 1,2-Dichlorobenzene        | 0.024   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | 2,4,6-Trinitrotoluene      | 0.0001  | mg/kg | JP                      | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | 2-Amino-4,6-Dinitrotoluene | 0.00026 | mg/kg | JP                      | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Acenaphthylene             | 0.140   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Antimony                   | 0.71    | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Benzo(ghi)perylene         | 1.3     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Benzo(k)fluoranthene       | 4.4     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Dibenzo(a,h)anthracene     | 0.550   | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Di-n-Butyl Phthalate       | 0.130   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 1.6     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Pyrene                     | 0.240   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Selenium                   | 0.51    | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-049M-0001-SO     | Silver                     | 0.17    | mg/kg | JV                      | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result  | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|---------|-------|-------------------------|-------------------------|--------|
| SCSB-050        | SCSB-050M-0001-SO     | 2-Amino-4,6-Dinitrotoluene | 0.00026 | mg/kg | JP                      | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Acenaphthene               | 0.061   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Acenaphthylene             | 0.066   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Anthracene                 | 0.250   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Benzo(a)pyrene             | 1.3     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Benzo(b)fluoranthene       | 2.7     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Benzo(ghi)perylene         | 0.280   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Benzo(k)fluoranthene       | 1.1     | mg/kg | S                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.140   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Carbazole                  | 0.130   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Dibenzo(a,h)anthracene     | 0.100   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Dibenzofuran               | 0.170   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Di-n-Butyl Phthalate       | 0.180   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Fluorene                   | 0.100   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | Indeno(1,2,3-cd)pyrene     | 0.340   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-050M-0001-SO     | m-Nitrotoluene             | 0.00032 | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-051        | SCSB-051M-0001-SO     | Antimony                   | 0.41    | mg/kg | UVY                     | UJ                      | MS/SD  |
|                 | SCSB-051M-0001-SO     | Benzo(a)pyrene             | 0.035   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Benzo(b)fluoranthene       | 0.039   | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Benzoic Acid               | 0.320   | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Beryllium                  | 0.6     | mg/kg |                         |                         | MS/MSD |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-051        | SCSB-051M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.170  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Cadmium                    | 0.031  | mg/kg | UVY                     | UJ                      | MS/SD  |
|                 | SCSB-051M-0001-SO     | Di-n-Butyl Phthalate       | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Fluoranthene               | 0.031  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Pentachlorophenol          | 0.380  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Phenanthrene               | 0.027  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Silver                     | 0.13   | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Thallium                   | 1.7    | mg/kg | М                       | J                       | DL-LOQ |
|                 | SCSB-051M-0001-SO     | Zinc                       | 66.6   | mg/kg | М                       | J                       | DL-LOQ |
| SCSB-052        | SCSB-052M-0001-SO     | Pyrene                     | 0.029  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-052M-0001-SO     | Selenium                   | 0.53   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-053        | SCSB-053M-0001-SO     | 2-Methylnaphthalene        | 0.026  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Benzo(b)fluoranthene       | 0.061  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Benzo(k)fluoranthene       | 0.035  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Chrysene                   | 0.034  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Di-n-Butyl Phthalate       | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Fluoranthene               | 0.046  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Phenanthrene               | 0.033  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-053M-0001-SO     | Selenium                   | 0.72   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-054        | SCSB-054M-0001-SO     | Pyrene                     | 0.046  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-055        | SCSB-055M-0001-SO     | Bis(2-Ethylhexyl)phthalate | 0.140  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                    | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|----------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-055        | SCSB-055M-0001-SO     | Di-n-Butyl Phthalate       | 0.130  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-056        | SCSB-056M-0001-SO     | Di-n-Butyl Phthalate       | 0.140  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-056M-0001-SO     | Selenium                   | 0.46   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-037        | SCSB-080M-0001-SO     | Antimony                   | 0.67   | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-080M-0001-SO     | Di-n-Butyl Phthalate       | 0.092  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-080M-0001-SO     | Isophorone                 | 0.180  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-038        | SCSB-081M-0005-SO     | Mercury                    | 0.0076 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-081M-0005-SO     | Selenium                   | 0.45   | mg/kg | JV                      | J                       | DL-LOQ |
| SCSB-040        | SCSB-082M-0002-SO     | Di-n-Butyl Phthalate       | 0.100  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-082M-0002-SO     | Isophorone                 | 0.180  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-082M-0002-SO     | Mercury                    | 0.0053 | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-042        | SCSB-083M-0003-SO     | 2-Methylnaphthalene        | 0.058  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Bis(2-Ethylhexyl)phthalate | 0.150  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Di-n-Butyl Phthalate       | 0.130  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Isophorone                 | 0.200  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Mercury                    | 0.0051 | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Naphthalene                | 0.041  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-083M-0003-SO     | Phenanthrene               | 0.036  | mg/kg | J                       | J                       | DL-LOQ |
| SCSB-048        | SCSB-084D-0001-SO     | Di-n-Butyl Phthalate       | 0.200  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084D-0001-SO     | Ethylbenzene               | 0.021  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084D-0001-SO     | Xylene, (Total)            | 0.063  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| SCSB-048        | SCSB-084M-0001-SO     | 4,4'-DDE               | 0.0046 | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Acenaphthylene         | 0.047  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Anthracene             | 0.073  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Benzo(a)anthracene     | 0.160  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Benzo(a)pyrene         | 0.210  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Benzo(ghi)perylene     | 0.049  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Benzo(k)fluoranthene   | 0.260  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Carbazole              | 0.037  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Chrysene               | 0.240  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Dibenzo(a,h)anthracene | 0.022  | mg/kg | US                      | UJ                      | LCS    |
|                 | SCSB-084M-0001-SO     | Dibenzofuran           | 0.098  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Di-n-Butyl Phthalate   | 0.120  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Endosulfan II          | 0.0036 | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Fluoranthene           | 0.280  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Fluorene               | 0.047  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Indeno(1,2,3-cd)pyrene | 0.052  | mg/kg | JS                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Naphthalene            | 0.360  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Phenanthrene           | 0.270  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Selenium               | 1.7    | mg/kg | JV                      | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Toluene                | 0.037  | mg/kg | J                       | J                       | DL-LOQ |
|                 | SCSB-084M-0001-SO     | Xylene, (Total)        | 0.063  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location  | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Reason |
|------------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|
| Sediment Samples |                       |                        |        |       |                         |                         |        |
| SCSD-070         | SCSD-070M-0001-SD     | 1,2-Dichlorobenzene    | 0.044  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | 1,4-Dichlorobenzene    | 0.040  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | 2-Methylnaphthalene    | 0.043  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | 4,4'-DDT               | 0.011  | mg/kg | JV                      | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | 4,4'-DDT               | 0.0068 | mg/kg | Р                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | alpha-Chlordane        | 0.0023 | mg/kg | JP                      | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Benzo(a)anthracene     | 0.057  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Benzo(a)pyrene         | 0.067  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Benzo(b)fluoranthene   | 0.110  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Benzo(ghi)perylene     | 0.026  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Benzo(k)fluoranthene   | 0.047  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | beta-BHC               | 0.0012 | mg/kg | JP                      | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Chrysene               | 0.070  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Di-n-Butyl Phthalate   | 0.300  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Endosulfan Sulfate     | 0.0055 | mg/kg | Р                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Fluoranthene           | 0.089  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Heptachlor             | 0.0057 | mg/kg | Р                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Indeno(1,2,3-cd)pyrene | 0.026  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Naphthalene            | 0.029  | mg/kg | J                       | J                       | DL-LOQ |
|                  | SCSD-070M-0001-SD     | Phenanthrene           | 0.053  | mg/kg | J                       | J                       | DL-LOQ |

| Sample Location   | Sample<br>Location ID | Analyte                | Result  | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-------------------|-----------------------|------------------------|---------|-------|-------------------------|-------------------------|--------|-----|
| SCSD-070          | SCSD-070M-0001-SD     | Pyrene                 | 0.089   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-070M-0001-SD     | Selenium               | 1.4     | mg/kg | JV                      | J                       | DL-LOQ |     |
| SCSD-071          | SCSD-071M-0001-SD     | 4,4'-DDD               | 0.00061 | mg/kg | JP                      | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | 4,4'-DDT               | 0.00091 | mg/kg | JP                      | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Antimony               | 0.45    | mg/kg | JV                      | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Benzo(b)fluoranthene   | 0.046   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Chrysene               | 0.027   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Cyanide, Total         | 0.36    | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Di-n-Butyl Phthalate   | 0.110   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Fluoranthene           | 0.047   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Heptachlor             | 0.002   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Methoxychlor           | 0.0021  | mg/kg | JP                      | J                       | DL-LOQ | Р   |
|                   | SCSD-071M-0001-SD     | Nitroguanidine         | 0.0012  | mg/kg | Р                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Phenanthrene           | 0.027   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Pyrene                 | 0.040   | mg/kg | J                       | J                       | DL-LOQ |     |
|                   | SCSD-071M-0001-SD     | Selenium               | 0.68    | mg/kg | JV                      | J                       | DL-LOQ |     |
| Equipment Rinsate | Blank Samples         |                        |         |       |                         |                         |        |     |
| NA                | SCQC-001-0001-ER      | 3,3'-Dichlorobenzidine | 0.73    | mg/L  | UMQ                     | UJ                      | MS/MSD | LCS |
|                   | SCQC-001-0001-ER      | Benzyl Alcohol         | 0.74    | mg/L  | J                       | J                       | DL-LOQ |     |
|                   | SCQC-001-0001-ER      | Mercury                | 0.06    | mg/L  | J                       | J                       | DL-LOQ |     |
|                   | SCQC-002-0001-ER      | 3,3'-Dichlorobenzidine | 0.69    | mg/L  | UQM                     | UJ                      | MS/MSD | LCS |

| Sample Location | Sample<br>Location ID | Analyte                | Result | Units | Laboratory<br>Qualifier | Validation<br>Qualifier | Rea    | son |
|-----------------|-----------------------|------------------------|--------|-------|-------------------------|-------------------------|--------|-----|
| NA              | SCQC-002-0001-ER      | Benzyl Alcohol         | 0.7    | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-003-0001-ER      | 3,3'-Dichlorobenzidine | 0.69   | mg/L  | UQZ                     | UJ                      | LCS    |     |
|                 | SCQC-003-0001-ER      | Manganese              | 0.95   | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-004-0001-ER      | 3,3'-Dichlorobenzidine | 0.75   | mg/L  | UM                      | UJ                      | MS/MSD |     |
|                 | SCQC-004-0001-ER      | Chloromethane          | 0.81   | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-004-0001-ER      | Endosulfan I           | 0.01   | mg/L  | UQ                      | UJ                      | LCS    |     |
|                 | SCQC-004-0001-ER      | Methylene Chloride     | 0.61   | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-004-0001-ER      | Nickel                 | 1.4    | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-004-0001-ER      | Pyrene                 | 420    | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-005-0001-ER      | 2,4-Dinitrotoluene     | 0.56   | mg/L  | JP                      | J                       | DL-LOQ | Р   |
|                 | SCQC-005-0001-ER      | Endosulfan I           | 0.0098 | mg/L  | UQ                      | UJ                      | LCS    |     |
|                 | SCQC-005-0001-ER      | gamma-Chlordane        | 0.0076 | mg/L  | UM                      | UJ                      | MS/MSD |     |
|                 | SCQC-005-0001-ER      | Manganese              | 1.3    | mg/L  | J                       | J                       | DL-LOQ |     |
|                 | SCQC-005-0001-ER      | Methoxychlor           | 0.022  | mg/L  | JP                      | J                       | DL-LOQ | Р   |

Notes:

*DL* = detection limit *LCS* = laboratory control sample *LOQ* = level of quantitation µg/L = micrograms per kilogram mg/kg = milligrams per kilogram NA = not applicable

Laboratory Qualifier Definitions:

- *H* = Holding time exceeded
- J = Estimated value.
- *M* = *Matrix spike and/or matrix spike duplicate recovery outside of acceptance limits.*
- *P* = Concentration of analyte differs more than 40% between primary and confirmation analysis.
- *Q* = Laboratory control sample outside acceptance limits.
- *S* = Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
- *U* = Analyte concentration was not above the detection limit.
- V = Raised quanititation or reporting limit due to limited sample amount or dilution for matrix background interference.
- Y = Replicate/duplicate precision outside acceptance limits.
- Z = Calilbration criteria exceeded.

Validation Qualifier Defintions:

J = Estimated. The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

- U = Not detected. The analyte was analyzed for, but not detected above the detection limit.
- UJ = Not detected. The detection limits and quantitation limits are approximate.

Reason Code Description:

CCAL = For organic methods, continuing calibration evaluation criteria not met.

*DL-LOQ = Sample result between the detection limit and level of quantitation.* 

HT = Holding time requirement was not met.

*LCS* = *Laboratory control sample evaluation criteria not met.* 

MS/MSD = Matrix spike/matrix spike duplicate accuracy and/or precision criteria not met.

*MS/SD* = For inorganic methods, the matrix spike/matrix spike duplicate recovery is outside acceptance rang e.

P = The detected concentration difference between the primary and secondary column is greater than 40%.

This page intentionally left blank.

**MEC<sup>x</sup>** Data Validation Report

This page intentionally left blank.



U.S. Army Corps of Engineers Louisville District

> Ravenna Army Ammunition Plant Sand Creek Disposal Road Landfill and Open Demolition Area #1 2010 Sampling Ravenna, Ohio

# Final Data Validation Report Sample Delivery Groups: 81575, 81578, 81623, 81670, 82400, 82452

# April 2013

Prepared for: U.S. Army Corps of Engineers Louisville District Contract No. W912QR-08-D-0001 Delivery Order 0021

Prepared by: MEC<sup>x</sup>, LP 12269 East Vassar Drive Aurora, Colorado 80014



MEC<sup>X</sup>, LP (MEC<sup>X</sup>) has completed the Data Validation Report for Multiple Sample Delivery Groups from the Ravenna Army Ammunition Plant Sand Creek Disposal Road Landfill and Open Demolition Area #1, 2010 Sampling. Notice is hereby given that an independent technical review has been conducted to determine the usability and bias of the analytical data.

Significant concerns and the resolution are as follows:

None

As noted above, all concerns resulting from this independent technical review have been considered.

AWess

Elizabeth Wessling Senior Environmental Chemist MEC<sup>X</sup> Independent Technical Review Team Leader

Patti Meeks, Ph.D. Senior Environmental Chemist MEC<sup>X</sup> Independent Technical Review Team Member

The overall objective of the project described in this document was to define the nature and extent of contamination at the Sand Creek Disposal Road Landfill (Sand Creek) and Open Demolition Area #1 (ODA1) and complete a Remedial Investigation/Feasibility Study as applicable. Sampling was conducted by the Shaw Environmental and Infrastructure (Shaw) from September to November 2010. Samples collected are described in the table below.

|                        |    | ODA1     | ĺ         |    |          | Sand C    | Creek |          |           |  |  |
|------------------------|----|----------|-----------|----|----------|-----------|-------|----------|-----------|--|--|
| Analysis               |    | Soil     |           |    | Soil     |           |       | Sediment |           |  |  |
|                        | MI | Discrete | Duplicate | МІ | Discrete | Duplicate | МІ    | Discrete | Duplicate |  |  |
| Metals                 | 90 | 0        | 7         | 77 | 0        | 8         | 1     | 0        | 0         |  |  |
| Semivolatiles          | 11 | 0        | 2         | 77 | 0        | 8         | 1     | 0        | 0         |  |  |
| Explosives             | 90 | 0        | 7         | 77 | 0        | 8         | 1     | 0        | 0         |  |  |
| Volatiles              | 2  | 20       | 2         | 0  | 7        | 4         | 0     | 1        | 0         |  |  |
| Pesticides             | 10 | 0        | 2         | 8  | 0        | 4         | 1     | 0        | 0         |  |  |
| PCBs                   | 10 | 0        | 2         | 8  | 0        | 4         | 1     | 0        | 0         |  |  |
| Nitroguanidine         | 26 | 0        | 3         | 8  | 0        | 4         | 1     | 0        | 0         |  |  |
| Nitrocellulose         | 26 | 0        | 3         | 8  | 0        | 4         | 1     | 0        | 0         |  |  |
| Hexavalent<br>Chromium | 10 | 0        | 2         | 14 | 0        | 4         | 1     | 0        | 0         |  |  |
| Cyanide                | 10 | 0        | 2         | 8  | 0        | 4         | 1     | 0        | 0         |  |  |

This report details the findings of the primary sample data validation, analysis of field duplicate results, and the determination of data usability performed by MEC<sup>X</sup>, LP (MEC<sup>X</sup>) on the samples described above.

One or more of the following analyses were performed for the primary samples by CT Laboratories (CT) located in Baraboo, Wisconsin:

- United States Environmental Protection Agency (USEPA) SW-846 Method 6010C for metals
- USEPA SW-846 Methods 7470A/7471A for mercury
- USEPA SW-846 Method 8330B for explosive compounds
- USEPA SW-846 8330 Modified for nitroguanidine
- USEPA SW-846 9056 Modified for nitrocellulose
- USEPA SW-846 Method 8260B for volatile organic compounds (VOCs)
- USEPA SW-846 Method 8270C for semivolatile compounds (SVOCs)
- USEPA SW-846 Method 8081 for pesticides
- USEPA SW-846 Method 8082 for polychlorinated biphenyls (PCBs)
- USEPA SW-846 Method 7196A for hexavalent chromium
- USEPA SW-846 Method 9012 for cyanide

A total of 18 quality assurance soil samples were submitted to RTI Laboratories (RTI) in Livonia, Michigan. The samples were analyzed for one or more of the aforementioned analyses and the results are discussed in a separate report, *Ravenna Army Ammunition Plant Sand Creek Disposal Road Landfill and Open Demolition Area #1 2010 Sampling Chemical Quality Assurance Report.* 

Specific concerns regarding the data are noted below:

- 3 hexavalent chromium DLs exceeded the Facility-Wide Cleanup Goal (FWCUG) of 1.64 mg/Kg, at 1.9 mg/Kg.
- 5 benzo(a)pyrene DLs nominally exceeded the FWCUG of 0.023 mg/Kg, at 0.022 mg/Kg.
- Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time.
- Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data.
- The actual temperature upon receipt was not noted by the laboratory. The temperature was noted only as being below some temperature (e.g. <4.2°C).
- All explosive extractions were performed beyond the holding time.

Some data were rejected due to matrix spike/matrix spike duplicate recovery and calibration outliers. Rejected data are not usable. Results with DLs that exceed project criteria may be usable for their intended purposes; however, it is dependent on the final data user to make this determination on a case-by-case basis. All remaining results are usable for their intended purposes as qualified by MEC<sup>X</sup>.

## TABLE OF CONTENTS\_

| EXECUTIVE SUMMARY                                         | I      |
|-----------------------------------------------------------|--------|
|                                                           |        |
| TABLES                                                    | V      |
| APPENDICES                                                | VI     |
| ACRONYMS AND ABBREVIATIONS                                | .VII   |
| 1. INTRODUCTION                                           | 1      |
| 1.1 PROJECT OVERVIEW                                      | 1      |
| 1.2 PREVIOUS ACTIVITIES AND DATA                          | 2      |
| 2. DESCRIPTION OF WORK PERFORMED                          | 3      |
| 2.1 DATA VALIDATION PROCESS                               | 3      |
| 2.2 DATA VALIDATION QUALIFIERS                            | 4      |
| 2.3 DATA VALIDATION FLAGGING CODES                        | 4      |
| 3. DATA ACQUISITION ACTIVITIES                            | 6      |
| 3.1 SAMPLE COLLECTION                                     | 6      |
| 3.2 SAMPLE ANALYSIS                                       | 6      |
| 3.3 DATA COMPLETENESS                                     | 6      |
| 3.4 SAMPLE PRESERVATION AND HOLDING TIME REQUIREMENTS     | 6      |
| 3.5 DETECTION LIMIT REQUIREMENTS                          | /      |
| 4. OPEN DEMOLITION AREA #1                                | 8      |
| 4.1 PREVIOUS ACTIVITIES AND DATA                          | 8      |
| 4.2 CURRENT INVESTIGATION                                 | 8      |
| 4.2.1 Sample Collection                                   | 9      |
| 4.2.2 Data Completeness                                   | 9<br>0 |
| 4.2.3 Preservation and holding Time Requirements          | 10     |
| 4.3 ODA1 DATA QUALITY EVALUATION                          | .11    |
| 4.3.1 Explosives                                          | .11    |
| 4.3.2 Propellants                                         | .13    |
| 4.3.3 Polychlorinated Biphenyls (PCBS)                    | .15    |
| 4.3.4 Pesticides                                          | .16    |
| 4.3.5 Semivolatile Organic Compounds (SVOCs)              | .18    |
| 4.3.6 Volatile Organic Compounds (VOCs)                   | .20    |
| 4.3.7 Metals                                              | .23    |
| 4.5.6 General Chemistry - Hexavalent Chromium and Cyanide | 32     |
| 4.5 PRIMARY AND FIELD DUPLICATE COMPARISON SUMMARY        | .33    |
| 4.6 SPECIFIC DATA CONCERNS                                | .33    |
| 5 SAND CREEK                                              | 35     |
| 5.1 PREVIOUS ACTIVITIES AND DATA                          | 35     |
| 5.2 CURRENT INVESTIGATION.                                | .35    |
| 5.2.1 Sample Collection                                   | .36    |
| 5.2.2 Data Completeness                                   | .36    |
| 5.2.3 Preservation and Holding Time Requirements          | .36    |
| 5.2.4 Detection Limit Requirements                        | .37    |
| 5.3 SAND CREEK DATA QUALITY EVALUATION                    | .38    |

| 5.3.1 Explosives                                          | 38 |
|-----------------------------------------------------------|----|
| 5.3.2 Propellants                                         | 40 |
| 5.3.3 Polychlorinated Biphenyls (PCBS)                    | 42 |
| 5.3.4 Pesticides                                          | 43 |
| 5.3.5 Semivolatile Organic Compounds (SVOCs)              | 45 |
| 5.3.6 Volatile Organic Compounds (VOCs)                   | 48 |
| 5.3.7 Metals                                              | 50 |
| 5.3.8 General Chemistry - Hexavalent Chromium and Cyanide | 57 |
| 5.4 DATA USABILITY                                        | 59 |
| 5.5 PRIMARY AND FIELD DUPLICATE COMPARISON SUMMARY        | 59 |
| 5.6 SPECIFIC DATA CONCERNS                                | 60 |
| 6. DATA USABILITY                                         | 62 |
| 7. CONCLUSIONS AND RECOMMENDATIONS                        | 63 |
| 8. REFERENCES                                             | 64 |

# TABLES

| Table 1. | Sample analysis counts by Area of Concern                      | 1  |
|----------|----------------------------------------------------------------|----|
| Table 2. | Qualification code reference table                             | 4  |
| Table 3. | Holding Times                                                  | 6  |
| Table 4. | Total sample count for ODA1                                    | 8  |
| Table 5. | ODA1 validated samples and methods                             | 8  |
| Table 6. | ODA1 field duplicate samples                                   | 9  |
| Table 7. | ODA1 metals field duplicate outliers                           |    |
| Table 8. | Analytical completeness for ODA1 validated primary data        | 32 |
| Table 9. | ODA1 primary/field duplicate sample comparison summary         |    |
| Table 10 | . Total sample count for Sand Creek                            | 35 |
| Table 11 | . Sand Creek validated samples and methods                     | 35 |
| Table 12 | Sand Creek field duplicate samples                             |    |
| Table 13 | Analytical completeness for Sand Creek validated primary data  | 59 |
| Table 14 | . Sand Creek primary/field duplicate sample comparison summary | 60 |

### **APPENDICES**

| Appendix A | Qualified Sample Forms Is                  |
|------------|--------------------------------------------|
| Appendix B | Sample Qualification Summary               |
| Appendix C | Primary/Field Duplicate Sample Comparisons |
| Appendix D | Validator Checklists                       |

## ACRONYMS AND ABBREVIATIONS

| AOC    | Area of Concern                                |
|--------|------------------------------------------------|
| ARNG   | Army National Guard                            |
| °C     | Degrees Celsius                                |
| ССВ    | Continuing Calibration Blank                   |
| CCC    | Calibration Check Compounds                    |
| CCV    | Continuing Calibration Verification            |
| CT     | CT Laboratories                                |
| %D     | Percent Difference                             |
|        | Detection Limit                                |
| DoD    | Department of Defense                          |
| FDD    | Electronic Data Deliverable                    |
| FWCUG  | Facility-Wide Cleanup Goals                    |
| FWOAPP | Facility-Wide Quality Assurance Project Plan   |
| GC/MS  | Gas Chromatography/Mass Spectrometry           |
| ICSA   | Interference Check Sample A                    |
| ICSAB  | Interference Check Sample AB                   |
|        | Initial Calibration Verification               |
|        | Inductively Coupled Plasma                     |
|        | Laboratory Control Sample                      |
|        | Laboratory Control Sample Duplicate            |
|        | Limit of Detection                             |
|        | Limit of Ouantitation                          |
|        |                                                |
| MRI    | Method Reporting Limit                         |
| MS     | Matrix Sniko                                   |
| MSD    | Matrix Spike Dunlicate                         |
|        | Open Demolition Area #1                        |
| PCB    | Polychlorinated Binhenyl                       |
|        | Quality Assurance                              |
| OAPP   | Quality Assurance Project Plan                 |
|        | Quality Control                                |
|        | Quality Systems Manual                         |
| RPD    | Relative Percent Difference                    |
| RRE    | Relative Response Factor                       |
| RSD    | Relative Standard Deviation                    |
| RSI    | Regional Screening Level                       |
| RTI    | RTLL aboratories                               |
| RV/AAP | Ravenna Army Ammunition Plant                  |
|        | Science Applications International Corporation |
|        | Sampling and Analysis Plan                     |
| SDC    | Sample Delivery Group                          |
| Shaw   | Shaw Environmental and Infrastructure          |
| Shaw   | Sustam Parformance Check Compound              |
| SVOC   | Semivolatile Organic Compounds                 |
|        | United State Army Corps of Engineers           |
|        | United State Environmental Distoction Access   |
| VOC    | Volatile Organic Compounds                     |
| VUC    | volatile Organic Compounds                     |

# 1. INTRODUCTION

### 1.1 PROJECT OVERVIEW

The overall objective of the project described in this document was to define the nature and extent of contamination at the Sand Creek Disposal Road Landfill (Sand Creek) and Open Demolition Area #1 (ODA1) and complete a Remedial Investigation/Feasibility Study as applicable. Sampling was conducted by the Shaw Environmental and Infrastructure (Shaw) from September to November 2010. Samples collected are described in the table below.

|                        |    | ODA1     | 1         | Sand Creek |          |           |          |          |           |  |  |  |  |
|------------------------|----|----------|-----------|------------|----------|-----------|----------|----------|-----------|--|--|--|--|
| Analysis               |    | Soil     |           |            | Soil     |           | Sediment |          |           |  |  |  |  |
|                        | MI | Discrete | Duplicate | МІ         | Discrete | Duplicate | MI       | Discrete | Duplicate |  |  |  |  |
| Metals                 | 90 | 0        | 7         | 77         | 0        | 8         | 1        | 0        | 0         |  |  |  |  |
| Semivolatiles          | 11 | 0        | 2         | 77         | 0        | 8         | 1        | 0        | 0         |  |  |  |  |
| Explosives             | 90 | 0        | 7         | 77         | 0        | 8         | 1        | 0        | 0         |  |  |  |  |
| Volatiles              | 2  | 20       | 2         | 0          | 7        | 4         | 0        | 1        | 0         |  |  |  |  |
| Pesticides             | 10 | 0        | 2         | 8          | 0        | 4         | 1        | 0        | 0         |  |  |  |  |
| PCBs                   | 10 | 0        | 2         | 8          | 0        | 4         | 1        | 0        | 0         |  |  |  |  |
| Nitroguanidine         | 26 | 0        | 3         | 8          | 0        | 4         | 1        | 0        | 0         |  |  |  |  |
| Nitrocellulose         | 26 | 0        | 3         | 8          | 0        | 4         | 1        | 0        | 0         |  |  |  |  |
| Hexavalent<br>Chromium | 10 | 0        | 2         | 14         | 0 4      |           | 1        | 0        | 0         |  |  |  |  |
| Cyanide                | 10 | 0        | 2         | 8          | 0        | 4         | 1        | 0        | 0         |  |  |  |  |

 Table 1. Sample analysis counts by Area of Concern

One or more of the following analyses were performed for the primary samples by CT Laboratories (CT) located in Baraboo, Wisconsin:

- United States Environmental Protection Agency (USEPA) SW-846 Method 6010C for metals
- USEPA SW-846 Methods 7470A/7471A for mercury
- USEPA SW-846 Method 8330B for explosive compounds
- USEPA SW-846 8330 Modified for nitroguanidine
- USEPA SW-846 9056 Modified for nitrocellulose
- USEPA SW-846 Method 8260B for volatile organic compounds (VOCs)
- USEPA SW-846 Method 8270C for semivolatile compounds (SVOCs)
- USEPA SW-846 Method 8081 for pesticides
- USEPA SW-846 Method 8082 for polychlorinated biphenyls (PCBs)
- USEPA SW-846 Method 7196A for hexavalent chromium
- USEPA SW-846 Method 9012 for cyanide

A total of 18 quality assurance soil samples were submitted to RTI Laboratories (RTI) in Livonia, Michigan. The samples were analyzed for one or more of the aforementioned analyses and the results are discussed in a separate report, *Ravenna Army Ammunition Plant Sand Creek* 

Disposal Road Landfill and Open Demolition Area #1 2010 Sampling Chemical Quality Assurance Report.

This report describes findings of the primary sample data validation, analysis of primary/field duplicate results, and the determination of data usability performed by MEC<sup>X</sup>, LP (MEC<sup>X</sup>) on the site samples reported in seven sample delivery groups (SDGs) from CT.

### 1.2 PREVIOUS ACTIVITIES AND DATA

The following summary was adapted from the Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio (FWQAPP) prepared by Science Applications International Corporation (SAIC), March 2001 and the Final Sampling and Analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site (SAP) prepared by Shaw Environment and Infrastructure (Shaw), November 2010.

Located in northeastern Ohio on approximately 21,000 acres, Ravenna Army Ammunitions Plant (RVAAP) was established in 1940 to load, store, and demilitarize conventional artillery ammunition, bombs, mines, fuses and boosters, primers and percussion elements. Originally RVAAP operated as two separate units, the Portage Ordnance Depot and the Ravenna Ordnance Plant. During World War II, a contractor operated the Ravenna Ordnance Depot and the government operated the Portage Ordnance Depot. Ordnance production and storage for World War II continued until August 1945, at which time the facility was renamed the Ravenna Arsenal, and the government assumed control of all operations. Then, from 1951 to 1999, the entire facility was operated by contractors. Ordnance production at the facility was phased out and sent to Plum Brook Ordnance Works in Sandusky, Ohio and Keystone Ordnance Works in Meadville, Pennsylvania. All production at the facility had ceased by 1957 and the plant was placed on standby. In 1961, the plant was operational for seven months, processing and performing explosive melt-out of bombs. After deactivation late in 1961, the facility was renamed RVAAP. From mid-1968 until 1971, the plant was reactivated to load, assemble, and pack munitions on three load lines and two component lines. Operations ceased at Load Lines 1, 2, 3, and 4 in 1971; however, the Lines were reactivated to perform demilitarization operations for several months in 1973 and 1974. In 1992, RVAAP was again placed on "Inactive" status. Salvage and demolition operations started in 1998 and administrative control of the facility was transferred to the Army National Guard (ARNG) in 1999.

Information specific to ODA1 and Sand Creek is provided in sections 4.1 and 5.1 of this report, respectively.

Samples collected in association with the project described in this document were from soils and sediments collected from Sand Creek and soils collected from ODA1. The samples were collected in order to provide the additional characterization of the nature and extent of contamination at Sand Creek and ODA1.

## 2. DESCRIPTION OF WORK PERFORMED

This section describes the data verification and data validation procedures used during the evaluation of the site samples reported in SDGs 81575, 81578, 81584, 81623, 81670, 82400, and 82452 from CT.

### 2.1 DATA VALIDATION PROCESS

Level IV validation was performed on 10% of the total number of primary samples collected. Primary samples with associated QA and field duplicate samples were prioritized for Level IV validation; however, not all samples validated at Level IV had associated QA or field duplicate samples. Samples validated at Level IV for ODA1 are listed in Section 4.2 and the samples validated at Level IV for Sand Creek are listed in Section 5.2.

Data validators assessed results based on the FWQAPP, the SAP, *Department of Defense Quality Systems Manual for Environmental Laboratories Version 4.1* (DoD QSM), FWQAPP, the specific EPA methods, the *National Functional Guidelines for Superfund Organic Methods Data Review* (2008), and the *National Functional Guidelines for Inorganic Data Review* (2004). The following were reviewed for Level IV validation:

- Sample management (collection techniques, sample containers, preservation, handling, transport, chain-of-custody, holding times),
- Calibration data summary forms (initial and continuing),
- Method reporting limit (MRL) standard recoveries,
- Blank sample results (method, calibration, equipment, field),
- Laboratory control sample (LCS) or LCS/LCS duplicate (LCS/LCSD) recoveries and/or precision,
- Laboratory duplicate precision,
- Surrogate recoveries (if applicable),
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and precision,
- Post digestion spike recoveries,
- Field QA/QC sample results,
- Inductively coupled plasma (ICP) interference check sample (ICS) recoveries,
- Serial dilution precision,
- Gas Chromatography/Mass Spectrometry (GC/MS) tuning, if a GC/MS is used,
- Internal standards performance (if applicable),
- Sample results verification,
- Target compound identification,
- Raw data.

Blanks – method, calibration, trip, field and equipment – were assessed using the National Functional Guidelines 5x and 10x rules. Target compounds detected in the samples at concentrations less than or equal to 5x a blank detect and common laboratory contaminant compounds detected in the samples at concentrations less than or equal to 10x a blank detect

were qualified as nondetected. Nondetected results were reported at the limit of detection (LOD) if the original detect was less than or equal to the LOD, or reported at the level of contamination if the original detect was greater than the LOD.

#### 2.2 DATA VALIDATION QUALIFIERS

Data qualifiers, as defined below, were applied following the FWQAPP and the DoD QSM:

- U Nondetected at the limit of detection The analyte was analyzed for but not definitively detected.
- J Estimated

The identification of the analyte is acceptable but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision. Additionally used to identify detects reported below the limit of quantitation (LOQ).

#### N Identity Presumptive and Tentative

There is presumptive evidence that the analyte is present but it has not been confirmed. There is an indication that the reported analyte is present; however, all quality control requirements necessary for confirmation were not met.

R Rejected

Data are considered to be rejected and shall not be used for environmental decisions.

#### 2.3 DATA VALIDATION FLAGGING CODES

The qualification codes in the following table may have been used to flag the data described in this document: Sample qualifications are summarized in Appendix B. All qualifications and associated qualification codes have been entered into the electronic data deliverables (EDD) received from the laboratories and may be reviewed in the Appendix A of this report.

| Qualifier | Organics                                                                          | Inorganics                                                                                    |
|-----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                      | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                         | The sequence or number of standards used for the calibration was incorrect.                   |
| С         | Calibration %RSD or %D was noncompliant.<br>MRL recovery outlier of missing MRL.  | Correlation coefficient was noncompliant.<br>MRL recovery outlier of missing MRL.             |
| R         | Calibration RRF was noncompliant.                                                 | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results.    | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike<br>Duplicate %R was not within control limits. | Laboratory Control Sample %R was not<br>within control limits.                                |
| Q         | MS/MSD recovery was poor or RPD high.                                             | MS recovery was poor.                                                                         |
| E         | Not applicable                                                                    | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                                 | ICP ICS results were unsatisfactory.                                                          |
| A         | Not applicable.                                                                   | ICP Serial Dilution %D were not within control                                                |

 Table 2.
 Qualification code reference table

| Qualifier | Organics                                                                                                                                   | Inorganics                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                            | limits.                                                                                                                                    |
| М         | Tuning (BFB or DFTPP) was noncompliant.                                                                                                    | ICPMS tuning was noncompliant                                                                                                              |
| Т         | Presumed contamination as indicated by the trip blank results.                                                                             | Not applicable.                                                                                                                            |
| +         | False positive – reported compound was not present.                                                                                        | False positive – reported compound was not present.                                                                                        |
| -         | False negative – compound was present but not reported.                                                                                    | False negative – compound was present but not reported.                                                                                    |
| F         | Presumed contamination as indicated by the FB or ER results.                                                                               | Presumed contamination as indicated by the FB or ER results.                                                                               |
| \$        | Reported result or other information was incorrect.                                                                                        | Reported result or other information was<br>incorrect.                                                                                     |
| ?         | TIC identity or reported retention time has been changed.                                                                                  | Not applicable.                                                                                                                            |
| D         | The analysis with this flag should not be<br>used because another more technically<br>sound analysis is available.                         | The analysis with this flag should not be used<br>because another more technically sound<br>analysis is available.                         |
| Ρ         | Instrument performance for pesticides was poor.                                                                                            | Post Digestion Spike recovery was not within<br>control limits.                                                                            |
| *11, *111 | A deficiency was found that has been<br>described in the "Sample Management,"<br>section (*II) or the "Method Analyses"<br>section (*III). | A deficiency was found that has been<br>described in the "Sample Management,"<br>section (*II) or the "Method Analyses" section<br>(*III). |

# 3. DATA ACQUISITION ACTIVITIES

## 3.1 SAMPLE COLLECTION

Soil samples were collected from September to November 2010. The samples were submitted under chain-of-custody to the primary laboratory, CT.

Unless otherwise noted in Sections 4.2.1 and 5.2.1, the chains-of-custody associated with the samples validated at Level IV were appropriately signed by both field and/or laboratory personnel with all samples and analyses accounted for, cooler custody seals intact, and within the temperature limits of  $4\pm 2^{\circ}$ C. All documentation regarding sample handling as presented in the case narratives, chains-of-custody, correspondence, and sample condition upon receipt forms was evaluated.

### 3.2 SAMPLE ANALYSIS

CT, the primary laboratory, analyzed the samples shown in Table 1, and 9 equipment rinsate samples, 1 field blank, and 14 trip blank samples. Analyses performed by CT included USEPA SW-846 Method 6010C for various metals, USEPA SW-846 Methods 7470A/7471A for mercury, USEPA SW-846 Method 8270C for SVOCs, USEPA SW-846 Method 8081 for pesticides, USEPA SW-846 Method 8082 for PCBs, USEPA SW-846 Method 8260B for VOCs, USEPA Method SW-846 8330B for explosive compounds, USEPA Method SW-846 8330 Modified for nitroguanidine, USEPA Method SW-846 9056 Modified for nitrocellulose, USEPA Method SW-846 7196A for hexavalent chromium, and USEPA SW-846 Method 9012A for cyanide.

## 3.3 DATA COMPLETENESS

Data completeness for the project described in this report was found to be generally acceptable as no deliverables were missing.

## 3.4 SAMPLE PRESERVATION AND HOLDING TIME REQUIREMENTS

Unless noted otherwise in Sections 4.2.3 and 5.2.3, all method preservation requirements were met. The extraction and analytical holding times for the analyses reviewed in this document are as follows:

|             |                | Holding Time |         |          |          |  |  |  |  |  |
|-------------|----------------|--------------|---------|----------|----------|--|--|--|--|--|
| Method      | Analysis       | Extra        | action  | Ana      | lysis    |  |  |  |  |  |
|             |                | Water        | Soil    | Water    | Soil     |  |  |  |  |  |
| 6010C       | Metals         | N/A          | N/A     | 180 days | 180 days |  |  |  |  |  |
| 7470A/7471A | Mercury        | N/A          | N/A     | 28 days  | 28 days  |  |  |  |  |  |
| 8260B       | VOCs           | N/A          | N/A N/A |          | 14 days  |  |  |  |  |  |
| 8270C       | SVOCs          | 7 days       | 14 days | 40 days  | 40 days  |  |  |  |  |  |
| 8081        | Pesticides     | 7 days       | 14 days | 40 days  | 40 days  |  |  |  |  |  |
| 8082        | PCBs           | 7 days       | 14 days | 40 days  | 40 days  |  |  |  |  |  |
| 8330B       | Explosives     | 7 days       | 14 days | 40 days  | 40 days  |  |  |  |  |  |
| 8330 M      | Nitroguanidine | 7 days       | 14 days | 40 days  | 40 days  |  |  |  |  |  |

 Table 3.
 Holding Times

|        |                     | Holding Time |         |          |          |  |  |  |  |  |  |
|--------|---------------------|--------------|---------|----------|----------|--|--|--|--|--|--|
| Method | Analysis            | Extra        | action  | Ana      | lysis    |  |  |  |  |  |  |
|        |                     | Water        | Soil    | Water    | Soil     |  |  |  |  |  |  |
| 9056 M | Nitrocellulose      | N/A          | N/A     | 28 days  | 28 days  |  |  |  |  |  |  |
| 7196A  | Hexavalent chromium | 24 hours     | 30 days | 24 hours | 24 hours |  |  |  |  |  |  |
| 9012A  | Cyanide             | N/A          | N/A     | 14 days  | 14 days  |  |  |  |  |  |  |

Unless noted otherwise in Sections 4.2.3 and 5.2.3, all holding times were met.

#### 3.5 DETECTION LIMIT REQUIREMENTS

**Please note**: All hardcopy and EDD report nondetected results to the detection limit (DL). Correspondence with E. Korthals of CT indicated the laboratory had not completed its change to the LOQ/LOD/DL reporting system at the time these samples were analyzed. The DLs and LODs were appropriately set, but the laboratory information management system incorrectly reported nondetects to the DL instead of the LOD.

As per the SAP, the site specific cleanup goals (FWCUGs) for the Residential Farmer Adult, Residential Farmer Child, and National Guard Trainee, presented in the *Final Facility-Wide Human Health Remediation Goals at the RVAAP* (2010) were applicable to the ODA1 and Sand Creek sites. Due to the reporting issue noted above, MEC<sup>×</sup> compared to the detection limit (DL) for the nondetected analytes to the most stringent FWCUG for each nondetected analyte. As per the SAP, if no FWCUG was listed, the USEPA Region 9 Residential Regional Screening Level (RSL) was utilized.

Some DLs exceeded project criteria. These are listed in Sections 4.2.4 and 5.2.4. Results with DLs that exceed project criteria may be usable for their intended purposes; however, it is dependent on the final data user to make this determination on a case-by-case basis.

# 4. OPEN DEMOLITION AREA #1

## 4.1 PREVIOUS ACTIVITIES AND DATA

ODA1 is approximately 6-acres in size and was used in the 1940s for open burning and open detonation of munitions, explosives and associated materials. Visual inspections of the site indicate that burning and detonation activities may have been conducted in small areas in the plane storage area adjacent to ODA1. The open burn sites at ODA1 may have been cleared by scraping debris and scrap to the periphery, using heavy equipment. Since the burning and detonation activities ceased, ODA1 has been unused although some ARNG troop training has occurred at the surrounding plane storage site since 1969.

A Phase I remedial Investigation was conducted at ODA1 by SAIC in 1999 and an interim removal action was performed by MKM Engineers (MKM) in 2000 and 2001. Shaw prepared a *Data Quality Objective Report* based on these investigations and determined additional sampling was necessary to address data gaps.

### 4.2 CURRENT INVESTIGATION

Samples collected in association with the project described in this document were from soils collected from ODA1. The samples were collected in order to provide the additional characterization of the nature and extent of contamination at ODA1.

| Matrix | Primary<br>Samples | Field<br>Duplicates | Split<br>Samples | Explosives | Propellants | Pesticides | PCBs | SVOCs | VOCs | Metals | Cr <sup>6+</sup> | Cyanide |
|--------|--------------------|---------------------|------------------|------------|-------------|------------|------|-------|------|--------|------------------|---------|
| Soil   | 110                | 9                   | 7                | 97         | 29          | 12         | 12   | 13    | 24   | 97     | 12               | 12      |

**Table 4**. Total sample count for ODA1

| Table 5. | ODA1 | validated | sampl | es and | methods |
|----------|------|-----------|-------|--------|---------|
|----------|------|-----------|-------|--------|---------|

| Sample ID          | SDG   | Matrix | Collected  | Explosives | Propellants | Pesticides | PCBs | SVOCs | VOCs | Metals | Cr <sup>6+</sup> | Cyanide |
|--------------------|-------|--------|------------|------------|-------------|------------|------|-------|------|--------|------------------|---------|
| DA1SB-055M-0001-SO | 81543 | Soil   | 9/22/2010  | Х          | -           | -          | 1    |       |      | Х      |                  |         |
| DA1SB-059D-0201-SO | 81543 | Soil   | 9/23/2010  |            |             |            | -    |       | х    | -      |                  |         |
| DA1SB-059M-0201-SO | 81543 | Soil   | 9/23/2010  | Х          | Х           | Х          | Х    | Х     |      | Х      | х                | х       |
| DA1SB-063M-0202-SO | 81543 | Soil   | 9/23/2013  | х          | Х           | -          | -    |       |      | х      |                  |         |
| DA1SB-068D-0201-SO | 81613 | Soil   | 9/24/2010  |            |             |            |      |       | х    |        |                  |         |
| DA1SB-068M-0201-SO | 81613 | Soil   | 9/24/2010  | х          | Х           | -          | -    | х     |      | х      |                  |         |
| DA1SB-070D-0201-SO | 81613 | Soil   | 9/24/2010  |            | -           | -          | -    |       | х    | -      |                  |         |
| DA1SB-070M-0204-SO | 81613 | Soil   | 9/24/2010  | х          | х           |            | -    |       |      | -      |                  |         |
| DA1SB-072M-0204-SO | 81613 | Soil   | 9/24/2010  | Х          | Х           |            |      |       |      |        |                  |         |
| DA1SB-074M-0202-SO | 82400 | Soil   | 11/10/2010 | х          | х           |            |      |       |      |        |                  |         |

| Sample ID          | SDG   | Matrix | Collected  | Explosives | Propellants | Pesticides | PCBs | SVOCs | VOCs | Metals | Cr <sup>6+</sup> | Cyanide |
|--------------------|-------|--------|------------|------------|-------------|------------|------|-------|------|--------|------------------|---------|
| DA1SS-050M-0201-SO | 81613 | Soil   | 9/27/2010  | х          | Х           | 1          | -    |       |      |        |                  |         |
| DA1SS-054M-0201-SO | 82400 | Soil   | 11/10/2010 | х          | Х           |            | -    |       |      |        |                  |         |

#### Table 6. ODA1 field duplicate samples

| Duplicate Sample ID | Parent Sample      |  |
|---------------------|--------------------|--|
| DA1SB-081M-0203-SO  | DA1SB-059M-0203-SO |  |
| DA1SB-082M-0202-SO  | DA1SB-063M-0202-SO |  |
| DA1SB-083M-0202-SO  | DA1SB-065M-0202-SO |  |
| DA1SB-084D-0201-SO  | DA1SB-068D-0201-SO |  |
| DA1SB-084M-0201-SO  | DA1SB-068M-0201-SO |  |
| DA1SB-085D-0204-SO  | DA1SB-070D-0203-SO |  |
| DA1SB-085M-0204-SO  | DA1SB-070M-0204-SO |  |
| DA1SB-086M-0204-SO  | DA1SB-072M-0204-SO |  |
| DA1SS-080M-0201-SO  | DA1SS-050M-0201-SO |  |

### 4.2.1 Sample Collection

Except as noted below, no sample collection issues were noted.

| SDG   | Issue                                                                              |  |  |
|-------|------------------------------------------------------------------------------------|--|--|
|       | The sample receipt temperatures were listed by the laboratory only as <## °C (e.g. |  |  |
| All   | <2.6°C). As the samples were not received above 6.0°C and were not noted to be     |  |  |
|       | frozen or damaged, no qualifications were applied.                                 |  |  |
| Most  | Some corrections made to the chain-of-custody by the sampler or by the laboratory  |  |  |
|       | were overwritten and some correction were not initialed or dated.                  |  |  |
| 81575 | Some collection times listed on the chain-of-custody did not match the sample      |  |  |
|       | containers. Shaw advised the laboratory to use the times listed on the sample      |  |  |
|       | containers.                                                                        |  |  |
|       | Sample DA1SB-070M-0204-SO was listed on the chain-of-custody but was not           |  |  |
| 81623 | received. As per Shaw, volume from the field duplicate, DA1SB-085M-0204-SO was     |  |  |
|       | used for the DA1SB-070M-0204-SO sample analyses. The field duplicate was not       |  |  |
|       | considered a valid replacement for the parent sample.                              |  |  |

### 4.2.2 Data Completeness

Data completeness for the project described in this report was found to be generally acceptable as no deliverables were missing from the SDGs reviewed.

### 4.2.3 Preservation and Holding Time Requirements

All method preservation requirements were met. Except as noted in the table below, all holding times, as listed in Table 3, were met. Results listed in the table below were qualified as estimated, "UJ," for nondetects and estimated with a potential negative bias, "J-," for detects. The qualified results were coded with an "H" qualification code.

| Samples qualified for exceeded holding time |                |                     |                                      |  |
|---------------------------------------------|----------------|---------------------|--------------------------------------|--|
| Method                                      | Analytes       | Sample              | Days past extraction<br>holding time |  |
| 8330B                                       | All            | DA1SB-055M-0001-SO  | 5                                    |  |
|                                             |                | DA1SB-059M-0201-SO, | 9                                    |  |
|                                             |                | DA1SB-063M-0202-SO  |                                      |  |
|                                             |                | DA1SB-068M-0201-SO  |                                      |  |
| 8330B                                       | All            | DA1SB-070M-0204-SO  | 9                                    |  |
|                                             |                | DA1SB-072M-0204-SO  |                                      |  |
| 8330B                                       | All            | DA1SS-050M-0201-SO  | 6                                    |  |
| 8330                                        | Nitroguanidine | DA1SB-059M-0201-SO  | 9                                    |  |
| 8270C                                       | All            | DA1SB-059M-0201-SO  | 8                                    |  |
|                                             |                | DA1SB-068M-0201-SO  | 7                                    |  |
| 8330B                                       | All            | DA1SB-074M-0202-SO  | 1                                    |  |
| 8330                                        | Nitroguanidine | DA1SB-068M-0201-SO  | 10                                   |  |
| 8330                                        | Nitroguanidine | DA1SB-063M-0202-SO  | 9                                    |  |
| 9012                                        | Cyanide        | DA1SB-059M-0201-SO  | 16                                   |  |

#### **4.2.4 Detection Limit Requirements**

As per the SAP, the site specific cleanup goals (FWCUGs) for the Residential Farmer Adult, Residential Farmer Child, and National Guard Trainee, presented in the *Final Facility-Wide Human Health Remediation Goals at the RVAAP* (2010) were applicable to the ODA1 and Sand Creek sites. Due to the reporting issue noted in Section 3.5, MEC<sup>X</sup> compared the DL for the nondetected analytes to the most stringent FWCUG for each nondetected analyte. As per the SAP, if no FWCUG was listed, the USEPA Region 9 Residential Regional Screening Level (RSL) was utilized.

These analytes had DLs which exceeded the FWCUG:

- 2 benzo(a)pyrene DLs (nominally exceeded by 0.01 mg/Kg)
- 1 hexavalent chromium DL exceeded the control limit of 1.9 mg/Kg by 0.26 mg/Kg

No analytes had DLs which exceeded the RSLs:

The following had no FWCUG or RSL:

- 1 metal: potassium (nutrient)
- 8 pesticide compounds: alpha-chlordane, chlordane, endosulfan I, endosulfan II, endosulfan sulfate, endrin aldehyde, endrin ketone, and gamma-chlordane
- 3 VOCs: chloroethane, cis-1,3-dichloropropene, trans-1,3-dichloropropene
- 2 PCBS: Aroclor 1262, Aroclor-1268
- 2 VOCs: cis-1,3-dichloropropene, trans-1,3-dichloropropene
- 9 SVOC compounds: acenaphthylene, benzo(g,h,i)perylene, dimethyl phthalate, phenanthrene, 1,3-dichlorobenzene, 2-nitrophenol, 3-nitroaniline, 4-bromophenyl phenyl ether, 4-chlorophenyl phenyl ether

Results with DLs that exceed project criteria may be usable for their intended purposes; it is dependent on the final data user to make this determination on a case-by-case basis.

#### 4.3 ODA1 DATA QUALITY EVALUATION

#### 4.3.1 Explosives

CT analyzed 90 primary MI soil samples, 7 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for explosive compounds by USEPA SW-846 Method 8330B. MEC<sup>X</sup> validated 9 soil samples at Level IV.

- Detection Limit (DL) studies were not evaluated as part of this project.
- Calibration:
  - Initial calibration average percent relative standard deviations (%RSDs) were within the control limits listed in DoD QSM Table F-3 of ≤20%, or the linear regression r<sup>2</sup> values were ≥0.990.
  - The second source initial calibration verification standard (ICV) recoveries for both the primary and confirmation calibrations were within the control limits listed in DoD QSM Table F-3 of ±20%.
  - The continuing calibration verification (CCV) standard recoveries were within the control limits listed in DoD QSM Table F-3 of ±20%.
  - As per FWQAPP Section 8.3.2.1.2, MRLs were analyzed. No control limits were listed in the FWQAPP; therefore, the reviewer utilized the reasonable control limits of 70-130%. One recovery for 2,6-dinitrotoluene was 60%; therefore, the nondetected results for 2,6-dinitrotluene in DA1SB-074M-0202-SO and DA1SS-054M-0201-SO were qualified as estimated, "UJ." Recoveries for 2,4-dinitrotoluene and nitroglycerin were 64% and 58%, respectively, in the MRL associated with DA1SB-074M-0202-SO; therefore, the nondetected results for these compounds in DA1SB-074M-0202-SO were qualified as estimated, "UJ." The qualified results were coded with a "C" qualification code. All remaining recoveries were within the control limits.
- Blanks: The method blanks associated with the validated samples had no target compound detects above the control limits listed in DoD QSM Table F-3 of one-half the LOQ or one-tenth the amount detected in a sample.
- Laboratory Control Samples: 4-Amino-2,6-dinitrotoluene (control limits: 80-125%) was recovered at 77% in the LCS associated with DA1SB-070M-0204-SO and DA1SB-072M-0204-SO; therefore, nondetected 4-amino-2,6-dinitrotluene in these samples was qualified as estimated, "UJ." The qualified results were coded with an "L" qualification code. The remaining recoveries were within the control limits listed in DoD QSM Tables

G-2 (poor performers) and G-13 for the listed compounds and within the reasonable laboratory control limits of 50-150% for nitroglycerin and PETN.

- Surrogate Recovery: As no surrogate control limit was listed in the DoD QSM, surrogate recoveries were assessed against the reasonable laboratory-established control limits of 50-150%. All surrogate recoveries were within the control limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on validated samples DA1SB-055M-0001-SO and DA1SS-050M-0201-SO. 4-Amino-2,6-dinitrotoluene was recovered above the control limit in the DA1SB-055M-0001-SO MS only and did not require qualification. Both 2,4-dinitrotoluene RPDs exceeded the control limit at 22% and 24%; respectively. The nondetected results for 2,4-dinitrotoluene in DA1SB-055M-0001-SO and DA1SS-050M-0201 were qualified as estimated, "UJ," and coded with a "Q" qualification code. All remaining recoveries were within the control limits listed in DoD QSM Tables G-2 (poor performers) and G-13 for the listed compounds and within the reasonable laboratory control limits for nitroglycerin and PETN. The remaining RPDs were within the control limits listed in DoD QSM Tables G-20%.
- Triplicates: Triplicate analyses were performed on soil samples DA1SB-055M-0001-SO, DA1SB-063M-0202-SO and DA1SS-050M-0201-SO. The %RSDs were within the control limit listed in DoD QSM Table F-3 of ≤20%.
- Compound Identification: Compound identification was verified for those samples validated at a Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification. As there were no primary column detects, no confirmation analyses were performed.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for those samples validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

In some instances, nitrobenzene, 2,4-dinitrotoluene and 2,6-dinitrotoluene were reported by both Methods 8330B and 8270C and both methods were validated at Level IV. As there were no detects for these compounds in the 8330B analyses and the 8270C LOQs were lower, the results for these compounds were rejected, "R," in the 8330B analyses in favor of the 8270C results, for the samples validated at Level IV. All rejected analytes were coded with a "D" qualification code.

- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations: Some manual integrations were performed for CCVs and sample data reviewed at Level IV. All manual integrations were performed in order to report incompletely resolved peaks and were deemed acceptable by the reviewer.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and one field blank sample collected in association with the ODA1 samples. There were no detects above the DL in these samples.
  - Field Duplicates: A total of 7 soil field duplicates were collected and analyzed for explosive compounds. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5x the LOQ. In cases where results were <5x the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

#### 4.3.2 Propellants

CT analyzed 26 primary MI soil samples, 3 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for nitroguanidine by USEPA SW-846 Method 8330 Modified and for nitrocellulose as nitrate/nitrite by modified SW-846 Method 9056. MEC<sup>X</sup> validated 3 soil samples at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration
  - Nitroguanidine initial calibration %RSDs were within the control limits listed in DoD QSM Table F-2 of ≤20%, or the linear regression r<sup>2</sup> values were ≥0.990. Nitrocellulose linear regression r values were within the control limit listed in the DoD QSM Table F-11 of ≥0.995.
  - The nitroguanidine second source ICV for both the primary and confirmation calibrations were within the control limits listed in DoD QSM Table F-2 of 85-115%. The nitrocellulose ICV recoveries were within the control limits listed in DoD QSM Table F-11 of 90-110%.
  - The nitroguanidine CCV standard %Ds were within the control limits listed in DoD QSM Table F-2 of ≤15%. The nitrocellulose CCV recoveries were within the control limits listed in DoD QSM Table F-11 of 90-110%.
  - As per FWQAPP Section 8.3.2.1.2, MRL standards are required and were analyzed. All recoveries were reported to be within the reasonable control limits of 70-130%; however, please see the Manual Integration bullet below.

- Blanks: The method blanks associated with the validated samples had no target compound detects above the control limits listed in DoD QSM Tables F-2 and F-11 of one-half the LOQ or one-tenth the amount detected in a sample.
- Laboratory Control Samples: No nitroguanidine LCS control limits are listed in the DoD QSM. All nitroguanidine recoveries were within the laboratory-established control limits of 50-150%. The nitrocellulose recoveries were within the control limits listed in DoD QSM Table F-11 of 80-120%.
- Surrogate Recovery: A surrogate is not required for the analyses of nitrocellulose. Surrogate control limits for 1,2-dinitrobenzene are not listed in the DoD QSM; therefore, the nitroguanidine surrogate recoveries were assessed against the laboratory control limits of 75-127%. The recoveries were within the control limits.
- Triplicates: Nitroguanidine triplicate analyses were performed on sample DA1SD-063M-0202-SO. The %RSD was within the control limit listed in DoD QSM Table F-3 of ≤20%.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a validated sample. Method accuracy was evaluated based on LCS results.
- Compound Identification: Compound identification was verified for those samples validated at a Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification. As there were no primary column detects, no confirmation analyses were performed.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for those samples validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." The laboratory reported nitroguanidine nondetects to the DL instead of the LOD. Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Manual Integrations: Some manual integrations were performed for the nitroguanidine MRLs. Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time. As the inconsistent baseline may have affected the MRL recoveries, it was the reviewer's professional opinion that nondetected nitroguanidine in DA1SB-068M-0201-SO, DA1SB-059M-0201-SO and DA1SB-063M-0202-SO should be qualified as estimated, "UJ." The qualified results were coded with an "\*III" qualification code. The low level calibration standard was also manually integrated to correct the baseline which was affected by a significant amount of noise.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and one field blank sample associated with the ODA1 site samples. Nitroguanidine was not detected above the DL in any of the equipment rinsates.
  - Field Duplicates: A total of 3 field duplicate pairs were collected and analyzed for nitroguanidine and nitrocellulose. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

#### 4.3.3 Polychlorinated Biphenyls (PCBS)

CT analyzed 10 primary MI soil samples, 2 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for PCBs by USEPA SW-846 Method 8082. MEC<sup>X</sup> validated 1 soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria listed in the DoD QSM Table F-2 were met.
  - Initial calibration average %RSDs were within the control limits of ≤20% or  $r^2$  values ≥0.990.
  - The second source ICV was within the control limit of ±20% of the true value for all applicable Aroclors.
  - The CCV standard %Ds were within the control limits of  $\pm 20\%$ .
  - As per FWQAPP Section 8.3.2.1.2, MRL standards are required. Some recoveries were above the control limits; however, these did require qualification of nondetected results. All average MRL recoveries affecting sample data were within the reasonable control limits of 70-130%.
- Blanks: The method blanks had no target compound detects above the control limits listed in the DoD QSM Table F-2, of one-half the LOQ for target compounds or one-tenth the amount detected in a sample.
- Laboratory Control Samples: LCS recoveries were within the control limits listed in DoD QSM Table G-17 for soils, of 40-140% and 60-130% for Aroclors 1016 and 1260, respectively.

- Surrogate Recovery: Recoveries were within the control limits listed in DoD QSM Table G-3 of 60-125% for soils.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on soil sample DA1SB-059M-0201-SO. All recoveries were within the control limits listed in DoD QSM Table G-17 for soils, of 40-140% and 60-130% for Aroclors 1016 and 1260, respectively. The RPDs were within the control limit listed in the DoD QSM Table F-2 of ≤30%.
- Compound Identification: Compound identification was verified for the validated sample. Review of the sample chromatograms, standards, and retention times indicated no problems with target compound identification. The sample was analyzed on two analytical columns for target compound confirmation; however, the sample had no Aroclors detected on the primary column.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the sample validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations were not performed for the sample or calibration and QC data associated with the sample data.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and one field blank sample associated with the ODA1 site samples. These samples had no detects above the DL.
  - Field Duplicates: There were 2 soil field duplicate pairs collected and analyzed for PCBs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

# 4.3.4 Pesticides

CT analyzed 10 primary MI soil samples, 2 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for pesticides by USEPA SW-846 Method 8081. MEC<sup>X</sup> validated 1 soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria listed in the DoD QSM Table F-2 were met.
  - Initial calibration %RSDs were within the control limit of  $\leq 20\%$ , or r<sup>2</sup> values  $\geq 0.990$ .
  - The ICV recoveries for all target analytes were within the control limit of ±20% of the true value.
  - The DDT/Endrin breakdown standards were within the control limit listed in the DoD QSM Table F-2 of ≤15%.
  - All bracketing CCV %Ds were within the control limit of  $\leq 20\%$ .
  - As per FWQAPP Section 8.3.2.1.2, MRL standards are required. All MRL recoveries affecting sample data were within the reasonable control limits of 70-130%.
- Blanks: The method blanks had no target compound detects above the control limits listed in the DoD QSM Table F-2, of one-half the LOQ or one-tenth the amount detected in a site sample.
- Laboratory Control Samples: Recoveries were within the control limits listed in the DoD QSM Table G-15.
- Surrogate Recovery: Recoveries were within the control limits listed in the DoD QSM Table G-3.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on soil sample DA1SB-059M-0201-SO. Endrin ketone was recovered below the control limits of 65-135%, at 63%, in the MS only, and did not require qualification. Endrin aldehyde was recovered below the control limits of 35-145% in both the MS and MSD, at 18% and 16%, respectively. The nondetected result for endrin aldehyde in sample DA1SB-059M-0201-SO was qualified as estimated, "UJ," and coded with a "Q" qualification code. Remaining recoveries were within the control limits listed in DoD QSM Table G-15 and all RPDs were within the control limit of ≤30% listed in the DoD QSM Table F-2.
- Compound Identification: Compound identification was verified for the sample validated at Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the validated sample. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

The sample was analyzed on two analytical columns for target compound confirmation. The sample had no confirmed target compound detects.

- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations were not performed for the sample validated at Level IV or calibration and QC data associated with the sample data.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and one field blank sample associated with the ODA1 site samples. These samples had no detects above the DL. One equipment rinsate had a detect between the DL and LOQ for methoxychlor; however, methoxychlor was not detected in the validated sample. There were no other target compound detects above the DL.
  - Field Duplicates: There were 2 soil field duplicate pairs collected and analyzed for PCBs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

# 4.3.5 Semivolatile Organic Compounds (SVOCs)

CT analyzed 11 primary MI soil samples, 2 field duplicate samples, 1 field blank, and 3 equipment rinsate samples for SVOCs by USEPA Method 8270C. MEC<sup>X</sup> validated 2 soil samples at Level IV.

- DL studies were not evaluated as part of this project.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria listed in the DoD QSM Table F-4 were met for all target compounds of interest, with exceptions affecting sample data listed below.
  - Initial calibration average RRFs and ICV and CCV RRFs were within method control limits of ≥0.050 for system performance check compounds (SPCCs). All initial calibration %RSDs were within the method control limits listed in the DoD QSM Table F-4 of ≤30% for calibration check compounds (CCCs) and ≤15% for remaining compounds, or r<sup>2</sup> values ≥0.990.

- All second source ICV standard recoveries were within the control limit of ±20%.
- The CCV bracketing the sample analyses had a %D for 3,3'-dichlorobenzidine (25.8%) that exceeded the control limit; therefore, the nondetected results for these analytes were qualified as estimated, "UJ," in DA1SB-059M-0201-SO and DA1SB-068M-0201-SO. The qualified results were coded with a "C" qualification code. All remaining continuing calibration %Ds affecting sample data were within the control limit of ≤20%.
- As per FWQAPP Section 8.3.2.1.2, MRL standards are required. Recoveries were within the reasonable control limits of 70-130%, with exceptions affecting sample data listed in the table below. Nondetected results associated with recoveries less than 10% were rejected, "R." Remaining results listed in the table below, all nondetects, were qualified as estimated, "UJ." All results were coded with a "C" qualification code.

| Samples qualified for MRL recovery outliers |     |                     |  |
|---------------------------------------------|-----|---------------------|--|
| Analyte                                     | %R  | Qualified Samples   |  |
| Hexachlorocyclopentadiene                   | 9%  |                     |  |
| 4-Nitroaniline                              | 58% |                     |  |
| 2,4-Dinitrophenol                           | 66% | DA1SB 050M 0201 SO  |  |
| Benzyl alcohol                              | 5%  | DA1SB 069M 0201 SO  |  |
| 4,6-Dinitro-2-methylphenol                  | 50% | DA13B-00000-0201-30 |  |
| Indeno(1,2,3-cd)pyrene                      | 68% | ]                   |  |
| Benzo(g,h,i)perylene                        | 54% |                     |  |

Bold indicates rejected nondetect results

- Blanks: The method blanks had no target compound detects above the control limits listed in DoD QSM Table F-4 of one-half the LOQ for target compounds or one-tenth the amount detected in any sample, and no common laboratory contaminants.
- Laboratory Control Samples: Recoveries were within the control limits listed in the DoD QSM Tables G-2 (poor performers) and G-7, or within the laboratory-established control limits when no QSM limit was prescribed.
- Surrogate Recovery: Surrogate recoveries were within the control limits listed in the DoD QSM Table G-3.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a validated sample. Method accuracy was evaluated based on LCS results.
- Internal Standards Performance: The internal standard area counts and retention times were within the DoD QSM Table F-4 control limits established by the initial calibration midpoint standard: ±30 seconds for retention times and -50% / +100% for internal standard areas.

- Compound Identification: Compound identification was verified for the samples validated at Level IV. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the samples validated at Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J," by the laboratory. Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Some routine manual integrations were performed for the samples and calibration and QC data associated with the sample data. All manual integrations reviewed at Level IV were considered appropriate.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsate samples collected and analyzed for SVOCs. There were no detects above the DL in these samples.
  - Field Duplicate Samples: A total of 2 field duplicate samples were collected and analyzed for SVOCs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.

# 4.3.6 Volatile Organic Compounds (VOCs)

CT analyzed 2 primary MI soil samples, 20 primary discrete soil samples, 2 soil field duplicate samples, 1 field blank, 3 equipment rinsate samples, and 7 trip blank samples for volatile compounds by USEPA SW-846 Method 8260B. MEC<sup>X</sup> validated 3 primary soil samples at Level IV.

- DL studies were not evaluated as part of this project.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria listed in the DoD QSM Table F-4 were met for all target compounds, with exceptions affecting sample data noted below.

- Initial calibration average RRFs were within the control limit of  $\geq$ 0.05, and the %RSDs were within the control limit of  $\leq$ 15%, or r values  $\geq$ 0.995.
- The ICV RRFs were within the control limit of  $\geq 0.05$ . Recoveries for all target analytes were within the control limits of  $\pm 20\%$  of the true value.
- Continuing calibration RRFs were within the control limit of  $\ge 0.05$  for all target compounds, and %Ds were within the control limit of  $\le 20$ .
- As per FWQAPP Section 8.3.2.1.2, MRL standards are required. With exceptions noted in the table below, all recoveries affecting sample data were within the reasonable control limits of 70-130%. Some recoveries were above the control limit; however, these did not affect nondetected results. Nondetected results associated with recoveries less than 10% were rejected, "R," and remaining qualified results, all nondetects, were qualified as estimated, "UJ." All qualified results were coded with a "C" qualification code. Sample DA1SB-070D-0201-SO was not qualified for poor MRL recoveries, as all MS/MSD recoveries for the outliers listed in the table below were at or above 98%, indicating good method accuracy for the individual sample matrix.

| Samples qualified for MRL recovery outliers |                        |                    |  |  |  |
|---------------------------------------------|------------------------|--------------------|--|--|--|
| Analyte                                     | MRL %Rs<br>Begin / End | Qualified Samples  |  |  |  |
| 2-hexanone                                  | 37% / 62%              |                    |  |  |  |
| chloroethane                                | 5% / 4%                | DA1SB-059D-0201-SO |  |  |  |
| chloromethane                               | 0% / 0%                |                    |  |  |  |
| 2-hexanone                                  | 38% / <b>3%</b>        |                    |  |  |  |
| chloroethane                                | <b>0%</b> / 17%        |                    |  |  |  |
| chloromethane                               | 0% / 0%                | DA1SB-068D-0201-SO |  |  |  |
| 4-methyl-2-pentanone                        | / 69%                  | DA13D-000D-0201-30 |  |  |  |
| acetone                                     | / 67%                  |                    |  |  |  |
| m,p-xylenes                                 | / 11%                  |                    |  |  |  |

- Blanks: The method blanks had no target compound detects above the control limits listed in DoD QSM Table F-4 of one-half the LOQ for target compounds and no common laboratory contaminant detects above the LOQ.
- Laboratory Control Samples: Recoveries were within the control limits listed in DoD QSM Table G-5.
- Surrogate Recovery: Recoveries were within the control limits listed in DoD QSM Table G-3 or within laboratory-established control limits for those not listed in Table G-3.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on sample DA1SB-070D-0201-SO. All recoveries affecting parent sample data were within the control limits listed in DoD QSM Table G-5. The RPDs for 2-butanone, 2-hexanone, and

acetone exceeded the control limit; therefore, the nondetected results for those compounds were qualified as estimated, "UJ," in the parent sample and were coded with a "Q" qualification code. All remaining RPDs were within the control limit listed in DoD QSM Table F-4 of  $\leq$ 30%.

- Internal Standards Performance: The internal standard area counts and retention times were within the DoD QSM Table F-4 control limits established by the initial calibration midpoint standard: ±30 seconds for retention times and -50%/+100% for internal standard areas.
- Compound Identification: Compound identification was verified for the samples validated at Level IV. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the samples validated at Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations were not performed for the samples validated at Level IV or the associated calibration or QC.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Trip Blanks: The laboratory analyzed seven trip blank samples. Chloromethane was detected in one trip blank but was not detected in a validated sample. The trip blanks had no other target compounds detected above the DL.
  - Field Blanks and Equipment Rinsates: One field blank and three equipment rinsate samples were associated with the ODA1 samples. The field blank and equipment rinsates all had detects at or just above the LOQ for chloroform and detects between the DL and LOQ for methylene chloride, and the field blank also had a detect below the LOQ for chloromethane. None of the field QC contaminants were detected in the validated site samples. The field blank and equipment rinsates had no other target compound detects above the DL.
  - Field Duplicates and Field Split Samples: There were 2 soil field duplicate pairs collected and analyzed for VOCs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases

where results were <5x the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.

#### 4.3.7 Metals

CT analyzed 90 primary MI soil samples, 7 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for various metals by USEPA Methods 6010C and 7470A/7471A. MEC<sup>X</sup> validated 9 primary soil samples at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Except as noted below, calibration criteria were met.
  - Initial calibration: Linear regression r-values were within the control limit listed in the DoD QSM Tables F-7 and F-8 of ≥0.995.
  - The ICV recoveries were within the control limits listed in DoD QSM Table F-7 of 90-110%. The laboratory analyzed a pair of CCVs. The lower concentration CCV had analyte concentrations too high to be considered a low-level calibration check standard; therefore, it was assessed against the CCV control limits of 90-110%. CCV recoveries were within the control limits. The mercury ICV and CCV recoveries were within the control limits listed in DoD QSM Table F-7 of 90-110% and 80-120%, respectively.
  - o The laboratory analyzed CRDL standards which ranged from nominally above the LOQ to more than 10× the LOQ. Except as noted below, the CRDL standard recoveries were within the reasonable control limits of 80-120%. Results listed in the table below were qualified as estimated, "UJ," for nondetects and, "J," for detects. In the absence of qualifications with conflicting bias, detected results associated with high recoveries were qualified as estimated with a potential high bias, "J+," and detects associated with low recoveries were qualified as estimated with a potential low bias, "J-." All qualified results were coded with a "C" qualification code.

| Samples qualified for CRDL recovery outliers |      |                                                             |  |  |
|----------------------------------------------|------|-------------------------------------------------------------|--|--|
| Analyte                                      | %R   | Qualified Samples                                           |  |  |
| Thallium                                     | 78%  | DA1SB-059M-0201-SO                                          |  |  |
| Sodium                                       | 70%  | DA1SB-070M-0204-SO, DA1SB-072M-0204-SO, DA1SS-<br>050M-0201 |  |  |
| Antimony                                     | 74%  | DA1SB-074M-0202-SO                                          |  |  |
| Selenium                                     | 129% | DA1SS-054M-0201-SO                                          |  |  |

The MRL required in DoD QSM Table F-7 is to be at or below the analyte LOQ. As no MRL was analyzed for beryllium, cadmium, manganese, potassium, and sodium, sample results for these analytes which were less than 10x the LOQ were qualified as estimated, "J," for detects and, "UJ," for nondetects. Results

higher than 10x the LOQ were not qualified as it was the reviewer professional opinion that at those concentrations, the CCVs were indicative of instrument performance.

• Blanks: Except as noted below, the method blanks and CCBs had no applicable detects above the control limit listed in DoD QSM Tables F-7 and F-8 of one-half the LOQ or one-tenth the amount detected in a sample.

Results associated with negative blanks were qualified as estimated, "UJ," for nondetects. The remaining results listed in the table below were qualified as nondetected, "U," at the level of contamination. All qualified results were coded with a "B" qualification code.

| Samples qualified for CCB detects |              |                                        |  |  |
|-----------------------------------|--------------|----------------------------------------|--|--|
| Analyte                           | Blank Detect | Qualified Samples                      |  |  |
| Selenium                          | 0.1 mg/Kg    | DA1SB-055M-0001-SO, DA1SB-063M-0202-SO |  |  |
| Cadmium                           | -0.393 ug/L  | DA1SB-070M-0204-SO, DA1SB-072M-0204-SO |  |  |
| Thallium                          | -3.03 ug/L   | DA1SB-074M-0202-SO                     |  |  |
| Thallium                          | -4.91 ug/L   | DA1SS-054M-0201-SO                     |  |  |
| Selenium                          | -2.68 ug/L   | DA1SB-074M-0202-SO                     |  |  |
| Mercury                           | -0.08 ug/L   | DA1SB-074M-0202-SO                     |  |  |

- Interference Check Samples: ICP interference check sample A (ICSA) and AB (ICSAB) recoveries were within the control limits listed in DoD QSM Table F-8 of 80-120%. No analytes were detected in the ICSA above the control limit listed in DoD QSM Table F-8 of <LOD.</li>
- Laboratory Control Samples: The recoveries were within the control limits listed in DoD QSM Tables G-18 and G-19 of 80-120%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on DA1SB-0 DA1SS-053M-0201-SO, DA1SB-070M-0201-SO, DA1SB-055M-0001-SO, and DA1SB-063M-0201-SO. Except as noted below, the laboratory duplicate RPDs were within the control limits listed in DoD QSM Table F-7 of ≤20%. The duplicate criterion was only applied when the original sample result was nominally ≥5× the LOQ. In cases where the original sample result was <5× the LOQ, the reasonable control limit of ± the LOQ was applied.</li>

Results listed in the table below were qualified as estimated, "J," for detects and, "UJ," for nondetects. All qualified results were coded with an "E" qualification code. As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for a laboratory duplicate RPD outlier.

| Samples qualified for laboratory duplicate RPD outliers |          |     |                     |
|---------------------------------------------------------|----------|-----|---------------------|
| Parent Sample                                           | Analyte  | RPD | Qualified Samples   |
| DA1SB-073M-0201-SO                                      | Antimony | 38% | DA1SB-074M-0202-SO, |

Ravenna Army Ammunition Plant, Sand Creek/ODA1 Data Validation Report

| Samples qualified for laboratory duplicate RPD outliers |         |     |                                           |
|---------------------------------------------------------|---------|-----|-------------------------------------------|
| Parent Sample                                           | Analyte | RPD | Qualified Samples                         |
|                                                         | Cadmium | 28% | DA1SS-054M-0201-SO                        |
|                                                         | Copper  | 22% |                                           |
|                                                         | Mercury | 27% |                                           |
| DA1SS-053M-0201-SO                                      | Sodium  | 36% | DA1SB-074M-0202-SO,<br>DA1SS-054M-0201-SO |

 Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on DA1SB-0 DA1SS-053M-0201-SO, DA1SB-070M-0201-SO, DA1SB-055M-0001-SO, and DA1SB-063M-0201-SO. Except as noted below, recoveries were within the control limits listed in DoD QSM Table G-19 of 80-120%. Matrix spike control limits were not applied when the native sample concentration exceeded the spiked amount by a factor of four or more.

Nondetected results listed in the table below associated with recoveries less than 30% were rejected, "R." The remaining results noted in the table below were qualified as estimated, "J," for detects and "UJ," for nondetects in the associated samples; however, nondetected results were not qualified for recoveries above the control limit. Results were qualified when one or both recoveries were outside the control limits. All qualified results were coded with a "Q" qualification code. When no other qualifications with conflicting bias were assigned to a result, detected results with low recoveries were assigned a negative bias, "J-," and detected results with high recoveries were assigned a positive bias, "J+." As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an MS/MSD recovery outlier. Parent samples were only qualified for outliers reported in that parent sample.

| Samples qualified for MS/MSD recovery outliers |           |          |                            |
|------------------------------------------------|-----------|----------|----------------------------|
| Parent Sample                                  | Analyte   | %Rs      | Qualified Samples          |
|                                                | Aluminum  | 14%,     |                            |
|                                                | Antimony  | 21%, 19% |                            |
|                                                | Cadmium   | 72%, 68% |                            |
|                                                | Chromium  | 0%, 0%   |                            |
|                                                | Calcium   | , 79%    |                            |
| DA1SB-063M-0201-SO                             | Cobalt    | 79%, 73% | 059M-0201-SO               |
|                                                | Copper    | 76%, 64% | 03910-0201-30              |
|                                                | Magnesium | , 76%    |                            |
|                                                | Manganese | 1%, 0%   |                            |
|                                                | Thallium  | 55%, 52% |                            |
|                                                | Zinc      | 78%, 62% |                            |
|                                                | Antimony  | 19%, 19% |                            |
|                                                | Cadmium   | 64%, 72% |                            |
|                                                | Chromium  | 0%, 0%   | DA1SB-055M-0001-SO, DA1SB- |
| DA13D-033M-0001-30                             | Cobalt    | 76%, 76% | 059M-0201-SO               |
|                                                | Copper    | 66%, 66% |                            |
|                                                | Manganese | 0%, 0%   | 1                          |

| Samples qualified for MS/MSD recovery outliers |           |          |                                |  |
|------------------------------------------------|-----------|----------|--------------------------------|--|
| Parent Sample                                  | Analyte   | %Rs      | Qualified Samples              |  |
|                                                | Selenium  | 78%, 0%  |                                |  |
|                                                | Thallium  | 54%, 55% |                                |  |
|                                                | Zinc      | 64%, 66% |                                |  |
|                                                | Manganese | , 78%    |                                |  |
|                                                | Aluminum  | 13%, 36% |                                |  |
|                                                | Antimony  | 19%, 23% |                                |  |
|                                                | Arsenic   | 79%,     |                                |  |
|                                                | Cadmium   | 73%, 77% |                                |  |
|                                                | Chromium  | 69%,     |                                |  |
|                                                | Cobalt    | 70%, 70% |                                |  |
|                                                | Manganese | 0%, 2%   | DA1SB-068M-0201-SO, DA1SB-     |  |
| DA1SB-070M-0201-SO                             | Nickel    | 69%,     | 070M-0204-SO, DA1SB-072M-0204- |  |
|                                                | Selenium  | 77%,     | SO, DA1SS-050M-0201-SO         |  |
|                                                | Silver    | 73%,     | -                              |  |
|                                                | Thallium  | 60%, 65% | -                              |  |
|                                                | Vanadium  | 73%,     | -                              |  |
|                                                | Zinc      | 68%,     | _                              |  |
|                                                | Potassium | 78%,     | _                              |  |
|                                                | Sodium    | 73%, 78% | _                              |  |
|                                                | Aluminum  | 77%, 46% |                                |  |
|                                                | Antimony  | 24%, 24% | _                              |  |
|                                                | Iron      | 53%, 21% | -                              |  |
| DA40D 070M 0004 00                             | Magnesium | 11%,     | DA1SB-074M-0202-SO, DA1SS-     |  |
| DA15B-073W-0201-50                             | Zinc      | 128%,    | 053M-0201-SO                   |  |
|                                                | Lead      | , 75%    | _                              |  |
|                                                | Selenium  | , 79%    | -                              |  |
|                                                | Thallium  | , 75%    | -                              |  |
|                                                | Antimony  | 4%, 21%  |                                |  |
|                                                | Arsenic   | 78%,     |                                |  |
|                                                | Cadmium   | 72%,     |                                |  |
|                                                | Cobalt    | 29%,     |                                |  |
| DA1SS-053M-0201-SO                             | Lead      | 69%,     | - DA1SB-074M-0202-SO, DA1SS-   |  |
|                                                | Nickel    | 64%,     | - 0541VI-0201-SO               |  |
|                                                | Selenium  | 79%      | 1                              |  |
|                                                | Silver    | 60%, 64% | 1                              |  |
|                                                | Thallium  | 65%, 70% | 1                              |  |

**Bold** indicates rejected nondetected results

"- -" Indicates an acceptable sample recovery.

Except as noted below, MS/MSD RPDs were within the control limit listed in DoD QSM Tables G-7 and G-8 of ≤20%. Results noted in the table below were qualified as estimated, "J," for detects and "UJ," for nondetects. All qualified results were coded with an "\*III" qualification code. As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an RPD outlier. Parent samples were only qualified for outliers reported in that parent sample.

| Samples qualified for MS/MSD RPD outliers |           |     |                                       |
|-------------------------------------------|-----------|-----|---------------------------------------|
| Parent Sample                             | Analyte   | RPD | Qualified Samples                     |
|                                           | Aluminum  | 19% |                                       |
|                                           | Barium    | 30% |                                       |
|                                           | Beryllium | 29% |                                       |
|                                           | Calcium   | 25% |                                       |
|                                           | Chromium  | 39% |                                       |
| DA1SB 062M 0201 SO                        | Cobalt    | 42% | DA1SB-063M-0201-SO, DA1SB-059M-       |
| DA13D-003W-0201-30                        | Copper    | 45% | 0201-SO                               |
|                                           | Magnesium | 34% |                                       |
|                                           | Manganese | 20% |                                       |
|                                           | Nickel    | 44% |                                       |
|                                           | Vanadium  | 33% |                                       |
|                                           | Zinc      | 41% |                                       |
|                                           | Barium    | 14% |                                       |
|                                           | Beryllium | 11% |                                       |
|                                           | Calcium   | 11% |                                       |
|                                           | Chromium  | 22% |                                       |
| DA1SB 055M 0001 SO                        | Cobalt    | 22% | DA1SB-055M-0001-SO, DA1SB-059M-       |
| DA130-0001-30                             | Copper    | 25% | 0201-SO                               |
|                                           | Lead      | 54% |                                       |
|                                           | Nickel    | 23% |                                       |
|                                           | Vanadium  | 18% |                                       |
|                                           | Zinc      | 22% | ]                                     |
|                                           | Antimony  | 77% | DA18D 074M 0202 SO DA18S 054M         |
| DA1SS-053M-0201-SO                        | Cobalt    | 38% | 1 DA 130-074WI-0202-30, DA 133-034WI- |
|                                           | Lead      | 29% |                                       |

Serial Dilution: Serial dilution analyses were performed on DA1SB-0 DA1SS-053M-0201-SO, DA1SB-070M-0201-SO, DA1SB-055M-0001-SO, and DA1SB-063M-0201-SO. Except as noted below, serial dilution %Ds were within the control limit listed in DoD QSM Table F-8 of ≤10%. The serial dilution control limit is only applicable when the original sample concentration is minimally ≥50× the DL for ICP analytes and ≥25× the DL for mercury.

All detected results for the analytes noted in the table below were qualified as estimated, "J," and were coded with an "A" qualification code. When no other qualifications with conflicting bias were assigned to a result, detected results were assigned a negative bias, "J-." As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an associated %D outlier. Parent samples were only qualified for outliers reported in that parent sample.

| Samples qualified for serial dilution %D outliers |          |     |                                 |
|---------------------------------------------------|----------|-----|---------------------------------|
| Parent Sample Analyte %D                          |          |     | Qualified Samples               |
| DA1SB-063M-0201-SO                                | Aluminum | 19% | DA1SB-063M-0201-SO, DA1SB-059M- |
| DA130-003WF0201-30                                | Barium   | 30% | 0201-SO                         |

| Samples qualified for serial dilution %D outliers |           |     |                                 |
|---------------------------------------------------|-----------|-----|---------------------------------|
| Parent Sample                                     | Analyte   | %D  | Qualified Samples               |
|                                                   | Beryllium | 29% |                                 |
|                                                   | Calcium   | 25% |                                 |
|                                                   | Chromium  | 39% |                                 |
|                                                   | Cobalt    | 42% |                                 |
|                                                   | Copper    | 45% |                                 |
|                                                   | Magnesium | 34% |                                 |
|                                                   | Manganese | 20% |                                 |
|                                                   | Nickel    | 44% |                                 |
|                                                   | Vanadium  | 33% |                                 |
|                                                   | Zinc      | 41% |                                 |
|                                                   | Barium    | 14% |                                 |
|                                                   | Beryllium | 11% |                                 |
|                                                   | Calcium   | 11% |                                 |
|                                                   | Chromium  | 22% |                                 |
|                                                   | Cobalt    | 22% | DA1SB-055M-0001-SO, DA1SB-059M- |
| DA128-022M-0001-20                                | Copper    | 25% | 0201-SO                         |
|                                                   | Lead      | 54% |                                 |
|                                                   | Nickel    | 23% |                                 |
|                                                   | Vanadium  | 18% |                                 |
|                                                   | Zinc      | 22% |                                 |
|                                                   | Arsenic   | 20% |                                 |
|                                                   | Beryllium | 16% |                                 |
|                                                   | Calcium   | 19% |                                 |
|                                                   | Chromium  | 16% |                                 |
|                                                   | Cobalt    | 19% |                                 |
|                                                   | Copper    | 23% | DATSB-068M-020T-SO, DATSB-070M- |
| DA13D-070W-0201-30                                | Lead      | 22% | DA188 050M 0201 80              |
|                                                   | Magnesium | 13% | DA133-030W-0201-30              |
|                                                   | Nickel    | 21% |                                 |
|                                                   | Vanadium  | 13% |                                 |
|                                                   | Zinc      | 20% |                                 |
|                                                   | Mercury   | 24% |                                 |
|                                                   | Aluminum  | 20% |                                 |
|                                                   | Barium    | 12% | ]                               |
|                                                   | Cadmium   | 29% |                                 |
|                                                   | Chromium  | 17% | ]                               |
|                                                   | Cobalt    | 23% |                                 |
|                                                   | Copper    | 23% | DA1SB-074M-0202 SO DA1SS 052M   |
| DA1SS-053M-0201-SO                                | Iron      | 12% | 0201-SO                         |
|                                                   | Magnesium | 23% |                                 |
|                                                   | Manganese | 17% | ]                               |
|                                                   | Nickel    | 22% | ]                               |
|                                                   | Vanadium  | 18% |                                 |
|                                                   | Zinc      | 21% |                                 |
|                                                   | Mercury   | 33% |                                 |

| Samples qualified for serial dilution %D outliers |          |     |                               |  |
|---------------------------------------------------|----------|-----|-------------------------------|--|
| Parent Sample                                     | Analyte  | %D  | Qualified Samples             |  |
|                                                   | Aluminum | 12% |                               |  |
|                                                   | Cadmium  | 36% |                               |  |
|                                                   | Chromium | 12% |                               |  |
|                                                   | Cobalt   | 16% | DA1SB 074M 0202 SO DA1SS 052M |  |
| DA1SB-073M-0201-SO                                | Copper   | 17% | 0201-SO                       |  |
|                                                   | Iron     | 12% | 0201-30                       |  |
|                                                   | Lead     | 12% |                               |  |
|                                                   | Nickel   | 16% |                               |  |
|                                                   | Zinc     | 12% | ]                             |  |

 Sample Result Verification: For Level IV validation, calculations were verified and the sample results reported on the sample result summary were verified against the raw data. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

During the raw data review, the reviewer noted negative results for cadmium and silver. In general, the absolute values of the cadmium results exceeded the sample LOQs and the absolute values of the silver results exceeded the DLs. It was the reviewer's professional opinion that all affected samples should have the results, DLs, and LOQs, as necessary, raised to the level of interference; therefore, the absolute value of the negative result was converted to soil units using the sample preparation factors. This revised result is listed in the table below. All changed results were denoted with a "\$" qualification code.

| Samples with negative results and raised DLs/LOQs |                        |       |      |  |  |  |  |
|---------------------------------------------------|------------------------|-------|------|--|--|--|--|
| Sample                                            | Revised Result (mg/Kg) |       |      |  |  |  |  |
| DA1SB-055M-0001-SO                                | Cadmium                | -5.25 | 0.26 |  |  |  |  |
| DA13B-035W-0001-30                                | Silver                 | -1.60 | 0.08 |  |  |  |  |
| DA1SB-063M-0202-SO                                | Cadmium                | -4.15 | 0.20 |  |  |  |  |
| DA13D-003101-0202-30                              | Silver                 | -1.94 | 0.10 |  |  |  |  |
| DA1SB-068M-0201-SO                                | Silver                 | -1.81 | 0.10 |  |  |  |  |
| DA1SB-070M-0204                                   | Cadmium                | -1.55 | 0.08 |  |  |  |  |
| DA1SB-072M-0204-SO                                | Cadmium                | -3.94 | 0.20 |  |  |  |  |

- Manual Integrations: No manual integrations were noted in the mercury analyses.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: Three equipment rinsates and one field blank sample were collected in association with the samples in this field effort.

There were detects in these samples, but none at sufficient concentrations to qualify the soil samples.

 Field Duplicate Samples: Seven field duplicate samples were collected and analyzed for metals. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. Except as noted below, all results were within the control limits. See Appendix C for comparisons of all samples and analytes.

| Metals field duplicate outliers |                        |           |      |          |  |  |  |  |  |
|---------------------------------|------------------------|-----------|------|----------|--|--|--|--|--|
| Primary Sample                  | Field Duplicate        | Analyte   | RPD  | W/In LOQ |  |  |  |  |  |
|                                 |                        | Aluminum  | 91%  | N/A      |  |  |  |  |  |
|                                 |                        | Barium    | 83%  | N/A      |  |  |  |  |  |
|                                 |                        | Calcium   | 186% | N/A      |  |  |  |  |  |
|                                 | DA1SB-081M-            | Chromium  | 120% | N/A      |  |  |  |  |  |
| DA1SB-059M-0203-                |                        | Cobalt    | 63%  | N/A      |  |  |  |  |  |
| SO                              | 0203-SO                | Magnesium | 116% | N/A      |  |  |  |  |  |
|                                 |                        | Manganese | 70%  | N/A      |  |  |  |  |  |
|                                 |                        | Vanadium  | 55%  | N/A      |  |  |  |  |  |
|                                 |                        | Beryllium | N/A  | No       |  |  |  |  |  |
|                                 |                        | Thallium  | N/A  | No       |  |  |  |  |  |
|                                 |                        | Arsenic   | 73%  | N/A      |  |  |  |  |  |
|                                 |                        | Chromium  | 116% | N/A      |  |  |  |  |  |
| DA1SB-068M-0201-                | DA1SB-084M-            | Lead      | 75%  | N/A      |  |  |  |  |  |
| SO                              | 0201-SO                | Potassium | 62%  | N/A      |  |  |  |  |  |
|                                 |                        | Cadmium   | N/A  | No       |  |  |  |  |  |
|                                 |                        | Sodium    | N/A  | No       |  |  |  |  |  |
| DA1SS-050M-0201-                | DA1SS-080M-            | Chromium  | 88%  | N/A      |  |  |  |  |  |
| SO                              | 0201-SO                | Antimony  | N/A  | No       |  |  |  |  |  |
| DA1SB-065M-0202-<br>SO          | DA1SB-083M-<br>0202-SO | Arsenic   | N/A  | No       |  |  |  |  |  |
| DA1SB-072M-0204-<br>SO          | DA1SB-086M-<br>0204-SO | Mercury   | N/A  | No       |  |  |  |  |  |

Table 7. ODA1 metals field duplicate outliers

# 4.3.8 General Chemistry - Hexavalent Chromium and Cyanide

CT analyzed 10 primary MI soil samples, 2 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for hexavalent chromium by USEPA Method 7196A and cyanide by USEPA Method 9012A. MEC<sup>X</sup> validated 1 hexavalent chromium sample and 1 cyanide sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria were met.
  - Initial calibration: Initial calibration linear regression r values were within the control limit listed in the DoD QSM Tables F-9 and F-10 of ≥0.995.

- The ICV and CCV recoveries were within the control limits listed in DoD QSM Table F-9 of 90-110% for hexavalent chromium and Table F-10 of 85-115% for cyanide.
- As per FWQAPP Section 8.3.2.1.2, MRLs are required. Cyanide MRLs analyzed in association with the soil samples were recovered within the reasonable control limits of 70-130%. As the laboratory did not analyze hexavalent chromium MRLs, the hexavalent chromium result, a nondetect, was qualified as estimated, "UJ." The qualified result was coded with a "C" qualification code.
- Blanks: The method blanks and CCBs had no applicable detects above the control limit listed in the DoD QSM Table F-9 and F-10 of one-half the LOQ or one-tenth the amount detected in a sample.
- Laboratory Control Samples: There are no QSM control limits for hexavalent chromium or cyanide LCS recoveries. The hexavalent chromium recoveries were within the laboratory-established control limits of 83-115% and cyanide was within the laboratoryestablished control limits of 69-128%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on SCSS-057M-0001-SO for hexavalent chromium and cyanide. There were no detects in either the parent or duplicate samples.
- Matrix Spike/Matrix Spike Duplicate: Soluble and insoluble matrix spikes were performed on SCSS-057M-0001-SO for hexavalent chromium. The recoveries were 13% and 19%, respectively. As per the National Function Guidelines, because the hexavalent chromium post digestion spike was recovered within the control limits of 75-125%, the results were not rejected. Nondetected hexavalent chromium in DA1SB-059M-0201-SO was qualified as estimated, "UJ." The qualified result was coded with a "Q" qualification code.
- Sample Result Verification: For Level IV validation, calculations were verified and the sample results reported on the sample result summary were verified against the raw data. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

Due to the age of the hexavalent chromium instrument, sample absorbances were not reported. As such, the reviewer was not able to verify the sample results from the raw data.

- Manual Integrations: Manual integrations are not applicable to these analyses.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the

field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: Three equipment rinsates and one field blank were collected and analyzed for cyanide in association with the ODA1 site samples. Cyanide was not detected above the DL in any of these samples. No equipment rinsate samples were analyzed for hexavalent chromium.
- Field Duplicate Samples: A total of 2 field duplicate pairs were collected and analyzed for hexavalent chromium. All other RPDs were within the control limits in FWQAPP Table 3-of ≤50%. The RPD criterion was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. See Appendix C for comparisons of all samples and analytes.</li>

#### 4.4 DATA USABILITY

One planned ODA1 sample was not received at the laboratory. The field completeness was, therefore, 99%.

Some data were rejected for poor MS/MSD and calibration standard recoveries. In instances where a data point had multiple results, the reviewer chose the most technically sound result to report and rejected the remaining data points. These data points rejected to choose the most technically sound data do not affect data quality or usability and are not included in the table below. Data with RLs that exceeded the established criteria and data estimated for quality control outliers or for detects between the DL and the LOQ were included in the table below for informational purposes only.

|                     |                     |                        | Number of Results |          |                              |                              |                                                                           |                     |  |  |
|---------------------|---------------------|------------------------|-------------------|----------|------------------------------|------------------------------|---------------------------------------------------------------------------|---------------------|--|--|
| Analysis            | Samples<br>Analyzed | Analytes per<br>Sample | Total             | Rejected | DLs<br>Exceeding<br>Criteria | Estimated for<br>QC Outliers | Estimated for<br>Detects <loq< th=""><th>Percent<br/>Complete</th></loq<> | Percent<br>Complete |  |  |
| Explosives          | 9                   | 17                     | 149               | 0        | 0                            | 149                          | 0                                                                         | 100%                |  |  |
| PCBs                | 1                   | 9                      | 9                 | 0        | 0                            | 0                            | 0                                                                         | 100%                |  |  |
| Pesticides          | 1                   | 22                     | 22                | 0        | 0                            | 1                            | 0                                                                         | 100%                |  |  |
| SVOCs*              | 2                   | 66                     | 130               | 4        | 2                            | 126                          | 2                                                                         | 96.9%               |  |  |
| VOCs                | 3                   | 37                     | 111               | 5        | 0                            | 7                            | 0                                                                         | 96.4%               |  |  |
| Metals              | 9                   | 23                     | 207               | 2        | 0                            | 176                          | 6                                                                         | 99.0%               |  |  |
| Nitroguanidine      | 1                   | 1                      | 1                 | 0        | 0                            | 1                            | 0                                                                         | 100%                |  |  |
| Nitrocellulose      | 4                   | 1                      | 4                 | 0        | 0                            | 0                            | 0                                                                         | 100%                |  |  |
| Hexavalent chromium | 1                   | 1                      | 1                 | 0        | 1                            | 1                            | 0                                                                         | 100%                |  |  |
| Cyanide             | 1                   | 1                      | 1                 | 0        | 0                            | 1                            | 0                                                                         | 100%                |  |  |

| Table 8. | Analytica         | l comple | eteness f | for ODA1 | validated | primary  | v data |
|----------|-------------------|----------|-----------|----------|-----------|----------|--------|
|          | 7 11 141 9 11 0 4 | oompic   |           |          | vanaatoa  | printial | , aata |

|          |                     |                        | Number of Results |          |                              |                              |                                                                           |                     |
|----------|---------------------|------------------------|-------------------|----------|------------------------------|------------------------------|---------------------------------------------------------------------------|---------------------|
| Analysis | Samples<br>Analyzed | Analytes per<br>Sample | Total             | Rejected | DLs<br>Exceeding<br>Criteria | Estimated for<br>QC Outliers | Estimated for<br>Detects <loq< td=""><td>Percent<br/>Complete</td></loq<> | Percent<br>Complete |
|          |                     | Totals                 | 635               | 11       | 3                            | 462                          | 2                                                                         | 98.3%               |

\* The reviewer chose to report nitrobenzene, 2,4-dinitrotoluene and 2,6-dinitrotoluene from either the 8330B analyses or the 8270C analyses; therefore, these compounds are not included in the analytes count.

The analytical completeness goal for the project established in the FWQAPP was 90% for each method. The completeness goal was met for all analyses.

#### 4.5 PRIMARY AND FIELD DUPLICATE COMPARISON SUMMARY

Primary and field duplicate sample comparisons were considered to be in good agreement as only 4% of the field duplicate pair results were above the FWQAPP control limit of 50% for soils or +/- the RL for results below the LOQ.

All of the outliers were metals and most discrepancies occurred in field duplicate pairs DA1SB-059M-0201-SO/DA1SB-081M-0203-SO and DA1SB-068M-0201-SO/DA1SB-084M-0201-SO. According to documents supplied by Shaw, DA1SB-059M-0201-SO was collected from 5-8 feet below ground surface and DA1SB-081M-0203-SO was collected between 8-12 feet below ground surface. Some sample heterogeneity likely between these depths and may explain some of the comparison outliers. All comparison results are presented in Appendix C.

| Method              | Number of<br>Analytes | Primary/Field<br>Duplicate Pairs | Total<br>Analytes | Number of<br>results within<br>control limits | Number of<br>results above<br>control limit |
|---------------------|-----------------------|----------------------------------|-------------------|-----------------------------------------------|---------------------------------------------|
| Explosives*         | 17                    | 7                                | 117               | 117                                           | 0                                           |
| PCBs                | 9                     | 1                                | 9                 | 9                                             | 0                                           |
| Pesticides          | 22                    | 1                                | 22                | 22                                            | 0                                           |
| SVOCs*              | 66                    | 1                                | 63                | 63                                            | 0                                           |
| VOCs*               | 2                     | 37                               | 71                | 71                                            | 0                                           |
| Metals*             | 23                    | 7                                | 160               | 140                                           | 20                                          |
| Nitroguanidine      | 1                     | 2                                | 2                 | 2                                             | 0                                           |
| Nitrocellulose      | 1                     | 2                                | 2                 | 2                                             | 0                                           |
| Hexavalent chromium | 1                     | 1                                | 1                 | 1                                             | 0                                           |
| Cyanide             | 1                     | 1                                | 1                 | 1                                             | 0                                           |

Table 9. ODA1 primary/field duplicate sample comparison summary

\*Total analyte count affected by rejected results

# 4.6 SPECIFIC DATA CONCERNS

Specific concerns regarding the data are noted below:

- 2 benzo(a)pyrene DLs nominally exceeded the FWCUG by 0.01 mg/Kg)
- 1 hexavalent chromium DL exceeded the FWCUG of 1.9 mg/Kg by 0.26 mg/Kg
- Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time.
- Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data.
- The actual temperature upon receipt was not noted by the laboratory. The temperature was noted only as being below some temperature (e.g. <4.2°C).
- All explosive analyses were performed beyond the holding time.

In order to avoid repetition of the issues noted above, the following actions should be taken:

- MEC<sup>X</sup> recommends the laboratory be requested to review the nitroguanidine manual integrations and determine their accuracy and set a policy for consistent baseline manual integration of MRL and low level calibration standards.
- MEC<sup>X</sup> recommends the laboratory be requested to alter the hexavalent chromium instrument set up, if possible, in order to capture the raw absorbance.

# 5. SAND CREEK

# 5.1 PREVIOUS ACTIVITIES AND DATA

Sand Creek is a former open dump area containing construction and demolition type material. This debris was delivered to the site and dumped over approximately 1,200 feet of embankment located immediately adjacent to Sand Creek. There are no records indicating the quantities or materials dumped at the site and the operational dates for the landfill are unknown. Several buildings associated with the former Sand Creek Sewage Treatment Plant are located northeast of the site.

A removal action was performed by MKM in 2003 and included the removal of most of the surface debris. Shaw prepared a *Data Quality Objective Report* based on confirmation sampling performed by MKM and determined additional sampling was necessary to address data gaps.

# 5.2 CURRENT INVESTIGATION

Samples collected in association with the project described in this document were from soils and sediments collected from Sand Creek. The samples were collected in order to provide the additional characterization of the nature and extent of contamination at Sand Creek.

| Matrix   | Primary<br>Samples | Field<br>Duplicates | Split<br>Samples | Explosives | Propellants | Pesticides | PCBs | SVOCs | VOCs | Metals | Cr <sup>6+</sup> | Cyanide |
|----------|--------------------|---------------------|------------------|------------|-------------|------------|------|-------|------|--------|------------------|---------|
| Sediment | 1                  | 0                   | 0                | 1          | 1           | 1          | 1    | 1     | 1    | 1      | 1                | 1       |
| Soil     | 86                 | 12                  | 11               | 85         | 12          | 12         | 12   | 85    | 11   | 85     | 18               | 12      |

**Table 10**. Total sample count for Sand Creek

| Table 11. | Sand Creek | validated | samples | and methods |
|-----------|------------|-----------|---------|-------------|
|-----------|------------|-----------|---------|-------------|

| Sample ID         | SDG   | Matrix   | Collected | Explosives | Propellants | Pesticides | PCBs | SVOCs | VOCs | Metals | Cr <sup>6+</sup> | Cyanide |
|-------------------|-------|----------|-----------|------------|-------------|------------|------|-------|------|--------|------------------|---------|
| SCSB-037M-0001-SO | 81578 | Soil     | 9/22/2010 | х          |             | -          |      | х     |      | х      |                  |         |
| SCSB-038M-0005-SO | 81578 | Soil     | 9/22/2010 | х          |             |            |      | х     |      | х      |                  |         |
| SCSB-042M-0003-SO | 81578 | Soil     | 9/21/2010 | Х          |             |            | -    | Х     |      | Х      |                  |         |
| SCSB-048D-0001-SO | 81670 | Soil     | 9/29/2010 |            |             |            |      |       | х    |        |                  |         |
| SCSB-048M-0001-SO | 81670 | Soil     | 9/29/2010 | Х          | Х           | Х          | Х    | Х     |      | х      | х                |         |
| SCSD-070M-0001-SD | 81670 | Sediment | 9/28/2010 | х          |             |            |      | х     |      | х      | х                | х       |
| SCSS-058M-0001-SO | 81670 | Soil     | 9/23/2010 | Х          |             |            |      | х     |      | х      |                  |         |
| SCSS-068M-0001-SO | 81578 | Soil     | 9/21/2010 | Х          |             |            |      | х     |      | х      |                  |         |
| SCSS-073M-0001-SO | 82400 | Soil     | 11/9/2010 | Х          |             |            |      | Х     |      | Х      |                  |         |
| SCSS-076M-0001-SO | 82400 | Soil     | 11/9/2010 | х          |             |            |      |       |      | х      |                  |         |

| Duplicate Sample ID | Parent Sample     |
|---------------------|-------------------|
| SCSB-080D-0001-SO   | SCSB-037D-0001-SO |
| SCSB-080M-0001-SO   | SCSB-037M-0001-SO |
| SCSB-081D-0005-SO   | SCSB-038D-0005-SO |
| SCSB-081M-0005-SO   | SCSB-038M-0005-SO |
| SCSB-082M-0002-SO   | SCSB-040M-0002-SO |
| SCSB-083M-0003-SO   | SCSB-042M-0003-SO |
| SCSB-084D-0001-SO   | SCSB-048D-0001-SO |
| SCSB-084M-0001-SO   | SCSB-048M-0001-SO |
| SCSS-085M-0001-SO   | SCSS-058M-0001-SO |
| SCSS-086D-0001-SO   | SCSS-068D-0001-SO |
| SCSS-086M-0001-SO   | SCSS-068M-0001-SO |
| SCSS-087M-0001-SO   | SCSS-073M-0001-SO |

#### Table 12. Sand Creek field duplicate samples

#### 5.2.1 Sample Collection

Except as noted below, no sample collection issues were noted.

| SDG   | Issue                                                                                 |
|-------|---------------------------------------------------------------------------------------|
|       | The sample receipt temperatures were listed by the laboratory only as <## °C (e.g.    |
| All   | <2.6 °C). As the samples were not received above 6.0 °C and were not noted to be      |
|       | frozen or damaged, no qualifications were applied.                                    |
| Most  | Some corrections made to the chain-of-custody by the sampler or by the laboratory     |
|       | were overwritten and some corrections were not initialed or dated.                    |
|       | Sample SCSB-042M-0003-SO was listed on the chain-of-custody but was not               |
| 81578 | received. The sample was apparently received in a following shipment as it was listed |
|       | in the sample log-in.                                                                 |
| 91579 | Sample SCSB-038M-0005-SO was listed on the chain-of-custody twice and two             |
| 01070 | samples were received. As per Shaw, one sample was sent to the QA laboratory.         |
|       | Some collection times listed on the chain-of-custody did not match the sample         |
| 81578 | containers. Shaw advised the laboratory to use the times listed on the sample         |
|       | containers.                                                                           |

#### 5.2.2 Data Completeness

Data completeness for the project described in this report was found to be generally acceptable as no deliverables were missing from the SDGs reviewed.

#### 5.2.3 Preservation and Holding Time Requirements

All method preservation requirements were met. Except as noted in the table below, all holding times, as listed in Table 3, were met. Results listed in the table below were qualified as estimated, "UJ," for nondetects and estimated with a potential negative bias, "J-" for detects. All qualified results were coded with an "H" qualification code.

|        | Samples qualified for exceeded holding time |                                         |                                      |  |  |  |  |
|--------|---------------------------------------------|-----------------------------------------|--------------------------------------|--|--|--|--|
| Method | Analytes                                    | Sample                                  | Days past extraction<br>holding time |  |  |  |  |
|        |                                             | SCSB-038M-0005-SO                       | 7                                    |  |  |  |  |
| 8330B  | All                                         | SCSB-042M-0003-SO,<br>SCSB-037M-0001-SO | 8                                    |  |  |  |  |
| 8330   | Nitroguanidine                              | SCSB-048M-0001-SO                       | 4                                    |  |  |  |  |
| 8330B  | All                                         | SCSB-048M-0001-SO                       | 3                                    |  |  |  |  |
| 8330B  | All                                         | SCSD-070M-0001-SD                       | 5                                    |  |  |  |  |
| 8330B  | All                                         | SCSS-058M-0001-SO                       | 10                                   |  |  |  |  |
| 9012   | Cyanide                                     | SCSD-070M-0001-SD                       | 8                                    |  |  |  |  |
| 8270C  | All                                         | SCSB-048M-0001-SO                       | 5                                    |  |  |  |  |
| 8270C  | All                                         | SCSD-070M-0001-SD                       | 6                                    |  |  |  |  |
| 8270C  | All                                         | SCSS-058M-0001-SO                       | 8                                    |  |  |  |  |
| 8270C  | All                                         | SCSB-042M-0003-SO                       | 10                                   |  |  |  |  |

#### **5.2.4 Detection Limit Requirements**

As per the SAP, the site specific cleanup goals (FWCUGs) for the Residential Farmer Adult, Residential Farmer Child, and National Guard Trainee, presented in the *Final Facility-Wide Human Health Remediation Goals at the RVAAP* (2010) were applicable to the ODA1 and Sand Creek sites. Due to the reporting issue noted in Section 3.5, MEC<sup>×</sup> compared to the DL for the nondetected analytes to the most stringent FWCUG for each nondetected analyte. As per the SAP, if no FWCUG was listed, the USEPA Region 9 Residential Regional Screening Levels (RSL) was utilized.

These analytes had DLs which exceeded the FWCUG:

- 3 benzo(a)pyrene DLs nominally exceeded the FWCUG by 0.01 mg/Kg
- 2 hexavalent chromium DLs exceeded the FWCUG of 1.9 mg/Kg by 0.26 mg/Kg

No analytes had DLs which exceeded the RSLs.

The following had no FWCUG or RSL:

- 1 metal: potassium (nutrient)
- 8 pesticide compounds: alpha-chlordane, chlordane, endosulfan I, endosulfan II, endosulfan sulfate, endrin aldehyde, endrin ketone, and gamma-chlordane
- 3 VOCs: chloroethane, cis-1,3-dichloropropene, trans-1,3-dichloropropene
- 2 PCBS: Aroclor 1262, Aroclor-1268
- 2 VOCs: cis-1,3-dichloropropene, trans-1,3-dichloropropene
- 9 SVOC compounds: acenaphthylene, benzo(g,h,i)perylene, dimethyl phthalate, phenanthrene, 1,3-dichlorobenzene, 2-nitrophenol, 3-nitroaniline, 4-bromophenyl phenyl ether, 4-chlorophenyl phenyl ether

Results with DLs that exceed project criteria may be usable for their intended purposes; it is dependent on the final data user to make this determination on a case-by-case basis.

#### 5.3 SAND CREEK DATA QUALITY EVALUATION

#### 5.3.1 Explosives

CT analyzed 77 primary MI soil samples, 1 primary MI sediment sample, 8 soil field duplicate samples, 1 field blank, and 6 equipment rinsate samples for explosive compounds by USEPA SW-846 Method 8330B. MEC<sup>X</sup> validated 8 soil and 1 sediment sample at Level IV.

- Detection Limit (DL) studies were not evaluated as part of this project.
- Calibration
  - Initial calibration average percent relative standard deviations (%RSDs) were within the control limits listed in DoD QSM Table F-3 of ≤20%, or the linear regression r<sup>2</sup> values were ≥0.990.
  - The second source initial calibration verification standard (ICV) recoveries for both the primary and confirmation calibrations were within the control limits listed in DoD QSM Table F-3 of ±20%.
  - The %D for 4-amino-2,6-dinitrotoluene in one CCV bracketing SCSB-042M-0003-SO was 18%; therefore, nondetected 4-amino-2,6-dinitrotoluene in SCSB-042M-0003-SO was qualified as estimated, "UJ." The qualified result was coded with a "C" qualification code. The remaining continuing calibration verification (CCV) standard recoveries were within the control limits listed in DoD QSM Table F-3 of ±20%.
  - As per FWQAPP Section 8.3.2.1.2, MRLs were analyzed. No control limits were listed in the FWQAPP; therefore, the reviewer utilized the reasonable control limits of 70-130%. One recovery for 2,6-dinitrotoluene was 60%; therefore, nondetected 2,6dinitrotoluene in SCSS-076M-0001-SO was qualified as estimated, "UJ." All remaining recoveries were within the control limits.
- Blanks: The method blanks associated with the validated samples had no target compound detects above the control limits listed in DoD QSM Table F-3 of one-half the LOQ or one-tenth the amount detected in a sample.
- Laboratory Control Samples: Recoveries were within the control limits listed in DoD QSM Tables G-2 (poor performers) and G-13 for the listed compounds and within the reasonable laboratory control limits of 50-150% for nitroglycerin and PETN.
- Surrogate Recovery: As no surrogate control limit was listed in the DoD QSM, surrogate recoveries were assessed against the reasonable laboratory-established control limits of 75-127%. All recoveries were within the control limits.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a validated sample. Method accuracy was evaluated based on LCS results.
- Triplicates: No triplicate analyses were performed on a validated sample.
- Compound Identification: Compound identification was verified for those samples validated at a Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification.

The laboratory reported detects from the primary column. As DoD QSM Table F-3 does not designate which column results are to be reported from, the reviewer assessed both columns. For those samples validated at Level IV, no interferences were noted on the primary column; however, co-eluting peaks were noted on the confirmation column. It was the reviewer's professional opinion that the results should stand as reported by the laboratory.

 Compound Quantification and Reported Detection Limits: Compound quantification was verified for those samples validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

In some instances, nitrobenzene, 2,4-dinitrotoluene and 2,6-dinitrotoluene were reported by both Methods 8330B and 8270C and both methods were validated at Level IV. As there were no detects for these compounds in the 8330B analyses and the 8270C LOQs were lower, the results for these compounds were rejected, "R," in the 8330B analyses in favor of the 8270C results, for the samples validated at Level IV. All rejected analytes were coded with a "D" qualification code.

- Target compound confirmation was performed for detects in the validated samples. The intercolumn RPD for 2,4,6-trinitrotoluene in SCSS-058M-0001-SO was 73%; therefore, the result was qualified as estimated, "J," and coded with an "\*III" qualification code. All remaining RPDs were within the criteria listed in DoD QSM Table F-3 of ≤40%.
- System Performance: Review of the raw data indicated no problems with system performance.
- Some manual integrations were performed for initial calibration standards, CCVs and sample data reviewed at Level IV. All manual integrations were performed in order to report incompletely resolved peaks and were deemed acceptable by the reviewer.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: There were 6 equipment rinsate samples and 1 field blank associated with the Sand Creek site samples. 2,4-Dinitrotoluene was detected in one of the equipment rinsates but was not detected in any of the site samples. There were no other detects above the DL in these samples.
- Field Duplicates: A total of 8 soil field duplicates were collected and analyzed for explosive compounds. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5x the LOQ. In cases where results were <5x the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

#### 5.3.2 Propellants

CT analyzed 8 primary MI soil samples, 1 primary MI sediment sample, 4 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for nitroguanidine by USEPA SW-846 Method 8330 and nitrocellulose as nitrate/nitrite by modified SW-846 Method 9056. MEC<sup>X</sup> validated 1 soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration
  - Nitroguanidine initial calibration average percent relative standard deviations (%RSDs) were within the control limits listed in DoD QSM Table F-2 of ≤20%, or the linear regression r<sup>2</sup> values were ≥0.990. Nitrocellulose linear regression r values were within the control limit listed in the DoD QSM Table F-11 of ≥0.995.
  - The nitroguanidine second source ICV for both the primary and confirmation calibrations were within the control limits listed in DoD QSM Table F-2 of 85-115%. The nitrocellulose ICV recoveries were within the control limits listed in DoD QSM Table F-11 of 90-110%.
  - The nitroguanidine CCV standard %Ds were within the control limits listed in DoD QSM Table F-2 of ≤15%. The nitrocellulose CCV recoveries were within the control limits listed in DoD QSM Table F-11 of 90-110%.
  - As per FWQAPP Section 8.3.2.1.2, MRL standards are required and were analyzed. All recoveries were within the reasonable control limits of 70-130%.
- Blanks: The method blanks associated with the validated samples had no target compound detects above the control limits listed in DoD QSM Tables F-2 and F-11 of one-half the LOQ or one-tenth the amount detected in a sample.
- Laboratory Control Samples: No nitroguanidine LCS control limits are listed in the DoD QSM. All nitroguanidine recoveries were within the laboratory-established control limits of

50-150%. The nitrocellulose recoveries were within the control limits listed in DoD QSM Table F-11 of 80-120%.

- Surrogate Recovery: A surrogate was not used for the analyses of nitrocellulose. Surrogate control limits for 1,2-dinitrobenzene are not listed in the DoD QSM; therefore, the nitroguanidine surrogate recoveries were assessed against the laboratory control limits of 75-127%. The recoveries were within the control limits.
- Triplicates: No triplicate analyses were performed on a validated sample in these SDGs.
- Matrix Spike/Matrix Spike Duplicate: No matrix spikes were performed on a validated sample. Method accuracy was evaluated based on LCS results.
- Compound Identification: Compound identification was verified for those samples validated at a Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification. As there were no primary column detects, no confirmation column analyses were performed.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for those samples validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Some manual integrations were performed for the nitroguanidine MRLs. Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time. As the inconsistent baseline may have affected the MRL recoveries, it was the reviewer's professional opinion that nondetected nitroguanidine in SCSB-048M-0001-SO should be qualified as estimated, "UJ." The qualified results were coded with an "\*III" qualification code. The low level calibration standard was also manually integrated to correct the baseline which was affected by a significant amount of noise.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsate samples and 1 field blank associated with the Sand Creek site samples. There were no detects above the DL in any of these samples.

Field Duplicates: A single field duplicate pair was collected and analyzed for nitroguanidine and nitrocellulose. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

### 5.3.3 Polychlorinated Biphenyls (PCBS)

CT analyzed 8 primary MI soil samples, 1 primary MI sediment sample, 4 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for PCBs by USEPA SW-846 Method 8082. MEC<sup>x</sup> validated 1 soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria listed in the DoD QSM Table F-2 were met.
  - Initial calibration average %RSDs were within the control limits of ≤20% or  $r^2$  values ≥0.990.
  - The second source ICV was within the control limit of ±20% of the true value for all applicable Aroclors.
  - The CCV standard %Ds were within the control limits of  $\pm 20\%$ .
  - As per FWQAPP Section 8.3.2.1.2, MRL standards are required. Some recoveries were above the control limit; however, these did not affect nondetected results. All average MRL recoveries affecting sample data were within the reasonable control limits of 70-130%.
- Blanks: The method blanks had no target compound detects above the control limits listed in the DoD QSM Table F-2, of one-half the LOQ for target compounds or one-tenth the amount detected in a sample.
- Laboratory Control Samples: LCS recoveries were within the control limits listed in DoD QSM Table G-17 for soils, of 40-140% and 60-130% for Aroclors 1016 and 1260, respectively.
- Surrogate Recovery: Recoveries were within the control limits listed in DoD QSM Table G-3 of 60-125% for soils.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the validated soil sample from this SDG. Evaluation of method accuracy was based on the LCS results.
- Compound Identification: Compound identification was verified for the sample validated at Level IV. Review of the sample chromatograms, standards, and retention times

indicated no problems with target compound identification. The sample was analyzed on two analytical columns for target compound confirmation; however, the sample had no Aroclors detected on the primary column.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the sample validated at a Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations were not performed for the sample or calibration and QC data associated with the sample data.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsate samples and 1 field blank associated with the Sand Creek site samples. There were no Aroclor detects above the DL in these samples.
  - Field Duplicates: There was 1 soil field duplicate pair collected and analyzed for PCBs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

#### 5.3.4 Pesticides

CT analyzed 8 primary MI soil samples, 1 primary MI sediment sample, 4 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for pesticides by USEPA SW-846 Method 8081. MEC<sup>X</sup> validated 1 soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria listed in the DoD QSM Table F-2 were met.
  - Initial calibration %RSDs were within the control limit of  $\leq 20\%$ , or r<sup>2</sup> values  $\geq 0.990$ .
  - The ICV recoveries for all target analytes were within the control limit of ±20% of the true value.

- The DDT/Endrin breakdown standards were within the control limit listed in the DoD QSM Table F-2 of ≤15%.
- All bracketing CCV %Ds were within the control limit of  $\leq 20\%$ .
- As per FWQAPP Section 8.3.2.1.2, MRL standards are required. All MRL recoveries affecting sample data were within the reasonable control limits of 70-130%, with the exception of recoveries in both the beginning and ending MRLs for endrin on the secondary column of 60.0% and 59.5%, respectively. The nondetected result for endrin in sample SCSB-048M-0001-SO was qualified as estimated, "J," and qualified with a "C" qualification code.
- Blanks: The method blanks had no target compound detects above the control limits listed in the DoD QSM Table F-2, of one-half the LOQ or one-tenth the amount detected in a site sample.
- Laboratory Control Samples: Recoveries were within the control limits listed in the DoD QSM Table G-15.
- Surrogate Recovery: Recoveries were within the control limits listed in the DoD QSM Table G-3.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the validated soil sample from this SDG. Evaluation of method accuracy was based on the LCS results.
- Compound Identification: Compound identification was verified for the sample validated at Level IV. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the validated sample. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

The sample was analyzed on two analytical columns for target compound confirmation. Intercolumn RPDs for sample detects were  $\leq 40\%$ .

- System Performance: Review of the raw data indicated no problems with system performance.
- Manual integrations were not performed for the sample validated at Level IV or calibration and QC data associated with the sample data.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsate samples and 1 field blank associated with the Sand Creek site samples. The field blank had no detects above the DL. One equipment rinsate had a detect between the DL and LOQ for methoxychlor; however, methoxychlor was not detected in the associated sample. There were no other target compound detects above the DL.
  - Field Duplicates: There was 1 soil field duplicate pair collected and analyzed for PCBs. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

# 5.3.5 Semivolatile Organic Compounds (SVOCs)

CT analyzed 77 primary MI soil samples, 1 primary MI sediment sample, 8 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for SVOCs by USEPA Method 8270C. MEC<sup>X</sup> validated 7 soil samples and 1 sediment sample at Level IV.

- DL studies were not evaluated as part of this project.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria listed in the DoD QSM Table F-4 were met for all target compounds of interest, with exceptions affecting sample data listed below.
  - Initial calibration average RRFs and ICV and CCV RRFs were within method control limits of ≥0.050 for system performance check compounds (SPCCs). All initial calibration %RSDs were within the method control limits listed in the DoD QSM Table F-4 of ≤30% for calibration check compounds (CCCs) and ≤15% for remaining compounds, or r<sup>2</sup> values ≥0.990.
  - All second source ICV standard recoveries were within the control limit of ±20%.
  - o Except as noted below, the continuing calibration %Ds affecting sample data were ≤20%. Results listed in the table below, all nondetects, were qualified as estimated, "UJ." All qualified results were coded with a "C" qualification code.

| Samples qualified for CCV %D outliers |       |                   |  |
|---------------------------------------|-------|-------------------|--|
| Analyte                               | %D    | Qualified Samples |  |
| 3,3'-Dichlorobenzidine                | 25.8% | SCSB-042M-0003-SO |  |

| Samples qualified for CCV %D outliers |       |                                         |  |
|---------------------------------------|-------|-----------------------------------------|--|
| Analyte                               | %D    | Qualified Samples                       |  |
| 3,3'-Dichlorobenzidine                | 25.8% | SCSB-037M-0001-SO,<br>SCSB-038M-0001-SO |  |

As per FWQAPP Section 8.3.2.1.2, MRL standards are required. Recoveries were within the reasonable control limits of 70-130%, with exceptions noted below. Nondetected results associated with recoveries less than 10% were rejected, "R." The remaining results listed in the table below were qualified as estimated, "UJ," for nondetects, and "J," for detects. In the absence of qualifications with conflicting bias, detected results were estimated with a potential negative bias, "J-," or a potential positive bias, "J+." All qualified results were coded with a "C" qualification code.

| Samples qualified for MRL recovery outliers |      |                       |  |
|---------------------------------------------|------|-----------------------|--|
| Analyte %R Qualifie                         |      | Qualified Samples     |  |
| 4-Nitrophenol                               | 62%  | SCSS-073M-0001-SO     |  |
| Benzyl alcohol                              | 59%  |                       |  |
| 3-Nitroaniline                              | 68%  |                       |  |
| 2,4-Dinitrophenol                           | 0%   |                       |  |
| 4-Nitrophenol                               | 58%  |                       |  |
| 2-Nitrophenol                               | 59%  |                       |  |
| Hexachlorocyclopentadiene                   | 0%   | SCSB-048M-0001-SO,    |  |
| 2,4,5-Trichlorophenol                       | 39%  | SCSD-070M-0001-SD     |  |
| 4,6-Dinitro-2-methylphenol                  | 0%   |                       |  |
| Benzo(k)fluoranthene                        | 141% |                       |  |
| Indeno(1,2,3-cd)pyrene                      | 36%  |                       |  |
| Dibenzo(a,h)anthracene                      | 39%  |                       |  |
| Benzo(g,h,i)perylene                        | 28%  |                       |  |
| Benzyl alcohol                              | 5%   |                       |  |
| Hexachlorocyclopentadiene                   | 9%   |                       |  |
| 2,4-Dinitrophenol                           | 66%  |                       |  |
| 4,6-Dinitro-2-methylphenol                  | 50%  | SCSS-058M-0001-SO     |  |
| Indeno(1,2,3-cd)pyrene                      | 68%  |                       |  |
| Benzo(g,h,i)perylene                        | 54%  |                       |  |
| 4-Nitroaniline                              | 58%  |                       |  |
| Hexachlorocyclopentadiene                   | 45%  | SCSS 068M 0001 SO     |  |
| 3-Nitroaniline                              | 42%  | 3033-00810-0001-30    |  |
| Benzyl alcohol                              | 58%  | SCSP 027M 0001 SO     |  |
| Hexachlorocyclopentadiene                   | 11%  | SCSB-037M-0001-SO,    |  |
| 2,4-Dinitrophenol                           | 66%  | - 3030-0301VI-0001-30 |  |
| Benzyl alcohol                              | 49%  | SCSB 042M 0002 SC     |  |
| 4-Nitroaniline                              | 58%  | 303D-042IVI-0003-30   |  |

Bold indicates rejected nondetect result

- Blanks: The method blanks had no target compound detects above the control limits listed in DoD QSM Table F-4 of one-half the LOQ for target compounds or one-tenth the amount detected in any sample, and no common laboratory contaminants.
- Laboratory Control Samples: Recoveries were within the control limits listed in the DoD QSM Tables G-2 (poor performers) and G-7, or within the laboratory-established control limits when no QSM limit was prescribed.
- Surrogate Recovery: Surrogate recoveries were within the control limits listed in the DoD QSM Table G-3.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a validated sample. Method accuracy was evaluated based on LCS results.
- Internal Standards Performance: Pervlene-d12 was recovered at 38% in the analysis of • SCSB-048M-0001-SO; therefore, the associated compounds target benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene were qualified as estimated, "J," for detects and, "UJ," for nondetects. The qualified results were coded with an "I" qualification code. All remaining internal standard area counts and all retention times were within the DoD QSM Table F-4 control limits established by the initial calibration midpoint standard: ±30 seconds for retention times and -50% / +100% for internal standard areas.
- Compound Identification: Compound identification was verified for the samples validated at Level IV. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the samples validated at Level IV. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J," by the laboratory. Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.
- Some routine manual integrations were performed for the samples and calibration and QC data associated with the sample data. All manual integrations reviewed at Level IV were considered appropriate.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: A total of 6 equipment rinsate samples and 1 field blank were collected and analyzed for SVOCs. Benzyl alcohol was detected several of these samples but was not detected in the associated validated samples. Bis(2-ethylhexyl)phthalate was detected in the equipment rinsates associated with SCSS-068M-0001-SO and SCSB-037M-0001-SO at 1.7 and 1.9 µg/L, respectively; therefore, the detects for bis(2-ethylhexyl)phthalate in these samples were qualified as nondetected, "U," at the LOD. There were no other reportable detects above the DL in the equipment rinsates.
- Field Duplicate Samples: A total of 7 field duplicate samples were collected and analyzed for SVOCs. The control limit listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. Except as noted below, all results were within the control limits. See Appendix C for comparisons of all samples and analytes.

| SVOC field duplicate outliers |                       |                      |     |          |
|-------------------------------|-----------------------|----------------------|-----|----------|
| Primary Sample                | Field Duplicate       | Analyte              | RPD | W/In LOQ |
| SCSD-058M-0001-<br>SO         | SCSB-085M-<br>0001-SO | Benzo(b)fluoranthene | N/A | No       |
|                               |                       | Fluoranthene         | N/A | No       |
|                               |                       | Phenanthrene         | N/A | No       |
|                               |                       | Pyrene               | N/A | No       |

# 5.3.6 Volatile Organic Compounds (VOCs)

CT analyzed 7 primary discrete soil samples, 1 primary discrete sediment sample, 4 soil field duplicate samples, 1 field blank, 3 equipment rinsate samples, and 7 trip blank samples for volatile compounds by USEPA SW-846 Method 8260B. MEC<sup>X</sup> validated 1 primary soil sample at Level IV.

- DL studies were not evaluated as part of this project.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria listed in the DoD QSM Table F-4 were met for all target compounds, with exceptions affecting sample data noted below.
  - Initial calibration average RRFs were within the control limit of  $\geq$ 0.05, and the %RSDs were within the control limit of  $\leq$ 15%, or r values  $\geq$ 0.995.
  - The ICV RRFs were within the control limit of  $\geq 0.05$ . Recoveries for all target analytes were within the control limits of  $\pm 20\%$  of the true value.
  - Continuing calibration RRFs were within the control limit of  $\geq$ 0.05 for all target compounds, and %Ds were within the control limit of  $\leq$ 20.

As per FWQAPP Section 8.3.2.1.2, MRL standards are required. With exceptions noted in the table below, all recoveries affecting sample data were within the reasonable control limits of 70-130%. Recoveries above the control limits did not affect nondetected results. The results listed in the table below, all nondetects, were qualified as estimated, "UJ." All qualified results were coded with a "C" qualification code.

| Samples qualified for MRL recovery outliers |       |                   |  |
|---------------------------------------------|-------|-------------------|--|
| Analyte MRL %Rs<br>Begin / End              |       | Qualified Samples |  |
| Carbon disulfide                            | / 68% |                   |  |
| Dibromochloromethane                        | / 63% | SCSB-048D-0001-SO |  |
| trans-1,3-Dichloropropene                   | / 69% |                   |  |

- Blanks: The method blank had no target compound detects above the control limits listed in DoD QSM Table F-4 of one-half the LOQ for target compounds and no common laboratory contaminant detects above the LOQ.
- Laboratory Control Samples: Recoveries were within the control limits listed in DoD QSM Table G-5.
- Surrogate Recovery: Recoveries were within the control limits listed in DoD QSM Table G-3 or within laboratory-established control limits for those not listed in Table G-3.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the validated sample in this SDG. Evaluation of method accuracy was based on the LCS results.
- Internal Standards Performance: The internal standard area counts and retention times were within the DoD QSM Table F-4 control limits established by the initial calibration midpoint standard: ±30 seconds for retention times and -50%/+100% for internal standard areas.
- Compound Identification: Compound identification was verified for the sample validated at Level IV. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified for the validated sample. The LOQs were supported by the low point of the initial calibration and the laboratory DLs. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- System Performance: Review of the raw data indicated no problems with system performance.

- Manual integrations were not performed for the samples validated at Level IV or the associated calibration or QC.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Trip Blanks: The laboratory analyzed 7 trip blank samples. The trip blanks had no target compounds detected above the DL.
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and one field blank associated with the Sand Creek site samples. These samples had detects at or just above the LOQ for chloroform and detects between the DL and LOQ for methylene chloride and chloromethane. None of the field QC contaminants were detected in the validated site samples. The field blank and equipment rinsates had no other target compound detects above the DL.
  - Field Duplicates and Field Split Samples: There were 4 soil field duplicate pairs collected and analyzed for VOCs. The control limit listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5× the LOQ. In cases where results were <5× the LOQ, the reasonable control limit of ± the LOQ was applied. Except as noted below, all results were within the control limits. See Appendix C for comparisons of all samples and analytes.</li>

| VOC field duplicate outliers |                       |              |     |          |  |
|------------------------------|-----------------------|--------------|-----|----------|--|
| Primary Sample               | Field Duplicate       | Analyte      | RPD | W/In LOQ |  |
| SCSD-048D-0001-<br>SO        | SCSB-084D-<br>0001-SO | Benzene      | N/A | No       |  |
|                              |                       | Ethylbenzene | N/A | No       |  |
|                              |                       | m,p-Xylenes  | N/A | No       |  |
|                              |                       | o-Xylene     | N/A | No       |  |
|                              |                       | Toluene      | N/A | No       |  |

#### 5.3.7 Metals

CT analyzed 77 primary MI soil samples, 1 primary MI sediment sample, 8 soil field duplicate samples, 1 field blank, and 3 equipment rinsate samples for various metals by USEPA Methods 6010C and 7470A/7471A. MEC<sup>X</sup> validated 8 soils and 1 sediment sample at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Except as noted below, calibration criteria were met.
  - Initial calibration: Linear regression r-values were within the control limit listed in the DoD QSM Tables F-7 and F-8 of ≥0.995.
  - The ICV recoveries were within the control limits listed in DoD QSM Table F-7 of 90-110%. The laboratory analyzed a pair of CCVs. The lower concentration CCV
had analyte concentrations too high to be considered a low-level calibration check standard; therefore, it was assessed against the CCV control limits of 90-110%. Except as noted below, the CCVs were within the control limits. The mercury ICV and CCV recoveries were within the control limits listed in DoD QSM Table F-7 of 90-110% and 80-120%, respectively.

 The laboratory analyzed CRDL standards which ranged from nominally above the LOQ to almost 10x the LOQ. Except as noted below, the CRDL standard recoveries were within the reasonable control limits of 80-120%. Results listed in the table below were qualified as estimated, "UJ," for nondetects and, "J," for detects. All qualified results were coded with a "C" qualification code.

| S        | Samples qualified for CRDL recovery outliers |                   |  |  |  |  |
|----------|----------------------------------------------|-------------------|--|--|--|--|
| Analyte  | %R                                           | Qualified Samples |  |  |  |  |
| Thallium | 78%                                          | SCSB-042M-0003-SO |  |  |  |  |
| Antimony | 121%                                         | SCSS-073M-0001-SO |  |  |  |  |
| Selenium | 129%                                         | SCSS-073M-0001-SO |  |  |  |  |
| Selenium | 78%                                          | SCSS-076M-0001-SO |  |  |  |  |
| Mercury  | 75%                                          | SCSS-076M-0001-SO |  |  |  |  |

The MRL required in DoD QSM Table F-7 is to be at or below analyte LOQ. As no MRL was analyzed for beryllium, cadmium, manganese, potassium, and sodium, sample results for these analytes which were less than 10x the LOQ were qualified as estimated, "J," for detects and, "UJ," for nondetects. Results higher than 10x the LOQ were not qualified as it was the reviewer professional opinion that at those concentrations, the CCVs were indicative of instrument performance.

• Blanks: Except as noted below, the method blanks and CCBs had no applicable detects above the control limit listed in DoD QSM Tables F-7 and F-8 of one-half the LOQ or one-tenth the amount detected in a sample.

Results associated with negative blanks were qualified as estimated, "UJ," for nondetects and, "J," for detects. In the absence of qualifications with conflicting bias, detects were qualified as estimated with a potential negative bias, "J-." The remaining results listed in the table below were qualified as nondetected, "U," at the LOD if detected below the LOD or at the level of contamination if detected above. All qualified results were coded with a "B" qualification code.

| Samples qualified for CCB detects          |            |            |                   |  |  |  |  |
|--------------------------------------------|------------|------------|-------------------|--|--|--|--|
| Analyte Blank Detect LOD Qualified Samples |            |            |                   |  |  |  |  |
| Thallium                                   | -4.91 µg/L | 0.082 µg/L | SCSS-073M-0001-SO |  |  |  |  |
| Thallium                                   | -8.33 µg/L | 0.082 µg/L | SCSS-076M-0001-SO |  |  |  |  |

 Interference Check Samples: ICP and ICPMS interference check sample A (ICSA) and AB (ICSAB) recoveries were within the control limits listed in DoD QSM Table F-8 of 80120%. No analytes were detected in the ICSA above the control limit listed in DoD QSM Table F-8 of <LOD.

- Laboratory Control Samples: The recoveries were within the control limits listed in DoD QSM Tables G-18 and G-19 of 80-120%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on SCSB-041M-0002-SO, SCSB-039M-0002-SO, SCSB-038M-0001-SO, and SCSS-057M-0001-SO. Except as noted below, the laboratory duplicate RPDs were within the control limits listed in DoD QSM Table F-7 of ≤20%. The duplicate criterion was only applied when the original sample result was nominally ≥5× the LOQ. In cases where the original sample result was <5× the LOQ, the reasonable control limit of ± the LOQ was applied.</li>

Results listed in the table below were qualified as estimated, "J," for detects and, "UJ," for nondetects. All qualified results were coded with an "E" qualification code. As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for a laboratory duplicate RPD outlier.

| Samples qualit    | Samples qualified for laboratory duplicate RPD outliers |       |                    |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------|-------|--------------------|--|--|--|--|--|--|
| Parent Sample     | Analyte                                                 | RPD   | Qualified Samples  |  |  |  |  |  |  |
|                   | Arsenic                                                 | 38%   |                    |  |  |  |  |  |  |
| SCSB-038M-0001-SO | Copper                                                  | 22%   | SCSB 037M 0001 SO  |  |  |  |  |  |  |
|                   | Lead                                                    | 28%   | SCSB-037M-0001-SO, |  |  |  |  |  |  |
|                   | Nickel                                                  | 21%   | SCSB-030M-0003-SO, |  |  |  |  |  |  |
|                   | Thallium                                                | 22%   | SCSS-068M-0001-SO  |  |  |  |  |  |  |
|                   | Vanadium                                                | 24%   |                    |  |  |  |  |  |  |
|                   | Zinc                                                    | 22%   |                    |  |  |  |  |  |  |
|                   | Arsenic                                                 | +1.00 | SCSB-037M-0001-SO, |  |  |  |  |  |  |
| SCSB-038M-0005-SO | Algenie                                                 | TEOQ  | SCSB-038M-0005-SO, |  |  |  |  |  |  |
|                   | Thallium                                                | +1 00 | SCSB-042M-0003-SO, |  |  |  |  |  |  |
|                   | manan                                                   | LOQ   | SCSS-068M-0001-SO  |  |  |  |  |  |  |
|                   | Arsenic                                                 | 32%   | SCSB-048M-0001-SO, |  |  |  |  |  |  |
| SCSS-057M-0001-SO | <b>T</b> I                                              | 1.00  | SCSD-070M-0001-SD, |  |  |  |  |  |  |
|                   | Inallium                                                | ±LOQ  | SCSS-058M-0001-SO  |  |  |  |  |  |  |

Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on SCSB-041M-0002-SO, SCSB-039M-0002-SO, SCSB-038M-0001-SO, and SCSS-057M-0001-SO. Except as noted below, recoveries were within the control limits listed in DoD QSM Table G-19 of 80-120%. Matrix spike control limits were not applied when the native sample concentration exceeded the spiked amount by a factor of four or more.

Nondetected cadmium results listed in the table below associated with recoveries less than 30% had post digestion spike recoveries greater than 75%; therefore, as per the National Functional Guidelines, nondetected cadmium results were qualified as estimated instead of rejected. The nondetected antimony results associated with recoveries less than 30% were rejected, "R." The remaining results noted in the table

below were qualified as estimated, "J," for detects and "UJ," for nondetects in the associated samples; however, nondetected results were not qualified for recoveries above the control limit. Results were qualified when one or both recoveries were outside the control limits. All qualified results were coded with a "Q" qualification code. When no other qualifications with conflicting bias were assigned to a result, detected results with low recoveries were assigned a negative bias, "J-," and detected results with high recoveries were assigned a positive bias, "J+." As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an MS/MSD recovery outlier. Parent samples were only qualified for outliers reported in that parent sample.

| Samp               | oles qualified for | or MS/MSD re | covery outliers             |
|--------------------|--------------------|--------------|-----------------------------|
| Parent Sample      | Analyte            | %Rs          | Qualified Samples           |
|                    | Antimony           | 24%, 23%     |                             |
|                    | Cobalt             | 12%, 10%     | 1                           |
|                    | Copper             | 69%, 63%     |                             |
|                    | Nickel             | 72%, 67%     |                             |
| SCSB-041M-0002-SO  | Vanadium           | 79%, 74%     |                             |
|                    | Zinc               | 74%, 68%     |                             |
|                    | Manganese          | 14%, 10%     | 038M-0005-SO SCSB-042M-     |
|                    | Thallium           | 74%, 73%     | 0003-50 5055-068M-0001-50   |
|                    | Aluminum           | 52%, 37%     | 0003-30, 3033-0001-0001-30  |
|                    | Potassium          | 76%, 76%     |                             |
|                    | Cadmium            | , 76%        |                             |
|                    | Lead               | , 72%        |                             |
|                    | Magnesium          | , 75%        |                             |
|                    | Selenium           | , 78%        |                             |
|                    | Antimony           | 0%, 0%       |                             |
|                    | Cadmium            | 78%, 78%     |                             |
|                    | Cobalt             | 50%, 50%     |                             |
|                    | Copper             | 71%, 70%     | SCSB 027M 0001 SO SCSB      |
| SCSB-030M-0002-SO  | Selenium           | 71%, 70%     | 038M-0005-SO SCSB-042M-     |
| 000D-003im-0002-00 | Vanadium           | 68%, 66%     | 0003-SO_SCSS-068M-0001-SO   |
|                    | Zinc               | 71%, 67%     | 0003-30, 3033-00011-0001-30 |
|                    | Thallium           | 70%, 75%     |                             |
|                    | Potassium          | 78%,         |                             |
|                    | Nickel             | , 78%        |                             |
|                    | Antimony           | 0%, 0%       |                             |
|                    | Cadmium            | 56%, 0%      |                             |
|                    | Chromium           | 0%, 0%       |                             |
|                    | Cobalt             | 63%, 0%      | SCSB-037M-0001-SO, SCSB-    |
| SCSB-038M-0001-SO  | Copper             | 46%, 0%      | 038M-0005-SO, SCSB-042M-    |
|                    | Nickel             | 74%, 0%      | 0003-SO, SCSS-068M-0001-SO  |
|                    | Selenium           | 71%, 4%      |                             |
|                    | Thallium           | 56%, 2%      |                             |
| SCSB-038M-0001-SO  | Vanadium           | 75%,         |                             |

| Samp              | Samples qualified for MS/MSD recover |          |                            |  |  |  |  |
|-------------------|--------------------------------------|----------|----------------------------|--|--|--|--|
| Parent Sample     | Analyte                              | %Rs      | Qualified Samples          |  |  |  |  |
|                   | Zinc                                 | 74%,     |                            |  |  |  |  |
|                   | Arsenic                              | , 7%     |                            |  |  |  |  |
|                   | Lead                                 | , 0%     |                            |  |  |  |  |
|                   | Antimony                             | 26%, 29% | SCSB-037M-0001-SO, SCSB-   |  |  |  |  |
| SCSS-057M-0001-SO | Potassium                            | 67%, 59% | 038M-0005-SO, SCSB-042M-   |  |  |  |  |
|                   | Sodium                               | 72%, 72% | 0003-SO, SCSS-068M-0001-SO |  |  |  |  |
|                   | Aluminum                             | 28%, 23% |                            |  |  |  |  |
|                   | Antimony                             | 24%, 18% |                            |  |  |  |  |
|                   | Lead                                 | 179%,    |                            |  |  |  |  |
|                   | Thallium                             | 69%, 63% | SCSB-048M-0001-SO, SCSD-   |  |  |  |  |
| SCSB-051M-0001-SO | Cadmium                              | , 69%    | 070M-0001-SD, SCSS-058M-   |  |  |  |  |
|                   | Cobalt                               | , 75%    | 0001-SO                    |  |  |  |  |
|                   | Copper                               | , 55%    |                            |  |  |  |  |
|                   | Nickel                               | , 75%    |                            |  |  |  |  |
|                   | Zinc                                 | , 55%    |                            |  |  |  |  |

"--" Indicates an acceptable sample recovery.

Except as noted below, MS/MSD RPDs were within the control limit listed in DoD QSM Tables G-7 and G-8 of ≤20%. Results noted in the table below were qualified as estimated, "J," for detects and "UJ," for nondetects. All qualified results were coded with an "\*III" qualification code. As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an RPD outlier. Parent samples were only qualified for outliers reported in that parent sample.

| San               | nples qualified | for MS/MSD | RPD outliers                |  |  |
|-------------------|-----------------|------------|-----------------------------|--|--|
| Parent Sample     | Analyte         | RPD        | Qualified Samples           |  |  |
|                   | Arsenic         | 200%       |                             |  |  |
|                   | Cadmium         | 200%       | 1                           |  |  |
| SCSB-038M-0001-SO | Cobalt          | 199%       |                             |  |  |
|                   | Copper          | 200%       | 028M 0005 SO SCSP 042M      |  |  |
|                   | Lead            | 200%       | 0003 50 5055 068M 0001 50   |  |  |
|                   | Nickel          | 200%       | 0003-30, 3033-00810-0001-30 |  |  |
|                   | Thallium        | 174%       |                             |  |  |
|                   | Zinc            | 200%       |                             |  |  |
|                   | Antimony        | 27%        | SCSB-048M-0001-SO, SCSD-    |  |  |
| SCSB-051M-0001-SO | Cadmium         | 30%        | 070M-0001-SD, SCSS-058M-    |  |  |
|                   | Lead            | 57%        | 0001-SO                     |  |  |

Serial Dilution: Serial dilution analyses were performed on SCSB-041M-0002-SO, SCSB-039M-0002-SO, SCSB-038M-0001-SO, and SCSS-057M-0001-SO. Except as noted below, serial dilution %Ds were within the control limit listed in DoD QSM Table F-8 of ≤10%. The serial dilution control limit is only applicable when the original sample concentration is minimally ≥50× the DL for ICP analytes and ≥25× the DL for mercury.

All detected results for the analytes noted in the table below were qualified as estimated, "J," and were coded with an "A" qualification code. When no other qualifications with conflicting bias were assigned to a result, detected results were assigned a negative bias, "J-." As per the National Functional Guidelines, all samples of the same matrix in an SDG were qualified for an associated %D outlier. Parent samples were only qualified for outliers reported in that parent sample.

| Samp                                                    | Samples qualified for serial dilution %D outliers |      |                               |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------|------|-------------------------------|--|--|--|--|--|
| Parent Sample                                           | Analyte                                           | %D   | Qualified Samples             |  |  |  |  |  |
|                                                         | Antimony                                          | 21%  |                               |  |  |  |  |  |
|                                                         | Arsenic                                           | 11%  |                               |  |  |  |  |  |
| Parent Sample<br>SCSB-041M-0002-SO<br>SCSB-039M-0002-SO | Cobalt                                            | 20%  |                               |  |  |  |  |  |
|                                                         | Copper                                            | 19%  |                               |  |  |  |  |  |
|                                                         | Lead                                              | 79%  | SCSB-037M-0001-SO, SCSB-038M- |  |  |  |  |  |
| SCSB-041M-0002-SO                                       | Magnesium                                         | 11%  | 0005-SO, SCSB-042M-0003-SO,   |  |  |  |  |  |
|                                                         | Nickel                                            | 17%  | SCSS-068M-0001-SO             |  |  |  |  |  |
|                                                         | Vanadium                                          | 24%  |                               |  |  |  |  |  |
|                                                         | Zinc                                              | 21%  |                               |  |  |  |  |  |
|                                                         | Iron                                              | 18%  |                               |  |  |  |  |  |
|                                                         | Aluminum                                          | 13%  | -                             |  |  |  |  |  |
|                                                         | Aluminum                                          | 11%  |                               |  |  |  |  |  |
|                                                         | Barium                                            | 11%  | -                             |  |  |  |  |  |
|                                                         | Beryllium                                         | 12%  |                               |  |  |  |  |  |
|                                                         | Calcium                                           | 13%  | -                             |  |  |  |  |  |
|                                                         | Chromium                                          | 16%  |                               |  |  |  |  |  |
|                                                         | Cobalt                                            | 27%  | SCSB-037M-0001-SO, SCSB-038M- |  |  |  |  |  |
| SCSB-039M-0002-SO                                       | Copper                                            | 29%  | 0005-SO, SCSB-042M-0003-SO,   |  |  |  |  |  |
|                                                         | Lead                                              | 73%  | SCSS-068M-0001-SO             |  |  |  |  |  |
|                                                         | Magnesium                                         | 12%  |                               |  |  |  |  |  |
|                                                         | Manganese                                         | 16%  |                               |  |  |  |  |  |
|                                                         | Nickel                                            | 18%  | -                             |  |  |  |  |  |
|                                                         | Vanadium                                          | 18%  |                               |  |  |  |  |  |
|                                                         | Zinc                                              | 28%  |                               |  |  |  |  |  |
|                                                         | Chromium                                          | 112% |                               |  |  |  |  |  |
|                                                         | Cobalt                                            | 23%  |                               |  |  |  |  |  |
|                                                         | Copper                                            | 26%  |                               |  |  |  |  |  |
|                                                         | Lead                                              | 31%  | SCSB-037M-0001-SO, SCSB-038M- |  |  |  |  |  |
| SCSB-038M-0001-SO                                       | Magnesium                                         | 13%  | 0005-SO, SCSB-042M-0003-SO,   |  |  |  |  |  |
|                                                         | Nickel                                            | 25%  | SCSS-068M-0001-SO             |  |  |  |  |  |
|                                                         | Vanadium                                          | 17%  |                               |  |  |  |  |  |
|                                                         | Zinc                                              | 19%  | -                             |  |  |  |  |  |
|                                                         | Mercury                                           | 42%  | 1                             |  |  |  |  |  |
|                                                         | Aluminum                                          | 16%  |                               |  |  |  |  |  |
|                                                         | Barium                                            | 18%  | SCSB-037M-0001-SO, SCSB-038M- |  |  |  |  |  |
| SCSS-057M-0001-SO                                       | Calcium                                           | 16%  | 0005-SO, SCSB-042M-0003-SO,   |  |  |  |  |  |
|                                                         | Chromium                                          | 15%  | SCSS-068M-0001-SO             |  |  |  |  |  |
|                                                         | Magnesium                                         | 16%  |                               |  |  |  |  |  |

| Samp                | Samples qualified for serial dilution %D outliers |     |                                                             |  |  |  |  |  |
|---------------------|---------------------------------------------------|-----|-------------------------------------------------------------|--|--|--|--|--|
| Parent Sample       | Analyte                                           | %D  | Qualified Samples                                           |  |  |  |  |  |
|                     | Manganese                                         | 15% |                                                             |  |  |  |  |  |
|                     | Nickel                                            | 11% |                                                             |  |  |  |  |  |
|                     | Zinc                                              | 17% |                                                             |  |  |  |  |  |
|                     | Aluminum                                          | 16% |                                                             |  |  |  |  |  |
|                     | Barium                                            | 18% |                                                             |  |  |  |  |  |
|                     | Calcium                                           | 16% |                                                             |  |  |  |  |  |
| SCSS 057M 0001 SO   | Chromium                                          | 15% | SCSB-048M-0001-SO, SCSD-070M-                               |  |  |  |  |  |
| 3033-037101-0001-30 | Magnesium                                         | 16% | 0001-SD, SCSS-058M-0001-SO                                  |  |  |  |  |  |
|                     | Manganese                                         | 15% |                                                             |  |  |  |  |  |
|                     | Nickel                                            | 11% |                                                             |  |  |  |  |  |
|                     | Zinc                                              | 17% |                                                             |  |  |  |  |  |
| SCSB-051M-0001-SO   | Zinc                                              | 16% | SCSB-048M-0001-SO, SCSD-070M-<br>0001-SD, SCSS-058M-0001-SO |  |  |  |  |  |

- Sample Result Verification: For Level IV validation, calculations were verified and the sample results reported on the sample result summary were verified against the raw data. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.
- Manual Integrations: No manual integrations were noted in the mercury analyses.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsate samples and 1 field blank associated with the Sand Creek site samples. There were detects in these samples, but not at sufficient concentrations to qualify the soil samples.
  - Field Duplicate Samples: There were 8 field duplicate samples collected and analyzed for metals. Except as noted below, the RPDs were within the control limits in FWQAPP Table 3-1 of ≤50%. The RPD criterion was only applied when both sample results were ≥5x the LOQ. In cases where results were <5x the LOQ, the reasonable control limit of ± the LOQ was applied. See Appendix C for a complete comparison of all primary and field duplicate results.</li>

| Metals field duplicate outliers |                            |          |      |          |  |  |  |
|---------------------------------|----------------------------|----------|------|----------|--|--|--|
| Primary Sample                  | Field Duplicate            | Analyte  | RPD  | W/In LOQ |  |  |  |
|                                 | Calcium                    | 54%      | N/A  |          |  |  |  |
| SCSB-048M-0001-                 | SCSB-048M-0001- SCSB-084M- | Chromium | 100% | N/A      |  |  |  |
| SO 0001-SO                      | Magnesium                  | 55%      | N/A  |          |  |  |  |
|                                 | Manganese                  | 54%      | N/A  |          |  |  |  |

| Metals field duplicate outliers |                       |           |      |          |  |  |  |  |
|---------------------------------|-----------------------|-----------|------|----------|--|--|--|--|
| Primary Sample                  | Field Duplicate       | Analyte   | RPD  | W/In LOQ |  |  |  |  |
|                                 |                       | Nickel    | 70%  | N/A      |  |  |  |  |
|                                 |                       | Potassium | 54%  | N/A      |  |  |  |  |
|                                 |                       | Sodium    | N/A  | No       |  |  |  |  |
|                                 |                       | Barium    | 76%  | N/A      |  |  |  |  |
| SCSB-042M-0003-                 | SCSB-083M-            | Lead      | 104% | N/A      |  |  |  |  |
| SO                              | 0003-SO               | Cadmium   | N/A  | No       |  |  |  |  |
|                                 |                       | Thallium  | N/A  | No       |  |  |  |  |
| SCSB-037M-0001-<br>SO           | SCSB-080M-<br>0001-SO | Chromium  | 52%  | N/A      |  |  |  |  |
| SCSS-058M-0001-                 | SCSS-085M-            | Calcium   | 70%  | N/A      |  |  |  |  |
| SO                              | 0001-SO               | Sodium    | N/A  | No       |  |  |  |  |
| SCSS-068M-0001-                 | SCSS-086M-            | Chromium  | 131% | N/A      |  |  |  |  |
| SO                              | 0001-SO               | Sodium    | N/A  | No       |  |  |  |  |
| SCSB-040M-0002-                 | SCSB-082M-            | Antimony  | N/A  | No       |  |  |  |  |
| SO                              | 0002-SO               | Thallium  | N/A  | No       |  |  |  |  |
| SCSS-073M-0001-                 | SCSS-087M-            | Antimony  | N/A  | No       |  |  |  |  |
| SO                              | 0001-SO               | Thallium  | N/A  | No       |  |  |  |  |

#### 5.3.8 General Chemistry - Hexavalent Chromium and Cyanide

CT analyzed 14 primary MI soil samples, 1 primary sediment sample, and 4 soil field duplicate samples for hexavalent chromium by USEPA Method 7196A. CT analyzed 8 primary MI soil samples, 1 primary MI sediment samples, 4 field duplicate samples, 1 field blank, and 3 equipment rinsate samples by USEPA Method 9012A for cyanide. MEC<sup>X</sup> validated 1 soil and 1 sediment sample for hexavalent chromium and 1 sediment sample for cyanide at Level IV.

- DL studies were not evaluated as part of this project.
- Calibration: Calibration criteria were met.
  - Initial calibration: Initial calibration linear regression r values were within the control limit listed in the DoD QSM Tables F-9 and F-10 of ≥0.995.
  - The ICV and CCV recoveries were within the control limits listed in DoD QSM Table F-9 of 90-110% for hexavalent chromium and Table F-10 of 85-115% for cyanide.
  - As per FWQAPP Section 8.3.2.1.2, MRLs are required. Cyanide MRLs analyzed in association with the soil samples were recovered within the reasonable control limits of 70-130%. As the laboratory did not analyze hexavalent chromium MRLs, the hexavalent chromium results, both nondetects, were qualified as estimated, "UJ." The qualified results were coded with a "C" qualification code.
- Blanks: The method blanks and CCBs had no applicable detects above the control limit listed in the DoD QSM Table F-9 and F-10 of one-half the LOQ or one-tenth the amount detected in a sample.

- Laboratory Control Samples: There are no QSM control limits for hexavalent chromium or cyanide LCS recoveries. The hexavalent chromium recoveries were within the laboratory-established control limits of 83-115% and cyanide was within the laboratoryestablished control limits of 69-128%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on SCSS-057M-0001-SO for hexavalent chromium and cyanide. There were no detects in either the parent or duplicate samples.
- Matrix Spike/Matrix Spike Duplicate: Soluble and insoluble matrix spikes were performed on SCSS-057M-0001-SO for hexavalent chromium. The recoveries were 13% and 19%, respectively. As per the National Function Guidelines, because the hexavalent chromium post digestion spike was recovered within the control limits of 75-125%, the results were not rejected. Nondetected hexavalent chromium in SCSB-048M-0001-SO and SCSD-070M-0001-SD was qualified as estimated, "UJ." The qualified results were coded with a "Q" qualification code.
- Sample Result Verification: For Level IV validation, calculations were verified and the sample results reported on the sample result summary were verified against the raw data. Any result reported between the DL and the LOQ was qualified as estimated, "J." Although all hardcopy and EDD reported nondetected results to the DL, reported nondetects are valid to the LOD.

Due to the age of the hexavalent chromium instrument, sample absorbances are not reported. As such, the reviewer was not able to verify the sample results from the raw data.

- Manual Integrations: Manual integrations are not applicable to these analyses.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: There were 3 equipment rinsates and 1 field blank were collected and analyzed for cyanide in association with the Sand Creek site samples. Cyanide was not detected above the DL in any of the equipment rinsate samples. No equipment rinsate samples were analyzed for hexavalent chromium.
  - Field Duplicate Samples: There was 1 field duplicate pair collected and analyzed for hexavalent chromium. The RPD criterion listed in FWQAPP Table 3-1 of ≤50% was only applied when both sample results were ≥5x the LOQ. In cases where results were <5x the LOQ, the reasonable control limit of ± the LOQ was applied. All results were within the control limits. See Appendix C for comparisons of all samples and analytes.

#### 5.4 DATA USABILITY

As all planned Sand Creek samples were collected, the field completeness was 100%.

Some data were rejected for poor MS/MSD and calibration standard recoveries. In instances where a data point had multiple results, the reviewer chose the most technically sound result to report and rejected the remaining data points. These data points rejected to choose the most technically sound data do not affect data quality or usability and are not included in the table below. Data with RLs that exceeded the established criteria and data estimated for quality control outliers or for detects between the MDL and the RL were included in the table below for informational purposes only.

|                     |                     |                        | Number of Results |          |                              |                              |                                                                           |                     |
|---------------------|---------------------|------------------------|-------------------|----------|------------------------------|------------------------------|---------------------------------------------------------------------------|---------------------|
| Analysis            | Samples<br>Analyzed | Analytes per<br>Sample | Total             | Rejected | DLs<br>Exceeding<br>Criteria | Estimated for<br>QC Outliers | Estimated for<br>Detects <loq< th=""><th>Percent<br/>Complete</th></loq<> | Percent<br>Complete |
| Explosives          | 9                   | 17                     | 137               | 0        | 0                            | 91                           | 1                                                                         | 100%                |
| PCBs                | 1                   | 9                      | 9                 | 0        | 0                            | 0                            | 0                                                                         | 100%                |
| Pesticides          | 1                   | 22                     | 22                | 0        | 0                            | 1                            | 2                                                                         | 100%                |
| SVOCs*              | 8                   | 66                     | 520               | 8        | 3                            | 272                          | 89                                                                        | 98.5%               |
| VOCs                | 1                   | 37                     | 37                | 0        | 0                            | 3                            | 0                                                                         | 100%                |
| Metals              | 9                   | 23                     | 207               | 2        | 0                            | 142                          | 5                                                                         | 99.0%               |
| Nitroguanidine      | 1                   | 1                      | 1                 | 0        | 0                            | 1                            | 0                                                                         | 100%                |
| Nitrocellulose      | 1                   | 1                      | 1                 | 0        | 0                            | 0                            | 0                                                                         | 100%                |
| Hexavalent chromium | 2                   | 1                      | 2                 | 0        | 2                            | 2                            | 0                                                                         | 100%                |
| Cyanide             | 1                   | 1                      | 1                 | 0        | 0                            | 1                            | 1                                                                         | 100%                |
|                     | 937                 | 10                     | 5                 | 513      | 98                           | 98.9%                        |                                                                           |                     |

| Table 13 | Analy   | tical com | pleteness  | for 3 | Sand | Creek | validated | primary   | data |
|----------|---------|-----------|------------|-------|------|-------|-----------|-----------|------|
|          | . Anany |           | pictoricoo | 101   | oanu | OICCK | vanualeu  | printiary | uala |

\*The reviewer chose to report nitrobenzene, 2,4-dinitrotoluene and 2,6-dinitrotoluene from either the 8330B analyses or the 8270C analyses; therefore, these compounds are not included in the analytes count.

The analytical completeness goal for the project established in the FWQAPP was 90% for each method. The completeness goal was met for all analyses.

#### 5.5 PRIMARY AND FIELD DUPLICATE COMPARISON SUMMARY

Primary and field duplicate sample comparisons were considered to be in good agreement as only 3% of the field duplicate pair results were above the FWQAPP control limit of 50% for soils or +/- the RL for results below the RL.

Most of the outliers were metals and most discrepancies occurred in field duplicate pair SCSS-058M-0001-SO/SCSS-085M-0001-SO. In general, the parent samples had higher concentrations than the field duplicates. No sample depth information was listed in documents provided by Shaw; therefore, no assessment of sample variability based on differing sample depths could be made. All comparison results are presented in Appendix C.

| Method              | Number of<br>Analytes | Primary/Field<br>Duplicate Pairs | Total<br>Analytes | Number of<br>results within<br>control limits | Number of<br>results above<br>control limit |
|---------------------|-----------------------|----------------------------------|-------------------|-----------------------------------------------|---------------------------------------------|
| Explosives*         | 8                     | 17                               | 122               | 122                                           | 0                                           |
| PCBs                | 1                     | 9                                | 9                 | 9                                             | 0                                           |
| Pesticides          | 1                     | 22                               | 22                | 22                                            | 0                                           |
| SVOCs*              | 7                     | 66                               | 451               | 447                                           | 4                                           |
| VOCs                | 4                     | 37                               | 148               | 143                                           | 5                                           |
| Metals*             | 8                     | 23                               | 182               | 162                                           | 20                                          |
| Nitroguanidine      | 1                     | 1                                | 1                 | 1                                             | 0                                           |
| Nitrocellulose      | 1                     | 1                                | 1                 | 1                                             | 0                                           |
| Hexavalent chromium | 1                     | 1                                | 1                 | 1                                             | 0                                           |

Table 14. Sand Creek primary/field duplicate sample comparison summary

\*Total analyte count affected by rejected results

#### **5.6 SPECIFIC DATA CONCERNS**

Specific concerns regarding the data are noted below:

- 3 benzo(a)pyrene DLs (nominally exceeded the FWCUG by 0.01 mg/Kg)
- 2 hexavalent chromium DLs exceeded the FWCUG of 1.9 mg/Kg by 0.26 mg/Kg
- Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time.
- Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data. Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data.
- The actual temperature upon receipt was not noted by the laboratory. The temperature was noted only as being below some temperature (e.g. <4.2°C).
- All explosive analyses were performed beyond the holding time.

In order to avoid repetition of the issues noted above, the following actions should be taken:

• MEC<sup>X</sup> recommends the laboratory be requested to review the nitroguanidine manual integrations and determine their accuracy and set a policy for consistent baseline manual integration of MRL and low level calibration standards.

• MEC<sup>X</sup> recommends the laboratory be requested to alter the hexavalent chromium instrument set up, if possible, in order to capture the raw absorbance.

#### 6. DATA USABILITY

A summary of the qualifications applied to the data can be found in Appendix B as can a summary of all rejected results.

AOC-specific field and analytical completeness results can be found in Sections 4 and 5.

Some data were rejected due to matrix spike/matrix spike duplicate recovery and calibration outliers. Rejected data are not usable. Results with DLs that exceed project criteria may be usable for their intended purposes; however, it is dependent on the final data user to make this determination on a case-by-case basis. All remaining results are usable for their intended purposes as qualified by MEC<sup>X</sup>.

#### 7. CONCLUSIONS AND RECOMMENDATIONS

Specific concerns regarding the data are noted below:

- 3 hexavalent chromium DLs exceeded the FWCUG of 1.64 mg/Kg, at 1.9 mg/Kg
- 5 benzo(a)pyrene DLs nominally exceeded the FWCUG of 0.023 mg/Kg, at 0.022 mg/Kg
- Manual integrations performed for the MRL standards did not consistently adjust the baseline to account for a baseline anomaly that occurred just prior to the nitroguanidine retention time.
- Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data. Due to instrument limitations, the hexavalent chromium raw data did not list the sample absorbances; therefore, the reviewer was not able to calculate the sample results from the raw data.
- The actual temperature upon receipt was not noted by the laboratory. The temperature was noted only as being below some temperature (e.g. <4.2°C).
- All explosive analyses were performed beyond the holding time.

In order to avoid repetition of the issues noted above, the following actions should be taken:

- MEC<sup>x</sup> recommends the laboratory be requested to review the nitroguanidine manual integrations and determine their accuracy and set a policy for consistent baseline manual integration of MRL and low level calibration standards.
- MEC<sup>X</sup> recommends the laboratory be requested to alter the hexavalent chromium instrument set up, if possible, in order to capture the raw absorbance.
- MEC<sup>X</sup> recommends the laboratory be requested to record the temperature at receipt.

#### 8. REFERENCES

Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. United States Environmental Protection Agency Contract Laboratory Program (CLP). June 2008.

Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. United States Environmental Protection Agency. October 2004.

Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.1. DoD Data Quality Workgroup. April 2009.

Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio. SAIC. March 2001.

Final Sampling and analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site. Shaw Environment and Infrastructure. November 2010.

Quality Assurance Project Plan for Environmental Investigations at the Ravenna Army Ammunition Plant. SAIC. March 2001.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Revision 6. United States Environmental Protection Agency. February 2007.

#### APPENDIX A

### **Qualified Sample Result Forms**

| Qualifier | Organics                                                                                                                                   | Inorganics                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                                                                               | Holding times were exceeded.                                                                                                               |
| S         | Surrogate recovery was outside QC limits.                                                                                                  | The sequence or number of standards used for the calibration was incorrect.                                                                |
| С         | Calibration %RSD or %D was noncompliant.                                                                                                   | Correlation coefficient was noncompliant.                                                                                                  |
| R         | Calibration RRF was noncompliant.                                                                                                          | %R for calibration is not within control limits.                                                                                           |
| В         | Presumed contamination as indicated by the preparation (method) blank results.                                                             | Presumed contamination as indicated by the preparation (method) or calibration blank results.                                              |
| L         | Laboratory Blank Spike/Blank Spike<br>Duplicate %R was not within control limits.                                                          | Laboratory Control Sample %R was not<br>within control limits.                                                                             |
| Q         | MS/MSD recovery was poor or RPD high.                                                                                                      | MS recovery was poor.                                                                                                                      |
| E         | Not applicable                                                                                                                             | Duplicates showed poor agreement.                                                                                                          |
| I         | Internal standard performance was unsatisfactory.                                                                                          | ICP ICS results were unsatisfactory.                                                                                                       |
| A         | Not applicable                                                                                                                             | ICP Serial Dilution %D were not within control limits.                                                                                     |
| М         | Tuning (BFB or DFTPP) was noncompliant.                                                                                                    | ICPMS tuning was noncompliant                                                                                                              |
| Т         | Presumed contamination as indicated by the trip blank results.                                                                             | Not applicable                                                                                                                             |
| +         | False positive – reported compound was not present.                                                                                        | False positive – reported compound was not<br>present.                                                                                     |
| -         | False negative – compound was present but not reported.                                                                                    | False negative – compound was present but not reported.                                                                                    |
| F         | Presumed contamination as indicated by the FB or ER results.                                                                               | Presumed contamination as indicated by the FB or ER results.                                                                               |
| \$        | Reported result or other information was incorrect.                                                                                        | Reported result or other information was<br>incorrect.                                                                                     |
| ?         | TIC identity or reported retention time has been changed.                                                                                  | Not applicable.                                                                                                                            |
| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                               | The analysis with this flag should not be used<br>because another more technically sound<br>analysis is available.                         |
| Р         | Instrument performance for pesticides was poor.                                                                                            | Post Digestion Spike recovery was not within control limits.                                                                               |
| *  , *    | A deficiency was found that has been<br>described in the "Sample Management,"<br>section (*II) or the "Method Analyses"<br>section (*III). | A deficiency was found that has been<br>described in the "Sample Management,"<br>section (*II) or the "Method Analyses" section<br>(*III). |

**Open Demolition Area 1** 

# Validated Sample Result Forms for Area: ODA1

| Analysis Method  | d SW8466       | 010                 |               |        |                 |                  |                         |                                 |  |
|------------------|----------------|---------------------|---------------|--------|-----------------|------------------|-------------------------|---------------------------------|--|
| Sample Name      | DA1SB-055M-000 | AnalysisType: INORG |               |        |                 |                  |                         |                                 |  |
| Lab Sample Name: | 851518         | Valio               | lation Level: | IV     |                 |                  |                         |                                 |  |
|                  | CAS No         | Resul<br>Valu       | t LOQ<br>ie   | DL     | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |  |
| Aluminum         | 7429-90-5      | 14400               | 0.24          | 0.081  | mg/kg           |                  |                         |                                 |  |
| Antimony         | 7440-36-0      | 0.16                | 0.55          | 0.16   | mg/kg           | UV               | R                       | Q                               |  |
| Arsenic          | 7440-38-2      | 4.6                 | 0.91          | 0.26   | mg/kg           |                  |                         |                                 |  |
| Barium           | 7440-39-3      | 73.4                | 0.055         | 0.016  | mg/kg           |                  | J                       | *III, A                         |  |
| Beryllium        | 7440-41-7      | 0.53                | 0.024         | 0.0081 | mg/kg           |                  | J                       | *III, A                         |  |
| Cadmium          | 7440-43-9      | 0.26                | 0.26          | 0.26   | mg/kg           | UV               | UJ                      | C, \$                           |  |
| Calcium          | 7440-70-2      | 18700               | 1             | 0.12   | mg/kg           | М                | J                       | *III, A                         |  |
| Chromium         | 7440-47-3      | 31.6                | 0.13          | 0.038  | mg/kg           |                  | J-                      | Q, *III, A                      |  |
| Cobalt           | 7440-48-4      | 10.8                | 0.099         | 0.03   | mg/kg           |                  | J-                      | Q, *III, A                      |  |
| Copper           | 7440-50-8      | 19.1                | 0.4           | 0.12   | mg/kg           |                  | J-                      | Q, *III, A                      |  |
| Iron             | 7439-89-6      | 36300               | 2             | 0.61   | mg/kg           |                  |                         |                                 |  |
| Lead             | 7439-92-1      | 21                  | 0.28          | 0.081  | mg/kg           |                  | J                       | *III, A                         |  |
| Magnesium        | 7439-95-4      | 6120                | 0.81          | 0.24   | mg/kg           |                  |                         |                                 |  |
| Manganese        | 7439-96-5      | 387                 | 0.1           | 0.032  | mg/kg           |                  | J-                      | Q                               |  |
| Nickel           | 7440-02-0      | 26.3                | 0.12          | 0.036  | mg/kg           |                  | J                       | *III, A                         |  |
| Potassium        | 7440-09-7      | 1470                | 36            | 11     | mg/kg           |                  |                         |                                 |  |
| Selenium         | 7782-49-2      | 0.32                | 0.85          | 0.14   | mg/kg           | JVB              | UJ                      | B, Q                            |  |
| Silver           | 7440-22-4      | 0.08                | 0.11          | 0.08   | mg/kg           | UV               | U                       | \$                              |  |
| Sodium           | 7440-23-5      | 61.2                | 13            | 4      | mg/kg           |                  | J                       | С                               |  |
| Thallium         | 7440-28-0      | 2.1                 | 0.28          | 0.081  | mg/kg           |                  | J-                      | Q                               |  |
| Vanadium         | 7440-62-2      | 19.4                | 0.069         | 0.022  | mg/kg           |                  | 1                       | *III, A                         |  |
| Zinc             | 7440-66-6      | 55.2                | 0.24          | 0.081  | mg/kg           |                  | J-                      | Q, *III, A                      |  |

851528

Sample Name

DA1SB-059M-0201-SO

AnalysisType: INORG

Lab Sample Name:

Validation Level: IV

|                  | CAS No         | Resul<br>Valu | lt LOQ<br>1e  | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|---------------|---------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 12200         | 0.61          | 0.2     | mg/kg           | В                | J-                      | Q, *Ⅲ, A                        |
| Antimony         | 7440-36-0      | 20.5          | 1.4           | 0.41    | mg/kg           |                  | J-                      | Q                               |
| Arsenic          | 7440-38-2      | 33            | 2.3           | 0.66    | mg/kg           |                  |                         |                                 |
| Barium           | 7440-39-3      | 869           | 0.14          | 0.041   | mg/kg           |                  | 1                       | *III, A                         |
| Beryllium        | 7440-41-7      | 0.95          | 0.061         | 0.02    | mg/kg           |                  | 1                       | *III, A                         |
| Cadmium          | 7440-43-9      | 18.4          | 0.11          | 0.031   | mg/kg           |                  | J-                      | Q                               |
| Calcium          | 7440-70-2      | 18800         | 2.6           | 0.31    | mg/kg           |                  | J-                      | Q, *III, A                      |
| Chromium         | 7440-47-3      | 101           | 0.32          | 0.097   | mg/kg           |                  | J-                      | Q, *III, A                      |
| Cobalt           | 7440-48-4      | 10.1          | 0.25          | 0.077   | mg/kg           |                  | J-                      | Q, *III, A                      |
| Copper           | 7440-50-8      | 222           | 1             | 0.31    | mg/kg           |                  | J-                      | Q, *III, A                      |
| Iron             | 7439-89-6      | 33000         | 5.1           | 1.5     | mg/kg           | В                |                         |                                 |
| Lead             | 7439-92-1      | 416           | 0.71          | 0.2     | mg/kg           |                  | J                       | *III, A                         |
| Magnesium        | 7439-95-4      | 3470          | 2             | 0.61    | mg/kg           | В                | J-                      | Q, *III, A                      |
| Manganese        | 7439-96-5      | 1100          | 0.26          | 0.082   | mg/kg           |                  | J-                      | Q, *III, A                      |
| Nickel           | 7440-02-0      | 40.7          | 0.31          | 0.092   | mg/kg           |                  | 1                       | *III, A                         |
| Potassium        | 7440-09-7      | 2060          | 37            | 11      | mg/kg           |                  |                         |                                 |
| Selenium         | 7782-49-2      | 2.1           | 2.1           | 0.36    | mg/kg           | В                | J-                      | Q                               |
| Silver           | 7440-22-4      | 115           | 57            | 17      | mg/kg           |                  |                         |                                 |
| Sodium           | 7440-23-5      | 84.2          | 13            | 4.1     | mg/kg           |                  | 1                       | С                               |
| Thallium         | 7440-28-0      | 2             | 0.71          | 0.2     | mg/kg           |                  | J-                      | C, Q                            |
| Vanadium         | 7440-62-2      | 16.5          | 0.17          | 0.056   | mg/kg           | В                | 1                       | *III, A                         |
| Zinc             | 7440-66-6      | 364           | 0.61          | 0.2     | mg/kg           |                  | J-                      | Q, *III, A                      |
| Sample Name      | DA1SB-063M-020 | )2-SO         | AnalysisT     | ype: IN | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851882         | Valio         | dation Level: | IV      |                 |                  |                         |                                 |
|                  | CAS No         | Resul<br>Valu | lt LOQ<br>1e  | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier         |

|          |           |       |      |       |       |    | -  | Code       |
|----------|-----------|-------|------|-------|-------|----|----|------------|
| Aluminum | 7429-90-5 | 13300 | 0.24 | 0.081 | mg/kg | В  | J- | Q, *III, A |
| Antimony | 7440-36-0 | 0.16  | 0.55 | 0.16  | mg/kg | UV | R  | Q          |

Wednesday, April 17, 2013

| 7440-28-0              | 2                                                                                                                                                                                                                                         | 0.28                                                                                                                                                                                                                                                                                                                                                          | 0.081                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J-<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q<br>*III A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7440 20 0              | 2                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7440-23-5              | 82.7                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7440-22-4              | 0.1                                                                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7782-49-2              | 0.53                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                          | 0.14                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7440-09-7              | 1850                                                                                                                                                                                                                                      | 36                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7440-02-0              | 22.1                                                                                                                                                                                                                                      | 0.12                                                                                                                                                                                                                                                                                                                                                          | 0.036                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7439-96-5              | 299                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                           | 0.032                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7439-95-4              | 7180                                                                                                                                                                                                                                      | 0.81                                                                                                                                                                                                                                                                                                                                                          | 0.24                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7439-92-1              | 5.8                                                                                                                                                                                                                                       | 0.28                                                                                                                                                                                                                                                                                                                                                          | 0.081                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7439-89-6              | 31300                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7440-50-8              | 16.8                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7440-48-4              | 9.4                                                                                                                                                                                                                                       | 0.099                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7440-47-3              | 22.6                                                                                                                                                                                                                                      | 0.13                                                                                                                                                                                                                                                                                                                                                          | 0.038                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7440-70-2              | 27500                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                             | 0.12                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q, *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7440-43-9              | 0.2                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C, Q, \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7440-41-7              | 0.43                                                                                                                                                                                                                                      | 0.024                                                                                                                                                                                                                                                                                                                                                         | 0.0081                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7440-39-3              | 56.6                                                                                                                                                                                                                                      | 0.055                                                                                                                                                                                                                                                                                                                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7440-38-2<br>7440-39-3 | 4.5<br>56.6                                                                                                                                                                                                                               | 0.91                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                  | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *III, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | 7440-38-2     7440-39-3     7440-39-3     7440-41-7     7440-43-9     7440-70-2     7440-70-2     7440-47-3     7440-48-4     7440-50-8     7439-89-6     7439-92-1     7439-95-4     7440-02-0     7440-02-7     7782-49-2     7440-23-5 | 7440-38-2   4.5     7440-39-3   56.6     7440-41-7   0.43     7440-43-9   0.2     7440-70-2   27500     7440-47-3   22.6     7440-47-3   22.6     7440-48-4   9.4     7440-50-8   16.8     7439-89-6   31300     7439-92-1   5.8     7439-95-4   7180     7439-96-5   299     7440-02-0   22.1     7440-02-7   1850     7782-49-2   0.53     7440-23-5   82.7 | 7440-38-2 4.5 0.91   7440-39-3 56.6 0.055   7440-41-7 0.43 0.024   7440-43-9 0.2 0.2   7440-70-2 27500 1   7440-47-3 22.6 0.13   7440-48-4 9.4 0.099   7440-50-8 16.8 0.4   7439-89-6 31300 2   7439-92-1 5.8 0.28   7439-95-4 7180 0.81   7439-96-5 299 0.1   7440-02-0 22.1 0.12   7440-02-7 1850 36   7782-49-2 0.53 0.85   7440-22-4 0.1 0.11   7440-23-5 82.7 13 | 7440-38-2 4.5 0.91 0.26   7440-39-3 56.6 0.055 0.016   7440-41-7 0.43 0.024 0.0081   7440-43-9 0.2 0.2 0.2   7440-43-9 0.2 0.2 0.2   7440-47-3 22.6 0.13 0.038   7440-48-4 9.4 0.099 0.03   7440-48-4 9.4 0.099 0.03   7440-50-8 16.8 0.4 0.12   7439-89-6 31300 2 0.61   7439-92-1 5.8 0.28 0.081   7439-95-4 7180 0.81 0.24   7439-96-5 299 0.1 0.032   7440-02-0 22.1 0.12 0.036   7440-09-7 1850 36 11   7782-49-2 0.53 0.85 0.14   7440-23-5 82.7 13 4 | 7440-38-2 4.5 0.91 0.26 mg/kg   7440-39-3 56.6 0.055 0.016 mg/kg   7440-41-7 0.43 0.024 0.0081 mg/kg   7440-43-9 0.2 0.2 0.2 mg/kg   7440-43-9 0.2 0.2 0.2 mg/kg   7440-47-3 22.6 0.13 0.038 mg/kg   7440-48-4 9.4 0.099 0.03 mg/kg   7440-50-8 16.8 0.4 0.12 mg/kg   7439-89-6 31300 2 0.61 mg/kg   7439-92-1 5.8 0.28 0.081 mg/kg   7439-95-4 7180 0.81 0.24 mg/kg   7440-02-0 22.1 0.12 0.032 mg/kg   7440-02-0 22.1 0.12 0.036 mg/kg   7440-09-7 1850 36 11 mg/kg   7440-09-7 1850 36 11 mg/kg   7440-02-4 0.1 0.11 0.1 mg/kg   7440-22-4 0. | 7440-38-2 4.5 0.91 0.26 mg/kg   7440-39-3 56.6 0.055 0.016 mg/kg   7440-41-7 0.43 0.024 0.0081 mg/kg   7440-43-9 0.2 0.2 0.2 mg/kg UV   7440-43-9 0.2 0.2 0.2 mg/kg UV   7440-43-9 0.2 0.2 0.2 mg/kg UV   7440-47-3 22.6 0.13 0.038 mg/kg Img/kg   7440-47-3 22.6 0.13 0.03 mg/kg Img/kg   7440-48-4 9.4 0.099 0.03 mg/kg Img/kg   7439-89-6 31300 2 0.61 mg/kg Img/kg   7439-92-1 5.8 0.28 0.081 mg/kg Img/kg Img/kg   7439-92-1 5.8 0.28 0.081 mg/kg Img/kg Img/kg   7440-02-0 22.1 0.12 0.036 mg/kg Img/kg Img/kg   7440-02-7 1850 36 11 mg/kg JV I | 7440-38-2 4.5 0.91 0.26 mg/kg   7440-39-3 56.6 0.055 0.016 mg/kg J   7440-41-7 0.43 0.024 0.0081 mg/kg J   7440-41-7 0.43 0.024 0.0081 mg/kg UV UJ   7440-43-9 0.2 0.2 0.2 mg/kg UV UJ   7440-70-2 27500 1 0.12 mg/kg J-   7440-47-3 22.6 0.13 0.038 mg/kg J-   7440-48-4 9.4 0.099 0.03 mg/kg J-   7440-50-8 16.8 0.4 0.12 mg/kg J-   7439-89-6 31300 2 0.61 mg/kg J-   7439-95-4 7180 0.81 0.24 mg/kg B J-   7440-02-0 22.1 0.12 0.036 mg/kg J J   7440-02-7 1850 36 11 mg/kg J J   7440-09-7 1850 36 11 mg/kg |

| Sample Name         | DA1SB-059M-0 | SB-059M-0201-SO AnalysisType: MISC |               |                  |                       |                         |                                 |
|---------------------|--------------|------------------------------------|---------------|------------------|-----------------------|-------------------------|---------------------------------|
| Lab Sample Name:    | 851528       | Valid                              | lation Level: |                  |                       |                         |                                 |
|                     | CAS No       | Resul<br>Valu                      | t LOQ<br>le   | DL Resu<br>Units | lt Lab<br>9 Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Hexavalent Chromium | 18540-29     | 9-9 1.9                            | 6.5           | 1.9 mg           | /kg U                 | UJ                      | C, Q                            |

| Analysis Metho   | d SW8467                    | 7471            |              |          |                 |                  |                         |                                 |
|------------------|-----------------------------|-----------------|--------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | DA1SB-055M-00               | 01-SO           | AnalysisT    | ype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 851518                      | ation Level:    | IV           |          |                 |                  |                         |                                 |
|                  | CAS No                      | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6                   | 0.012           | 0.008        | 0.0024   | mg/kg           |                  |                         |                                 |
| Sample Name      | DA1SB-059M-02               | 01-SO           | AnalysisT    | ype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 851528 Validation Level: IV |                 |              |          |                 |                  |                         |                                 |
|                  | CAS No                      | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6                   | 0.012           | 0.0081       | 0.0024   | mg/kg           |                  |                         |                                 |
| Sample Name      | DA1SB-063M-02               | 02-SO           | AnalysisT    | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851882                      | Valida          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No                      | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|                  |                             |                 |              |          |                 |                  |                         |                                 |

### Analysis Method SW846 8081

Sample Name

DA1SB-059M-0201-SO

AnalysisType: ORSVO

Lab Sample Name:851528Validation Level: IV

|                       | CAS No     | Rest<br>Val | ılt LOQ<br>lue | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------|------------|-------------|----------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 4,4'-DDD              | 72-54-8    | 0.31        | 2.5            | 0.31 | ug/kg           | U                | U                       |                                 |
| 4,4'-DDE              | 72-55-9    | 0.31        | 4.1            | 0.31 | ug/kg           | U                | U                       |                                 |
| 4,4'-DDT              | 50-29-3    | 0.51        | 2.5            | 0.51 | ug/kg           | U                | U                       |                                 |
| Aldrin                | 309-00-2   | 0.51        | 2.5            | 0.51 | ug/kg           | U                | U                       |                                 |
| alpha-BHC             | 319-84-6   | 0.61        | 4.1            | 0.61 | ug/kg           | U                | U                       |                                 |
| alpha-Chlordane       | 5103-71-9  | 0.31        | 4.1            | 0.31 | ug/kg           | U                | U                       |                                 |
| beta-BHC              | 319-85-7   | 0.61        | 4.1            | 0.61 | ug/kg           | U                | U                       |                                 |
| Chlordane (Technical) | 57-74-9    | 4.1         | 77             | 4.1  | ug/kg           | U                | U                       |                                 |
| delta-BHC             | 319-86-8   | 0.31        | 2.5            | 0.31 | ug/kg           | U                | U                       |                                 |
| Dieldrin              | 60-57-1    | 0.31        | 2.5            | 0.31 | ug/kg           | U                | U                       |                                 |
| Endosulfan I          | 959-98-8   | 0.72        | 2.5            | 0.72 | ug/kg           | U                | U                       |                                 |
| Endosulfan II         | 33213-65-9 | 0.31        | 2.5            | 0.31 | ug/kg           | U                | U                       |                                 |
| Endosulfan sulfate    | 1031-07-8  | 0.92        | 4.1            | 0.92 | ug/kg           | U                | U                       |                                 |
| Endrin                | 72-20-8    | 0.41        | 2.5            | 0.41 | ug/kg           | U                | U                       |                                 |
| Endrin aldehyde       | 7421-93-4  | 1.1         | 4.1            | 1.1  | ug/kg           | UM               | UJ                      | Q                               |
| Endrin ketone         | 53494-70-5 | 0.82        | 2.5            | 0.82 | ug/kg           | UM               | U                       |                                 |
| GAMMA-BHC             | 58-89-9    | 0.51        | 2.5            | 0.51 | ug/kg           | U                | U                       |                                 |
| gamma-Chlordane       | 5103-74-2  | 0.31        | 4.1            | 0.31 | ug/kg           | U                | U                       |                                 |
| Heptachlor            | 76-44-8    | 0.41        | 2.5            | 0.41 | ug/kg           | U                | U                       |                                 |
| Heptachlor epoxide    | 1024-57-3  | 0.51        | 4.1            | 0.51 | ug/kg           | U                | U                       |                                 |
| Methoxychlor          | 72-43-5    | 0.72        | 2.5            | 0.72 | ug/kg           | U                | U                       |                                 |
| Toxaphene             | 8001-35-2  | 5.1         | 51             | 5.1  | ug/kg           | U                | U                       |                                 |

| Analysis Metho   | od SW846 80    | 082                 |                |                    |       |                  |                         |                                 |
|------------------|----------------|---------------------|----------------|--------------------|-------|------------------|-------------------------|---------------------------------|
| Sample Name      | DA1SB-059M-020 | 1-SO                | AnalysisT      | ype: Ol            | RPPB  |                  |                         |                                 |
| Lab Sample Name: | 851528         | Val                 | idation Level: | IV                 |       |                  |                         |                                 |
|                  | CAS No         | Result LOQ<br>Value |                | DL Result<br>Units |       | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aroclor 1016     | 12674-11-2     | 10                  | 51             | 10                 | ug/kg | U                | U                       |                                 |
| Aroclor 1221     | 11104-28-2     | 20                  | 51             | 20                 | ug/kg | U                | U                       |                                 |
| Aroclor 1232     | 11141-16-5     | 28                  | 51             | 28                 | ug/kg | U                | U                       |                                 |
| Aroclor 1242     | 53469-21-9     | 30                  | 51             | 30                 | ug/kg | U                | U                       |                                 |
| Aroclor 1248     | 12672-29-6     | 30                  | 51             | 30                 | ug/kg | U                | U                       |                                 |
| Aroclor 1254     | 11097-69-1     | 23                  | 51             | 23                 | ug/kg | U                | U                       |                                 |
| Aroclor 1260     | 11096-82-5     | 12                  | 51             | 12                 | ug/kg | U                | U                       |                                 |
| Aroclor 1262     | 37324-23-5     | 21                  | 51             | 21                 | ug/kg | U                | U                       |                                 |
| Aroclor 1268     | 11100-14-4     | 29                  | 51             | 29                 | ug/kg | U                | U                       |                                 |

#### Analysis Method SW846 8260

Sample Name

DA1SB-059D-0201-SO

AnalysisType: ORVOA

Lab Sample Name:851867Validation Level: IV

|                           | CAS No     | Resu<br>Val | ult LOQ<br>lue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|---------------------------|------------|-------------|----------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,1,1-Trichloroethane     | 71-55-6    | 11          | 53             | 11  | ug/kg           | U                | U                       |                                 |
| 1,1,2,2-Tetrachloroethane | 79-34-5    | 6.4         | 53             | 6.4 | ug/kg           | U                | U                       |                                 |
| 1,1,2-Trichloroethane     | 79-00-5    | 8.6         | 53             | 8.6 | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethane        | 75-34-3    | 12          | 53             | 12  | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethene        | 75-35-4    | 17          | 53             | 17  | ug/kg           | U                | U                       |                                 |
| 1,2-Dibromoethane         | 106-93-4   | 11          | 53             | 11  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloroethane        | 107-06-2   | 13          | 53             | 13  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloropropane       | 78-87-5    | 7.5         | 53             | 7.5 | ug/kg           | U                | U                       |                                 |
| 2-Butanone                | 78-93-3    | 110         | 530            | 110 | ug/kg           | U                | U                       |                                 |
| 2-Hexanone                | 591-78-6   | 73          | 530            | 73  | ug/kg           | U                | UJ                      | С                               |
| 4-Methyl-2-pentanone      | 108-10-1   | 88          | 530            | 88  | ug/kg           | U                | U                       |                                 |
| Acetone                   | 67-64-1    | 67          | 1100           | 67  | ug/kg           | U                | U                       |                                 |
| Benzene                   | 71-43-2    | 5.3         | 53             | 5.3 | ug/kg           | U                | U                       |                                 |
| Bromochloromethane        | 74-97-5    | 8.6         | 53             | 8.6 | ug/kg           | U                | U                       |                                 |
| Bromodichloromethane      | 75-27-4    | 9.6         | 53             | 9.6 | ug/kg           | U                | U                       |                                 |
| Bromoform                 | 75-25-2    | 6.4         | 53             | 6.4 | ug/kg           | U                | U                       |                                 |
| Bromomethane              | 74-83-9    | 32          | 110            | 32  | ug/kg           | U                | U                       |                                 |
| Carbon disulfide          | 75-15-0    | 16          | 110            | 16  | ug/kg           | U                | U                       |                                 |
| Carbon tetrachloride      | 56-23-5    | 12          | 53             | 12  | ug/kg           | U                | U                       |                                 |
| Chlorobenzene             | 108-90-7   | 8.6         | 53             | 8.6 | ug/kg           | U                | U                       |                                 |
| Chloroethane              | 75-00-3    | 20          | 110            | 20  | ug/kg           | U                | R                       | С                               |
| Chloroform                | 67-66-3    | 9.6         | 53             | 9.6 | ug/kg           | U                | U                       |                                 |
| Chloromethane             | 74-87-3    | 27          | 110            | 27  | ug/kg           | U                | R                       | С                               |
| cis-1,2-Dichloroethene    | 156-59-2   | 11          | 53             | 11  | ug/kg           | U                | U                       |                                 |
| cis-1,3-Dichloropropene   | 10061-01-5 | 11          | 53             | 11  | ug/kg           | U                | U                       |                                 |
| Dibromochloromethane      | 124-48-1   | 8.6         | 53             | 8.6 | ug/kg           | U                | U                       |                                 |
| Ethylbenzene              | 100-41-4   | 8.6         | 53             | 8.6 | ug/kg           | U                | U                       |                                 |

Wednesday, April 17, 2013

| m,p-Xylenes               | 1330-20-7  | 19  | 110 | 19  | ug/kg | U | U |  |
|---------------------------|------------|-----|-----|-----|-------|---|---|--|
| Methylene chloride        | 75-09-2    | 43  | 110 | 43  | ug/kg | U | U |  |
| o-Xylene                  | 95-47-6    | 8.6 | 53  | 8.6 | ug/kg | U | U |  |
| Styrene                   | 100-42-5   | 6.4 | 53  | 6.4 | ug/kg | U | U |  |
| Tetrachloroethene         | 127-18-4   | 8.6 | 53  | 8.6 | ug/kg | U | U |  |
| Toluene                   | 108-88-3   | 7.5 | 53  | 7.5 | ug/kg | U | U |  |
| trans-1,2-Dichloroethene  | 156-60-5   | 12  | 53  | 12  | ug/kg | U | U |  |
| trans-1,3-Dichloropropene | 10061-02-6 | 7.5 | 110 | 7.5 | ug/kg | U | U |  |
| Trichloroethene           | 79-01-6    | 11  | 53  | 11  | ug/kg | U | U |  |
| Vinyl chloride            | 75-01-4    | 15  | 53  | 15  | ug/kg | U | U |  |

#### Analysis Method SW846 8270

Sample Name

DA1SB-059M-0201-SO

AnalysisType: ORSVO

Lab Sample Name:851528Validation Level: IV

|                             | CAS No    | Result<br>Valu | t LOQ<br>e | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------------|-----------|----------------|------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene      | 120-82-1  | 21             | 410        | 21  | ug/kg           | U                | UJ                      | Н                               |
| 1,2-Dichlorobenzene         | 95-50-1   | 25             | 410        | 25  | ug/kg           | U                | UJ                      | Н                               |
| 1,3-Dichlorobenzene         | 541-73-1  | 20             | 410        | 20  | ug/kg           | U                | UJ                      | Н                               |
| 1,4-Dichlorobenzene         | 106-46-7  | 19             | 410        | 19  | ug/kg           | U                | UJ                      | Н                               |
| 2,4,5-Trichlorophenol       | 95-95-4   | 130            | 510        | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trichlorophenol       | 88-06-2   | 130            | 510        | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol          | 120-83-2  | 120            | 510        | 120 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol          | 105-67-9  | 100            | 410        | 100 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol           | 51-28-5   | 700            | 2000       | 700 | ug/kg           | U                | UJ                      | H, C                            |
| 2,4-Dinitrotoluene          | 121-14-2  | 25             | 410        | 25  | ug/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene          | 606-20-2  | 25             | 410        | 25  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chloronaphthalene         | 91-58-7   | 23             | 410        | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chlorophenol              | 95-57-8   | 350            | 510        | 350 | ug/kg           | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol  | 534-52-1  | 280            | 1000       | 280 | ug/kg           | U                | UJ                      | H, C                            |
| 2-Methylnaphthalene         | 91-57-6   | 26             | 410        | 26  | ug/kg           | U                | UJ                      | Н                               |
| 2-Methylphenol              | 95-48-7   | 430            | 1000       | 430 | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitroaniline              | 88-74-4   | 23             | 410        | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitrophenol               | 88-75-5   | 290            | 510        | 290 | ug/kg           | U                | UJ                      | Н                               |
| 3,3'-Dichlorobenzidine      | 91-94-1   | 150            | 510        | 150 | ug/kg           | U                | UJ                      | H, C                            |
| 3-Nitroaniline              | 99-09-2   | 22             | 1000       | 22  | ug/kg           | U                | UJ                      | Н                               |
| 4-Bromophenyl phenyl ether  | 101-55-3  | 26             | 410        | 26  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloro-3-methylphenol     | 59-50-7   | 390            | 510        | 390 | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloroaniline             | 106-47-8  | 40             | 410        | 40  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chlorophenyl phenyl ether | 7005-72-3 | 27             | 410        | 27  | ug/kg           | U                | UJ                      | Н                               |
| 4-Methylphenol              | 1319-77-3 | 660            | 2000       | 660 | ug/kg           | U                | UJ                      | Н                               |
| 4-Nitroaniline              | 100-01-6  | 31             | 1000       | 31  | ug/kg           | U                | UJ                      | H, C                            |
| 4-Nitrophenol               | 100-02-7  | 410            | 1000       | 410 | ug/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

| Acenaphthene                 | 83-32-9  | 25  | 410  | 25  | ug/kg | U | UJ | Н    |
|------------------------------|----------|-----|------|-----|-------|---|----|------|
| Acenaphthylene               | 208-96-8 | 25  | 410  | 25  | ug/kg | U | UJ | Н    |
| Anthracene                   | 120-12-7 | 25  | 410  | 25  | ug/kg | U | UJ | Н    |
| Benzo(a)anthracene           | 56-55-3  | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Benzo(a)pyrene               | 50-32-8  | 23  | 410  | 23  | ug/kg | U | UJ | Н    |
| Benzo(b)fluoranthene         | 205-99-2 | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Benzo(g,h,i)perylene         | 191-24-2 | 22  | 410  | 22  | ug/kg | U | UJ | H, C |
| Benzo(k)fluoranthene         | 207-08-9 | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Benzoic acid                 | 65-85-0  | 300 | 1000 | 300 | ug/kg | U | UJ | Н    |
| Benzyl alcohol               | 100-51-6 | 85  | 1000 | 85  | ug/kg | U | R  | С    |
| Bis(2-chloroethoxy)methane   | 111-91-1 | 23  | 410  | 23  | ug/kg | U | UJ | Н    |
| Bis(2-chloroethyl) ether     | 111-44-4 | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Bis(2-chloroisopropyl) ether | 108-60-1 | 31  | 410  | 31  | ug/kg | U | UJ | Н    |
| Bis(2-ethylhexyl) phthalate  | 117-81-7 | 89  | 1000 | 89  | ug/kg | U | UJ | Н    |
| Butylbenzyl phthalate        | 85-68-7  | 75  | 410  | 75  | ug/kg | U | UJ | Н    |
| Carbazole                    | 86-74-8  | 29  | 410  | 29  | ug/kg | U | UJ | Н    |
| Chrysene                     | 218-01-9 | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Dibenzo(a,h)anthracene       | 53-70-3  | 22  | 410  | 22  | ug/kg | U | UJ | Н    |
| Dibenzofuran                 | 132-64-9 | 25  | 410  | 25  | ug/kg | U | UJ | Н    |
| Diethyl phthalate            | 84-66-2  | 65  | 410  | 65  | ug/kg | U | UJ | Н    |
| Dimethyl phthalate           | 131-11-3 | 64  | 410  | 64  | ug/kg | U | UJ | Н    |
| Di-n-butyl phthalate         | 84-74-2  | 110 | 410  | 81  | ug/kg | J | J- | Н    |
| Di-n-octyl phthalate         | 117-84-0 | 60  | 410  | 60  | ug/kg | U | UJ | Н    |
| Fluoranthene                 | 206-44-0 | 27  | 410  | 27  | ug/kg | U | UJ | Н    |
| Fluorene                     | 86-73-7  | 26  | 410  | 26  | ug/kg | U | UJ | Н    |
| Hexachlorobenzene            | 118-74-1 | 29  | 410  | 29  | ug/kg | U | UJ | Н    |
| Hexachlorobutadiene          | 87-68-3  | 63  | 410  | 63  | ug/kg | U | UJ | Н    |
| Hexachlorocyclopentadiene    | 77-47-4  | 53  | 410  | 53  | ug/kg | U | R  | С    |
| Hexachloroethane             | 67-72-1  | 34  | 410  | 34  | ug/kg | U | UJ | Н    |
| Indeno(1,2,3-cd)pyrene       | 193-39-5 | 23  | 410  | 23  | ug/kg | U | UJ | H, C |
| Isophorone                   | 78-59-1  | 51  | 410  | 51  | ug/kg | U | UJ | Н    |
| Naphthalene                  | 91-20-3  | 21  | 410  | 21  | ug/kg | U | UJ | Н    |
| Nitrobenzene                 | 98-95-3  | 60  | 410  | 60  | ug/kg | U | UJ | Н    |

Wednesday, April 17, 2013

| N-Nitroso-di-n-propylamine | 621-64-7 | 72  | 410  | 72  | ug/kg | U | UJ | Н |  |
|----------------------------|----------|-----|------|-----|-------|---|----|---|--|
| N-Nitrosodiphenylamine     | 86-30-6  | 51  | 820  | 51  | ug/kg | U | IJ | H |  |
| Pentachlorophenol          | 87-86-5  | 250 | 1000 | 250 | ug/kg | U | IJ | Н |  |
| Phenanthrene               | 85-01-8  | 27  | 410  | 27  | ug/kg | U | IJ | Н |  |
| Phenol                     | 108-95-2 | 160 | 510  | 160 | ug/kg | U | IJ | Н |  |
| Pyrene                     | 129-00-0 | 27  | 410  | 27  | ug/kg | U | UJ | Н |  |

#### Analysis Method SW846 8330B

Sample Name

DA1SB-055M-0001-SO

AnalysisType: OREXP

Lab Sample Name:851518Validation Level: IV

|                            | CAS No        | Resul<br>Valı | lt LOQ<br>1e | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|---------------|---------------|--------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4       | 0.13          | 0.44         | 0.13    | mg/kg           | U                | UJ                      | н                               |
| 1,3-Dinitrobenzene         | 99-65-0       | 0.079         | 0.44         | 0.079   | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7      | 0.089         | 0.44         | 0.089   | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2      | 0.2           | 0.44         | 0.2     | mg/kg           | U                | UJ                      | H, Q                            |
| 2,6-Dinitrotoluene         | 606-20-2      | 0.07          | 0.5          | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2    | 0.05          | 0.44         | 0.05    | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2       | 0.089         | 0.44         | 0.089   | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1      | 0.089         | 0.44         | 0.089   | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1       | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0    | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | H, Q                            |
| 4-Nitrotoluene             | 99-99-0       | 0.07          | 0.5          | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0     | 0.12          | 0.44         | 0.12    | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3       | 0.04          | 0.44         | 0.04    | mg/kg           | U                | UJ                      | Н                               |
| Nitroglycerin              | 55-63-0       | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | Н                               |
| PETN                       | 78-11-5       | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4      | 0.16          | 0.44         | 0.16    | mg/kg           | U                | UJ                      | Н                               |
| Tetryl                     | 479-45-8      | 0.089         | 0.44         | 0.089   | mg/kg           | U                | UJ                      | Н                               |
| Sample Name D              | A1SB-059M-020 | 1-SO          | AnalysisT    | ype: OR | EXP             |                  |                         |                                 |

Lab Sample Name:

851528

Validation Level: IV

CAS No Result LOQ **DL** Result Lab Validation Validation Qualifier Qualifier Value Units Qualifier Code U 1,3,5-Trinitrobenzene 99-35-4 0.13 0.44 0.13 mg/kg UJ H 1,3-Dinitrobenzene U UJ Η 99-65-0 0.08 0.44 0.08 mg/kg 2,4,6-Trinitrotoluene 0.44 0.09 U UJ Η 118-96-7 0.09 mg/kg U 2,4-Dinitrotoluene 121-14-2 0.2 0.44 0.2 mg/kg R D 2,6-Dinitrotoluene 606-20-2 0.07 0.5 0.07 U R D mg/kg UJ Η 2-Amino-4,6-dinitrotoluene 35572-78-2 0.05 0.44 0.05 mg/kg U

Wednesday, April 17, 2013

| 2-Nitrotoluene          | 88-72-2         | 0.09  | 0.44   | 0.09        | mg/kg | U | UJ | Н     |
|-------------------------|-----------------|-------|--------|-------------|-------|---|----|-------|
| 3,5-Dinitroaniline      | 618-87-1        | 0.09  | 0.44   | 0.09        | mg/kg | U | UJ | Н     |
| 3-Nitrotoluene          | 99-08-1         | 0.07  | 0.44   | 0.07        | mg/kg | U | UJ | Н     |
| 4-Amino-2,6-dinitrotolu | iene 19406-51-0 | 0.07  | 0.44   | 0.07        | mg/kg | U | UJ | Н     |
| 4-Nitrotoluene          | 99-99-0         | 0.07  | 0.5    | 0.07        | mg/kg | U | IJ | Н     |
| HMX                     | 2691-41-0       | 0.12  | 0.44   | 0.12        | mg/kg | U | UJ | Н     |
| Nitrobenzene            | 98-95-3         | 0.04  | 0.44   | 0.04        | mg/kg | U | R  | D     |
| Nitroglycerin           | 55-63-0         | 0.5   | 1.5    | 0.5         | mg/kg | U | UJ | Н     |
| Nitroguanidine          | 556-88-7        | 0.06  | 0.16   | 0.06        | mg/kg | U | IJ | Н, *Ш |
| PETN                    | 78-11-5         | 0.5   | 1.5    | 0.5         | mg/kg | U | UJ | Н     |
| RDX                     | 121-82-4        | 0.16  | 0.44   | 0.16        | mg/kg | U | IJ | Н     |
| Tetryl                  | 479-45-8        | 0.09  | 0.44   | 0.09        | mg/kg | U | UJ | Н     |
| Sample Name             | DA1SB-063M-020  | )2-SO | Analys | isType: ORE | EXP   |   |    |       |

Lab Sample Name:

851882

Validation Level: IV

|                            | CAS No     | Resul<br>Valı | lt LOQ<br>1e | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|---------------|--------------|-------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13          | 0.44         | 0.13  | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.079         | 0.44         | 0.079 | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.089         | 0.44         | 0.089 | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2           | 0.44         | 0.2   | mg/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07          | 0.5          | 0.07  | mg/kg           | U                | UJ                      | Н                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05          | 0.44         | 0.05  | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2    | 0.089         | 0.44         | 0.089 | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1   | 0.089         | 0.44         | 0.089 | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1    | 0.07          | 0.44         | 0.07  | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07          | 0.44         | 0.07  | mg/kg           | U                | UJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0    | 0.07          | 0.5          | 0.07  | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0  | 0.12          | 0.44         | 0.12  | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3    | 0.04          | 0.44         | 0.04  | mg/kg           | U                | UJ                      | Н                               |
| Nitroglycerin              | 55-63-0    | 0.5           | 1.5          | 0.5   | mg/kg           | U                | UJ                      | Н                               |
| Nitroguanidine             | 556-88-7   | 0.059         | 0.16         | 0.059 | mg/kg           | U                | UJ                      | Н, *Ш                           |
| PETN                       | 78-11-5    | 0.5           | 1.5          | 0.5   | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4   | 0.16          | 0.44         | 0.16  | mg/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

| •                | v                        | •       | 015             | 15          |         |                 |                  |                         |                                 |
|------------------|--------------------------|---------|-----------------|-------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| Tetryl           | 479-4                    | 5-8 0   | .089            | 0.44        | 0.089   | mg/kg           | U                | UJ                      | Н                               |
| Analysis Metho   | od SW84                  | 6 901   | 2               |             |         |                 |                  |                         |                                 |
| Sample Name      | DA1SB-059M               | 1-0201- | SO              | AnalysisT   | ype: MI | SC              |                  |                         |                                 |
| Lab Sample Name: | 851528 Validation Level: |         |                 |             | IV      |                 |                  |                         |                                 |
|                  | CAS I                    | No      | Result<br>Value | LOQ         | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Cyanide          | 57-12                    | -5 0    | .11             | 0.39        | 0.11    | mg/kg           | U                | UJ                      | Н                               |
| Analysis Metho   | od SW84                  | 6 905   | 56M             |             |         |                 |                  |                         |                                 |
| Sample Name      | DA1SB-059M               | 1-0201- | SO              | AnalysisT   | ype: MI | SC              |                  |                         |                                 |
| Lab Sample Name: | 851528                   |         | Valida          | tion Level: | IV      |                 |                  |                         |                                 |
| -                | CAS I                    | No      | Result<br>Value | LOQ         | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Nitrocellulose   | 9004-                    | 70-0 7  |                 | 100         | 7       | mg/kg           | U                | U                       |                                 |
| Sample Name      | DA1SB-063M               | 1-0202- | SO              | AnalysisT   | ype: MI | SC              |                  |                         |                                 |
| Lab Sample Name: | 851882                   |         | Valida          | tion Level: | IV      |                 |                  |                         |                                 |
|                  | CAS I                    | No      | Result<br>Value | LOQ         | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Nitrocellulose   | 9004-                    | 70-0 7  |                 | 100         | 7       | mg/kg           | U                | U                       |                                 |

| Analysia Matha   |                | 1 /             |              |          |                 |                  |                         |                                 |
|------------------|----------------|-----------------|--------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Analysis Melho   | a EPA/4/.      | IA              |              |          |                 |                  |                         |                                 |
| Sample Name      | DA1SB-068M-020 | )1-SO           | AnalysisT    | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 852373         | Valida          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6      | 0.019           | 0.008        | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | DA1SB-070M-020 | 04-SO           | AnalysisT    | ype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 852383         | Valida          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6      | 0.01            | 0.008        | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | DA1SB-072M-020 | 04-SO           | AnalysisT    | ype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 852390         | Valida          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6      | 0.037           | 0.0079       | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | DA1SS-050M-020 | 1-SO            | AnalysisT    | ype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 852568         | Valida          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ          | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|                  |                |                 |              |          |                 |                  |                         |                                 |

#### Analysis Method SW846 6010

Sample Name

DA1SB-068M-0201-SO

7429-90-5

12900

0.24

AnalysisType: INORG

852373 Lab Sample Name: Validation Level: IV

|                  | CAS No         | Result<br>Value | e LOQ        | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|-----------------|--------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 10900           | 0.24         | 0.081    | mg/kg           |                  | J-                      | Q                               |
| Antimony         | 7440-36-0      | 0.49            | 0.55         | 0.16     | mg/kg           | JV               | J-                      | Q                               |
| Arsenic          | 7440-38-2      | 5.4             | 0.91         | 0.26     | mg/kg           |                  | J-                      | Q, A                            |
| Barium           | 7440-39-3      | 47.6            | 0.055        | 0.016    | mg/kg           | В                |                         |                                 |
| Beryllium        | 7440-41-7      | 0.42            | 0.024        | 0.0081   | mg/kg           |                  | J-                      | Α                               |
| Cadmium          | 7440-43-9      | 0.096           | 0.043        | 0.012    | mg/kg           |                  | J-                      | C, Q                            |
| Calcium          | 7440-70-2      | 420             | 1            | 0.12     | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3      | 49.1            | 0.13         | 0.038    | mg/kg           |                  | J-                      | Q, A                            |
| Cobalt           | 7440-48-4      | 8               | 0.099        | 0.03     | mg/kg           |                  | J-                      | Q, A                            |
| Copper           | 7440-50-8      | 21.2            | 0.4          | 0.12     | mg/kg           |                  | J-                      | Α                               |
| Iron             | 7439-89-6      | 24600           | 2            | 0.61     | mg/kg           |                  |                         |                                 |
| Lead             | 7439-92-1      | 24.5            | 0.28         | 0.081    | mg/kg           |                  | J-                      | Α                               |
| Magnesium        | 7439-95-4      | 2590            | 0.81         | 0.24     | mg/kg           |                  | J-                      | Α                               |
| Manganese        | 7439-96-5      | 293             | 0.1          | 0.032    | mg/kg           |                  | J-                      | Q                               |
| Nickel           | 7440-02-0      | 15.9            | 0.12         | 0.036    | mg/kg           |                  | J-                      | Q, A                            |
| Potassium        | 7440-09-7      | 1000            | 36           | 11       | mg/kg           |                  | J-                      | Q                               |
| Selenium         | 7782-49-2      | 0.23            | 0.85         | 0.14     | mg/kg           | JV               | J-                      | Q                               |
| Silver           | 7440-22-4      | 0.1             | 0.11         | 0.1      | mg/kg           | UV               | UJ                      | Q, \$                           |
| Sodium           | 7440-23-5      | 45.3            | 13           | 4        | mg/kg           |                  | J-                      | C, Q                            |
| Thallium         | 7440-28-0      | 1.5             | 0.28         | 0.081    | mg/kg           |                  | J-                      | Q                               |
| Vanadium         | 7440-62-2      | 15.2            | 0.069        | 0.022    | mg/kg           |                  | J-                      | Q, A                            |
| Zinc             | 7440-66-6      | 51.6            | 0.24         | 0.081    | mg/kg           |                  | J-                      | Q, A                            |
| Sample Name      | DA1SB-070M-020 | )4-SO           | AnalysisT    | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 852383         | Valid           | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | e LOQ        | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |

0.081

mg/kg

Wednesday, April 17, 2013

Q

J-

| Antimony         | 7440-36-0      | 0.57         | 0.55         | 0.16      | mg/kg           |                  | J-                      | Q                               |
|------------------|----------------|--------------|--------------|-----------|-----------------|------------------|-------------------------|---------------------------------|
| Arsenic          | 7440-38-2      | 10.2         | 0.91         | 0.26      | mg/kg           |                  | J-                      | Q, A                            |
| Barium           | 7440-39-3      | 62.9         | 0.055        | 0.016     | mg/kg           | В                |                         |                                 |
| Beryllium        | 7440-41-7      | 0.46         | 0.024        | 0.0081    | mg/kg           |                  | J-                      | Α                               |
| Cadmium          | 7440-43-9      | 0.08         | 0.08         | 0.08      | mg/kg           | UV               | UJ                      | C, B, Q, \$                     |
| Calcium          | 7440-70-2      | 30200        | 1            | 0.12      | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3      | 58.3         | 0.13         | 0.039     | mg/kg           |                  | J-                      | Q, A                            |
| Cobalt           | 7440-48-4      | 9.8          | 0.099        | 0.03      | mg/kg           |                  | J-                      | Q, A                            |
| Copper           | 7440-50-8      | 17.3         | 0.41         | 0.12      | mg/kg           |                  | J-                      | Α                               |
| Iron             | 7439-89-6      | 29000        | 2            | 0.61      | mg/kg           |                  |                         |                                 |
| Lead             | 7439-92-1      | 10.9         | 0.28         | 0.081     | mg/kg           |                  | J-                      | Α                               |
| Magnesium        | 7439-95-4      | 8010         | 0.81         | 0.24      | mg/kg           |                  | J-                      | Α                               |
| Manganese        | 7439-96-5      | 311          | 0.1          | 0.032     | mg/kg           |                  | J-                      | Q                               |
| Nickel           | 7440-02-0      | 24.1         | 0.12         | 0.037     | mg/kg           |                  | J-                      | Q, A                            |
| Potassium        | 7440-09-7      | 1860         | 37           | 11        | mg/kg           |                  | J-                      | Q                               |
| Selenium         | 7782-49-2      | 0.43         | 0.85         | 0.14      | mg/kg           | JV               | J-                      | Q                               |
| Silver           | 7440-22-4      | 0.034        | 0.11         | 0.034     | mg/kg           | UV               | UJ                      | Q                               |
| Sodium           | 7440-23-5      | 78.9         | 13           | 4.1       | mg/kg           |                  | J-                      | C, Q                            |
| Thallium         | 7440-28-0      | 1.8          | 0.28         | 0.081     | mg/kg           | В                | J-                      | Q                               |
| Vanadium         | 7440-62-2      | 18.9         | 0.069        | 0.022     | mg/kg           |                  | J-                      | Q, A                            |
| Zinc             | 7440-66-6      | 51.2         | 0.24         | 0.081     | mg/kg           |                  | J-                      | Q, A                            |
| Sample Name      | DA1SB-072M-020 | )4-SO        | Analysis     | Гуре: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 852390         | Vali         | dation Level | : IV      |                 |                  |                         |                                 |
|                  | CAS No         | Resu<br>Valu | lt LOQ<br>ue | DL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aluminum         | 7429-90-5      | 6790         | 0.24         | 0.08      | mg/kg           |                  | J-                      | Q                               |
| Antimony         | 7440-36-0      | 7.6          | 0.54         | 0.16      | mg/kg           |                  | J-                      | Q                               |
| Arsenic          | 7440-38-2      | 10.7         | 0.91         | 0.26      | mg/kg           |                  | J-                      | Q, A                            |
| Barium           | 7440-39-3      | 40.2         | 0.054        | 0.016     | mg/kg           | В                |                         |                                 |
| Beryllium        | 7440-41-7      | 0.24         | 0.024        | 0.008     | mg/kg           |                  | J-                      | C, A                            |
| Cadmium          | 7440-43-9      | 0.2          | 0.2          | 0.2       | mg/kg           | UV               | IJ                      | C, B, Q, \$                     |

0.12

0.038

mg/kg

mg/kg

Wednesday, April 17, 2013

7440-70-2

7440-47-3

1060

589

1

0.13

Calcium

Chromium

Page 17 of 33

А

**Q, A** 

J-

**J**-

| Cobalt    | 7440-48-4 | 5.9   | 0.099 | 0.03  | mg/kg |    | J- | Q, A |
|-----------|-----------|-------|-------|-------|-------|----|----|------|
| Copper    | 7440-50-8 | 26.5  | 0.4   | 0.12  | mg/kg |    | J- | Α    |
| Iron      | 7439-89-6 | 25500 | 2     | 0.6   | mg/kg |    |    |      |
| Lead      | 7439-92-1 | 13.9  | 0.28  | 0.08  | mg/kg |    | J- | Α    |
| Magnesium | 7439-95-4 | 1750  | 0.8   | 0.24  | mg/kg |    | J- | Α    |
| Manganese | 7439-96-5 | 342   | 0.1   | 0.032 | mg/kg |    | J- | Q    |
| Nickel    | 7440-02-0 | 16    | 0.12  | 0.036 | mg/kg |    | J- | Q, A |
| Potassium | 7440-09-7 | 1330  | 36    | 11    | mg/kg |    | J- | Q    |
| Selenium  | 7782-49-2 | 0.68  | 0.85  | 0.14  | mg/kg | JV | J- | Q    |
| Silver    | 7440-22-4 | 0.034 | 0.11  | 0.034 | mg/kg | UV | UJ | Q    |
| Sodium    | 7440-23-5 | 115   | 13    | 4     | mg/kg |    | J- | C, Q |
| Thallium  | 7440-28-0 | 1.3   | 0.28  | 0.08  | mg/kg | В  | J- | Q    |
| Vanadium  | 7440-62-2 | 13.3  | 0.068 | 0.022 | mg/kg |    | J- | Q, A |
| Zinc      | 7440-66-6 | 63.9  | 0.24  | 0.08  | mg/kg |    | J- | Q, A |

Sample Name

DA1SS-050M-0201-SO AnalysisType: INORG

852568 Lab Sample Name: Validation Level: IV CAS No Result LOQ DL Result Lab Validation Validation Value Units Qualifier Qualifier Qualifier Code 0.081 **J**-Aluminum 7429-90-5 10900 0.24 mg/kg Q 7440-36-0 1.2 0.55 0.16 Antimony mg/kg J-Q **J**-Arsenic 7440-38-2 9.1 0.92 0.26 **Q**, A mg/kg Barium 7440-39-3 0.055 0.016 В 78.8 mg/kg Beryllium 7440-41-7 0.38 0.024 0.0081 mg/kg J-A Cadmium 7440-43-9 0.043 0.012 **J**-Q 2.6 mg/kg Calcium 7440-70-2 0.12 **J**-Α 2500 1 mg/kg Chromium 7440-47-3 110 0.13 0.039 **J**-**Q**, A mg/kg Cobalt 7440-48-4 0.031 J-7.6 0.1 mg/kg Q, A Copper 7440-50-8 188 0.41 0.12 mg/kg **J**-Α Iron 7439-89-6 23700 2 0.61 mg/kg 23.4 0.28 Lead 7439-92-1 0.081 Jmg/kg А Magnesium 7439-95-4 2860 0.81 0.24 J-Α mg/kg Manganese 7439-96-5 407 0.1 0.033 **J**-Q mg/kg Nickel 7440-02-0 18.4 0.12 0.037 mg/kg **J**-**Q**, A

Wednesday, April 17, 2013

Page 18 of 33

| Potassium | 7440-09-7 | 814   | 37    | 11    | mg/kg |    | J- | Q    |
|-----------|-----------|-------|-------|-------|-------|----|----|------|
| Selenium  | 7782-49-2 | 0.75  | 0.85  | 0.14  | mg/kg | JV | J- | Q    |
| Silver    | 7440-22-4 | 0.035 | 0.11  | 0.035 | mg/kg | UV | UJ | Q    |
| Sodium    | 7440-23-5 | 31.8  | 13    | 4.1   | mg/kg |    | J- | C, Q |
| Thallium  | 7440-28-0 | 1.6   | 0.28  | 0.081 | mg/kg | В  | J- | Q    |
| Vanadium  | 7440-62-2 | 16.1  | 0.069 | 0.022 | mg/kg |    | J- | Q, A |
| Zinc      | 7440-66-6 | 191   | 0.24  | 0.081 | mg/kg |    | J- | Q, A |
#### Analysis Method SW846 8260B

Sample Name

DA1SB-068D-0201-SO

AnalysisType: ORVOA

Lab Sample Name:852287Validation Level: IV

|                           | CAS No     | Resu<br>Valu | lt LOQ<br>ue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|---------------------------|------------|--------------|--------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,1,1-Trichloroethane     | 71-55-6    | 10           | 52           | 10  | ug/kg           | U                | U                       |                                 |
| 1,1,2,2-Tetrachloroethane | 79-34-5    | 6.2          | 52           | 6.2 | ug/kg           | U                | U                       |                                 |
| 1,1,2-Trichloroethane     | 79-00-5    | 8.3          | 52           | 8.3 | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethane        | 75-34-3    | 11           | 52           | 11  | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethene        | 75-35-4    | 17           | 52           | 17  | ug/kg           | U                | U                       |                                 |
| 1,2-Dibromoethane         | 106-93-4   | 10           | 52           | 10  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloroethane        | 107-06-2   | 12           | 52           | 12  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloropropane       | 78-87-5    | 7.3          | 52           | 7.3 | ug/kg           | U                | U                       |                                 |
| 2-Butanone                | 78-93-3    | 100          | 520          | 100 | ug/kg           | U                | U                       |                                 |
| 2-Hexanone                | 591-78-6   | 70           | 520          | 70  | ug/kg           | U                | R                       | С                               |
| 4-Methyl-2-pentanone      | 108-10-1   | 85           | 520          | 85  | ug/kg           | U                | UJ                      | С                               |
| Acetone                   | 67-64-1    | 65           | 1000         | 65  | ug/kg           | U                | UJ                      | С                               |
| Benzene                   | 71-43-2    | 5.2          | 52           | 5.2 | ug/kg           | U                | U                       |                                 |
| Bromochloromethane        | 74-97-5    | 8.3          | 52           | 8.3 | ug/kg           | U                | U                       |                                 |
| Bromodichloromethane      | 75-27-4    | 9.3          | 52           | 9.3 | ug/kg           | U                | U                       |                                 |
| Bromoform                 | 75-25-2    | 6.2          | 52           | 6.2 | ug/kg           | U                | U                       |                                 |
| Bromomethane              | 74-83-9    | 31           | 100          | 31  | ug/kg           | U                | U                       |                                 |
| Carbon disulfide          | 75-15-0    | 16           | 100          | 16  | ug/kg           | U                | U                       |                                 |
| Carbon tetrachloride      | 56-23-5    | 11           | 52           | 11  | ug/kg           | U                | U                       |                                 |
| Chlorobenzene             | 108-90-7   | 8.3          | 52           | 8.3 | ug/kg           | U                | U                       |                                 |
| Chloroethane              | 75-00-3    | 20           | 100          | 20  | ug/kg           | U                | R                       | С                               |
| Chloroform                | 67-66-3    | 9.3          | 52           | 9.3 | ug/kg           | U                | U                       |                                 |
| Chloromethane             | 74-87-3    | 26           | 100          | 26  | ug/kg           | U                | R                       | С                               |
| cis-1,2-Dichloroethene    | 156-59-2   | 10           | 52           | 10  | ug/kg           | U                | U                       |                                 |
| cis-1,3-Dichloropropene   | 10061-01-5 | 10           | 52           | 10  | ug/kg           | U                | U                       |                                 |
| Dibromochloromethane      | 124-48-1   | 8.3          | 52           | 8.3 | ug/kg           | U                | U                       |                                 |
| Ethylbenzene              | 100-41-4   | 8.3          | 52           | 8.3 | ug/kg           | U                | U                       |                                 |

| m,p-Xylenes               | 1330-20-7  | 19  | 100 | 19  | ug/kg | U | UJ | С |
|---------------------------|------------|-----|-----|-----|-------|---|----|---|
| Methylene chloride        | 75-09-2    | 41  | 100 | 41  | ug/kg | U | U  |   |
| o-Xylene                  | 95-47-6    | 8.3 | 52  | 8.3 | ug/kg | U | U  |   |
| Styrene                   | 100-42-5   | 6.2 | 52  | 6.2 | ug/kg | U | U  |   |
| Tetrachloroethene         | 127-18-4   | 8.3 | 52  | 8.3 | ug/kg | U | U  |   |
| Toluene                   | 108-88-3   | 7.3 | 52  | 7.3 | ug/kg | U | U  |   |
| trans-1,2-Dichloroethene  | 156-60-5   | 11  | 52  | 11  | ug/kg | U | U  |   |
| trans-1,3-Dichloropropene | 10061-02-6 | 7.3 | 100 | 7.3 | ug/kg | U | U  |   |
| Trichloroethene           | 79-01-6    | 10  | 52  | 10  | ug/kg | U | U  |   |
| Vinyl chloride            | 75-01-4    | 15  | 52  | 15  | ug/kg | U | U  |   |

Sample Name

Lab Sample Name:

DA1SB-070D-0201-SO 852294 Va

O AnalysisType: ORVOA Validation Level: IV

|                           | CAS No   | Resu<br>Val | ılt LOQ<br>lue | DI  | A Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|---------------------------|----------|-------------|----------------|-----|-------------------|------------------|-------------------------|---------------------------------|
| 1,1,1-Trichloroethane     | 71-55-6  | 12          | 58             | 12  | ug/kg             | U                | U                       |                                 |
| 1,1,2,2-Tetrachloroethane | 79-34-5  | 6.9         | 58             | 6.9 | ug/kg             | U                | U                       |                                 |
| 1,1,2-Trichloroethane     | 79-00-5  | 9.3         | 58             | 9.3 | ug/kg             | U                | U                       |                                 |
| 1,1-Dichloroethane        | 75-34-3  | 13          | 58             | 13  | ug/kg             | U                | U                       |                                 |
| 1,1-Dichloroethene        | 75-35-4  | 19          | 58             | 19  | ug/kg             | U                | U                       |                                 |
| 1,2-Dibromoethane         | 106-93-4 | 12          | 58             | 12  | ug/kg             | U                | U                       |                                 |
| 1,2-Dichloroethane        | 107-06-2 | 14          | 58             | 14  | ug/kg             | U                | U                       |                                 |
| 1,2-Dichloropropane       | 78-87-5  | 8.1         | 58             | 8.1 | ug/kg             | U                | U                       |                                 |
| 2-Butanone                | 78-93-3  | 120         | 580            | 120 | ug/kg             | U                | UJ                      | Q                               |
| 2-Hexanone                | 591-78-6 | 79          | 580            | 79  | ug/kg             | U                | UJ                      | Q                               |
| 4-Methyl-2-pentanone      | 108-10-1 | 95          | 580            | 95  | ug/kg             | U                | U                       |                                 |
| Acetone                   | 67-64-1  | 73          | 1200           | 73  | ug/kg             | U                | UJ                      | Q                               |
| Benzene                   | 71-43-2  | 5.8         | 58             | 5.8 | ug/kg             | U                | U                       |                                 |
| Bromochloromethane        | 74-97-5  | 9.3         | 58             | 9.3 | ug/kg             | U                | U                       |                                 |
| Bromodichloromethane      | 75-27-4  | 10          | 58             | 10  | ug/kg             | U                | U                       |                                 |
| Bromoform                 | 75-25-2  | 6.9         | 58             | 6.9 | ug/kg             | U                | U                       |                                 |
| Bromomethane              | 74-83-9  | 35          | 120            | 35  | ug/kg             | U                | U                       |                                 |
| Carbon disulfide          | 75-15-0  | 17          | 120            | 17  | ug/kg             | U                | U                       |                                 |
| Carbon tetrachloride      | 56-23-5  | 13          | 58             | 13  | ug/kg             | U                | U                       |                                 |

| Chlorobenzene             | 108-90-7   | 9.3 | 58  | 9.3 | ug/kg | U | U |  |
|---------------------------|------------|-----|-----|-----|-------|---|---|--|
| Chloroethane              | 75-00-3    | 22  | 120 | 22  | ug/kg | U | U |  |
| Chloroform                | 67-66-3    | 10  | 58  | 10  | ug/kg | U | U |  |
| Chloromethane             | 74-87-3    | 29  | 120 | 29  | ug/kg | U | U |  |
| cis-1,2-Dichloroethene    | 156-59-2   | 12  | 58  | 12  | ug/kg | U | U |  |
| cis-1,3-Dichloropropene   | 10061-01-5 | 12  | 58  | 12  | ug/kg | U | U |  |
| Dibromochloromethane      | 124-48-1   | 9.3 | 58  | 9.3 | ug/kg | U | U |  |
| Ethylbenzene              | 100-41-4   | 9.3 | 58  | 9.3 | ug/kg | U | U |  |
| m,p-Xylenes               | 1330-20-7  | 21  | 120 | 21  | ug/kg | U | U |  |
| Methylene chloride        | 75-09-2    | 46  | 120 | 46  | ug/kg | U | U |  |
| o-Xylene                  | 95-47-6    | 9.3 | 58  | 9.3 | ug/kg | U | U |  |
| Styrene                   | 100-42-5   | 6.9 | 58  | 6.9 | ug/kg | U | U |  |
| Tetrachloroethene         | 127-18-4   | 9.3 | 58  | 9.3 | ug/kg | U | U |  |
| Toluene                   | 108-88-3   | 8.1 | 58  | 8.1 | ug/kg | U | U |  |
| trans-1,2-Dichloroethene  | 156-60-5   | 13  | 58  | 13  | ug/kg | U | U |  |
| trans-1,3-Dichloropropene | 10061-02-6 | 8.1 | 120 | 8.1 | ug/kg | U | U |  |
| Trichloroethene           | 79-01-6    | 12  | 58  | 12  | ug/kg | U | U |  |
| Vinyl chloride            | 75-01-4    | 16  | 58  | 16  | ug/kg | U | U |  |

#### Analysis Method SW846 8270

Sample Name

DA1SB-068M-0201-SO

AnalysisType: ORSVO

Lab Sample Name:852373Validation Level: IV

|                             | CAS No    | Resu<br>Val | lt LOQ<br>ue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------------|-----------|-------------|--------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene      | 120-82-1  | 21          | 400          | 21  | ug/kg           | U                | UJ                      | н                               |
| 1,2-Dichlorobenzene         | 95-50-1   | 24          | 400          | 24  | ug/kg           | U                | UJ                      | Н                               |
| 1,3-Dichlorobenzene         | 541-73-1  | 20          | 400          | 20  | ug/kg           | U                | UJ                      | Н                               |
| 1,4-Dichlorobenzene         | 106-46-7  | 19          | 400          | 19  | ug/kg           | U                | UJ                      | Н                               |
| 2,4,5-Trichlorophenol       | 95-95-4   | 130         | 500          | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trichlorophenol       | 88-06-2   | 130         | 500          | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol          | 120-83-2  | 120         | 500          | 120 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol          | 105-67-9  | 100         | 400          | 100 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol           | 51-28-5   | 700         | 2000         | 700 | ug/kg           | U                | UJ                      | H, C                            |
| 2,4-Dinitrotoluene          | 121-14-2  | 24          | 400          | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene          | 606-20-2  | 24          | 400          | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chloronaphthalene         | 91-58-7   | 23          | 400          | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chlorophenol              | 95-57-8   | 340         | 500          | 340 | ug/kg           | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol  | 534-52-1  | 270         | 1000         | 270 | ug/kg           | U                | UJ                      | H, C                            |
| 2-Methylnaphthalene         | 91-57-6   | 25          | 400          | 25  | ug/kg           | U                | UJ                      | Н                               |
| 2-Methylphenol              | 95-48-7   | 420         | 1000         | 420 | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitroaniline              | 88-74-4   | 23          | 400          | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitrophenol               | 88-75-5   | 280         | 500          | 280 | ug/kg           | U                | UJ                      | Н                               |
| 3,3'-Dichlorobenzidine      | 91-94-1   | 150         | 500          | 150 | ug/kg           | U                | UJ                      | H, C                            |
| 3-Nitroaniline              | 99-09-2   | 22          | 1000         | 22  | ug/kg           | U                | UJ                      | Н                               |
| 4-Bromophenyl phenyl ether  | 101-55-3  | 25          | 400          | 25  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloro-3-methylphenol     | 59-50-7   | 380         | 500          | 380 | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloroaniline             | 106-47-8  | 39          | 400          | 39  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chlorophenyl phenyl ether | 7005-72-3 | 26          | 400          | 26  | ug/kg           | U                | UJ                      | Н                               |
| 4-Methylphenol              | 1319-77-3 | 660         | 2000         | 660 | ug/kg           | U                | UJ                      | н                               |
| 4-Nitroaniline              | 100-01-6  | 30          | 1000         | 30  | ug/kg           | U                | UJ                      | H, C                            |
| 4-Nitrophenol               | 100-02-7  | 400         | 1000         | 400 | ug/kg           | U                | UJ                      | Н                               |

| Acenaphthene                 | 83-32-9  | 24  | 400  | 24  | ug/kg | U | IJ | Н    |
|------------------------------|----------|-----|------|-----|-------|---|----|------|
| Acenaphthylene               | 208-96-8 | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Anthracene                   | 120-12-7 | 24  | 400  | 24  | ug/kg | U | IJ | Н    |
| Benzo(a)anthracene           | 56-55-3  | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Benzo(a)pyrene               | 50-32-8  | 23  | 400  | 23  | ug/kg | U | IJ | Н    |
| Benzo(b)fluoranthene         | 205-99-2 | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Benzo(g,h,i)perylene         | 191-24-2 | 22  | 400  | 22  | ug/kg | U | IJ | H, C |
| Benzo(k)fluoranthene         | 207-08-9 | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Benzoic acid                 | 65-85-0  | 290 | 990  | 290 | ug/kg | U | IJ | Н    |
| Benzyl alcohol               | 100-51-6 | 84  | 1000 | 84  | ug/kg | U | R  | С    |
| Bis(2-chloroethoxy)methane   | 111-91-1 | 23  | 400  | 23  | ug/kg | U | IJ | Н    |
| Bis(2-chloroethyl) ether     | 111-44-4 | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Bis(2-chloroisopropyl) ether | 108-60-1 | 30  | 400  | 30  | ug/kg | U | IJ | Н    |
| Bis(2-ethylhexyl) phthalate  | 117-81-7 | 88  | 1000 | 88  | ug/kg | U | IJ | Н    |
| Butylbenzyl phthalate        | 85-68-7  | 74  | 400  | 74  | ug/kg | U | IJ | Н    |
| Carbazole                    | 86-74-8  | 28  | 400  | 28  | ug/kg | U | IJ | Н    |
| Chrysene                     | 218-01-9 | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Dibenzo(a,h)anthracene       | 53-70-3  | 22  | 400  | 22  | ug/kg | U | IJ | Н    |
| Dibenzofuran                 | 132-64-9 | 24  | 400  | 24  | ug/kg | U | IJ | Н    |
| Diethyl phthalate            | 84-66-2  | 65  | 400  | 65  | ug/kg | U | IJ | Н    |
| Dimethyl phthalate           | 131-11-3 | 64  | 400  | 64  | ug/kg | U | IJ | Н    |
| Di-n-butyl phthalate         | 84-74-2  | 85  | 400  | 80  | ug/kg | J | J- | Н    |
| Di-n-octyl phthalate         | 117-84-0 | 60  | 400  | 60  | ug/kg | U | UJ | Н    |
| Fluoranthene                 | 206-44-0 | 26  | 400  | 26  | ug/kg | U | IJ | Н    |
| Fluorene                     | 86-73-7  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Hexachlorobenzene            | 118-74-1 | 28  | 400  | 28  | ug/kg | U | IJ | Н    |
| Hexachlorobutadiene          | 87-68-3  | 63  | 400  | 63  | ug/kg | U | IJ | Н    |
| Hexachlorocyclopentadiene    | 77-47-4  | 52  | 400  | 52  | ug/kg | U | R  | С    |
| Hexachloroethane             | 67-72-1  | 33  | 400  | 33  | ug/kg | U | IJ | Н    |
| Indeno(1,2,3-cd)pyrene       | 193-39-5 | 23  | 400  | 23  | ug/kg | U | UJ | H, C |
| Isophorone                   | 78-59-1  | 50  | 400  | 50  | ug/kg | U | IJ | Н    |
| Naphthalene                  | 91-20-3  | 21  | 400  | 21  | ug/kg | U | IJ | Н    |
| Nitrobenzene                 | 98-95-3  | 60  | 400  | 60  | ug/kg | U | IJ | Н    |

| N-Nitroso-di-n-propylamine | 621-64-7 | 71  | 400  | 71  | ug/kg | U | IJ | Н |  |
|----------------------------|----------|-----|------|-----|-------|---|----|---|--|
| N-Nitrosodiphenylamine     | 86-30-6  | 50  | 810  | 50  | ug/kg | U | IJ | H |  |
| Pentachlorophenol          | 87-86-5  | 240 | 1000 | 240 | ug/kg | U | IJ | Н |  |
| Phenanthrene               | 85-01-8  | 26  | 400  | 26  | ug/kg | U | IJ | Н |  |
| Phenol                     | 108-95-2 | 160 | 500  | 160 | ug/kg | U | IJ | Н |  |
| Pyrene                     | 129-00-0 | 26  | 400  | 26  | ug/kg | U | UJ | Н |  |

#### Analysis Method SW846 8330B

Sample Name

DA1SB-068M-0201-SO

AnalysisType: OREXP

Lab Sample Name:852373Validation Level: IV

|                                | CAS No     | Resul<br>Valu | t LOQ<br>e          | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |  |  |
|--------------------------------|------------|---------------|---------------------|-------|-----------------|------------------|-------------------------|---------------------------------|--|--|
| 1,3,5-Trinitrobenzene          | 99-35-4    | 0.13          | 0.44                | 0.13  | mg/kg           | U                | UJ                      | Н                               |  |  |
| 1,3-Dinitrobenzene             | 99-65-0    | 0.08          | 0.44                | 0.08  | mg/kg           | U                | IJ                      | Н                               |  |  |
| 2,4,6-Trinitrotoluene          | 118-96-7   | 0.091         | 0.44                | 0.091 | mg/kg           | U                | UJ                      | Н                               |  |  |
| 2,4-Dinitrotoluene             | 121-14-2   | 0.2           | 0.44                | 0.2   | mg/kg           | U                | R                       | D                               |  |  |
| 2,6-Dinitrotoluene             | 606-20-2   | 0.07          | 0.5                 | 0.07  | mg/kg           | U                | R                       | D                               |  |  |
| 2-Amino-4,6-dinitrotoluene     | 35572-78-2 | 0.05          | 0.44                | 0.05  | mg/kg           | U                | IJ                      | Н                               |  |  |
| 2-Nitrotoluene                 | 88-72-2    | 0.091         | 0.44                | 0.091 | mg/kg           | U                | IJ                      | Н                               |  |  |
| 3,5-Dinitroaniline             | 618-87-1   | 0.091         | 0.44                | 0.091 | mg/kg           | U                | IJ                      | Н                               |  |  |
| 3-Nitrotoluene                 | 99-08-1    | 0.07          | 0.44                | 0.07  | mg/kg           | U                | UJ                      | Н                               |  |  |
| 4-Amino-2,6-dinitrotoluene     | 19406-51-0 | 0.07          | 0.44                | 0.07  | mg/kg           | U                | UJ                      | Н                               |  |  |
| 4-Nitrotoluene                 | 99-99-0    | 0.07          | 0.5                 | 0.07  | mg/kg           | U                | UJ                      | Н                               |  |  |
| HMX                            | 2691-41-0  | 0.12          | 0.44                | 0.12  | mg/kg           | U                | UJ                      | Н                               |  |  |
| Nitrobenzene                   | 98-95-3    | 0.04          | 0.44                | 0.04  | mg/kg           | U                | R                       | D                               |  |  |
| Nitroglycerin                  | 55-63-0    | 0.5           | 1.5                 | 0.5   | mg/kg           | U                | UJ                      | Н                               |  |  |
| Nitroguanidine                 | 556-88-7   | 0.06          | 0.16                | 0.06  | mg/kg           | U                | UJ                      | Н, *Ш                           |  |  |
| PETN                           | 78-11-5    | 0.5           | 1.5                 | 0.5   | mg/kg           | U                | UJ                      | Н                               |  |  |
| RDX                            | 121-82-4   | 0.16          | 0.44                | 0.16  | mg/kg           | U                | IJ                      | Н                               |  |  |
| Tetryl                         | 479-45-8   | 0.091         | 0.44                | 0.091 | mg/kg           | U                | UJ                      | Н                               |  |  |
| Sample Name DA1SB-070M-0204-SO |            |               | AnalysisType: OREXP |       |                 |                  |                         |                                 |  |  |

Lab Sample Name: 852383 Validation Level: IV

|                       | CAS No   | Resu<br>Val | lt LOQ<br>ue | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------|----------|-------------|--------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene | 99-35-4  | 0.13        | 0.44         | 0.13 | mg/kg           | U                | IJ                      | Н                               |
| 1,3-Dinitrobenzene    | 99-65-0  | 0.08        | 0.44         | 0.08 | mg/kg           | U                | IJ                      | Н                               |
| 2,4,6-Trinitrotoluene | 118-96-7 | 0.09        | 0.44         | 0.09 | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene    | 121-14-2 | 0.2         | 0.44         | 0.2  | mg/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene    | 606-20-2 | 0.07        | 0.5          | 0.07 | mg/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

Page 26 of 33

| Sample Name             | DA1S | B-072M-020 | 4-SO | Analysi | i <b>sType:</b> ORE | EXP   |   |    |      |
|-------------------------|------|------------|------|---------|---------------------|-------|---|----|------|
| Tetryl                  |      | 479-45-8   | 0.09 | 0.44    | 0.09                | mg/kg | U | UJ | Н    |
| RDX                     |      | 121-82-4   | 0.16 | 0.44    | 0.16                | mg/kg | U | IJ | Н    |
| PETN                    |      | 78-11-5    | 0.5  | 1.5     | 0.5                 | mg/kg | U | IJ | Н    |
| Nitroglycerin           |      | 55-63-0    | 0.5  | 1.5     | 0.5                 | mg/kg | U | IJ | Н    |
| Nitrobenzene            |      | 98-95-3    | 0.04 | 0.44    | 0.04                | mg/kg | U | IJ | Н    |
| HMX                     |      | 2691-41-0  | 0.12 | 0.44    | 0.12                | mg/kg | U | IJ | Н    |
| 4-Nitrotoluene          |      | 99-99-0    | 0.07 | 0.5     | 0.07                | mg/kg | U | IJ | Н    |
| 4-Amino-2,6-dinitrotolu | iene | 19406-51-0 | 0.07 | 0.44    | 0.07                | mg/kg | U | IJ | H, L |
| 3-Nitrotoluene          |      | 99-08-1    | 0.07 | 0.44    | 0.07                | mg/kg | U | UJ | Н    |
| 3,5-Dinitroaniline      |      | 618-87-1   | 0.09 | 0.44    | 0.09                | mg/kg | U | IJ | Н    |
| 2-Nitrotoluene          |      | 88-72-2    | 0.09 | 0.44    | 0.09                | mg/kg | U | IJ | Н    |
| 2-Amino-4,6-dinitrotolu | iene | 35572-78-2 | 0.05 | 0.44    | 0.05                | mg/kg | U | IJ | Н    |

Lab Sample Name:

852390

Validation Level: IV

|                            | CAS No     | Resu<br>Val | ilt LOQ<br>lue | DL   | A Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|----------------|------|-------------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44           | 0.13 | mg/kg             | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44           | 0.08 | mg/kg             | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.09        | 0.44           | 0.09 | mg/kg             | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44           | 0.2  | mg/kg             | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5            | 0.07 | mg/kg             | U                | UJ                      | Н                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44           | 0.05 | mg/kg             | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2    | 0.09        | 0.44           | 0.09 | mg/kg             | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1   | 0.09        | 0.44           | 0.09 | mg/kg             | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1    | 0.07        | 0.44           | 0.07 | mg/kg             | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07        | 0.44           | 0.07 | mg/kg             | U                | UJ                      | H, L                            |
| 4-Nitrotoluene             | 99-99-0    | 0.07        | 0.5            | 0.07 | mg/kg             | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0  | 0.12        | 0.44           | 0.12 | mg/kg             | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3    | 0.04        | 0.44           | 0.04 | mg/kg             | U                | UJ                      | Н                               |
| Nitroglycerin              | 55-63-0    | 0.5         | 1.5            | 0.5  | mg/kg             | U                | UJ                      | Н                               |
| PETN                       | 78-11-5    | 0.5         | 1.5            | 0.5  | mg/kg             | U                | UJ                      | Н                               |
| RDX                        | 121-82-4   | 0.16        | 0.44           | 0.16 | mg/kg             | U                | UJ                      | Н                               |
| Tetryl                     | 479-45-8   | 0.09        | 0.44           | 0.09 | mg/kg             | U                | UJ                      | Н                               |

Sample Name

DA1SS-050M-0201-SO

AnalysisType: OREXP

Lab Sample Name: 852568

Validation Level: IV

|                            | CAS No     | Resul<br>Valu | it LOQ<br>1e | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|---------------|--------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13          | 0.44         | 0.13 | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08          | 0.44         | 0.08 | mg/kg           | U                | IJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.09          | 0.44         | 0.09 | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2           | 0.44         | 0.2  | mg/kg           | U                | IJ                      | H, Q                            |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07          | 0.5          | 0.07 | mg/kg           | U                | IJ                      | Н                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05          | 0.44         | 0.05 | mg/kg           | U                | IJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2    | 0.09          | 0.44         | 0.09 | mg/kg           | U                | IJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1   | 0.09          | 0.44         | 0.09 | mg/kg           | U                | IJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1    | 0.07          | 0.44         | 0.07 | mg/kg           | U                | IJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07          | 0.44         | 0.07 | mg/kg           | U                | IJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0    | 0.07          | 0.5          | 0.07 | mg/kg           | U                | IJ                      | Н                               |
| HMX                        | 2691-41-0  | 0.12          | 0.44         | 0.12 | mg/kg           | U                | IJ                      | Н                               |
| Nitrobenzene               | 98-95-3    | 0.04          | 0.44         | 0.04 | mg/kg           | U                | IJ                      | Н                               |
| Nitroglycerin              | 55-63-0    | 0.5           | 1.5          | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| PETN                       | 78-11-5    | 0.5           | 1.5          | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4   | 0.16          | 0.44         | 0.16 | mg/kg           | U                | UJ                      | н                               |
| Tetryl                     | 479-45-8   | 0.09          | 0.44         | 0.09 | mg/kg           | U                | IJ                      | Н                               |

#### Analysis Method SW846 9056M

| Sample Name      | DA1SB-068M-0 | 0201-SO           | AnalysisT   | ype: MISC        |                       |                         |                                 |
|------------------|--------------|-------------------|-------------|------------------|-----------------------|-------------------------|---------------------------------|
| Lab Sample Name: | 852373       | Valida            | tion Level: | IV               |                       |                         |                                 |
|                  | CAS No       | o Result<br>Value | LOQ         | DL Resu<br>Units | lt Lab<br>5 Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Nitrocellulose   | 9004-70      | -0 7              | 100         | 7 mg             | /kg U                 | U                       |                                 |
| Sample Name      | DA1SB-070M-0 | 0204-SO           | AnalysisT   | ype: MISC        |                       |                         |                                 |
| Lab Sample Name: | 852383       | Valida            | tion Level: | IV               |                       |                         |                                 |
|                  | CAS No       | ) Result<br>Value | LOQ         | DL Resu<br>Units | lt Lab<br>G Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Nitrocellulose   | 9004-70      | -0 7              | 23          | 7 mg             | /kg U                 | U                       |                                 |

#### Analysis Method SW846 6010

Sample Name

DA1SB-074M-0202-SO

AnalysisType: INORG

Lab Sample Name:871039Validation Level: IV

|                  | CAS No         | Result<br>Valu | t LOQ<br>e   | DL              | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|----------------|--------------|-----------------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 5440           | 0.24         | 0.081           | mg/kg           |                  | J-                      | Q, A                            |
| Antimony         | 7440-36-0      | 2.7            | 1.4          | 0.4             | mg/kg           |                  | J-                      | C, E, Q,<br>*Ⅲ                  |
| Arsenic          | 7440-38-2      | 6              | 0.91         | 0.26            | mg/kg           |                  | J-                      | Q                               |
| Barium           | 7440-39-3      | 31.5           | 0.054        | 0.016           | mg/kg           |                  | J-                      | Α                               |
| Beryllium        | 7440-41-7      | 0.24           | 0.024        | 0.0081          | mg/kg           |                  | 1                       | С                               |
| Cadmium          | 7440-43-9      | 0.31           | 0.11         | 0.03            | mg/kg           |                  | J-                      | C, E, Q,<br>A                   |
| Calcium          | 7440-70-2      | 387            | 1            | 0.12            | mg/kg           |                  |                         |                                 |
| Chromium         | 7440-47-3      | 176            | 0.13         | 0.038           | mg/kg           |                  | J-                      | Α                               |
| Cobalt           | 7440-48-4      | 6.8            | 0.25         | 0.076           | mg/kg           |                  | J-                      | Q, *III, A                      |
| Copper           | 7440-50-8      | 12.2           | 1            | 0.3             | mg/kg           |                  | J-                      | Е, А                            |
| Iron             | 7439-89-6      | 13300          | 2            | 0.6             | mg/kg           |                  | J-                      | Q, A                            |
| Lead             | 7439-92-1      | 7.2            | 0.28         | 0.081           | mg/kg           |                  | J-                      | Q, *III, A                      |
| Magnesium        | 7439-95-4      | 1790           | 0.81         | 0.24            | mg/kg           |                  | J-                      | Q, A                            |
| Manganese        | 7439-96-5      | 148            | 0.1          | 0.032           | mg/kg           |                  | J-                      | Α                               |
| Nickel           | 7440-02-0      | 16.8           | 0.12         | 0.036           | mg/kg           |                  | J-                      | Q, A                            |
| Potassium        | 7440-09-7      | 770            | 36           | 11              | mg/kg           |                  |                         |                                 |
| Selenium         | 7782-49-2      | 0.14           | 0.85         | 0.14            | mg/kg           | UV               | UJ                      | B, Q                            |
| Silver           | 7440-22-4      | 0.086          | 0.28         | 0.086           | mg/kg           | UV               | UJ                      | Q                               |
| Sodium           | 7440-23-5      | 59.2           | 13           | 4               | mg/kg           |                  | 1                       | <b>C, E</b>                     |
| Thallium         | 7440-28-0      | 0.65           | 0.7          | 0.2             | mg/kg           | J                | J-                      | B, Q                            |
| Vanadium         | 7440-62-2      | 10.4           | 0.068        | 0.022           | mg/kg           | В                | J-                      | Α                               |
| Zinc             | 7440-66-6      | 33             | 0.24         | 0.081           | mg/kg           |                  | 1                       | Q, A                            |
| Sample Name      | DA1SS-054M-020 | 1-SO           | AnalysisT    | <b>ype:</b> INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 871020         | Valid          | ation Level: | IV              |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Valu | t LOQ<br>e   | DL              | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier         |

Code

| Aluminum  | 7429-90-5 | 8490  | 0.25  | 0.082  | mg/kg |    | J- | Q, A       |
|-----------|-----------|-------|-------|--------|-------|----|----|------------|
| Antimony  | 7440-36-0 | 0.92  | 0.55  | 0.16   | mg/kg |    | J- | E, Q, *III |
| Arsenic   | 7440-38-2 | 8.4   | 0.92  | 0.27   | mg/kg |    | J- | Q          |
| Barium    | 7440-39-3 | 52.7  | 0.055 | 0.016  | mg/kg | В  | J- | Α          |
| Beryllium | 7440-41-7 | 0.4   | 0.025 | 0.0082 | mg/kg |    |    |            |
| Cadmium   | 7440-43-9 | 0.52  | 0.043 | 0.012  | mg/kg |    | J- | E, Q, A    |
| Calcium   | 7440-70-2 | 552   | 1     | 0.12   | mg/kg |    |    |            |
| Chromium  | 7440-47-3 | 56.2  | 0.13  | 0.039  | mg/kg | В  | J- | Α          |
| Cobalt    | 7440-48-4 | 8.9   | 0.1   | 0.031  | mg/kg |    | J- | Q, *III, A |
| Copper    | 7440-50-8 | 16.4  | 0.41  | 0.12   | mg/kg |    | J- | Е, А       |
| Iron      | 7439-89-6 | 19400 | 2     | 0.61   | mg/kg |    | J- | Q, A       |
| Lead      | 7439-92-1 | 11.6  | 0.29  | 0.082  | mg/kg |    | J- | Q, *III, A |
| Magnesium | 7439-95-4 | 1940  | 0.82  | 0.25   | mg/kg |    | J- | Q, A       |
| Manganese | 7439-96-5 | 398   | 0.1   | 0.033  | mg/kg | В  | J- | Α          |
| Nickel    | 7440-02-0 | 16.7  | 0.12  | 0.037  | mg/kg |    | J- | Q, A       |
| Potassium | 7440-09-7 | 879   | 37    | 11     | mg/kg |    |    |            |
| Selenium  | 7782-49-2 | 2.4   | 0.86  | 0.14   | mg/kg |    | J  | C, Q       |
| Silver    | 7440-22-4 | 0.035 | 0.11  | 0.035  | mg/kg | UV | UJ | Q          |
| Sodium    | 7440-23-5 | 62.1  | 13    | 4.1    | mg/kg |    | J  | C, E       |
| Thallium  | 7440-28-0 | 0.38  | 0.29  | 0.082  | mg/kg |    | J- | B, Q       |
| Vanadium  | 7440-62-2 | 15.6  | 0.07  | 0.022  | mg/kg |    | J- | Α          |
| Zinc      | 7440-66-6 | 121   | 0.25  | 0.082  | mg/kg |    | J  | Q, A       |

| Analysis Metho   | od SW846 7     | 471A            |             |          |                 |                  |                         |                                 |
|------------------|----------------|-----------------|-------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | DA1SB-074M-02  | 02-SO           | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 871039         | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6      | 0.01            | 0.008       | 0.0024   | mg/kg           |                  | J-                      | <b>B</b> , E, A                 |
| Sample Name      | DA1SS-054M-020 | )1-SO           | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 871020         | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          | 7439-97-6      | 0.032           | 0.0081      | 0.0025   | mg/kg           |                  | J-                      | E, A                            |

#### Analysis Method SW846 8330B

Sample Name

DA1SB-074M-0202-SO

AnalysisType: OREXP

Lab Sample Name:871039Validation Level: IV

|                            | CAS No       | Resul<br>Valı | lt LOQ<br>1e | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|--------------|---------------|--------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4      | 0.13          | 0.44         | 0.13    | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0      | 0.08          | 0.44         | 0.08    | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7     | 0.091         | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2     | 0.2           | 0.44         | 0.2     | mg/kg           | U                | UJ                      | H, C                            |
| 2,6-Dinitrotoluene         | 606-20-2     | 0.07          | 0.5          | 0.07    | mg/kg           | U                | UJ                      | H, C                            |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2   | 0.05          | 0.44         | 0.05    | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2      | 0.091         | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1     | 0.091         | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1      | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0   | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0      | 0.07          | 0.5          | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0    | 0.12          | 0.44         | 0.12    | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3      | 0.04          | 0.44         | 0.04    | mg/kg           | U                | UJ                      | Н                               |
| Nitroglycerin              | 55-63-0      | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | H, C                            |
| PETN                       | 78-11-5      | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4     | 0.16          | 0.44         | 0.16    | mg/kg           | U                | UJ                      | Н                               |
| Tetryl                     | 479-45-8     | 0.091         | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| Sample Name DA             | 1SS-054M-020 | 1-SO          | AnalysisT    | ype: OR | EXP             |                  |                         |                                 |

Lab Sample Name: 871020

Validation Level: IV

|                            | CAS No     | Resu<br>Valu | lt LOQ<br>ue | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|--------------|--------------|-------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13         | 0.44         | 0.13  | mg/kg           | U                | U                       |                                 |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.081        | 0.44         | 0.081 | mg/kg           | U                | U                       |                                 |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.091        | 0.44         | 0.091 | mg/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2          | 0.44         | 0.2   | mg/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.071        | 0.51         | 0.071 | mg/kg           | U                | UJ                      | С                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.051        | 0.44         | 0.051 | mg/kg           | U                | U                       |                                 |

| 2-Nitrotoluene             | 88-72-2    | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |
|----------------------------|------------|-------|------|-------|-------|---|---|--|
| 3,5-Dinitroaniline         | 618-87-1   | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |
| 3-Nitrotoluene             | 99-08-1    | 0.071 | 0.44 | 0.071 | mg/kg | U | U |  |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.071 | 0.44 | 0.071 | mg/kg | U | U |  |
| 4-Nitrotoluene             | 99-99-0    | 0.071 | 0.51 | 0.071 | mg/kg | U | U |  |
| HMX                        | 2691-41-0  | 0.12  | 0.44 | 0.12  | mg/kg | U | U |  |
| Nitrobenzene               | 98-95-3    | 0.04  | 0.44 | 0.04  | mg/kg | U | U |  |
| Nitroglycerin              | 55-63-0    | 0.51  | 1.5  | 0.51  | mg/kg | U | U |  |
| PETN                       | 78-11-5    | 0.51  | 1.5  | 0.51  | mg/kg | U | U |  |
| RDX                        | 121-82-4   | 0.16  | 0.44 | 0.16  | mg/kg | U | U |  |
| Tetryl                     | 479-45-8   | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |

Ravenna Army Ammunition Plant, Sand Creek/ODA1 Data Validation Report

Sand Creek

# Validated Sample Result Forms for Area: Sand

| Analysis Metho   | d SW8466       | 010           |               |          |                 |                  |                         |                                 |
|------------------|----------------|---------------|---------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | SCSB-037M-0001 | -SO           | AnalysisT     | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851488         | Valid         | lation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Resul<br>Valu | t LOQ<br>ie   | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aluminum         | 7429-90-5      | 14800         | 0.49          | 0.16     | mg/kg           |                  | J-                      | Q, A                            |
| Antimony         | 7440-36-0      | 0.93          | 1.1           | 0.32     | mg/kg           | JV               | J-                      | Q, A                            |
| Arsenic          | 7440-38-2      | 182           | 1.8           | 0.53     | mg/kg           |                  | J-                      | Q, *III, A                      |
| Barium           | 7440-39-3      | 932           | 0.11          | 0.032    | mg/kg           |                  | J-                      | Α                               |
| Beryllium        | 7440-41-7      | 3.9           | 0.049         | 0.016    | mg/kg           |                  | J-                      | Α                               |
| Cadmium          | 7440-43-9      | 1.6           | 0.085         | 0.024    | mg/kg           |                  | J-                      | Q, *III                         |
| Calcium          | 7440-70-2      | 13900         | 2             | 0.24     | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3      | 112           | 0.26          | 0.077    | mg/kg           |                  | J-                      | Q, A                            |
| Cobalt           | 7440-48-4      | 9             | 0.2           | 0.061    | mg/kg           |                  | J-                      | Q, *III, A                      |
| Copper           | 7440-50-8      | 95.7          | 0.81          | 0.24     | mg/kg           |                  | J-                      | Q, *III, A                      |
| Iron             | 7439-89-6      | 41500         | 4.1           | 1.2      | mg/kg           |                  | J-                      | Α                               |
| Lead             | 7439-92-1      | 325           | 0.57          | 0.16     | mg/kg           |                  | J-                      | Q, *III, A                      |
| Magnesium        | 7439-95-4      | 3050          | 1.6           | 0.49     | mg/kg           |                  | J-                      | Q, A                            |
| Manganese        | 7439-96-5      | 743           | 0.2           | 0.065    | mg/kg           |                  | J-                      | Q, A                            |
| Nickel           | 7440-02-0      | 35.7          | 0.25          | 0.073    | mg/kg           |                  | J-                      | Q, *III, A                      |
| Potassium        | 7440-09-7      | 1020          | 37            | 11       | mg/kg           |                  | J-                      | Q                               |
| Selenium         | 7782-49-2      | 3.1           | 1.7           | 0.28     | mg/kg           |                  | J-                      | Q                               |
| Silver           | 7440-22-4      | 1.2           | 0.23          | 0.069    | mg/kg           |                  |                         |                                 |
| Sodium           | 7440-23-5      | 178           | 13            | 4.1      | mg/kg           |                  | J-                      | Q                               |
| Thallium         | 7440-28-0      | 5.5           | 0.57          | 0.16     | mg/kg           |                  | J-                      | Q, *III, E                      |
| Vanadium         | 7440-62-2      | 41            | 0.14          | 0.045    | mg/kg           |                  | J-                      | Q, A, E                         |
| Zinc             | 7440-66-6      | 298           | 0.49          | 0.16     | mg/kg           |                  | J-                      | Q, *III, A                      |

Sample Name

SCSB-038M-0005-SO

AnalysisType: INORG

Lab Sample Name: 851510

Validation Level: IV

|                  | CAS No         | Resu<br>Valu | lt LOQ<br>1e  | DL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|--------------|---------------|-----------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 10900        | 0.24          | 0.08      | mg/kg           |                  | J-                      | Q, A                            |
| Antimony         | 7440-36-0      | 0.63         | 0.54          | 0.16      | mg/kg           |                  | J-                      | Q, A                            |
| Arsenic          | 7440-38-2      | 6.1          | 0.91          | 0.26      | mg/kg           |                  | J-                      | Q, *III, A                      |
| Barium           | 7440-39-3      | 43.8         | 0.054         | 0.016     | mg/kg           |                  | J-                      | Α                               |
| Beryllium        | 7440-41-7      | 0.38         | 0.024         | 0.008     | mg/kg           |                  | J-                      | Α                               |
| Cadmium          | 7440-43-9      | 0.012        | 0.042         | 0.012     | mg/kg           | UV               | UJ                      | C, Q, *III                      |
| Calcium          | 7440-70-2      | 10900        | 1             | 0.12      | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3      | 156          | 0.13          | 0.038     | mg/kg           |                  | J-                      | Q, A                            |
| Cobalt           | 7440-48-4      | 9            | 0.099         | 0.03      | mg/kg           |                  | J-                      | Q, *III, A                      |
| Copper           | 7440-50-8      | 18.6         | 0.4           | 0.12      | mg/kg           |                  | J-                      | Q, *III, A                      |
| Iron             | 7439-89-6      | 29600        | 2             | 0.6       | mg/kg           |                  | J-                      | Α                               |
| Lead             | 7439-92-1      | 5.3          | 0.28          | 0.08      | mg/kg           |                  | J-                      | Q, *III, A                      |
| Magnesium        | 7439-95-4      | 6840         | 0.8           | 0.24      | mg/kg           |                  | J-                      | Q, A                            |
| Manganese        | 7439-96-5      | 369          | 0.1           | 0.032     | mg/kg           |                  | J-                      | Q, A                            |
| Nickel           | 7440-02-0      | 20.4         | 0.12          | 0.036     | mg/kg           |                  | J-                      | Q, *III, A                      |
| Potassium        | 7440-09-7      | 2020         | 36            | 11        | mg/kg           |                  | J-                      | Q                               |
| Selenium         | 7782-49-2      | 0.6          | 0.85          | 0.14      | mg/kg           | JV               | J-                      | Q                               |
| Silver           | 7440-22-4      | 0.034        | 0.11          | 0.034     | mg/kg           | UV               | U                       |                                 |
| Sodium           | 7440-23-5      | 134          | 13            | 4         | mg/kg           |                  | J-                      | Q                               |
| Thallium         | 7440-28-0      | 1.7          | 0.28          | 0.08      | mg/kg           |                  | J-                      | Q, *III,<br>E, E                |
| Vanadium         | 7440-62-2      | 14.3         | 0.068         | 0.022     | mg/kg           |                  | J-                      | Q, A, E                         |
| Zinc             | 7440-66-6      | 48.1         | 0.24          | 0.08      | mg/kg           |                  | J-                      | Q, *III, A                      |
| Sample Name      | SCSB-042M-0003 | -SO          | AnalysisT     | Type: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851552         | Vali         | dation Level: | IV        |                 |                  |                         |                                 |

|          | CAS No    | Result<br>Value | e LOQ | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------|-----------|-----------------|-------|-----|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum | 7429-90-5 | 14000           | 0.61  | 0.2 | mg/kg           | В                | J-                      | Q, A                            |
| Antimony | 7440-36-0 | 0.4             | 1.4   | 0.4 | mg/kg           | UV               | R                       | Q                               |

| Arsenic     | 7440-38-2      | 15.4  | 2.3     | 0.66        | mg/kg |    | J- | Q, *III, A       |
|-------------|----------------|-------|---------|-------------|-------|----|----|------------------|
| Barium      | 7440-39-3      | 69.3  | 0.14    | 0.04        | mg/kg |    | J- | Α                |
| Beryllium   | 7440-41-7      | 0.49  | 0.061   | 0.02        | mg/kg |    | J- | С, А             |
| Cadmium     | 7440-43-9      | 0.03  | 0.11    | 0.03        | mg/kg | UV | UJ | C, Q, *Ⅲ         |
| Calcium     | 7440-70-2      | 5360  | 2.5     | 0.3         | mg/kg |    | J- | Α                |
| Chromium    | 7440-47-3      | 19.8  | 0.32    | 0.096       | mg/kg |    | J- | Q, A             |
| Cobalt      | 7440-48-4      | 13    | 0.25    | 0.076       | mg/kg |    | J- | Q, *III, A       |
| Copper      | 7440-50-8      | 21    | 1       | 0.3         | mg/kg |    | J- | Q, *III, A       |
| Iron        | 7439-89-6      | 35600 | 5.1     | 1.5         | mg/kg | В  | J- | Α                |
| Lead        | 7439-92-1      | 11.2  | 0.71    | 0.2         | mg/kg |    | J- | Q, *III, A       |
| Magnesium   | 7439-95-4      | 5490  | 2       | 0.61        | mg/kg | В  | J- | Q, A             |
| Manganese   | 7439-96-5      | 451   | 0.25    | 0.081       | mg/kg |    | J- | Q, A             |
| Nickel      | 7440-02-0      | 30.7  | 0.31    | 0.091       | mg/kg |    | J- | Q, *III, A       |
| Potassium   | 7440-09-7      | 1880  | 36      | 11          | mg/kg |    | J- | Q                |
| Selenium    | 7782-49-2      | 0.35  | 2.1     | 0.35        | mg/kg | UV | UJ | Q                |
| Silver      | 7440-22-4      | 0.086 | 0.28    | 0.086       | mg/kg | UV | U  |                  |
| Sodium      | 7440-23-5      | 92    | 13      | 4           | mg/kg |    | J- | C, Q             |
| Thallium    | 7440-28-0      | 2.1   | 0.71    | 0.2         | mg/kg |    | J- | C, Q,<br>*III, E |
| Vanadium    | 7440-62-2      | 20.5  | 0.17    | 0.056       | mg/kg | В  | J- | Q, A, E          |
| Zinc        | 7440-66-6      | 67    | 0.61    | 0.2         | mg/kg |    | J- | Q, *III, A       |
| Sample Name | SCSS-068M-0001 | -SO   | Analysi | isType: INO | RG    |    |    |                  |

Lab Sample Name: 850426

426

Validation Level: IV

|           | CAS No    | Resu<br>Val | lt LOQ<br>ue | DL ]   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------|-----------|-------------|--------------|--------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum  | 7429-90-5 | 9150        | 0.12         | 0.041  | mg/kg           |                  | J-                      | Q, A                            |
| Antimony  | 7440-36-0 | 0.082       | 0.28         | 0.082  | mg/kg           | U                | R                       | Q                               |
| Arsenic   | 7440-38-2 | 11.2        | 0.46         | 0.13   | mg/kg           |                  | J-                      | Q, *III, A                      |
| Barium    | 7440-39-3 | 49.7        | 0.028        | 0.0082 | mg/kg           |                  | J-                      | Α                               |
| Beryllium | 7440-41-7 | 0.41        | 0.024        | 0.0082 | mg/kg           |                  | J-                      | Α                               |
| Cadmium   | 7440-43-9 | 0.057       | 0.021        | 0.0061 | mg/kg           |                  | J-                      | C, Q, *Ⅲ                        |
| Calcium   | 7440-70-2 | 1650        | 0.51         | 0.061  | mg/kg           |                  | J-                      | Α                               |
| Chromium  | 7440-47-3 | 24.2        | 0.064        | 0.019  | mg/kg           |                  | J-                      | Q, A                            |

| Cobalt    | 7440-48-4 | 7.6   | 0.05  | 0.015 | mg/kg |    | J- | Q, *III, A |
|-----------|-----------|-------|-------|-------|-------|----|----|------------|
| Copper    | 7440-50-8 | 11    | 0.2   | 0.061 | mg/kg |    | J- | Q, *III, A |
| Iron      | 7439-89-6 | 22500 | 1     | 0.31  | mg/kg |    | J- | Α          |
| Lead      | 7439-92-1 | 29.8  | 0.14  | 0.041 | mg/kg |    | J- | Q, *III, A |
| Magnesium | 7439-95-4 | 2320  | 0.41  | 0.12  | mg/kg |    | J- | Q, A       |
| Manganese | 7439-96-5 | 395   | 0.051 | 0.016 | mg/kg |    | J- | Q, A       |
| Nickel    | 7440-02-0 | 20.9  | 0.062 | 0.018 | mg/kg |    | J- | Q, *III, A |
| Potassium | 7440-09-7 | 693   | 37    | 11    | mg/kg |    | J- | Q          |
| Selenium  | 7782-49-2 | 0.24  | 0.43  | 0.071 | mg/kg | J  | J- | Q          |
| Silver    | 7440-22-4 | 0.017 | 0.057 | 0.017 | mg/kg | UB | U  |            |
| Sodium    | 7440-23-5 | 20.5  | 13    | 4.1   | mg/kg |    | J- | C, Q       |
| Thallium  | 7440-28-0 | 0.62  | 0.29  | 0.082 | mg/kg |    | J- | Q, *III, E |
| Vanadium  | 7440-62-2 | 14.8  | 0.035 | 0.011 | mg/kg |    | J- | Q, A, E    |
| Zinc      | 7440-66-6 | 48.2  | 0.12  | 0.041 | mg/kg |    | J- | Q, *III, A |

| Analysis Metho   | d,     | SW846 74   | 471             |             |          |                 |                  |                         |                                 |
|------------------|--------|------------|-----------------|-------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | SCSB   | -037M-0001 | -SO             | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851488 |            | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.24            | 0.008       | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | SCSB   | -038M-0005 | -SO             | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851510 |            | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.0079          | 0.0079      | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | SCSB   | -042M-0003 | -SO             | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 851552 |            | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.008           | 0.008       | 0.0024   | mg/kg           |                  | J-                      | Α                               |
| Sample Name      | SCSS-  | 068M-0001- | -SO             | AnalysisT   | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 850426 |            | Valida          | tion Level: | IV       |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ         | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.031           | 0.0081      | 0.0024   | mg/kg           |                  | J-                      | Α                               |

#### Analysis Method SW846 8270

Sample Name

SCSB-037M-0001-SO

AnalysisType: ORSVO

Lab Sample Name:851488Validation Level: IV

|                             | CAS No    | Result<br>Valu | t LOQ<br>e | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------------|-----------|----------------|------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene      | 120-82-1  | 21             | 400        | 21  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichlorobenzene         | 95-50-1   | 49             | 400        | 24  | ug/kg           | J                | J                       |                                 |
| 1,3-Dichlorobenzene         | 541-73-1  | 20             | 400        | 20  | ug/kg           | U                | U                       |                                 |
| 1,4-Dichlorobenzene         | 106-46-7  | 19             | 400        | 19  | ug/kg           | U                | U                       |                                 |
| 2,4,5-Trichlorophenol       | 95-95-4   | 130            | 510        | 130 | ug/kg           | U                | U                       |                                 |
| 2,4,6-Trichlorophenol       | 88-06-2   | 130            | 510        | 130 | ug/kg           | U                | U                       |                                 |
| 2,4-Dichlorophenol          | 120-83-2  | 120            | 510        | 120 | ug/kg           | U                | U                       |                                 |
| 2,4-Dimethylphenol          | 105-67-9  | 100            | 400        | 100 | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrophenol           | 51-28-5   | 700            | 2000       | 700 | ug/kg           | U                | UJ                      | С                               |
| 2,4-Dinitrotoluene          | 121-14-2  | 24             | 400        | 24  | ug/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene          | 606-20-2  | 24             | 400        | 24  | ug/kg           | U                | U                       |                                 |
| 2-Chloronaphthalene         | 91-58-7   | 23             | 400        | 23  | ug/kg           | U                | U                       |                                 |
| 2-Chlorophenol              | 95-57-8   | 340            | 510        | 340 | ug/kg           | U                | U                       |                                 |
| 2-Methyl-4,6-dinitrophenol  | 534-52-1  | 270            | 1000       | 270 | ug/kg           | U                | U                       |                                 |
| 2-Methylnaphthalene         | 91-57-6   | 260            | 400        | 25  | ug/kg           | J                | J                       |                                 |
| 2-Methylphenol              | 95-48-7   | 420            | 1000       | 420 | ug/kg           | U                | U                       |                                 |
| 2-Nitroaniline              | 88-74-4   | 23             | 400        | 23  | ug/kg           | U                | U                       |                                 |
| 2-Nitrophenol               | 88-75-5   | 280            | 510        | 280 | ug/kg           | U                | U                       |                                 |
| 3,3'-Dichlorobenzidine      | 91-94-1   | 150            | 510        | 150 | ug/kg           | U                | IJ                      | С                               |
| 3-Nitroaniline              | 99-09-2   | 22             | 1000       | 22  | ug/kg           | U                | U                       |                                 |
| 4-Bromophenyl phenyl ether  | 101-55-3  | 25             | 400        | 25  | ug/kg           | U                | U                       |                                 |
| 4-Chloro-3-methylphenol     | 59-50-7   | 380            | 510        | 380 | ug/kg           | U                | U                       |                                 |
| 4-Chloroaniline             | 106-47-8  | 39             | 400        | 39  | ug/kg           | U                | U                       |                                 |
| 4-Chlorophenyl phenyl ether | 7005-72-3 | 26             | 400        | 26  | ug/kg           | U                | U                       |                                 |
| 4-Methylphenol              | 1319-77-3 | 660            | 2000       | 660 | ug/kg           | U                | U                       |                                 |
| 4-Nitroaniline              | 100-01-6  | 30             | 1000       | 30  | ug/kg           | U                | U                       |                                 |
| 4-Nitrophenol               | 100-02-7  | 400            | 1000       | 400 | ug/kg           | U                | U                       |                                 |

| Acenaphthene                 | 83-32-9  | 24  | 400  | 24  | ug/kg | U | U  |   |
|------------------------------|----------|-----|------|-----|-------|---|----|---|
| Acenaphthylene               | 208-96-8 | 24  | 400  | 24  | ug/kg | U | U  |   |
| Anthracene                   | 120-12-7 | 32  | 400  | 24  | ug/kg | J | 1  |   |
| Benzo(a)anthracene           | 56-55-3  | 120 | 400  | 25  | ug/kg | J | 1  |   |
| Benzo(a)pyrene               | 50-32-8  | 140 | 400  | 23  | ug/kg | J | J  |   |
| Benzo(b)fluoranthene         | 205-99-2 | 260 | 400  | 25  | ug/kg | J | J  |   |
| Benzo(g,h,i)perylene         | 191-24-2 | 120 | 400  | 22  | ug/kg | J | J  |   |
| Benzo(k)fluoranthene         | 207-08-9 | 69  | 400  | 25  | ug/kg | J | J  |   |
| Benzoic acid                 | 65-85-0  | 290 | 990  | 290 | ug/kg | U | U  |   |
| Benzyl alcohol               | 100-51-6 | 84  | 1000 | 84  | ug/kg | U | IJ | С |
| Bis(2-chloroethoxy)methane   | 111-91-1 | 23  | 400  | 23  | ug/kg | U | U  |   |
| Bis(2-chloroethyl) ether     | 111-44-4 | 25  | 400  | 25  | ug/kg | U | U  |   |
| Bis(2-chloroisopropyl) ether | 108-60-1 | 30  | 400  | 30  | ug/kg | U | U  |   |
| Bis(2-ethylhexyl) phthalate  | 117-81-7 | 88  | 1000 | 88  | ug/kg | J | U  | В |
| Butylbenzyl phthalate        | 85-68-7  | 74  | 400  | 74  | ug/kg | U | U  |   |
| Carbazole                    | 86-74-8  | 33  | 400  | 28  | ug/kg | J | J  |   |
| Chrysene                     | 218-01-9 | 160 | 400  | 25  | ug/kg | J | J  |   |
| Dibenzo(a,h)anthracene       | 53-70-3  | 32  | 400  | 22  | ug/kg | J | J  |   |
| Dibenzofuran                 | 132-64-9 | 69  | 400  | 24  | ug/kg | J | J  |   |
| Diethyl phthalate            | 84-66-2  | 65  | 400  | 65  | ug/kg | U | U  |   |
| Dimethyl phthalate           | 131-11-3 | 64  | 400  | 64  | ug/kg | U | U  |   |
| Di-n-butyl phthalate         | 84-74-2  | 120 | 400  | 80  | ug/kg | J | J  |   |
| Di-n-octyl phthalate         | 117-84-0 | 60  | 400  | 60  | ug/kg | U | U  |   |
| Fluoranthene                 | 206-44-0 | 360 | 400  | 26  | ug/kg | J | J  |   |
| Fluorene                     | 86-73-7  | 25  | 400  | 25  | ug/kg | U | U  |   |
| Hexachlorobenzene            | 118-74-1 | 28  | 400  | 28  | ug/kg | U | U  |   |
| Hexachlorobutadiene          | 87-68-3  | 63  | 400  | 63  | ug/kg | U | U  |   |
| Hexachlorocyclopentadiene    | 77-47-4  | 53  | 400  | 53  | ug/kg | U | UJ | С |
| Hexachloroethane             | 67-72-1  | 33  | 400  | 33  | ug/kg | U | U  |   |
| Indeno(1,2,3-cd)pyrene       | 193-39-5 | 93  | 400  | 23  | ug/kg | J | J  |   |
| Isophorone                   | 78-59-1  | 500 | 400  | 51  | ug/kg |   |    |   |
| Naphthalene                  | 91-20-3  | 150 | 400  | 21  | ug/kg | J | J  |   |
| Nitrobenzene                 | 98-95-3  | 60  | 400  | 60  | ug/kg | U | U  |   |

| N-Nitroso-di-n-propylamine | e 621-64-7     | 71        | 400             | 71      | ug/kg           | U                | U                       |                                 |
|----------------------------|----------------|-----------|-----------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| N-Nitrosodiphenylamine     | 86-30-6        | 51        | 810             | 51      | ug/kg           | U                | U                       |                                 |
| Pentachlorophenol          | 87-86-5        | 240       | 1000            | 240     | ug/kg           | U                | U                       |                                 |
| Phenanthrene               | 85-01-8        | 280       | 400             | 26      | ug/kg           | J                | 1                       |                                 |
| Phenol                     | 108-95-2       | 160       | 510             | 160     | ug/kg           | U                | U                       |                                 |
| Pyrene                     | 129-00-0       | 280       | 400             | 26      | ug/kg           | J                | 1                       |                                 |
| Sample Name                | SCSB-038M-0005 | -SO       | AnalysisT       | ype: OR | SVO             |                  |                         |                                 |
| Lab Sample Name:           | 851510         | Va        | lidation Level: | IV      |                 |                  |                         |                                 |
|                            | CAS No         | Res<br>Va | ult LOQ<br>lue  | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| 1,2,4-Trichlorobenzene     | 120-82-1       | 21        | 400             | 21      | ug/kg           | U                | U                       |                                 |
| 1,2-Dichlorobenzene        | 95-50-1        | 24        | 400             | 24      | ug/kg           | U                | U                       |                                 |
| 1,3-Dichlorobenzene        | 541-73-1       | 20        | 400             | 20      | ug/kg           | U                | U                       |                                 |
| 1,4-Dichlorobenzene        | 106-46-7       | 19        | 400             | 19      | ug/kg           | U                | U                       |                                 |
| 2,4,5-Trichlorophenol      | 95-95-4        | 130       | 500             | 130     | ug/kg           | U                | U                       |                                 |
| 2,4,6-Trichlorophenol      | 88-06-2        | 130       | 500             | 130     | ug/kg           | U                | U                       |                                 |
| 2,4-Dichlorophenol         | 120-83-2       | 120       | 500             | 120     | ug/kg           | U                | U                       |                                 |
| 2,4-Dimethylphenol         | 105-67-9       | 100       | 400             | 100     | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrophenol          | 51-28-5        | 690       | 2000            | 690     | ug/kg           | U                | UJ                      | С                               |
| 2,4-Dinitrotoluene         | 121-14-2       | 24        | 400             | 24      | ug/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene         | 606-20-2       | 24        | 400             | 24      | ug/kg           | U                | U                       |                                 |
| 2-Chloronaphthalene        | 91-58-7        | 23        | 400             | 23      | ug/kg           | U                | U                       |                                 |
| 2-Chlorophenol             | 95-57-8        | 340       | 500             | 340     | ug/kg           | U                | U                       |                                 |
| 2-Methyl-4,6-dinitrophenol | 534-52-1       | 270       | 1000            | 270     | ug/kg           | U                | U                       |                                 |
| 2-Methylnaphthalene        | 91-57-6        | 35        | 400             | 25      | ug/kg           | J                | 1                       |                                 |
| 2-Methylphenol             | 95-48-7        | 420       | 1000            | 420     | ug/kg           | U                | U                       |                                 |
| 2-Nitroaniline             | 88-74-4        | 23        | 400             | 23      | ug/kg           | U                | U                       |                                 |
| 2-Nitrophenol              | 88-75-5        | 280       | 500             | 280     | ug/kg           | U                | U                       |                                 |
| 3,3'-Dichlorobenzidine     | 91-94-1        | 150       | 500             | 150     | ug/kg           | U                | UJ                      | С                               |
| 3-Nitroaniline             | 99-09-2        | 22        | 1000            | 22      | ug/kg           | U                | U                       |                                 |
| 4-Bromophenyl phenyl ethe  | er 101-55-3    | 25        | 400             | 25      | ug/kg           | U                | U                       |                                 |
| 4-Chloro-3-methylphenol    | 59-50-7        | 380       | 500             | 380     | ug/kg           | U                | U                       |                                 |
| 4-Chloroaniline            | 106-47-8       | 39        | 400             | 39      | ug/kg           | U                | U                       |                                 |

| 4-Chlorophenyl phenyl ether  | 7005-72-3 | 26  | 400  | 26  | ug/kg | U | U  |   |
|------------------------------|-----------|-----|------|-----|-------|---|----|---|
| 4-Methylphenol               | 1319-77-3 | 650 | 2000 | 650 | ug/kg | U | U  |   |
| 4-Nitroaniline               | 100-01-6  | 30  | 1000 | 30  | ug/kg | U | U  |   |
| 4-Nitrophenol                | 100-02-7  | 400 | 1000 | 400 | ug/kg | U | U  |   |
| Acenaphthene                 | 83-32-9   | 24  | 400  | 24  | ug/kg | U | U  |   |
| Acenaphthylene               | 208-96-8  | 24  | 400  | 24  | ug/kg | U | U  |   |
| Anthracene                   | 120-12-7  | 24  | 400  | 24  | ug/kg | U | U  |   |
| Benzo(a)anthracene           | 56-55-3   | 25  | 400  | 25  | ug/kg | U | U  |   |
| Benzo(a)pyrene               | 50-32-8   | 23  | 400  | 23  | ug/kg | U | U  |   |
| Benzo(b)fluoranthene         | 205-99-2  | 25  | 400  | 25  | ug/kg | U | U  |   |
| Benzo(g,h,i)perylene         | 191-24-2  | 22  | 400  | 22  | ug/kg | U | U  |   |
| Benzo(k)fluoranthene         | 207-08-9  | 25  | 400  | 25  | ug/kg | U | U  |   |
| Benzoic acid                 | 65-85-0   | 290 | 990  | 290 | ug/kg | U | U  |   |
| Benzyl alcohol               | 100-51-6  | 84  | 1000 | 84  | ug/kg | U | IJ | С |
| Bis(2-chloroethoxy)methane   | 111-91-1  | 23  | 400  | 23  | ug/kg | U | U  |   |
| Bis(2-chloroethyl) ether     | 111-44-4  | 25  | 400  | 25  | ug/kg | U | U  |   |
| Bis(2-chloroisopropyl) ether | 108-60-1  | 30  | 400  | 30  | ug/kg | U | U  |   |
| Bis(2-ethylhexyl) phthalate  | 117-81-7  | 88  | 1000 | 88  | ug/kg | U | U  |   |
| Butylbenzyl phthalate        | 85-68-7   | 74  | 400  | 74  | ug/kg | U | U  |   |
| Carbazole                    | 86-74-8   | 28  | 400  | 28  | ug/kg | U | U  |   |
| Chrysene                     | 218-01-9  | 25  | 400  | 25  | ug/kg | U | U  |   |
| Dibenzo(a,h)anthracene       | 53-70-3   | 22  | 400  | 22  | ug/kg | U | U  |   |
| Dibenzofuran                 | 132-64-9  | 24  | 400  | 24  | ug/kg | U | U  |   |
| Diethyl phthalate            | 84-66-2   | 64  | 400  | 64  | ug/kg | U | U  |   |
| Dimethyl phthalate           | 131-11-3  | 63  | 400  | 63  | ug/kg | U | U  |   |
| Di-n-butyl phthalate         | 84-74-2   | 110 | 400  | 80  | ug/kg | J | 1  |   |
| Di-n-octyl phthalate         | 117-84-0  | 59  | 400  | 59  | ug/kg | U | U  |   |
| Fluoranthene                 | 206-44-0  | 26  | 400  | 26  | ug/kg | U | U  |   |
| Fluorene                     | 86-73-7   | 25  | 400  | 25  | ug/kg | U | U  |   |
| Hexachlorobenzene            | 118-74-1  | 28  | 400  | 28  | ug/kg | U | U  |   |
| Hexachlorobutadiene          | 87-68-3   | 62  | 400  | 62  | ug/kg | U | U  |   |
| Hexachlorocyclopentadiene    | 77-47-4   | 52  | 400  | 52  | ug/kg | U | IJ | С |
| Hexachloroethane             | 67-72-1   | 33  | 400  | 33  | ug/kg | U | U  |   |

| Sample Name             | SCSB-042M-0 | 003-SO | Analys | sisTyne: ORS | SVO   |   |   |  |
|-------------------------|-------------|--------|--------|--------------|-------|---|---|--|
| Pyrene                  | 129-00-     | -0 26  | 400    | 26           | ug/kg | U | U |  |
| Phenol                  | 108-95-     | -2 160 | 500    | 160          | ug/kg | U | U |  |
| Phenanthrene            | 85-01-8     | 3 26   | 400    | 26           | ug/kg | U | U |  |
| Pentachlorophenol       | 87-86-5     | 5 240  | 1000   | 240          | ug/kg | U | U |  |
| N-Nitrosodiphenylamine  | 86-30-6     | 5 50   | 810    | 50           | ug/kg | U | U |  |
| N-Nitroso-di-n-propylar | ine 621-64- | -7 70  | 400    | 70           | ug/kg | U | U |  |
| Nitrobenzene            | 98-95-3     | 3 59   | 400    | 59           | ug/kg | U | U |  |
| Naphthalene             | 91-20-3     | 3 21   | 400    | 21           | ug/kg | U | U |  |
| Isophorone              | 78-59-1     | 50     | 400    | 50           | ug/kg | U | U |  |
| Indeno(1,2,3-cd)pyrene  | 193-39-     | -5 23  | 400    | 23           | ug/kg | U | U |  |

Sample Name

Lab Sample Name:

851552

AnalysisType: ORSVO Validation Level: IV

|                            | CAS No   | Resu<br>Val | ılt LOQ<br>lue | DL  | A Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|----------|-------------|----------------|-----|-------------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene     | 120-82-1 | 21          | 400            | 21  | ug/kg             | U                | UJ                      | Н                               |
| 1,2-Dichlorobenzene        | 95-50-1  | 24          | 400            | 24  | ug/kg             | U                | UJ                      | H                               |
| 1,3-Dichlorobenzene        | 541-73-1 | 20          | 400            | 20  | ug/kg             | U                | UJ                      | Н                               |
| 1,4-Dichlorobenzene        | 106-46-7 | 19          | 400            | 19  | ug/kg             | U                | UJ                      | Н                               |
| 2,4,5-Trichlorophenol      | 95-95-4  | 130         | 510            | 130 | ug/kg             | U                | UJ                      | Н                               |
| 2,4,6-Trichlorophenol      | 88-06-2  | 130         | 510            | 130 | ug/kg             | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol         | 120-83-2 | 120         | 510            | 120 | ug/kg             | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol         | 105-67-9 | 100         | 400            | 100 | ug/kg             | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol          | 51-28-5  | 700         | 2000           | 700 | ug/kg             | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2 | 24          | 400            | 24  | ug/kg             | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene         | 606-20-2 | 24          | 400            | 24  | ug/kg             | U                | UJ                      | Н                               |
| 2-Chloronaphthalene        | 91-58-7  | 23          | 400            | 23  | ug/kg             | U                | UJ                      | Н                               |
| 2-Chlorophenol             | 95-57-8  | 340         | 510            | 340 | ug/kg             | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol | 534-52-1 | 270         | 1000           | 270 | ug/kg             | U                | UJ                      | Н                               |
| 2-Methylnaphthalene        | 91-57-6  | 49          | 400            | 25  | ug/kg             | J                | J-                      | Н                               |
| 2-Methylphenol             | 95-48-7  | 420         | 1000           | 420 | ug/kg             | U                | UJ                      | Н                               |
| 2-Nitroaniline             | 88-74-4  | 23          | 400            | 23  | ug/kg             | U                | UJ                      | Н                               |
| 2-Nitrophenol              | 88-75-5  | 280         | 510            | 280 | ug/kg             | U                | UJ                      | Н                               |
| 3,3'-Dichlorobenzidine     | 91-94-1  | 150         | 510            | 150 | ug/kg             | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

Page 10 of 42

| 3-Nitroaniline               | 99-09-2   | 22  | 1000 | 22  | ug/kg | U | UJ | Н    |
|------------------------------|-----------|-----|------|-----|-------|---|----|------|
| 4-Bromophenyl phenyl ether   | 101-55-3  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| 4-Chloro-3-methylphenol      | 59-50-7   | 380 | 510  | 380 | ug/kg | U | UJ | Н    |
| 4-Chloroaniline              | 106-47-8  | 39  | 400  | 39  | ug/kg | U | UJ | Н    |
| 4-Chlorophenyl phenyl ether  | 7005-72-3 | 26  | 400  | 26  | ug/kg | U | UJ | Н    |
| 4-Methylphenol               | 1319-77-3 | 660 | 2000 | 660 | ug/kg | U | UJ | Н    |
| 4-Nitroaniline               | 100-01-6  | 30  | 1000 | 30  | ug/kg | U | UJ | H, C |
| 4-Nitrophenol                | 100-02-7  | 400 | 1000 | 400 | ug/kg | U | UJ | Н    |
| Acenaphthene                 | 83-32-9   | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Acenaphthylene               | 208-96-8  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Anthracene                   | 120-12-7  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Benzo(a)anthracene           | 56-55-3   | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Benzo(a)pyrene               | 50-32-8   | 23  | 400  | 23  | ug/kg | U | UJ | Н    |
| Benzo(b)fluoranthene         | 205-99-2  | 25  | 400  | 25  | ug/kg | U | IJ | Н    |
| Benzo(g,h,i)perylene         | 191-24-2  | 22  | 400  | 22  | ug/kg | U | UJ | Н    |
| Benzo(k)fluoranthene         | 207-08-9  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Benzoic acid                 | 65-85-0   | 290 | 990  | 290 | ug/kg | U | UJ | Н    |
| Benzyl alcohol               | 100-51-6  | 84  | 1000 | 84  | ug/kg | U | UJ | H, C |
| Bis(2-chloroethoxy)methane   | 111-91-1  | 23  | 400  | 23  | ug/kg | U | UJ | Н    |
| Bis(2-chloroethyl) ether     | 111-44-4  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Bis(2-chloroisopropyl) ether | 108-60-1  | 30  | 400  | 30  | ug/kg | U | UJ | Н    |
| Bis(2-ethylhexyl) phthalate  | 117-81-7  | 88  | 1000 | 88  | ug/kg | U | UJ | Н    |
| Butylbenzyl phthalate        | 85-68-7   | 74  | 400  | 74  | ug/kg | U | UJ | Н    |
| Carbazole                    | 86-74-8   | 28  | 400  | 28  | ug/kg | U | UJ | Н    |
| Chrysene                     | 218-01-9  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Dibenzo(a,h)anthracene       | 53-70-3   | 22  | 400  | 22  | ug/kg | U | UJ | Н    |
| Dibenzofuran                 | 132-64-9  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Diethyl phthalate            | 84-66-2   | 65  | 400  | 65  | ug/kg | U | UJ | Н    |
| Dimethyl phthalate           | 131-11-3  | 64  | 400  | 64  | ug/kg | U | UJ | Н    |
| Di-n-butyl phthalate         | 84-74-2   | 100 | 400  | 80  | ug/kg | J | J- | Н    |
| Di-n-octyl phthalate         | 117-84-0  | 60  | 400  | 60  | ug/kg | U | UJ | н    |
| Fluoranthene                 | 206-44-0  | 26  | 400  | 26  | ug/kg | U | UJ | Н    |
| Fluorene                     | 86-73-7   | 25  | 400  | 25  | ug/kg | U | UJ | Н    |

Wednesday, April 17, 2013

Page 11 of 42

| Hexachlorobenzene          | 118-74-1    | 28  | 400     | 28          | ug/kg | U | IJ         | Н |  |
|----------------------------|-------------|-----|---------|-------------|-------|---|------------|---|--|
| Hexachlorobutadiene        | 87-68-3     | 63  | 400     | 63          | ug/kg | U | IJ         | Н |  |
| Hexachlorocyclopentadiene  | 77-47-4     | 53  | 400     | 53          | ug/kg | U | IJ         | Н |  |
| Hexachloroethane           | 67-72-1     | 33  | 400     | 33          | ug/kg | U | IJ         | Н |  |
| Indeno(1,2,3-cd)pyrene     | 193-39-5    | 23  | 400     | 23          | ug/kg | U | IJ         | Н |  |
| Isophorone                 | 78-59-1     | 51  | 400     | 51          | ug/kg | U | IJ         | Н |  |
| Naphthalene                | 91-20-3     | 35  | 400     | 21          | ug/kg | J | <b>J</b> - | Н |  |
| Nitrobenzene               | 98-95-3     | 60  | 400     | 60          | ug/kg | U | IJ         | Н |  |
| N-Nitroso-di-n-propylamine | 621-64-7    | 71  | 400     | 71          | ug/kg | U | IJ         | Н |  |
| N-Nitrosodiphenylamine     | 86-30-6     | 51  | 810     | 51          | ug/kg | U | IJ         | Н |  |
| Pentachlorophenol          | 87-86-5     | 240 | 1000    | 240         | ug/kg | U | IJ         | Н |  |
| Phenanthrene               | 85-01-8     | 34  | 400     | 26          | ug/kg | J | J-         | Н |  |
| Phenol                     | 108-95-2    | 160 | 510     | 160         | ug/kg | U | IJ         | Н |  |
| Pyrene                     | 129-00-0    | 26  | 400     | 26          | ug/kg | U | IJ         | Н |  |
| Sample Name SCS            | S-068M-0001 | -SO | Analysi | isTyne• OR: | SVO   |   |            |   |  |

Sample Name

Lab Sample Name: 850426 AnalysisType: ORSVO

Validation Level: IV

|                            | CAS No   | Resu<br>Val | ılt LOQ<br>lue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|----------|-------------|----------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene     | 120-82-1 | 21          | 410            | 21  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichlorobenzene        | 95-50-1  | 24          | 410            | 24  | ug/kg           | U                | U                       |                                 |
| 1,3-Dichlorobenzene        | 541-73-1 | 20          | 410            | 20  | ug/kg           | U                | U                       |                                 |
| 1,4-Dichlorobenzene        | 106-46-7 | 19          | 410            | 19  | ug/kg           | U                | U                       |                                 |
| 2,4,5-Trichlorophenol      | 95-95-4  | 130         | 510            | 130 | ug/kg           | U                | U                       |                                 |
| 2,4,6-Trichlorophenol      | 88-06-2  | 130         | 510            | 130 | ug/kg           | U                | U                       |                                 |
| 2,4-Dichlorophenol         | 120-83-2 | 120         | 510            | 120 | ug/kg           | U                | U                       |                                 |
| 2,4-Dimethylphenol         | 105-67-9 | 100         | 410            | 100 | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrophenol          | 51-28-5  | 700         | 2000           | 700 | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene         | 121-14-2 | 24          | 410            | 24  | ug/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene         | 606-20-2 | 24          | 410            | 24  | ug/kg           | U                | U                       |                                 |
| 2-Chloronaphthalene        | 91-58-7  | 23          | 410            | 23  | ug/kg           | U                | U                       |                                 |
| 2-Chlorophenol             | 95-57-8  | 340         | 510            | 340 | ug/kg           | U                | U                       |                                 |
| 2-Methyl-4,6-dinitrophenol | 534-52-1 | 270         | 1000           | 270 | ug/kg           | U                | U                       |                                 |
| 2-Methylnaphthalene        | 91-57-6  | 25          | 410            | 25  | ug/kg           | U                | U                       |                                 |

| 2-Methylphenol               | 95-48-7   | 430 | 1000 | 430 | ug/kg | U | U |   |
|------------------------------|-----------|-----|------|-----|-------|---|---|---|
| 2-Nitroaniline               | 88-74-4   | 23  | 410  | 23  | ug/kg | U | U |   |
| 2-Nitrophenol                | 88-75-5   | 280 | 510  | 280 | ug/kg | U | U |   |
| 3,3'-Dichlorobenzidine       | 91-94-1   | 150 | 510  | 150 | ug/kg | U | U |   |
| 3-Nitroaniline               | 99-09-2   | 22  | 1000 | 22  | ug/kg | U | U |   |
| 4-Bromophenyl phenyl ether   | 101-55-3  | 25  | 410  | 25  | ug/kg | U | U |   |
| 4-Chloro-3-methylphenol      | 59-50-7   | 390 | 510  | 390 | ug/kg | U | U |   |
| 4-Chloroaniline              | 106-47-8  | 40  | 410  | 40  | ug/kg | U | U |   |
| 4-Chlorophenyl phenyl ether  | 7005-72-3 | 26  | 410  | 26  | ug/kg | U | U |   |
| 4-Methylphenol               | 1319-77-3 | 660 | 2000 | 660 | ug/kg | U | U |   |
| 4-Nitroaniline               | 100-01-6  | 30  | 1000 | 30  | ug/kg | U | U |   |
| 4-Nitrophenol                | 100-02-7  | 410 | 1000 | 410 | ug/kg | U | U |   |
| Acenaphthene                 | 83-32-9   | 24  | 410  | 24  | ug/kg | U | U |   |
| Acenaphthylene               | 208-96-8  | 24  | 410  | 24  | ug/kg | U | U |   |
| Anthracene                   | 120-12-7  | 24  | 410  | 24  | ug/kg | U | U |   |
| Benzo(a)anthracene           | 56-55-3   | 25  | 410  | 25  | ug/kg | U | U |   |
| Benzo(a)pyrene               | 50-32-8   | 23  | 410  | 23  | ug/kg | U | U |   |
| Benzo(b)fluoranthene         | 205-99-2  | 25  | 410  | 25  | ug/kg | U | U |   |
| Benzo(g,h,i)perylene         | 191-24-2  | 22  | 410  | 22  | ug/kg | U | U |   |
| Benzo(k)fluoranthene         | 207-08-9  | 25  | 410  | 25  | ug/kg | U | U |   |
| Benzoic acid                 | 65-85-0   | 290 | 990  | 290 | ug/kg | U | U |   |
| Benzyl alcohol               | 100-51-6  | 84  | 1000 | 84  | ug/kg | U | U |   |
| Bis(2-chloroethoxy)methane   | 111-91-1  | 23  | 410  | 23  | ug/kg | U | U |   |
| Bis(2-chloroethyl) ether     | 111-44-4  | 25  | 410  | 25  | ug/kg | U | U |   |
| Bis(2-chloroisopropyl) ether | 108-60-1  | 30  | 410  | 30  | ug/kg | U | U |   |
| Bis(2-ethylhexyl) phthalate  | 117-81-7  | 100 | 1000 | 88  | ug/kg | J | U | В |
| Butylbenzyl phthalate        | 85-68-7   | 74  | 410  | 74  | ug/kg | U | U |   |
| Carbazole                    | 86-74-8   | 28  | 410  | 28  | ug/kg | U | U |   |
| Chrysene                     | 218-01-9  | 25  | 410  | 25  | ug/kg | U | U |   |
| Dibenzo(a,h)anthracene       | 53-70-3   | 22  | 410  | 22  | ug/kg | U | U |   |
| Dibenzofuran                 | 132-64-9  | 24  | 410  | 24  | ug/kg | U | U |   |
| Diethyl phthalate            | 84-66-2   | 65  | 410  | 65  | ug/kg | U | U |   |
| Dimethyl phthalate           | 131-11-3  | 64  | 410  | 64  | ug/kg | U | U |   |

| Di-n-butyl phthalate       | 84-74-2  | 88  | 410  | 80  | ug/kg | J | J  |   |
|----------------------------|----------|-----|------|-----|-------|---|----|---|
| Di-n-octyl phthalate       | 117-84-0 | 60  | 410  | 60  | ug/kg | U | U  |   |
| Fluoranthene               | 206-44-0 | 26  | 410  | 26  | ug/kg | U | U  |   |
| Fluorene                   | 86-73-7  | 25  | 410  | 25  | ug/kg | U | U  |   |
| Hexachlorobenzene          | 118-74-1 | 28  | 410  | 28  | ug/kg | U | U  |   |
| Hexachlorobutadiene        | 87-68-3  | 63  | 410  | 63  | ug/kg | U | U  |   |
| Hexachlorocyclopentadiene  | 77-47-4  | 53  | 410  | 53  | ug/kg | U | UJ | С |
| Hexachloroethane           | 67-72-1  | 33  | 410  | 33  | ug/kg | U | U  |   |
| Indeno(1,2,3-cd)pyrene     | 193-39-5 | 23  | 410  | 23  | ug/kg | U | U  |   |
| Isophorone                 | 78-59-1  | 51  | 410  | 51  | ug/kg | J | J  |   |
| Naphthalene                | 91-20-3  | 21  | 410  | 21  | ug/kg | U | U  |   |
| Nitrobenzene               | 98-95-3  | 60  | 410  | 60  | ug/kg | U | U  |   |
| N-Nitroso-di-n-propylamine | 621-64-7 | 71  | 410  | 71  | ug/kg | U | U  |   |
| N-Nitrosodiphenylamine     | 86-30-6  | 51  | 810  | 51  | ug/kg | U | U  |   |
| Pentachlorophenol          | 87-86-5  | 240 | 1000 | 240 | ug/kg | U | U  |   |
| Phenanthrene               | 85-01-8  | 26  | 410  | 26  | ug/kg | U | U  |   |
| Phenol                     | 108-95-2 | 160 | 510  | 160 | ug/kg | U | U  |   |
| Pyrene                     | 129-00-0 | 26  | 410  | 26  | ug/kg | U | U  |   |

#### Analysis Method SW846 8330B

Sample Name

SCSB-037M-0001-SO

AnalysisType: OREXP

Lab Sample Name:851488Validation Level: IV

|                            | CAS No         | Resu<br>Val | lt LOQ<br>ue | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|----------------|-------------|--------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4        | 0.13        | 0.44         | 0.13    | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0        | 0.081       | 0.44         | 0.081   | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7       | 0.091       | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2       | 0.2         | 0.44         | 0.2     | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2       | 0.071       | 0.51         | 0.071   | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2     | 0.051       | 0.44         | 0.051   | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2        | 0.091       | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1       | 0.091       | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1        | 0.071       | 0.44         | 0.071   | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0     | 0.071       | 0.44         | 0.071   | mg/kg           | U                | UJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0        | 0.071       | 0.51         | 0.071   | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0      | 0.12        | 0.44         | 0.12    | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3        | 0.04        | 0.44         | 0.04    | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0        | 0.51        | 1.5          | 0.51    | mg/kg           | U                | UJ                      | Н                               |
| PETN                       | 78-11-5        | 0.51        | 1.5          | 0.51    | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4       | 0.16        | 0.44         | 0.16    | mg/kg           | U                | UJ                      | н                               |
| Tetryl                     | 479-45-8       | 0.091       | 0.44         | 0.091   | mg/kg           | U                | UJ                      | Н                               |
| Sample Name S              | CSB-038M-0005- | SO          | AnalysisT    | ype: OR | EXP             |                  |                         |                                 |

Lab Sample Name: 851510

Validation Level: IV

|                            | CAS No     | Resi<br>Val | alt LOQ<br>lue | DL   | A Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|----------------|------|-------------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44           | 0.13 | mg/kg             | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44           | 0.08 | mg/kg             | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.09        | 0.44           | 0.09 | mg/kg             | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44           | 0.2  | mg/kg             | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5            | 0.07 | mg/kg             | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44           | 0.05 | mg/kg             | U                | UJ                      | Н                               |

| Sample Name             | SCSB-042M-0003- | -SO  | Analysi | isType: ORE | EXP   |   |    |   |  |
|-------------------------|-----------------|------|---------|-------------|-------|---|----|---|--|
| Tetryl                  | 479-45-8        | 0.09 | 0.44    | 0.09        | mg/kg | U | UJ | Н |  |
| RDX                     | 121-82-4        | 0.16 | 0.44    | 0.16        | mg/kg | U | IJ | H |  |
| PETN                    | 78-11-5         | 0.5  | 1.5     | 0.5         | mg/kg | U | UJ | H |  |
| Nitroglycerin           | 55-63-0         | 0.5  | 1.5     | 0.5         | mg/kg | U | UJ | H |  |
| Nitrobenzene            | 98-95-3         | 0.04 | 0.44    | 0.04        | mg/kg | U | R  | D |  |
| HMX                     | 2691-41-0       | 0.12 | 0.44    | 0.12        | mg/kg | U | UJ | H |  |
| 4-Nitrotoluene          | 99-99-0         | 0.07 | 0.5     | 0.07        | mg/kg | U | UJ | H |  |
| 4-Amino-2,6-dinitrotolu | 19406-51-0      | 0.07 | 0.44    | 0.07        | mg/kg | U | UJ | H |  |
| 3-Nitrotoluene          | 99-08-1         | 0.07 | 0.44    | 0.07        | mg/kg | U | UJ | H |  |
| 3,5-Dinitroaniline      | 618-87-1        | 0.09 | 0.44    | 0.09        | mg/kg | U | UJ | H |  |
| 2-Nitrotoluene          | 88-72-2         | 0.09 | 0.44    | 0.09        | mg/kg | U | UJ | H |  |

Lab Sample Name:

851552

Validation Level: IV

|                            | CAS No     | Resu<br>Val | llt LOQ<br>ue | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|---------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44          | 0.13 | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44          | 0.08 | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | H                               |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44          | 0.2  | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5           | 0.07 | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44          | 0.05 | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2    | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | н                               |
| 3,5-Dinitroaniline         | 618-87-1   | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1    | 0.07        | 0.44          | 0.07 | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07        | 0.44          | 0.07 | mg/kg           | U                | UJ                      | H, C                            |
| 4-Nitrotoluene             | 99-99-0    | 0.07        | 0.5           | 0.07 | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0  | 0.12        | 0.44          | 0.12 | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3    | 0.04        | 0.44          | 0.04 | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0    | 0.5         | 1.5           | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| PETN                       | 78-11-5    | 0.5         | 1.5           | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4   | 0.16        | 0.44          | 0.16 | mg/kg           | U                | IJ                      | Н                               |
| Tetryl                     | 479-45-8   | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | Н                               |

Sample Name

SCSS-068M-0001-SO

AnalysisType: OREXP

Lab Sample Name: 850426

Validation Level: IV

|                            | CAS No     | Resu<br>Val | ılt LOQ<br>lue | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|----------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44           | 0.13 | mg/kg           | U                | U                       |                                 |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44           | 0.08 | mg/kg           | U                | U                       |                                 |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.09        | 0.44           | 0.09 | mg/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44           | 0.2  | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5            | 0.07 | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44           | 0.05 | mg/kg           | U                | U                       |                                 |
| 2-Nitrotoluene             | 88-72-2    | 0.09        | 0.44           | 0.09 | mg/kg           | U                | U                       |                                 |
| 3,5-Dinitroaniline         | 618-87-1   | 0.09        | 0.44           | 0.09 | mg/kg           | U                | U                       |                                 |
| 3-Nitrotoluene             | 99-08-1    | 0.07        | 0.44           | 0.07 | mg/kg           | U                | U                       |                                 |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07        | 0.44           | 0.07 | mg/kg           | U                | U                       |                                 |
| 4-Nitrotoluene             | 99-99-0    | 0.07        | 0.5            | 0.07 | mg/kg           | U                | U                       |                                 |
| HMX                        | 2691-41-0  | 0.12        | 0.44           | 0.12 | mg/kg           | U                | U                       |                                 |
| Nitrobenzene               | 98-95-3    | 0.04        | 0.44           | 0.04 | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0    | 0.5         | 1.5            | 0.5  | mg/kg           | U                | U                       |                                 |
| PETN                       | 78-11-5    | 0.5         | 1.5            | 0.5  | mg/kg           | U                | U                       |                                 |
| RDX                        | 121-82-4   | 0.16        | 0.44           | 0.16 | mg/kg           | U                | U                       |                                 |
| Tetryl                     | 479-45-8   | 0.09        | 0.44           | 0.09 | mg/kg           | U                | U                       |                                 |

| Analysis Metho   | d E    | EPA 747.   | 1A              |              |           |                 |                  |                         |                                 |
|------------------|--------|------------|-----------------|--------------|-----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | SCSB-( | 048M-0001  | -SO             | AnalysisT    | Sype: INC | RG              |                  |                         |                                 |
| Lab Sample Name: | 854011 |            | Valida          | ation Level: | IV        |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ          | DL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.046           | 0.008        | 0.0024    | mg/kg           |                  |                         |                                 |
| Sample Name      | SCSD-  | 070M-0001  | -SD             | AnalysisT    | ype: INC  | RG              |                  |                         |                                 |
| Lab Sample Name: | 854000 |            | Valida          | ation Level: | IV        |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ          | DL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Mercury          |        | 7439-97-6  | 0.3             | 0.008        | 0.0024    | mg/kg           |                  |                         |                                 |
| Sample Name      | SCSS-0 | )58M-0001- | -SO             | AnalysisT    | ype: INC  | RG              |                  |                         |                                 |
| Lab Sample Name: | 852322 |            | Valida          | ation Level: | IV        |                 |                  |                         |                                 |
|                  |        | CAS No     | Result<br>Value | LOQ          | DL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|                  |        |            |                 |              |           |                 |                  |                         |                                 |

#### Analysis Method SW846 6010

Sample Name So

SCSB-048M-0001-SO

AnalysisType: INORG

Lab Sample Name:854011Validation Level: IV

|                  | CAS No         | Result<br>Valu | t LOQ<br>e   | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|----------------|--------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 13000          | 0.24         | 0.081    | mg/kg           |                  | J-                      | Q, A                            |
| Antimony         | 7440-36-0      | 1.5            | 0.55         | 0.16     | mg/kg           |                  | J-                      | Q, *III                         |
| Arsenic          | 7440-38-2      | 15             | 0.91         | 0.26     | mg/kg           |                  | 1                       | Е                               |
| Barium           | 7440-39-3      | 137            | 0.055        | 0.016    | mg/kg           |                  | J-                      | Α                               |
| Beryllium        | 7440-41-7      | 1.5            | 0.024        | 0.0081   | mg/kg           |                  |                         |                                 |
| Cadmium          | 7440-43-9      | 0.012          | 0.043        | 0.012    | mg/kg           | UV               | UJ                      | C, Q, *III                      |
| Calcium          | 7440-70-2      | 37100          | 1            | 0.12     | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3      | 109            | 0.13         | 0.038    | mg/kg           |                  | J-                      | Α                               |
| Cobalt           | 7440-48-4      | 6              | 0.099        | 0.03     | mg/kg           |                  | J-                      | Q                               |
| Copper           | 7440-50-8      | 44.8           | 0.4          | 0.12     | mg/kg           |                  | J-                      | Q                               |
| Iron             | 7439-89-6      | 22800          | 2            | 0.61     | mg/kg           |                  |                         |                                 |
| Lead             | 7439-92-1      | 34.5           | 0.28         | 0.081    | mg/kg           |                  | J+                      | Q, *III                         |
| Magnesium        | 7439-95-4      | 3580           | 0.81         | 0.24     | mg/kg           |                  | J-                      | Α                               |
| Manganese        | 7439-96-5      | 1150           | 0.1          | 0.032    | mg/kg           |                  | J-                      | Α                               |
| Nickel           | 7440-02-0      | 88.1           | 0.12         | 0.036    | mg/kg           |                  | J-                      | Q, A                            |
| Potassium        | 7440-09-7      | 1020           | 36           | 11       | mg/kg           |                  |                         |                                 |
| Selenium         | 7782-49-2      | 1.1            | 0.85         | 0.14     | mg/kg           |                  |                         |                                 |
| Silver           | 7440-22-4      | 0.5            | 0.11         | 0.034    | mg/kg           |                  |                         |                                 |
| Sodium           | 7440-23-5      | 227            | 13           | 4        | mg/kg           |                  |                         |                                 |
| Thallium         | 7440-28-0      | 1.6            | 0.28         | 0.081    | mg/kg           | В                | J-                      | E, Q                            |
| Vanadium         | 7440-62-2      | 13.3           | 0.069        | 0.022    | mg/kg           |                  |                         |                                 |
| Zinc             | 7440-66-6      | 41.3           | 0.24         | 0.081    | mg/kg           |                  | J-                      | Q, A                            |
| Sample Name      | SCSD-070M-0001 | -SD            | AnalysisT    | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 854000         | Valid          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Valu | t LOQ<br>e   | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aluminum         | 7429-90-5      | 7240           | 0.61         | 0.2      | mg/kg           | В                | J-                      | Q, A                            |

| Antimony         | 7440-36-0       | 8.4           | 1.4           | 0.41     | mg/kg           |                  | J-                      | Q, *III                         |
|------------------|-----------------|---------------|---------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Arsenic          | 7440-38-2       | 9.4           | 2.3           | 0.66     | mg/kg           |                  | 1                       | Е                               |
| Barium           | 7440-39-3       | 231           | 0.14          | 0.041    | mg/kg           | В                | J-                      | Α                               |
| Beryllium        | 7440-41-7       | 0.41          | 0.061         | 0.02     | mg/kg           |                  |                         |                                 |
| Cadmium          | 7440-43-9       | 2.7           | 0.11          | 0.031    | mg/kg           |                  | J-                      | C, Q, *III                      |
| Calcium          | 7440-70-2       | 3240          | 2.5           | 0.31     | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3       | 40.9          | 0.32          | 0.097    | mg/kg           |                  | J-                      | Α                               |
| Cobalt           | 7440-48-4       | 7.8           | 0.25          | 0.076    | mg/kg           |                  | J-                      | Q                               |
| Copper           | 7440-50-8       | 53.7          | 1             | 0.31     | mg/kg           |                  | J-                      | Q                               |
| Iron             | 7439-89-6       | 23800         | 5.1           | 1.5      | mg/kg           | В                |                         |                                 |
| Lead             | 7439-92-1       | 104           | 0.71          | 0.2      | mg/kg           |                  | J+                      | Q, *III                         |
| Magnesium        | 7439-95-4       | 2840          | 2             | 0.61     | mg/kg           | В                | J-                      | Α                               |
| Manganese        | 7439-96-5       | 512           | 0.25          | 0.081    | mg/kg           |                  | J-                      | Α                               |
| Nickel           | 7440-02-0       | 21.1          | 0.31          | 0.092    | mg/kg           |                  | J-                      | Q, A                            |
| Potassium        | 7440-09-7       | 1070          | 37            | 11       | mg/kg           |                  |                         |                                 |
| Selenium         | 7782-49-2       | 1.4           | 2.1           | 0.36     | mg/kg           | JV               | J                       |                                 |
| Silver           | 7440-22-4       | 116           | 57            | 17       | mg/kg           |                  |                         |                                 |
| Sodium           | 7440-23-5       | 221           | 13            | 4.1      | mg/kg           |                  |                         |                                 |
| Thallium         | 7440-28-0       | 1.2           | 0.71          | 0.2      | mg/kg           |                  | J-                      | E, Q                            |
| Vanadium         | 7440-62-2       | 11.5          | 0.17          | 0.056    | mg/kg           |                  |                         |                                 |
| Zinc             | 7440-66-6       | 108           | 0.61          | 0.2      | mg/kg           |                  | J-                      | Q, A                            |
| Sample Name      | SCSS-058M-0001- | -SO           | AnalysisT     | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 852322          | Valio         | dation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No          | Resul<br>Valı | lt LOQ<br>1e  | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aluminum         | 7429-90-5       | 10400         | 0.24          | 0.082    | mg/kg           |                  | J-                      | Q, A                            |
| Antimony         | 7440-36-0       | 3.1           | 0.55          | 0.16     | mg/kg           |                  | J-                      | Q, *III                         |
| Arsenic          | 7440-38-2       | 4.5           | 0.92          | 0.27     | mg/kg           |                  | 1                       | Е                               |
| Barium           | 7440-39-3       | 127           | 0.055         | 0.016    | mg/kg           | В                | J-                      | Α                               |
| Beryllium        | 7440-41-7       | 0.66          | 0.024         | 0.0082   | mg/kg           |                  |                         |                                 |
| Cadmium          | 7440-43-9       | 1.9           | 0.043         | 0.012    | mg/kg           |                  | J-                      | Q, *III                         |
| Calcium          | 7440-70-2       | 21500         | 1             | 0.12     | mg/kg           |                  | J-                      | Α                               |
| Chromium         | 7440-47-3       | 143           | 0.13          | 0.039    | mg/kg           |                  | J-                      | Α                               |

Wednesday, April 17, 2013

Page 20 of 42

| Cobalt    | 7440-48-4 | 6.7   | 0.1   | 0.031 | mg/kg |    | J- | Q       |
|-----------|-----------|-------|-------|-------|-------|----|----|---------|
| Copper    | 7440-50-8 | 33.7  | 0.41  | 0.12  | mg/kg |    | J- | Q       |
| Iron      | 7439-89-6 | 27100 | 2     | 0.61  | mg/kg |    |    |         |
| Lead      | 7439-92-1 | 139   | 0.29  | 0.082 | mg/kg |    | J+ | Q, *III |
| Magnesium | 7439-95-4 | 3930  | 0.82  | 0.24  | mg/kg |    | J- | Α       |
| Manganese | 7439-96-5 | 729   | 0.1   | 0.033 | mg/kg |    | J- | Α       |
| Nickel    | 7440-02-0 | 21.7  | 0.12  | 0.037 | mg/kg |    | J- | Q, A    |
| Potassium | 7440-09-7 | 1180  | 37    | 11    | mg/kg |    |    |         |
| Selenium  | 7782-49-2 | 0.83  | 0.86  | 0.14  | mg/kg | JV | J  |         |
| Silver    | 7440-22-4 | 3.8   | 0.11  | 0.035 | mg/kg |    |    |         |
| Sodium    | 7440-23-5 | 99.6  | 13    | 4.1   | mg/kg |    | 1  | С       |
| Thallium  | 7440-28-0 | 1.7   | 0.29  | 0.082 | mg/kg |    | J- | E, Q    |
| Vanadium  | 7440-62-2 | 14.8  | 0.069 | 0.022 | mg/kg |    |    |         |
| Zinc      | 7440-66-6 | 269   | 0.24  | 0.082 | mg/kg |    | J- | Q, A    |

#### Analysis Method SW846 7196

| Sample Name         | SCSB-048M- | 0001-  | SO              | AnalysisT   | ype: MI | SC              |                  |                         |                                 |
|---------------------|------------|--------|-----------------|-------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| Lab Sample Name:    | 854011     |        | Valida          | tion Level: | IV      |                 |                  |                         |                                 |
|                     | CAS I      | No     | Result<br>Value | LOQ         | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Hexavalent Chromium | 18540      | )-29-9 | 1.9             | 6.5         | 1.9     | mg/kg           | U                | UJ                      | C, Q                            |
| Sample Name         | SCSD-070M- | 0001-  | -SD             | AnalysisT   | ype: MI | SC              |                  |                         |                                 |
| Lab Sample Name:    | 854000     |        | Valida          | tion Level: | IV      |                 |                  |                         |                                 |
|                     | CAS I      | No     | Result<br>Value | LOQ         | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Hexavalent Chromium | 18540      | )-29-9 | 1.9             | 6.5         | 1.9     | mg/kg           | U                | UJ                      | C, Q                            |
#### Analysis Method SW846 8081

Sample Name

SCSB-048M-0001-SO

AnalysisType: ORSVO

Lab Sample Name:854011Validation Level: IV

|                       | CAS No     | Resi<br>Val | ılt LOQ<br>lue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------|------------|-------------|----------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 4,4'-DDD              | 72-54-8    | 1.5         | 12             | 1.5 | ug/kg           | UV               | U                       |                                 |
| 4,4'-DDE              | 72-55-9    | 5.1         | 20             | 1.5 | ug/kg           | JV               | 1                       |                                 |
| 4,4'-DDT              | 50-29-3    | 13          | 12             | 2.5 | ug/kg           | V                |                         |                                 |
| Aldrin                | 309-00-2   | 2.5         | 12             | 2.5 | ug/kg           | UV               | U                       |                                 |
| alpha-BHC             | 319-84-6   | 3.1         | 20             | 3.1 | ug/kg           | UV               | U                       |                                 |
| alpha-Chlordane       | 5103-71-9  | 1.5         | 20             | 1.5 | ug/kg           | UV               | U                       |                                 |
| beta-BHC              | 319-85-7   | 3.1         | 20             | 3.1 | ug/kg           | UV               | U                       |                                 |
| Chlordane (Technical) | 57-74-9    | 20          | 380            | 20  | ug/kg           | UV               | U                       |                                 |
| delta-BHC             | 319-86-8   | 1.5         | 12             | 1.5 | ug/kg           | UV               | U                       |                                 |
| Dieldrin              | 60-57-1    | 1.5         | 12             | 1.5 | ug/kg           | UV               | U                       |                                 |
| Endosulfan I          | 959-98-8   | 3.6         | 12             | 3.6 | ug/kg           | UV               | U                       |                                 |
| Endosulfan II         | 33213-65-9 | 3.6         | 12             | 1.5 | ug/kg           | JV               | 1                       |                                 |
| Endosulfan sulfate    | 1031-07-8  | 4.6         | 20             | 4.6 | ug/kg           | UV               | U                       |                                 |
| Endrin                | 72-20-8    | 2           | 12             | 2   | ug/kg           | UV               | UJ                      | С                               |
| Endrin aldehyde       | 7421-93-4  | 5.6         | 20             | 5.6 | ug/kg           | UV               | U                       |                                 |
| Endrin ketone         | 53494-70-5 | 4.1         | 12             | 4.1 | ug/kg           | UV               | U                       |                                 |
| GAMMA-BHC             | 58-89-9    | 2.5         | 12             | 2.5 | ug/kg           | UV               | U                       |                                 |
| gamma-Chlordane       | 5103-74-2  | 1.5         | 20             | 1.5 | ug/kg           | UV               | U                       |                                 |
| Heptachlor            | 76-44-8    | 2           | 12             | 2   | ug/kg           | UV               | U                       |                                 |
| Heptachlor epoxide    | 1024-57-3  | 2.5         | 20             | 2.5 | ug/kg           | UV               | U                       |                                 |
| Methoxychlor          | 72-43-5    | 3.6         | 12             | 3.6 | ug/kg           | UV               | U                       |                                 |
| Toxaphene             | 8001-35-2  | 25          | 250            | 25  | ug/kg           | UV               | U                       |                                 |

#### Analysis Method SW846 8082 SCSB-048M-0001-SO Sample Name AnalysisType: ORPPB Lab Sample Name: 854011 Validation Level: IV CAS No Result LOQ **DL** Result Lab Validation Validation Value Units Qualifier Qualifier Qualifier Code Aroclor 1016 12674-11-2 10 51 10 ug/kg U U Aroclor 1221 U U 11104-28-2 20 51 20 ug/kg Aroclor 1232 11141-16-5 27 51 27 U U ug/kg Aroclor 1242 53469-21-9 29 51 29 ug/kg U U Aroclor 1248 12672-29-6 29 51 29 ug/kg U U U U Aroclor 1254 11097-69-1 23 51 23 ug/kg U Aroclor 1260 51 12 U 11096-82-5 12 ug/kg Aroclor 1262 51 21 U U 37324-23-5 21 ug/kg Aroclor 1268 11100-14-4 28 51 28 ug/kg U U

#### Analysis Method SW846 8260B

Sample Name

SCSB-048D-0001-SO

AnalysisType: ORVOA

 Lab Sample Name:
 854012
 Validation Level:
 IV

 CAS No
 Bogwitt
 LOO

|                           | CAS No     | Resu<br>Val | lt LOQ<br>ue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|---------------------------|------------|-------------|--------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,1,1-Trichloroethane     | 71-55-6    | 11          | 53           | 11  | ug/kg           | U                | U                       |                                 |
| 1,1,2,2-Tetrachloroethane | 79-34-5    | 6.3         | 53           | 6.3 | ug/kg           | U                | U                       |                                 |
| 1,1,2-Trichloroethane     | 79-00-5    | 8.5         | 53           | 8.5 | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethane        | 75-34-3    | 12          | 53           | 12  | ug/kg           | U                | U                       |                                 |
| 1,1-Dichloroethene        | 75-35-4    | 17          | 53           | 17  | ug/kg           | U                | U                       |                                 |
| 1,2-Dibromoethane         | 106-93-4   | 11          | 53           | 11  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloroethane        | 107-06-2   | 13          | 53           | 13  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichloropropane       | 78-87-5    | 7.4         | 53           | 7.4 | ug/kg           | U                | U                       |                                 |
| 2-Butanone                | 78-93-3    | 110         | 530          | 110 | ug/kg           | U                | U                       |                                 |
| 2-Hexanone                | 591-78-6   | 72          | 530          | 72  | ug/kg           | U                | U                       |                                 |
| 4-Methyl-2-pentanone      | 108-10-1   | 87          | 530          | 87  | ug/kg           | U                | U                       |                                 |
| Acetone                   | 67-64-1    | 67          | 1100         | 67  | ug/kg           | U                | U                       |                                 |
| Benzene                   | 71-43-2    | 60          | 53           | 5.3 | ug/kg           |                  |                         |                                 |
| Bromochloromethane        | 74-97-5    | 8.5         | 53           | 8.5 | ug/kg           | U                | U                       |                                 |
| Bromodichloromethane      | 75-27-4    | 9.5         | 53           | 9.5 | ug/kg           | U                | U                       |                                 |
| Bromoform                 | 75-25-2    | 6.3         | 53           | 6.3 | ug/kg           | U                | U                       |                                 |
| Bromomethane              | 74-83-9    | 32          | 110          | 32  | ug/kg           | U                | U                       |                                 |
| Carbon disulfide          | 75-15-0    | 16          | 110          | 16  | ug/kg           | U                | UJ                      | С                               |
| Carbon tetrachloride      | 56-23-5    | 12          | 53           | 12  | ug/kg           | U                | U                       |                                 |
| Chlorobenzene             | 108-90-7   | 8.5         | 53           | 8.5 | ug/kg           | U                | U                       |                                 |
| Chloroethane              | 75-00-3    | 20          | 110          | 20  | ug/kg           | U                | U                       |                                 |
| Chloroform                | 67-66-3    | 9.5         | 53           | 9.5 | ug/kg           | U                | U                       |                                 |
| Chloromethane             | 74-87-3    | 26          | 110          | 26  | ug/kg           | U                | U                       |                                 |
| cis-1,2-Dichloroethene    | 156-59-2   | 11          | 53           | 11  | ug/kg           | U                | U                       |                                 |
| cis-1,3-Dichloropropene   | 10061-01-5 | 11          | 53           | 11  | ug/kg           | U                | U                       |                                 |
| Dibromochloromethane      | 124-48-1   | 8.5         | 53           | 8.5 | ug/kg           | U                | UJ                      | С                               |
| Ethylbenzene              | 100-41-4   | 150         | 53           | 8.5 | ug/kg           |                  |                         |                                 |

| m,p-Xylenes               | 1330-20-7  | 360 | 110 | 19  | ug/kg |   |    |   |  |
|---------------------------|------------|-----|-----|-----|-------|---|----|---|--|
| Methylene chloride        | 75-09-2    | 42  | 110 | 42  | ug/kg | U | U  |   |  |
| o-Xylene                  | 95-47-6    | 350 | 53  | 8.5 | ug/kg |   |    |   |  |
| Styrene                   | 100-42-5   | 6.3 | 53  | 6.3 | ug/kg | U | U  |   |  |
| Tetrachloroethene         | 127-18-4   | 8.5 | 53  | 8.5 | ug/kg | U | U  |   |  |
| Toluene                   | 108-88-3   | 310 | 53  | 7.4 | ug/kg |   |    |   |  |
| trans-1,2-Dichloroethene  | 156-60-5   | 12  | 53  | 12  | ug/kg | U | U  |   |  |
| trans-1,3-Dichloropropene | 10061-02-6 | 7.4 | 110 | 7.4 | ug/kg | U | UJ | С |  |
| Trichloroethene           | 79-01-6    | 11  | 53  | 11  | ug/kg | U | U  |   |  |
| Vinyl chloride            | 75-01-4    | 15  | 53  | 15  | ug/kg | U | U  |   |  |

#### Analysis Method SW846 8270

Sample Name S

SCSB-048M-0001-SO

AnalysisType: ORSVO

Lab Sample Name:854011Validation Level: IV

|                             | CAS No    | Result<br>Valu | e LOQ | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------------|-----------|----------------|-------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene      | 120-82-1  | 21             | 400   | 21  | ug/kg           | U                | UJ                      | н                               |
| 1,2-Dichlorobenzene         | 95-50-1   | 24             | 400   | 24  | ug/kg           | U                | UJ                      | Н                               |
| 1,3-Dichlorobenzene         | 541-73-1  | 20             | 400   | 20  | ug/kg           | U                | UJ                      | Н                               |
| 1,4-Dichlorobenzene         | 106-46-7  | 19             | 400   | 19  | ug/kg           | U                | UJ                      | Н                               |
| 2,4,5-Trichlorophenol       | 95-95-4   | 130            | 500   | 130 | ug/kg           | U                | UJ                      | H, C                            |
| 2,4,6-Trichlorophenol       | 88-06-2   | 130            | 500   | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol          | 120-83-2  | 120            | 500   | 120 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol          | 105-67-9  | 100            | 400   | 100 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol           | 51-28-5   | 700            | 2000  | 700 | ug/kg           | U                | R                       | С                               |
| 2,4-Dinitrotoluene          | 121-14-2  | 24             | 400   | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene          | 606-20-2  | 24             | 400   | 24  | ug/kg           | U                | UJ                      | H                               |
| 2-Chloronaphthalene         | 91-58-7   | 23             | 400   | 23  | ug/kg           | U                | UJ                      | H                               |
| 2-Chlorophenol              | 95-57-8   | 340            | 500   | 340 | ug/kg           | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol  | 534-52-1  | 270            | 1000  | 270 | ug/kg           | U                | R                       | С                               |
| 2-Methylnaphthalene         | 91-57-6   | 490            | 400   | 25  | ug/kg           |                  | J-                      | Н                               |
| 2-Methylphenol              | 95-48-7   | 420            | 1000  | 420 | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitroaniline              | 88-74-4   | 23             | 400   | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitrophenol               | 88-75-5   | 280            | 500   | 280 | ug/kg           | U                | UJ                      | H, C                            |
| 3,3'-Dichlorobenzidine      | 91-94-1   | 150            | 500   | 150 | ug/kg           | U                | UJ                      | Н                               |
| 3-Nitroaniline              | 99-09-2   | 22             | 1000  | 22  | ug/kg           | U                | UJ                      | Н                               |
| 4-Bromophenyl phenyl ether  | 101-55-3  | 25             | 400   | 25  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloro-3-methylphenol     | 59-50-7   | 380            | 500   | 380 | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloroaniline             | 106-47-8  | 39             | 400   | 39  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chlorophenyl phenyl ether | 7005-72-3 | 26             | 400   | 26  | ug/kg           | U                | UJ                      | Н                               |
| 4-Methylphenol              | 1319-77-3 | 660            | 2000  | 660 | ug/kg           | U                | UJ                      | н                               |
| 4-Nitroaniline              | 100-01-6  | 30             | 1000  | 30  | ug/kg           | U                | UJ                      | н                               |
| 4-Nitrophenol               | 100-02-7  | 400            | 1000  | 400 | ug/kg           | U                | UJ                      | H, C                            |

| Acenaphthene                 | 83-32-9  | 24  | 400  | 24  | ug/kg | U      | UJ      | н       |
|------------------------------|----------|-----|------|-----|-------|--------|---------|---------|
| Acenaphthylene               | 208-96-8 | 34  | 400  | 24  | ug/kg | I      |         | н       |
| Anthracono                   | 120 12 7 | 65  | 400  | 24  | ug/kg | J<br>I | л-<br>т |         |
|                              | 56.55.2  | 120 | 400  | 24  | ug/kg | J      |         | п<br>   |
| Benzo(a)anthracene           | 36-33-3  | 120 | 400  | 25  | ug/kg | J      | J-      | H       |
| Benzo(a)pyrene               | 50-32-8  | 150 | 400  | 23  | ug/kg | JS     | J-      | Н, І    |
| Benzo(b)fluoranthene         | 205-99-2 | 410 | 400  | 25  | ug/kg | S      | J-      | Н, І    |
| Benzo(g,h,i)perylene         | 191-24-2 | 22  | 400  | 22  | ug/kg | US     | UJ      | H, C, I |
| Benzo(k)fluoranthene         | 207-08-9 | 160 | 400  | 25  | ug/kg | JS     | J       | H, C, I |
| Benzoic acid                 | 65-85-0  | 290 | 2000 | 290 | ug/kg | U      | UJ      | Н       |
| Benzyl alcohol               | 100-51-6 | 84  | 1000 | 84  | ug/kg | U      | UJ      | H, C    |
| Bis(2-chloroethoxy)methane   | 111-91-1 | 23  | 400  | 23  | ug/kg | U      | UJ      | Н       |
| Bis(2-chloroethyl) ether     | 111-44-4 | 25  | 400  | 25  | ug/kg | U      | UJ      | Н       |
| Bis(2-chloroisopropyl) ether | 108-60-1 | 30  | 400  | 30  | ug/kg | U      | UJ      | Н       |
| Bis(2-ethylhexyl) phthalate  | 117-81-7 | 88  | 1000 | 88  | ug/kg | U      | UJ      | Н       |
| Butylbenzyl phthalate        | 85-68-7  | 74  | 400  | 74  | ug/kg | U      | UJ      | Н       |
| Carbazole                    | 86-74-8  | 35  | 400  | 28  | ug/kg | J      | J-      | Н       |
| Chrysene                     | 218-01-9 | 180 | 400  | 25  | ug/kg | J      | J-      | Н       |
| Dibenzo(a,h)anthracene       | 53-70-3  | 22  | 400  | 22  | ug/kg | US     | UJ      | H, C, I |
| Dibenzofuran                 | 132-64-9 | 93  | 400  | 24  | ug/kg | J      | J-      | Н       |
| Diethyl phthalate            | 84-66-2  | 65  | 400  | 65  | ug/kg | U      | UJ      | Н       |
| Dimethyl phthalate           | 131-11-3 | 64  | 400  | 64  | ug/kg | U      | UJ      | Н       |
| Di-n-butyl phthalate         | 84-74-2  | 120 | 400  | 80  | ug/kg | J      | J-      | Н       |
| Di-n-octyl phthalate         | 117-84-0 | 60  | 400  | 60  | ug/kg | U      | UJ      | Н       |
| Fluoranthene                 | 206-44-0 | 240 | 400  | 26  | ug/kg | J      | J-      | Н       |
| Fluorene                     | 86-73-7  | 41  | 400  | 25  | ug/kg | J      | J-      | Н       |
| Hexachlorobenzene            | 118-74-1 | 28  | 400  | 28  | ug/kg | U      | UJ      | Н       |
| Hexachlorobutadiene          | 87-68-3  | 63  | 400  | 63  | ug/kg | U      | UJ      | Н       |
| Hexachlorocyclopentadiene    | 77-47-4  | 52  | 400  | 52  | ug/kg | U      | R       | С       |
| Hexachloroethane             | 67-72-1  | 33  | 400  | 33  | ug/kg | U      | UJ      | Н       |
| Indeno(1,2,3-cd)pyrene       | 193-39-5 | 49  | 400  | 23  | ug/kg | JS     | J-      | H, C, I |
| Isophorone                   | 78-59-1  | 50  | 400  | 50  | ug/kg | U      | UJ      | Н       |
| Naphthalene                  | 91-20-3  | 330 | 400  | 21  | ug/kg | J      | J-      | Н       |
| Nitrobenzene                 | 98-95-3  | 60  | 400  | 60  | ug/kg | U      | UJ      | н       |

SCSD-070M-0001-SD

| N-Nitroso-di-n-propylamine | 621-64-7 | 71  | 400  | 71  | ug/kg | U | UJ | Н |
|----------------------------|----------|-----|------|-----|-------|---|----|---|
| N-Nitrosodiphenylamine     | 86-30-6  | 50  | 810  | 50  | ug/kg | U | UJ | Н |
| Pentachlorophenol          | 87-86-5  | 240 | 1000 | 240 | ug/kg | U | UJ | Н |
| Phenanthrene               | 85-01-8  | 280 | 400  | 26  | ug/kg | J | J- | Н |
| Phenol                     | 108-95-2 | 160 | 500  | 160 | ug/kg | U | UJ | Н |
| Pyrene                     | 129-00-0 | 240 | 400  | 26  | ug/kg | J | J- | Н |

Sample Name

Lab Sample Name: 854000

 AnalysisType: ORSVO

 Validation Level:
 IV

|                            | CAS No   | Resu<br>Valu | lt LOQ<br>ue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|----------|--------------|--------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene     | 120-82-1 | 21           | 400          | 21  | ug/kg           | U                | UJ                      | Н                               |
| 1,2-Dichlorobenzene        | 95-50-1  | 44           | 400          | 24  | ug/kg           | J                | J-                      | Н                               |
| 1,3-Dichlorobenzene        | 541-73-1 | 20           | 400          | 20  | ug/kg           | U                | UJ                      | Н                               |
| 1,4-Dichlorobenzene        | 106-46-7 | 40           | 400          | 19  | ug/kg           | J                | J-                      | Н                               |
| 2,4,5-Trichlorophenol      | 95-95-4  | 130          | 510          | 130 | ug/kg           | U                | UJ                      | H, C                            |
| 2,4,6-Trichlorophenol      | 88-06-2  | 130          | 510          | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol         | 120-83-2 | 120          | 510          | 120 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol         | 105-67-9 | 100          | 400          | 100 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol          | 51-28-5  | 700          | 2000         | 700 | ug/kg           | U                | R                       | С                               |
| 2,4-Dinitrotoluene         | 121-14-2 | 24           | 400          | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene         | 606-20-2 | 24           | 400          | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chloronaphthalene        | 91-58-7  | 23           | 400          | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chlorophenol             | 95-57-8  | 340          | 510          | 340 | ug/kg           | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol | 534-52-1 | 270          | 1000         | 270 | ug/kg           | U                | R                       | С                               |
| 2-Methylnaphthalene        | 91-57-6  | 43           | 400          | 25  | ug/kg           | J                | J-                      | Н                               |
| 2-Methylphenol             | 95-48-7  | 420          | 1000         | 420 | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitroaniline             | 88-74-4  | 23           | 400          | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitrophenol              | 88-75-5  | 280          | 510          | 280 | ug/kg           | U                | UJ                      | H, C                            |
| 3,3'-Dichlorobenzidine     | 91-94-1  | 150          | 510          | 150 | ug/kg           | U                | UJ                      | Н                               |
| 3-Nitroaniline             | 99-09-2  | 22           | 1000         | 22  | ug/kg           | U                | UJ                      | H, C                            |
| 4-Bromophenyl phenyl ether | 101-55-3 | 25           | 400          | 25  | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloro-3-methylphenol    | 59-50-7  | 380          | 510          | 380 | ug/kg           | U                | UJ                      | Н                               |
| 4-Chloroaniline            | 106-47-8 | 39           | 400          | 39  | ug/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

Page 28 of 42

| 4-Chlorophenyl phenyl ether  | 7005-72-3 | 26  | 400  | 26  | ug/kg | U | UJ | Н    |
|------------------------------|-----------|-----|------|-----|-------|---|----|------|
| 4-Methylphenol               | 1319-77-3 | 660 | 2000 | 660 | ug/kg | U | UJ | Н    |
| 4-Nitroaniline               | 100-01-6  | 30  | 1000 | 30  | ug/kg | U | UJ | Н    |
| 4-Nitrophenol                | 100-02-7  | 400 | 1000 | 400 | ug/kg | U | UJ | H, C |
| Acenaphthene                 | 83-32-9   | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Acenaphthylene               | 208-96-8  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Anthracene                   | 120-12-7  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Benzo(a)anthracene           | 56-55-3   | 57  | 400  | 25  | ug/kg | J | J- | Н    |
| Benzo(a)pyrene               | 50-32-8   | 67  | 400  | 23  | ug/kg | J | J- | Н    |
| Benzo(b)fluoranthene         | 205-99-2  | 110 | 400  | 25  | ug/kg | J | J- | Н    |
| Benzo(g,h,i)perylene         | 191-24-2  | 26  | 400  | 22  | ug/kg | J | J- | H, C |
| Benzo(k)fluoranthene         | 207-08-9  | 47  | 400  | 25  | ug/kg | J | J  | H, C |
| Benzoic acid                 | 65-85-0   | 290 | 2000 | 290 | ug/kg | U | UJ | Н    |
| Benzyl alcohol               | 100-51-6  | 84  | 1000 | 84  | ug/kg | U | UJ | H, C |
| Bis(2-chloroethoxy)methane   | 111-91-1  | 23  | 400  | 23  | ug/kg | U | UJ | Н    |
| Bis(2-chloroethyl) ether     | 111-44-4  | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Bis(2-chloroisopropyl) ether | 108-60-1  | 30  | 400  | 30  | ug/kg | U | UJ | Н    |
| Bis(2-ethylhexyl) phthalate  | 117-81-7  | 88  | 1000 | 88  | ug/kg | U | UJ | Н    |
| Butylbenzyl phthalate        | 85-68-7   | 74  | 400  | 74  | ug/kg | U | UJ | Н    |
| Carbazole                    | 86-74-8   | 28  | 400  | 28  | ug/kg | U | UJ | Н    |
| Chrysene                     | 218-01-9  | 70  | 400  | 25  | ug/kg | J | J- | Н    |
| Dibenzo(a,h)anthracene       | 53-70-3   | 22  | 400  | 22  | ug/kg | U | UJ | H, C |
| Dibenzofuran                 | 132-64-9  | 24  | 400  | 24  | ug/kg | U | UJ | Н    |
| Diethyl phthalate            | 84-66-2   | 65  | 400  | 65  | ug/kg | U | UJ | Н    |
| Dimethyl phthalate           | 131-11-3  | 64  | 400  | 64  | ug/kg | U | UJ | Н    |
| Di-n-butyl phthalate         | 84-74-2   | 300 | 400  | 80  | ug/kg | J | J- | Н    |
| Di-n-octyl phthalate         | 117-84-0  | 60  | 400  | 60  | ug/kg | U | UJ | Н    |
| Fluoranthene                 | 206-44-0  | 89  | 400  | 26  | ug/kg | J | J- | Н    |
| Fluorene                     | 86-73-7   | 25  | 400  | 25  | ug/kg | U | UJ | Н    |
| Hexachlorobenzene            | 118-74-1  | 28  | 400  | 28  | ug/kg | U | UJ | Н    |
| Hexachlorobutadiene          | 87-68-3   | 63  | 400  | 63  | ug/kg | U | UJ | Н    |
| Hexachlorocyclopentadiene    | 77-47-4   | 53  | 400  | 53  | ug/kg | U | R  | С    |
| Hexachloroethane             | 67-72-1   | 33  | 400  | 33  | ug/kg | U | UJ | Н    |

| Sample Name             | SCSS-058M-000 | 1-SO | AnalysisTyne• ORSV |     | svo   |   |    |      |  |
|-------------------------|---------------|------|--------------------|-----|-------|---|----|------|--|
| Pyrene                  | 129-00-0      | 89   | 400                | 26  | ug/kg | J | J- | H    |  |
| Phenol                  | 108-95-2      | 160  | 510                | 160 | ug/kg | U | IJ | H    |  |
| Phenanthrene            | 85-01-8       | 53   | 400                | 26  | ug/kg | J | J- | Н    |  |
| Pentachlorophenol       | 87-86-5       | 240  | 1000               | 240 | ug/kg | U | IJ | Н    |  |
| N-Nitrosodiphenylamine  | 86-30-6       | 51   | 810                | 51  | ug/kg | U | IJ | Н    |  |
| N-Nitroso-di-n-propylam | ine 621-64-7  | 71   | 400                | 71  | ug/kg | U | UJ | Н    |  |
| Nitrobenzene            | 98-95-3       | 60   | 400                | 60  | ug/kg | U | IJ | H    |  |
| Naphthalene             | 91-20-3       | 29   | 400                | 21  | ug/kg | J | J- | Н    |  |
| Isophorone              | 78-59-1       | 51   | 400                | 51  | ug/kg | U | IJ | H    |  |
| Indeno(1,2,3-cd)pyrene  | 193-39-5      | 26   | 400                | 23  | ug/kg | J | J- | H, C |  |

Sample Name Lab Sample Name:

852322

AnalysisType: ORSVO Validation Level: IV

|                            | CAS No   | Resu<br>Val | ılt LOQ<br>lue | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|----------|-------------|----------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene     | 120-82-1 | 21          | 410            | 21  | ug/kg           | U                | UJ                      | Н                               |
| 1,2-Dichlorobenzene        | 95-50-1  | 24          | 410            | 24  | ug/kg           | U                | UJ                      | H                               |
| 1,3-Dichlorobenzene        | 541-73-1 | 20          | 410            | 20  | ug/kg           | U                | UJ                      | H                               |
| 1,4-Dichlorobenzene        | 106-46-7 | 22          | 410            | 19  | ug/kg           | J                | J-                      | Н                               |
| 2,4,5-Trichlorophenol      | 95-95-4  | 130         | 510            | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trichlorophenol      | 88-06-2  | 130         | 510            | 130 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dichlorophenol         | 120-83-2 | 120         | 510            | 120 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dimethylphenol         | 105-67-9 | 100         | 410            | 100 | ug/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrophenol          | 51-28-5  | 700         | 2000           | 700 | ug/kg           | U                | UJ                      | H, C                            |
| 2,4-Dinitrotoluene         | 121-14-2 | 24          | 410            | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2,6-Dinitrotoluene         | 606-20-2 | 24          | 410            | 24  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chloronaphthalene        | 91-58-7  | 23          | 410            | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Chlorophenol             | 95-57-8  | 350         | 510            | 350 | ug/kg           | U                | UJ                      | Н                               |
| 2-Methyl-4,6-dinitrophenol | 534-52-1 | 270         | 1000           | 270 | ug/kg           | U                | UJ                      | H, C                            |
| 2-Methylnaphthalene        | 91-57-6  | 370         | 410            | 25  | ug/kg           | J                | J-                      | Н                               |
| 2-Methylphenol             | 95-48-7  | 430         | 1000           | 430 | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitroaniline             | 88-74-4  | 23          | 410            | 23  | ug/kg           | U                | UJ                      | Н                               |
| 2-Nitrophenol              | 88-75-5  | 280         | 510            | 280 | ug/kg           | U                | UJ                      | Н                               |
| 3,3'-Dichlorobenzidine     | 91-94-1  | 150         | 510            | 150 | ug/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

Page 30 of 42

| 3-Nitroaniline               | 99-09-2   | 22   | 1000 | 22  | ug/kg | U | UJ | Н    |
|------------------------------|-----------|------|------|-----|-------|---|----|------|
| 4-Bromophenyl phenyl ether   | 101-55-3  | 25   | 410  | 25  | ug/kg | U | UJ | H    |
| 4-Chloro-3-methylphenol      | 59-50-7   | 390  | 510  | 390 | ug/kg | U | UJ | Н    |
| 4-Chloroaniline              | 106-47-8  | 40   | 410  | 40  | ug/kg | U | UJ | Н    |
| 4-Chlorophenyl phenyl ether  | 7005-72-3 | 26   | 410  | 26  | ug/kg | U | UJ | Н    |
| 4-Methylphenol               | 1319-77-3 | 660  | 2000 | 660 | ug/kg | U | UJ | Н    |
| 4-Nitroaniline               | 100-01-6  | 31   | 1000 | 31  | ug/kg | U | UJ | H, C |
| 4-Nitrophenol                | 100-02-7  | 410  | 1000 | 410 | ug/kg | U | UJ | Н    |
| Acenaphthene                 | 83-32-9   | 43   | 410  | 24  | ug/kg | J | J- | Н    |
| Acenaphthylene               | 208-96-8  | 160  | 410  | 24  | ug/kg | J | J- | Н    |
| Anthracene                   | 120-12-7  | 300  | 410  | 24  | ug/kg | J | J- | Н    |
| Benzo(a)anthracene           | 56-55-3   | 740  | 410  | 25  | ug/kg |   | J- | Н    |
| Benzo(a)pyrene               | 50-32-8   | 590  | 410  | 23  | ug/kg |   | J- | Н    |
| Benzo(b)fluoranthene         | 205-99-2  | 1000 | 410  | 25  | ug/kg |   | J- | Н    |
| Benzo(g,h,i)perylene         | 191-24-2  | 170  | 410  | 22  | ug/kg | J | J- | H, C |
| Benzo(k)fluoranthene         | 207-08-9  | 330  | 410  | 25  | ug/kg | J | J- | Н    |
| Benzoic acid                 | 65-85-0   | 300  | 1000 | 300 | ug/kg | U | UJ | Н    |
| Benzyl alcohol               | 100-51-6  | 84   | 1000 | 84  | ug/kg | U | R  | С    |
| Bis(2-chloroethoxy)methane   | 111-91-1  | 23   | 410  | 23  | ug/kg | U | UJ | Н    |
| Bis(2-chloroethyl) ether     | 111-44-4  | 25   | 410  | 25  | ug/kg | U | UJ | Н    |
| Bis(2-chloroisopropyl) ether | 108-60-1  | 31   | 410  | 31  | ug/kg | U | UJ | Н    |
| Bis(2-ethylhexyl) phthalate  | 117-81-7  | 89   | 1000 | 89  | ug/kg | U | UJ | Н    |
| Butylbenzyl phthalate        | 85-68-7   | 74   | 410  | 74  | ug/kg | U | UJ | Н    |
| Carbazole                    | 86-74-8   | 78   | 410  | 28  | ug/kg | J | J- | Н    |
| Chrysene                     | 218-01-9  | 700  | 410  | 25  | ug/kg |   | J- | Н    |
| Dibenzo(a,h)anthracene       | 53-70-3   | 75   | 410  | 22  | ug/kg | J | J- | Н    |
| Dibenzofuran                 | 132-64-9  | 140  | 410  | 24  | ug/kg | J | J- | Н    |
| Diethyl phthalate            | 84-66-2   | 65   | 410  | 65  | ug/kg | U | UJ | Н    |
| Dimethyl phthalate           | 131-11-3  | 64   | 410  | 64  | ug/kg | U | UJ | Н    |
| Di-n-butyl phthalate         | 84-74-2   | 120  | 410  | 80  | ug/kg | J | J- | Н    |
| Di-n-octyl phthalate         | 117-84-0  | 60   | 410  | 60  | ug/kg | U | UJ | Н    |
| Fluoranthene                 | 206-44-0  | 1800 | 410  | 26  | ug/kg |   | J- | н    |
| Fluorene                     | 86-73-7   | 190  | 410  | 25  | ug/kg | J | J- | Н    |

| Hexachlorobenzene          | 118-74-1 | 28   | 410  | 28  | ug/kg | U | IJ | Н    |  |
|----------------------------|----------|------|------|-----|-------|---|----|------|--|
| Hexachlorobutadiene        | 87-68-3  | 63   | 410  | 63  | ug/kg | U | UJ | H    |  |
| Hexachlorocyclopentadiene  | 77-47-4  | 53   | 410  | 53  | ug/kg | U | R  | С    |  |
| Hexachloroethane           | 67-72-1  | 34   | 410  | 34  | ug/kg | U | UJ | Н    |  |
| Indeno(1,2,3-cd)pyrene     | 193-39-5 | 180  | 410  | 23  | ug/kg | J | J- | H, C |  |
| Isophorone                 | 78-59-1  | 110  | 410  | 51  | ug/kg | J | J- | Н    |  |
| Naphthalene                | 91-20-3  | 240  | 410  | 21  | ug/kg | J | J- | Н    |  |
| Nitrobenzene               | 98-95-3  | 60   | 410  | 60  | ug/kg | U | UJ | Н    |  |
| N-Nitroso-di-n-propylamine | 621-64-7 | 71   | 410  | 71  | ug/kg | U | IJ | Н    |  |
| N-Nitrosodiphenylamine     | 86-30-6  | 51   | 810  | 51  | ug/kg | U | UJ | Н    |  |
| Pentachlorophenol          | 87-86-5  | 240  | 1000 | 240 | ug/kg | U | IJ | Н    |  |
| Phenanthrene               | 85-01-8  | 1200 | 410  | 26  | ug/kg |   | J- | Н    |  |
| Phenol                     | 108-95-2 | 160  | 510  | 160 | ug/kg | U | UJ | Н    |  |
| Pyrene                     | 129-00-0 | 1300 | 410  | 26  | ug/kg |   | J- | Н    |  |
|                            |          |      |      |     |       |   |    |      |  |

#### Analysis Method SW846 8330B

Sample Name

SCSB-048M-0001-SO

AnalysisType: OREXP

Lab Sample Name:854011Validation Level: IV

|                            | CAS No        | Resul<br>Valı | lt LOQ<br>1e | DL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|---------------|---------------|--------------|---------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4       | 0.13          | 0.44         | 0.13    | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0       | 0.08          | 0.44         | 0.08    | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7      | 0.09          | 0.44         | 0.09    | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene         | 121-14-2      | 0.2           | 0.44         | 0.2     | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2      | 0.07          | 0.5          | 0.07    | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2    | 0.05          | 0.44         | 0.05    | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2       | 0.09          | 0.44         | 0.09    | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1      | 0.09          | 0.44         | 0.09    | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1       | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0    | 0.07          | 0.44         | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0       | 0.07          | 0.5          | 0.07    | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0     | 0.12          | 0.44         | 0.12    | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3       | 0.04          | 0.44         | 0.04    | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0       | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | Н                               |
| Nitroguanidine             | 556-88-7      | 0.059         | 0.16         | 0.059   | mg/kg           | U                | UJ                      | Н, *Ш                           |
| PETN                       | 78-11-5       | 0.5           | 1.5          | 0.5     | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4      | 0.16          | 0.44         | 0.16    | mg/kg           | U                | UJ                      | Н                               |
| Tetryl                     | 479-45-8      | 0.09          | 0.44         | 0.09    | mg/kg           | U                | UJ                      | Н                               |
| Sample Name So             | CSD-070M-0001 | -SD           | AnalysisT    | ype: OR | EXP             |                  |                         |                                 |

Lab Sample Name: 854000 Validation Level: IV

|                       | CAS No   | Resu<br>Valu | lt LOQ<br>ue | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------|----------|--------------|--------------|-------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene | 99-35-4  | 0.13         | 0.44         | 0.13  | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene    | 99-65-0  | 0.079        | 0.44         | 0.079 | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene | 118-96-7 | 0.089        | 0.44         | 0.089 | mg/kg           | U                | UJ                      | Н                               |
| 2,4-Dinitrotoluene    | 121-14-2 | 0.2          | 0.44         | 0.2   | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene    | 606-20-2 | 0.069        | 0.5          | 0.069 | mg/kg           | U                | R                       | D                               |

Wednesday, April 17, 2013

Page 33 of 42

| Tetryl                  |      | 479-45-8   | 0.089 | 0.44 | 0.089 | mg/kg | U | UJ | Н |  |
|-------------------------|------|------------|-------|------|-------|-------|---|----|---|--|
| RDX                     |      | 121-82-4   | 0.16  | 0.44 | 0.16  | mg/kg | U | IJ | Н |  |
| PETN                    |      | 78-11-5    | 0.5   | 1.5  | 0.5   | mg/kg | U | UJ | Н |  |
| Nitroglycerin           |      | 55-63-0    | 0.5   | 1.5  | 0.5   | mg/kg | U | UJ | Н |  |
| Nitrobenzene            |      | 98-95-3    | 0.04  | 0.44 | 0.04  | mg/kg | U | R  | D |  |
| HMX                     |      | 2691-41-0  | 0.12  | 0.44 | 0.12  | mg/kg | U | IJ | Н |  |
| 4-Nitrotoluene          |      | 99-99-0    | 0.069 | 0.5  | 0.069 | mg/kg | U | IJ | Н |  |
| 4-Amino-2,6-dinitrotolu | iene | 19406-51-0 | 0.069 | 0.44 | 0.069 | mg/kg | U | IJ | Н |  |
| 3-Nitrotoluene          |      | 99-08-1    | 0.069 | 0.44 | 0.069 | mg/kg | U | IJ | Н |  |
| 3,5-Dinitroaniline      |      | 618-87-1   | 0.089 | 0.44 | 0.089 | mg/kg | U | IJ | Н |  |
| 2-Nitrotoluene          |      | 88-72-2    | 0.089 | 0.44 | 0.089 | mg/kg | U | IJ | Н |  |
| 2-Amino-4,6-dinitrotolu | iene | 35572-78-2 | 0.05  | 0.44 | 0.05  | mg/kg | U | IJ | Н |  |

Lab Sample Name:

852322

Validation Level: IV

|                            | CAS No     | Resu<br>Val | ılt LOQ<br>ue | DL   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|---------------|------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44          | 0.13 | mg/kg           | U                | UJ                      | Н                               |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44          | 0.08 | mg/kg           | U                | UJ                      | Н                               |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.26        | 0.44          | 0.09 | mg/kg           | JP               | J-                      | Н, *Ш                           |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44          | 0.2  | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5           | 0.07 | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44          | 0.05 | mg/kg           | U                | UJ                      | Н                               |
| 2-Nitrotoluene             | 88-72-2    | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | Н                               |
| 3,5-Dinitroaniline         | 618-87-1   | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | Н                               |
| 3-Nitrotoluene             | 99-08-1    | 0.07        | 0.44          | 0.07 | mg/kg           | U                | UJ                      | Н                               |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07        | 0.44          | 0.07 | mg/kg           | U                | UJ                      | Н                               |
| 4-Nitrotoluene             | 99-99-0    | 0.07        | 0.5           | 0.07 | mg/kg           | U                | UJ                      | Н                               |
| HMX                        | 2691-41-0  | 0.12        | 0.44          | 0.12 | mg/kg           | U                | UJ                      | Н                               |
| Nitrobenzene               | 98-95-3    | 0.04        | 0.44          | 0.04 | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0    | 0.5         | 1.5           | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| PETN                       | 78-11-5    | 0.5         | 1.5           | 0.5  | mg/kg           | U                | UJ                      | Н                               |
| RDX                        | 121-82-4   | 0.16        | 0.44          | 0.16 | mg/kg           | U                | UJ                      | Н                               |
| Tetryl                     | 479-45-8   | 0.09        | 0.44          | 0.09 | mg/kg           | U                | UJ                      | Н                               |

Wednesday, April 17, 2013

Page 34 of 42

| Analysis Metho   | d SW846 9      | 012A            |                    |          |                 |                  |                         |                                 |
|------------------|----------------|-----------------|--------------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Sample Name      | SCSD-070M-0001 | -SD             | AnalysisType: MISC |          |                 |                  |                         |                                 |
| Lab Sample Name: | 854000         | Valida          | ition Level: IV    |          |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ                | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Cyanide          | 57-12-5        | 0.36            | 0.39               | 0.11     | mg/kg           | J                | J-                      | Н                               |
| Analysis Metho   | d SW846 9      | 056M            |                    |          |                 |                  |                         |                                 |
| Sample Name      | SCSB-048M-0001 | -SO             | AnalysisT          | ype: MIS | SC              |                  |                         |                                 |
| Lab Sample Name: | 854011         | Valida          | tion Level:        | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Value | LOQ                | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Nitrocellulose   | 9004-70-0      | 7               | 23                 | 7        | mg/kg           | U                | U                       |                                 |

#### Analysis Method SW846 6010

Sample Name

SCSS-073M-0001-SO

AnalysisType: INORG

 Lab Sample Name:
 869558
 Validation Level:
 IV

|                  | CAS No         | Result<br>Valu | e LOQ        | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|------------------|----------------|----------------|--------------|----------|-----------------|------------------|-------------------------|---------------------------------|
| Aluminum         | 7429-90-5      | 9480           | 0.24         | 0.082    | mg/kg           | В                |                         |                                 |
| Antimony         | 7440-36-0      | 2.9            | 0.55         | 0.16     | mg/kg           |                  | J+                      | С                               |
| Arsenic          | 7440-38-2      | 21.8           | 0.92         | 0.27     | mg/kg           |                  |                         |                                 |
| Barium           | 7440-39-3      | 94.3           | 0.055        | 0.016    | mg/kg           | В                |                         |                                 |
| Beryllium        | 7440-41-7      | 0.77           | 0.024        | 0.0082   | mg/kg           |                  |                         |                                 |
| Cadmium          | 7440-43-9      | 0.63           | 0.043        | 0.012    | mg/kg           |                  |                         |                                 |
| Calcium          | 7440-70-2      | 10300          | 1            | 0.12     | mg/kg           |                  |                         |                                 |
| Chromium         | 7440-47-3      | 130            | 0.13         | 0.039    | mg/kg           | В                |                         |                                 |
| Cobalt           | 7440-48-4      | 10.8           | 0.1          | 0.031    | mg/kg           |                  |                         |                                 |
| Copper           | 7440-50-8      | 24.3           | 0.41         | 0.12     | mg/kg           |                  |                         |                                 |
| Iron             | 7439-89-6      | 24800          | 2            | 0.61     | mg/kg           |                  |                         |                                 |
| Lead             | 7439-92-1      | 50.3           | 0.29         | 0.082    | mg/kg           |                  |                         |                                 |
| Magnesium        | 7439-95-4      | 3040           | 0.82         | 0.24     | mg/kg           |                  |                         |                                 |
| Manganese        | 7439-96-5      | 576            | 0.1          | 0.033    | mg/kg           | В                |                         |                                 |
| Nickel           | 7440-02-0      | 32.7           | 0.12         | 0.037    | mg/kg           |                  |                         |                                 |
| Potassium        | 7440-09-7      | 1350           | 37           | 11       | mg/kg           |                  |                         |                                 |
| Selenium         | 7782-49-2      | 2.4            | 0.86         | 0.14     | mg/kg           |                  | J+                      | С                               |
| Silver           | 7440-22-4      | 2              | 0.11         | 0.035    | mg/kg           |                  |                         |                                 |
| Sodium           | 7440-23-5      | 101            | 13           | 4.1      | mg/kg           |                  | 1                       | С                               |
| Thallium         | 7440-28-0      | 0.082          | 0.29         | 0.082    | mg/kg           | UV               | U                       | В                               |
| Vanadium         | 7440-62-2      | 19.8           | 0.069        | 0.022    | mg/kg           |                  |                         |                                 |
| Zinc             | 7440-66-6      | 86.1           | 0.24         | 0.082    | mg/kg           |                  |                         |                                 |
| Sample Name      | SCSS-076M-0001 | -SO            | AnalysisT    | ype: INC | ORG             |                  |                         |                                 |
| Lab Sample Name: | 869562         | Valid          | ation Level: | IV       |                 |                  |                         |                                 |
|                  | CAS No         | Result<br>Valu | e LOQ        | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Aluminum         | 7429-90-5      | 7990           | 0.25         | 0.082    | mg/kg           |                  |                         |                                 |

| Mercury           | 7439-97-6      | 0.049         | 0.0081        | 0.0025   | mg/kg           |                  | J-                      | С                               |
|-------------------|----------------|---------------|---------------|----------|-----------------|------------------|-------------------------|---------------------------------|
|                   | CAS No         | Resul<br>Valu | t LOQ<br>e    | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Lab Sample Name:  | 869562         | Valid         | lation Level: | IV       |                 |                  |                         |                                 |
| Sample Name       | SCSS-076M-0001 | -SO           | AnalysisT     | ype: INC | ORG             |                  |                         |                                 |
| Mercury           | 7439-97-6      | 0.27          | 0.0081        | 0.0024   | mg/kg           |                  |                         |                                 |
|                   | CAS No         | Resul<br>Valu | t LOQ<br>e    | DL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
| Lab Sample Name:  | 869558         | Valid         | lation Level: | IV       |                 |                  |                         |                                 |
| Sample Name       | SCSS-073M-0001 | -SO           | AnalysisT     | ype: INC | ORG             |                  |                         |                                 |
| Analysis Metho    | od SW846 74    | 471A          |               |          |                 |                  |                         |                                 |
|                   | /440-00-0      | 40.9          | 0.25          | 0.082    | ing/kg          |                  |                         |                                 |
| v anadium<br>Zina | 7440-62-2      | 15.9          | 0.07          | 0.023    | mg/Kg           | В                |                         |                                 |
| I nallium         | 7440-28-0      | 0.73          | 0.29          | 0.082    | mg/kg           | P                | J-                      | в                               |
| Sodium            | 7440-23-5      | 68.1          | 13            | 4.1      | mg/kg           |                  | 1                       | C                               |
| Silver            | 7440-22-4      | 0.11          | 0.11          | 0.035    | mg/kg           | V,B              |                         |                                 |
| Selenium          | 7782-49-2      | 2.2           | 0.86          | 0.14     | mg/kg           |                  | J-                      | С                               |
| Potassium         | 7440-09-7      | 845           | 37            | 11       | mg/kg           |                  |                         |                                 |
| Nickel            | 7440-02-0      | 25.3          | 0.13          | 0.037    | mg/kg           |                  |                         |                                 |
| Manganese         | 7439-96-5      | 661           | 0.1           | 0.033    | mg/kg           | В                |                         |                                 |
| Magnesium         | 7439-95-4      | 1750          | 0.82          | 0.25     | mg/kg           | В                |                         |                                 |
| Lead              | 7439-92-1      | 18.2          | 0.29          | 0.082    | mg/kg           |                  |                         |                                 |
| Iron              | 7439-89-6      | 19000         | 2             | 0.61     | mg/kg           |                  |                         |                                 |
| Copper            | 7440-50-8      | 10.1          | 0.41          | 0.12     | mg/kg           |                  |                         |                                 |
| Cobalt            | 7440-48-4      | 8.7           | 0.1           | 0.031    | mg/kg           |                  |                         |                                 |
| Chromium          | 7440-47-3      | 188           | 0.13          | 0.039    | mg/kg           |                  |                         |                                 |
| Calcium           | 7440-70-2      | 18500         | 1             | 0.12     | mg/kg           |                  |                         |                                 |
| Cadmium           | 7440-43-9      | 0.65          | 0.043         | 0.012    | mg/kg           |                  |                         |                                 |
| Beryllium         | 7440-41-7      | 0.48          | 0.025         | 0.0082   | mg/kg           |                  |                         |                                 |
| Barium            | 7440-39-3      | 74.8          | 0.055         | 0.016    | mg/kg           | В                |                         |                                 |
| Arsenic           | 7440-38-2      | 10.3          | 0.92          | 0.27     | mg/kg           |                  |                         |                                 |
| Antimony          | 7440-36-0      | 3.1           | 0.55          | 0.16     | mg/kg           |                  |                         |                                 |

#### Analysis Method SW846 8270

Sample Name

SCSS-073M-0001-SO

AnalysisType: ORSVO

Lab Sample Name:869558Validation Level: IV

|                             | CAS No    | Resul<br>Valu | t LOQ<br>le | DL  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|-----------------------------|-----------|---------------|-------------|-----|-----------------|------------------|-------------------------|---------------------------------|
| 1,2,4-Trichlorobenzene      | 120-82-1  | 21            | 410         | 21  | ug/kg           | U                | U                       |                                 |
| 1,2-Dichlorobenzene         | 95-50-1   | 39            | 410         | 24  | ug/kg           | J                | J                       |                                 |
| 1,3-Dichlorobenzene         | 541-73-1  | 20            | 410         | 20  | ug/kg           | U                | U                       |                                 |
| 1,4-Dichlorobenzene         | 106-46-7  | 19            | 410         | 19  | ug/kg           | U                | U                       |                                 |
| 2,4,5-Trichlorophenol       | 95-95-4   | 130           | 510         | 130 | ug/kg           | U                | U                       |                                 |
| 2,4,6-Trichlorophenol       | 88-06-2   | 130           | 510         | 130 | ug/kg           | U                | U                       |                                 |
| 2,4-Dichlorophenol          | 120-83-2  | 120           | 510         | 120 | ug/kg           | U                | U                       |                                 |
| 2,4-Dimethylphenol          | 105-67-9  | 100           | 410         | 100 | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrophenol           | 51-28-5   | 700           | 2000        | 700 | ug/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene          | 121-14-2  | 24            | 410         | 24  | ug/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene          | 606-20-2  | 24            | 410         | 24  | ug/kg           | U                | U                       |                                 |
| 2-Chloronaphthalene         | 91-58-7   | 23            | 410         | 23  | ug/kg           | U                | U                       |                                 |
| 2-Chlorophenol              | 95-57-8   | 350           | 510         | 350 | ug/kg           | U                | U                       |                                 |
| 2-Methyl-4,6-dinitrophenol  | 534-52-1  | 270           | 1000        | 270 | ug/kg           | U                | U                       |                                 |
| 2-Methylnaphthalene         | 91-57-6   | 240           | 410         | 25  | ug/kg           | J                | J                       |                                 |
| 2-Methylphenol              | 95-48-7   | 430           | 1000        | 430 | ug/kg           | U                | U                       |                                 |
| 2-Nitroaniline              | 88-74-4   | 23            | 410         | 23  | ug/kg           | U                | U                       |                                 |
| 2-Nitrophenol               | 88-75-5   | 290           | 510         | 290 | ug/kg           | U                | U                       |                                 |
| 3,3'-Dichlorobenzidine      | 91-94-1   | 150           | 510         | 150 | ug/kg           | U                | U                       |                                 |
| 3-Nitroaniline              | 99-09-2   | 22            | 1000        | 22  | ug/kg           | U                | U                       |                                 |
| 4-Bromophenyl phenyl ether  | 101-55-3  | 25            | 410         | 25  | ug/kg           | U                | U                       |                                 |
| 4-Chloro-3-methylphenol     | 59-50-7   | 390           | 510         | 390 | ug/kg           | U                | U                       |                                 |
| 4-Chloroaniline             | 106-47-8  | 40            | 410         | 40  | ug/kg           | U                | U                       |                                 |
| 4-Chlorophenyl phenyl ether | 7005-72-3 | 26            | 410         | 26  | ug/kg           | U                | U                       |                                 |
| 4-Methylphenol              | 1319-77-3 | 660           | 2000        | 660 | ug/kg           | U                | U                       |                                 |
| 4-Nitroaniline              | 100-01-6  | 31            | 1000        | 31  | ug/kg           | U                | U                       |                                 |
| 4-Nitrophenol               | 100-02-7  | 410           | 1000        | 410 | ug/kg           | U                | UJ                      | С                               |

| Acenaphthene                 | 83-32-9  | 35  | 410  | 24  | ug/kg | J | J |  |
|------------------------------|----------|-----|------|-----|-------|---|---|--|
| Acenaphthylene               | 208-96-8 | 29  | 410  | 24  | ug/kg | J | J |  |
| Anthracene                   | 120-12-7 | 93  | 410  | 24  | ug/kg | J | J |  |
| Benzo(a)anthracene           | 56-55-3  | 370 | 410  | 25  | ug/kg | J | J |  |
| Benzo(a)pyrene               | 50-32-8  | 350 | 410  | 23  | ug/kg | J | J |  |
| Benzo(b)fluoranthene         | 205-99-2 | 580 | 410  | 25  | ug/kg |   |   |  |
| Benzo(g,h,i)perylene         | 191-24-2 | 190 | 410  | 22  | ug/kg | J | 1 |  |
| Benzo(k)fluoranthene         | 207-08-9 | 200 | 410  | 25  | ug/kg | J | l |  |
| Benzoic acid                 | 65-85-0  | 300 | 2000 | 300 | ug/kg | U | U |  |
| Benzyl alcohol               | 100-51-6 | 85  | 1000 | 85  | ug/kg | U | U |  |
| Bis(2-chloroethoxy)methane   | 111-91-1 | 23  | 410  | 23  | ug/kg | U | U |  |
| Bis(2-chloroethyl) ether     | 111-44-4 | 25  | 410  | 25  | ug/kg | U | U |  |
| Bis(2-chloroisopropyl) ether | 108-60-1 | 31  | 410  | 31  | ug/kg | U | U |  |
| Bis(2-ethylhexyl) phthalate  | 117-81-7 | 190 | 1000 | 89  | ug/kg | J | J |  |
| Butylbenzyl phthalate        | 85-68-7  | 74  | 410  | 74  | ug/kg | U | U |  |
| Carbazole                    | 86-74-8  | 58  | 410  | 29  | ug/kg | J | J |  |
| Chrysene                     | 218-01-9 | 400 | 410  | 25  | ug/kg | J | 1 |  |
| Dibenzo(a,h)anthracene       | 53-70-3  | 69  | 410  | 22  | ug/kg | J | J |  |
| Dibenzofuran                 | 132-64-9 | 72  | 410  | 24  | ug/kg | J | 1 |  |
| Diethyl phthalate            | 84-66-2  | 65  | 410  | 65  | ug/kg | U | U |  |
| Dimethyl phthalate           | 131-11-3 | 64  | 410  | 64  | ug/kg | U | U |  |
| Di-n-butyl phthalate         | 84-74-2  | 140 | 410  | 80  | ug/kg | J | 1 |  |
| Di-n-octyl phthalate         | 117-84-0 | 60  | 410  | 60  | ug/kg | U | U |  |
| Fluoranthene                 | 206-44-0 | 760 | 410  | 26  | ug/kg |   |   |  |
| Fluorene                     | 86-73-7  | 33  | 410  | 25  | ug/kg | J | 1 |  |
| Hexachlorobenzene            | 118-74-1 | 29  | 410  | 29  | ug/kg | U | U |  |
| Hexachlorobutadiene          | 87-68-3  | 63  | 410  | 63  | ug/kg | U | U |  |
| Hexachlorocyclopentadiene    | 77-47-4  | 53  | 410  | 53  | ug/kg | U | U |  |
| Hexachloroethane             | 67-72-1  | 34  | 410  | 34  | ug/kg | U | U |  |
| Indeno(1,2,3-cd)pyrene       | 193-39-5 | 170 | 410  | 23  | ug/kg | J | J |  |
| Isophorone                   | 78-59-1  | 51  | 410  | 51  | ug/kg | U | U |  |
| Naphthalene                  | 91-20-3  | 170 | 410  | 21  | ug/kg | J | J |  |
| Nitrobenzene                 | 98-95-3  | 60  | 410  | 60  | ug/kg | U | U |  |

| N-Nitroso-di-n-propylamine | 621-64-7 | 71  | 410  | 71  | ug/kg | U | U |  |
|----------------------------|----------|-----|------|-----|-------|---|---|--|
| N-Nitrosodiphenylamine     | 86-30-6  | 51  | 810  | 51  | ug/kg | U | U |  |
| Pentachlorophenol          | 87-86-5  | 240 | 1000 | 240 | ug/kg | U | U |  |
| Phenanthrene               | 85-01-8  | 450 | 410  | 26  | ug/kg |   |   |  |
| Phenol                     | 108-95-2 | 160 | 510  | 160 | ug/kg | U | U |  |
| Pyrene                     | 129-00-0 | 620 | 410  | 26  | ug/kg |   |   |  |

#### Analysis Method SW846 8330B

Sample Name

SCSS-073M-0001-SO

AnalysisType: OREXP

Lab Sample Name:869558Validation Level: IV

|                            | CAS No          | Resu<br>Valu          | lt LOQ<br>ue  | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|-----------------|-----------------------|---------------|-------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4         | 0.13                  | 0.44          | 0.13  | mg/kg           | U                | U                       |                                 |
| 1,3-Dinitrobenzene         | 99-65-0         | 0.081                 | 0.44          | 0.081 | mg/kg           | U                | U                       |                                 |
| 2,4,6-Trinitrotoluene      | 118-96-7        | 0.091                 | 0.44          | 0.091 | mg/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene         | 121-14-2        | 0.2                   | 0.44          | 0.2   | mg/kg           | U                | R                       | D                               |
| 2,6-Dinitrotoluene         | 606-20-2        | 0.07                  | 0.5           | 0.07  | mg/kg           | U                | R                       | D                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2      | 0.05                  | 0.44          | 0.05  | mg/kg           | U                | U                       |                                 |
| 2-Nitrotoluene             | 88-72-2         | 0.091                 | 0.44          | 0.091 | mg/kg           | U                | U                       |                                 |
| 3,5-Dinitroaniline         | 618-87-1        | 0.091                 | 0.44          | 0.091 | mg/kg           | U                | U                       |                                 |
| 3-Nitrotoluene             | 99-08-1         | 0.07                  | 0.44          | 0.07  | mg/kg           | U                | U                       |                                 |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0      | 0.07                  | 0.44          | 0.07  | mg/kg           | U                | U                       |                                 |
| 4-Nitrotoluene             | 99-99-0         | 0.07                  | 0.5           | 0.07  | mg/kg           | U                | U                       |                                 |
| HMX                        | 2691-41-0       | 0.12                  | 0.44          | 0.12  | mg/kg           | U                | U                       |                                 |
| Nitrobenzene               | 98-95-3         | 0.04                  | 0.44          | 0.04  | mg/kg           | U                | R                       | D                               |
| Nitroglycerin              | 55-63-0         | 0.5                   | 1.5           | 0.5   | mg/kg           | U                | U                       |                                 |
| PETN                       | 78-11-5         | 0.5                   | 1.5           | 0.5   | mg/kg           | U                | U                       |                                 |
| RDX                        | 121-82-4        | 0.16                  | 0.44          | 0.16  | mg/kg           | U                | U                       |                                 |
| Tetryl                     | 479-45-8        | 0.091                 | 0.44          | 0.091 | mg/kg           | U                | U                       |                                 |
| Sample Name                | SCSS-076M-0001- | 6M-0001-SO AnalysisTy |               |       | EXP             |                  |                         |                                 |
| Lab Sample Name:           | 869562          | Vali                  | dation Level: | IV    |                 |                  |                         |                                 |

|                            | CAS No     | Resu<br>Val | lt LOQ<br>ue | DL    | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Qualifier<br>Code |
|----------------------------|------------|-------------|--------------|-------|-----------------|------------------|-------------------------|---------------------------------|
| 1,3,5-Trinitrobenzene      | 99-35-4    | 0.13        | 0.44         | 0.13  | mg/kg           | U                | U                       |                                 |
| 1,3-Dinitrobenzene         | 99-65-0    | 0.08        | 0.44         | 0.08  | mg/kg           | U                | U                       |                                 |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 0.091       | 0.44         | 0.091 | mg/kg           | U                | U                       |                                 |
| 2,4-Dinitrotoluene         | 121-14-2   | 0.2         | 0.44         | 0.2   | mg/kg           | U                | U                       |                                 |
| 2,6-Dinitrotoluene         | 606-20-2   | 0.07        | 0.5          | 0.07  | mg/kg           | U                | UJ                      | С                               |
| 2-Amino-4,6-dinitrotoluene | 35572-78-2 | 0.05        | 0.44         | 0.05  | mg/kg           | U                | U                       |                                 |

| 2-Nitrotoluene             | 88-72-2    | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |
|----------------------------|------------|-------|------|-------|-------|---|---|--|
| 3,5-Dinitroaniline         | 618-87-1   | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |
| 3-Nitrotoluene             | 99-08-1    | 0.07  | 0.44 | 0.07  | mg/kg | U | U |  |
| 4-Amino-2,6-dinitrotoluene | 19406-51-0 | 0.07  | 0.44 | 0.07  | mg/kg | U | U |  |
| 4-Nitrotoluene             | 99-99-0    | 0.07  | 0.5  | 0.07  | mg/kg | U | U |  |
| HMX                        | 2691-41-0  | 0.12  | 0.44 | 0.12  | mg/kg | U | U |  |
| Nitrobenzene               | 98-95-3    | 0.04  | 0.44 | 0.04  | mg/kg | U | U |  |
| Nitroglycerin              | 55-63-0    | 0.5   | 1.5  | 0.5   | mg/kg | U | U |  |
| PETN                       | 78-11-5    | 0.5   | 1.5  | 0.5   | mg/kg | U | U |  |
| RDX                        | 121-82-4   | 0.16  | 0.44 | 0.16  | mg/kg | U | U |  |
| Tetryl                     | 479-45-8   | 0.091 | 0.44 | 0.091 | mg/kg | U | U |  |

#### **APPENDIX B**

## Sample Qualification Summary

**Open Demolition Area 1** 

| Sample             | Analyte                    | Result | LOQ   | DL     | Units | Qualifier | Code               |
|--------------------|----------------------------|--------|-------|--------|-------|-----------|--------------------|
| DA1SB-055M-0001-SO | Antimony                   | 0.16   | 0.55  | 0.16   | mg/kg | R         | Q                  |
| DA1SB-055M-0001-SO | Barium                     | 73.4   | 0.055 | 0.016  | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Beryllium                  | 0.53   | 0.024 | 0.0081 | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Cadmium                    | 0.26   | 0.26  | 0.26   | mg/kg | UJ        | C, \$              |
| DA1SB-055M-0001-SO | Calcium                    | 18700  | 1     | 0.12   | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Chromium                   | 31.6   | 0.13  | 0.038  | mg/kg | J-        | Q, *III, A         |
| DA1SB-055M-0001-SO | Cobalt                     | 10.8   | 0.099 | 0.03   | mg/kg | J-        | Q, *III, A         |
| DA1SB-055M-0001-SO | Copper                     | 19.1   | 0.4   | 0.12   | mg/kg | J-        | Q, *III, A         |
| DA1SB-055M-0001-SO | Lead                       | 21     | 0.28  | 0.081  | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Manganese                  | 387    | 0.1   | 0.032  | mg/kg | J-        | Q                  |
| DA1SB-055M-0001-SO | Nickel                     | 26.3   | 0.12  | 0.036  | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Selenium                   | 0.32   | 0.85  | 0.14   | mg/kg | UJ        | B, Q               |
| DA1SB-055M-0001-SO | Silver                     | 0.08   | 0.11  | 0.08   | mg/kg | U         | \$                 |
| DA1SB-055M-0001-SO | Sodium                     | 61.2   | 13    | 4      | mg/kg | l         | C                  |
| DA1SB-055M-0001-SO | Thallium                   | 2.1    | 0.28  | 0.081  | mg/kg | J-        | Q                  |
| DA1SB-055M-0001-SO | Vanadium                   | 19.4   | 0.069 | 0.022  | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-055M-0001-SO | Zinc                       | 55.2   | 0.24  | 0.081  | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-055M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 1,3-Dinitrobenzene         | 0.079  | 0.44  | 0.079  | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | UJ        | H, Q               |
| DA1SB-055M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 2-Nitrotoluene             | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 3,5-Dinitroaniline         | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | H, Q               |
| DA1SB-055M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | НМХ                        | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | PETN                       | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | RDX                        | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н                  |
| DA1SB-055M-0001-SO | Tetryl                     | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-059D-0201-SO | 2-Hexanone                 | 73     | 530   | 73     | ug/kg | UJ        | С                  |
| DA1SB-059D-0201-SO | Chloroethane               | 20     | 110   | 20     | ug/kg | R         | С                  |
| DA1SB-059D-0201-SO | Chloromethane              | 27     | 110   | 27     | ug/kg | R         | С                  |
| DA1SB-059M-0201-SO | Aluminum                   | 12200  | 0.61  | 0.2    | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-059M-0201-SO | Antimony                   | 20.5   | 1.4   | 0.41   | mg/kg | J-        | Q                  |
| DA1SB-059M-0201-SO | Barium                     | 869    | 0.14  | 0.041  | mg/kg | J         | *III, A            |
| DA1SB-059M-0201-SO | Beryllium                  | 0.95   | 0.061 | 0.02   | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-059M-0201-SO | Cadmium                    | 18.4   | 0.11  | 0.031  | mg/kg | J-        | Q                  |
| DA1SB-059M-0201-SO | Calcium                    | 18800  | 2.6   | 0.31   | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Chromium                   | 101    | 0.32  | 0.097  | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Cobalt                     | 10.1   | 0.25  | 0.077  | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Copper                     | 222    | 1     | 0.31   | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Lead                       | 416    | 0.71  | 0.2    | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-059M-0201-SO | Magnesium                  | 3470   | 2     | 0.61   | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Manganese                  | 1100   | 0.26  | 0.082  | mg/kg | J-        | Q, *III, A         |
| DA1SB-059M-0201-SO | Nickel                     | 40.7   | 0.31  | 0.092  | mg/kg | J         | *III, A            |
| DA1SB-059M-0201-SO | Selenium                   | 2.1    | 2.1   | 0.36   | mg/kg | J-        | Q                  |
| DA1SB-059M-0201-SO | Sodium                     | 84.2   | 13    | 4.1    | mg/kg | J         | С                  |
| DA1SB-059M-0201-SO | Thallium                   | 2      | 0.71  | 0.2    | mg/kg | J-        | C, Q               |

| Sample             | Analyte                      | Result | LOQ  | DL    | Units | Qualifier | Code       |
|--------------------|------------------------------|--------|------|-------|-------|-----------|------------|
| DA1SB-059M-0201-SO | Vanadium                     | 16.5   | 0.17 | 0.056 | mg/kg | l         | *III, A    |
| DA1SB-059M-0201-SO | Zinc                         | 364    | 0.61 | 0.2   | mg/kg | J-        | Q, *III, A |
| DA1SB-059M-0201-SO | Hexavalent Chromium          | 1.9    | 6.5  | 1.9   | mg/kg | UJ        | C, Q       |
| DA1SB-059M-0201-SO | Endrin aldehyde              | 1.1    | 4.1  | 1.1   | ug/kg | UJ        | Q          |
| DA1SB-059M-0201-SO | 1,2,4-Trichlorobenzene       | 21     | 410  | 21    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 1,2-Dichlorobenzene          | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 1,3-Dichlorobenzene          | 20     | 410  | 20    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 1,4-Dichlorobenzene          | 19     | 410  | 19    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,4,5-Trichlorophenol        | 130    | 510  | 130   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,4,6-Trichlorophenol        | 130    | 510  | 130   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,4-Dichlorophenol           | 120    | 510  | 120   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,4-Dimethylphenol           | 100    | 410  | 100   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,4-Dinitrophenol            | 700    | 2000 | 700   | ug/kg | UJ        | Н, С       |
| DA1SB-059M-0201-SO | 2,4-Dinitrotoluene           | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2,6-Dinitrotoluene           | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Chloronaphthalene          | 23     | 410  | 23    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Chlorophenol               | 350    | 510  | 350   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Methyl-4,6-dinitrophenol   | 280    | 1000 | 280   | ug/kg | UJ        | Н, С       |
| DA1SB-059M-0201-SO | 2-Methylnaphthalene          | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Methylphenol               | 430    | 1000 | 430   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Nitroaniline               | 23     | 410  | 23    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 2-Nitrophenol                | 290    | 510  | 290   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 3,3'-Dichlorobenzidine       | 150    | 510  | 150   | ug/kg | UJ        | Н, С       |
| DA1SB-059M-0201-SO | 3-Nitroaniline               | 22     | 1000 | 22    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Bromophenyl phenyl ether   | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Chloro-3-methylphenol      | 390    | 510  | 390   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Chloroaniline              | 40     | 410  | 40    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Chlorophenyl phenyl ether  | 27     | 410  | 27    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Methylphenol               | 660    | 2000 | 660   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | 4-Nitroaniline               | 31     | 1000 | 31    | ug/kg | UJ        | Н, С       |
| DA1SB-059M-0201-SO | 4-Nitrophenol                | 410    | 1000 | 410   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Acenaphthene                 | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Acenaphthylene               | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Anthracene                   | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzo(a)anthracene           | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzo(a)pyrene               | 23     | 410  | 23    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzo(b)fluoranthene         | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzo(g,h,i)perylene         | 22     | 410  | 22    | ug/kg | UJ        | Н, С       |
| DA1SB-059M-0201-SO | Benzo(k)fluoranthene         | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzoic acid                 | 300    | 1000 | 300   | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Benzyl alcohol               | 85     | 1000 | 85    | ug/kg | R         | C          |
| DA1SB-059M-0201-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | 23    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Bis(2-chloroethyl) ether     | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Bis(2-chloroisopropyl) ether | 31     | 410  | 31    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Bis(2-ethylhexyl) phthalate  | 89     | 1000 | 89    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Butylbenzyl phthalate        | 75     | 410  | 75    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Carbazole                    | 29     | 410  | 29    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Chrysene                     | 26     | 410  | 26    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Dibenzo(a,h)anthracene       | 22     | 410  | 22    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Dibenzofuran                 | 25     | 410  | 25    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Diethyl phthalate            | 65     | 410  | 65    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Dimethyl phthalate           | 64     | 410  | 64    | ug/kg | UJ        | Н          |
| DA1SB-059M-0201-SO | Di-n-butyl phthalate         | 110    | 410  | 81    | ug/kg | J-        | Н          |

| Sample             | Analyte                    | Result | LOQ   | DL     | Units | Qualifier | Code               |
|--------------------|----------------------------|--------|-------|--------|-------|-----------|--------------------|
| DA1SB-059M-0201-SO | Di-n-octyl phthalate       | 60     | 410   | 60     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Fluoranthene               | 27     | 410   | 27     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Fluorene                   | 26     | 410   | 26     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Hexachlorobenzene          | 29     | 410   | 29     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Hexachlorobutadiene        | 63     | 410   | 63     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Hexachlorocyclopentadiene  | 53     | 410   | 53     | ug/kg | R         | С                  |
| DA1SB-059M-0201-SO | Hexachloroethane           | 34     | 410   | 34     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Indeno(1,2,3-cd)pyrene     | 23     | 410   | 23     | ug/kg | UJ        | Н, С               |
| DA1SB-059M-0201-SO | Isophorone                 | 51     | 410   | 51     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Naphthalene                | 21     | 410   | 21     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Nitrobenzene               | 60     | 410   | 60     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | N-Nitroso-di-n-propylamine | 72     | 410   | 72     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | N-Nitrosodiphenylamine     | 51     | 820   | 51     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Pentachlorophenol          | 250    | 1000  | 250    | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Phenanthrene               | 27     | 410   | 27     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Phenol                     | 160    | 510   | 160    | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Pyrene                     | 27     | 410   | 27     | ug/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | 0.08   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | 0.09   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | R         | D                  |
| DA1SB-059M-0201-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | R         | D                  |
| DA1SB-059M-0201-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 2-Nitrotoluene             | 0.09   | 0.44  | 0.09   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | 0.09   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | НМХ                        | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04   | mg/kg | R         | D                  |
| DA1SB-059M-0201-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Nitroguanidine             | 0.06   | 0.16  | 0.06   | mg/kg | UJ        | H, *III            |
| DA1SB-059M-0201-SO | PETN                       | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | RDX                        | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Tetryl                     | 0.09   | 0.44  | 0.09   | mg/kg | UJ        | Н                  |
| DA1SB-059M-0201-SO | Cyanide                    | 0.11   | 0.39  | 0.11   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | Aluminum                   | 13300  | 0.24  | 0.081  | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | Antimony                   | 0.16   | 0.55  | 0.16   | mg/kg | R         | Q                  |
| DA1SB-063M-0202-SO | Barium                     | 56.6   | 0.055 | 0.016  | mg/kg | J         | *III <i>,</i> A    |
| DA1SB-063M-0202-SO | Beryllium                  | 0.43   | 0.024 | 0.0081 | mg/kg | J         | *III, A            |
| DA1SB-063M-0202-SO | Cadmium                    | 0.2    | 0.2   | 0.2    | mg/kg | UJ        | C, Q, \$           |
| DA1SB-063M-0202-SO | Calcium                    | 27500  | 1     | 0.12   | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | Chromium                   | 22.6   | 0.13  | 0.038  | mg/kg | J-        | Q, *III, A         |
| DA1SB-063M-0202-SO | Cobalt                     | 9.4    | 0.099 | 0.03   | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | Copper                     | 16.8   | 0.4   | 0.12   | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | Magnesium                  | 7180   | 0.81  | 0.24   | mg/kg | J-        | Q, *III, A         |
| DA1SB-063M-0202-SO | Manganese                  | 299    | 0.1   | 0.032  | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | Nickel                     | 22.1   | 0.12  | 0.036  | mg/kg | J         | *III, A            |
| DA1SB-063M-0202-SO | Selenium                   | 0.53   | 0.85  | 0.14   | mg/kg | U         | В                  |
| DA1SB-063M-0202-SO | Silver                     | 0.1    | 0.11  | 0.1    | mg/kg | U         | Ş                  |
| DA1SB-063M-0202-SO | Sodium                     | 82.7   | 13    | 4      | mg/kg | J         | С                  |
| DA1SB-063M-0202-SO | Thallium                   | 2      | 0.28  | 0.081  | mg/kg | J-        | Q                  |
| DA1SB-063M-0202-SO | Vanadium                   | 16.9   | 0.069 | 0.022  | mg/kg | J         | *III <i>,</i> A    |

| Sample             | Analyte                    | Result | LOQ   | DL     | Units | Qualifier | Code               |
|--------------------|----------------------------|--------|-------|--------|-------|-----------|--------------------|
| DA1SB-063M-0202-SO | Zinc                       | 51.1   | 0.24  | 0.081  | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-063M-0202-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 1,3-Dinitrobenzene         | 0.079  | 0.44  | 0.079  | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 2-Nitrotoluene             | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 3,5-Dinitroaniline         | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | НМХ                        | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | Nitroguanidine             | 0.059  | 0.16  | 0.059  | mg/kg | UJ        | H, *III            |
| DA1SB-063M-0202-SO | PETN                       | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | RDX                        | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н                  |
| DA1SB-063M-0202-SO | Tetryl                     | 0.089  | 0.44  | 0.089  | mg/kg | UJ        | Н                  |
| DA1SB-068D-0201-SO | 2-Hexanone                 | 70     | 520   | 70     | ug/kg | R         | C                  |
| DA1SB-068D-0201-SO | 4-Methyl-2-pentanone       | 85     | 520   | 85     | ug/kg | UJ        | С                  |
| DA1SB-068D-0201-SO | Acetone                    | 65     | 1000  | 65     | ug/kg | UJ        | C                  |
| DA1SB-068D-0201-SO | Chloroethane               | 20     | 100   | 20     | ug/kg | R         | С                  |
| DA1SB-068D-0201-SO | Chloromethane              | 26     | 100   | 26     | ug/kg | R         | С                  |
| DA1SB-068D-0201-SO | m,p-Xylenes                | 19     | 100   | 19     | ug/kg | UJ        | С                  |
| DA1SB-068M-0201-SO | Mercury                    | 0.019  | 0.008 | 0.0024 | mg/kg | J-        | A                  |
| DA1SB-068M-0201-SO | Aluminum                   | 10900  | 0.24  | 0.081  | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Antimony                   | 0.49   | 0.55  | 0.16   | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Arsenic                    | 5.4    | 0.91  | 0.26   | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | Beryllium                  | 0.42   | 0.024 | 0.0081 | mg/kg | J-        | A                  |
| DA1SB-068M-0201-SO | Cadmium                    | 0.096  | 0.043 | 0.012  | mg/kg | J-        | C, Q               |
| DA1SB-068M-0201-SO | Calcium                    | 420    | 1     | 0.12   | mg/kg | J-        | А                  |
| DA1SB-068M-0201-SO | Chromium                   | 49.1   | 0.13  | 0.038  | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | Cobalt                     | 8      | 0.099 | 0.03   | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | Copper                     | 21.2   | 0.4   | 0.12   | mg/kg | J-        | A                  |
| DA1SB-068M-0201-SO | Lead                       | 24.5   | 0.28  | 0.081  | mg/kg | J-        | A                  |
| DA1SB-068M-0201-SO | Magnesium                  | 2590   | 0.81  | 0.24   | mg/kg | J-        | A                  |
| DA1SB-068M-0201-SO | Manganese                  | 293    | 0.1   | 0.032  | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Nickel                     | 15.9   | 0.12  | 0.036  | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | Potassium                  | 1000   | 36    | 11     | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Selenium                   | 0.23   | 0.85  | 0.14   | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Silver                     | 0.1    | 0.11  | 0.1    | mg/kg | UJ        | Q, \$              |
| DA1SB-068M-0201-SO | Sodium                     | 45.3   | 13    | 4      | mg/kg | J-        | C, Q               |
| DA1SB-068M-0201-SO | Thallium                   | 1.5    | 0.28  | 0.081  | mg/kg | J-        | Q                  |
| DA1SB-068M-0201-SO | Vanadium                   | 15.2   | 0.069 | 0.022  | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | Zinc                       | 51.6   | 0.24  | 0.081  | mg/kg | J-        | Q, A               |
| DA1SB-068M-0201-SO | 1,2,4-Trichlorobenzene     | 21     | 400   | 21     | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 1,2-Dichlorobenzene        | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 1,3-Dichlorobenzene        | 20     | 400   | 20     | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 1,4-Dichlorobenzene        | 19     | 400   | 19     | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 2,4,5-Trichlorophenol      | 130    | 500   | 130    | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 2,4,6-Trichlorophenol      | 130    | 500   | 130    | ug/kg | UJ        | Н                  |
| DA1SB-068M-0201-SO | 2,4-Dichlorophenol         | 120    | 500   | 120    | ug/kg | UJ        | Н                  |

| Sample             | Analyte                      | Result | loq  | DL  | Units   | Qualifier | Code   |
|--------------------|------------------------------|--------|------|-----|---------|-----------|--------|
| DA1SB-068M-0201-SO | 2,4-Dimethylphenol           | 100    | 400  | 100 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2,4-Dinitrophenol            | 700    | 2000 | 700 | ug/kg   | UJ        | Н, С   |
| DA1SB-068M-0201-SO | 2,4-Dinitrotoluene           | 24     | 400  | 24  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2,6-Dinitrotoluene           | 24     | 400  | 24  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Chloronaphthalene          | 23     | 400  | 23  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Chlorophenol               | 340    | 500  | 340 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Methyl-4,6-dinitrophenol   | 270    | 1000 | 270 | ug/kg   | UJ        | Н, С   |
| DA1SB-068M-0201-SO | 2-Methylnaphthalene          | 25     | 400  | 25  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Methylphenol               | 420    | 1000 | 420 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Nitroaniline               | 23     | 400  | 23  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 2-Nitrophenol                | 280    | 500  | 280 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 3,3'-Dichlorobenzidine       | 150    | 500  | 150 | ug/kg   | UJ        | Н, С   |
| DA1SB-068M-0201-SO | 3-Nitroaniline               | 22     | 1000 | 22  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Bromophenyl phenyl ether   | 25     | 400  | 25  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Chloro-3-methylphenol      | 380    | 500  | 380 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Chloroaniline              | 39     | 400  | 39  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Chlorophenyl phenyl ether  | 26     | 400  | 26  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Methylphenol               | 660    | 2000 | 660 | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | 4-Nitroaniline               | 30     | 1000 | 30  | ug/kg   | UJ        | H, C   |
| DA1SB-068M-0201-SO | 4-Nitrophenol                | 400    | 1000 | 400 | ug/kg   | UJ        | ,<br>H |
| DA1SB-068M-0201-SO | Acenaphthene                 | 24     | 400  | 24  | ug/kg   | UJ        | Н      |
| DA1SB-068M-0201-SO | Acenaphthylene               | 24     | 400  | 24  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Anthracene                   | 24     | 400  | 24  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Benzo(a)anthracene           | 25     | 400  | 25  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Benzo(a)pyrene               | 23     | 400  | 23  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Benzo(b)fluoranthene         | 25     | 400  | 25  | ug/kg   | U.I       | H      |
| DA1SB-068M-0201-SO | Benzo(g.h.i)pervlene         | 22     | 400  | 22  | ug/kg   | UJ        | H. C   |
| DA1SB-068M-0201-SO | Benzo(k)fluoranthene         | 25     | 400  | 25  | ug/kg   | U.I       | н      |
| DA1SB-068M-0201-SO | Benzoic acid                 | 290    | 990  | 290 | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Benzyl alcohol               | 84     | 1000 | 84  | ug/kg   | R         | C      |
| DA1SB-068M-0201-SO | Bis(2-chloroethoxy)methane   | 23     | 400  | 23  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Bis(2-chloroethyl) ether     | 25     | 400  | 25  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Bis(2-chloroisopropyl) ether | 30     | 400  | 30  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000 | 88  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Butylbenzyl phthalate        | 74     | 400  | 74  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Carbazole                    | 28     | 400  | 28  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Chrysene                     | 25     | 400  | 25  | ug/kg   | U.I       | H      |
| DA1SB-068M-0201-SO | Dibenzo(a.h)anthracene       | 22     | 400  | 22  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Dibenzofuran                 | 24     | 400  | 24  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Diethyl phthalate            | 65     | 400  | 65  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Dimethyl phthalate           | 64     | 400  | 64  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Di-n-butyl phthalate         | 85     | 400  | 80  | ug/kg   | l-        | Н      |
| DA1SB-068M-0201-SO | Di-n-octyl phthalate         | 60     | 400  | 60  | ug/kg   | UI        | Н      |
| DA1SB-068M-0201-SO | Fluoranthene                 | 26     | 400  | 26  | ug/kg   | UI        | H      |
| DA1SB-068M-0201-SO | Fluorene                     | 25     | 400  | 25  | ug/kg   | UI        | Н      |
| DA1SB-068M-0201-SO | Hexachlorobenzene            | 28     | 400  | 28  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Hexachlorobutadiene          | 63     | 400  | 63  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Hexachlorocyclopentadiene    | 52     | 400  | 52  | ug/kg   | R         | C      |
| DA1SB-068M-0201-SO | Hexachloroethane             | 33     | 400  | 33  | ug/kg   | UJ        | -<br>H |
| DA1SB-068M-0201-SO | Indeno(1.2.3-cd)pyrene       | 23     | 400  | 23  | ug/kg   | UJ        | H. C   |
| DA1SB-068M-0201-SO | Isophorone                   | 50     | 400  | 50  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Naphthalene                  | 21     | 400  | 21  | ug/kg   | UJ        | H      |
| DA1SB-068M-0201-SO | Nitrobenzene                 | 60     | 400  | 60  | ug/kg   | UJ        | H      |
|                    |                              | L      |      |     | סיי וס״ |           |        |

| Sample             | Analyte                    | Result | LOQ   | DL     | Units | Qualifier | Code        |
|--------------------|----------------------------|--------|-------|--------|-------|-----------|-------------|
| DA1SB-068M-0201-SO | N-Nitroso-di-n-propylamine | 71     | 400   | 71     | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | N-Nitrosodiphenylamine     | 50     | 810   | 50     | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Pentachlorophenol          | 240    | 1000  | 240    | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Phenanthrene               | 26     | 400   | 26     | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Phenol                     | 160    | 500   | 160    | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Pyrene                     | 26     | 400   | 26     | ug/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | 0.08   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 2,4,6-Trinitrotoluene      | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | R         | D           |
| DA1SB-068M-0201-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | R         | D           |
| DA1SB-068M-0201-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 2-Nitrotoluene             | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 3,5-Dinitroaniline         | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | нмх                        | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04   | mg/kg | R         | D           |
| DA1SB-068M-0201-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Nitroguanidine             | 0.06   | 0.16  | 0.06   | mg/kg | UJ        | H, *III     |
| DA1SB-068M-0201-SO | PETN                       | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | ,<br>H      |
| DA1SB-068M-0201-SO | RDX                        | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н           |
| DA1SB-068M-0201-SO | Tetrvl                     | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н           |
| DA1SB-070D-0201-SO | 2-Butanone                 | 120    | 580   | 120    | ug/kg | UJ        | Q           |
| DA1SB-070D-0201-SO | 2-Hexanone                 | 79     | 580   | 79     | ug/kg | UJ        | Q           |
| DA1SB-070D-0201-SO | Acetone                    | 73     | 1200  | 73     | ug/kg | UJ        | Q           |
| DA1SB-070M-0204-SO | Mercury                    | 0.01   | 0.008 | 0.0024 | mg/kg | J-        | A           |
| DA1SB-070M-0204-SO | Aluminum                   | 12900  | 0.24  | 0.081  | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Antimony                   | 0.57   | 0.55  | 0.16   | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Arsenic                    | 10.2   | 0.91  | 0.26   | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | Beryllium                  | 0.46   | 0.024 | 0.0081 | mg/kg | J-        | A           |
| DA1SB-070M-0204-SO | Cadmium                    | 0.08   | 0.08  | 0.08   | mg/kg | UJ        | C, B, Q, \$ |
| DA1SB-070M-0204-SO | Calcium                    | 30200  | 1     | 0.12   | mg/kg | J-        | A           |
| DA1SB-070M-0204-SO | Chromium                   | 58.3   | 0.13  | 0.039  | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | Cobalt                     | 9.8    | 0.099 | 0.03   | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | Copper                     | 17.3   | 0.41  | 0.12   | mg/kg | J-        | Â           |
| DA1SB-070M-0204-SO | Lead                       | 10.9   | 0.28  | 0.081  | mg/kg | J-        | A           |
| DA1SB-070M-0204-SO | Magnesium                  | 8010   | 0.81  | 0.24   | mg/kg | J-        | A           |
| DA1SB-070M-0204-SO | Manganese                  | 311    | 0.1   | 0.032  | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Nickel                     | 24.1   | 0.12  | 0.037  | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | Potassium                  | 1860   | 37    | 11     | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Selenium                   | 0.43   | 0.85  | 0.14   | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Silver                     | 0.034  | 0.11  | 0.034  | mg/kg | UJ        | Q           |
| DA1SB-070M-0204-SO | Sodium                     | 78.9   | 13    | 4.1    | mg/kg | J-        | C, Q        |
| DA1SB-070M-0204-SO | Thallium                   | 1.8    | 0.28  | 0.081  | mg/kg | J-        | Q           |
| DA1SB-070M-0204-SO | Vanadium                   | 18.9   | 0.069 | 0.022  | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | Zinc                       | 51.2   | 0.24  | 0.081  | mg/kg | J-        | Q, A        |
| DA1SB-070M-0204-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н           |
| DA1SB-070M-0204-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | 0.08   | mg/kg | UJ        | Н           |
| DA1SB-070M-0204-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | 0.09   | mg/kg | UJ        | Н           |
| DA1SB-070M-0204-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | UJ        | Н           |
| DA1SB-070M-0204-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н           |

| Sample             | Analyte                    | Result | LOQ    | DL     | Units | Qualifier | Code          |
|--------------------|----------------------------|--------|--------|--------|-------|-----------|---------------|
| DA1SB-070M-0204-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | 0.05   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | 2-Nitrotoluene             | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | 3-Nitrotoluene             | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | H, L          |
| DA1SB-070M-0204-SO | 4-Nitrotoluene             | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | НМХ                        | 0.12   | 0.44   | 0.12   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | Nitrobenzene               | 0.04   | 0.44   | 0.04   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | Nitroglycerin              | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | PETN                       | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | RDX                        | 0.16   | 0.44   | 0.16   | mg/kg | UJ        | Н             |
| DA1SB-070M-0204-SO | Tetryl                     | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | Mercury                    | 0.037  | 0.0079 | 0.0024 | mg/kg | J-        | A             |
| DA1SB-072M-0204-SO | Aluminum                   | 6790   | 0.24   | 0.08   | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Antimony                   | 7.6    | 0.54   | 0.16   | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Arsenic                    | 10.7   | 0.91   | 0.26   | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | Beryllium                  | 0.24   | 0.024  | 0.008  | mg/kg | J-        | С, А          |
| DA1SB-072M-0204-SO | Cadmium                    | 0.2    | 0.2    | 0.2    | mg/kg | UJ        | C, B, Q, \$   |
| DA1SB-072M-0204-SO | Calcium                    | 1060   | 1      | 0.12   | mg/kg | J-        | A             |
| DA1SB-072M-0204-SO | Chromium                   | 589    | 0.13   | 0.038  | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | Cobalt                     | 5.9    | 0.099  | 0.03   | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | Copper                     | 26.5   | 0.4    | 0.12   | mg/kg | J-        | A             |
| DA1SB-072M-0204-SO | Lead                       | 13.9   | 0.28   | 0.08   | mg/kg | J-        | A             |
| DA1SB-072M-0204-SO | Magnesium                  | 1750   | 0.8    | 0.24   | mg/kg | J-        | A             |
| DA1SB-072M-0204-SO | Manganese                  | 342    | 0.1    | 0.032  | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Nickel                     | 16     | 0.12   | 0.036  | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | Potassium                  | 1330   | 36     | 11     | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Selenium                   | 0.68   | 0.85   | 0.14   | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Silver                     | 0.034  | 0.11   | 0.034  | mg/kg | UJ        | Q             |
| DA1SB-072M-0204-SO | Sodium                     | 115    | 13     | 4      | mg/kg | J-        | C, Q          |
| DA1SB-072M-0204-SO | Thallium                   | 1.3    | 0.28   | 0.08   | mg/kg | J-        | Q             |
| DA1SB-072M-0204-SO | Vanadium                   | 13.3   | 0.068  | 0.022  | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | Zinc                       | 63.9   | 0.24   | 0.08   | mg/kg | J-        | Q, A          |
| DA1SB-072M-0204-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44   | 0.13   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44   | 0.08   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44   | 0.2    | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | 0.05   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 2-Nitrotoluene             | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 3-Nitrotoluene             | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | H, L          |
| DA1SB-072M-0204-SO | 4-Nitrotoluene             | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | НМХ                        | 0.12   | 0.44   | 0.12   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | Nitrobenzene               | 0.04   | 0.44   | 0.04   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | Nitroglycerin              | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | PETN                       | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | RDX                        | 0.16   | 0.44   | 0.16   | mg/kg | UJ        | Н             |
| DA1SB-072M-0204-SO | Tetryl                     | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н             |
| DA1SB-074M-0202-SO | Aluminum                   | 5440   | 0.24   | 0.081  | mg/kg | J-        | Q, A          |
| DA1SB-074M-0202-SO | Antimony                   | 2.7    | 1.4    | 0.4    | mg/kg | J-        | C, E, Q, *III |
| DA1SB-074M-0202-SO | Arsenic                    | 6      | 0.91   | 0.26   | mg/kg | J-        | Q             |

| Sample             | Analyte                    | Result | LOQ   | DL     | Units | Qualifier | Code               |
|--------------------|----------------------------|--------|-------|--------|-------|-----------|--------------------|
| DA1SB-074M-0202-SO | Barium                     | 31.5   | 0.054 | 0.016  | mg/kg | J-        | А                  |
| DA1SB-074M-0202-SO | Beryllium                  | 0.24   | 0.024 | 0.0081 | mg/kg | J         | С                  |
| DA1SB-074M-0202-SO | Cadmium                    | 0.31   | 0.11  | 0.03   | mg/kg | J-        | C, E, Q, A         |
| DA1SB-074M-0202-SO | Chromium                   | 176    | 0.13  | 0.038  | mg/kg | J-        | А                  |
| DA1SB-074M-0202-SO | Cobalt                     | 6.8    | 0.25  | 0.076  | mg/kg | J-        | Q, *III <i>,</i> A |
| DA1SB-074M-0202-SO | Copper                     | 12.2   | 1     | 0.3    | mg/kg | J-        | Ε, Α               |
| DA1SB-074M-0202-SO | Iron                       | 13300  | 2     | 0.6    | mg/kg | J-        | Q, A               |
| DA1SB-074M-0202-SO | Lead                       | 7.2    | 0.28  | 0.081  | mg/kg | J-        | Q, *III, A         |
| DA1SB-074M-0202-SO | Magnesium                  | 1790   | 0.81  | 0.24   | mg/kg | J-        | Q, A               |
| DA1SB-074M-0202-SO | Manganese                  | 148    | 0.1   | 0.032  | mg/kg | J-        | А                  |
| DA1SB-074M-0202-SO | Nickel                     | 16.8   | 0.12  | 0.036  | mg/kg | J-        | Q, A               |
| DA1SB-074M-0202-SO | Selenium                   | 0.14   | 0.85  | 0.14   | mg/kg | UJ        | B, Q               |
| DA1SB-074M-0202-SO | Silver                     | 0.086  | 0.28  | 0.086  | mg/kg | UJ        | Q                  |
| DA1SB-074M-0202-SO | Sodium                     | 59.2   | 13    | 4      | mg/kg | J         | С, Е               |
| DA1SB-074M-0202-SO | Thallium                   | 0.65   | 0.7   | 0.2    | mg/kg | J-        | B, Q               |
| DA1SB-074M-0202-SO | Vanadium                   | 10.4   | 0.068 | 0.022  | mg/kg | J-        | А                  |
| DA1SB-074M-0202-SO | Zinc                       | 33     | 0.24  | 0.081  | mg/kg | J         | Q, A               |
| DA1SB-074M-0202-SO | Mercury                    | 0.01   | 0.008 | 0.0024 | mg/kg | J-        | B, E, A            |
| DA1SB-074M-0202-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | 0.08   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 2,4,6-Trinitrotoluene      | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2    | mg/kg | UJ        | Н, С               |
| DA1SB-074M-0202-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н, С               |
| DA1SB-074M-0202-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 2-Nitrotoluene             | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 3,5-Dinitroaniline         | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | НМХ                        | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н, С               |
| DA1SB-074M-0202-SO | PETN                       | 0.5    | 1.5   | 0.5    | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | RDX                        | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н                  |
| DA1SB-074M-0202-SO | Tetryl                     | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| DA1SS-050M-0201-SO | Mercury                    | 0.037  | 0.008 | 0.0024 | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Aluminum                   | 10900  | 0.24  | 0.081  | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Antimony                   | 1.2    | 0.55  | 0.16   | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Arsenic                    | 9.1    | 0.92  | 0.26   | mg/kg | J-        | Q, A               |
| DA1SS-050M-0201-SO | Beryllium                  | 0.38   | 0.024 | 0.0081 | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Cadmium                    | 2.6    | 0.043 | 0.012  | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Calcium                    | 2500   | 1     | 0.12   | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Chromium                   | 110    | 0.13  | 0.039  | mg/kg | J-        | Q, A               |
| DA1SS-050M-0201-SO | Cobalt                     | 7.6    | 0.1   | 0.031  | mg/kg | J-        | Q, A               |
| DA1SS-050M-0201-SO | Copper                     | 188    | 0.41  | 0.12   | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Lead                       | 23.4   | 0.28  | 0.081  | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Magnesium                  | 2860   | 0.81  | 0.24   | mg/kg | J-        | А                  |
| DA1SS-050M-0201-SO | Manganese                  | 407    | 0.1   | 0.033  | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Nickel                     | 18.4   | 0.12  | 0.037  | mg/kg | J-        | Q, A               |
| DA1SS-050M-0201-SO | Potassium                  | 814    | 37    | 11     | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Selenium                   | 0.75   | 0.85  | 0.14   | mg/kg | J-        | Q                  |
| DA1SS-050M-0201-SO | Silver                     | 0.035  | 0.11  | 0.035  | mg/kg | UJ        | Q                  |
| DA1SS-050M-0201-SO | Sodium                     | 31.8   | 13    | 4.1    | mg/kg | J-        | C, Q               |

| Sample             | Analyte                    | Result | LOQ    | DL     | Units | Qualifier | Code       |
|--------------------|----------------------------|--------|--------|--------|-------|-----------|------------|
| DA1SS-050M-0201-SO | Thallium                   | 1.6    | 0.28   | 0.081  | mg/kg | J-        | Q          |
| DA1SS-050M-0201-SO | Vanadium                   | 16.1   | 0.069  | 0.022  | mg/kg | J-        | Q, A       |
| DA1SS-050M-0201-SO | Zinc                       | 191    | 0.24   | 0.081  | mg/kg | J-        | Q, A       |
| DA1SS-050M-0201-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44   | 0.13   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44   | 0.08   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44   | 0.2    | mg/kg | UJ        | H, Q       |
| DA1SS-050M-0201-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | 0.05   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 2-Nitrotoluene             | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 3-Nitrotoluene             | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | 4-Nitrotoluene             | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | НМХ                        | 0.12   | 0.44   | 0.12   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | Nitrobenzene               | 0.04   | 0.44   | 0.04   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | Nitroglycerin              | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | PETN                       | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | RDX                        | 0.16   | 0.44   | 0.16   | mg/kg | UJ        | Н          |
| DA1SS-050M-0201-SO | Tetryl                     | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н          |
| DA1SS-054M-0201-SO | Aluminum                   | 8490   | 0.25   | 0.082  | mg/kg | J-        | Q, A       |
| DA1SS-054M-0201-SO | Antimony                   | 0.92   | 0.55   | 0.16   | mg/kg | J-        | E, Q, *III |
| DA1SS-054M-0201-SO | Arsenic                    | 8.4    | 0.92   | 0.27   | mg/kg | J-        | Q          |
| DA1SS-054M-0201-SO | Barium                     | 52.7   | 0.055  | 0.016  | mg/kg | J-        | A          |
| DA1SS-054M-0201-SO | Cadmium                    | 0.52   | 0.043  | 0.012  | mg/kg | J-        | E, Q, A    |
| DA1SS-054M-0201-SO | Chromium                   | 56.2   | 0.13   | 0.039  | mg/kg | J-        | A          |
| DA1SS-054M-0201-SO | Cobalt                     | 8.9    | 0.1    | 0.031  | mg/kg | J-        | Q, *III, A |
| DA1SS-054M-0201-SO | Copper                     | 16.4   | 0.41   | 0.12   | mg/kg | J-        | Ε, Α       |
| DA1SS-054M-0201-SO | Iron                       | 19400  | 2      | 0.61   | mg/kg | J-        | Q, A       |
| DA1SS-054M-0201-SO | Lead                       | 11.6   | 0.29   | 0.082  | mg/kg | J-        | Q, *III, A |
| DA1SS-054M-0201-SO | Magnesium                  | 1940   | 0.82   | 0.25   | mg/kg | J-        | Q, A       |
| DA1SS-054M-0201-SO | Manganese                  | 398    | 0.1    | 0.033  | mg/kg | J-        | A          |
| DA1SS-054M-0201-SO | Nickel                     | 16.7   | 0.12   | 0.037  | mg/kg | J-        | Q, A       |
| DA1SS-054M-0201-SO | Selenium                   | 2.4    | 0.86   | 0.14   | mg/kg | J         | C, Q       |
| DA1SS-054M-0201-SO | Silver                     | 0.035  | 0.11   | 0.035  | mg/kg | UJ        | Q          |
| DA1SS-054M-0201-SO | Sodium                     | 62.1   | 13     | 4.1    | mg/kg | J         | С, Е       |
| DA1SS-054M-0201-SO | Thallium                   | 0.38   | 0.29   | 0.082  | mg/kg | J-        | B, Q       |
| DA1SS-054M-0201-SO | Vanadium                   | 15.6   | 0.07   | 0.022  | mg/kg | J-        | А          |
| DA1SS-054M-0201-SO | Zinc                       | 121    | 0.25   | 0.082  | mg/kg | J         | Q, A       |
| DA1SS-054M-0201-SO | Mercury                    | 0.032  | 0.0081 | 0.0025 | mg/kg | J-        | Е, А       |
| DA1SS-054M-0201-SO | 2,6-Dinitrotoluene         | 0.071  | 0.51   | 0.071  | mg/kg | UJ        | С          |
| SCSB-037M-0001-SO  | Aluminum                   | 14800  | 0.49   | 0.16   | mg/kg | J-        | Q, A       |

Ravenna Army Ammunition Plant, Sand Creek/ODA1 Data Validation Report

Sand Creek

| Sample            | Analyte                     | Result | LOQ   | DL     | Units | Qualifier | Code               |
|-------------------|-----------------------------|--------|-------|--------|-------|-----------|--------------------|
| SCSB-037M-0001-SO | Antimony                    | 0.93   | 1.1   | 0.32   | mg/kg | J-        | Q, A               |
| SCSB-037M-0001-SO | Arsenic                     | 182    | 1.8   | 0.53   | mg/kg | J-        | Q, *III, A         |
| SCSB-037M-0001-SO | Barium                      | 932    | 0.11  | 0.032  | mg/kg | J-        | A                  |
| SCSB-037M-0001-SO | Beryllium                   | 3.9    | 0.049 | 0.016  | mg/kg | J-        | A                  |
| SCSB-037M-0001-SO | Cadmium                     | 1.6    | 0.085 | 0.024  | mg/kg | J-        | Q, *III            |
| SCSB-037M-0001-SO | Calcium                     | 13900  | 2     | 0.24   | mg/kg | J-        | A                  |
| SCSB-037M-0001-SO | Chromium                    | 112    | 0.26  | 0.077  | mg/kg | J-        | Q, A               |
| SCSB-037M-0001-SO | Cobalt                      | 9      | 0.2   | 0.061  | mg/kg | J-        | Q, *III, A         |
| SCSB-037M-0001-SO | Copper                      | 95.7   | 0.81  | 0.24   | mg/kg | J-        | Q, *III, A         |
| SCSB-037M-0001-SO | Iron                        | 41500  | 4.1   | 1.2    | mg/kg | J-        | A                  |
| SCSB-037M-0001-SO | Lead                        | 325    | 0.57  | 0.16   | mg/kg | J-        | Q, *III, A         |
| SCSB-037M-0001-SO | Magnesium                   | 3050   | 1.6   | 0.49   | mg/kg | J-        | Q, A               |
| SCSB-037M-0001-SO | Manganese                   | 743    | 0.2   | 0.065  | mg/kg | J-        | Q, A               |
| SCSB-037M-0001-SO | Nickel                      | 35.7   | 0.25  | 0.073  | mg/kg | J-        | Q, *III, A         |
| SCSB-037M-0001-SO | Potassium                   | 1020   | 37    | 11     | mg/kg | J-        | Q                  |
| SCSB-037M-0001-SO | Selenium                    | 3.1    | 1.7   | 0.28   | mg/kg | J-        | Q                  |
| SCSB-037M-0001-SO | Sodium                      | 178    | 13    | 4.1    | mg/kg | J-        | Q                  |
| SCSB-037M-0001-SO | Thallium                    | 5.5    | 0.57  | 0.16   | mg/kg | J-        | Q, *III, E         |
| SCSB-037M-0001-SO | Vanadium                    | 41     | 0.14  | 0.045  | mg/kg | J-        | Q, A, E            |
| SCSB-037M-0001-SO | Zinc                        | 298    | 0.49  | 0.16   | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSB-037M-0001-SO | Mercury                     | 0.24   | 0.008 | 0.0024 | mg/kg | J-        | А                  |
| SCSB-037M-0001-SO | 2,4-Dinitrophenol           | 700    | 2000  | 700    | ug/kg | UJ        | С                  |
| SCSB-037M-0001-SO | 3,3'-Dichlorobenzidine      | 150    | 510   | 150    | ug/kg | UJ        | С                  |
| SCSB-037M-0001-SO | Benzyl alcohol              | 84     | 1000  | 84     | ug/kg | UJ        | С                  |
| SCSB-037M-0001-SO | Bis(2-ethylhexyl) phthalate | 88     | 1000  | 88     | ug/kg | U         | В                  |
| SCSB-037M-0001-SO | Hexachlorocyclopentadiene   | 53     | 400   | 53     | ug/kg | UJ        | С                  |
| SCSB-037M-0001-SO | 1,3,5-Trinitrobenzene       | 0.13   | 0.44  | 0.13   | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 1,3-Dinitrobenzene          | 0.081  | 0.44  | 0.081  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 2,4,6-Trinitrotoluene       | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 2,4-Dinitrotoluene          | 0.2    | 0.44  | 0.2    | mg/kg | R         | D                  |
| SCSB-037M-0001-SO | 2,6-Dinitrotoluene          | 0.071  | 0.51  | 0.071  | mg/kg | R         | D                  |
| SCSB-037M-0001-SO | 2-Amino-4,6-dinitrotoluene  | 0.051  | 0.44  | 0.051  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 2-Nitrotoluene              | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 3,5-Dinitroaniline          | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 3-Nitrotoluene              | 0.071  | 0.44  | 0.071  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 4-Amino-2,6-dinitrotoluene  | 0.071  | 0.44  | 0.071  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | 4-Nitrotoluene              | 0.071  | 0.51  | 0.071  | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | НМХ                         | 0.12   | 0.44  | 0.12   | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | Nitrobenzene                | 0.04   | 0.44  | 0.04   | mg/kg | R         | D                  |
| SCSB-037M-0001-SO | Nitroglycerin               | 0.51   | 1.5   | 0.51   | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | PETN                        | 0.51   | 1.5   | 0.51   | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | RDX                         | 0.16   | 0.44  | 0.16   | mg/kg | UJ        | Н                  |
| SCSB-037M-0001-SO | Tetryl                      | 0.091  | 0.44  | 0.091  | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | Aluminum                    | 10900  | 0.24  | 0.08   | mg/kg | J-        | Q, A               |
| SCSB-038M-0005-SO | Antimony                    | 0.63   | 0.54  | 0.16   | mg/kg | J-        | Q, A               |
| SCSB-038M-0005-SO | Arsenic                     | 6.1    | 0.91  | 0.26   | mg/kg | J-        | Q, *III, A         |
| SCSB-038M-0005-SO | Barium                      | 43.8   | 0.054 | 0.016  | mg/kg | J-        | A                  |
| SCSB-038M-0005-SO | Beryllium                   | 0.38   | 0.024 | 0.008  | mg/kg | J-        | A                  |
| SCSB-038M-0005-SO | Cadmium                     | 0.012  | 0.042 | 0.012  | mg/kg | UJ        | C, Q, *III         |
| SCSB-038M-0005-SO | Calcium                     | 10900  | 1     | 0.12   | mg/kg | J-        | A                  |
| SCSB-038M-0005-SO | Chromium                    | 156    | 0.13  | 0.038  | mg/kg | J-        | Q, A               |
| SCSB-038M-0005-SO | Cobalt                      | 9      | 0.099 | 0.03   | mg/kg | J-        | Q, *III, A         |
| SCSB-038M-0005-SO | Copper                      | 18.6   | 0.4   | 0.12   | mg/kg | J-        | Q, *III, A         |

| Sample            | Analyte                    | Result | LOQ    | DL     | Units | Qualifier | Code               |
|-------------------|----------------------------|--------|--------|--------|-------|-----------|--------------------|
| SCSB-038M-0005-SO | Iron                       | 29600  | 2      | 0.6    | mg/kg | J-        | A                  |
| SCSB-038M-0005-SO | Lead                       | 5.3    | 0.28   | 0.08   | mg/kg | J-        | Q, *III, A         |
| SCSB-038M-0005-SO | Magnesium                  | 6840   | 0.8    | 0.24   | mg/kg | J-        | Q, A               |
| SCSB-038M-0005-SO | Manganese                  | 369    | 0.1    | 0.032  | mg/kg | J-        | Q, A               |
| SCSB-038M-0005-SO | Nickel                     | 20.4   | 0.12   | 0.036  | mg/kg | J-        | Q, *III, A         |
| SCSB-038M-0005-SO | Potassium                  | 2020   | 36     | 11     | mg/kg | J-        | Q                  |
| SCSB-038M-0005-SO | Selenium                   | 0.6    | 0.85   | 0.14   | mg/kg | J-        | Q                  |
| SCSB-038M-0005-SO | Sodium                     | 134    | 13     | 4      | mg/kg | J-        | Q                  |
| SCSB-038M-0005-SO | Thallium                   | 1.7    | 0.28   | 0.08   | mg/kg | J-        | Q, *III, E, E      |
| SCSB-038M-0005-SO | Vanadium                   | 14.3   | 0.068  | 0.022  | mg/kg | J-        | Q, A, E            |
| SCSB-038M-0005-SO | Zinc                       | 48.1   | 0.24   | 0.08   | mg/kg | J-        | Q, *III, A         |
| SCSB-038M-0005-SO | Mercury                    | 0.0079 | 0.0079 | 0.0024 | mg/kg | J-        | A                  |
| SCSB-038M-0005-SO | 2,4-Dinitrophenol          | 690    | 2000   | 690    | ug/kg | UJ        | С                  |
| SCSB-038M-0005-SO | 3,3'-Dichlorobenzidine     | 150    | 500    | 150    | ug/kg | UJ        | С                  |
| SCSB-038M-0005-SO | Benzyl alcohol             | 84     | 1000   | 84     | ug/kg | UJ        | С                  |
| SCSB-038M-0005-SO | Hexachlorocyclopentadiene  | 52     | 400    | 52     | ug/kg | UJ        | С                  |
| SCSB-038M-0005-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44   | 0.13   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44   | 0.08   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44   | 0.2    | mg/kg | R         | D                  |
| SCSB-038M-0005-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5    | 0.07   | mg/kg | R         | D                  |
| SCSB-038M-0005-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | 0.05   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 2-Nitrotoluene             | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 3-Nitrotoluene             | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | 4-Nitrotoluene             | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | НМХ                        | 0.12   | 0.44   | 0.12   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | Nitrobenzene               | 0.04   | 0.44   | 0.04   | mg/kg | R         | D                  |
| SCSB-038M-0005-SO | Nitroglycerin              | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | PETN                       | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | RDX                        | 0.16   | 0.44   | 0.16   | mg/kg | UJ        | Н                  |
| SCSB-038M-0005-SO | Tetryl                     | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Aluminum                   | 14000  | 0.61   | 0.2    | mg/kg | J-        | Q, A               |
| SCSB-042M-0003-SO | Antimony                   | 0.4    | 1.4    | 0.4    | mg/kg | R         | Q                  |
| SCSB-042M-0003-SO | Arsenic                    | 15.4   | 2.3    | 0.66   | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSB-042M-0003-SO | Barium                     | 69.3   | 0.14   | 0.04   | mg/kg | J-        | A                  |
| SCSB-042M-0003-SO | Beryllium                  | 0.49   | 0.061  | 0.02   | mg/kg | J-        | С, А               |
| SCSB-042M-0003-SO | Cadmium                    | 0.03   | 0.11   | 0.03   | mg/kg | UJ        | C, Q, *III         |
| SCSB-042M-0003-SO | Calcium                    | 5360   | 2.5    | 0.3    | mg/kg | J-        | A                  |
| SCSB-042M-0003-SO | Chromium                   | 19.8   | 0.32   | 0.096  | mg/kg | J-        | Q, A               |
| SCSB-042M-0003-SO | Cobalt                     | 13     | 0.25   | 0.076  | mg/kg | J-        | Q, *III, A         |
| SCSB-042M-0003-SO | Copper                     | 21     | 1      | 0.3    | mg/kg | J-        | Q, *III, A         |
| SCSB-042M-0003-SO | Iron                       | 35600  | 5.1    | 1.5    | mg/kg | J-        | A                  |
| SCSB-042M-0003-SO | Lead                       | 11.2   | 0.71   | 0.2    | mg/kg | J-        | Q, *III, A         |
| SCSB-042M-0003-SO | Magnesium                  | 5490   | 2      | 0.61   | mg/kg | J-        | Q, A               |
| SCSB-042M-0003-SO | Manganese                  | 451    | 0.25   | 0.081  | mg/kg | J-        | Q, A               |
| SCSB-042M-0003-SO | Nickel                     | 30.7   | 0.31   | 0.091  | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSB-042M-0003-SO | Potassium                  | 1880   | 36     | 11     | mg/kg | J-        | Q                  |
| SCSB-042M-0003-SO | Selenium                   | 0.35   | 2.1    | 0.35   | mg/kg | UJ        | Q                  |
| SCSB-042M-0003-SO | Sodium                     | 92     | 13     | 4      | mg/kg | J-        | C, Q               |
| SCSB-042M-0003-SO | Thallium                   | 2.1    | 0.71   | 0.2    | mg/kg | J-        | C, Q, *III, E      |
| SCSB-042M-0003-SO | Vanadium                   | 20.5   | 0.17   | 0.056  | mg/kg | J-        | Q, A, E            |

| Sample            | Analyte                      | Result | LOQ   | DL     | Units | Qualifier | Code               |
|-------------------|------------------------------|--------|-------|--------|-------|-----------|--------------------|
| SCSB-042M-0003-SO | Zinc                         | 67     | 0.61  | 0.2    | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSB-042M-0003-SO | Mercury                      | 0.008  | 0.008 | 0.0024 | mg/kg | J-        | Α                  |
| SCSB-042M-0003-SO | 1,2,4-Trichlorobenzene       | 21     | 400   | 21     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 1,2-Dichlorobenzene          | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 1,3-Dichlorobenzene          | 20     | 400   | 20     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 1,4-Dichlorobenzene          | 19     | 400   | 19     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4,5-Trichlorophenol        | 130    | 510   | 130    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4,6-Trichlorophenol        | 130    | 510   | 130    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4-Dichlorophenol           | 120    | 510   | 120    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4-Dimethylphenol           | 100    | 400   | 100    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4-Dinitrophenol            | 700    | 2000  | 700    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,4-Dinitrotoluene           | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2,6-Dinitrotoluene           | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Chloronaphthalene          | 23     | 400   | 23     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Chlorophenol               | 340    | 510   | 340    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Methyl-4,6-dinitrophenol   | 270    | 1000  | 270    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Methylnaphthalene          | 49     | 400   | 25     | ug/kg | J-        | Н                  |
| SCSB-042M-0003-SO | 2-Methylphenol               | 420    | 1000  | 420    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Nitroaniline               | 23     | 400   | 23     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 2-Nitrophenol                | 280    | 510   | 280    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 3,3'-Dichlorobenzidine       | 150    | 510   | 150    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 3-Nitroaniline               | 22     | 1000  | 22     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Bromophenyl phenyl ether   | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Chloro-3-methylphenol      | 380    | 510   | 380    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Chloroaniline              | 39     | 400   | 39     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Chlorophenyl phenyl ether  | 26     | 400   | 26     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Methylphenol               | 660    | 2000  | 660    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | 4-Nitroaniline               | 30     | 1000  | 30     | ug/kg | UJ        | H. C               |
| SCSB-042M-0003-SO | 4-Nitrophenol                | 400    | 1000  | 400    | ug/kg | UJ        | H                  |
| SCSB-042M-0003-SO | Acenaphthene                 | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Acenaphthylene               | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Anthracene                   | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzo(a)anthracene           | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzo(a)pyrene               | 23     | 400   | 23     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzo(b)fluoranthene         | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzo(g,h,i)pervlene         | 22     | 400   | 22     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzo(k)fluoranthene         | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzoic acid                 | 290    | 990   | 290    | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Benzyl alcohol               | 84     | 1000  | 84     | ug/kg | UJ        | H, C               |
| SCSB-042M-0003-SO | Bis(2-chloroethoxy)methane   | 23     | 400   | 23     | ug/kg | UJ        | H                  |
| SCSB-042M-0003-SO | Bis(2-chloroethyl) ether     | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Bis(2-chloroisopropyl) ether | 30     | 400   | 30     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000  | 88     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Butylbenzyl phthalate        | 74     | 400   | 74     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Carbazole                    | 28     | 400   | 28     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Chrysene                     | 25     | 400   | 25     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Dibenzo(a,h)anthracene       | 22     | 400   | 22     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Dibenzofuran                 | 24     | 400   | 24     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Diethyl phthalate            | 65     | 400   | 65     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Dimethyl phthalate           | 64     | 400   | 64     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Di-n-butyl phthalate         | 100    | 400   | 80     | ug/kg | J-        | Н                  |
| SCSB-042M-0003-SO | Di-n-octyl phthalate         | 60     | 400   | 60     | ug/kg | UJ        | Н                  |
| SCSB-042M-0003-SO | Fluoranthene                 | 26     | 400   | 26     | ug/kg | UJ        | Н                  |
| Sample            | Analyte                    | Result | LOQ   | DL    | Units | Qualifier | Code       |
|-------------------|----------------------------|--------|-------|-------|-------|-----------|------------|
| SCSB-042M-0003-SO | Fluorene                   | 25     | 400   | 25    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Hexachlorobenzene          | 28     | 400   | 28    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Hexachlorobutadiene        | 63     | 400   | 63    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Hexachlorocyclopentadiene  | 53     | 400   | 53    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Hexachloroethane           | 33     | 400   | 33    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Indeno(1,2,3-cd)pyrene     | 23     | 400   | 23    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Isophorone                 | 51     | 400   | 51    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Naphthalene                | 35     | 400   | 21    | ug/kg | J-        | Н          |
| SCSB-042M-0003-SO | Nitrobenzene               | 60     | 400   | 60    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | N-Nitroso-di-n-propylamine | 71     | 400   | 71    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | N-Nitrosodiphenylamine     | 51     | 810   | 51    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Pentachlorophenol          | 240    | 1000  | 240   | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Phenanthrene               | 34     | 400   | 26    | ug/kg | J-        | Н          |
| SCSB-042M-0003-SO | Phenol                     | 160    | 510   | 160   | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Pyrene                     | 26     | 400   | 26    | ug/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | 0.08  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | 0.09  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2   | mg/kg | R         | D          |
| SCSB-042M-0003-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | 0.07  | mg/kg | R         | D          |
| SCSB-042M-0003-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 2-Nitrotoluene             | 0.09   | 0.44  | 0.09  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | 0.09  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 3-Nitrotoluene             | 0.07   | 0.44  | 0.07  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | 0.07  | mg/kg | UJ        | Н, С       |
| SCSB-042M-0003-SO | 4-Nitrotoluene             | 0.07   | 0.5   | 0.07  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | НМХ                        | 0.12   | 0.44  | 0.12  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Nitrobenzene               | 0.04   | 0.44  | 0.04  | mg/kg | R         | D          |
| SCSB-042M-0003-SO | Nitroglycerin              | 0.5    | 1.5   | 0.5   | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | PETN                       | 0.5    | 1.5   | 0.5   | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | RDX                        | 0.16   | 0.44  | 0.16  | mg/kg | UJ        | Н          |
| SCSB-042M-0003-SO | Tetryl                     | 0.09   | 0.44  | 0.09  | mg/kg | UJ        | Н          |
| SCSB-048D-0001-SO | Carbon disulfide           | 16     | 110   | 16    | ug/kg | UJ        | С          |
| SCSB-048D-0001-SO | Dibromochloromethane       | 8.5    | 53    | 8.5   | ug/kg | UJ        | С          |
| SCSB-048D-0001-SO | trans-1,3-Dichloropropene  | 7.4    | 110   | 7.4   | ug/kg | UJ        | С          |
| SCSB-048M-0001-SO | Aluminum                   | 13000  | 0.24  | 0.081 | mg/kg | J-        | Q, A       |
| SCSB-048M-0001-SO | Antimony                   | 1.5    | 0.55  | 0.16  | mg/kg | J-        | Q, *III    |
| SCSB-048M-0001-SO | Arsenic                    | 15     | 0.91  | 0.26  | mg/kg | J         | E          |
| SCSB-048M-0001-SO | Barium                     | 137    | 0.055 | 0.016 | mg/kg | J-        | A          |
| SCSB-048M-0001-SO | Cadmium                    | 0.012  | 0.043 | 0.012 | mg/kg | UJ        | C, Q, *III |
| SCSB-048M-0001-SO | Calcium                    | 37100  | 1     | 0.12  | mg/kg | J-        | А          |
| SCSB-048M-0001-SO | Chromium                   | 109    | 0.13  | 0.038 | mg/kg | J-        | А          |
| SCSB-048M-0001-SO | Cobalt                     | 6      | 0.099 | 0.03  | mg/kg | J-        | Q          |
| SCSB-048M-0001-SO | Copper                     | 44.8   | 0.4   | 0.12  | mg/kg | J-        | Q          |
| SCSB-048M-0001-SO | Lead                       | 34.5   | 0.28  | 0.081 | mg/kg | J+        | Q, *III    |
| SCSB-048M-0001-SO | Magnesium                  | 3580   | 0.81  | 0.24  | mg/kg | J-        | A          |
| SCSB-048M-0001-SO | Manganese                  | 1150   | 0.1   | 0.032 | mg/kg | J-        | A          |
| SCSB-048M-0001-SO | Nickel                     | 88.1   | 0.12  | 0.036 | mg/kg | J-        | Q, A       |
| SCSB-048M-0001-SO | Thallium                   | 1.6    | 0.28  | 0.081 | mg/kg | J-        | E, Q       |
| SCSB-048M-0001-SO | Zinc                       | 41.3   | 0.24  | 0.081 | mg/kg | J-        | Q, A       |
| SCSB-048M-0001-SO | Hexavalent Chromium        | 1.9    | 6.5   | 1.9   | mg/kg | UJ        | C, Q       |
| SCSB-048M-0001-SO | Endrin                     | 2      | 12    | 2     | ug/kg | UJ        | С          |
| SCSB-048M-0001-SO | 1,2,4-Trichlorobenzene     | 21     | 400   | 21    | ug/kg | UJ        | Н          |

| Sample             | Analyte                      | Result   | LOQ  | DL       | Units          | Qualifier | Code    |
|--------------------|------------------------------|----------|------|----------|----------------|-----------|---------|
| SCSB-048M-0001-SO  | 1,2-Dichlorobenzene          | 24       | 400  | 24       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 1,3-Dichlorobenzene          | 20       | 400  | 20       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 1,4-Dichlorobenzene          | 19       | 400  | 19       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2,4,5-Trichlorophenol        | 130      | 500  | 130      | ug/kg          | UJ        | Н, С    |
| SCSB-048M-0001-SO  | 2,4,6-Trichlorophenol        | 130      | 500  | 130      | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2,4-Dichlorophenol           | 120      | 500  | 120      | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2,4-Dimethylphenol           | 100      | 400  | 100      | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2,4-Dinitrophenol            | 700      | 2000 | 700      | ug/kg          | R         | С       |
| SCSB-048M-0001-SO  | 2,4-Dinitrotoluene           | 24       | 400  | 24       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2,6-Dinitrotoluene           | 24       | 400  | 24       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2-Chloronaphthalene          | 23       | 400  | 23       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2-Chlorophenol               | 340      | 500  | 340      | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2-Methyl-4,6-dinitrophenol   | 270      | 1000 | 270      | ug/kg          | R         | С       |
| SCSB-048M-0001-SO  | 2-Methylnaphthalene          | 490      | 400  | 25       | ug/kg          | J-        | Н       |
| SCSB-048M-0001-SO  | 2-Methylphenol               | 420      | 1000 | 420      | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2-Nitroaniline               | 23       | 400  | 23       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | 2-Nitrophenol                | 280      | 500  | 280      | ug/kg          | UJ        | H. C    |
| SCSB-048M-0001-SO  | 3.3'-Dichlorobenzidine       | 150      | 500  | 150      | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | 3-Nitroaniline               | 22       | 1000 | 22       | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | 4-Bromophenyl phenyl ether   | 25       | 400  | 25       | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | 4-Chloro-3-methylphenol      | 380      | 500  | 380      | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | 4-Chloroaniline              | 39       | 400  | 39       | ug/kg          |           | Н       |
| SCSB-048M-0001-SO  | 4-Chlorophenyl phenyl ether  | 26       | 400  | 26       | 11g/kg         |           | H       |
| SCSB-048M-0001-SO  | 4-Methylphenol               | 660      | 2000 | 660      | 110/kg         | UI        | H       |
| SCSB-048M-0001-SO  | 4-Nitroaniline               | 30       | 1000 | 30       | ug/kg          |           | H       |
| SCSB-048M-0001-SO  | 4-Nitrophenol                | 400      | 1000 | 400      | 110/kg         | 111       | нс      |
| SCSB-048M-0001-SO  | Acenanhthene                 | 24       | 400  | 24       | ug/kg          | 111       | Н       |
| SCSB-048M-0001-SO  | Acenaphthene                 | 24       | 400  | 24       | ug/kg<br>ug/kg | 0.j       | н       |
| SCSB-048M-0001-SO  | Anthracene                   | 54<br>65 | 400  | 24       | ug/kg          | J-        | н       |
| SCSB-048M-0001-SO  | Renzo(a)anthracene           | 120      | 400  | 24       | ug/kg          | J-        | н       |
| SCSB-048M-0001-SO  | Benzo(a)pyropo               | 120      | 400  | 23       | ug/kg          | J-        |         |
| SCSB-048M-0001-SO  | Benzo(b)fluoranthene         | 130      | 400  | 25       | ug/kg          | J-        | н.      |
| SCSB-04814-0001-50 |                              | 410      | 400  | 23       | ug/kg          | J-        |         |
| SCSB-048M-0001-SO  | Benzo(k)fluoranthono         | 160      | 400  | 22       | ug/kg          | 1         | п, с, г |
| SCSB-048M-0001-SO  |                              | 200      | 2000 | 200      | ug/kg          | J         | п, с, і |
| SCSB-048M-0001-SO  | Benzul alsohal               | 290      | 2000 | 290      | ug/kg          | 01        |         |
| SCSB-048M-0001-SO  | Benzyl alconol               | 04<br>22 | 1000 | 84<br>22 | ug/kg          | 01        | п, с    |
| SCSB-048M-0001-SO  | Bis(2-chloroothyl) other     | 23       | 400  | 23<br>25 | ug/kg          | 01        |         |
| SCSB-048M-0001-SO  | Bis(2-chloroethyl) ether     | 25       | 400  | 25       | ug/kg          |           |         |
| SCSB-048M-0001-SO  | Bis(2-chlorolsopropyi) ether | 30       | 400  | 30       | ug/kg          |           |         |
| SCSB-048M-0001-SO  | Bis(2-ethylnexyl) phthalate  | 88       | 1000 | 88       | ug/kg          | 03        | Н       |
| SCSB-048M-0001-SO  |                              | 74       | 400  | 74       | ug/kg          | 101       | н       |
| SCSB-048M-0001-SO  | Carbazole                    | 35       | 400  | 28       | ug/kg          | J-        | H       |
| SCSB-048M-0001-SO  | Chrysene                     | 180      | 400  | 25       | ug/kg          | J-        | H       |
| SCSB-048M-0001-SO  | Dibenzo(a,n)anthracene       | 22       | 400  | 22       | ug/kg          |           | н, с, і |
| SCSB-048M-0001-SO  | Dibenzofuran                 | 93       | 400  | 24       | ug/kg          | J-        | Н       |
| SCSB-048M-0001-SO  | Dietnyl phthalate            | 65       | 400  | 65       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | Dimethyl phthalate           | 64       | 400  | 64<br>89 | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | Di-n-butyl phthalate         | 120      | 400  | 80       | ug/kg          | J-        | H       |
| SCSB-048M-0001-SO  | Di-n-octyl phthalate         | 60       | 400  | 60       | ug/kg          | UJ        | H       |
| SCSB-048M-0001-SO  | Fluoranthene                 | 240      | 400  | 26       | ug/kg          | J-        | H       |
| SCSB-048M-0001-SO  | Fluorene                     | 41       | 400  | 25       | ug/kg          | J-        | H       |
| SCSB-048M-0001-SO  | Hexachlorobenzene            | 28       | 400  | 28       | ug/kg          | UJ        | Н       |
| SCSB-048M-0001-SO  | Hexachlorobutadiene          | 63       | 400  | 63       | ug/kg          | UJ        | Н       |

| Sample            | Analyte                    | Result | LOQ  | DL    | Units | Qualifier | Code       |
|-------------------|----------------------------|--------|------|-------|-------|-----------|------------|
| SCSB-048M-0001-SO | Hexachlorocyclopentadiene  | 52     | 400  | 52    | ug/kg | R         | С          |
| SCSB-048M-0001-SO | Hexachloroethane           | 33     | 400  | 33    | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Indeno(1,2,3-cd)pyrene     | 49     | 400  | 23    | ug/kg | J-        | H, C, I    |
| SCSB-048M-0001-SO | Isophorone                 | 50     | 400  | 50    | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Naphthalene                | 330    | 400  | 21    | ug/kg | J-        | Н          |
| SCSB-048M-0001-SO | Nitrobenzene               | 60     | 400  | 60    | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | N-Nitroso-di-n-propylamine | 71     | 400  | 71    | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | N-Nitrosodiphenylamine     | 50     | 810  | 50    | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Pentachlorophenol          | 240    | 1000 | 240   | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Phenanthrene               | 280    | 400  | 26    | ug/kg | J-        | Н          |
| SCSB-048M-0001-SO | Phenol                     | 160    | 500  | 160   | ug/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Pyrene                     | 240    | 400  | 26    | ug/kg | J-        | Н          |
| SCSB-048M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44 | 0.13  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44 | 0.08  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44 | 0.09  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | 0.2   | mg/kg | R         | D          |
| SCSB-048M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5  | 0.07  | mg/kg | R         | D          |
| SCSB-048M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44 | 0.05  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 2-Nitrotoluene             | 0.09   | 0.44 | 0.09  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 3,5-Dinitroaniline         | 0.09   | 0.44 | 0.09  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44 | 0.07  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44 | 0.07  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5  | 0.07  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | НМХ                        | 0.12   | 0.44 | 0.12  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Nitrobenzene               | 0.04   | 0.44 | 0.04  | mg/kg | R         | D          |
| SCSB-048M-0001-SO | Nitroglycerin              | 0.5    | 1.5  | 0.5   | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Nitroguanidine             | 0.059  | 0.16 | 0.059 | mg/kg | UJ        | H, *III    |
| SCSB-048M-0001-SO | PETN                       | 0.5    | 1.5  | 0.5   | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | RDX                        | 0.16   | 0.44 | 0.16  | mg/kg | UJ        | Н          |
| SCSB-048M-0001-SO | Tetryl                     | 0.09   | 0.44 | 0.09  | mg/kg | UJ        | Н          |
| SCSD-070M-0001-SD | Aluminum                   | 7240   | 0.61 | 0.2   | mg/kg | J-        | Q, A       |
| SCSD-070M-0001-SD | Antimony                   | 8.4    | 1.4  | 0.41  | mg/kg | J-        | Q, *III    |
| SCSD-070M-0001-SD | Arsenic                    | 9.4    | 2.3  | 0.66  | mg/kg | J         | E          |
| SCSD-070M-0001-SD | Barium                     | 231    | 0.14 | 0.041 | mg/kg | J-        | A          |
| SCSD-070M-0001-SD | Cadmium                    | 2.7    | 0.11 | 0.031 | mg/kg | J-        | C, Q, *III |
| SCSD-070M-0001-SD | Calcium                    | 3240   | 2.5  | 0.31  | mg/kg | J-        | A          |
| SCSD-070M-0001-SD | Chromium                   | 40.9   | 0.32 | 0.097 | mg/kg | J-        | A          |
| SCSD-070M-0001-SD | Cobalt                     | 7.8    | 0.25 | 0.076 | mg/kg | J-        | Q          |
| SCSD-070M-0001-SD | Copper                     | 53.7   | 1    | 0.31  | mg/kg | J-        | Q          |
| SCSD-070M-0001-SD | Lead                       | 104    | 0.71 | 0.2   | mg/kg | J+        | Q, *III    |
| SCSD-070M-0001-SD | Magnesium                  | 2840   | 2    | 0.61  | mg/kg | J-        | A          |
| SCSD-070M-0001-SD | Manganese                  | 512    | 0.25 | 0.081 | mg/kg | J-        | A          |
| SCSD-070M-0001-SD | Nickel                     | 21.1   | 0.31 | 0.092 | mg/kg | J-        | Q, A       |
| SCSD-070M-0001-SD | Thallium                   | 1.2    | 0.71 | 0.2   | mg/kg | J-        | E, Q       |
| SCSD-070M-0001-SD | Zinc                       | 108    | 0.61 | 0.2   | mg/kg | J-        | Q, A       |
| SCSD-070M-0001-SD | Hexavalent Chromium        | 1.9    | 6.5  | 1.9   | mg/kg | UJ        | C, Q       |
| SCSD-070M-0001-SD | 1,2,4-Trichlorobenzene     | 21     | 400  | 21    | ug/kg | UJ        | Н          |
| SCSD-070M-0001-SD | 1,2-Dichlorobenzene        | 44     | 400  | 24    | ug/kg | J-        | Н          |
| SCSD-070M-0001-SD | 1,3-Dichlorobenzene        | 20     | 400  | 20    | ug/kg | UJ        | H          |
| SCSD-070M-0001-SD | 1,4-Dichlorobenzene        | 40     | 400  | 19    | ug/kg | J-        | Н          |
| SCSD-070M-0001-SD | 2,4,5-Trichlorophenol      | 130    | 510  | 130   | ug/kg | UJ        | Н, С       |
| SCSD-070M-0001-SD | 2,4,6-Trichlorophenol      | 130    | 510  | 130   | ug/kg | UJ        | Н          |
| SCSD-070M-0001-SD | 2,4-Dichlorophenol         | 120    | 510  | 120   | ug/kg | UJ        | Н          |

| Sample            | Analyte                            | Result    | LOQ  | DL                   | Units          | Qualifier | Code   |
|-------------------|------------------------------------|-----------|------|----------------------|----------------|-----------|--------|
| SCSD-070M-0001-SD | 2,4-Dimethylphenol                 | 100       | 400  | 100                  | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2,4-Dinitrophenol                  | 700       | 2000 | 700                  | ug/kg          | R         | С      |
| SCSD-070M-0001-SD | 2,4-Dinitrotoluene                 | 24        | 400  | 24                   | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2,6-Dinitrotoluene                 | 24        | 400  | 24                   | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2-Chloronaphthalene                | 23        | 400  | 23                   | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2-Chlorophenol                     | 340       | 510  | 340                  | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2-Methyl-4,6-dinitrophenol         | 270       | 1000 | 270                  | ug/kg          | R         | С      |
| SCSD-070M-0001-SD | 2-Methylnaphthalene                | 43        | 400  | 25                   | ug/kg          | J-        | Н      |
| SCSD-070M-0001-SD | 2-Methylphenol                     | 420       | 1000 | 420                  | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2-Nitroaniline                     | 23        | 400  | 23                   | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 2-Nitrophenol                      | 280       | 510  | 280                  | ug/kg          | UJ        | H, C   |
| SCSD-070M-0001-SD | 3.3'-Dichlorobenzidine             | 150       | 510  | 150                  | ug/kg          | UJ        | ,<br>H |
| SCSD-070M-0001-SD | 3-Nitroaniline                     | 22        | 1000 | 22                   | ug/kg          | UJ        | H, C   |
| SCSD-070M-0001-SD | 4-Bromophenyl phenyl ether         | 25        | 400  | 25                   | ug/kg          | UJ        | H      |
| SCSD-070M-0001-SD | 4-Chloro-3-methylphenol            | 380       | 510  | 380                  | ug/kg          | UJ        | Н      |
| SCSD-070M-0001-SD | 4-Chloroaniline                    | 39        | 400  | 39                   | ug/kg          | U.I       | Н      |
| SCSD-070M-0001-SD | 4-Chlorophenyl phenyl ether        | 26        | 400  | 26                   | ug/kg          | U.J       | H      |
| SCSD-070M-0001-SD | 4-Methylphenol                     | 660       | 2000 | 660                  | ug/kg          | UI        | Н      |
| SCSD-070M-0001-SD | 4-Nitroaniline                     | 30        | 1000 | 30                   | ug/kg          |           | Н      |
| SCSD-070M-0001-SD | 4-Nitrophenol                      | 400       | 1000 | 400                  | ug/kg          |           | H. C   |
| SCSD-070M-0001-SD | Acenanhthene                       | 24        | 400  | 24                   | 110/kg         |           | H H    |
| SCSD-070M-0001-SD | Acenaphthylene                     | 24        | 400  | 24                   | ug/kg          | 111       | н      |
| SCSD-070M-0001-SD | Anthracene                         | 24        | 400  | 24                   | ug/kg          | 111       | н      |
| SCSD-070M-0001-SD | Benzo(a)anthracene                 | 57        | 400  | 25                   | ug/kg          | l-        | н      |
| SCSD-070M-0001-SD | Benzo(a)pyrene                     | 67        | 400  | 23                   | ug/kg<br>ug/kg | ,<br> -   | н      |
| SCSD-070M-0001-SD | Benzo(h)fluoranthene               | 110       | 400  | 25                   | ug/kg          | ,<br> -   | н      |
| SCSD-070M-0001-SD | Benzo(g h i)pervlene               | 26        | 400  | 23                   | ug/kg          | J<br> _   | нс     |
| SCSD-070M-0001-SD | Benzo(k)fluoranthana               | 20<br>47  | 400  | 22                   | ug/kg          | J-        | н, с   |
| SCSD-070M-0001-SD | Benzoic acid                       | 200       | 2000 | 200                  | ug/kg          | J<br>     | п, с   |
| SCSD-070M-0001-SD | Benzul alcohol                     | 230       | 1000 | 230                  | ug/kg          | 111       |        |
| SCSD-070M-0001-SD | Bis(2-chloroethoxy)methane         | 04<br>72  | 1000 | 0 <del>4</del><br>22 | ug/kg          | 111       | п, с   |
| SCSD-070M-0001-SD | Bis(2-chloroethyl) ether           | 25        | 400  | 25                   | ug/kg          | 111       | н<br>ц |
| SCSD-070M-0001-SD | Bis(2 chloroicopropyl) other       | 20        | 400  | 20                   | ug/kg          | 111       |        |
| SCSD-070M-0001-SD | Bis(2 othylboxyl) phthalato        | 00        | 400  | 00                   | ug/kg          | 111       |        |
| SCSD-070M-0001-SD | Bis(2-etilyinexyi) pittialate      | 00<br>74  | 1000 | 00<br>74             | ug/kg          | 01        |        |
| SCSD-070M-0001-SD |                                    | 74        | 400  | 74                   | ug/kg          | 01        | п      |
| SCSD-070M-0001-SD | Carbazole                          | 20        | 400  | 20                   | ug/kg          | 0)        | п      |
| SCSD-070M-0001-SD | Chrysene<br>Dibenzo(a b)anthracana | 70        | 400  | 25                   | ug/kg          | J-        |        |
| SCSD-070M-0001-SD | Dibenzofuran                       | 22        | 400  | 22                   | ug/kg          | UJ        | п, с   |
| SCSD-070M-0001-SD | Dibelizoiuran<br>Distbyl abthalata | 24<br>65  | 400  | 24<br>65             | ug/kg          | UJ        |        |
| SCSD-070M-0001-SD | Diethyl phthalate                  | C0        | 400  | 05                   | ug/kg          | UJ        |        |
| SCSD-070M-0001-SD | Dimetnyi phinalate                 | 64<br>200 | 400  | 64<br>00             | ug/kg          |           | H      |
| SCSD-070M-0001-SD | Di-n-butyi phthalate               | 300       | 400  | 80                   | ug/kg          | J-        | H      |
| SCSD-070M-0001-SD | Di-n-octyl phinalate               | 60        | 400  | 60<br>20             | ug/kg<br>wg/kg | 1         | н      |
| SCSD-070M-0001-SD | Fluoranthene                       | 89<br>25  | 400  | 26                   | ug/kg          | J-        | н<br>  |
| SCSD-070M-0001-SD | Fluorene                           | 25        | 400  | 25                   | ug/kg          | UJ        | н      |
| SCSD-070M-0001-SD | Hexachlorobenzene                  | 28        | 400  | 28                   | ug/kg          | 01        | н      |
| SCSD-070M-0001-SD | Hexachiorobutadiene                | 63        | 400  | 63<br>52             | ug/kg          | UJ        | H<br>C |
| SCSD-070M-0001-SD | Hexachlorocyclopentadiene          | 53        | 400  | 53                   | ug/kg          | ĸ         | C      |
| SCSD-070M-0001-SD | Hexachloroethane                   | 33        | 400  | 33                   | ug/kg          | 01        | Н      |
| SCSD-070M-0001-SD | Indeno(1,2,3-cd)pyrene             | 26        | 400  | 23                   | ug/kg          | J-        | н, С   |
| SCSD-070M-0001-SD | Isopnorone                         | 51        | 400  | 51                   | ug/kg          | 01        | Н      |
| SCSD-070M-0001-SD | Naphthalene                        | 29        | 400  | 21                   | ug/kg          | J-        | H      |
| SCSD-070M-0001-SD | Nitrobenzene                       | 60        | 400  | 60                   | ug/kg          | UJ        | Н      |

| Sample            | Analyte                    | Result | LOQ   | DL    | Units | Qualifier | Code    |
|-------------------|----------------------------|--------|-------|-------|-------|-----------|---------|
| SCSD-070M-0001-SD | N-Nitroso-di-n-propylamine | 71     | 400   | 71    | ug/kg | UJ        | Н       |
| SCSD-070M-0001-SD | N-Nitrosodiphenylamine     | 51     | 810   | 51    | ug/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Pentachlorophenol          | 240    | 1000  | 240   | ug/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Phenanthrene               | 53     | 400   | 26    | ug/kg | J-        | Н       |
| SCSD-070M-0001-SD | Phenol                     | 160    | 510   | 160   | ug/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Pyrene                     | 89     | 400   | 26    | ug/kg | J-        | Н       |
| SCSD-070M-0001-SD | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | 0.13  | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 1,3-Dinitrobenzene         | 0.079  | 0.44  | 0.079 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | 0.089 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 2,4-Dinitrotoluene         | 0.2    | 0.44  | 0.2   | mg/kg | R         | D       |
| SCSD-070M-0001-SD | 2,6-Dinitrotoluene         | 0.069  | 0.5   | 0.069 | mg/kg | R         | D       |
| SCSD-070M-0001-SD | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | 0.05  | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 2-Nitrotoluene             | 0.089  | 0.44  | 0.089 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 3,5-Dinitroaniline         | 0.089  | 0.44  | 0.089 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 3-Nitrotoluene             | 0.069  | 0.44  | 0.069 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 4-Amino-2,6-dinitrotoluene | 0.069  | 0.44  | 0.069 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | 4-Nitrotoluene             | 0.069  | 0.5   | 0.069 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | НМХ                        | 0.12   | 0.44  | 0.12  | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Nitrobenzene               | 0.04   | 0.44  | 0.04  | mg/kg | R         | D       |
| SCSD-070M-0001-SD | Nitroglycerin              | 0.5    | 1.5   | 0.5   | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | PETN                       | 0.5    | 1.5   | 0.5   | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | RDX                        | 0.16   | 0.44  | 0.16  | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Tetryl                     | 0.089  | 0.44  | 0.089 | mg/kg | UJ        | Н       |
| SCSD-070M-0001-SD | Cyanide                    | 0.36   | 0.39  | 0.11  | mg/kg | J-        | Н       |
| SCSS-058M-0001-SO | Aluminum                   | 10400  | 0.24  | 0.082 | mg/kg | J-        | Q, A    |
| SCSS-058M-0001-SO | Antimony                   | 3.1    | 0.55  | 0.16  | mg/kg | J-        | Q, *III |
| SCSS-058M-0001-SO | Arsenic                    | 4.5    | 0.92  | 0.27  | mg/kg | J         | E       |
| SCSS-058M-0001-SO | Barium                     | 127    | 0.055 | 0.016 | mg/kg | J-        | A       |
| SCSS-058M-0001-SO | Cadmium                    | 1.9    | 0.043 | 0.012 | mg/kg | J-        | Q, *III |
| SCSS-058M-0001-SO | Calcium                    | 21500  | 1     | 0.12  | mg/kg | J-        | A       |
| SCSS-058M-0001-SO | Chromium                   | 143    | 0.13  | 0.039 | mg/kg | J-        | A       |
| SCSS-058M-0001-SO | Cobalt                     | 6.7    | 0.1   | 0.031 | mg/kg | J-        | Q       |
| SCSS-058M-0001-SO | Copper                     | 33.7   | 0.41  | 0.12  | mg/kg | J-        | Q       |
| SCSS-058M-0001-SO | Lead                       | 139    | 0.29  | 0.082 | mg/kg | J+        | Q, *III |
| SCSS-058M-0001-SO | Magnesium                  | 3930   | 0.82  | 0.24  | mg/kg | J-        | A       |
| SCSS-058M-0001-SO | Manganese                  | 729    | 0.1   | 0.033 | mg/kg | J-        | A       |
| SCSS-058M-0001-SO | Nickel                     | 21.7   | 0.12  | 0.037 | mg/kg | J-        | Q, A    |
| SCSS-058M-0001-SO | Sodium                     | 99.6   | 13    | 4.1   | mg/kg | J         | C       |
| SCSS-058M-0001-SO | Thallium                   | 1.7    | 0.29  | 0.082 | mg/kg | J-        | E, Q    |
| SCSS-058M-0001-SO | Zinc                       | 269    | 0.24  | 0.082 | mg/kg | J-        | Q, A    |
| SCSS-058M-0001-SO | 1,2,4-Trichlorobenzene     | 21     | 410   | 21    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 1,2-Dichlorobenzene        | 24     | 410   | 24    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 1,3-Dichlorobenzene        | 20     | 410   | 20    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 1,4-Dichlorobenzene        | 22     | 410   | 19    | ug/kg | J-        | Н       |
| SCSS-058M-0001-SO | 2,4,5-Trichlorophenol      | 130    | 510   | 130   | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2,4,6-Trichlorophenol      | 130    | 510   | 130   | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2,4-Dichlorophenol         | 120    | 510   | 120   | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2,4-Dimethylphenol         | 100    | 410   | 100   | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2,4-Dinitrophenol          | 700    | 2000  | 700   | ug/kg | UJ        | Н, С    |
| SCSS-058M-0001-SO | 2,4-Dinitrotoluene         | 24     | 410   | 24    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2,6-Dinitrotoluene         | 24     | 410   | 24    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2-Chloronaphthalene        | 23     | 410   | 23    | ug/kg | UJ        | Н       |
| SCSS-058M-0001-SO | 2-Chlorophenol             | 350    | 510   | 350   | ug/kg | UJ        | Н       |

| Sample            | Analyte                      | Result | LOQ  | DL  | Units | Qualifier | Code |
|-------------------|------------------------------|--------|------|-----|-------|-----------|------|
| SCSS-058M-0001-SO | 2-Methyl-4,6-dinitrophenol   | 270    | 1000 | 270 | ug/kg | UJ        | Н, С |
| SCSS-058M-0001-SO | 2-Methylnaphthalene          | 370    | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | 2-Methylphenol               | 430    | 1000 | 430 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 2-Nitroaniline               | 23     | 410  | 23  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 2-Nitrophenol                | 280    | 510  | 280 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 3,3'-Dichlorobenzidine       | 150    | 510  | 150 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 3-Nitroaniline               | 22     | 1000 | 22  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Bromophenyl phenyl ether   | 25     | 410  | 25  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Chloro-3-methylphenol      | 390    | 510  | 390 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Chloroaniline              | 40     | 410  | 40  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Chlorophenyl phenyl ether  | 26     | 410  | 26  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Methylphenol               | 660    | 2000 | 660 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | 4-Nitroaniline               | 31     | 1000 | 31  | ug/kg | UJ        | Н, С |
| SCSS-058M-0001-SO | 4-Nitrophenol                | 410    | 1000 | 410 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Acenaphthene                 | 43     | 410  | 24  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Acenaphthylene               | 160    | 410  | 24  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Anthracene                   | 300    | 410  | 24  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Benzo(a)anthracene           | 740    | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Benzo(a)pyrene               | 590    | 410  | 23  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Benzo(b)fluoranthene         | 1000   | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Benzo(g,h,i)perylene         | 170    | 410  | 22  | ug/kg | J-        | Н, С |
| SCSS-058M-0001-SO | Benzo(k)fluoranthene         | 330    | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Benzoic acid                 | 300    | 1000 | 300 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Benzyl alcohol               | 84     | 1000 | 84  | ug/kg | R         | С    |
| SCSS-058M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | 23  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 410  | 25  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Bis(2-chloroisopropyl) ether | 31     | 410  | 31  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Bis(2-ethylhexyl) phthalate  | 89     | 1000 | 89  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Butylbenzyl phthalate        | 74     | 410  | 74  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Carbazole                    | 78     | 410  | 28  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Chrysene                     | 700    | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Dibenzo(a,h)anthracene       | 75     | 410  | 22  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Dibenzofuran                 | 140    | 410  | 24  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Diethyl phthalate            | 65     | 410  | 65  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Dimethyl phthalate           | 64     | 410  | 64  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Di-n-butyl phthalate         | 120    | 410  | 80  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Di-n-octyl phthalate         | 60     | 410  | 60  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Fluoranthene                 | 1800   | 410  | 26  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Fluorene                     | 190    | 410  | 25  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Hexachlorobenzene            | 28     | 410  | 28  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Hexachlorobutadiene          | 63     | 410  | 63  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Hexachlorocyclopentadiene    | 53     | 410  | 53  | ug/kg | R         | С    |
| SCSS-058M-0001-SO | Hexachloroethane             | 34     | 410  | 34  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Indeno(1,2,3-cd)pyrene       | 180    | 410  | 23  | ug/kg | J-        | Н, С |
| SCSS-058M-0001-SO | Isophorone                   | 110    | 410  | 51  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Naphthalene                  | 240    | 410  | 21  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Nitrobenzene                 | 60     | 410  | 60  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | N-Nitroso-di-n-propylamine   | 71     | 410  | 71  | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | N-Nitrosodiphenylamine       | 51     | 810  | 51  | ug/kg | UJ        | H    |
| SCSS-058M-0001-SO | Pentachlorophenol            | 240    | 1000 | 240 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Phenanthrene                 | 1200   | 410  | 26  | ug/kg | J-        | Н    |
| SCSS-058M-0001-SO | Phenol                       | 160    | 510  | 160 | ug/kg | UJ        | Н    |
| SCSS-058M-0001-SO | Pyrene                       | 1300   | 410  | 26  | ug/kg | J-        | Н    |

| Sample            | Analyte                     | Result | LOQ    | DL     | Units | Qualifier | Code               |
|-------------------|-----------------------------|--------|--------|--------|-------|-----------|--------------------|
| SCSS-058M-0001-SO | 1,3,5-Trinitrobenzene       | 0.13   | 0.44   | 0.13   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 1,3-Dinitrobenzene          | 0.08   | 0.44   | 0.08   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 2,4,6-Trinitrotoluene       | 0.26   | 0.44   | 0.09   | mg/kg | J-        | H, *III            |
| SCSS-058M-0001-SO | 2,4-Dinitrotoluene          | 0.2    | 0.44   | 0.2    | mg/kg | R         | D                  |
| SCSS-058M-0001-SO | 2,6-Dinitrotoluene          | 0.07   | 0.5    | 0.07   | mg/kg | R         | D                  |
| SCSS-058M-0001-SO | 2-Amino-4,6-dinitrotoluene  | 0.05   | 0.44   | 0.05   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 2-Nitrotoluene              | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 3,5-Dinitroaniline          | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 3-Nitrotoluene              | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 4-Amino-2,6-dinitrotoluene  | 0.07   | 0.44   | 0.07   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | 4-Nitrotoluene              | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | НМХ                         | 0.12   | 0.44   | 0.12   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | Nitrobenzene                | 0.04   | 0.44   | 0.04   | mg/kg | R         | D                  |
| SCSS-058M-0001-SO | Nitroglycerin               | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | PETN                        | 0.5    | 1.5    | 0.5    | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | RDX                         | 0.16   | 0.44   | 0.16   | mg/kg | UJ        | Н                  |
| SCSS-058M-0001-SO | Tetryl                      | 0.09   | 0.44   | 0.09   | mg/kg | UJ        | Н                  |
| SCSS-068M-0001-SO | Aluminum                    | 9150   | 0.12   | 0.041  | mg/kg | J-        | Q, A               |
| SCSS-068M-0001-SO | Antimony                    | 0.082  | 0.28   | 0.082  | mg/kg | R         | Q                  |
| SCSS-068M-0001-SO | Arsenic                     | 11.2   | 0.46   | 0.13   | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSS-068M-0001-SO | Barium                      | 49.7   | 0.028  | 0.0082 | mg/kg | J-        | А                  |
| SCSS-068M-0001-SO | Beryllium                   | 0.41   | 0.024  | 0.0082 | mg/kg | J-        | A                  |
| SCSS-068M-0001-SO | Cadmium                     | 0.057  | 0.021  | 0.0061 | mg/kg | J-        | C, Q, *III         |
| SCSS-068M-0001-SO | Calcium                     | 1650   | 0.51   | 0.061  | mg/kg | J-        | A                  |
| SCSS-068M-0001-SO | Chromium                    | 24.2   | 0.064  | 0.019  | mg/kg | J-        | Q, A               |
| SCSS-068M-0001-SO | Cobalt                      | 7.6    | 0.05   | 0.015  | mg/kg | J-        | Q, *III, A         |
| SCSS-068M-0001-SO | Copper                      | 11     | 0.2    | 0.061  | mg/kg | J-        | Q, *III, A         |
| SCSS-068M-0001-SO | Iron                        | 22500  | 1      | 0.31   | mg/kg | J-        | A                  |
| SCSS-068M-0001-SO | Lead                        | 29.8   | 0.14   | 0.041  | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSS-068M-0001-SO | Magnesium                   | 2320   | 0.41   | 0.12   | mg/kg | J-        | Q, A               |
| SCSS-068M-0001-SO | Manganese                   | 395    | 0.051  | 0.016  | mg/kg | J-        | Q, A               |
| SCSS-068M-0001-SO | Nickel                      | 20.9   | 0.062  | 0.018  | mg/kg | J-        | Q, *III <i>,</i> A |
| SCSS-068M-0001-SO | Potassium                   | 693    | 37     | 11     | mg/kg | J-        | Q                  |
| SCSS-068M-0001-SO | Selenium                    | 0.24   | 0.43   | 0.071  | mg/kg | J-        | Q                  |
| SCSS-068M-0001-SO | Sodium                      | 20.5   | 13     | 4.1    | mg/kg | J-        | C, Q               |
| SCSS-068M-0001-SO | Thallium                    | 0.62   | 0.29   | 0.082  | mg/kg | J-        | Q, *III <i>,</i> E |
| SCSS-068M-0001-SO | Vanadium                    | 14.8   | 0.035  | 0.011  | mg/kg | J-        | Q, A, E            |
| SCSS-068M-0001-SO | Zinc                        | 48.2   | 0.12   | 0.041  | mg/kg | J-        | Q, *III, A         |
| SCSS-068M-0001-SO | Mercury                     | 0.031  | 0.0081 | 0.0024 | mg/kg | J-        | A                  |
| SCSS-068M-0001-SO | Bis(2-ethylhexyl) phthalate | 100    | 1000   | 88     | ug/kg | U         | В                  |
| SCSS-068M-0001-SO | Hexachlorocyclopentadiene   | 53     | 410    | 53     | ug/kg | UJ        | С                  |
| SCSS-068M-0001-SO | 2,4-Dinitrotoluene          | 0.2    | 0.44   | 0.2    | mg/kg | R         | D                  |
| SCSS-068M-0001-SO | 2,6-Dinitrotoluene          | 0.07   | 0.5    | 0.07   | mg/kg | R         | D                  |
| SCSS-068M-0001-SO | Nitrobenzene                | 0.04   | 0.44   | 0.04   | mg/kg | R         | D                  |
| SCSS-073M-0001-SO | Antimony                    | 2.9    | 0.55   | 0.16   | mg/kg | J+        | C                  |
| SCSS-073M-0001-SO | Selenium                    | 2.4    | 0.86   | 0.14   | mg/kg | J+        | С                  |
| SCSS-073M-0001-SO | Sodium                      | 101    | 13     | 4.1    | mg/kg | J         | С                  |
| SCSS-073M-0001-SO | Thallium                    | 0.082  | 0.29   | 0.082  | mg/kg | U         | В                  |
| SCSS-073M-0001-SO | 4-Nitrophenol               | 410    | 1000   | 410    | ug/kg | UJ        | С                  |
| SCSS-073M-0001-SO | 2,4-Dinitrotoluene          | 0.2    | 0.44   | 0.2    | mg/kg | R         | D                  |
| SCSS-073M-0001-SO | 2,6-Dinitrotoluene          | 0.07   | 0.5    | 0.07   | mg/kg | R         | D                  |
| SCSS-073M-0001-SO | Nitrobenzene                | 0.04   | 0.44   | 0.04   | mg/kg | R         | D                  |
| SCSS-076M-0001-SO | Selenium                    | 2.2    | 0.86   | 0.14   | mg/kg | J-        | С                  |

| Sample            | Analyte            | Result | LOQ    | DL     | Units | Qualifier | Code |
|-------------------|--------------------|--------|--------|--------|-------|-----------|------|
| SCSS-076M-0001-SO | Sodium             | 68.1   | 13     | 4.1    | mg/kg | J         | С    |
| SCSS-076M-0001-SO | Thallium           | 0.73   | 0.29   | 0.082  | mg/kg | J-        | В    |
| SCSS-076M-0001-SO | Mercury            | 0.049  | 0.0081 | 0.0025 | mg/kg | J-        | С    |
| SCSS-076M-0001-SO | 2,6-Dinitrotoluene | 0.07   | 0.5    | 0.07   | mg/kg | UJ        | С    |

## APPENDIX C

## **Primary/Field Duplicate Sample Comparisons**

**Open Demolition Area 1** 

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ    | Units | Qualifier | Sample             | Result | LOQ    | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|--------|-------|-----------|--------------------|--------|--------|-----------|-----|----------|
| DA1SB-059M-0203-SO | Aluminum                   | 13300  | 0.6    | mg/kg |           | DA1SB-081M-0203-SO | 4960   | 0.6    |           | 91  | N/A      |
| DA1SB-059M-0203-SO | Antimony                   | 1.7    | 1.4    | mg/kg |           | DA1SB-081M-0203-SO | 0.4    | 1.4    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Arsenic                    | 12.1   | 2.3    | mg/kg |           | DA1SB-081M-0203-SO | 14.9   | 2.3    |           | 21  | N/A      |
| DA1SB-059M-0203-SO | Barium                     | 71.4   | 0.14   | mg/kg |           | DA1SB-081M-0203-SO | 29.4   | 0.14   |           | 83  | N/A      |
| DA1SB-059M-0203-SO | Beryllium                  | 0.48   | 0.06   | mg/kg |           | DA1SB-081M-0203-SO | 0.17   | 0.06   |           | N/A | No       |
| DA1SB-059M-0203-SO | Cadmium                    | 0.03   | 0.11   | mg/kg | U         | DA1SB-081M-0203-SO | 0.03   | 0.11   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Calcium                    | 31100  | 2.5    | mg/kg |           | DA1SB-081M-0203-SO | 1130   | 2.5    |           | 186 | N/A      |
| DA1SB-059M-0203-SO | Chromium                   | 114    | 0.32   | mg/kg |           | DA1SB-081M-0203-SO | 28.7   | 0.32   |           | 120 | N/A      |
| DA1SB-059M-0203-SO | Cobalt                     | 11.1   | 0.25   | mg/kg |           | DA1SB-081M-0203-SO | 5.8    | 0.25   |           | 63  | N/A      |
| DA1SB-059M-0203-SO | Copper                     | 17.6   | 1      | mg/kg |           | DA1SB-081M-0203-SO | 19     | 1      |           | 8   | N/A      |
| DA1SB-059M-0203-SO | Iron                       | 31300  | 5      | mg/kg |           | DA1SB-081M-0203-SO | 21100  | 5      |           | 39  | N/A      |
| DA1SB-059M-0203-SO | Lead                       | 10.2   | 0.7    | mg/kg |           | DA1SB-081M-0203-SO | 11.9   | 0.7    |           | 15  | N/A      |
| DA1SB-059M-0203-SO | Magnesium                  | 7170   | 2      | mg/kg |           | DA1SB-081M-0203-SO | 1900   | 2      |           | 116 | N/A      |
| DA1SB-059M-0203-SO | Manganese                  | 449    | 0.25   | mg/kg |           | DA1SB-081M-0203-SO | 217    | 0.25   |           | 70  | N/A      |
| DA1SB-059M-0203-SO | Nickel                     | 25.6   | 0.31   | mg/kg |           | DA1SB-081M-0203-SO | 15.3   | 0.31   |           | 50  | N/A      |
| DA1SB-059M-0203-SO | Potassium                  | 502    | 36     | mg/kg |           | DA1SB-081M-0203-SO | 507    | 36     |           | 1   | N/A      |
| DA1SB-059M-0203-SO | Selenium                   | 0.35   | 2.1    | mg/kg | U         | DA1SB-081M-0203-SO | 0.35   | 2.1    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Silver                     | 0.085  | 0.28   | mg/kg | U         | DA1SB-081M-0203-SO | 0.085  | 0.28   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Sodium                     | 26.9   | 13     | mg/kg |           | DA1SB-081M-0203-SO | 30.6   | 13     |           | N/A | Yes      |
| DA1SB-059M-0203-SO | Thallium                   | 2.1    | 0.7    | mg/kg |           | DA1SB-081M-0203-SO | 1.1    | 0.7    |           | N/A | No       |
| DA1SB-059M-0203-SO | Vanadium                   | 19.5   | 0.17   | mg/kg |           | DA1SB-081M-0203-SO | 11.1   | 0.17   |           | 55  | N/A      |
| DA1SB-059M-0203-SO | Zinc                       | 57.5   | 0.6    | mg/kg |           | DA1SB-081M-0203-SO | 69.8   | 0.6    |           | 19  | N/A      |
| DA1SB-059M-0203-SO | Mercury                    | 0.015  | 0.0079 | mg/kg |           | DA1SB-081M-0203-SO | 0.009  | 0.0079 |           | N/A | Yes      |
| DA1SB-059M-0203-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.13   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.079  | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.2    | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5    | mg/kg | U         | DA1SB-081M-0203-SO | 0.07   | 0.5    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.05   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 2-Nitrotoluene             | 0.09   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 3-Nitrotoluene             | 0.07   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.07   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.07   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | 4-Nitrotoluene             | 0.07   | 0.5    | mg/kg | U         | DA1SB-081M-0203-SO | 0.07   | 0.5    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | НМХ                        | 0.12   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.12   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Nitrobenzene               | 0.04   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.04   | 0.44   | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | Nitroglycerin              | 0.5    | 1.5    | mg/kg | U         | DA1SB-081M-0203-SO | 0.5    | 1.5    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | PETN                       | 0.5    | 1.5    | mg/kg | U         | DA1SB-081M-0203-SO | 0.5    | 1.5    | U         | N/A | Yes      |
| DA1SB-059M-0203-SO | RDX                        | 0.16   | 0.44   | mg/kg | U         | DA1SB-081M-0203-SO | 0.16   | 0.44   | U         | N/A | Yes      |

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|-------|-------|-----------|--------------------|--------|-------|-----------|-----|----------|
| DA1SB-059M-0203-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | U         | DA1SB-081M-0203-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Aluminum                   | 13300  | 0.24  | mg/kg | J-        | DA1SB-082M-0202-SO | 11200  | 0.24  |           | 17  | N/A      |
| DA1SB-063M-0202-SO | Antimony                   | 0.16   | 0.55  | mg/kg | R         | DA1SB-082M-0202-SO | 0.16   | 0.55  | U         | N/A | N/A      |
| DA1SB-063M-0202-SO | Arsenic                    | 4.5    | 0.91  | mg/kg |           | DA1SB-082M-0202-SO | 5.1    | 0.91  |           | N/A | Yes      |
| DA1SB-063M-0202-SO | Barium                     | 56.6   | 0.055 | mg/kg |           | DA1SB-082M-0202-SO | 62.7   | 0.055 |           | 10  | N/A      |
| DA1SB-063M-0202-SO | Beryllium                  | 0.43   | 0.024 | mg/kg |           | DA1SB-082M-0202-SO | 0.37   | 0.024 |           | 15  | N/A      |
| DA1SB-063M-0202-SO | Cadmium                    | 0.2    | 0.2   | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.012  | 0.042 | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Calcium                    | 27500  | 1     | mg/kg | J-        | DA1SB-082M-0202-SO | 23500  | 1     |           | 16  | N/A      |
| DA1SB-063M-0202-SO | Chromium                   | 22.6   | 0.13  | mg/kg | J-        | DA1SB-082M-0202-SO | 17.1   | 0.13  |           | 28  | N/A      |
| DA1SB-063M-0202-SO | Cobalt                     | 9.4    | 0.099 | mg/kg | J-        | DA1SB-082M-0202-SO | 9.5    | 0.099 |           | 1   | N/A      |
| DA1SB-063M-0202-SO | Copper                     | 16.8   | 0.4   | mg/kg | J-        | DA1SB-082M-0202-SO | 14.9   | 0.4   |           | 12  | N/A      |
| DA1SB-063M-0202-SO | Iron                       | 31300  | 2     | mg/kg |           | DA1SB-082M-0202-SO | 27900  | 2     |           | 11  | N/A      |
| DA1SB-063M-0202-SO | Lead                       | 5.8    | 0.28  | mg/kg |           | DA1SB-082M-0202-SO | 5.1    | 0.28  |           | 13  | N/A      |
| DA1SB-063M-0202-SO | Magnesium                  | 7180   | 0.81  | mg/kg | J-        | DA1SB-082M-0202-SO | 6170   | 0.81  |           | 15  | N/A      |
| DA1SB-063M-0202-SO | Manganese                  | 299    | 0.1   | mg/kg | J-        | DA1SB-082M-0202-SO | 486    | 0.1   |           | 48  | N/A      |
| DA1SB-063M-0202-SO | Nickel                     | 22.1   | 0.12  | mg/kg |           | DA1SB-082M-0202-SO | 20.8   | 0.12  |           | 6   | N/A      |
| DA1SB-063M-0202-SO | Potassium                  | 1850   | 36    | mg/kg |           | DA1SB-082M-0202-SO | 1620   | 36    |           | 13  | N/A      |
| DA1SB-063M-0202-SO | Selenium                   | 0.53   | 0.85  | mg/kg | U         | DA1SB-082M-0202-SO | 0.36   | 0.85  | J         | N/A | Yes      |
| DA1SB-063M-0202-SO | Silver                     | 0.1    | 0.11  | mg/kg | U         | DA1SB-082M-0202-SO | 0.034  | 0.11  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Sodium                     | 82.7   | 13    | mg/kg | J         | DA1SB-082M-0202-SO | 72.5   | 13    |           | 13  | N/A      |
| DA1SB-063M-0202-SO | Thallium                   | 2      | 0.28  | mg/kg | J-        | DA1SB-082M-0202-SO | 1.8    | 0.28  |           | 11  | N/A      |
| DA1SB-063M-0202-SO | Vanadium                   | 16.9   | 0.069 | mg/kg |           | DA1SB-082M-0202-SO | 14.2   | 0.069 |           | 17  | N/A      |
| DA1SB-063M-0202-SO | Zinc                       | 51.1   | 0.24  | mg/kg | J-        | DA1SB-082M-0202-SO | 45.9   | 0.24  |           | 11  | N/A      |
| DA1SB-063M-0202-SO | Mercury                    | 0.01   | 0.008 | mg/kg |           | DA1SB-082M-0202-SO | 0.009  | 0.008 |           | N/A | Yes      |
| DA1SB-063M-0202-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.13   | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 1,3-Dinitrobenzene         | 0.079  | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.079  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.2    | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.069  | 0.5   | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.05   | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 2-Nitrotoluene             | 0.089  | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 3,5-Dinitroaniline         | 0.089  | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.069  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.069  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.069  | 0.5   | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | НМХ                        | 0.12   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.12   | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.04   | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Nitroguanidine             | 0.059  | 0.16  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.06   | 0.16  | U         | N/A | Yes      |

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|-------|-------|-----------|--------------------|--------|-------|-----------|-----|----------|
| DA1SB-063M-0202-SO | PETN                       | 0.5    | 1.5   | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | RDX                        | 0.16   | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.16   | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Tetryl                     | 0.089  | 0.44  | mg/kg | UJ        | DA1SB-082M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-063M-0202-SO | Nitrocellulose             | 7      | 100   | mg/kg | U         | DA1SB-082M-0202-SO | 7      | 100   | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Aluminum                   | 12900  | 0.24  | mg/kg |           | DA1SB-083M-0202-SO | 15900  | 0.24  |           | 21  | N/A      |
| DA1SB-065M-0202-SO | Antimony                   | 0.16   | 0.55  | mg/kg | U         | DA1SB-083M-0202-SO | 0.16   | 0.55  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Arsenic                    | 2.5    | 0.91  | mg/kg |           | DA1SB-083M-0202-SO | 4.8    | 0.91  |           | N/A | No       |
| DA1SB-065M-0202-SO | Barium                     | 58.8   | 0.055 | mg/kg |           | DA1SB-083M-0202-SO | 72.1   | 0.055 |           | 20  | N/A      |
| DA1SB-065M-0202-SO | Beryllium                  | 0.47   | 0.024 | mg/kg |           | DA1SB-083M-0202-SO | 0.56   | 0.024 |           | 17  | N/A      |
| DA1SB-065M-0202-SO | Cadmium                    | 0.012  | 0.043 | mg/kg | U         | DA1SB-083M-0202-SO | 0.012  | 0.043 | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Calcium                    | 14800  | 1     | mg/kg |           | DA1SB-083M-0202-SO | 16100  | 1     |           | 8   | N/A      |
| DA1SB-065M-0202-SO | Chromium                   | 25.8   | 0.13  | mg/kg |           | DA1SB-083M-0202-SO | 29.8   | 0.13  |           | 14  | N/A      |
| DA1SB-065M-0202-SO | Cobalt                     | 8.6    | 0.099 | mg/kg |           | DA1SB-083M-0202-SO | 11.3   | 0.099 |           | 27  | N/A      |
| DA1SB-065M-0202-SO | Copper                     | 13.6   | 0.41  | mg/kg |           | DA1SB-083M-0202-SO | 18.1   | 0.41  |           | 28  | N/A      |
| DA1SB-065M-0202-SO | Iron                       | 28600  | 2     | mg/kg |           | DA1SB-083M-0202-SO | 34400  | 2     |           | 18  | N/A      |
| DA1SB-065M-0202-SO | Lead                       | 4.4    | 0.28  | mg/kg |           | DA1SB-083M-0202-SO | 6.4    | 0.28  |           | 37  | N/A      |
| DA1SB-065M-0202-SO | Magnesium                  | 5070   | 0.81  | mg/kg |           | DA1SB-083M-0202-SO | 6040   | 0.81  |           | 17  | N/A      |
| DA1SB-065M-0202-SO | Manganese                  | 321    | 0.1   | mg/kg |           | DA1SB-083M-0202-SO | 372    | 0.1   |           | 15  | N/A      |
| DA1SB-065M-0202-SO | Nickel                     | 19.8   | 0.12  | mg/kg |           | DA1SB-083M-0202-SO | 27     | 0.12  |           | 31  | N/A      |
| DA1SB-065M-0202-SO | Potassium                  | 2200   | 36    | mg/kg |           | DA1SB-083M-0202-SO | 2390   | 37    |           | 8   | N/A      |
| DA1SB-065M-0202-SO | Selenium                   | 0.56   | 0.85  | mg/kg | J         | DA1SB-083M-0202-SO | 0.28   | 0.85  | J         | N/A | Yes      |
| DA1SB-065M-0202-SO | Silver                     | 0.034  | 0.11  | mg/kg | U         | DA1SB-083M-0202-SO | 0.035  | 0.11  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Sodium                     | 83.3   | 13    | mg/kg |           | DA1SB-083M-0202-SO | 87.6   | 13    |           | 5   | N/A      |
| DA1SB-065M-0202-SO | Thallium                   | 1.8    | 0.28  | mg/kg |           | DA1SB-083M-0202-SO | 2.5    | 0.28  |           | 33  | N/A      |
| DA1SB-065M-0202-SO | Vanadium                   | 15.7   | 0.069 | mg/kg |           | DA1SB-083M-0202-SO | 21.6   | 0.069 |           | 32  | N/A      |
| DA1SB-065M-0202-SO | Zinc                       | 42.2   | 0.24  | mg/kg |           | DA1SB-083M-0202-SO | 55.8   | 0.24  |           | 28  | N/A      |
| DA1SB-065M-0202-SO | Mercury                    | 0.011  | 0.008 | mg/kg |           | DA1SB-083M-0202-SO | 0.012  | 0.008 |           | N/A | Yes      |
| DA1SB-065M-0202-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.13   | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 1,3-Dinitrobenzene         | 0.079  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.079  | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.2    | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 2,6-Dinitrotoluene         | 0.069  | 0.5   | mg/kg | U         | DA1SB-083M-0202-SO | 0.07   | 0.5   | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.05   | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 2-Nitrotoluene             | 0.089  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 3,5-Dinitroaniline         | 0.089  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 3-Nitrotoluene             | 0.069  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 4-Amino-2,6-dinitrotoluene | 0.069  | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | 4-Nitrotoluene             | 0.069  | 0.5   | mg/kg | U         | DA1SB-083M-0202-SO | 0.07   | 0.5   | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | НМХ                        | 0.12   | 0.44  | mg/kg | U         | DA1SB-083M-0202-SO | 0.12   | 0.44  | U         | N/A | Yes      |

| Sample             | Analyte                   | Result | LOQ  | Units | Qualifier | Sample             | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|--------------------|---------------------------|--------|------|-------|-----------|--------------------|--------|------|-----------|-----|----------|
| DA1SB-065M-0202-SO | Nitrobenzene              | 0.04   | 0.44 | mg/kg | U         | DA1SB-083M-0202-SO | 0.04   | 0.44 | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Nitroglycerin             | 0.5    | 1.5  | mg/kg | U         | DA1SB-083M-0202-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | PETN                      | 0.5    | 1.5  | mg/kg | U         | DA1SB-083M-0202-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | RDX                       | 0.16   | 0.44 | mg/kg | U         | DA1SB-083M-0202-SO | 0.16   | 0.44 | U         | N/A | Yes      |
| DA1SB-065M-0202-SO | Tetryl                    | 0.089  | 0.44 | mg/kg | U         | DA1SB-083M-0202-SO | 0.089  | 0.44 | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,1,1-Trichloroethane     | 10     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 11     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,1,2,2-Tetrachloroethane | 6.2    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 6.4    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,1,2-Trichloroethane     | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,1-Dichloroethane        | 11     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 12     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,1-Dichloroethene        | 17     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 17     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,2-Dibromoethane         | 10     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 11     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,2-Dichloroethane        | 12     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 13     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 1,2-Dichloropropane       | 7.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 7.4    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 2-Butanone                | 100    | 520  | ug/kg | U         | DA1SB-084D-0201-SO | 110    | 530  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | 2-Hexanone                | 70     | 520  | ug/kg | R         | DA1SB-084D-0201-SO | 72     | 530  | U         | N/A | N/A      |
| DA1SB-068D-0201-SO | 4-Methyl-2-pentanone      | 85     | 520  | ug/kg | UJ        | DA1SB-084D-0201-SO | 87     | 530  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Acetone                   | 65     | 1000 | ug/kg | UJ        | DA1SB-084D-0201-SO | 67     | 1100 | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Benzene                   | 5.2    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 5.3    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Bromochloromethane        | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Bromodichloromethane      | 9.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 9.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Bromoform                 | 6.2    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 6.4    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Bromomethane              | 31     | 100  | ug/kg | U         | DA1SB-084D-0201-SO | 32     | 110  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Carbon disulfide          | 16     | 100  | ug/kg | U         | DA1SB-084D-0201-SO | 16     | 110  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Carbon tetrachloride      | 11     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 12     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Chlorobenzene             | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Chloroethane              | 20     | 100  | ug/kg | R         | DA1SB-084D-0201-SO | 20     | 110  | U         | N/A | N/A      |
| DA1SB-068D-0201-SO | Chloroform                | 9.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 9.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Chloromethane             | 26     | 100  | ug/kg | R         | DA1SB-084D-0201-SO | 26     | 110  | U         | N/A | N/A      |
| DA1SB-068D-0201-SO | cis-1,2-Dichloroethene    | 10     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 11     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | cis-1,3-Dichloropropene   | 10     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 11     | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Dibromochloromethane      | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Ethylbenzene              | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | m,p-Xylenes               | 19     | 100  | ug/kg | UJ        | DA1SB-084D-0201-SO | 19     | 110  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Methylene chloride        | 41     | 100  | ug/kg | U         | DA1SB-084D-0201-SO | 42     | 110  | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | o-Xylene                  | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Styrene                   | 6.2    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 6.4    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Tetrachloroethene         | 8.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 8.5    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Toluene                   | 7.3    | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 7.4    | 53   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | trans-1,2-Dichloroethene  | 11     | 52   | ug/kg | U         | DA1SB-084D-0201-SO | 12     | 53   | U         | N/A | Yes      |

| Sample             | Analyte                   | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|--------------------|---------------------------|--------|-------|-------|-----------|--------------------|--------|-------|-----------|-----|----------|
| DA1SB-068D-0201-SO | trans-1,3-Dichloropropene | 7.3    | 100   | ug/kg | U         | DA1SB-084D-0201-SO | 7.4    | 110   | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Trichloroethene           | 10     | 52    | ug/kg | U         | DA1SB-084D-0201-SO | 11     | 53    | U         | N/A | Yes      |
| DA1SB-068D-0201-SO | Vinyl chloride            | 15     | 52    | ug/kg | U         | DA1SB-084D-0201-SO | 15     | 53    | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aluminum                  | 10900  | 0.24  | mg/kg | J-        | DA1SB-084M-0201-SO | 9830   | 0.24  |           | 10  | N/A      |
| DA1SB-068M-0201-SO | Antimony                  | 0.49   | 0.55  | mg/kg | J-        | DA1SB-084M-0201-SO | 0.16   | 0.55  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Arsenic                   | 5.4    | 0.91  | mg/kg | J-        | DA1SB-084M-0201-SO | 11.6   | 0.91  |           | 73  | N/A      |
| DA1SB-068M-0201-SO | Barium                    | 47.6   | 0.055 | mg/kg | J-        | DA1SB-084M-0201-SO | 43.4   | 0.055 |           | 9   | N/A      |
| DA1SB-068M-0201-SO | Beryllium                 | 0.42   | 0.024 | mg/kg |           | DA1SB-084M-0201-SO | 0.38   | 0.024 |           | 10  | N/A      |
| DA1SB-068M-0201-SO | Cadmium                   | 0.096  | 0.043 | mg/kg | J-        | DA1SB-084M-0201-SO | 0.016  | 0.043 | J         | N/A | No       |
| DA1SB-068M-0201-SO | Calcium                   | 420    | 1     | mg/kg | J-        | DA1SB-084M-0201-SO | 438    | 1     |           | 4   | N/A      |
| DA1SB-068M-0201-SO | Chromium                  | 49.1   | 0.13  | mg/kg | J-        | DA1SB-084M-0201-SO | 13.1   | 0.13  |           | 116 | N/A      |
| DA1SB-068M-0201-SO | Cobalt                    | 8      | 0.099 | mg/kg | J-        | DA1SB-084M-0201-SO | 7.8    | 0.099 |           | 3   | N/A      |
| DA1SB-068M-0201-SO | Copper                    | 21.2   | 0.4   | mg/kg | J-        | DA1SB-084M-0201-SO | 19.7   | 0.41  |           | 7   | N/A      |
| DA1SB-068M-0201-SO | Iron                      | 24600  | 2     | mg/kg |           | DA1SB-084M-0201-SO | 26500  | 2     |           | 7   | N/A      |
| DA1SB-068M-0201-SO | Lead                      | 24.5   | 0.28  | mg/kg | J-        | DA1SB-084M-0201-SO | 11.1   | 0.28  |           | 75  | N/A      |
| DA1SB-068M-0201-SO | Magnesium                 | 2590   | 0.81  | mg/kg | J-        | DA1SB-084M-0201-SO | 2720   | 0.81  |           | 5   | N/A      |
| DA1SB-068M-0201-SO | Manganese                 | 293    | 0.1   | mg/kg | J-        | DA1SB-084M-0201-SO | 343    | 0.1   |           | 16  | N/A      |
| DA1SB-068M-0201-SO | Nickel                    | 15.9   | 0.12  | mg/kg | J-        | DA1SB-084M-0201-SO | 15.2   | 0.12  |           | 5   | N/A      |
| DA1SB-068M-0201-SO | Potassium                 | 1000   | 36    | mg/kg | J-        | DA1SB-084M-0201-SO | 527    | 36    |           | 62  | N/A      |
| DA1SB-068M-0201-SO | Selenium                  | 0.23   | 0.85  | mg/kg | J-        | DA1SB-084M-0201-SO | 0.63   | 0.85  | J         | N/A | Yes      |
| DA1SB-068M-0201-SO | Silver                    | 0.1    | 0.11  | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.034  | 0.11  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Sodium                    | 45.3   | 13    | mg/kg | J-        | DA1SB-084M-0201-SO | 20     | 13    |           | N/A | No       |
| DA1SB-068M-0201-SO | Thallium                  | 1.5    | 0.28  | mg/kg | J-        | DA1SB-084M-0201-SO | 1.3    | 0.28  |           | N/A | Yes      |
| DA1SB-068M-0201-SO | Vanadium                  | 15.2   | 0.069 | mg/kg | J-        | DA1SB-084M-0201-SO | 13.9   | 0.069 |           | 9   | N/A      |
| DA1SB-068M-0201-SO | Zinc                      | 51.6   | 0.24  | mg/kg | J-        | DA1SB-084M-0201-SO | 48.6   | 0.24  |           | 6   | N/A      |
| DA1SB-068M-0201-SO | Mercury                   | 0.019  | 0.008 | mg/kg | J-        | DA1SB-084M-0201-SO | 0.022  | 0.008 |           | N/A | Yes      |
| DA1SB-068M-0201-SO | 4,4'-DDD                  | 0.3    | 2.4   | ug/kg | U         | DA1SB-084M-0201-SO | 0.31   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4,4'-DDE                  | 0.3    | 4     | ug/kg | U         | DA1SB-084M-0201-SO | 0.31   | 4.1   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4,4'-DDT                  | 0.5    | 2.4   | ug/kg | J         | DA1SB-084M-0201-SO | 0.61   | 2.4   | J         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aldrin                    | 0.5    | 2.4   | ug/kg | U         | DA1SB-084M-0201-SO | 0.51   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | alpha-BHC                 | 0.61   | 4     | ug/kg | U         | DA1SB-084M-0201-SO | 0.61   | 4.1   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | alpha-Chlordane           | 0.3    | 4     | ug/kg | U         | DA1SB-084M-0201-SO | 0.31   | 4.1   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | beta-BHC                  | 0.61   | 4     | ug/kg | U         | DA1SB-084M-0201-SO | 0.61   | 4.1   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Chlordane (Technical)     | 4      | 76    | ug/kg | U         | DA1SB-084M-0201-SO | 4.1    | 76    | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | delta-BHC                 | 0.3    | 2.4   | ug/kg | U         | DA1SB-084M-0201-SO | 0.31   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Dieldrin                  | 0.3    | 2.4   | ug/kg | U         | DA1SB-084M-0201-SO | 0.31   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Endosulfan I              | 0.71   | 2.4   | ug/kg | U         | DA1SB-084M-0201-SO | 0.71   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Endosulfan II             | 0.91   | 2.4   | ug/kg | J         | DA1SB-084M-0201-SO | 0.31   | 2.4   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Endosulfan sulfate        | 0.91   | 4     | ug/kg | U         | DA1SB-084M-0201-SO | 0.92   | 4.1   | U         | N/A | Yes      |

| Sample             | Analyte                    | Result | LOQ  | Units | Qualifier | Sample             | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|------|-------|-----------|--------------------|--------|------|-----------|-----|----------|
| DA1SB-068M-0201-SO | Endrin                     | 0.4    | 2.4  | ug/kg | U         | DA1SB-084M-0201-SO | 0.41   | 2.4  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Endrin aldehyde            | 1.1    | 4    | ug/kg | U         | DA1SB-084M-0201-SO | 1.1    | 4.1  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Endrin ketone              | 0.81   | 2.4  | ug/kg | U         | DA1SB-084M-0201-SO | 0.81   | 2.4  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | GAMMA-BHC                  | 0.5    | 2.4  | ug/kg | U         | DA1SB-084M-0201-SO | 0.51   | 2.4  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | gamma-Chlordane            | 0.3    | 4    | ug/kg | U         | DA1SB-084M-0201-SO | 1.5    | 4.1  | J         | N/A | Yes      |
| DA1SB-068M-0201-SO | Heptachlor                 | 7.3    | 2.4  | ug/kg |           | DA1SB-084M-0201-SO | 5.8    | 2.4  |           | N/A | Yes      |
| DA1SB-068M-0201-SO | Heptachlor epoxide         | 0.61   | 4    | ug/kg | J         | DA1SB-084M-0201-SO | 0.51   | 4.1  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Methoxychlor               | 0.71   | 2.4  | ug/kg | U         | DA1SB-084M-0201-SO | 0.71   | 2.4  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Toxaphene                  | 5      | 50   | ug/kg | U         | DA1SB-084M-0201-SO | 5.1    | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1016               | 10     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 10     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1221               | 20     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 20     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1232               | 27     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 27     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1242               | 29     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 30     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1248               | 29     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 30     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1254               | 23     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 23     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1260               | 12     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 12     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1262               | 21     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 21     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Aroclor 1268               | 28     | 51   | ug/kg | U         | DA1SB-084M-0201-SO | 29     | 51   | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,2,4-Trichlorobenzene     | 21     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 21     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,2-Dichlorobenzene        | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,3-Dichlorobenzene        | 20     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 20     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,4-Dichlorobenzene        | 19     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 19     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4,5-Trichlorophenol      | 130    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 130    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4,6-Trichlorophenol      | 130    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 130    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4-Dichlorophenol         | 120    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 120    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4-Dimethylphenol         | 100    | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 100    | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4-Dinitrophenol          | 700    | 2000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 700    | 2000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4-Dinitrotoluene         | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,6-Dinitrotoluene         | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Chloronaphthalene        | 23     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 23     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Chlorophenol             | 340    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 340    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Methyl-4,6-dinitrophenol | 270    | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 270    | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Methylnaphthalene        | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Methylphenol             | 420    | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 420    | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Nitroaniline             | 23     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 23     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Nitrophenol              | 280    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 280    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 3,3'-Dichlorobenzidine     | 150    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 150    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 3-Nitroaniline             | 22     | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 22     | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Bromophenyl phenyl ether | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |

| Sample             | Analyte                      | Result | LOQ  | Units | Qualifier | Sample             | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|--------------------|------------------------------|--------|------|-------|-----------|--------------------|--------|------|-----------|-----|----------|
| DA1SB-068M-0201-SO | 4-Chloro-3-methylphenol      | 380    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 380    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Chloroaniline              | 39     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 39     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Chlorophenyl phenyl ether  | 26     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 26     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 660    | 2000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Nitroaniline               | 30     | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 30     | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Nitrophenol                | 400    | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 400    | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Acenaphthene                 | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Acenaphthylene               | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Anthracene                   | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzo(a)anthracene           | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzo(a)pyrene               | 23     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 23     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzo(b)fluoranthene         | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzo(g,h,i)perylene         | 22     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 22     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzo(k)fluoranthene         | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzoic acid                 | 290    | 990  | ug/kg | UJ        | DA1SB-084M-0201-SO | 290    | 990  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | R         | DA1SB-084M-0201-SO | 84     | 1000 | U         | N/A | N/A      |
| DA1SB-068M-0201-SO | Bis(2-chloroethoxy)methane   | 23     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 23     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Bis(2-chloroethyl) ether     | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Bis(2-chloroisopropyl) ether | 30     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 30     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 110    | 1000 | J         | N/A | Yes      |
| DA1SB-068M-0201-SO | Butylbenzyl phthalate        | 74     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 74     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Carbazole                    | 28     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 28     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Chrysene                     | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Dibenzo(a,h)anthracene       | 22     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 22     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Dibenzofuran                 | 24     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 24     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Diethyl phthalate            | 65     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 65     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Dimethyl phthalate           | 64     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 64     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Di-n-butyl phthalate         | 85     | 400  | ug/kg | J-        | DA1SB-084M-0201-SO | 80     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Di-n-octyl phthalate         | 60     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 60     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Fluoranthene                 | 26     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 26     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Fluorene                     | 25     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 25     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Hexachlorobenzene            | 28     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 28     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Hexachlorobutadiene          | 63     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 63     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Hexachlorocyclopentadiene    | 52     | 400  | ug/kg | R         | DA1SB-084M-0201-SO | 53     | 400  | U         | N/A | N/A      |
| DA1SB-068M-0201-SO | Hexachloroethane             | 33     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 33     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Indeno(1,2,3-cd)pyrene       | 23     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 23     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Isophorone                   | 50     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 74     | 400  | J         | N/A | Yes      |
| DA1SB-068M-0201-SO | Naphthalene                  | 21     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 21     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Nitrobenzene                 | 60     | 400  | ug/kg | R         | DA1SB-084M-0201-SO | 60     | 400  | U         | N/A | N/A      |

| Sample             | Analyte                    | Result | LOQ  | Units | Qualifier | Sample             | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|------|-------|-----------|--------------------|--------|------|-----------|-----|----------|
| DA1SB-068M-0201-SO | N-Nitroso-di-n-propylamine | 71     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 71     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | N-Nitrosodiphenylamine     | 50     | 810  | ug/kg | UJ        | DA1SB-084M-0201-SO | 51     | 810  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Pentachlorophenol          | 240    | 1000 | ug/kg | UJ        | DA1SB-084M-0201-SO | 240    | 1000 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Phenanthrene               | 26     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 26     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Phenol                     | 160    | 500  | ug/kg | UJ        | DA1SB-084M-0201-SO | 160    | 510  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Pyrene                     | 26     | 400  | ug/kg | UJ        | DA1SB-084M-0201-SO | 26     | 400  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.13   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.08   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4,6-Trinitrotoluene      | 0.091  | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | mg/kg | R         | DA1SB-084M-0201-SO | 0.2    | 0.44 | U         | N/A | N/A      |
| DA1SB-068M-0201-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5  | mg/kg | R         | DA1SB-084M-0201-SO | 0.07   | 0.5  | U         | N/A | N/A      |
| DA1SB-068M-0201-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.05   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 2-Nitrotoluene             | 0.091  | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 3,5-Dinitroaniline         | 0.091  | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 3-Nitrotoluene             | 0.07   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | 4-Nitrotoluene             | 0.07   | 0.5  | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.07   | 0.5  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | HMX                        | 0.12   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.12   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Nitrobenzene               | 0.04   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.04   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Nitroglycerin              | 0.5    | 1.5  | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Nitroguanidine             | 0.06   | 0.16 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.059  | 0.16 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | PETN                       | 0.5    | 1.5  | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | RDX                        | 0.16   | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.16   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Tetryl                     | 0.091  | 0.44 | mg/kg | UJ        | DA1SB-084M-0201-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Cyanide                    | 0.4    | 0.38 | mg/kg |           | DA1SB-084M-0201-SO | 0.11   | 0.39 | U         | N/A | Yes      |
| DA1SB-068M-0201-SO | Nitrocellulose             | 7      | 100  | mg/kg | U         | DA1SB-084M-0201-SO | 7      | 23   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,1,1-Trichloroethane      | 9.9    | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 10     | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,1,2,2-Tetrachloroethane  | 6      | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 6.3    | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,1,2-Trichloroethane      | 8      | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,1-Dichloroethane         | 11     | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 11     | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,1-Dichloroethene         | 16     | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 17     | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,2-Dibromoethane          | 9.9    | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 10     | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,2-Dichloroethane         | 12     | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 13     | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 1,2-Dichloropropane        | 7      | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 7.3    | 52   | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 2-Butanone                 | 99     | 500  | ug/kg | U         | DA1SB-085D-0204-SO | 100    | 520  | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 2-Hexanone                 | 68     | 500  | ug/kg | U         | DA1SB-085D-0204-SO | 71     | 520  | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | 4-Methyl-2-pentanone       | 82     | 500  | ug/kg | U         | DA1SB-085D-0204-SO | 86     | 520  | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | Acetone                    | 63     | 990  | ug/kg | U         | DA1SB-085D-0204-SO | 66     | 1000 | U         | N/A | Yes      |
| DA1SB-070D-0203-SO | Benzene                    | 5      | 50   | ug/kg | U         | DA1SB-085D-0204-SO | 5.2    | 52   | U         | N/A | Yes      |

| Sample             | Analyte                   | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ Qualif | ier RPD | W/In LOQ |
|--------------------|---------------------------|--------|-------|-------|-----------|--------------------|--------|------------|---------|----------|
| DA1SB-070D-0203-SO | Bromochloromethane        | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Bromodichloromethane      | 8.9    | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 9.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Bromoform                 | 6      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 6.3    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Bromomethane              | 30     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 31     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | Carbon disulfide          | 15     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 16     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | Carbon tetrachloride      | 11     | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 11     | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Chlorobenzene             | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Chloroethane              | 19     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 20     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | Chloroform                | 8.9    | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 9.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Chloromethane             | 25     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 26     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | cis-1,2-Dichloroethene    | 9.9    | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 10     | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | cis-1,3-Dichloropropene   | 9.9    | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 10     | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Dibromochloromethane      | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Ethylbenzene              | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | m,p-Xylenes               | 18     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 19     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | Methylene chloride        | 40     | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 42     | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | o-Xylene                  | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Styrene                   | 6      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 6.3    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Tetrachloroethene         | 8      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 8.4    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Toluene                   | 7      | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 7.3    | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | trans-1,2-Dichloroethene  | 11     | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 11     | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | trans-1,3-Dichloropropene | 7      | 99    | ug/kg | U         | DA1SB-085D-0204-SO | 7.3    | 100 U      | N/A     | Yes      |
| DA1SB-070D-0203-SO | Trichloroethene           | 9.9    | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 10     | 52 U       | N/A     | Yes      |
| DA1SB-070D-0203-SO | Vinyl chloride            | 14     | 50    | ug/kg | U         | DA1SB-085D-0204-SO | 15     | 52 U       | N/A     | Yes      |
| DA1SB-070M-0204-SO | Aluminum                  | 12900  | 0.24  | mg/kg | J-        | DA1SB-085M-0204-SO | 12900  | 0.24       | 0       | N/A      |
| DA1SB-070M-0204-SO | Antimony                  | 0.57   | 0.55  | mg/kg | J-        | DA1SB-085M-0204-SO | 0.66   | 0.55       | N/A     | Yes      |
| DA1SB-070M-0204-SO | Arsenic                   | 10.2   | 0.91  | mg/kg | J-        | DA1SB-085M-0204-SO | 9.8    | 0.91       | 4       | N/A      |
| DA1SB-070M-0204-SO | Barium                    | 62.9   | 0.055 | mg/kg | J-        | DA1SB-085M-0204-SO | 64.4   | 0.055      | 2       | N/A      |
| DA1SB-070M-0204-SO | Beryllium                 | 0.46   | 0.024 | mg/kg |           | DA1SB-085M-0204-SO | 0.46   | 0.024      | 0       | N/A      |
| DA1SB-070M-0204-SO | Cadmium                   | 0.08   | 0.08  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.012  | 0.043 U    | N/A     | Yes      |
| DA1SB-070M-0204-SO | Calcium                   | 30200  | 1     | mg/kg | J-        | DA1SB-085M-0204-SO | 30700  | 1          | 2       | N/A      |
| DA1SB-070M-0204-SO | Chromium                  | 58.3   | 0.13  | mg/kg | J-        | DA1SB-085M-0204-SO | 74     | 0.13       | 24      | N/A      |
| DA1SB-070M-0204-SO | Cobalt                    | 9.8    | 0.099 | mg/kg | J-        | DA1SB-085M-0204-SO | 9.3    | 0.099      | 5       | N/A      |
| DA1SB-070M-0204-SO | Copper                    | 17.3   | 0.41  | mg/kg | J-        | DA1SB-085M-0204-SO | 16.1   | 0.41       | 7       | N/A      |
| DA1SB-070M-0204-SO | Iron                      | 29000  | 2     | mg/kg |           | DA1SB-085M-0204-SO | 29100  | 2          | 0       | N/A      |
| DA1SB-070M-0204-SO | Lead                      | 10.9   | 0.28  | mg/kg | J-        | DA1SB-085M-0204-SO | 11.2   | 0.28       | 3       | N/A      |
| DA1SB-070M-0204-SO | Magnesium                 | 8010   | 0.81  | mg/kg | J-        | DA1SB-085M-0204-SO | 7910   | 0.81       | 1       | N/A      |
| DA1SB-070M-0204-SO | Manganese                 | 311    | 0.1   | mg/kg | J-        | DA1SB-085M-0204-SO | 313    | 0.1        | 1       | N/A      |
| DA1SB-070M-0204-SO | Nickel                    | 24.1   | 0.12  | mg/kg | J-        | DA1SB-085M-0204-SO | 23     | 0.12       | 5       | N/A      |

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|-------|-------|-----------|--------------------|--------|-------|-----------|-----|----------|
| DA1SB-070M-0204-SO | Potassium                  | 1860   | 37    | mg/kg | J-        | DA1SB-085M-0204-SO | 1950   | 37    |           | 5   | N/A      |
| DA1SB-070M-0204-SO | Selenium                   | 0.43   | 0.85  | mg/kg | J-        | DA1SB-085M-0204-SO | 0.71   | 0.85  | J         | N/A | Yes      |
| DA1SB-070M-0204-SO | Silver                     | 0.034  | 0.11  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.034  | 0.11  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | Sodium                     | 78.9   | 13    | mg/kg | J-        | DA1SB-085M-0204-SO | 78.9   | 13    |           | 0   | N/A      |
| DA1SB-070M-0204-SO | Thallium                   | 1.8    | 0.28  | mg/kg | J-        | DA1SB-085M-0204-SO | 1.8    | 0.28  |           | 0   | N/A      |
| DA1SB-070M-0204-SO | Vanadium                   | 18.9   | 0.069 | mg/kg | J-        | DA1SB-085M-0204-SO | 18.5   | 0.069 |           | 2   | N/A      |
| DA1SB-070M-0204-SO | Zinc                       | 51.2   | 0.24  | mg/kg | J-        | DA1SB-085M-0204-SO | 47.7   | 0.24  |           | 7   | N/A      |
| DA1SB-070M-0204-SO | Mercury                    | 0.01   | 0.008 | mg/kg | J-        | DA1SB-085M-0204-SO | 0.01   | 0.008 |           | N/A | Yes      |
| DA1SB-070M-0204-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.13   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.08   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.2    | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.07   | 0.5   | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.05   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 2-Nitrotoluene             | 0.09   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.07   | 0.5   | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | НМХ                        | 0.12   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.12   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.04   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | PETN                       | 0.5    | 1.5   | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | RDX                        | 0.16   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.16   | 0.44  | U         | N/A | Yes      |
| DA1SB-070M-0204-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | UJ        | DA1SB-085M-0204-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Aluminum                   | 6790   | 0.24  | mg/kg | J-        | DA1SB-086M-0204-SO | 5940   | 0.24  |           | 13  | N/A      |
| DA1SB-072M-0204-SO | Antimony                   | 7.6    | 0.54  | mg/kg | J-        | DA1SB-086M-0204-SO | 5.1    | 0.54  |           | 39  | N/A      |
| DA1SB-072M-0204-SO | Arsenic                    | 10.7   | 0.91  | mg/kg | J-        | DA1SB-086M-0204-SO | 9.8    | 0.91  |           | 9   | N/A      |
| DA1SB-072M-0204-SO | Barium                     | 40.2   | 0.054 | mg/kg | J-        | DA1SB-086M-0204-SO | 35.7   | 0.054 |           | 12  | N/A      |
| DA1SB-072M-0204-SO | Beryllium                  | 0.24   | 0.024 | mg/kg | J         | DA1SB-086M-0204-SO | 0.25   | 0.024 |           | 4   | N/A      |
| DA1SB-072M-0204-SO | Cadmium                    | 0.2    | 0.2   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.012  | 0.042 | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Calcium                    | 1060   | 1     | mg/kg | J-        | DA1SB-086M-0204-SO | 790    | 1     |           | 29  | N/A      |
| DA1SB-072M-0204-SO | Chromium                   | 589    | 0.13  | mg/kg | J-        | DA1SB-086M-0204-SO | 384    | 0.13  |           | 42  | N/A      |
| DA1SB-072M-0204-SO | Cobalt                     | 5.9    | 0.099 | mg/kg | J-        | DA1SB-086M-0204-SO | 6.1    | 0.099 |           | 3   | N/A      |
| DA1SB-072M-0204-SO | Copper                     | 26.5   | 0.4   | mg/kg | J-        | DA1SB-086M-0204-SO | 25.7   | 0.4   |           | 3   | N/A      |
| DA1SB-072M-0204-SO | Iron                       | 25500  | 2     | mg/kg |           | DA1SB-086M-0204-SO | 22500  | 2     |           | 13  | N/A      |
| DA1SB-072M-0204-SO | Lead                       | 13.9   | 0.28  | mg/kg | J-        | DA1SB-086M-0204-SO | 10.5   | 0.28  |           | 28  | N/A      |
| DA1SB-072M-0204-SO | Magnesium                  | 1750   | 0.8   | mg/kg | J-        | DA1SB-086M-0204-SO | 1700   | 0.8   |           | 3   | N/A      |
| DA1SB-072M-0204-SO | Manganese                  | 342    | 0.1   | mg/kg | J-        | DA1SB-086M-0204-SO | 390    | 0.1   |           | 13  | N/A      |

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ    | Units | Qualifier | Sample             | Result | LOQ    | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|--------|-------|-----------|--------------------|--------|--------|-----------|-----|----------|
| DA1SB-072M-0204-SO | Nickel                     | 16     | 0.12   | mg/kg | J-        | DA1SB-086M-0204-SO | 16.4   | 0.12   |           | 2   | N/A      |
| DA1SB-072M-0204-SO | Potassium                  | 1330   | 36     | mg/kg | J-        | DA1SB-086M-0204-SO | 966    | 36     |           | 32  | N/A      |
| DA1SB-072M-0204-SO | Selenium                   | 0.68   | 0.85   | mg/kg | J-        | DA1SB-086M-0204-SO | 0.45   | 0.85   | J         | N/A | Yes      |
| DA1SB-072M-0204-SO | Silver                     | 0.034  | 0.11   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.034  | 0.11   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Sodium                     | 115    | 13     | mg/kg | J-        | DA1SB-086M-0204-SO | 75.7   | 13     |           | 41  | N/A      |
| DA1SB-072M-0204-SO | Thallium                   | 1.3    | 0.28   | mg/kg | J-        | DA1SB-086M-0204-SO | 1.3    | 0.28   |           | N/A | Yes      |
| DA1SB-072M-0204-SO | Vanadium                   | 13.3   | 0.068  | mg/kg | J-        | DA1SB-086M-0204-SO | 11.6   | 0.068  |           | 14  | N/A      |
| DA1SB-072M-0204-SO | Zinc                       | 63.9   | 0.24   | mg/kg | J-        | DA1SB-086M-0204-SO | 59.9   | 0.24   |           | 6   | N/A      |
| DA1SB-072M-0204-SO | Mercury                    | 0.037  | 0.0079 | mg/kg | J-        | DA1SB-086M-0204-SO | 0.019  | 0.0079 |           | N/A | No       |
| DA1SB-072M-0204-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.13   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.08   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.2    | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5    | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.07   | 0.5    | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.05   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 2-Nitrotoluene             | 0.09   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 3,5-Dinitroaniline         | 0.09   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 3-Nitrotoluene             | 0.07   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.07   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.07   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | 4-Nitrotoluene             | 0.07   | 0.5    | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.07   | 0.5    | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | НМХ                        | 0.12   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.12   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Nitrobenzene               | 0.04   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.04   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Nitroglycerin              | 0.5    | 1.5    | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.5    | 1.5    | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | PETN                       | 0.5    | 1.5    | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.5    | 1.5    | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | RDX                        | 0.16   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.16   | 0.44   | U         | N/A | Yes      |
| DA1SB-072M-0204-SO | Tetryl                     | 0.09   | 0.44   | mg/kg | UJ        | DA1SB-086M-0204-SO | 0.089  | 0.44   | U         | N/A | Yes      |
| DA1SS-050M-0201-SO | Aluminum                   | 10900  | 0.24   | mg/kg | J-        | DA1SS-080M-0201-SO | 11400  | 0.25   |           | 4   | N/A      |
| DA1SS-050M-0201-SO | Antimony                   | 1.2    | 0.55   | mg/kg | J-        | DA1SS-080M-0201-SO | 0.16   | 0.55   | U         | N/A | No       |
| DA1SS-050M-0201-SO | Arsenic                    | 9.1    | 0.92   | mg/kg | J-        | DA1SS-080M-0201-SO | 8.9    | 0.92   |           | 2   | N/A      |
| DA1SS-050M-0201-SO | Barium                     | 78.8   | 0.055  | mg/kg | J-        | DA1SS-080M-0201-SO | 107    | 0.055  |           | 30  | N/A      |
| DA1SS-050M-0201-SO | Beryllium                  | 0.38   | 0.024  | mg/kg |           | DA1SS-080M-0201-SO | 0.4    | 0.025  |           | 5   | N/A      |
| DA1SS-050M-0201-SO | Cadmium                    | 2.6    | 0.043  | mg/kg | J-        | DA1SS-080M-0201-SO | 3      | 0.043  |           | 14  | N/A      |
| DA1SS-050M-0201-SO | Calcium                    | 2500   | 1      | mg/kg | J-        | DA1SS-080M-0201-SO | 2260   | 1      |           | 10  | N/A      |
| DA1SS-050M-0201-SO | Chromium                   | 110    | 0.13   | mg/kg | J-        | DA1SS-080M-0201-SO | 43     | 0.13   |           | 88  | N/A      |
| DA1SS-050M-0201-SO | Cobalt                     | 7.6    | 0.1    | mg/kg | J-        | DA1SS-080M-0201-SO | 8.4    | 0.1    |           | 10  | N/A      |
| DA1SS-050M-0201-SO | Copper                     | 188    | 0.41   | mg/kg | J-        | DA1SS-080M-0201-SO | 150    | 0.41   |           | 22  | N/A      |
| DA1SS-050M-0201-SO | Iron                       | 23700  | 2      | mg/kg |           | DA1SS-080M-0201-SO | 24300  | 2      |           | 3   | N/A      |
| DA1SS-050M-0201-SO | Lead                       | 23.4   | 0.28   | mg/kg | J-        | DA1SS-080M-0201-SO | 25.3   | 0.29   |           | 8   | N/A      |
| DA1SS-050M-0201-SO | Magnesium                  | 2860   | 0.81   | mg/kg | J-        | DA1SS-080M-0201-SO | 2890   | 0.82   |           | 1   | N/A      |

ODA1 Field Duplicate Comparison

| Sample             | Analyte                    | Result | LOQ   | Units | Qualifier | Sample             | Result | LOQ C  | Qualifier | RPD | W/In LOQ |
|--------------------|----------------------------|--------|-------|-------|-----------|--------------------|--------|--------|-----------|-----|----------|
| DA1SS-050M-0201-SO | Manganese                  | 407    | 0.1   | mg/kg | J-        | DA1SS-080M-0201-SO | 456    | 0.1    |           | 11  | N/A      |
| DA1SS-050M-0201-SO | Nickel                     | 18.4   | 0.12  | mg/kg | J-        | DA1SS-080M-0201-SO | 18     | 0.12   |           | 2   | N/A      |
| DA1SS-050M-0201-SO | Potassium                  | 814    | 37    | mg/kg | J-        | DA1SS-080M-0201-SO | 729    | 37     |           | 11  | N/A      |
| DA1SS-050M-0201-SO | Selenium                   | 0.75   | 0.85  | mg/kg | J-        | DA1SS-080M-0201-SO | 0.62   | 0.86 J |           | N/A | Yes      |
| DA1SS-050M-0201-SO | Silver                     | 0.035  | 0.11  | mg/kg | IJ        | DA1SS-080M-0201-SO | 0.035  | 0.11 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | Sodium                     | 31.8   | 13    | mg/kg | J-        | DA1SS-080M-0201-SO | 26.8   | 13     |           | N/A | Yes      |
| DA1SS-050M-0201-SO | Thallium                   | 1.6    | 0.28  | mg/kg | J-        | DA1SS-080M-0201-SO | 1.5    | 0.29   |           | 6   | N/A      |
| DA1SS-050M-0201-SO | Vanadium                   | 16.1   | 0.069 | mg/kg | J-        | DA1SS-080M-0201-SO | 16     | 0.07   |           | 1   | N/A      |
| DA1SS-050M-0201-SO | Zinc                       | 191    | 0.24  | mg/kg | J-        | DA1SS-080M-0201-SO | 187    | 0.25   |           | 2   | N/A      |
| DA1SS-050M-0201-SO | Hexavalent Chromium        | 1.9    | 6.5   | mg/kg | U         | DA1SS-080M-0201-SO | 1.9    | 6.5 U  | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | Mercury                    | 0.037  | 0.008 | mg/kg | J-        | DA1SS-080M-0201-SO | 0.037  | 0.0081 |           | N/A | Yes      |
| DA1SS-050M-0201-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.13   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.08   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.09   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.2    | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.07   | 0.5 U  | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.05   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 2-Nitrotoluene             | 0.09   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.09   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.09   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.07   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.07   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.07   | 0.5 U  | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | НМХ                        | 0.12   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.12   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.04   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.5    | 1.5 U  | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | PETN                       | 0.5    | 1.5   | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.5    | 1.5 U  | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | RDX                        | 0.16   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.16   | 0.44 U | J         | N/A | Yes      |
| DA1SS-050M-0201-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | UJ        | DA1SS-080M-0201-SO | 0.09   | 0.44 U | J         | N/A | Yes      |

Ravenna Army Ammunition Plant, Sand Creek/ODA1 Data Validation Report

Sand Creek

| Sample            | Analyte                   | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|---------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-037D-0001-SO | 1,1,1-Trichloroethane     | 14     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 12     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,1,2,2-Tetrachloroethane | 8.3    | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 6.9    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,1,2-Trichloroethane     | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,1-Dichloroethane        | 15     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 13     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,1-Dichloroethene        | 22     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 19     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,2-Dibromoethane         | 14     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 12     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,2-Dichloroethane        | 17     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 14     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 1,2-Dichloropropane       | 9.7    | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 8.1    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 2-Butanone                | 140    | 700  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 120    | 580  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 2-Hexanone                | 95     | 700  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 79     | 580  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | 4-Methyl-2-pentanone      | 110    | 700  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 95     | 580  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Acetone                   | 88     | 1400 | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 73     | 1200 | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Benzene                   | 7      | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 5.8    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Bromochloromethane        | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Bromodichloromethane      | 13     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 10     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Bromoform                 | 8.3    | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 6.9    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Bromomethane              | 42     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 35     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Carbon disulfide          | 21     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 17     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Carbon tetrachloride      | 15     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 13     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Chlorobenzene             | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Chloroethane              | 26     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 22     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Chloroform                | 13     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 10     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Chloromethane             | 35     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 29     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | cis-1,2-Dichloroethene    | 14     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 12     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | cis-1,3-Dichloropropene   | 14     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 12     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Dibromochloromethane      | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Ethylbenzene              | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | m,p-Xylenes               | 25     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 21     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Methylene chloride        | 56     | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 46     | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | o-Xylene                  | 13     | 70   | ug/kg | J         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Styrene                   | 8.3    | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 6.9    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Tetrachloroethene         | 11     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 9.3    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Toluene                   | 12     | 70   | ug/kg | J         | 8260   | SCSB-080D-0001-SO | 8.1    | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | trans-1,2-Dichloroethene  | 15     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 13     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | trans-1,3-Dichloropropene | 9.7    | 140  | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 8.1    | 120  | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Trichloroethene           | 14     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 12     | 58   | U         | N/A | Yes      |
| SCSB-037D-0001-SO | Vinyl chloride            | 19     | 70   | ug/kg | U         | 8260   | SCSB-080D-0001-SO | 16     | 58   | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Aluminum                  | 14800  | 0.49 | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 14100  | 0.49 |           | 5   | N/A      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier RPD | ١   | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|---------------|-----|----------|
| SCSB-037M-0001-SO | Antimony                   | 0.93   | 1.1   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 0.67   | 1.1   | J L           | J/A | Yes      |
| SCSB-037M-0001-SO | Arsenic                    | 182    | 1.8   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 214    | 1.8   |               | 16  | N/A      |
| SCSB-037M-0001-SO | Barium                     | 932    | 0.11  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 1050   | 0.11  |               | 12  | N/A      |
| SCSB-037M-0001-SO | Beryllium                  | 3.9    | 0.049 | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 3.8    | 0.049 |               | 3   | N/A      |
| SCSB-037M-0001-SO | Cadmium                    | 1.6    | 0.085 | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 2.1    | 0.085 |               | 27  | N/A      |
| SCSB-037M-0001-SO | Calcium                    | 13900  | 2     | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 16700  | 2     |               | 18  | N/A      |
| SCSB-037M-0001-SO | Chromium                   | 112    | 0.26  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 66     | 0.26  |               | 52  | N/A      |
| SCSB-037M-0001-SO | Cobalt                     | 9      | 0.2   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 8.5    | 0.2   |               | 6   | N/A      |
| SCSB-037M-0001-SO | Copper                     | 95.7   | 0.81  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 118    | 0.81  |               | 21  | N/A      |
| SCSB-037M-0001-SO | Iron                       | 41500  | 4.1   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 38900  | 4.1   |               | 6   | N/A      |
| SCSB-037M-0001-SO | Lead                       | 325    | 0.57  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 400    | 0.57  |               | 21  | N/A      |
| SCSB-037M-0001-SO | Magnesium                  | 3050   | 1.6   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 3270   | 1.6   |               | 7   | N/A      |
| SCSB-037M-0001-SO | Manganese                  | 743    | 0.2   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 770    | 0.2   |               | 4   | N/A      |
| SCSB-037M-0001-SO | Nickel                     | 35.7   | 0.25  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 35.2   | 0.25  |               | 1   | N/A      |
| SCSB-037M-0001-SO | Potassium                  | 1020   | 37    | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 885    | 37    |               | 14  | N/A      |
| SCSB-037M-0001-SO | Selenium                   | 3.1    | 1.7   | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 3.4    | 1.7   | 1             | J/A | Yes      |
| SCSB-037M-0001-SO | Silver                     | 1.2    | 0.23  | mg/kg |           | 6010   | SCSB-080M-0001-SO | 1.5    | 0.23  |               | 22  | N/A      |
| SCSB-037M-0001-SO | Sodium                     | 178    | 13    | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 175    | 13    |               | 2   | N/A      |
| SCSB-037M-0001-SO | Thallium                   | 5.5    | 0.57  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 5.3    | 0.57  |               | 4   | N/A      |
| SCSB-037M-0001-SO | Vanadium                   | 41     | 0.14  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 41.4   | 0.14  |               | 1   | N/A      |
| SCSB-037M-0001-SO | Zinc                       | 298    | 0.49  | mg/kg | J-        | 6010   | SCSB-080M-0001-SO | 337    | 0.49  |               | 12  | N/A      |
| SCSB-037M-0001-SO | Mercury                    | 0.24   | 0.008 | mg/kg | J-        | 7471   | SCSB-080M-0001-SO | 0.31   | 0.008 |               | 25  | N/A      |
| SCSB-037M-0001-SO | 1,2,4-Trichlorobenzene     | 21     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 21     | 410   | 1 U           | J/A | Yes      |
| SCSB-037M-0001-SO | 1,2-Dichlorobenzene        | 49     | 400   | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 24     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 1,3-Dichlorobenzene        | 20     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 20     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 1,4-Dichlorobenzene        | 19     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 19     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4,5-Trichlorophenol      | 130    | 510   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 130    | 510   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4,6-Trichlorophenol      | 130    | 510   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 130    | 510   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4-Dichlorophenol         | 120    | 510   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 120    | 510   | 1 U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4-Dimethylphenol         | 100    | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 100    | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4-Dinitrophenol          | 700    | 2000  | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 700    | 2000  | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,4-Dinitrotoluene         | 24     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 24     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2,6-Dinitrotoluene         | 24     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 24     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2-Chloronaphthalene        | 23     | 400   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 23     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2-Chlorophenol             | 340    | 510   | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 340    | 510   | U U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2-Methyl-4,6-dinitrophenol | 270    | 1000  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 270    | 1000  | U U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2-Methylnaphthalene        | 260    | 400   | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 25     | 410   | I U           | J/A | Yes      |
| SCSB-037M-0001-SO | 2-Methylphenol             | 420    | 1000  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 430    | 1000  | U I           | J/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-037M-0001-SO | 2-Nitroaniline               | 23     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 2-Nitrophenol                | 280    | 510  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 280    | 510  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 3,3'-Dichlorobenzidine       | 150    | 510  | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 150    | 510  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 3-Nitroaniline               | 22     | 1000 | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 22     | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Bromophenyl phenyl ether   | 25     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Chloro-3-methylphenol      | 380    | 510  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 390    | 510  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Chloroaniline              | 39     | 400  | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 40     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Chlorophenyl phenyl ether  | 26     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 660    | 2000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Nitroaniline               | 30     | 1000 | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 30     | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Nitrophenol                | 400    | 1000 | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 410    | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Acenaphthene                 | 24     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Acenaphthylene               | 24     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Anthracene                   | 32     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzo(a)anthracene           | 120    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzo(a)pyrene               | 140    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzo(b)fluoranthene         | 260    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzo(g,h,i)perylene         | 120    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 22     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzo(k)fluoranthene         | 69     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzoic acid                 | 290    | 990  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 290    | 990  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 84     | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Bis(2-chloroisopropyl) ether | 30     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 30     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000 | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 88     | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Butylbenzyl phthalate        | 74     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 74     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Carbazole                    | 33     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 28     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Chrysene                     | 160    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Dibenzo(a,h)anthracene       | 32     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 22     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Dibenzofuran                 | 69     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Diethyl phthalate            | 65     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 65     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Dimethyl phthalate           | 64     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 64     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Di-n-butyl phthalate         | 120    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 92     | 410  | J         | N/A | Yes      |
| SCSB-037M-0001-SO | Di-n-octyl phthalate         | 60     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 60     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Fluoranthene                 | 360    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Fluorene                     | 25     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Hexachlorobenzene            | 28     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 28     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Hexachlorobutadiene          | 63     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 63     | 410  | U         | N/A | Yes      |

| Sample            | Analyte                    | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-037M-0001-SO | Hexachlorocyclopentadiene  | 53     | 400  | ug/kg | UJ        | 8270   | SCSB-080M-0001-SO | 53     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Hexachloroethane           | 33     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 33     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Indeno(1,2,3-cd)pyrene     | 93     | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Isophorone                 | 500    | 400  | ug/kg |           | 8270   | SCSB-080M-0001-SO | 180    | 410  | J         | N/A | Yes      |
| SCSB-037M-0001-SO | Naphthalene                | 150    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 21     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Nitrobenzene               | 60     | 400  | ug/kg | R         | 8270   | SCSB-080M-0001-SO | 60     | 410  | U         | N/A | N/A      |
| SCSB-037M-0001-SO | N-Nitroso-di-n-propylamine | 71     | 400  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 71     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | N-Nitrosodiphenylamine     | 51     | 810  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 51     | 810  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Pentachlorophenol          | 240    | 1000 | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 240    | 1000 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Phenanthrene               | 280    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Phenol                     | 160    | 510  | ug/kg | U         | 8270   | SCSB-080M-0001-SO | 160    | 510  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Pyrene                     | 280    | 400  | ug/kg | J         | 8270   | SCSB-080M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.13   | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 1,3-Dinitrobenzene         | 0.081  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.081  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 2,4,6-Trinitrotoluene      | 0.091  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.091  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | mg/kg | R         | 8330B  | SCSB-080M-0001-SO | 0.2    | 0.44 | U         | N/A | N/A      |
| SCSB-037M-0001-SO | 2,6-Dinitrotoluene         | 0.071  | 0.51 | mg/kg | R         | 8330B  | SCSB-080M-0001-SO | 0.071  | 0.5  | U         | N/A | N/A      |
| SCSB-037M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.051  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.05   | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 2-Nitrotoluene             | 0.091  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.091  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 3,5-Dinitroaniline         | 0.091  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.091  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 3-Nitrotoluene             | 0.071  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.071  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.071  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.071  | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | 4-Nitrotoluene             | 0.071  | 0.51 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.071  | 0.5  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | НМХ                        | 0.12   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.12   | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Nitrobenzene               | 0.04   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.04   | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Nitroglycerin              | 0.51   | 1.5  | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | PETN                       | 0.51   | 1.5  | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSB-037M-0001-SO | RDX                        | 0.16   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.16   | 0.44 | U         | N/A | Yes      |
| SCSB-037M-0001-SO | Tetryl                     | 0.091  | 0.44 | mg/kg | UJ        | 8330B  | SCSB-080M-0001-SO | 0.091  | 0.44 | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,1,1-Trichloroethane      | 12     | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 11     | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,1,2,2-Tetrachloroethane  | 7.2    | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 6.9    | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,1,2-Trichloroethane      | 9.6    | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,1-Dichloroethane         | 13     | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 13     | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,1-Dichloroethene         | 19     | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 18     | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,2-Dibromoethane          | 12     | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 11     | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,2-Dichloroethane         | 14     | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 14     | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 1,2-Dichloropropane        | 8.4    | 60   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 8      | 57   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 2-Butanone                 | 120    | 600  | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 110    | 570  | U         | N/A | Yes      |

| Sample            | Analyte                   | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|---------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSB-038D-0005-SO | 2-Hexanone                | 82     | 600   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 78     | 570   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | 4-Methyl-2-pentanone      | 99     | 600   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 94     | 570   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Acetone                   | 76     | 1200  | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 72     | 1100  | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Benzene                   | 6      | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 5.7    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Bromochloromethane        | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Bromodichloromethane      | 11     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 10     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Bromoform                 | 7.2    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 6.9    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Bromomethane              | 36     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 34     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Carbon disulfide          | 18     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 17     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Carbon tetrachloride      | 13     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 13     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Chlorobenzene             | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Chloroethane              | 23     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 22     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Chloroform                | 11     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 10     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Chloromethane             | 30     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 29     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | cis-1,2-Dichloroethene    | 12     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 11     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | cis-1,3-Dichloropropene   | 12     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 11     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Dibromochloromethane      | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Ethylbenzene              | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | m,p-Xylenes               | 22     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 21     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Methylene chloride        | 48     | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 46     | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | o-Xylene                  | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Styrene                   | 7.2    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 6.9    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Tetrachloroethene         | 9.6    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 9.2    | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Toluene                   | 8.4    | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 8      | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | trans-1,2-Dichloroethene  | 13     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 13     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | trans-1,3-Dichloropropene | 8.4    | 120   | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 8      | 110   | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Trichloroethene           | 12     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 11     | 57    | U         | N/A | Yes      |
| SCSB-038D-0005-SO | Vinyl chloride            | 17     | 60    | ug/kg | U         | 8260   | SCSB-081D-0005-SO | 16     | 57    | U         | N/A | Yes      |
| SCSB-038M-0005-SO | Aluminum                  | 10900  | 0.24  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 10500  | 0.24  |           | 4   | N/A      |
| SCSB-038M-0005-SO | Antimony                  | 0.63   | 0.54  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 0.57   | 0.54  |           | N/A | Yes      |
| SCSB-038M-0005-SO | Arsenic                   | 6.1    | 0.91  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 5.5    | 0.9   |           | 10  | N/A      |
| SCSB-038M-0005-SO | Barium                    | 43.8   | 0.054 | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 43.3   | 0.054 |           | 1   | N/A      |
| SCSB-038M-0005-SO | Beryllium                 | 0.38   | 0.024 | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 0.38   | 0.024 |           | 0   | N/A      |
| SCSB-038M-0005-SO | Cadmium                   | 0.012  | 0.042 | mg/kg | UJ        | 6010   | SCSB-081M-0005-SO | 0.012  | 0.042 | U         | N/A | Yes      |
| SCSB-038M-0005-SO | Calcium                   | 10900  | 1     | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 10200  | 1     |           | 7   | N/A      |
| SCSB-038M-0005-SO | Chromium                  | 156    | 0.13  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 123    | 0.13  |           | 24  | N/A      |
| SCSB-038M-0005-SO | Cobalt                    | 9      | 0.099 | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 8.6    | 0.098 |           | 5   | N/A      |
| SCSB-038M-0005-SO | Copper                    | 18.6   | 0.4   | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 17.2   | 0.4   |           | 8   | N/A      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier F | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-------------|-----|----------|
| SCSB-038M-0005-SO | Iron                       | 29600  | 2     | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 28300  | 2     |             | 4   | N/A      |
| SCSB-038M-0005-SO | Lead                       | 5.3    | 0.28  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 4.9    | 0.28  |             | 8   | N/A      |
| SCSB-038M-0005-SO | Magnesium                  | 6840   | 0.8   | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 6530   | 0.8   |             | 5   | N/A      |
| SCSB-038M-0005-SO | Manganese                  | 369    | 0.1   | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 347    | 0.1   |             | 6   | N/A      |
| SCSB-038M-0005-SO | Nickel                     | 20.4   | 0.12  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 19.9   | 0.12  |             | 2   | N/A      |
| SCSB-038M-0005-SO | Potassium                  | 2020   | 36    | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 1960   | 36    |             | 3   | N/A      |
| SCSB-038M-0005-SO | Selenium                   | 0.6    | 0.85  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 0.45   | 0.84  | J           | N/A | Yes      |
| SCSB-038M-0005-SO | Silver                     | 0.034  | 0.11  | mg/kg | U         | 6010   | SCSB-081M-0005-SO | 0.034  | 0.11  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | Sodium                     | 134    | 13    | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 122    | 13    |             | 9   | N/A      |
| SCSB-038M-0005-SO | Thallium                   | 1.7    | 0.28  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 1.6    | 0.28  |             | 6   | N/A      |
| SCSB-038M-0005-SO | Vanadium                   | 14.3   | 0.068 | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 13.7   | 0.068 |             | 4   | N/A      |
| SCSB-038M-0005-SO | Zinc                       | 48.1   | 0.24  | mg/kg | J-        | 6010   | SCSB-081M-0005-SO | 46.4   | 0.24  |             | 4   | N/A      |
| SCSB-038M-0005-SO | Mercury                    | 0.0079 | 0.008 | mg/kg | J-        | 7471   | SCSB-081M-0005-SO | 0.0076 | 0.008 | J           | N/A | Yes      |
| SCSB-038M-0005-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.13   | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.079  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.089  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | R         | 8330B  | SCSB-081M-0005-SO | 0.2    | 0.43  | U           | N/A | N/A      |
| SCSB-038M-0005-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | R         | 8330B  | SCSB-081M-0005-SO | 0.069  | 0.49  | U           | N/A | N/A      |
| SCSB-038M-0005-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.049  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 2-Nitrotoluene             | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.089  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.089  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.069  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.069  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.069  | 0.49  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | НМХ                        | 0.12   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.12   | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.039  | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.49   | 1.5   | U           | N/A | Yes      |
| SCSB-038M-0005-SO | PETN                       | 0.5    | 1.5   | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.49   | 1.5   | U           | N/A | Yes      |
| SCSB-038M-0005-SO | RDX                        | 0.16   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.16   | 0.43  | U           | N/A | Yes      |
| SCSB-038M-0005-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-081M-0005-SO | 0.089  | 0.43  | U           | N/A | Yes      |
| SCSB-040M-0002-SO | Aluminum                   | 11500  | 0.12  | mg/kg |           | 6010   | SCSB-082M-0002-SO | 14300  | 0.12  |             | 22  | N/A      |
| SCSB-040M-0002-SO | Antimony                   | 1      | 0.27  | mg/kg |           | 6010   | SCSB-082M-0002-SO | 0.082  | 0.28  | U           | N/A | No       |
| SCSB-040M-0002-SO | Arsenic                    | 14.7   | 0.46  | mg/kg |           | 6010   | SCSB-082M-0002-SO | 15.2   | 0.46  |             | 3   | N/A      |
| SCSB-040M-0002-SO | Barium                     | 49.8   | 0.027 | mg/kg |           | 6010   | SCSB-082M-0002-SO | 55.6   | 0.028 |             | 11  | N/A      |
| SCSB-040M-0002-SO | Beryllium                  | 0.66   | 0.012 | mg/kg |           | 6010   | SCSB-082M-0002-SO | 0.68   | 0.024 |             | 3   | N/A      |
| SCSB-040M-0002-SO | Cadmium                    | 0.28   | 0.021 | mg/kg |           | 6010   | SCSB-082M-0002-SO | 0.22   | 0.021 |             | 24  | N/A      |
| SCSB-040M-0002-SO | Calcium                    | 4700   | 0.51  | mg/kg |           | 6010   | SCSB-082M-0002-SO | 5120   | 0.51  |             | 9   | N/A      |
| SCSB-040M-0002-SO | Chromium                   | 54.9   | 0.064 | mg/kg |           | 6010   | SCSB-082M-0002-SO | 44.6   | 0.064 |             | 21  | N/A      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSB-040M-0002-SO | Cobalt                     | 11.1   | 0.05  | mg/kg | 6         | 6010   | SCSB-082M-0002-SO | 12     | 0.05  |           | 8   | N/A      |
| SCSB-040M-0002-SO | Copper                     | 17.1   | 0.2   | mg/kg | 6         | 6010   | SCSB-082M-0002-SO | 16.3   | 0.2   |           | 5   | N/A      |
| SCSB-040M-0002-SO | Iron                       | 33700  | 2     | mg/kg | 6         | 6010   | SCSB-082M-0002-SO | 33400  | 2     |           | 1   | N/A      |
| SCSB-040M-0002-SO | Lead                       | 42.5   | 0.14  | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 35.2   | 0.14  |           | 19  | N/A      |
| SCSB-040M-0002-SO | Magnesium                  | 5690   | 0.4   | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 6750   | 0.41  |           | 17  | N/A      |
| SCSB-040M-0002-SO | Manganese                  | 312    | 0.1   | mg/kg | 6         | 6010   | SCSB-082M-0002-SO | 347    | 0.051 |           | 11  | N/A      |
| SCSB-040M-0002-SO | Nickel                     | 25.8   | 0.062 | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 31.9   | 0.062 |           | 21  | N/A      |
| SCSB-040M-0002-SO | Potassium                  | 2070   | 36    | mg/kg | 6         | 6010   | SCSB-082M-0002-SO | 2220   | 37    |           | 7   | N/A      |
| SCSB-040M-0002-SO | Selenium                   | 0.071  | 0.42  | mg/kg | U (       | 6010   | SCSB-082M-0002-SO | 0.071  | 0.43  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Silver                     | 0.017  | 0.057 | mg/kg | U e       | 6010   | SCSB-082M-0002-SO | 0.017  | 0.057 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Sodium                     | 124    | 13    | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 122    | 13    |           | 2   | N/A      |
| SCSB-040M-0002-SO | Thallium                   | 0.081  | 0.28  | mg/kg | U 6       | 6010   | SCSB-082M-0002-SO | 0.86   | 0.29  |           | N/A | No       |
| SCSB-040M-0002-SO | Vanadium                   | 15.3   | 0.034 | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 18.9   | 0.035 |           | 21  | N/A      |
| SCSB-040M-0002-SO | Zinc                       | 54.1   | 0.12  | mg/kg | (         | 6010   | SCSB-082M-0002-SO | 58.4   | 0.12  |           | 8   | N/A      |
| SCSB-040M-0002-SO | Mercury                    | 0.0064 | 0.008 | mg/kg | l j       | 7471   | SCSB-082M-0002-SO | 0.0053 | 0.008 | J         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,2,4-Trichlorobenzene     | 21     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 21     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,2-Dichlorobenzene        | 24     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 24     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,3-Dichlorobenzene        | 20     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 20     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,4-Dichlorobenzene        | 19     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 19     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4,5-Trichlorophenol      | 130    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 130    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4,6-Trichlorophenol      | 130    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 130    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4-Dichlorophenol         | 120    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 120    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4-Dimethylphenol         | 100    | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 100    | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4-Dinitrophenol          | 700    | 2000  | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 700    | 2000  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4-Dinitrotoluene         | 24     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 24     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,6-Dinitrotoluene         | 24     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 24     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Chloronaphthalene        | 23     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 23     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Chlorophenol             | 350    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 340    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Methyl-4,6-dinitrophenol | 270    | 1000  | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 270    | 1000  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Methylnaphthalene        | 25     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 25     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Methylphenol             | 430    | 1000  | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 420    | 1000  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Nitroaniline             | 23     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 23     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Nitrophenol              | 280    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 280    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 3,3'-Dichlorobenzidine     | 150    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 150    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 3-Nitroaniline             | 22     | 1000  | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 22     | 1000  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Bromophenyl phenyl ether | 25     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 25     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Chloro-3-methylphenol    | 390    | 510   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 380    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Chloroaniline            | 40     | 410   | ug/kg | U 8       | 8270   | SCSB-082M-0002-SO | 39     | 400   | U         | N/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-040M-0002-SO | 4-Chlorophenyl phenyl ether  | 26     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 26     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 660    | 2000 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Nitroaniline               | 30     | 1000 | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 30     | 1000 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Nitrophenol                | 410    | 1000 | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 400    | 1000 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Acenaphthene                 | 24     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 24     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Acenaphthylene               | 24     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 24     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Anthracene                   | 24     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 24     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzo(a)anthracene           | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzo(a)pyrene               | 23     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzo(b)fluoranthene         | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzo(g,h,i)perylene         | 22     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 22     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzo(k)fluoranthene         | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzoic acid                 | 300    | 1000 | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 290    | 990  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 84     | 1000 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Bis(2-chloroethyl) ether     | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Bis(2-chloroisopropyl) ether | 30     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 30     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Bis(2-ethylhexyl) phthalate  | 850    | 1000 | ug/kg | J         | 8270   | SCSB-082M-0002-SO | 88     | 1000 | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Butylbenzyl phthalate        | 74     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 74     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Carbazole                    | 28     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 28     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Chrysene                     | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Dibenzo(a,h)anthracene       | 22     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 22     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Dibenzofuran                 | 24     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 24     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Diethyl phthalate            | 65     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 65     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Dimethyl phthalate           | 64     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 64     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Di-n-butyl phthalate         | 120    | 410  | ug/kg | J         | 8270   | SCSB-082M-0002-SO | 100    | 400  | J         | N/A | Yes      |
| SCSB-040M-0002-SO | Di-n-octyl phthalate         | 60     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 60     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Fluoranthene                 | 26     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 26     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Fluorene                     | 25     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Hexachlorobenzene            | 28     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 28     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Hexachlorobutadiene          | 63     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 63     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Hexachlorocyclopentadiene    | 53     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 53     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Hexachloroethane             | 34     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 33     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Indeno(1,2,3-cd)pyrene       | 23     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Isophorone                   | 62     | 410  | ug/kg | J         | 8270   | SCSB-082M-0002-SO | 180    | 400  | J         | N/A | Yes      |
| SCSB-040M-0002-SO | Naphthalene                  | 21     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 21     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Nitrobenzene                 | 60     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 60     | 400  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | N-Nitroso-di-n-propylamine   | 71     | 410  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 71     | 400  | U         | N/A | Yes      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSB-040M-0002-SO | N-Nitrosodiphenylamine     | 51     | 810   | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 51     | 810   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Pentachlorophenol          | 240    | 1000  | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 240    | 1000  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Phenanthrene               | 26     | 410   | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 26     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Phenol                     | 160    | 510   | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 160    | 510   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Pyrene                     | 26     | 410   | ug/kg | U         | 8270   | SCSB-082M-0002-SO | 26     | 400   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.13   | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.079  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4,6-Trinitrotoluene      | 0.089  | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.2    | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.069  | 0.5   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.05   | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 2-Nitrotoluene             | 0.089  | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 3,5-Dinitroaniline         | 0.089  | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.069  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.069  | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.069  | 0.5   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | НМХ                        | 0.12   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.12   | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.04   | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | PETN                       | 0.5    | 1.5   | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| SCSB-040M-0002-SO | RDX                        | 0.16   | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.16   | 0.44  | U         | N/A | Yes      |
| SCSB-040M-0002-SO | Tetryl                     | 0.089  | 0.44  | mg/kg | U         | 8330B  | SCSB-082M-0002-SO | 0.089  | 0.44  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Aluminum                   | 14000  | 0.61  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 12400  | 0.12  |           | 12  | N/A      |
| SCSB-042M-0003-SO | Antimony                   | 0.4    | 1.4   | mg/kg | R         | 6010   | SCSB-083M-0003-SO | 0.081  | 0.27  | U         | N/A | N/A      |
| SCSB-042M-0003-SO | Arsenic                    | 15.4   | 2.3   | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 15.1   | 0.46  |           | 2   | N/A      |
| SCSB-042M-0003-SO | Barium                     | 69.3   | 0.14  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 31.2   | 0.027 |           | 76  | N/A      |
| SCSB-042M-0003-SO | Beryllium                  | 0.49   | 0.061 | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 0.54   | 0.024 |           | 10  | N/A      |
| SCSB-042M-0003-SO | Cadmium                    | 0.03   | 0.11  | mg/kg | UJ        | 6010   | SCSB-083M-0003-SO | 0.15   | 0.021 |           | N/A | No       |
| SCSB-042M-0003-SO | Calcium                    | 5360   | 2.5   | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 6050   | 0.51  |           | 12  | N/A      |
| SCSB-042M-0003-SO | Chromium                   | 19.8   | 0.32  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 29.6   | 0.064 |           | 40  | N/A      |
| SCSB-042M-0003-SO | Cobalt                     | 13     | 0.25  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 11.6   | 0.05  |           | 11  | N/A      |
| SCSB-042M-0003-SO | Copper                     | 21     | 1     | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 15.8   | 0.2   |           | 28  | N/A      |
| SCSB-042M-0003-SO | Iron                       | 35600  | 5.1   | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 31900  | 2     |           | 11  | N/A      |
| SCSB-042M-0003-SO | Lead                       | 11.2   | 0.71  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 35.7   | 0.14  |           | 104 | N/A      |
| SCSB-042M-0003-SO | Magnesium                  | 5490   | 2     | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 6840   | 0.41  |           | 22  | N/A      |
| SCSB-042M-0003-SO | Manganese                  | 451    | 0.25  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 276    | 0.051 |           | 48  | N/A      |
| SCSB-042M-0003-SO | Nickel                     | 30.7   | 0.31  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 30.9   | 0.062 |           | 1   | N/A      |
| SCSB-042M-0003-SO | Potassium                  | 1880   | 36    | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 1460   | 36    |           | 25  | N/A      |

| Sample            | Analyte                     | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier I | RPD | W/In LOQ |
|-------------------|-----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-------------|-----|----------|
| SCSB-042M-0003-SO | Selenium                    | 0.35   | 2.1   | mg/kg | UJ        | 6010   | SCSB-083M-0003-SO | 0.071  | 0.43  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Silver                      | 0.086  | 0.28  | mg/kg | U         | 6010   | SCSB-083M-0003-SO | 0.017  | 0.057 | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Sodium                      | 92     | 13    | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 71.9   | 13    |             | 25  | N/A      |
| SCSB-042M-0003-SO | Thallium                    | 2.1    | 0.71  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 0.61   | 0.28  |             | N/A | No       |
| SCSB-042M-0003-SO | Vanadium                    | 20.5   | 0.17  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 16.1   | 0.034 |             | 24  | N/A      |
| SCSB-042M-0003-SO | Zinc                        | 67     | 0.61  | mg/kg | J-        | 6010   | SCSB-083M-0003-SO | 56.2   | 0.12  |             | 18  | N/A      |
| SCSB-042M-0003-SO | Mercury                     | 0.008  | 0.008 | mg/kg | J-        | 7471   | SCSB-083M-0003-SO | 0.0051 | 0.008 | J           | N/A | Yes      |
| SCSB-042M-0003-SO | 1,2,4-Trichlorobenzene      | 21     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 21     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 1,2-Dichlorobenzene         | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 1,3-Dichlorobenzene         | 20     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 20     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 1,4-Dichlorobenzene         | 19     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 19     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4,5-Trichlorophenol       | 130    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 130    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4,6-Trichlorophenol       | 130    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 130    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4-Dichlorophenol          | 120    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 120    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4-Dimethylphenol          | 100    | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 100    | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4-Dinitrophenol           | 700    | 2000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 700    | 2000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4-Dinitrotoluene          | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2,6-Dinitrotoluene          | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Chloronaphthalene         | 23     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 23     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Chlorophenol              | 340    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 340    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Methyl-4,6-dinitrophenol  | 270    | 1000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 270    | 1000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Methylnaphthalene         | 49     | 400   | ug/kg | J-        | 8270   | SCSB-083M-0003-SO | 58     | 400   | J           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Methylphenol              | 420    | 1000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 420    | 1000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Nitroaniline              | 23     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 23     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Nitrophenol               | 280    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 280    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 3,3'-Dichlorobenzidine      | 150    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 150    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 3-Nitroaniline              | 22     | 1000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 22     | 1000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Bromophenyl phenyl ether  | 25     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Chloro-3-methylphenol     | 380    | 510   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 380    | 510   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Chloroaniline             | 39     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 39     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Chlorophenyl phenyl ether | 26     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 26     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Methylphenol              | 660    | 2000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 660    | 2000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Nitroaniline              | 30     | 1000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 30     | 1000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Nitrophenol               | 400    | 1000  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 400    | 1000  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Acenaphthene                | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Acenaphthylene              | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Anthracene                  | 24     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Benzo(a)anthracene          | 25     | 400   | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400   | U           | N/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-042M-0003-SO | Benzo(a)pyrene               | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Benzo(b)fluoranthene         | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Benzo(g,h,i)perylene         | 22     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 22     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Benzo(k)fluoranthene         | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Benzoic acid                 | 290    | 990  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 290    | 990  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 84     | 1000 | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Bis(2-chloroethoxy)methane   | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Bis(2-chloroethyl) ether     | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Bis(2-chloroisopropyl) ether | 30     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 30     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000 | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 150    | 1000 | J         | N/A | Yes      |
| SCSB-042M-0003-SO | Butylbenzyl phthalate        | 74     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 74     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Carbazole                    | 28     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 28     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Chrysene                     | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Dibenzo(a,h)anthracene       | 22     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 22     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Dibenzofuran                 | 24     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 24     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Diethyl phthalate            | 65     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 65     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Dimethyl phthalate           | 64     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 64     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Di-n-butyl phthalate         | 100    | 400  | ug/kg | J-        | 8270   | SCSB-083M-0003-SO | 130    | 400  | J         | N/A | Yes      |
| SCSB-042M-0003-SO | Di-n-octyl phthalate         | 60     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 60     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Fluoranthene                 | 26     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 26     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Fluorene                     | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 25     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Hexachlorobenzene            | 28     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 28     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Hexachlorobutadiene          | 63     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 63     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Hexachlorocyclopentadiene    | 53     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 53     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Hexachloroethane             | 33     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 33     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Indeno(1,2,3-cd)pyrene       | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 23     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Isophorone                   | 51     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 200    | 400  | J         | N/A | Yes      |
| SCSB-042M-0003-SO | Naphthalene                  | 35     | 400  | ug/kg | J-        | 8270   | SCSB-083M-0003-SO | 41     | 400  | J         | N/A | Yes      |
| SCSB-042M-0003-SO | Nitrobenzene                 | 60     | 400  | ug/kg | R         | 8270   | SCSB-083M-0003-SO | 60     | 400  | U         | N/A | N/A      |
| SCSB-042M-0003-SO | N-Nitroso-di-n-propylamine   | 71     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 71     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | N-Nitrosodiphenylamine       | 51     | 810  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 51     | 810  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Pentachlorophenol            | 240    | 1000 | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 240    | 1000 | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Phenanthrene                 | 34     | 400  | ug/kg | J-        | 8270   | SCSB-083M-0003-SO | 36     | 400  | J         | N/A | Yes      |
| SCSB-042M-0003-SO | Phenol                       | 160    | 510  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 160    | 510  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | Pyrene                       | 26     | 400  | ug/kg | UJ        | 8270   | SCSB-083M-0003-SO | 26     | 400  | U         | N/A | Yes      |
| SCSB-042M-0003-SO | 1,3,5-Trinitrobenzene        | 0.13   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.13   | 0.44 | U         | N/A | Yes      |
| SCSB-042M-0003-SO | 1,3-Dinitrobenzene           | 0.08   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.08   | 0.44 | U         | N/A | Yes      |
| SCSB-042M-0003-SO | 2,4,6-Trinitrotoluene        | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.09   | 0.44 | U         | N/A | Yes      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier I | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-------------|-----|----------|
| SCSB-042M-0003-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | R         | 8330B  | SCSB-083M-0003-SO | 0.2    | 0.44  | U           | N/A | N/A      |
| SCSB-042M-0003-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | R         | 8330B  | SCSB-083M-0003-SO | 0.07   | 0.5   | U           | N/A | N/A      |
| SCSB-042M-0003-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.05   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 2-Nitrotoluene             | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.09   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.09   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.07   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.07   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.07   | 0.5   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | НМХ                        | 0.12   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.12   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.04   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.5    | 1.5   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | PETN                       | 0.5    | 1.5   | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.5    | 1.5   | U           | N/A | Yes      |
| SCSB-042M-0003-SO | RDX                        | 0.16   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.16   | 0.44  | U           | N/A | Yes      |
| SCSB-042M-0003-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | UJ        | 8330B  | SCSB-083M-0003-SO | 0.09   | 0.44  | U           | N/A | Yes      |
| SCSB-048M-0001-SO | Aluminum                   | 13000  | 0.24  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 20800  | 0.61  |             | 46  | N/A      |
| SCSB-048M-0001-SO | Antimony                   | 1.5    | 0.55  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 0.41   | 1.4   | U           | N/A | Yes      |
| SCSB-048M-0001-SO | Arsenic                    | 15     | 0.91  | mg/kg | J         | 6010   | SCSB-084M-0001-SO | 23.4   | 2.3   |             | 44  | N/A      |
| SCSB-048M-0001-SO | Barium                     | 137    | 0.055 | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 228    | 0.14  |             | 50  | N/A      |
| SCSB-048M-0001-SO | Beryllium                  | 1.5    | 0.024 | mg/kg |           | 6010   | SCSB-084M-0001-SO | 2.5    | 0.061 |             | 50  | N/A      |
| SCSB-048M-0001-SO | Cadmium                    | 0.012  | 0.043 | mg/kg | UJ        | 6010   | SCSB-084M-0001-SO | 0.03   | 0.11  | U           | N/A | Yes      |
| SCSB-048M-0001-SO | Calcium                    | 37100  | 1     | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 64800  | 2.5   |             | 54  | N/A      |
| SCSB-048M-0001-SO | Chromium                   | 109    | 0.13  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 36.2   | 0.32  |             | 100 | N/A      |
| SCSB-048M-0001-SO | Cobalt                     | 6      | 0.099 | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 8      | 0.25  |             | 29  | N/A      |
| SCSB-048M-0001-SO | Copper                     | 44.8   | 0.4   | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 63.3   | 1     |             | 34  | N/A      |
| SCSB-048M-0001-SO | Iron                       | 22800  | 2     | mg/kg |           | 6010   | SCSB-084M-0001-SO | 28200  | 5.1   |             | 21  | N/A      |
| SCSB-048M-0001-SO | Lead                       | 34.5   | 0.28  | mg/kg | J+        | 6010   | SCSB-084M-0001-SO | 57.2   | 0.71  |             | 50  | N/A      |
| SCSB-048M-0001-SO | Magnesium                  | 3580   | 0.81  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 6280   | 2     |             | 55  | N/A      |
| SCSB-048M-0001-SO | Manganese                  | 1150   | 0.1   | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 2010   | 0.25  |             | 54  | N/A      |
| SCSB-048M-0001-SO | Nickel                     | 88.1   | 0.12  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 42.3   | 0.31  |             | 70  | N/A      |
| SCSB-048M-0001-SO | Potassium                  | 1020   | 36    | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 584    | 37    |             | 54  | N/A      |
| SCSB-048M-0001-SO | Selenium                   | 1.1    | 0.85  | mg/kg |           | 6010   | SCSB-084M-0001-SO | 1.7    | 2.1   | J           | N/A | Yes      |
| SCSB-048M-0001-SO | Silver                     | 0.5    | 0.11  | mg/kg |           | 6010   | SCSB-084M-0001-SO | 0.74   | 0.28  |             | N/A | Yes      |
| SCSB-048M-0001-SO | Sodium                     | 227    | 13    | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 20.2   | 13    |             | N/A | No       |
| SCSB-048M-0001-SO | Thallium                   | 1.6    | 0.28  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 2.1    | 0.71  |             | N/A | Yes      |
| SCSB-048M-0001-SO | Vanadium                   | 13.3   | 0.069 | mg/kg |           | 6010   | SCSB-084M-0001-SO | 17.6   | 0.17  |             | 28  | N/A      |
| SCSB-048M-0001-SO | Zinc                       | 41.3   | 0.24  | mg/kg | J-        | 6010   | SCSB-084M-0001-SO | 56.3   | 0.61  |             | 31  | N/A      |
| SCSB-048M-0001-SO | Hexavalent Chromium        | 1.9    | 6.5   | mg/kg | UJ        | 7196   | SCSB-084M-0001-SO | 1.9    | 6.5   | U           | N/A | Yes      |
| SCSB-048M-0001-SO | Mercury                    | 0.046  | 0.008 | mg/kg |           | 7471   | SCSB-084M-0001-SO | 0.041  | 0.008 |             | 11  | N/A      |

| Sample            | Analyte                | Result | LOQ | Units | Qualifier | Method | Sample            | Result | LOQ | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------|--------|-----|-------|-----------|--------|-------------------|--------|-----|-----------|-----|----------|
| SCSB-048M-0001-SO | 4,4'-DDD               | 1.5    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 1.5    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4,4'-DDE               | 5.1    | 20  | ug/kg | J         | 8081   | SCSB-084M-0001-SO | 4.6    | 20  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | 4,4'-DDT               | 13     | 12  | ug/kg |           | 8081   | SCSB-084M-0001-SO | 11     | 12  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Aldrin                 | 2.5    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 2.5    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | alpha-BHC              | 3.1    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 3.1    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | alpha-Chlordane        | 1.5    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 1.5    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | beta-BHC               | 3.1    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 3.1    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Chlordane (Technical)  | 20     | 380 | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 20     | 380 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | delta-BHC              | 1.5    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 1.5    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Dieldrin               | 1.5    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 1.5    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Endosulfan I           | 3.6    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 3.6    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Endosulfan II          | 3.6    | 12  | ug/kg | J         | 8081   | SCSB-084M-0001-SO | 3.6    | 12  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Endosulfan sulfate     | 4.6    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 4.6    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Endrin                 | 2      | 12  | ug/kg | UJ        | 8081   | SCSB-084M-0001-SO | 2      | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Endrin aldehyde        | 5.6    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 5.6    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Endrin ketone          | 4.1    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 4.1    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | GAMMA-BHC              | 2.5    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 2.5    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | gamma-Chlordane        | 1.5    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 1.5    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Heptachlor             | 2      | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 2      | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Heptachlor epoxide     | 2.5    | 20  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 2.5    | 20  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Methoxychlor           | 3.6    | 12  | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 3.6    | 12  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Toxaphene              | 25     | 250 | ug/kg | U         | 8081   | SCSB-084M-0001-SO | 25     | 250 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1016           | 10     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 10     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1221           | 20     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 20     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1232           | 27     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 28     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1242           | 29     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 30     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1248           | 29     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 30     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1254           | 23     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 23     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1260           | 12     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 12     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1262           | 21     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 21     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Aroclor 1268           | 28     | 51  | ug/kg | U         | 8082   | SCSB-084M-0001-SO | 29     | 51  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,2,4-Trichlorobenzene | 21     | 400 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 21     | 410 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,2-Dichlorobenzene    | 24     | 400 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 24     | 410 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,3-Dichlorobenzene    | 20     | 400 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 20     | 410 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,4-Dichlorobenzene    | 19     | 400 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 19     | 410 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4,5-Trichlorophenol  | 130    | 500 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 130    | 510 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4,6-Trichlorophenol  | 130    | 500 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 130    | 510 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4-Dichlorophenol     | 120    | 500 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 120    | 510 | U         | N/A | Yes      |
| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-048M-0001-SO | 2,4-Dimethylphenol           | 100    | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 100    | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4-Dinitrophenol            | 700    | 2000 | ug/kg | R         | 8270   | SCSB-084M-0001-SO | 700    | 2000 | U         | N/A | N/A      |
| SCSB-048M-0001-SO | 2,4-Dinitrotoluene           | 24     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,6-Dinitrotoluene           | 24     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Chloronaphthalene          | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Chlorophenol               | 340    | 500  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 350    | 510  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Methyl-4,6-dinitrophenol   | 270    | 1000 | ug/kg | R         | 8270   | SCSB-084M-0001-SO | 270    | 1000 | U         | N/A | N/A      |
| SCSB-048M-0001-SO | 2-Methylnaphthalene          | 490    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 500    | 410  |           | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Methylphenol               | 420    | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 430    | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Nitroaniline               | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Nitrophenol                | 280    | 500  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 280    | 510  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 3,3'-Dichlorobenzidine       | 150    | 500  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 150    | 510  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 3-Nitroaniline               | 22     | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 22     | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Bromophenyl phenyl ether   | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Chloro-3-methylphenol      | 380    | 500  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 390    | 510  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Chloroaniline              | 39     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 40     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Chlorophenyl phenyl ether  | 26     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 660    | 2000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Nitroaniline               | 30     | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 30     | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Nitrophenol                | 400    | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 410    | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Acenaphthene                 | 24     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Acenaphthylene               | 34     | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 47     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Anthracene                   | 65     | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 73     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzo(a)anthracene           | 120    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 160    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzo(a)pyrene               | 150    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 210    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzo(b)fluoranthene         | 410    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 570    | 410  |           | N/A | Yes      |
| SCSB-048M-0001-SO | Benzo(g,h,i)perylene         | 22     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 49     | 410  | l         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzo(k)fluoranthene         | 160    | 400  | ug/kg | J         | 8270   | SCSB-084M-0001-SO | 260    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzoic acid                 | 290    | 2000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 300    | 2000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 84     | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Bis(2-chloroisopropyl) ether | 30     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 30     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Bis(2-ethylhexyl) phthalate  | 88     | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 88     | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Butylbenzyl phthalate        | 74     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 74     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Carbazole                    | 35     | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 37     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Chrysene                     | 180    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 240    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Dibenzo(a,h)anthracene       | 22     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 22     | 410  | U         | N/A | Yes      |

| Sample            | Analyte                    | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-048M-0001-SO | Dibenzofuran               | 93     | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 98     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Diethyl phthalate          | 65     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 65     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Dimethyl phthalate         | 64     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 64     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Di-n-butyl phthalate       | 120    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 120    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Di-n-octyl phthalate       | 60     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 60     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Fluoranthene               | 240    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 280    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Fluorene                   | 41     | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 47     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Hexachlorobenzene          | 28     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 28     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Hexachlorobutadiene        | 63     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 63     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Hexachlorocyclopentadiene  | 52     | 400  | ug/kg | R         | 8270   | SCSB-084M-0001-SO | 53     | 410  | U         | N/A | N/A      |
| SCSB-048M-0001-SO | Hexachloroethane           | 33     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 34     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Indeno(1,2,3-cd)pyrene     | 49     | 400  | ug/kg | J         | 8270   | SCSB-084M-0001-SO | 52     | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Isophorone                 | 50     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 51     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Naphthalene                | 330    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 360    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | Nitrobenzene               | 60     | 400  | ug/kg | R         | 8270   | SCSB-084M-0001-SO | 60     | 410  | U         | N/A | N/A      |
| SCSB-048M-0001-SO | N-Nitroso-di-n-propylamine | 71     | 400  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 71     | 410  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | N-Nitrosodiphenylamine     | 50     | 810  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 51     | 810  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Pentachlorophenol          | 240    | 1000 | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 240    | 1000 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Phenanthrene               | 280    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 270    | 410  | l         | N/A | Yes      |
| SCSB-048M-0001-SO | Phenol                     | 160    | 500  | ug/kg | UJ        | 8270   | SCSB-084M-0001-SO | 160    | 510  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Pyrene                     | 240    | 400  | ug/kg | J-        | 8270   | SCSB-084M-0001-SO | 270    | 410  | J         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.13   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.08   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | mg/kg | R         | 8330B  | SCSB-084M-0001-SO | 0.2    | 0.44 | U         | N/A | N/A      |
| SCSB-048M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5  | mg/kg | R         | 8330B  | SCSB-084M-0001-SO | 0.07   | 0.5  | U         | N/A | N/A      |
| SCSB-048M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.05   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 2-Nitrotoluene             | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 3,5-Dinitroaniline         | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5  | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.07   | 0.5  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | НМХ                        | 0.12   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.12   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Nitrobenzene               | 0.04   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.04   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Nitroglycerin              | 0.5    | 1.5  | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Nitroguanidine             | 0.059  | 0.16 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.059  | 0.16 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | PETN                       | 0.5    | 1.5  | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSB-048M-0001-SO | RDX                        | 0.16   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.16   | 0.44 | U         | N/A | Yes      |

| Sample            | Analyte                   | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|---------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSB-048M-0001-SO | Tetryl                    | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSB-084M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSB-048M-0001-SO | Cyanide                   | 0.76   | 0.38 | mg/kg |           | 9012A  | SCSB-084M-0001-SO | 0.64   | 0.39 |           | N/A | Yes      |
| SCSB-048M-0001-SO | Nitrocellulose            | 7      | 23   | mg/kg | U         | 9056M  | SCSB-084M-0001-SO | 7      | 23   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,1,1-Trichloroethane     | 11     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 10     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,1,2,2-Tetrachloroethane | 6.3    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 6      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,1,2-Trichloroethane     | 8.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 8      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,1-Dichloroethane        | 12     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 11     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,1-Dichloroethene        | 17     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 16     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,2-Dibromoethane         | 11     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 10     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,2-Dichloroethane        | 13     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 12     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 1,2-Dichloropropane       | 7.4    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 7      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 2-Butanone                | 110    | 530  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 100    | 500  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 2-Hexanone                | 72     | 530  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 68     | 500  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | 4-Methyl-2-pentanone      | 87     | 530  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 82     | 500  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Acetone                   | 67     | 1100 | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 63     | 1000 | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Benzene                   | 60     | 53   | ug/kg |           | 8260   | SCSB-084D-0001-SO | 5      | 50   | U         | N/A | No       |
| SCSB-048D-0001-SO | Bromochloromethane        | 8.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 8      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Bromodichloromethane      | 9.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 9      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Bromoform                 | 6.3    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 6      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Bromomethane              | 32     | 110  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 30     | 100  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Carbon disulfide          | 16     | 110  | ug/kg | UJ        | 8260   | SCSB-084D-0001-SO | 15     | 100  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Carbon tetrachloride      | 12     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 11     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Chlorobenzene             | 8.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 8      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Chloroethane              | 20     | 110  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 19     | 100  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Chloroform                | 9.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 9      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Chloromethane             | 26     | 110  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 25     | 100  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | cis-1,2-Dichloroethene    | 11     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 10     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | cis-1,3-Dichloropropene   | 11     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 10     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Dibromochloromethane      | 8.5    | 53   | ug/kg | UJ        | 8260   | SCSB-084D-0001-SO | 8      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Ethylbenzene              | 150    | 53   | ug/kg |           | 8260   | SCSB-084D-0001-SO | 21     | 50   | J         | N/A | No       |
| SCSB-048D-0001-SO | m,p-Xylenes               | 360    | 110  | ug/kg |           | 8260   | SCSB-084D-0001-SO | 63     | 100  | J         | N/A | No       |
| SCSB-048D-0001-SO | Methylene chloride        | 42     | 110  | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 40     | 100  | U         | N/A | Yes      |
| SCSB-048D-0001-SO | o-Xylene                  | 350    | 53   | ug/kg |           | 8260   | SCSB-084D-0001-SO | 55     | 50   |           | N/A | No       |
| SCSB-048D-0001-SO | Styrene                   | 6.3    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 6      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Tetrachloroethene         | 8.5    | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 8      | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | Toluene                   | 310    | 53   | ug/kg |           | 8260   | SCSB-084D-0001-SO | 37     | 50   | J         | N/A | No       |
| SCSB-048D-0001-SO | trans-1,2-Dichloroethene  | 12     | 53   | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 11     | 50   | U         | N/A | Yes      |
| SCSB-048D-0001-SO | trans-1,3-Dichloropropene | 7.4    | 110  | ug/kg | UJ        | 8260   | SCSB-084D-0001-SO | 7      | 100  | U         | N/A | Yes      |

| Sample            | Analyte                | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier I | RPD | W/In LOQ |
|-------------------|------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-------------|-----|----------|
| SCSB-048D-0001-SO | Trichloroethene        | 11     | 53    | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 10     | 50    | U           | N/A | Yes      |
| SCSB-048D-0001-SO | Vinyl chloride         | 15     | 53    | ug/kg | U         | 8260   | SCSB-084D-0001-SO | 14     | 50    | U           | N/A | Yes      |
| SCSS-058M-0001-SO | Aluminum               | 10400  | 0.24  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 9250   | 0.25  |             | 12  | N/A      |
| SCSS-058M-0001-SO | Antimony               | 3.1    | 0.55  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 3.3    | 0.55  |             | 6   | N/A      |
| SCSS-058M-0001-SO | Arsenic                | 4.5    | 0.92  | mg/kg | J         | 6010   | SCSS-085M-0001-SO | 5.3    | 0.92  |             | N/A | Yes      |
| SCSS-058M-0001-SO | Barium                 | 127    | 0.055 | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 83.3   | 0.055 |             | 42  | N/A      |
| SCSS-058M-0001-SO | Beryllium              | 0.66   | 0.024 | mg/kg |           | 6010   | SCSS-085M-0001-SO | 0.51   | 0.025 |             | 26  | N/A      |
| SCSS-058M-0001-SO | Cadmium                | 1.9    | 0.043 | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 1.7    | 0.043 |             | 11  | N/A      |
| SCSS-058M-0001-SO | Calcium                | 21500  | 1     | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 10400  | 1     |             | 70  | N/A      |
| SCSS-058M-0001-SO | Chromium               | 143    | 0.13  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 152    | 0.13  |             | 6   | N/A      |
| SCSS-058M-0001-SO | Cobalt                 | 6.7    | 0.1   | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 6.9    | 0.1   |             | 3   | N/A      |
| SCSS-058M-0001-SO | Copper                 | 33.7   | 0.41  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 32.3   | 0.41  |             | 4   | N/A      |
| SCSS-058M-0001-SO | Iron                   | 27100  | 2     | mg/kg |           | 6010   | SCSS-085M-0001-SO | 26400  | 2     |             | 3   | N/A      |
| SCSS-058M-0001-SO | Lead                   | 139    | 0.29  | mg/kg | J+        | 6010   | SCSS-085M-0001-SO | 120    | 0.29  |             | 15  | N/A      |
| SCSS-058M-0001-SO | Magnesium              | 3930   | 0.82  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 2870   | 0.82  |             | 31  | N/A      |
| SCSS-058M-0001-SO | Manganese              | 729    | 0.1   | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 516    | 0.1   |             | 34  | N/A      |
| SCSS-058M-0001-SO | Nickel                 | 21.7   | 0.12  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 22.9   | 0.12  |             | 5   | N/A      |
| SCSS-058M-0001-SO | Potassium              | 1180   | 37    | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 1120   | 37    |             | 5   | N/A      |
| SCSS-058M-0001-SO | Selenium               | 0.83   | 0.86  | mg/kg | J         | 6010   | SCSS-085M-0001-SO | 0.8    | 0.86  | J           | N/A | Yes      |
| SCSS-058M-0001-SO | Silver                 | 3.8    | 0.11  | mg/kg |           | 6010   | SCSS-085M-0001-SO | 4.4    | 0.11  |             | 15  | N/A      |
| SCSS-058M-0001-SO | Sodium                 | 99.6   | 13    | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 64.7   | 13    |             | N/A | No       |
| SCSS-058M-0001-SO | Thallium               | 1.7    | 0.29  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 1.7    | 0.29  |             | 0   | N/A      |
| SCSS-058M-0001-SO | Vanadium               | 14.8   | 0.069 | mg/kg |           | 6010   | SCSS-085M-0001-SO | 15.4   | 0.07  |             | 4   | N/A      |
| SCSS-058M-0001-SO | Zinc                   | 269    | 0.24  | mg/kg | J-        | 6010   | SCSS-085M-0001-SO | 252    | 0.25  |             | 7   | N/A      |
| SCSS-058M-0001-SO | Mercury                | 11.1   | 0.81  | mg/kg |           | 7471   | SCSS-085M-0001-SO | 11.1   | 0.81  |             | 0   | N/A      |
| SCSS-058M-0001-SO | 1,2,4-Trichlorobenzene | 21     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 21     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 1,2-Dichlorobenzene    | 24     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 24     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 1,3-Dichlorobenzene    | 20     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 20     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 1,4-Dichlorobenzene    | 22     | 410   | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 19     | 410   | J           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4,5-Trichlorophenol  | 130    | 510   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 130    | 510   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4,6-Trichlorophenol  | 130    | 510   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 130    | 510   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4-Dichlorophenol     | 120    | 510   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 120    | 510   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4-Dimethylphenol     | 100    | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 100    | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4-Dinitrophenol      | 700    | 2000  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 700    | 2000  | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4-Dinitrotoluene     | 24     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 24     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2,6-Dinitrotoluene     | 24     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 24     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Chloronaphthalene    | 23     | 410   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 23     | 410   | U           | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Chlorophenol         | 350    | 510   | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 350    | 510   | U           | N/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSS-058M-0001-SO | 2-Methyl-4,6-dinitrophenol   | 270    | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 280    | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Methylnaphthalene          | 370    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 320    | 410  | l         | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Methylphenol               | 430    | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 430    | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Nitroaniline               | 23     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Nitrophenol                | 280    | 510  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 290    | 510  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 3,3'-Dichlorobenzidine       | 150    | 510  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 150    | 510  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 3-Nitroaniline               | 22     | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 22     | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Bromophenyl phenyl ether   | 25     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Chloro-3-methylphenol      | 390    | 510  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 390    | 510  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Chloroaniline              | 40     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 40     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Chlorophenyl phenyl ether  | 26     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 27     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 660    | 2000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Nitroaniline               | 31     | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 31     | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Nitrophenol                | 410    | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 410    | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Acenaphthene                 | 43     | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 34     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Acenaphthylene               | 160    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 43     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Anthracene                   | 300    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 120    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzo(a)anthracene           | 740    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 380    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzo(a)pyrene               | 590    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 330    | 410  | l         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzo(b)fluoranthene         | 1000   | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 580    | 410  |           | N/A | No       |
| SCSS-058M-0001-SO | Benzo(g,h,i)perylene         | 170    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 120    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzo(k)fluoranthene         | 330    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 180    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzoic acid                 | 300    | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 300    | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | R         | 8270   | SCSS-085M-0001-SO | 85     | 1000 | U         | N/A | N/A      |
| SCSS-058M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 25     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Bis(2-chloroisopropyl) ether | 31     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 31     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Bis(2-ethylhexyl) phthalate  | 89     | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 89     | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Butylbenzyl phthalate        | 74     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 74     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Carbazole                    | 78     | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 69     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Chrysene                     | 700    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 360    | 410  | l         | N/A | Yes      |
| SCSS-058M-0001-SO | Dibenzo(a,h)anthracene       | 75     | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 50     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Dibenzofuran                 | 140    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 86     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Diethyl phthalate            | 65     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 65     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Dimethyl phthalate           | 64     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 64     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Di-n-butyl phthalate         | 120    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 130    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Di-n-octyl phthalate         | 60     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 60     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Fluoranthene                 | 1800   | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 800    | 410  |           | N/A | No       |

| Sample            | Analyte                    | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSS-058M-0001-SO | Fluorene                   | 190    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 46     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Hexachlorobenzene          | 28     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 29     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Hexachlorobutadiene        | 63     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 63     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Hexachlorocyclopentadiene  | 53     | 410  | ug/kg | R         | 8270   | SCSS-085M-0001-SO | 53     | 410  | U         | N/A | N/A      |
| SCSS-058M-0001-SO | Hexachloroethane           | 34     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 34     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Indeno(1,2,3-cd)pyrene     | 180    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 100    | 410  | l         | N/A | Yes      |
| SCSS-058M-0001-SO | Isophorone                 | 110    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 79     | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Naphthalene                | 240    | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 200    | 410  | J         | N/A | Yes      |
| SCSS-058M-0001-SO | Nitrobenzene               | 60     | 410  | ug/kg | R         | 8270   | SCSS-085M-0001-SO | 60     | 410  | U         | N/A | N/A      |
| SCSS-058M-0001-SO | N-Nitroso-di-n-propylamine | 71     | 410  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 71     | 410  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | N-Nitrosodiphenylamine     | 51     | 810  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 51     | 820  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Pentachlorophenol          | 240    | 1000 | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 240    | 1000 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Phenanthrene               | 1200   | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 520    | 410  |           | N/A | No       |
| SCSS-058M-0001-SO | Phenol                     | 160    | 510  | ug/kg | UJ        | 8270   | SCSS-085M-0001-SO | 160    | 510  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Pyrene                     | 1300   | 410  | ug/kg | J-        | 8270   | SCSS-085M-0001-SO | 680    | 410  |           | N/A | No       |
| SCSS-058M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.13   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.08   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4,6-Trinitrotoluene      | 0.26   | 0.44 | mg/kg | J-        | 8330B  | SCSS-085M-0001-SO | 0.21   | 0.44 | J         | N/A | Yes      |
| SCSS-058M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | mg/kg | R         | 8330B  | SCSS-085M-0001-SO | 0.2    | 0.44 | U         | N/A | N/A      |
| SCSS-058M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5  | mg/kg | R         | 8330B  | SCSS-085M-0001-SO | 0.07   | 0.5  | U         | N/A | N/A      |
| SCSS-058M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.05   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 2-Nitrotoluene             | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 3,5-Dinitroaniline         | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.07   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5  | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.07   | 0.5  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | НМХ                        | 0.12   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.12   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Nitrobenzene               | 0.04   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.04   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Nitroglycerin              | 0.5    | 1.5  | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | PETN                       | 0.5    | 1.5  | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.5    | 1.5  | U         | N/A | Yes      |
| SCSS-058M-0001-SO | RDX                        | 0.16   | 0.44 | mg/kg | IJ        | 8330B  | SCSS-085M-0001-SO | 0.16   | 0.44 | U         | N/A | Yes      |
| SCSS-058M-0001-SO | Tetryl                     | 0.09   | 0.44 | mg/kg | UJ        | 8330B  | SCSS-085M-0001-SO | 0.09   | 0.44 | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,1,1-Trichloroethane      | 11     | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 12     | 61   | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,1,2,2-Tetrachloroethane  | 6.6    | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 7.3    | 61   | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,1,2-Trichloroethane      | 8.8    | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61   | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,1-Dichloroethane         | 12     | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 13     | 61   | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,1-Dichloroethene         | 18     | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 19     | 61   | U         | N/A | Yes      |
| SCSS-068D-0001-SO | 1,2-Dibromoethane          | 11     | 55   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 12     | 61   | U         | N/A | Yes      |

| Sample            | Analyte                   | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier RI | PD  | W/In LOQ |
|-------------------|---------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|--------------|-----|----------|
| SCSS-068D-0001-SO | 1,2-Dichloroethane        | 13     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 15     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | 1,2-Dichloropropane       | 7.7    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 8.5    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | 2-Butanone                | 110    | 550   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 120    | 610   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | 2-Hexanone                | 75     | 550   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 82     | 610   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | 4-Methyl-2-pentanone      | 90     | 550   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 99     | 610   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Acetone                   | 69     | 1100  | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 76     | 1200  | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Benzene                   | 5.5    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 6.1    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Bromochloromethane        | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Bromodichloromethane      | 9.9    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 11     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Bromoform                 | 6.6    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 7.3    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Bromomethane              | 33     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 36     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Carbon disulfide          | 16     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 18     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Carbon tetrachloride      | 12     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 13     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Chlorobenzene             | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Chloroethane              | 21     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 23     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Chloroform                | 9.9    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 11     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Chloromethane             | 27     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 30     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | cis-1,2-Dichloroethene    | 11     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 12     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | cis-1,3-Dichloropropene   | 11     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 12     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Dibromochloromethane      | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Ethylbenzene              | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | m,p-Xylenes               | 20     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 22     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Methylene chloride        | 44     | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 49     | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | o-Xylene                  | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Styrene                   | 6.6    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 7.3    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Tetrachloroethene         | 8.8    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 9.7    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Toluene                   | 7.7    | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 8.5    | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | trans-1,2-Dichloroethene  | 12     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 13     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | trans-1,3-Dichloropropene | 7.7    | 110   | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 8.5    | 120   | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Trichloroethene           | 11     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 12     | 61    | U            | N/A | Yes      |
| SCSS-068D-0001-SO | Vinyl chloride            | 15     | 55    | ug/kg | U         | 8260   | SCSS-086D-0001-SO | 17     | 61    | U            | N/A | Yes      |
| SCSS-068M-0001-SO | Aluminum                  | 9150   | 0.12  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 8350   | 0.12  |              | 9   | N/A      |
| SCSS-068M-0001-SO | Antimony                  | 0.082  | 0.28  | mg/kg | R         | 6010   | SCSS-086M-0001-SO | 0.76   | 0.27  |              | N/A | N/A      |
| SCSS-068M-0001-SO | Arsenic                   | 11.2   | 0.46  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 8.6    | 0.46  |              | 26  | N/A      |
| SCSS-068M-0001-SO | Barium                    | 49.7   | 0.028 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 47     | 0.027 |              | 6   | N/A      |
| SCSS-068M-0001-SO | Beryllium                 | 0.41   | 0.024 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 0.4    | 0.024 |              | 2   | N/A      |
| SCSS-068M-0001-SO | Cadmium                   | 0.057  | 0.021 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 0.039  | 0.021 |              | N/A | Yes      |
| SCSS-068M-0001-SO | Calcium                   | 1650   | 0.51  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 1210   | 0.51  |              | 31  | N/A      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSS-068M-0001-SO | Chromium                   | 24.2   | 0.064 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 116    | 0.064 |           | 131 | N/A      |
| SCSS-068M-0001-SO | Cobalt                     | 7.6    | 0.05  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 6.8    | 0.05  |           | 11  | N/A      |
| SCSS-068M-0001-SO | Copper                     | 11     | 0.2   | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 10.4   | 0.2   |           | 6   | N/A      |
| SCSS-068M-0001-SO | Iron                       | 22500  | 1     | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 20500  | 1     |           | 9   | N/A      |
| SCSS-068M-0001-SO | Lead                       | 29.8   | 0.14  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 29.2   | 0.14  |           | 2   | N/A      |
| SCSS-068M-0001-SO | Magnesium                  | 2320   | 0.41  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 1980   | 0.41  |           | 16  | N/A      |
| SCSS-068M-0001-SO | Manganese                  | 395    | 0.051 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 350    | 0.051 |           | 12  | N/A      |
| SCSS-068M-0001-SO | Nickel                     | 20.9   | 0.062 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 28.7   | 0.062 |           | 31  | N/A      |
| SCSS-068M-0001-SO | Potassium                  | 693    | 37    | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 850    | 37    |           | 20  | N/A      |
| SCSS-068M-0001-SO | Selenium                   | 0.24   | 0.43  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 0.22   | 0.43  | J         | N/A | Yes      |
| SCSS-068M-0001-SO | Silver                     | 0.017  | 0.057 | mg/kg | U         | 6010   | SCSS-086M-0001-SO | 0.035  | 0.11  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Sodium                     | 20.5   | 13    | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 36.8   | 13    |           | N/A | No       |
| SCSS-068M-0001-SO | Thallium                   | 0.62   | 0.29  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 0.62   | 0.28  |           | N/A | Yes      |
| SCSS-068M-0001-SO | Vanadium                   | 14.8   | 0.035 | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 13.8   | 0.035 |           | 7   | N/A      |
| SCSS-068M-0001-SO | Zinc                       | 48.2   | 0.12  | mg/kg | J-        | 6010   | SCSS-086M-0001-SO | 43.4   | 0.12  |           | 10  | N/A      |
| SCSS-068M-0001-SO | Mercury                    | 0.031  | 0.008 | mg/kg | J-        | 7471   | SCSS-086M-0001-SO | 0.032  | 0.008 |           | N/A | Yes      |
| SCSS-068M-0001-SO | 1,2,4-Trichlorobenzene     | 21     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 21     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 1,2-Dichlorobenzene        | 24     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 1,3-Dichlorobenzene        | 20     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 20     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 1,4-Dichlorobenzene        | 19     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 19     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4,5-Trichlorophenol      | 130    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 130    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4,6-Trichlorophenol      | 130    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 130    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4-Dichlorophenol         | 120    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 120    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4-Dimethylphenol         | 100    | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 100    | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4-Dinitrophenol          | 700    | 2000  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 700    | 2000  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4-Dinitrotoluene         | 24     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,6-Dinitrotoluene         | 24     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Chloronaphthalene        | 23     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 23     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Chlorophenol             | 340    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 350    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Methyl-4,6-dinitrophenol | 270    | 1000  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 280    | 1000  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Methylnaphthalene        | 25     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Methylphenol             | 430    | 1000  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 430    | 1000  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Nitroaniline             | 23     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 23     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Nitrophenol              | 280    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 290    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 3,3'-Dichlorobenzidine     | 150    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 150    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 3-Nitroaniline             | 22     | 1000  | ug/kg | UJ        | 8270   | SCSS-086M-0001-SO | 22     | 1000  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Bromophenyl phenyl ether | 25     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Chloro-3-methylphenol    | 390    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 390    | 510   | U         | N/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSS-068M-0001-SO | 4-Chloroaniline              | 40     | 410  | ug/kg | UJ        | 8270   | SCSS-086M-0001-SO | 40     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Chlorophenyl phenyl ether  | 26     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 27     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Methylphenol               | 660    | 2000 | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 660    | 2000 | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Nitroaniline               | 30     | 1000 | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 31     | 1000 | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Nitrophenol                | 410    | 1000 | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 410    | 1000 | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Acenaphthene                 | 24     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Acenaphthylene               | 24     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Anthracene                   | 24     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzo(a)anthracene           | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzo(a)pyrene               | 23     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzo(b)fluoranthene         | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzo(g,h,i)perylene         | 22     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 22     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzo(k)fluoranthene         | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzoic acid                 | 290    | 990  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 300    | 1000 | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Benzyl alcohol               | 84     | 1000 | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 85     | 1000 | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Bis(2-chloroisopropyl) ether | 30     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 31     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Bis(2-ethylhexyl) phthalate  | 100    | 1000 | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 130    | 1000 | J         | N/A | Yes      |
| SCSS-068M-0001-SO | Butylbenzyl phthalate        | 74     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 74     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Carbazole                    | 28     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 29     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Chrysene                     | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Dibenzo(a,h)anthracene       | 22     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 22     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Dibenzofuran                 | 24     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 24     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Diethyl phthalate            | 65     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 65     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Dimethyl phthalate           | 64     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 64     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Di-n-butyl phthalate         | 88     | 410  | ug/kg | J         | 8270   | SCSS-086M-0001-SO | 81     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Di-n-octyl phthalate         | 60     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 60     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Fluoranthene                 | 26     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 27     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Fluorene                     | 25     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 26     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Hexachlorobenzene            | 28     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 29     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Hexachlorobutadiene          | 63     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 63     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Hexachlorocyclopentadiene    | 53     | 410  | ug/kg | UJ        | 8270   | SCSS-086M-0001-SO | 53     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Hexachloroethane             | 33     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 34     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Indeno(1,2,3-cd)pyrene       | 23     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 23     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Isophorone                   | 51     | 410  | ug/kg | J         | 8270   | SCSS-086M-0001-SO | 140    | 410  | J         | N/A | Yes      |
| SCSS-068M-0001-SO | Naphthalene                  | 21     | 410  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 21     | 410  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Nitrobenzene                 | 60     | 410  | ug/kg | R         | 8270   | SCSS-086M-0001-SO | 60     | 410  | U         | N/A | N/A      |

| Sample            | Analyte                    | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSS-068M-0001-SO | N-Nitroso-di-n-propylamine | 71     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 71     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | N-Nitrosodiphenylamine     | 51     | 810   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 51     | 820   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Pentachlorophenol          | 240    | 1000  | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 240    | 1000  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Phenanthrene               | 26     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 27     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Phenol                     | 160    | 510   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 160    | 510   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Pyrene                     | 26     | 410   | ug/kg | U         | 8270   | SCSS-086M-0001-SO | 27     | 410   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 1,3,5-Trinitrobenzene      | 0.13   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.13   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 1,3-Dinitrobenzene         | 0.08   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.08   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4,6-Trinitrotoluene      | 0.09   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44  | mg/kg | R         | 8330B  | SCSS-086M-0001-SO | 0.2    | 0.44  | U         | N/A | N/A      |
| SCSS-068M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5   | mg/kg | R         | 8330B  | SCSS-086M-0001-SO | 0.07   | 0.5   | U         | N/A | N/A      |
| SCSS-068M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.05   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 2-Nitrotoluene             | 0.09   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 3,5-Dinitroaniline         | 0.09   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.07   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5   | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.07   | 0.5   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | НМХ                        | 0.12   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.12   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Nitrobenzene               | 0.04   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.04   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Nitroglycerin              | 0.5    | 1.5   | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | PETN                       | 0.5    | 1.5   | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.5    | 1.5   | U         | N/A | Yes      |
| SCSS-068M-0001-SO | RDX                        | 0.16   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.16   | 0.44  | U         | N/A | Yes      |
| SCSS-068M-0001-SO | Tetryl                     | 0.09   | 0.44  | mg/kg | U         | 8330B  | SCSS-086M-0001-SO | 0.09   | 0.44  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Aluminum                   | 9480   | 0.24  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 8210   | 0.24  |           | 14  | N/A      |
| SCSS-073M-0001-SO | Antimony                   | 2.9    | 0.55  | mg/kg | J+        | 6010   | SCSS-087M-0001-SO | 2.2    | 0.55  |           | N/A | No       |
| SCSS-073M-0001-SO | Arsenic                    | 21.8   | 0.92  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 23     | 0.92  |           | 5   | N/A      |
| SCSS-073M-0001-SO | Barium                     | 94.3   | 0.055 | mg/kg |           | 6010   | SCSS-087M-0001-SO | 91.7   | 0.055 |           | 3   | N/A      |
| SCSS-073M-0001-SO | Beryllium                  | 0.77   | 0.024 | mg/kg |           | 6010   | SCSS-087M-0001-SO | 0.72   | 0.024 |           | 7   | N/A      |
| SCSS-073M-0001-SO | Cadmium                    | 0.63   | 0.043 | mg/kg |           | 6010   | SCSS-087M-0001-SO | 0.58   | 0.043 |           | 8   | N/A      |
| SCSS-073M-0001-SO | Calcium                    | 10300  | 1     | mg/kg |           | 6010   | SCSS-087M-0001-SO | 7340   | 1     |           | 34  | N/A      |
| SCSS-073M-0001-SO | Chromium                   | 130    | 0.13  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 86.1   | 0.13  |           | 41  | N/A      |
| SCSS-073M-0001-SO | Cobalt                     | 10.8   | 0.1   | mg/kg |           | 6010   | SCSS-087M-0001-SO | 11.3   | 0.1   |           | 5   | N/A      |
| SCSS-073M-0001-SO | Copper                     | 24.3   | 0.41  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 26.2   | 0.41  |           | 8   | N/A      |
| SCSS-073M-0001-SO | Iron                       | 24800  | 2     | mg/kg |           | 6010   | SCSS-087M-0001-SO | 23300  | 2     |           | 6   | N/A      |
| SCSS-073M-0001-SO | Lead                       | 50.3   | 0.29  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 61.2   | 0.29  |           | 20  | N/A      |
| SCSS-073M-0001-SO | Magnesium                  | 3040   | 0.82  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 2710   | 0.82  |           | 11  | N/A      |
| SCSS-073M-0001-SO | Manganese                  | 576    | 0.1   | mg/kg |           | 6010   | SCSS-087M-0001-SO | 520    | 0.1   |           | 10  | N/A      |
| SCSS-073M-0001-SO | Nickel                     | 32.7   | 0.12  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 26.9   | 0.12  |           | 19  | N/A      |

| Sample            | Analyte                     | Result | LOQ   | Units | Qualifier | Method | Sample            | Result | LOQ   | Qualifier | RPD | W/In LOQ |
|-------------------|-----------------------------|--------|-------|-------|-----------|--------|-------------------|--------|-------|-----------|-----|----------|
| SCSS-073M-0001-SO | Potassium                   | 1350   | 37    | mg/kg |           | 6010   | SCSS-087M-0001-SO | 1080   | 37    |           | 22  | N/A      |
| SCSS-073M-0001-SO | Selenium                    | 2.4    | 0.86  | mg/kg | J+        | 6010   | SCSS-087M-0001-SO | 2.2    | 0.86  |           | N/A | Yes      |
| SCSS-073M-0001-SO | Silver                      | 2      | 0.11  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 3      | 0.11  |           | 40  | N/A      |
| SCSS-073M-0001-SO | Sodium                      | 101    | 13    | mg/kg |           | 6010   | SCSS-087M-0001-SO | 79.8   | 13    |           | 23  | N/A      |
| SCSS-073M-0001-SO | Thallium                    | 0.082  | 0.29  | mg/kg | UJ        | 6010   | SCSS-087M-0001-SO | 0.47   | 0.29  |           | N/A | No       |
| SCSS-073M-0001-SO | Vanadium                    | 19.8   | 0.069 | mg/kg |           | 6010   | SCSS-087M-0001-SO | 20.3   | 0.069 |           | 2   | N/A      |
| SCSS-073M-0001-SO | Zinc                        | 86.1   | 0.24  | mg/kg |           | 6010   | SCSS-087M-0001-SO | 86.1   | 0.24  |           | 0   | N/A      |
| SCSS-073M-0001-SO | Mercury                     | 0.27   | 0.008 | mg/kg |           | 7471   | SCSS-087M-0001-SO | 0.21   | 0.008 |           | 25  | N/A      |
| SCSS-073M-0001-SO | 1,2,4-Trichlorobenzene      | 21     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 21     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 1,2-Dichlorobenzene         | 39     | 410   | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 100    | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | 1,3-Dichlorobenzene         | 20     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 26     | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | 1,4-Dichlorobenzene         | 19     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 48     | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4,5-Trichlorophenol       | 130    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 130    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4,6-Trichlorophenol       | 130    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 130    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4-Dichlorophenol          | 120    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 120    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4-Dimethylphenol          | 100    | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 100    | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4-Dinitrophenol           | 700    | 2000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 710    | 2000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4-Dinitrotoluene          | 24     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 92     | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,6-Dinitrotoluene          | 24     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 25     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Chloronaphthalene         | 23     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 24     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Chlorophenol              | 350    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 350    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Methyl-4,6-dinitrophenol  | 270    | 1000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 280    | 1000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Methylnaphthalene         | 240    | 410   | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 330    | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Methylphenol              | 430    | 1000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 430    | 1000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Nitroaniline              | 23     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 24     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Nitrophenol               | 290    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 290    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 3,3'-Dichlorobenzidine      | 150    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 150    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 3-Nitroaniline              | 22     | 1000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 22     | 1000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Bromophenyl phenyl ether  | 25     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 26     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Chloro-3-methylphenol     | 390    | 510   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 390    | 510   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Chloroaniline             | 40     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 40     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Chlorophenyl phenyl ether | 26     | 410   | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 27     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Methylphenol              | 660    | 2000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 660    | 2000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Nitroaniline              | 31     | 1000  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 31     | 1000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Nitrophenol               | 410    | 1000  | ug/kg | UJ        | 8270   | SCSS-087M-0001-SO | 410    | 1000  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Acenaphthene                | 35     | 410   | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 64     | 410   | J         | N/A | Yes      |
| SCSS-073M-0001-SO | Acenaphthylene              | 29     | 410   | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 25     | 410   | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Anthracene                  | 93     | 410   | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 150    | 410   | J         | N/A | Yes      |

| Sample            | Analyte                      | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier I | RPD | W/In LOQ |
|-------------------|------------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-------------|-----|----------|
| SCSS-073M-0001-SO | Benzo(a)anthracene           | 370    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 390    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Benzo(a)pyrene               | 350    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 350    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Benzo(b)fluoranthene         | 580    | 410  | ug/kg |           | 8270   | SCSS-087M-0001-SO | 520    | 410  |             | N/A | Yes      |
| SCSS-073M-0001-SO | Benzo(g,h,i)perylene         | 190    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 210    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Benzo(k)fluoranthene         | 200    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 170    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Benzoic acid                 | 300    | 2000 | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 300    | 2000 | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Benzyl alcohol               | 85     | 1000 | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 85     | 1000 | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Bis(2-chloroethoxy)methane   | 23     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 24     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Bis(2-chloroethyl) ether     | 25     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 26     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Bis(2-chloroisopropyl) ether | 31     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 31     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Bis(2-ethylhexyl) phthalate  | 190    | 1000 | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 950    | 1000 | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Butylbenzyl phthalate        | 74     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 75     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Carbazole                    | 58     | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 99     | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Chrysene                     | 400    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 390    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Dibenzo(a,h)anthracene       | 69     | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 92     | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Dibenzofuran                 | 72     | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 100    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Diethyl phthalate            | 65     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 65     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Dimethyl phthalate           | 64     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 64     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Di-n-butyl phthalate         | 140    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 130    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Di-n-octyl phthalate         | 60     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 60     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Fluoranthene                 | 760    | 410  | ug/kg |           | 8270   | SCSS-087M-0001-SO | 890    | 410  |             | N/A | Yes      |
| SCSS-073M-0001-SO | Fluorene                     | 33     | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 55     | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Hexachlorobenzene            | 29     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 29     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Hexachlorobutadiene          | 63     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 63     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Hexachlorocyclopentadiene    | 53     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 53     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Hexachloroethane             | 34     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 34     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Indeno(1,2,3-cd)pyrene       | 170    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 210    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Isophorone                   | 51     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 51     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Naphthalene                  | 170    | 410  | ug/kg | J         | 8270   | SCSS-087M-0001-SO | 240    | 410  | J           | N/A | Yes      |
| SCSS-073M-0001-SO | Nitrobenzene                 | 60     | 410  | ug/kg | R         | 8270   | SCSS-087M-0001-SO | 60     | 410  | U           | N/A | N/A      |
| SCSS-073M-0001-SO | N-Nitroso-di-n-propylamine   | 71     | 410  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 72     | 410  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | N-Nitrosodiphenylamine       | 51     | 810  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 51     | 820  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Pentachlorophenol            | 240    | 1000 | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 250    | 1000 | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Phenanthrene                 | 450    | 410  | ug/kg |           | 8270   | SCSS-087M-0001-SO | 700    | 410  |             | N/A | Yes      |
| SCSS-073M-0001-SO | Phenol                       | 160    | 510  | ug/kg | U         | 8270   | SCSS-087M-0001-SO | 160    | 510  | U           | N/A | Yes      |
| SCSS-073M-0001-SO | Pyrene                       | 620    | 410  | ug/kg |           | 8270   | SCSS-087M-0001-SO | 630    | 410  |             | N/A | Yes      |
| SCSS-073M-0001-SO | 1,3,5-Trinitrobenzene        | 0.13   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.13   | 0.43 | U           | N/A | Yes      |
| SCSS-073M-0001-SO | 1,3-Dinitrobenzene           | 0.081  | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.079  | 0.43 | U           | N/A | Yes      |

Sand Creek Field Duplicate Comparisons

| Sample            | Analyte                    | Result | LOQ  | Units | Qualifier | Method | Sample            | Result | LOQ  | Qualifier | RPD | W/In LOQ |
|-------------------|----------------------------|--------|------|-------|-----------|--------|-------------------|--------|------|-----------|-----|----------|
| SCSS-073M-0001-SO | 2,4,6-Trinitrotoluene      | 0.091  | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.089  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2,4-Dinitrotoluene         | 0.2    | 0.44 | mg/kg | R         | 8330B  | SCSS-087M-0001-SO | 0.2    | 0.43 | U         | N/A | N/A      |
| SCSS-073M-0001-SO | 2,6-Dinitrotoluene         | 0.07   | 0.5  | mg/kg | R         | 8330B  | SCSS-087M-0001-SO | 0.069  | 0.49 | U         | N/A | N/A      |
| SCSS-073M-0001-SO | 2-Amino-4,6-dinitrotoluene | 0.05   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.049  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 2-Nitrotoluene             | 0.091  | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.089  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 3,5-Dinitroaniline         | 0.091  | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.089  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 3-Nitrotoluene             | 0.07   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.069  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Amino-2,6-dinitrotoluene | 0.07   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.069  | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | 4-Nitrotoluene             | 0.07   | 0.5  | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.069  | 0.49 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | НМХ                        | 0.12   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.12   | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Nitrobenzene               | 0.04   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.04   | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Nitroglycerin              | 0.5    | 1.5  | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.49   | 1.5  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | PETN                       | 0.5    | 1.5  | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.49   | 1.5  | U         | N/A | Yes      |
| SCSS-073M-0001-SO | RDX                        | 0.16   | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.16   | 0.43 | U         | N/A | Yes      |
| SCSS-073M-0001-SO | Tetryl                     | 0.091  | 0.44 | mg/kg | U         | 8330B  | SCSS-087M-0001-SO | 0.089  | 0.43 | U         | N/A | Yes      |

#### APPENDIX D

Validator Checklists

| POLY CHLORINATED BIPHENYLS                                                                                                                                                                                 |      |           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--|--|
| (PCB/AROCLORS) CHECK                                                                                                                                                                                       | LIST | ÷         |  |  |
| Project Name: Ravenna ODA1/Sana Cu                                                                                                                                                                         | reek |           |  |  |
| Laboratory: CT Laboratories                                                                                                                                                                                |      |           |  |  |
| Batch Number(s): 34836, 34839                                                                                                                                                                              |      |           |  |  |
| Sample Delivery Group: <u>\$1575</u> , <u>\$1670</u>                                                                                                                                                       |      |           |  |  |
| 1 Holding Time:                                                                                                                                                                                            | Yes  | <u>No</u> |  |  |
| <ul><li>(a) Were samples extracted within holding time?</li><li>(b) Were samples analyzed within holding time?</li></ul>                                                                                   |      | []        |  |  |
| 2. Initial Calibration:                                                                                                                                                                                    |      |           |  |  |
| <ul> <li>Did the initial calibration consist of five standards?</li> <li>Did Aroclors 1016 and 1260 meet the RSD ≤ 20% or the r ≥ 0.99?</li> </ul>                                                         |      | []        |  |  |
| <ul> <li>Was manual integration "M" performed?<br/>If the answer is "Yes", check for supporting documents.</li> </ul>                                                                                      | []   | 11        |  |  |
| Was the manual integration necessary?     A/A                                                                                                                                                              | []   | []        |  |  |
| If the answer is "no", contact the laboratory inquiring<br>about the reasons behind the manual integration, and<br>inform the District Chemist immediately if there were<br>no valid reasons.<br>3. QCMDL: |      |           |  |  |
| • Was MDL Check performed?                                                                                                                                                                                 | []   | []        |  |  |
| 4. QCMRL:                                                                                                                                                                                                  |      |           |  |  |
| <ul> <li>Were QC/MRL run at the beginning and end of every<br/>daily sequence or every 12 hours??</li> </ul>                                                                                               | [1]  | []        |  |  |
| • Was the QC/MRL between 70-130% R and .                                                                                                                                                                   | [1   | []        |  |  |
| 5. Initial Calibration Verification (ICV):<br>$RSM \pm 20\%$<br>Is the mid level (2 <sup>nd</sup> source) recovery within 85 115%?                                                                         | []   | []        |  |  |
|                                                                                                                                                                                                            |      |           |  |  |

| Jun | ; 2002                                                                                                                                                                                                                    | V   | NI-        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| 6.  | Continuing Calibration Verification (CCV):                                                                                                                                                                                | res | <u>IN0</u> |
|     | • Was CCV conducted every 12 hours?                                                                                                                                                                                       | И   | []         |
|     | <ul> <li>Was Drift or D ≤ 15% from the initial calibration with a maximum %D &lt; 20% for a specific compound?</li> </ul>                                                                                                 | 1   | []         |
| 7.  | Sample Analysis:                                                                                                                                                                                                          | /   |            |
|     | • Was the RRT of an identified component within the retention time window created as SW-846 requires?                                                                                                                     | IN  | []         |
| •   | Were samples with levels higher than the calibration range (E), diluted and re-analyzed?                                                                                                                                  | []  | []         |
|     | • Were identified Aroclors confirmed on a second GC column? QC - N/A for samples                                                                                                                                          | И   | []         |
|     | • Were individual Aroclor standards used to determine the pattern of the peaks? (Individual Aroclors are 1221, 1232, 1242, 1248, and 1254. Both Aroclor 1016, and 1260 can be used from the mixed calibration standards.) | [X  | []         |
|     | • Was RPD of target analyte conformation $\leq 40$ ? (HA                                                                                                                                                                  | 1   | []         |
| 8.  | Sample Quality Control:                                                                                                                                                                                                   | /   |            |
|     | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL? $ND$                                                                                                                                                        | [1  | []         |
|     | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                                                                                     | []  | []         |
|     | • <u>MS/MSD</u> : Were the percent recoveries within limits?                                                                                                                                                              | 1   | []         |
|     | Were the RPDs within control limits?                                                                                                                                                                                      | 4   | []         |
|     | <ul> <li><u>System Monitoring Compounds (Surrogates)</u>: are surrogate recoveries within QC limits?</li> </ul>                                                                                                           | 1   | []         |

9. Comments (attach additional sheets if necessary):

No dilutions.

Validated/Reviewed by:

Signature: MCaluru Name: L.S. Calvin

Date: 03.12.2013

|      | ORGANOCHLORINE PESTICIDES<br>ANALYSIS CHECKLIST                                                                                                                                                         |                  |           |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--|--|--|
| Proj | ject Name: Ravenna ODA1/Sand C                                                                                                                                                                          | reek             |           |  |  |  |
| Lab  | poratory: CT Laboratories                                                                                                                                                                               |                  |           |  |  |  |
| Bat  | ch Number(s): 34839, 34954                                                                                                                                                                              |                  |           |  |  |  |
| San  | nple Delivery Group: <u>\$1575</u> , <u>81670</u>                                                                                                                                                       |                  |           |  |  |  |
|      |                                                                                                                                                                                                         | Yes              | <u>No</u> |  |  |  |
| 1.   | <ul><li>(a) Were samples extracted within holding time?</li><li>(b) Were samples analyzed within holding time?</li></ul>                                                                                |                  | []        |  |  |  |
| 2.   | DDT/Endrin Breakdown:                                                                                                                                                                                   |                  |           |  |  |  |
|      | • Was breakdown $\leq 15\%$ ?                                                                                                                                                                           | [*               | []        |  |  |  |
| 3.   | Initial Calibration:                                                                                                                                                                                    |                  |           |  |  |  |
|      | <ul> <li>Did the initial calibration consist of five standards?</li> <li>Did all compounds meet the RSD ≤ 20% or r ≥ 0.99?</li> </ul>                                                                   |                  | []<br>[]  |  |  |  |
|      | • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting documents.                                                                                                      | []               | 12        |  |  |  |
|      | Was the manual integration necessary?     Al/A                                                                                                                                                          | []               | F 1       |  |  |  |
| 4.   | If the answer is "no", contact the laboratory inquiring<br>about the reasons behind the manual integration, and<br>inform the District Chemist immediately if there were<br>no valid reasons.<br>QCMDL: |                  |           |  |  |  |
| •    | Was MDL Check performed?                                                                                                                                                                                | R                | []        |  |  |  |
| 5    | OCMRL:                                                                                                                                                                                                  |                  |           |  |  |  |
|      | <ul> <li>Were QC/MRL run at the beginning and end of every<br/>daily sequence or every 12 hours??</li> </ul>                                                                                            | 11<br>11         |           |  |  |  |
|      | • Was the QC/MRL between 70-130% R<br>endrin 60.0%, 59.5% 182 on 2° col b<br>tor sample 48 M-0001 (Sand<br>UT/C                                                                                         | oth MRL<br>Creek | s<br>)    |  |  |  |

MS/SC

|    | 50   | 10 2002                                                                                                             | Yes | <u>No</u> |
|----|------|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
|    | 6    | <ul> <li>Initial Calibration Verification (ICV):</li></ul>                                                          | 1   | []        |
|    | 7    | . Continuing Calibration Verification (CCV):                                                                        |     |           |
|    |      | • Was CCV conducted every 12 hours?                                                                                 | 11  | []        |
|    |      | • Was Drift or $D \leq 15\%$ from the initial calibration with a maximum $D \leq 20\%$ for a specific compound?     | [1] | []        |
|    | 8    | . Sample Analysis:                                                                                                  |     |           |
|    |      | • Was the RRT of an identified component within the retention time window created as SW-846 requires?               | 11  | []        |
|    |      | • Were samples with levels higher than the calibration range (E), diluted and re-analyzed? $N/A$                    | []  | []        |
|    |      | • Were identified compounds confirmed on a second GC column?                                                        | 1   | []        |
|    |      | • Was RPD of target analyte confirmation ≤ 40?                                                                      | 11  | []        |
|    | 9    | D. Sample Quality Control:                                                                                          | ,   |           |
|    |      | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL? $\lambda$                                             | И   | []        |
| 50 | 59W- | • LCS: Were the percent recoveries for LCS within the                                                               | 4   | []        |
| (  | ODA  | • <u>MS/MSD</u> : Were the percent recoveries within limits?                                                        | []  | [1        |
|    | L    | Were the RPD within control limits?                                                                                 | 1   | []        |
|    | AC   | <ul> <li><u>System Monitoring Compounds (Surrogates)</u>: are<br/>surrogate recoveries within QC limits?</li> </ul> | 11  | []        |
|    |      |                                                                                                                     |     |           |

10. Comments (attach additional sheets if negessary): 5CSB-048M-0001, Sand Creek and yred R 5X due to sample matvix

Validated/Reviewed by:

Signature: MCalvin

Date: 03.12.2013

| VERSION 5 |  |
|-----------|--|
| June 2002 |  |

## **VOLATILE ORGANIC ANALYSIS** CHECKLIST

| Project Name: Ravenna ODA 1/Sand Creek                                  |
|-------------------------------------------------------------------------|
| Laboratory: OT Laboratories                                             |
| Batch Number(s): <u>34800, 34868, 34867</u>                             |
| Sample Delivery Group (SDG): <u>8/575</u> , <u>8/423</u> , <u>8/470</u> |

- Yes 1. Holding Time: 1 (a) Were samples preserved? (b) Were samples analyzed within holding time? 1X 2. Was the BFB tune performed at the beginning of each 12hour period during which samples were analyzed?
- 3. Was mass assignment based on m/z 95?
- 4. Indicate if BFB ions abundance relative to m/z 95 base peak met the ions abundance criteria:

| m/z | Acceptance Criteria      |
|-----|--------------------------|
| 50  | 15.0 - 40.0 %            |
| 75  | 30.0 - 66.0 %            |
| 95  | 100%, Base Peak          |
| 96  | 5.0 - 9.0%               |
| 173 | <2.0% of m/z 174         |
| 174 | >50%                     |
| 175 | 5.0 - 9.0% of mass 174   |
| 176 | 95.0 - 101.0% of m/z 174 |
| 177 | 5.0 - 9.0% of m/z 176    |

The relative ion abundance of m/z 95/96, m/z 174/176, and 176/177 are of critical importance.

The relative ion abundance of m/z 50 and 75 are of lower importance.





| 5.      | Initial Calibration:                                                                                                                                                                                                                                    | Yes | <u>No</u>                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|
|         | • Did the initial calibration consist of five standards?                                                                                                                                                                                                | 1   | []                       |
| •       | Did the System Performance Check Compounds (SPCC)<br>meet the minimum mean response factor (RF)?<br>Chloromethane 0.1<br>1,1-Dichloroethane 0.1<br>Bromoform 0.1<br>Chlorobenzene 0.3<br>1,1,2,2-Tetrachloroethane 0.3                                  |     | [ ]<br>[ ]<br>[ ]<br>[ ] |
|         | • Did the KSD meet the criteria ≤ 30% for each individual Calibration Check Compound (CCC)?                                                                                                                                                             | D.  | E Î                      |
|         | 1,1-Dichloroethene<br>Chloroform<br>1,2-Dichloropropane<br>Toluene<br>Ethylbenzene<br>Vinyl chloride                                                                                                                                                    |     |                          |
|         | <ul> <li>Are the RSDs for the remaining target analytes ≤ 15% or r</li> <li>≥ 0.99 with a mean RSD ≤ 15% with a maximum RSD ≤ 20%?</li> </ul>                                                                                                           | И   | []                       |
|         | If the answer is "No", are the mean RSDs $\leq 15\%$ ? ALA                                                                                                                                                                                              | []  | []                       |
|         | Was manual integration "M" performed?                                                                                                                                                                                                                   | []  | И                        |
|         | If the answer is "Yes", check for supporting MA documents.                                                                                                                                                                                              | []  | []                       |
|         | <ul> <li>Was the manual integration necessary?</li> <li>If the answer is "No", contact the laboratory inquiring about the reasons behind the manual integration, and inform the District Chemist immediately if there were no valid reasons.</li> </ul> |     | []                       |
| 6.<br>• | QCMDL:<br>Was MDL Check performed?                                                                                                                                                                                                                      | 11  | []                       |
| 7.      | QCMRL:                                                                                                                                                                                                                                                  | И   | []                       |

171

|    |                                                                                                                                                                                                                                                             | Yes | <u>No</u>                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|
|    | <ul> <li>Were QC/MRL run at the beginning and end of every<br/>daily sequence or every 12 hours?</li> </ul>                                                                                                                                                 | 1   | []                              |
|    | • Was the QC/MRL between 70-130% R                                                                                                                                                                                                                          | []  | 1                               |
|    | <ul> <li>For the non-contaminants of concern was the<br/>QC/MRL between 60-140% (Sporadic Marginal Failure)</li> </ul>                                                                                                                                      | []  | []                              |
| 8. | Initial Calibration Verification (ICV):                                                                                                                                                                                                                     | И   | []                              |
|    | <ul> <li>Is the mid level (2<sup>nd</sup> source) recovery within 80 - 120% for contaminants of concern ?</li> <li>Is the mid level (2<sup>nd</sup> source) recovery within 60-140% for non-contaminants of concern (Sporadic Marginal Failure)?</li> </ul> |     |                                 |
| 9. | Continuing Calibration Verification (CCV):                                                                                                                                                                                                                  | /   |                                 |
|    | • Was CCV conducted every 12 hours?                                                                                                                                                                                                                         | 11  | []                              |
|    | • Did SPCC meet the RF values?                                                                                                                                                                                                                              | [1  | []                              |
|    | RFChloromethane0.11,1-Dichloroethane0.1Bromoform0.1Chlorobenzene0.31,1,2,2-Tetrachloroethane0.3                                                                                                                                                             |     | [ ]<br>[ ]<br>[ ]<br>[ ]        |
|    | • Did the CCC meet the minimum requirements $(D \le 20\%)$ ?                                                                                                                                                                                                | 17  | []                              |
|    | 1,1-Dichloroethene<br>Chloroform<br>1,2-Dichloropropane<br>Toluene<br>Ethylbenzene<br>Vinyl chloride                                                                                                                                                        |     | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ] |
|    | • <u>Primary Evaluation</u> : Was the mean, Drift or $D \le 20\%$ from the initial calibration?                                                                                                                                                             | Г   | []                              |

· Alternative Evaluation: Maximum allowable Drift/D for

|         | each target analyte is $\leq 30\%$ when mean $D \leq 20\%$ ?                                                                           | <u>Yes</u><br>[] | <u>No</u><br>[] |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 10. Sar | mple Analysis:                                                                                                                         |                  |                 |
| •       | Was the RRT of an identified component within $\pm 0.06$ RRT units of the RRT of the standard component?                               | 1                | []              |
| •       | Did the abundance of ions in the sample spectra agree within $30\%$ of the major ions (> 10% of the base ion) in the standard spectra? | (X               | []              |
| •       | Were the internal standard areas within the QC limits (from -50% to +200%)?                                                            | 1                | []              |
| 11. Sai | mple Quality Control:                                                                                                                  | ,                |                 |
|         | <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL? $\lambda D$                                                                | 1                | []              |
| •       | LCS: Were the percent recoveries for LCS within the limits?                                                                            | ГЛ               | [.]]            |
| •       | MS/MSD: Were the percent recoveries within limits?                                                                                     | 11               | []              |
|         | Were the RPD within control limits?                                                                                                    | []               | 1               |
| System  | <u>Monitoring Compounds (Surrogates)</u> : are surrogate                                                                               | ۲.               | []              |
| 12. Co  | e attached for MRL outliers                                                                                                            | and gy           | alis            |
|         |                                                                                                                                        | Ň                |                 |

Validated/Reviewed by: Signature:

Name: L.S. Calvin

Date: 03.12.2013

| Samples qualified for MRL recovery outliers |                        |                      |  |  |  |
|---------------------------------------------|------------------------|----------------------|--|--|--|
| Analyte                                     | MRL %Rs<br>Begin / End | Qualified Samples    |  |  |  |
| 2-hexanone                                  | 37% / 62%              |                      |  |  |  |
| chloroethane                                | 5%/4%                  | DA1SB-059D-0201-SO   |  |  |  |
| chloromethane                               | 0%/0%                  |                      |  |  |  |
| 2-hexanone                                  | 38% / 3%               |                      |  |  |  |
| chloroethane                                | 0%/17%                 |                      |  |  |  |
| chloromethane                               | 0%/0%                  |                      |  |  |  |
| 4-methyl-2-pentanone                        | / 69%                  | - DATSB-068D-0201-SO |  |  |  |
| acetone                                     | / 67%                  |                      |  |  |  |
| m,p-xylenes                                 | / 11%                  |                      |  |  |  |

| Samples qualified for MRL recovery outliers |                        |                   |  |  |
|---------------------------------------------|------------------------|-------------------|--|--|
| Analyte                                     | MRL %Rs<br>Begin / End | Qualified Samples |  |  |
| carbon disulfide                            | / 68%                  |                   |  |  |
| dibromochloromethane                        | / 63%                  | SCSB-048D-0001-SO |  |  |
| trans-1,3-dichloropropene                   | / 69%                  |                   |  |  |

| NITROAROMATICS & NI                                                                                                                                                         | <b>FRAMINE</b>                 | DATA      | i te                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|------------------------|
| ANALYSIS (EXPLOSIV                                                                                                                                                          | E RESIDU                       | JES)      | +riphens               |
| CHECKLIS                                                                                                                                                                    | + 9/3DAISB -C                  | 59M- 0201 | -50 (851582)           |
| Project Name: ODAI / Sand (reel                                                                                                                                             | 1/23- UAISB-06                 | 202 - MC  | -50 (851281)           |
| Laboratory:                                                                                                                                                                 |                                | + 19      | licate                 |
| 63 59,55<br>Batch Number(s): 35052 35050                                                                                                                                    |                                |           | n                      |
| Sample Delivery Group: 81575                                                                                                                                                |                                |           |                        |
| 1 Uolding Times                                                                                                                                                             | Yes                            | No        | 5                      |
| Were samples analyzed within holding time?                                                                                                                                  | []                             | ¥]        | 059m-42<br>063m-822 NG |
| 2. Initial Calibration:                                                                                                                                                     |                                |           | 9 ¢<br>Ex              |
| • Did the initial calibration consist of five standards?                                                                                                                    |                                | []        |                        |
| • Did the RSD meet the criteria $\leq 20\%$ for each inc<br>Calibration Compound or $r \geq 0.99$ ?                                                                         | lividual                       | []        |                        |
| • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting docum                                                                               | nents. []                      | $\sim$    |                        |
| • Was the manual integration necessary?                                                                                                                                     | []                             | []        |                        |
| If the answer is "no", contact the laboratory in<br>about the reasons behind the manual integration<br>inform the District Chemist immediately if ther<br>no valid reasons. | equiring<br>on, and<br>re were |           |                        |
| Was MDL Chook norformed?                                                                                                                                                    | ~ [ ]                          |           |                        |
| 4 OCMRL:                                                                                                                                                                    |                                | L. 1      |                        |
| Were OC/MPI must the baciming and and                                                                                                                                       |                                |           |                        |
| daily sequence or every 12 hours??                                                                                                                                          | r every                        | []        |                        |
| • Was the percentage "D" for QC/MRL $\leq$ 30%?                                                                                                                             | N                              | L J       |                        |
| 5. Initial Calibration Verification (ICV):                                                                                                                                  | 7]                             | []        | *                      |

U.S. Army Corps of Engineers Louisville District - LCG

| IC | Yes                                                                                                                                                                                     | No  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                                                         | []  |
|    | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                                                 |     |
| 6. | Continuing Calibration Verification (CCV):<br>{Daily calibration}                                                                                                                       |     |
|    | <ul> <li>Was midpoint calibration standard conducted at the [1] beginning of the day?</li> </ul>                                                                                        | []  |
|    | • Was midpoint calibration standard conducted every ten Samples or every twelve hours?                                                                                                  | []  |
|    | • Was midpoint calibration standard conducted after the [1] last sample of the day?                                                                                                     | []  |
|    | • Did the CCV meet the minimum requirements $(D \le 15\%)$<br>with a maximum $D \le 20\%$ for a specific compound if the mean $D \le 15\%$ ?                                            | []  |
| 7. | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the N/A [] retention time window created as SW-846 requires?</li> </ul>                                | []  |
|    | • Were all identified hits, above the initial calibration curve, diluted and reanalyzed?                                                                                                | T 1 |
|    | • Were all identified hits confirmed on a second column?                                                                                                                                | []  |
|    | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                                                    | []  |
|    | • Was there a shoulder on the 2,4,6-TNT peak?                                                                                                                                           | []  |
|    | If the answer is "Yes", then tetryl decomposition is suspected. []<br>Peak height rather than peak area should be used for<br>calculating TNT concentration. If teryl was identified in | []  |
|    | If the answer is "No", then check for tetryl decomposition,<br>and qualify hits with "J" accordingly.                                                                                   |     |
| 8. | Sample Quality Control:                                                                                                                                                                 | []  |
|    | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                                                           |     |
|    | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                                                   | []  |

U.S. Army Corps of Engineers Louisville District - LCG

Yes No [] 1 MS/MSD: Were the percent recoveries within limits? 0 Were the RPDs within control limits? System Monitoring Compounds (Surrogates): Were N [] . surrogate recoveries within QC limits? 9. Comments (attach additional sheets if necessary): 4A=22 24 DNT :22% RPD 4A (79, -MSID 055M 063 M NGTEX 4A(76integrated - includes more NG MRLS than peak; may be based DOOLA re-ON int 100 55% 50% NC MSAD 063P Validated/Reviewed by:

Signature: P. ALS

Date: 3/6/13

Name: P. Meeks

#### NITROAROMATICS & NITRAMINE DATA ANALYSIS (EXPLOSIVE RESIDUES) CHECKLIST<sup>1/1/1</sup>5C5B-037M-0001-50 (851489)

| CHECKL                                                                                                                                 | 4/12                                              | SCSB-038m      | -0005-50  | (95151.      | 1        |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|-----------|--------------|----------|
| ODAL /S. d Coast                                                                                                                       | 9/21                                              | SCSB- OYZM     | - 0003-50 | (85155       | う<br>身   |
| Project Name:                                                                                                                          | 9/21                                              | S < 55-068M    | -0001-50  | (85042       | 6)       |
| Laboratory:                                                                                                                            |                                                   |                |           |              |          |
| Batch Number(s): $35649$ , $34937$ , $34878$                                                                                           | <del></del>                                       |                |           |              |          |
| Sample Delivery Group:                                                                                                                 | anna a dha                                        |                |           |              |          |
| 1. Holding Time:                                                                                                                       |                                                   | Yes            | No        | 042M<br>037m | 89<br>89 |
| Were samples analyzed within holding time?                                                                                             |                                                   | 1              | M         | 038 m        | 29       |
| 2. Initial Calibration:                                                                                                                |                                                   |                |           |              |          |
| • Did the initial calibration consist of five stand                                                                                    | ards?                                             | H              | []        |              |          |
| • Did the RSD meet the criteria $\leq 20\%$ for eac Calibration Compound or $r \geq 0.99$ ?                                            | h individu:                                       | al 🔨           | []        |              |          |
| • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting d                                              | locuments.                                        | []             | Ŋ         |              |          |
| • Was the manual integration necessary?                                                                                                |                                                   | []             | []        |              |          |
| If the answer is "no", contact the laborato<br>about the reasons behind the manual inter<br>inform the District Chemist immediately if | ry inquirin<br>gration, ar<br><b>f there we</b> i | ng<br>nd<br>re |           |              |          |
| no valid reasons.<br>3. QCMDL:                                                                                                         |                                                   |                |           |              |          |
| • Was MDL Check performed?                                                                                                             |                                                   | 11             | []        |              |          |
| 4. QCMRL:                                                                                                                              |                                                   |                |           |              |          |
| • Were QC/MRL run at the beginning and endaily sequence or every 12 hours??                                                            | nd of even                                        | ry T           | []        |              |          |
| • Was the percentage "D" for QC/MRL $\leq$ 30%?                                                                                        | Ď                                                 | LI.            | []        |              |          |
| 5. Initial Calibration Verification (ICV):                                                                                             |                                                   | ₩.             | []        |              |          |
| 185                                                                                                                                    |                                                   |                |           |              |          |

|    |                                                                                                                                                                                                                                                              | Yes          | No          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
|    | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                                                                                                                              | 74           | []          |
|    | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                                                                                                                      |              |             |
| 6. | Continuing Calibration Verification (CCV):                                                                                                                                                                                                                   |              |             |
|    | <ul> <li>{Daily calibration}</li> <li>Was midpoint calibration standard conducted at the beginning of the day?</li> </ul>                                                                                                                                    | M            | []          |
|    | • Was midpoint calibration standard conducted every ten samples or every twelve hours?                                                                                                                                                                       | <u>_</u> ['] | []          |
|    | • Was midpoint calibration standard conducted after the last sample of the day?                                                                                                                                                                              |              | []          |
|    | • Did the CCV meet the minimum requirements ( $D \le 15\%$ with a maximum $D \le 20\%$ for a specific compound if the mean $D \le 15\%$ )?                                                                                                                   | []           | []          |
|    |                                                                                                                                                                                                                                                              |              |             |
| 7. | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the retention time window created as SW-846 requires? N/</li> </ul>                                                                                                         | []<br>4      | []          |
|    | • Were all identified hits, above the initial calibration                                                                                                                                                                                                    |              |             |
|    | curve, diluted and reanalyzed?                                                                                                                                                                                                                               | []           | []          |
|    | • Were all identified hits confirmed on a second column?                                                                                                                                                                                                     | []           | []          |
|    | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                                                                                                                         | <b>Г</b> ]   | 1           |
|    | • Was there a shoulder on the 2,4,6-TNT peak?                                                                                                                                                                                                                |              | . сэ<br>г т |
|    | If the answer is "Yes", then tetryl decomposition is suspected.                                                                                                                                                                                              | / L]         |             |
|    | Peak height rather than peak area should be used for calculating TNT concentration. If teryl was identified in aqueous samples, was pH adjusted to $<3$ ? If the answer is "No", then check for tetryl decomposition, and qualify hits with "J" accordingly. | []           | []          |
| 8. | Sample Quality Control:                                                                                                                                                                                                                                      | N            | []          |
|    | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                                                                                                                                |              |             |
|    | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                                                                                                                        | N            | []          |

| VERSION 5 U.S. Army Corps of Engineers Louisville Di                                                                       |                                                                      |                             |                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| June 2002                                                                                                                  |                                                                      | -00                         |                                                                                                                 |
|                                                                                                                            |                                                                      | Yes                         | No                                                                                                              |
| • <u>MS/MSD</u> :                                                                                                          | Were the percent recoveries within limits? $N/\Lambda$               | ۱ ]<br>۲                    | []                                                                                                              |
| Were the l                                                                                                                 | RPDs within control limits?                                          |                             |                                                                                                                 |
| • <u>System</u> I surrogate                                                                                                | Monitoring Compounds (Surrogates): Were recoveries within QC limits? | N                           | []                                                                                                              |
| 9. Comments (at                                                                                                            | tach additional sheets if necessary):                                |                             |                                                                                                                 |
| Les YA=                                                                                                                    | 14% w/ 03M/038M                                                      |                             |                                                                                                                 |
| CCV YA =                                                                                                                   | - 16% D UT 04UM                                                      |                             |                                                                                                                 |
|                                                                                                                            |                                                                      |                             |                                                                                                                 |
|                                                                                                                            |                                                                      |                             | •                                                                                                               |
| <del>an Alisan ( a sang) di di ang pagtan ( a sang) ang pagtan ( a sang) ang pagtan ( a sang) ang pagtan ( a sang) a</del> |                                                                      |                             | a de la calega de la |
|                                                                                                                            |                                                                      |                             |                                                                                                                 |
|                                                                                                                            |                                                                      |                             |                                                                                                                 |
| - 11-11                                                                                                                    |                                                                      | ter en entrenne soulie trat |                                                                                                                 |
|                                                                                                                            |                                                                      |                             |                                                                                                                 |
| Validated/Review                                                                                                           | red by:                                                              |                             |                                                                                                                 |
| Signature: P                                                                                                               | MOS                                                                  |                             | Date: 3/6/13                                                                                                    |
| Name: P. M.                                                                                                                | eek                                                                  |                             |                                                                                                                 |

## NITROAROMATICS & NITRAMINE DATA ANALYSIS (EXPLOSIVE RESIDUES) CHECKLIST + DAISDO068M - & 201 (852373) 9/24

| CHECKLIST                                                                                                                                                                                            |                             | 20 (0)10     |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------------|
|                                                                                                                                                                                                      | DAISB - 070 M-              | 0204 (852.38 | 3) 9hy             |
| Project Name: ODAI (Sund Creeks                                                                                                                                                                      | DAISB-072M-0<br>DAISS-050M. | 204 (52391   | ») 9/24<br>») 9/27 |
| Laboratory: <u>CT</u>                                                                                                                                                                                | triplicate                  |              | °) 1/L1            |
| Batch Number(s): $35123$ , $35122$ , $35121$                                                                                                                                                         |                             |              |                    |
| Sample Delivery Group: <u>61623</u>                                                                                                                                                                  |                             |              |                    |
| 1. Holding Time:                                                                                                                                                                                     | Yes                         | No           | Ar of              |
| Were samples analyzed within holding time?                                                                                                                                                           | []                          | N 020m       | EX 91              |
| 2. Initial Calibration:                                                                                                                                                                              |                             | 672 m        | ૧૮<br>૧૮           |
| • Did the initial calibration consist of five standards?                                                                                                                                             | M                           | []           | 69                 |
| • Did the RSD meet the criteria $\leq 20\%$ for each individ Calibration Compound or $r \geq 0.99$ ?                                                                                                 | ual                         | [*]          |                    |
| • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting documents                                                                                                    | s. []                       | Ń            |                    |
| • Was the manual integration necessary?                                                                                                                                                              | [ ]                         | []           |                    |
| If the answer is "no", contact the laboratory inquiri<br>about the reasons behind the manual integration, a<br>inform the District Chemist immediately if there we<br>no valid reasons.<br>3. QCMDL: | ing<br>and<br>ere           |              |                    |
| • Was MDL Check performed?                                                                                                                                                                           | []                          | []           |                    |
| 4. QCMRL:                                                                                                                                                                                            | 8                           |              |                    |
| • Were QC/MRL run at the beginning and end of ever<br>daily accurate or every 12 hours??                                                                                                             | ery N                       | []           |                    |
| Was the percentage "D" for OC/ADL < 200/9                                                                                                                                                            | ×1                          | []           |                    |
| • was the percentage "D" for QC/MRL $\leq 30\%$ ?                                                                                                                                                    |                             |              |                    |
| 5. Initial Calibration Verification (ICV):                                                                                                                                                           | ĺΊ                          | []           |                    |

limits?

U.S. Army Corps of Engineers Louisville District - LCG

| Jul |                                                                                                                                                                                                                                 | Yes      | No |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
|     | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                                                                                                 | <u>_</u> | [] |
|     | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                                                                                         |          |    |
| 6.  | Continuing Calibration Verification (CCV):                                                                                                                                                                                      |          |    |
|     | <ul> <li>{Daily calibration}</li> <li>Was midpoint calibration standard conducted at the beginning of the day?</li> </ul>                                                                                                       | ~[]      | [] |
|     | • Was midpoint calibration standard conducted every ten samples or every twelve hours?                                                                                                                                          | A        | [] |
|     | • Was midpoint calibration standard conducted after the last sample of the day?                                                                                                                                                 | 7        | [] |
|     | • Did the CCV meet the minimum requirements (D $\leq$ 15% with a maximum D $\leq$ 20% for a specific compound if the mean D $\leq$ 15%)?                                                                                        | 4        | [] |
|     |                                                                                                                                                                                                                                 |          |    |
| 7.  | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the retention time window created as SW-846 requires?</li> </ul>                                                                               | []<br>/Ą | [] |
|     | • Were all identified hits, above the initial calibration                                                                                                                                                                       |          |    |
|     | curve, diluted and reanalyzed?                                                                                                                                                                                                  | []       | [] |
|     | • Were all identified hits confirmed on a second column?                                                                                                                                                                        | []       | [] |
|     | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                                                                                            | []       | [] |
|     | • Was there a shoulder on the 2,4,6-TNT peak?                                                                                                                                                                                   | ′[]      | [] |
|     | If the answer is "Yes", then tetryl decomposition is suspected.<br>Peak height rather than peak area should be used for<br>calculating TNT concentration. If teryl was identified in<br>aqueous samples, was pH adjusted to <3? | []       | [] |
|     | If the answer is "No", then check for tetryl decomposition, and qualify hits with "J" accordingly.                                                                                                                              |          |    |
| 8.  | Sample Quality Control:                                                                                                                                                                                                         | N        | [] |
|     | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                                                                                                   |          | ~  |
|     | • LCS: Were the percent recoveries for LCS within the                                                                                                                                                                           | []       | N  |

**VERSION 5** U.S. Army Corps of Engineers Louisville District - LCG June 2002 Yes No [] • MS/MSD: Were the percent recoveries within limits? Were the RPDs within control limits? [] N • System Monitoring Compounds (Surrogates): Were surrogate recoveries within QC limits? 9. Comments (attach additional sheets if necessary): 24DNT=24% RPD DAISS -050M- 0201-50 MS/D LLS 4A= 77% wl 070M + 072M 068M CCV 24DN+ = 16.8 UJ, Validated/Reviewed by: Date: 3/6/13 Signature: P. Meeks Name: EX row data

# NITROAROMATICS & NITRAMINE DATA ANALYSIS (EXPLOSIVE RESIDUES)

|      | CHECKLIST+50                                                                                                                                                                                            | - 5B - 048 | M-0001 (8541   | 511) 9hg       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|
|      | 50                                                                                                                                                                                                      | LSD - 070M | 1-0001 (85400  | 0) 9/28        |
| Proj | ect Name: ODAI/Sand Creek 5                                                                                                                                                                             | CSS-0581   | m -0001 (85232 | 2) 9/23        |
| Labo | oratory:                                                                                                                                                                                                |            |                |                |
| Bate | ch Number(s): 35121 (058m), 35123 (070m), 35126                                                                                                                                                         | (NG)       |                |                |
| Sam  | ple Delivery Group:81670                                                                                                                                                                                |            |                | 4).            |
|      |                                                                                                                                                                                                         | Yes        | No             | ind            |
| 1.   | Were samples analyzed within holding time?                                                                                                                                                              | []         | N 070m         | 52             |
| 2.   | Initial Calibration:                                                                                                                                                                                    |            | 048M           | NG 42<br>Ex 32 |
|      | • Did the initial calibration consist of five standards?                                                                                                                                                | $\searrow$ | []             |                |
|      | • Did the RSD meet the criteria $\leq 20\%$ for each individual Calibration Compound or r $\geq 0.99$ ?                                                                                                 | 74         | []             |                |
|      | • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting documents.                                                                                                      | []         | -41            |                |
|      | • Was the manual integration necessary?                                                                                                                                                                 | []         | []             |                |
| 3.   | If the answer is "no", contact the laboratory inquiring<br>about the reasons behind the manual integration, and<br>inform the District Chemist immediately if there were<br>no valid reasons.<br>QCMDL: |            |                |                |
| •    | Was MDL Check performed?                                                                                                                                                                                | 77         | []             |                |
| 4.   | QCMRL:                                                                                                                                                                                                  |            |                |                |
|      | • Were QC/MRL run at the beginning and end of every                                                                                                                                                     | 4          | []             |                |
|      | Was the percentage "D" for $OC/MDL < 200/2$                                                                                                                                                             | M          | []             |                |
| 5.   | Initial Calibration Verification (ICV):<br>185                                                                                                                                                          | H          | []             |                |

U.S. Army Corps of Engineers Louisville District - LCG

|    |                                                                                                                                                                                                         | Yes         | No |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
|    | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                                                                         | 1           | [] |
|    | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                                                                 |             |    |
| 6. | Continuing Calibration Verification (CCV):<br>{Daily calibration}                                                                                                                                       |             |    |
|    | <ul> <li>Was midpoint calibration standard conducted at the<br/>beginning of the day?</li> </ul>                                                                                                        | И           | [] |
|    | • Was midpoint calibration standard conducted every ten samples or every twelve hours?                                                                                                                  | [1          | [] |
|    | • Was midpoint calibration standard conducted after the last sample of the day?                                                                                                                         | M           | [] |
|    | • Did the CCV meet the minimum requirements (D $\leq$ 15% with a maximum D $\leq$ 20% for a specific compound if the mean D $\leq$ 15%)?                                                                | <u>\</u> [] | [] |
|    |                                                                                                                                                                                                         | 2           |    |
| 7. | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the retention time window created as SW-846 requires?</li> </ul>                                                       | 1           | [] |
|    | • Were all identified hits, above the initial calibration curve, diluted and reanalyzed? $N/A$                                                                                                          | П           | [] |
|    | • Were all identified hits confirmed on a second column?                                                                                                                                                | 14          | [] |
|    | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                                                                    | []          | N  |
|    | • Was there a shoulder on the 2,4,6-TNT peak?                                                                                                                                                           | []          | N  |
|    | If the answer is "Yes", then tetryl decomposition is suspected.<br>Peak height rather than peak area should be used for                                                                                 | []          | [] |
|    | calculating TNT concentration. If teryl was identified in aqueous samples, was pH adjusted to $<3$ ? If the answer is "No", then check for tetryl decomposition, and qualify hits with "J" accordingly. |             |    |
| 8. | Sample Quality Control:                                                                                                                                                                                 | N           | [] |
|    | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                                                                           |             |    |
|    | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                                                                   | ×1          | [] |
| VERSION 5<br>June 2002                                                                                                                                    | U.S. Army Corps of Engineers Loui                                                              | sville District - LCG |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| • <u>MS/MSD</u> : Were the perce                                                                                                                          | nt recoveries within limits? $^{N}$ (A $\overline{1}$                                          | <u>s No</u><br>  []   |
| Were the RPDs within cor                                                                                                                                  | ntrol limits?                                                                                  |                       |
| <ul> <li><u>System Monitoring Co</u><br/>surrogate recoveries within</li> <li>9. Comments (attach additional s<br/><u>Intervolumn % RP</u>) 24</li> </ul> | mpounds (Surrogates): Were $n$ QC limits?<br>sheets if necessary): 3<br>$6_{10}$ $058M = 75\%$ | []                    |
|                                                                                                                                                           |                                                                                                |                       |
|                                                                                                                                                           |                                                                                                |                       |
|                                                                                                                                                           |                                                                                                |                       |
| ۰                                                                                                                                                         |                                                                                                |                       |
| Validated/Reviewed by:                                                                                                                                    |                                                                                                |                       |
| Signature: P. ALL                                                                                                                                         |                                                                                                | Date: 3/7/13          |
| Name: R. Meeks                                                                                                                                            |                                                                                                |                       |
|                                                                                                                                                           |                                                                                                |                       |

## NITROAROMATICS & NITRAMINE DATA ANALYSIS (EXPLOSIVE RESIDUES) CHECKLIST

| CHECKLIST                                                                                                                                                                                              | SCSS-673m          | 1-0001     | 11/9 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|------|
| Project Name: ODAI Sond Creek                                                                                                                                                                          | SCS5-076<br>869562 | 14 - 000   | 4/9  |
| Laboratory: CT                                                                                                                                                                                         |                    |            |      |
| Batch Number(s):                                                                                                                                                                                       |                    |            |      |
| Sample Delivery Group: 82400                                                                                                                                                                           |                    |            |      |
|                                                                                                                                                                                                        | Yes                | No         |      |
| 1. Holding Time:<br>Were samples analyzed within holding time?                                                                                                                                         | 1                  | []         |      |
| 2. Initial Calibration:                                                                                                                                                                                | 26                 |            |      |
| • Did the initial calibration consist of five standards?                                                                                                                                               |                    | []         |      |
| <ul> <li>Did the RSD meet the criteria ≤ 20% for each individu<br/>Calibration Compound or r ≥ 0.99?</li> </ul>                                                                                        | ual<br>N           | []         |      |
| • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting documents.                                                                                                     | . []               | N          |      |
| • Was the manual integration necessary?                                                                                                                                                                | []                 | []         |      |
| If the answer is "no", contact the laboratory inquirin<br>about the reasons behind the manual integration, an<br>inform the District Chemist immediately if there we<br>no valid reasons.<br>3. QCMDL: | ng<br>nd<br>re     |            |      |
| • Was MDL Check performed?                                                                                                                                                                             | ~[-]               | []         |      |
| 4. QCMRL:                                                                                                                                                                                              |                    |            | 0    |
| • Were QC/MRL run at the beginning and end of eve<br>daily sequence or every 12 hours??                                                                                                                | ery 1              | []         |      |
| • Was the percentage "D" for QC/MRL $\leq$ 30%?                                                                                                                                                        | []                 | <u>[4]</u> |      |
| 5. Initial Calibration Verification (ICV):                                                                                                                                                             | 11                 | []         |      |

| U CAL |                                                                                                                                                        | Yes                | No   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
|       | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                        | 41                 | []   |
|       | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                |                    |      |
| 6.    | Continuing Calibration Verification (CCV):                                                                                                             |                    |      |
|       | <ul> <li>Was midpoint calibration standard conducted at the beginning of the day?</li> </ul>                                                           | []                 | []   |
|       | • Was midpoint calibration standard conducted every ten samples or every twelve hours?                                                                 | 14                 | []   |
|       | • Was midpoint calibration standard conducted after the last sample of the day?                                                                        | 11                 | []   |
|       | • Did the CCV meet the minimum requirements ( $D \le 15\%$ with a maximum $D \le 20\%$ for a specific compound if the mean $D \le 15\%$ )?             | H                  | []   |
| 7.    | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the retention time window created as SW-846 requires?</li> </ul>      | )/ <del>A</del> [] | []   |
|       | • Were all identified hits, above the initial calibration curve, diluted and reanalyzed?                                                               | r 3                | 5.3  |
|       | • Were all identified hits confirmed on a second column?                                                                                               |                    |      |
|       | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                   |                    | - [] |
|       | • Was there a shoulder on the 2.4.6-TNT peak?                                                                                                          | []                 |      |
|       | If the encuror is "Vee" then total decomposition is an and                                                                                             |                    | []   |
|       | Peak height rather than peak area should be used for calculating TNT concentration. If teryl was identified in aqueous samples, was pH adjusted to <3? | []                 | []   |
|       | If the answer is "No", then check for tetryl decomposition, and qualify hits with "J" accordingly.                                                     |                    |      |
| 8.    | Sample Quality Control:                                                                                                                                | ,<br>H             | []   |
|       | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                          | × -                |      |
|       | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                  | N                  | []   |

Name:

Yes No NHA [] [] MS/MSD: Were the percent recoveries within limits? • Were the RPDs within control limits? • System Monitoring Compounds (Surrogates): Were [] N surrogate recoveries within QC limits? 9. Comments (attach additional sheets if necessary): 60°/0 MRL 2,6-DNT UJ 076M Validated/Reviewed by: Date: 3/7/13 Signature: Mells

## NITROAROMATICS & NITRAMINE DATA ANALYSIS (EXPLOSIVE RESIDUES)

CHECKLIST DAISB-074M-0202 (871039) 11/10 DAISS-054M-0201 (871020) 11/10

| t                                                                                                                                                                                                        | A155 -054   | m-0201 (87          | 10201 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-------|
| Project Name: ODAI (Sand Creek                                                                                                                                                                           |             |                     |       |
| Laboratory:                                                                                                                                                                                              |             |                     |       |
| Batch Number(s): 35 490                                                                                                                                                                                  |             |                     |       |
| Sample Delivery Group: 82452                                                                                                                                                                             |             |                     |       |
| <ol> <li>Holding Time:<br/>Were samples analyzed within holding time?</li> </ol>                                                                                                                         | <u>Yes</u>  | <u>No</u><br>N 074W | 1 Id  |
| <ol> <li>Initial Calibration:</li> </ol>                                                                                                                                                                 |             | 13                  |       |
| • Did the initial calibration consist of five standards?                                                                                                                                                 | N,          | []                  |       |
| • Did the RSD meet the criteria $\leq 20\%$ for each individua Calibration Compound or $r \geq 0.99$ ?                                                                                                   | u<br>N      | []                  |       |
| • Was manual integration "M" performed?<br>If the answer is "Yes", check for supporting documents.                                                                                                       | []          | M                   |       |
| • Was the manual integration necessary?                                                                                                                                                                  | []          | []                  |       |
| If the answer is "no", contact the laboratory inquirin,<br>about the reasons behind the manual integration, an<br>inform the District Chemist immediately if there wer<br>no valid reasons.<br>3. QCMDL: | g<br>d<br>e |                     |       |
| • Was MDL Check performed?                                                                                                                                                                               | H           | []                  |       |
| 4. QCMRL:                                                                                                                                                                                                |             |                     |       |
| • Were QC/MRL run at the beginning and end of ever daily sequence or every 12 hours??                                                                                                                    | y Tł        | []                  |       |
| • Was the percentage "D" for QC/MRL $\leq 30\%$ ?                                                                                                                                                        | []          | N                   |       |
| 5. Initial Calibration Verification (ICV):                                                                                                                                                               | T           | []                  |       |
| 105                                                                                                                                                                                                      |             |                     |       |

|    |                                                                                                                                                                                      | Yes             | No   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|
|    | • Was the ICV made of a 2 <sup>nd</sup> source?                                                                                                                                      | ¥1              | []   |
|    | • Was the mid level (2 <sup>nd</sup> source) recovery within 85 - 115%?                                                                                                              |                 |      |
| 6. | Continuing Calibration Verification (CCV):                                                                                                                                           |                 |      |
|    | <ul> <li>Was midpoint calibration standard conducted at the beginning of the day?</li> </ul>                                                                                         | ₹1              | []   |
|    | • Was midpoint calibration standard conducted every ten samples or every twelve hours?                                                                                               | 1               | []   |
|    | • Was midpoint calibration standard conducted after the last sample of the day?                                                                                                      | ×1              | []   |
|    | • Did the CCV meet the minimum requirements ( $D \le 15\%$ with a maximum $D \le 20\%$ for a specific compound if the mean $D \le 15\%$ )?                                           | M               | []   |
|    |                                                                                                                                                                                      |                 |      |
| 7. | <ul> <li>Sample Analysis:</li> <li>Was the RRT of an identified component within the retention time window created as SW-846 requires?</li> </ul>                                    | N/A []          | []   |
|    | • Were all identified hits, above the initial calibration curve, diluted and reanalyzed?                                                                                             |                 |      |
|    | • Were all identified hits confirmed on a second column?                                                                                                                             | L I             | []   |
|    |                                                                                                                                                                                      | []              | []   |
|    | • Was RPD of target analyte confirmation $\leq 40$ ?                                                                                                                                 | []              | []   |
|    | • Was there a shoulder on the 2,4,6-TNT peak?                                                                                                                                        | []              | []   |
|    | If the answer is "Yes", then tetryl decomposition is suspected.<br>Peak height rather than peak area should be used for<br>calculating TNT concentration. If teryl was identified in | ¥ []            | []   |
|    | If the answer is "No", then check for tetryl decomposition, and qualify hits with "J" accordingly.                                                                                   |                 |      |
| 8. | Sample Quality Control:                                                                                                                                                              | Ŋ               | []   |
|    | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                                                        |                 | N 1  |
|    | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                                                | $\mathcal{X}_1$ | · [] |

| • <u>MS/MSD</u> : Were the percent recoveries within limits? $\mathcal{N}^{I}\mathcal{A}^{[}$          | <u>(es No</u> |
|--------------------------------------------------------------------------------------------------------|---------------|
| Were the RPDs within control limits?                                                                   | X.            |
| • <u>System Monitoring Compounds (Surrogates)</u> : Were [<br>surrogate recoveries within QC limits?   | []            |
| 9. Comments (attach additional sheets if necessary):<br>MRL 2,6 DN T 3 50% (JJ both<br>24 64 70 2 11 J |               |
| NG 58% 303 014                                                                                         |               |
|                                                                                                        |               |
|                                                                                                        |               |
| X7.11.1.100 · 11                                                                                       |               |
| Validated/Reviewed by:                                                                                 |               |
| Signature:                                                                                             | Date:         |
| Name:                                                                                                  |               |

U.S. Army Corps of Engineers Louisville District - LCG

|    | June 2002                                                                           |               |            |                   |          |
|----|-------------------------------------------------------------------------------------|---------------|------------|-------------------|----------|
|    | ICP METALS ANALYSI                                                                  | <b>(6010)</b> |            |                   |          |
|    | CHECKLIST                                                                           | SCSB -0481    | N-0001-5   | 4011<br>0 (852322 | )        |
|    | Project Name: ODAI (Sand Creek                                                      | SCSD - 6701   | n - 0001-5 | D (85400          | <i>)</i> |
|    | Laboratory: <u>CT</u>                                                               | 55-0581       | -10001-    | 50 (8523          | 522)     |
|    | Batch Number(s):                                                                    |               |            |                   |          |
|    | Sample Delivery Group: <u>81670</u>                                                 |               |            |                   |          |
|    |                                                                                     |               |            |                   |          |
| 1. | Holding Time:                                                                       | Yes           | No         |                   |          |
|    | • Were samples analyzed within holding time (6-Months)?                             | Ϋ́            | []         |                   |          |
| 2. | Initial Calibration:                                                                |               |            |                   |          |
|    | • Did the initial calibration consist of                                            |               |            |                   |          |
|    | One calibration standard and a blank?<br>three calibration standards and a blank?   |               | []         |                   |          |
|    | • Was $R \ge 0.995$                                                                 | ΥJ            | []         |                   |          |
| 3. | QCMDL:                                                                              |               |            |                   |          |
|    | • Was MDL Check performed?                                                          | []            | Ņ          |                   |          |
| Q  | CMRL:                                                                               |               |            |                   |          |
|    | • Were QC/MRL run at the beginning and end of even                                  | ry 1          | []         |                   |          |
|    | daily sequence or every 12 hours??                                                  | []            | M          |                   |          |
|    | • Was the QC/MRL between 70-130% R?<br>Common Elements can be between the MRL and 2 | X             |            |                   |          |
|    | MRL level (Fe, Al, Mg and Ca)                                                       | $\times$ 1    | []         |                   |          |
| 4. | Initial Calibration Verification (ICV):                                             | . 7           |            |                   |          |
|    | • Is the mid level (2 <sup>nd</sup> source) recovery within 90 - 110%?              |               |            |                   |          |

5. Initial Calibration Blank (ICP):

|     | •       | Were analytes in the blank $\leq 1/2$ MRL?                                                                              | <u>Yes</u><br>[] | No             |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 6.  | Int     | erelement Check Standard:                                                                                               |                  |                |
|     | •       | Was ICS-A (interferents only) conducted at the beginning of analytical sequence?                                        | <u>_{1</u>       | []             |
|     | •       | Was ICS-AB results within QC limits (80-120)?                                                                           | N                | []             |
| 7.  | Cc      | ontinuing calibration Blank (CCB):                                                                                      |                  |                |
|     | •       | Was CCB conducted every 10 samples?<br>Was CCB conducted at end of the analytical sequence?<br>Were analytes ≤ 1/2 MRL? |                  | []<br>[]<br>[] |
| 8.  | Cc      | ontinuing Calibration Verification (CCV):                                                                               |                  |                |
|     | •       | Was CCV conducted every 10 samples?                                                                                     | 1                | []             |
|     |         | Was CCV conducted at end of the analytical sequence?                                                                    | [1               | []             |
|     | •       | Was the %R between 90-110?                                                                                              | N                | []             |
| 9.  | Sa      | mple Analysis:                                                                                                          |                  |                |
| •   | W<br>(E | ere samples with levels higher than the calibration range ), diluted and re-analyzed?                                   | FL.              | []             |
| 10. | . Sa    | mple Quality Control:                                                                                                   |                  |                |
|     | •       | <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                             | []               | Ę              |
|     | •       | LCS: Were the percent recoveries for LCS within the limits?                                                             | 1                | []             |
|     | •       | MS: Were the percent recoveries within limits?                                                                          | []               | N              |
|     | •       | MD: Were the RPDs within control limits?                                                                                | []               | N              |
| 11. | . Se    | rial Dilution:<br>Was serial dilution (1:4) conducted when needed?                                                      | N                | []             |

**VERSION 5** U.S. Army Corps of Engineers Louisville District - LCG June 2002 No Yes Was there an agreement between diluted and undiluted results [] []. (<10%)? 12. Method of Standard Addition (MSA): [] Was MSA performed on samples suspected of matrix • [] effect ( $R \ge 0.995$ )? N/A 13. Comments (attach additional sheets if necessary): detects too 1 MRL Na=73% 048m + 070m Na(72,72) MS/p 67,59 5CSS-057M-0001-50 K. ( Sb 26,29) Sh(24, 18) Pb (179 SCSB-651M -0001-50 A1 /28.23 Cu (-, 55) TI Cd 69 Co , Ni (- ,75) -,75) 6 9 63 Zr 55 As (32 LOQ SCSS-057M Dup Pb (S7' Sb SCSB-OSIM Cd (30) MS/D 77 RPDS Mg (16), Mn (15), SDs: 5(55-057 M A1 (16) Ba (18% (r(15) Ni(II) 20(17) En (16 SCSB -051M

| Validated/Reviewed by: |  |              |
|------------------------|--|--------------|
| Signature:             |  | Date: 3/5/13 |
| Name: P Moeks          |  |              |

U.S. Army Corps of Engineers Louisville District - LCG

# **ICP METALS ANALYSIS (6010)**

CHECKLIST SLSS-073M-0001-50 (869558)

|    | Project Name: ODAI / Sand Creeks                                                                                                                                                           | 555-076    | M - 0001 - 50 | 0 (869562 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------|
|    | Laboratory: CT                                                                                                                                                                             |            |               |           |
|    | Batch Number(s):                                                                                                                                                                           |            |               |           |
|    | Sample Delivery Group: 82400                                                                                                                                                               |            |               |           |
|    |                                                                                                                                                                                            | Yes        | No            |           |
| 1. | <ul><li>Holding Time:</li><li>Were samples analyzed within holding time (6-Months)?</li></ul>                                                                                              | <u>{</u> ] | []            |           |
| 2. | Initial Calibration:                                                                                                                                                                       |            | ÷.,           |           |
|    | • Did the initial calibration consist of<br>One calibration standard and a blank?<br>three calibration standards and a blank?                                                              | [1]<br>[4] | []            |           |
|    | • Was $R \ge 0.995$                                                                                                                                                                        | M          | []            |           |
| 3. | QCMDL:                                                                                                                                                                                     |            |               |           |
|    | • Was MDL Check performed?                                                                                                                                                                 | []         | J.            |           |
| Q  | CMRL:                                                                                                                                                                                      |            |               |           |
|    | • Were QC/MRL run at the beginning and end of every                                                                                                                                        | M          | []            |           |
|    | Was the OC/MPL between 70 120% P2                                                                                                                                                          | []         | N             |           |
| 4. | <ul> <li>Was the QC/MRL between 70-130% R?<br/>Common Elements can be between the MRL and 2X<br/>MRL level (Fe, Al, Mg and Ca)</li> <li>Initial Calibration Verification (ICV):</li> </ul> | -Ĺĵ        | []            |           |
|    | • Is the mid level (2 <sup>nd</sup> source) recovery within 90 - 110%?                                                                                                                     |            |               |           |
|    |                                                                                                                                                                                            |            |               |           |

5. Initial Calibration Blank (ICP):

|    |                                                                                                                                                         | 37                | NT.             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
|    | • Were analytes in the blank $\leq 1/2$ MRL?                                                                                                            | <u>Yes</u><br>[+] | <u>No</u><br>[] |
| 6. | Interelement Check Standard:                                                                                                                            |                   |                 |
|    | • Was ICS-A (interferents only) conducted at the beginning of analytical sequence?                                                                      |                   | []              |
|    | • Was ICS-AB results within QC limits (80-120)?                                                                                                         | []                | []              |
| 7. | Continuing calibration Blank (CCB):                                                                                                                     |                   |                 |
|    | <ul> <li>Was CCB conducted every 10 samples?</li> <li>Was CCB conducted at end of the analytical sequence?</li> <li>Were analytes ≤ 1/2 MRL?</li> </ul> | LIZZ              | []<br>[]<br>[]  |
| 8. | Continuing Calibration Verification (CCV):                                                                                                              |                   |                 |
|    | • Was CCV conducted every 10 samples?                                                                                                                   | []                | []              |
|    | • Was CCV conducted at end of the analytical sequence?                                                                                                  | ۲]                | []              |
|    | • Was the %R between 90-110?                                                                                                                            | N                 | []              |
| 9. | Sample Analysis:                                                                                                                                        |                   |                 |
| •  | Were samples with levels higher than the calibration range (E), diluted and re-analyzed?                                                                | Y.J               | []              |
| 10 | . Sample Quality Control:                                                                                                                               |                   |                 |
|    | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                           | []                | N               |
|    | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                   | L)                | []              |
|    | • <u>MS</u> : Were the percent recoveries within limits?                                                                                                | []                | [] N/A          |
|    | • MD: Were the RPDs within control limits?                                                                                                              | []                | [] ↓            |
| 11 | <ul> <li>Serial Dilution:</li> <li>Was serial dilution (1:4) conducted when needed?</li> </ul>                                                          | []                | KI N/A          |

U.S. Army Corps of Engineers Louisville District - LCG

|   | -                                                            | Yes   | No     |
|---|--------------------------------------------------------------|-------|--------|
| • | Was there an agreement between diluted and undiluted results | H     | <br>[] |
|   | (<10%)?                                                      | 1.1.1 |        |

- 12. Method of Standard Addition (MSA):
  - Was MSA performed on samples suspected of matrix [] [] effect ( $R \ge 0.995$ )? []

| 13. Comments (attach additional sheets if necessary): |
|-------------------------------------------------------|
| MRL 073M Sb=121, Se=129, Zn=60 detect too large       |
| 076m &= 78                                            |
| the both Ha = 75                                      |
| 076m J                                                |
| CCB TI = -4.91 UT 073M                                |
| -8.3B J 076M                                          |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
| n                                                     |
|                                                       |

Validated/Reviewed by:

Signature: P. MUKS

Date: 3/5/13

U.S. Army Corps of Engineers Louisville District - LCG

### ICP METALS ANALYSIS (6010) CHECKLIST

|    | Project Name: OPAI / Sund Creek<br>Laboratory:<br>Batch Number(s):<br>Sub Difference \$1528                                                                                                | SCSB-039<br>SCSB-039<br>SCSB-64<br>SCSS-06 | 037M -0001<br>Sm -000 S-SO<br>ZM-0003-SO<br>S8M -0001-SO | -So (<br>(8515<br>(8515<br>(850 | オ51488<br>510)<br>52)<br>426) |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|---------------------------------|-------------------------------|
|    | Sample Delivery Group:                                                                                                                                                                     |                                            |                                                          |                                 |                               |
| 1. | <ul><li>Holding Time:</li><li>Were samples analyzed within holding time (6-Months)?</li></ul>                                                                                              | Yes<br>[,]                                 | <u>No</u><br>[]                                          |                                 | *                             |
| 2. | Initial Calibration:                                                                                                                                                                       |                                            |                                                          |                                 |                               |
|    | • Did the initial calibration consist of<br>One calibration standard and a blank?<br>three calibration standards and a blank?                                                              | 17<br>[7]                                  | []                                                       |                                 |                               |
|    | • Was $R \ge 0.995$                                                                                                                                                                        | (1)                                        | []                                                       |                                 |                               |
| 3. | QCMDL:                                                                                                                                                                                     | 2                                          |                                                          |                                 |                               |
|    | • Was MDL Check performed?                                                                                                                                                                 | []                                         | N                                                        |                                 |                               |
| Q  | CMRL:                                                                                                                                                                                      |                                            |                                                          |                                 |                               |
|    | • Were QC/MRL run at the beginning and end of every                                                                                                                                        |                                            | []                                                       |                                 |                               |
|    |                                                                                                                                                                                            | []                                         | $\swarrow$ ]                                             |                                 |                               |
| 4. | <ul> <li>was the QC/MRL between 70-130% R?<br/>Common Elements can be between the MRL and 2X<br/>MRL level (Fe, Al, Mg and Ca)</li> <li>Initial Calibration Verification (ICV):</li> </ul> | K<br>K                                     | []                                                       |                                 |                               |
|    | • Is the mid level (2 <sup>nd</sup> source) recovery within 90 - 110%?                                                                                                                     |                                            |                                                          |                                 |                               |
|    |                                                                                                                                                                                            |                                            |                                                          |                                 |                               |

5. Initial Calibration Blank (ICP):

|     | • Were analytes in the blank $\leq 1/2$ MRL?                                                                                                            | Yes            | <u>No</u> [] |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 6.  | Interelement Check Standard:                                                                                                                            |                |              |
|     | • Was ICS-A (interferents only) conducted at the beginning of analytical sequence?                                                                      | []             | []           |
|     | • Was ICS-AB results within QC limits (80-120)?                                                                                                         | [1]            | []           |
| 7.  | Continuing calibration Blank (CCB):                                                                                                                     |                |              |
|     | <ul> <li>Was CCB conducted every 10 samples?</li> <li>Was CCB conducted at end of the analytical sequence?</li> <li>Were analytes ≤ 1/2 MRL?</li> </ul> |                |              |
| 8.  | Continuing Calibration Verification (CCV):                                                                                                              |                |              |
|     | • Was CCV conducted every 10 samples?                                                                                                                   | $\neg$         | []           |
|     | • Was CCV conducted at end of the analytical sequence?                                                                                                  | 13             | []           |
|     | • Was the %R between 90-110?                                                                                                                            | $\checkmark$ ] | []           |
| 9.  | Sample Analysis:                                                                                                                                        |                |              |
| •   | Were samples with levels higher than the calibration range (E), diluted and re-analyzed?                                                                | 11             | []           |
| 10. | . Sample Quality Control:                                                                                                                               |                |              |
|     | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                           | []             | N            |
|     | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                   | 1              | []           |
|     | • <u>MS</u> : Were the percent recoveries within limits?                                                                                                | []             | Ŋ            |
|     | • MD: Were the RPDs within control limits?                                                                                                              | []             | N            |
| 11. | <ul> <li>Serial Dilution:</li> <li>Was serial dilution (1:4) conducted when needed?</li> </ul>                                                          | 1              | []           |

#### U.S. Army Corps of Engineers Louisville District - LCG

- Was there an agreement between diluted and undiluted results (<10%)?
- No N

Yes

- 12. Method of Standard Addition (MSA):
  - Was MSA performed on samples suspected of matrix [] effect ( $R \ge 0.995$ )?

13. Comments (attach additional sheets if necessary):

| MRL | Th=78% | OYZM                                                                                                           |
|-----|--------|----------------------------------------------------------------------------------------------------------------|
| CCB | TI     |                                                                                                                |
|     |        | And the second state of second second second second second second second second second second second second se |

N; (72,67) V (79,74) SCSB-041M-0002-50 Cu(69.63) Sh 24. 23) 10) (12. Zn (74,68), MA (14,10) TI ( AI (52, 37) K (72.76), Cd (-76) Pb (-,72), Mal-15 Nif= ,67) Se'(-,78) (u(11,70), Se (71,70) 5CSB-039M-0002-50 Sh (o(50,50) Cd (18,78) (0) 0 V 168,66 En (71)67 K(78,-TI (70, 75) Ni (-,78° 565B-038 M-0001-50 (0 (63, 0), (u(46, 0) Sb (0,0) , Cd (56, 0), Cr(0,0)N: (74, 0), Se (71, 4 , TI (56, Z), V (15, - 1 Zn (74 ), As (-,7), Pb(-,0) 0 RPDs As (200), (d (200), (o (199), (u (200), Pb (200), N; (200), TI (174), En (200) K(67,59) SCSS-057M -0001-50 56 (26,29), . Na(72,72 56 PDS = 710/4

Dups 038M As (36), Cu(22), Pb(28), N; (21), T1(22), V(24), Zn(22) 057M As (tlog), T1(tlog)

Validated/Reviewed by: Date: 3/1/13 Signature: Name: AI(11), Ba(11), Be(12), Ca (13), Cr(16), Co(27), Cu(24), Pb(73), Mg(12) U39 M 5D: mn (16), N; (18), Y (18), Zn (28), Al (18) Sb(ZI), As(11), Co(ZO), Cu(19), Pb(79), Mg(11), N;(17), V(24) 041m As Cr (112), Co(23), Cu (26), 76 (31), Mg (13), Ni(25), \$(17), 2n(19) 038m Ha (42) AI(16), Ba(18), Ca (16), Cr (15), Mg(16), Mn(15), N; (11), EtA (17) 057m

U.S. Army Corps of Engineers Louisville District - LCG

# ICP METALS ANALYSIS (6010) CHECKLIST DAISB-074M-0262-50 (871039) DAISS-054M-0201\_50 (871020)

Laboratory: <u>CT</u>

Batch Number(s):

Sample Delivery Group: 82452

|    | <b>TT</b> | 11 00                                                                                                                       | Yes        | No  |
|----|-----------|-----------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 1. | •         | Were samples analyzed within holding time (6-Months)?                                                                       | Ĭ,         | []  |
| 2. | Init      | ial Calibration:                                                                                                            |            |     |
|    | •         | Did the initial calibration consist of<br>One calibration standard and a blank?<br>three calibration standards and a blank? |            | []  |
|    | •         | Was $R \ge 0.995$                                                                                                           | N          | []  |
| 3. | QC        | MDL:                                                                                                                        |            |     |
|    |           | Was MDL Check performed?                                                                                                    | []         | Y   |
| QC | CMI       | RL:                                                                                                                         |            |     |
|    | •         | Were QC/MRL run at the beginning and end of every                                                                           | 1          | []  |
|    |           | daily sequence or every 12 nours??                                                                                          | Ę          | []  |
|    | •         | Was the QC/MRL between 70-130% R?<br>Common Elements can be between the MRL and 2X<br>MRL level (Fe, Al, Mg and Ca)         | <u>у</u> 1 | r 1 |
| 4. | Ini       | tial Calibration Verification (ICV):                                                                                        | M          | LJ  |
|    |           | Is the mid level (2 <sup>nd</sup> source) recovery within 90 - 110%?                                                        |            |     |

5. Initial Calibration Blank (ICP):

|     | • Were analytes in the blank $\leq 1/2$ MRL?                                                                                                            | Yes<br>N      | <u>No</u><br>[] |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| 6.  | Interelement Check Standard:                                                                                                                            |               |                 |
|     | • Was ICS-A (interferents only) conducted at the beginning of analytical sequence?                                                                      | 11            | []              |
|     | • Was ICS-AB results within QC limits (80-120)?                                                                                                         | $\mathcal{X}$ | []              |
| 7.  | Continuing calibration Blank (CCB):                                                                                                                     |               |                 |
|     | <ul> <li>Was CCB conducted every 10 samples?</li> <li>Was CCB conducted at end of the analytical sequence?</li> <li>Were analytes ≤ 1/2 MRL?</li> </ul> | F]<br>[]      | L<br>[]<br>Z    |
| 8.  | Continuing Calibration Verification (CCV):                                                                                                              |               |                 |
|     | • Was CCV conducted every 10 samples?                                                                                                                   | M             | []              |
|     | • Was CCV conducted at end of the analytical sequence?                                                                                                  | N             | []              |
|     | • Was the %R between 90-110?                                                                                                                            | N             | []              |
| 9.  | Sample Analysis:                                                                                                                                        |               |                 |
| •   | Were samples with levels higher than the calibration range (E), diluted and re-analyzed?                                                                | 1]            | . []            |
| 10. | Sample Quality Control:                                                                                                                                 |               |                 |
|     | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                           | []            | L.              |
|     | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                   | Υ.            | []              |
|     | • <u>MS</u> : Were the percent recoveries within limits?                                                                                                | []            | $\mathcal{H}$   |
|     | • MD: Were the RPDs within control limits?                                                                                                              | []            | Ŋ               |
| 11. | <ul> <li>Serial Dilution:</li> <li>Was serial dilution (1:4) conducted when needed?</li> </ul>                                                          | N             | []              |

VERSION 5 U.S. Army Corps of Engineers Louisville District - LCG June 2002

Yes

No

N

[]

- Was there an agreement between diluted and undiluted results [] (<10%)?
- 12. Method of Standard Addition (MSA):
  - Was MSA performed on samples suspected of matrix [] effect (R ≥ 0.995)?
     N /A

| MRL         | 5b= 74%       | OTYM         | ١                | •                                 |                 |                |              |                |
|-------------|---------------|--------------|------------------|-----------------------------------|-----------------|----------------|--------------|----------------|
|             | Ha = 75%      | 0740         | )                |                                   | CCB             | T1 = -4.91     | В            | 07.05          |
|             | 56 (121), 5   | xe (129), Z, | n (60)           | 054m                              |                 | =-3.03         | B            | 074m           |
|             | \$1a = 70%    | osym         |                  |                                   |                 |                |              |                |
|             | J             |              |                  |                                   | 8               | N              |              |                |
| ms/D        | DA15B -673    | 5M - 0201-5  | o €1(-           | 17,46), Sb (                      | (24, 24), F     | e(53, 21),     | Mali         | 」~)            |
|             | 2n(           | 128, -),     | Pb (-,75         | ), Se (7,79                       | 1), TI(-        | (זר,           |              |                |
|             |               | CD           | <u></u>          |                                   | <u> </u>        |                |              |                |
|             | DAISS-0       | 55M-001-     | 20 21            | $\frac{6(4, 21)}{2}$              | Hs (78, -       | ) (2(72)       | -)           | - (o (29, 8- ) |
|             | Pb(6          | (-)          | <u>(, (28)</u> 5 | -), Se(15)                        | $,-), A_3$      | (60,69), TI    | 165, 7       | ( b)           |
| Due         | 672 00        | 56 (25)      | 01/28            | $\left( \left( 1 \right) \right)$ | () ()           | -1             |              |                |
| <u>100p</u> | 0530          | No (36)      | Ca cho           | , cultt                           | , Hg LL         | ,1)            |              |                |
|             |               | 104 (30      | <u>,</u>         |                                   |                 |                | eronan er de |                |
| SD          | 053m          | AI (20), 1   | 3a (12)          | , Cd (29)                         | (r (17), (      | $C_0(23)$ , (1 | (23)         | Fe(17)         |
|             | mal           | 23), mn (    | in, (ri          | (22), V(18                        | ), Zn(21        | ), $H_{9}(33)$ |              |                |
| -           | 0า3 mั₿       | u(iz), co    | (36), C          | r (12), (0(16)                    | $)_{1}$ (m (17) | , Fe (iz), PI  | 5(12)        | Ni (16)        |
|             |               | 2n(12)       |                  |                                   |                 |                |              | 1              |
| CCB         | T1 = - 3.0    | 3 5          | 074M             | He                                | j = -0,0        | 8 3/5          | 74           | <u></u>        |
|             | - 4.9         | 1 5          | OSAM             |                                   |                 |                |              |                |
|             | Se = - 26     | s ut         | 074m             |                                   |                 |                |              |                |
| Validat     | ed/Reviewed b | y:           |                  |                                   |                 |                |              |                |
|             | $\bigcap$     | Γ            |                  |                                   |                 |                | ( )          |                |
| Signatu     | ure: V, W     | Sel          |                  |                                   |                 | Date:          | 3/1/         | 12             |

Meeks Name:

<sup>13.</sup> Comments (attach additional sheets if necessary):

U.S. Army Corps of Engineers Louisville District - LCG

| ICP METALS ANALYSIS (6010)<br>CHECKLIST DAISB-068M-0201 (852373)                  |                                                                                                                  |                      |                      |                                          |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------|--|
| Project Name: ODA1/5.                                                             | and Creek                                                                                                        | DAISB-07<br>DAISB-07 | 0M _0204<br>ZM _0204 | (85238 <b>5</b> )<br>(852390)<br>852568) |  |
| Laboratory:                                                                       | and the second second second second second second second second second second second second second second second | DAISS - OSO          | m = 0.001 (          | 152301)                                  |  |
| Batch Number(s):                                                                  |                                                                                                                  |                      |                      |                                          |  |
| Sample Delivery Group: 810                                                        | 623                                                                                                              |                      |                      |                                          |  |
|                                                                                   |                                                                                                                  |                      |                      |                                          |  |
| 1 Holding Time:                                                                   |                                                                                                                  | Yes                  | No                   |                                          |  |
| Were samples analyzed with                                                        | thin holding time (6-Months)? $2$ & $d$                                                                          | M                    | []                   |                                          |  |
| 2. Initial Calibration:                                                           |                                                                                                                  |                      |                      |                                          |  |
| • Did the initial calibration c<br>One calibration sta<br>three calibration st    | onsist of<br>ndard and a blank?<br>andards and a blank?                                                          | H<br>N               | []                   |                                          |  |
| • Was R ≥ 0.995                                                                   |                                                                                                                  | N                    | []                   |                                          |  |
| 3. OCMDL:                                                                         |                                                                                                                  |                      |                      |                                          |  |
| Was MDL Check performe                                                            | ed?                                                                                                              | []                   | T.                   |                                          |  |
| QCMRL:                                                                            |                                                                                                                  |                      |                      |                                          |  |
| • Were QC/MRL run at the                                                          | e beginning and end of every                                                                                     | y \l                 | []                   |                                          |  |
| daily sequence of every 12                                                        | nouis: :                                                                                                         | []                   | []                   |                                          |  |
| Was the QC/MRL between<br>Common Elements can be<br>MDL level (Eq. Al. Magazette) | 1 70-130% R?<br>be between the MRL and $2\lambda$                                                                | K                    |                      |                                          |  |
| MRL level (re, Al, Mg and                                                         | i Ca)                                                                                                            | []                   | Z                    |                                          |  |
| 4. Initial Calibration Verification                                               | (ICV):                                                                                                           |                      |                      |                                          |  |
| • Is the mid level (2 <sup>nd</sup> source                                        | e) recovery within 90 - 110%?                                                                                    | ~                    |                      |                                          |  |
|                                                                                   |                                                                                                                  |                      |                      |                                          |  |

5. Initial Calibration Blank (ICP):

|    | VERSION 5<br>June 2002                                                                                 | U.S. Army Corps of Engine                                | eers Louisville E           | District - LCG |     |
|----|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|----------------|-----|
|    |                                                                                                        |                                                          | Yes                         | No             |     |
|    | • Were analytes in the bla                                                                             | $nk \le 1/2$ MRL?                                        | H                           | []             |     |
|    |                                                                                                        |                                                          |                             | 7.100          |     |
| 6. | Interelement Check Standar                                                                             | d:                                                       | $\frac{h}{2}=\pi^2 e^{i h}$ |                |     |
|    | • Was ICS-A (interferents of analytical sequence?                                                      | s only) conducted at the beginning                       | ing                         | []             |     |
|    | • Was ICS-AB results with                                                                              | hin QC limits (80-120)?                                  |                             | []             |     |
| 7. | Continuing calibration Blan                                                                            | k (CCB):                                                 |                             |                |     |
|    | <ul> <li>Was CCB conducted ev</li> <li>Was CCB conducted at</li> <li>Were analytes ≤ 1/2 MF</li> </ul> | ery 10 samples?<br>end of the analytical sequence?<br>L? |                             | []<br>[]<br>[] | . 4 |
| 8. | Continuing Calibration Ver                                                                             | ification (CCV):                                         |                             |                |     |
|    | • Was CCV conducted ev                                                                                 | very 10 samples?                                         | $\sqrt{1}$                  | []             |     |
|    | • Was CCV conducted at                                                                                 | end of the analytical sequence?                          | ×1                          | []             |     |
|    | • Was the %R between 90                                                                                | 0-110?                                                   | М                           | []             |     |
| 9. | Sample Analysis:                                                                                       |                                                          |                             |                |     |
| •  | Were samples with levels (E), diluted and re-analyzed                                                  | higher than the calibration ran                          | nge<br>N ∕⊬ []              | []             |     |
| 10 | . Sample Quality Control:                                                                              |                                                          |                             |                |     |
|    | • <u>Method Blanks</u> : Were t                                                                        | arget analytes $\leq 1/2$ MRL?                           | N                           | []             |     |
|    | • <u>LCS</u> : Were the percer limits?                                                                 | at recoveries for LCS within                             | the {]                      | []             |     |
|    | • <u>MS</u> : Were the percent r                                                                       | ecoveries within limits?                                 | []                          | N              |     |
|    | • MD: Were the RPDs w                                                                                  | thin control limits?                                     | []                          | N              |     |
| 11 | <ul> <li>Serial Dilution:</li> <li>Was serial dilution (1:4)</li> </ul>                                | ) conducted when needed?                                 | 1                           | []             |     |

VERSION 5U.S. Army Corps of Engineers Louisville District - LCGJune 2002Was there an agreement between diluted and undiluted results $\underline{Yes}$  $\underbrace{Yes}$  $\underbrace{No}$ (<10%)?(<10.4)

[]

- 12. Method of Standard Addition (MSA):
  - Was MSA performed on samples suspected of matrix []
     effect (R ≥ 0.995)?
     N/A

13. Comments (attach additional sheets if necessary): As (100), TI (LOQ), Cd (58) DUP: 5855-657m-0001-50 (LDQ) Sh(27), (d (30) Pb(SZ MS/D RPDs : SCSB -051M -0001-50 , Ba (18), Ca (16), Cr (15), Mg (16), Mn (15) A1(16) SD: SCSS:057M Ni(II) Zn (17) Ca (19), Cr (16), Co (19), Cu (23) As (20) Be (16) DA1513-070M , Ma (13), N; (21), V (13), 2n (20) . Ha (24 Ph (22) SCSB-OSIM CCB (d = - 0,939 UJ/B 070M, 072M

Validated/Reviewed by:

Date: 2/28/13 Signature: Name: Na = 70% 10/21 08:53 MRL - 070m, 072m, 050m 75% 10/21 14:49 MS/P SCSS - 057 m - 001-50 Sb (26, 29), K(67,59), Na (72,72) € Cr (-,39) DAISB \_070M -0201 - 50 AI (13,36), Sb (19,23), As (79,-), Cd (73,77), Cr (69,-), Co (70,79) Mn (0, 2), Ni (69, -), Se (77, -), Ag (73, -), TI (60,65), V (73, -), Zn (68, -), K(18, -) Na (73,78) PDS T1 (60) SCSB - OSIM -6001-50 AI(26,23), 55 (24,18), Pb (179, ), TI (69, ), Cd (-, 69), Co (-, 75) PD5 TI (58) Cu (55, ), Ni (70, ), TI (63, ), Zn (55, )

#### **ICP METALS ANALYSIS (6010)** CHECKLIST DAISB-OSSM-DOOINA (851518) 059M-0201 (851528) Project Name: ODAI/Sand Creek. 063m-0202 (851882) SESB-037M-000+ Laboratory: 038m \_0005 Batch Number(s): 042m-0003 -81575+81578--068M-000+ Sample Delivery Group: \_\_\_\_\_\_ Yes No 1. Holding Time: • Were samples analyzed within holding time (6-Months)? N [] 4 289 2. Initial Calibration: • Did the initial calibration consist of One calibration standard and a blank? [] three calibration standards and a blank? [] Was $R \ge 0.995$ [] 3. QCMDL: • Was MDL Check performed? [] QCMRL: Were QC/MRL run at the beginning and end of every . N [] daily sequence or every 12 hours?? [] N Was the QC/MRL between 70-130% R? • Common Elements can be between the MRL and 2X MRL level (Fe, Al, Mg and Ca) Ы [] 4. Initial Calibration Verification (ICV): • Is the mid level (2<sup>nd</sup> source) recovery within 90 - 110%? 5. Initial Calibration Blank (ICP):

191

7177

|     | • Were analytes in the blank $\leq 1/2$ MRL?                                                                                                            | <u>Yes</u> []                          | No             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|
| 6.  | Interelement Check Standard:                                                                                                                            |                                        |                |
|     | • Was ICS-A (interferents only) conducted at the beginni of analytical sequence?                                                                        | ng                                     | []             |
|     | • Was ICS-AB results within QC limits (80-120)?                                                                                                         | M                                      | []             |
| 7.  | Continuing calibration Blank (CCB):                                                                                                                     |                                        |                |
|     | <ul> <li>Was CCB conducted every 10 samples?</li> <li>Was CCB conducted at end of the analytical sequence?</li> <li>Were analytes ≤ 1/2 MRL?</li> </ul> | ₽Z<br>L                                | []<br>[]<br>{] |
| 8.  | Continuing Calibration Verification (CCV):                                                                                                              |                                        |                |
|     | • Was CCV conducted every 10 samples?                                                                                                                   | M                                      | []             |
|     | • Was CCV conducted at end of the analytical sequence?                                                                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | []             |
|     | • Was the %R between 90-110?                                                                                                                            | K                                      | []             |
| 9.  | Sample Analysis:                                                                                                                                        |                                        |                |
| •   | Were samples with levels higher than the calibration ran (E), diluted and re-analyzed? $\swarrow / n$                                                   | ige                                    | []             |
| 10. | . Sample Quality Control:                                                                                                                               |                                        |                |
|     | • <u>Method Blanks</u> : Were target analytes $\leq 1/2$ MRL?                                                                                           | []                                     | N              |
|     | • <u>LCS</u> : Were the percent recoveries for LCS within the limits?                                                                                   | the []                                 | []             |
|     | • <u>MS</u> : Were the percent recoveries within limits?                                                                                                | []                                     | []             |
|     | • MD: Were the RPDs within control limits?                                                                                                              | []                                     | [`]            |
| 11. | <ul> <li>Serial Dilution:</li> <li>Was serial dilution (1:4) conducted when needed?</li> </ul>                                                          | []                                     | []             |

#### **VERSION 5** U.S. Army Corps of Engineers Louisville District - LCG June 2002 Yes No [] Was there an agreement between diluted and undiluted results [] (<10%)? 12. Method of Standard Addition (MSA): • Was MSA performed on samples suspected of matrix [] F 1 effect ( $R \ge 0.995$ )? 13. Comments (attach additional sheets if necessary): MS/D SCSB-041M-0002-50 (u (69,63) 56(24 23 10 Ni (72.67 79,74) Zn (74.68)Mn (14,10 Cd (-,76), (cr (557) (74, 73)37 76 mg (-,75 72 Se (-,78) SCSB-099 M-002-50 ( Co ( 50, 50 ) Sb(o (d (78,78) 0 , Zn(71, 67), TI (70,75) Se (71,70) Cu (71,70) V V 168,66 Ni (-,78 Al (125 SC5B-038M-0001-50 Sb Cd (56,0) 0.01 Cr (0, 0), Co (63, 0), Cu (46, N; (74, 0), Se(71, 4) 0) (-, 0), Pb(-, 0) 20 (24,0) (56,0), As V(75, -)DAISB-055M-0001-50 -AI (8, @). Sb (19, 19), Cd (64, 72) Cu (66, 66) (r (0, 0), Co (76, 76) Mn (0, 0'), Se (78, -) Zn (64,66), mg (-, 78" (54,55) 1 $\frac{15B-063M-0201}{(0,0)} \xrightarrow{A1(14,5)} Sb(21,19) Cd(72,68) Cr(0,0) \xrightarrow{Ca}{74} Co(71,73) Cu(76,64) , Mn(1,0), T1(55,52) Zn(78,62)$ DAISB-063M-0201 Mg (-176) Sb (26,29), 6, (59, -), K (67, 59), Na (72,72) SCSS - 057M-0001-30 Ag (124, Validated/Reviewed by: Aus Date: 2/27/13 Signature: V. Meeks Name: TI=78% 059m-0201 MRL MB Se= 0.1 mg/kg U/B 55m+63m 10/12 17:16 As (34), Cm (22), Pb (28), N; (21), TI (22), V(24), Zn(22) DUDS: SCSB-038M 5c 55 - 057m - 0001 AS (32), TI (98) MS/D R?DS SLSB-038M T/(174), Zn (200, SCSB-039M AI(11) Ba(11) Be(12) 193, (a (13), (r(16), (o(27), Cu(24), Pb(73) Mg(12), Mn (16), W; (18), V(18) Zn(28), Fe(18) SCSB-041M AS(11), (o(20), Pb(74), Mg(11), Ni(17), V(24), Zn(21), Fe(18), AI(13) -

5P:

| 055m 10/12 @ 17:51 most                                  | MDL        | -      |
|----------------------------------------------------------|------------|--------|
| 10/11 16:07 Natk                                         | Al, Sb, As | - 4    |
| 10/3 13:20 Hg 0.56 g/25ml                                | Ba         | - 0.26 |
| V10/10 13:54 most - Ag                                   | Be         | -0.13  |
| 059 m la com la com A                                    | Cd         | - 0.11 |
| 10/20 16 (11 Ag                                          | Ca         | 15     |
| 10/11 16:37 Na+K                                         | Cr         | 0.7    |
| 10/13 13:50 Hg 0.56 g/25ml                               | Co         | 1.3    |
| 063m 10/12 23.19 Most                                    | cu         | 1.2    |
| 10/11 19:46 Na +K                                        | Fe         | 9      |
| 10/13 15:03 Hg 0,58g/25mL                                | Pb         | 1.5    |
| (12) = (22) = (22) = (22) = (25)                         | Mg         | 3      |
| SD BAISB -063M AILIT, pa (30), De (24), Calleri          | Mn         | 0.7    |
| (r (39), Co (42), Cu (45), Mg (34), (Mn (20), N, (44)    | Ni         | 0.6    |
| $V(33)_{1}^{2} = V(41)$                                  | K          | 286    |
| DAISD-USSM Ba (14) Ba (11) (a (11), Cr (22), Co (22)     | Se         | 2.3    |
| c u (25), pb (54), Ni (23), V(18), 2, (22)               | Ag         | 0.1    |
| $5(50)$ (1) (1) (1) (1) (1) (2) $P_{1}(3)$               | Na         | (00)   |
| $m_{c}(12)$ $H_{c}(41)$ $(r(112), c_{c}(12), r_{c}(12))$ | T1         | 1.6    |
| $(13)$ , $(12)$ , $(11)$ , $Z_{\Lambda}(19)$             | V          | 0.5    |
| SCSS - 057m AI (16) , Ba (18), Cd (29), Ca (16), Cr (15) | En         | 1.8    |
| Cr (15), coti Mg (16), mn (15) Ni (11), Zn (17)          | Hg O       | 1.04   |
| 10/11 run storts p 6247 N/12 OK                          |            |        |
| 055M on p 6569 10/2 run                                  |            |        |

 $A_{g} = -1.60$ 

Cd = -5.25 0.63m on p 6605 10/12 run Ag = -1.94

CL = -4.15

059m on p 6705 10/19 run ok This page intentionally left blank.

**USACE Chemical Data Usability Assessment** 

This page intentionally left blank.

#### MEMORANDUM FOR RECORD

#### SUBJECT: CHEMICAL DATA USABILITY ASSESSMENT

#### PROJECT: Ravenna Army Ammunition Plant, Ravenna, Ohio

RVAAP 03 Open Demolition Area #1 and RVAAP-34 Sand Creek Disposal Road Landfill Phase 1 Remedial Investigation

1. Purpose:

This memorandum represents and documents the evaluation of the quality and usability of the analytical data obtained during the Phase I Remedial Investigation (RI) of the Sand Creek Disposal Road Landfill (RVAAP-34). This includes determination of contract compliance, data usability, and data quality objective attainment in accordance with EM 200-1-6, Chapter 5 (October 2006).

#### 2. References:

- 2.1 Final Data Validation Report, Ravenna Army Ammunition Plan, Sand Creek Disposal Road Landfill and Open Demolition Area #1 2010 Sampling, Ravenna, Ohio, prepared by MEC<sup>x</sup>, LP, April 2013.
- 2.2 Data Validation Report, Appendix C of the *Draft Phase 1Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill*, prepared by Shaw, July 19, 2012.
- 2.3 Final Sampling and Analysis Plan Addendum No. 1 for Environmental Services at RVAAP-34 Sand Creek Disposal Road Landfill, RVAAP-03 Open Demolition Area #1, and RVAAP-28 Mustard Agent Burial Site, Version 1.0, Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum), prepared by Shaw, February 2010.
- 2.4 Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, QAPP Appendix, Ravenna, Ohio (FWQAPP), prepared by SAIC, March 2001.
- 2.5 *Louisville Chemistry Guideline* (LCG), prepared by the U.S. Army Corps of Engineers Louisville District, June 2002
- 2.6 Louisville DoD Quality Systems Manual Supplement, Version 1, prepared by USACE Louisville District, March 2007.
- 2.7 *DoD Quality Systems Manual for Environmental Laboratories*, Department of Defense (DoD QSM), Environmental Data Quality Workgroup, Version 4.1, 2009.
- 2.8 National Functional Guidelines for Inorganic Superfund Data Review (NFG), U.S. Environmental Protection Agency, 2004
- 2.9 EM 200-1-6, Chapter 5, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, October 1997.
- 3. Project Description:

The purpose of the Phase I Remedial Investigation at the Sand Creek Disposal Road Landfill was to conduct soil and sediment sampling to further define the nature and extent of contamination. The

data would be used to support the preparation of a feasibility study and to support a Record of Decision.

Sampling was conducted by Shaw Environmental & Infrastructure, Inc. (Shaw) between September and November 2010. A total of 28 surface soil samples, 78 subsurface soil samples and 3 sediment samples were collected using incremental sampling method (ISM) procedures. Samples were analyzed for one or more of the following parameters: metals, explosives, propellants, pesticides, polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), volatiles (VOCs), cyanide, and hexavalent chromium. Analytical services were provided by CT Laboratories located in Baraboo, Wisconsin.

#### 4. Analytical Program Overview:

Below are excerpts from the Quality Assurance Project Plan (QAPP) provided as Part 2 in the SAP Addendum:

4.1 Data Quality Objectives

Data quality objective (DQO) summaries for this investigation will follow Tables 3-1 and 3-2 in the Facility-Wide QAPP. All QC parameters stated in the specific U.S. Environmental Protection Agency (USEPA) SW-846 methods will be adhered to for each chemical listed. The SW-846 method references found in the Facility-Wide QAPP have been revised to the Final Update IV methods, as appropriate. Laboratories are required to comply with all methods as written; recommendations are considered requirements. Concurrence with the DoD QSM for Environmental Laboratories (DoD, 2009), and the Louisville Chemistry Guidance (USACE, 2002) is expected.

#### 4.2 Level of Quality Control Effort

QC efforts will follow Section 3.2 of the Facility-Wide QAPP. Field QC measurements will include field source water blanks, trip blanks, field duplicates, surrogates, and equipment rinsate blanks. Laboratory QC measurements will include method blanks, laboratory control samples (LCSs), laboratory duplicates, and matrix spike/matrix spike duplicate (MS/MSD) samples or matrix spike/matrix duplicate (MS/MD) samples for metals.

4.3 Accuracy, Precision, and Sensitivity of Analysis

Accuracy, precision, and sensitivity goals identified in Section 3.3 and Tables 3-1 through 3-9 of the Facility-Wide QAPP will be imposed for this investigation. As stated above, some of the analytical methods numbers have been updated (refer to Table 1-1 of this QAPP addendum). Quality objectives related to individual method QC protocol will also follow requirements given in the QSM and the LCG. Laboratories will make all reasonable attempts to meet the program and project reporting levels in Tables 3-1 through 3-9 of the Facility-Wide QAPP for each individual sample analysis.

4.4 Completeness, Representativeness, and Comparability

Completeness, representativeness, and comparability goals identified in Section 3.4 and Tables 3-1 and 3-2 of the Facility-Wide QAPP will be imposed for this investigation. The completeness goal for analytical data is 90%, as defined in Tables 3-1 and 3-2 of the FWQAPP.

5. Chemical Data Quality and Usability Assessment:

This assessment of the overall quality and usability of project data was based upon a thorough review of the associated Data Validation Reports as presented in Appendix C of the *Draft Phase 1 Remedial Investigation Report for RVAAP-34 Sand Creek Disposal Road Landfill* (Shaw, 2012) and Section 5 of the *Final Data Validation Report, Ravenna Army Ammunition Plant Sand Creek Disposal Road Landfill and Open Demolition Area #1, 2010 Sampling* (MEC<sup>x</sup>, 2013).

Shaw performed a Level III validation of 100% of the project data. During the review process, data were assigned data qualifiers in accordance with the DoD QSM 4.1 to indicate the usability of the data.

Additionally, data validation was performed by MEC<sup>x</sup>, a USACE-Louisville District contracted thirdparty. The associated Data Validation Report details their findings from the Level IV validation of 10% of the primary sample data, analysis of field duplicate results, and the determination of data usability. This evaluation includes review of the same QC elements as the primary contractor's review in addition to an in-depth look into the verification of sample results, target compound identification, and raw data. The intent is to verify the quality and the reliability of the primary data for its intended use.

The data were evaluated in the context of the data quality objective (DQOs) and measurement quality objectives (MQOs) as specified in the project specific SAP addendum and the FWQAPP referenced in item 2.

The subsections below present the U.S. Army Corps of Engineers – Louisville District's assessment of the chemical data quality for the Sand Creek RI including determination of contract compliance, data usability, and data quality objective attainment.

#### 5.1 Contract Compliance

Samples were collected and analyzed in accordance with the procedures specified in the project QAPPs. With minor exceptions, data met the QC specifications outlined in the DoD QSM and project QAPPs. Specific non-conformances and their impact on data usability are noted and described in the associated data evaluation reports.

Detection limits (DLs) for some analytes exceeded applicable screening criteria. Results with DLs exceeding project criteria may still be usable during risk assessment; however, it is incumbent upon the final data user to make this determination on a case by case basis.

#### 5.2 Data Quality Attainment

The quality of data generated for the Sand Creek RI met the project DQOs. Completeness surpassed the goal of 90%.

Some data were rejected during third party validation that was not rejected during the contractor's review. These were relegated to two 2,4-dinitrophenol, three hexachlorocyclopentadiene, two 4,6-dinitro-2-methylphenol and one benzyl alcohol SVOC results and two antimony results for the

samples depicted below.

| Rejected Data                          |                   |                            |                 |          |  |  |
|----------------------------------------|-------------------|----------------------------|-----------------|----------|--|--|
| Sample                                 | SDG               | Analyte                    | Reason          | Review   |  |  |
|                                        | 2,4-Dinitrophenol |                            |                 |          |  |  |
| SCSB-048M-0001-SO<br>SCSD-070M-0001-SD | 81607<br>82400    | Hexachlorocyclopentadiene  | MRL Recoveries  |          |  |  |
|                                        |                   | 4,6-Dinitro-2-methylphenol | (               |          |  |  |
| SCSS 058M 0001 SO                      | 81670             | Benzyl alcohol             | MRL Recoveries  | Level IV |  |  |
| 3C35-038M-0001-3O                      | 81070             | Hexachlorocyclopentadiene  | (<10%)          |          |  |  |
| SCSB-042M-0003-SO                      | 81578             | Antimony                   | MS/MSD Recovery |          |  |  |
| SCSS-068M-0001-SO                      | 01570             | Antimony                   | (<30%)          |          |  |  |

Sand Creek

Three variances, as outlined below, were noted during USACE's review of the respective data validations. These were primarily due to differences in professional opinion and/or discrepancies within the guidance documents, particularly as the project transitions to newer updated guidance (i.e., from the LCG and NFG to the QSM). The qualification of some data depended on which document was assigned precedence; however, the professional judgments of both validators were within the purview of the guidance documents used.

MRL recoveries: •

> This was primarily associated with VOC and SVOC analyses. During third party validation data associated with MRL recoveries of < 10% were rejected (R) for use. Shaw did not reject this data if the laboratory ran an MDL check standard and the analytes were detected. This is consistent with the protocol established in the LCG.

- Several explosive analytes were reported by both Method 8270 for semivolatiles and Method • 8330 for explosives. MECx selected (rejected) one result over another for use. However, both met reporting limit requirements and QC criteria. Therefore, both were reported and used by Shaw.
- MECx qualified antimony results associated with MS/MSD recovery failures on a batch/ sample delivery group basis allowed under the NFG (2004) and the LCG. Shaw qualified the results for the parent sample only in accordance with the QSM (Version 4.1). Additionally, if the laboratory subsequently performed a post digestion spike which met criteria, Shaw qualified results as estimated (J) rather than unusable (R).

#### 5.3 Data Usability

Data were consistently reviewed and qualified by both the primary contractor and the third-party validator. Overall findings were compatible with the exceptions noted above. In a few instances differences in professional opinion and/or guidance utilized resulted in data being rejected (R) as unusable by one reviewer and not the other. This occurred most notably in regards to qualification of data due to low MRL recovery and MS failures.

#### 6.0 Conclusion:

Through the proper implementation of the project data review, verification, and validation process that is outlined in the FWQAPP, the data for the Sand Creek RI are deemed acceptable for use. Based upon this assessment, all analytical results are usable to meet the project DQOs as qualified and presented by Shaw; can withstand scientific scrutiny; are technically defensible; and are of known and acceptable quality in terms of sensitivity, precision, and accuracy.

Kathy Krantz Project Chemist USACE – Louisville District This page intentionally left blank.

### Appendix D Laboratory Analytical Results

(Note: Data submitted on compact disc.)
# Appendix E Fate and Transport Modeling Results

 Table E-1

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Surface Soils to SSLs

| Analyte                      | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(mg/kg) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC<br>Justification | GSSL<br>(DAF=1)<br>(mg/kg) | RSL<br>(mg/kg) | MCL based<br>SSL<br>(mg/kg) | Initial CMCOPC<br>? |
|------------------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|----------------------|----------------------------|----------------|-----------------------------|---------------------|
| Explosives and Propellants   |               |                              |                              |                              |                              |                                   |       |                      |                            |                |                             |                     |
| 2,4,6-Trinitrotoluene        | 118-96-7      | 2/18                         | 0.26 J                       | 3.9                          | 0.41                         |                                   | Yes   | Detected organic     | NF                         | 0.013          |                             | Yes                 |
| 2-Amino-4,6-Dinitrotoluene   | 35572-78-2    | 1/18                         | 0.26 J                       | 0.26 J                       | 0.22                         |                                   | Yes   | Detected organic     | NF                         | 0.056          |                             | Yes                 |
| Nitroguanidine               | 556-88-7      | 1/2                          | 0.64                         | 1.2                          | 0.4                          |                                   | Yes   | Detected organic     | NF                         | 0.88           |                             | Yes                 |
| Inorganics                   |               |                              |                              |                              |                              |                                   |       |                      |                            |                |                             |                     |
| Aluminum                     | 7429-90-5     | 18/18                        | 26.1                         | 16,700                       | 10,123                       | 17,700                            | No    | Below                | No furth                   | ner evaluation | needed                      | No                  |
| Antimony                     | 7440-36-0     | 11/18                        | 0.75                         | 17.1                         | 2.4                          | 0.96                              | Yes   | Above                | 0.3                        |                |                             | Yes                 |
| Arsenic                      | 7440-38-2     | 17/18                        | 4.5                          | 36.6                         | 14                           | 15.4                              | Yes   | Above                | 1                          |                |                             | Yes                 |
| Barium                       | 7440-39-3     | 18/18                        | 1.5                          | 764                          | 128                          | 88.4                              | Yes   | Above                | 82                         |                |                             | Yes                 |
| Beryllium                    | 7440-41-7     | 17/18                        | 0.41                         | 1.1                          | 0.59                         | 0.88                              | Yes   | Above                | 3                          |                |                             | No                  |
| Cadmium                      | 7440-43-9     | 16/18                        | 0.057                        | 12.9                         | 1.61                         | 0                                 | Yes   | Above                | 0.4                        |                |                             | Yes                 |
| Calcium                      | 7440-70-2     | 18/18                        | 26.5                         | 32,500                       | 9,844                        | 15,800                            | No    | Essential nutrient   | No furth                   | ner evaluation | needed                      | No                  |
| Chromium                     | 7440-47-3     | 18/18                        | 0.26                         | 188                          | 79                           | 17.4                              | Yes   | Above                | 2                          |                |                             | Yes                 |
| Cobalt                       | 7440-48-4     | 17/18                        | 6.7                          | 19.7                         | 9.3                          | 10.4                              | Yes   | Above                | NF                         | 0.49           |                             | Yes                 |
| Copper                       | 7440-50-8     | 18/18                        | 0.49                         | 726                          | 77                           | 17.7                              | Yes   | Above                | NF                         | 51             | 46                          | Yes                 |
| Iron                         | 7439-89-6     | 18/18                        | 86.8                         | 34,800                       | 24,483                       | 23,100                            | No    | Essential nutrient   | No furth                   | ner evaluation | needed                      | No                  |
| Lead                         | 7439-92-1     | 18/18                        | 0.88                         | 405                          | 81                           | 26.1                              | Yes   | Above                | 400                        |                |                             | Yes                 |
| Magnesium                    | 7439-95-4     | 18/18                        | 6.6                          | 8,130                        | 3,312                        | 3,030                             | No    | Essential nutrient   | No furth                   | ner evaluation | needed                      | No                  |
| Manganese                    | 7439-96-5     | 18/18                        | 2.2                          | 920                          | 511                          | 1,450                             | No    | Below                | No furth                   | ner evaluation | needed                      | No                  |
| Mercury                      | 7439-97-6     | 18/18                        | 0.026                        | 24.6                         | 3.6                          | 0.036                             | Yes   | Above                | NF                         | 0.03           | 0.1                         | Yes                 |
| Nickel                       | 7440-02-0     | 18/18                        | 0.08 J                       | 48.2                         | 25.8                         | 21.1                              | Yes   | Above                | 7                          |                |                             | Yes                 |
| Potassium                    | 7440-9-7      | 18/18                        | 693                          | 1,650                        | 1,094                        | 927                               | No    | Essential nutrient   | No furth                   | ner evaluation | needed                      | No                  |
| Selenium                     | 7782-49-2     | 15/18                        | 0.13                         | 3.1                          | 1.2                          | 1.4                               | Yes   | Above                | 0.3                        |                |                             | Yes                 |
| Silver                       | 7440-22-4     | 14/18                        | 0.095                        | 256                          | 42.3                         | 0                                 | Yes   | Above                | 2                          |                |                             | Yes                 |
| Sodium                       | 7440-23-5     | 18/18                        | 20.5                         | 221                          | 68                           | 123                               | No    | Essential nutrient   | No furth                   | ner evaluation | needed                      | No                  |
| Thallium                     | 7440-28-0     | 16/18                        | 0.14 J                       | 3.2 J                        | 1.2                          | 0                                 | Yes   | Above                | 0.04                       |                |                             | Yes                 |
| Vanadium                     | 7440-62-2     | 17/18                        | 11.5                         | 23.8                         | 17.8                         | 31.1                              | No    | Below                | No furth                   | ner evaluation | needed                      | No                  |
| Zinc                         | 7440-66-6     | 18/18                        | 0.96                         | 373                          | 127                          | 61.8                              | Yes   | Above                | 620                        |                |                             | No                  |
| Semivolatile Organic Compoun | ıds           |                              |                              |                              |                              |                                   |       |                      |                            |                |                             |                     |
| 1,4-Dichlorobenzene          | 106-46-7      | 6/18                         | 0.022 J                      | 0.27 J                       | 0.168                        |                                   | Yes   | Detected organic     | 0.1                        |                |                             | Yes                 |
| Bis(2-Ethylhexyl)phthalate   | 117-81-7      | 7/18                         | 0.1 J                        | 1.7                          | 0.519                        |                                   | Yes   | Detected organic     | 180                        |                |                             | No                  |
| Anthracene                   | 120-12-7      | 10/18                        | 0.026 J                      | 1.1                          | 0.275                        |                                   | Yes   | Detected organic     | 590                        |                |                             | No                  |

 Table E-1

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Surface Soils to SSLs

| Analyte                | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(ma/ka) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC<br>Justification | GSSL<br>(DAF=1)<br>(mg/kg) | RSL<br>(ma/ka) | MCL based<br>SSL<br>(mg/kg) | Initial CMCOPC<br>? |
|------------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|----------------------|----------------------------|----------------|-----------------------------|---------------------|
| 1,2,4-Trichlorobenzene | 120-82-1      | 1/18                         | 0.027 J                      | 0.027 J                      | 0.197                        |                                   | Yes   | Detected organic     | 0.3                        | (              | (                           | No                  |
| Pyrene                 | 129-00-0      | 15/18                        | 0.035 J                      | 4                            | 0.683                        |                                   | Yes   | Detected organic     | 210                        |                |                             | No                  |
| Dibenzofuran           | 132-64-9      | 10/18                        | 0.027 J                      | 0.33 J                       | 0.1715                       |                                   | Yes   | Detected organic     | NF                         | 0.68           |                             | No                  |
| Benzo(ghi)perylene     | 191-24-2      | 11/18                        | 0.026 J                      | 0.69                         | 0.223                        |                                   | Yes   | Detected organic     | NF                         | NF             | NF                          | No                  |
| Indeno(1,2,3-cd)pyrene | 193-39-5      | 11/18                        | 0.025 J                      | 0.81                         | 0.233                        |                                   | Yes   | Detected organic     | 0.7                        |                |                             | Yes                 |
| Benzo(b)fluoranthene   | 205-99-2      | 15/18                        | 0.039 J                      | 4.8                          | 0.715                        |                                   | Yes   | Detected organic     | 0.2                        |                |                             | Yes                 |
| Fluoranthene           | 206-44-0      | 16/18                        | 0.04 J                       | 4.3                          | 0.877                        |                                   | Yes   | Detected organic     | 210                        |                |                             | No                  |
| Benzo(k)fluoranthene   | 207-08-9      | 14/18                        | 0.027 J                      | 1.4                          | 0.275                        |                                   | Yes   | Detected organic     | 2                          |                |                             | No                  |
| Acenaphthylene         | 208-96-8      | 8/18                         | 0.029 J                      | 0.16 J                       | 0.155                        |                                   | Yes   | Detected organic     | NF                         | NF             | NF                          | No                  |
| Chrysene               | 218-01-9      | 14/18                        | 0.027 J                      | 2.7                          | 0.479                        |                                   | Yes   | Detected organic     | 8                          |                |                             | No                  |
| Benzo(a)pyrene         | 50-32-8       | 15/18                        | 0.026 J                      | 2.4                          | 0.419                        |                                   | Yes   | Detected organic     | 0.4                        |                |                             | Yes                 |
| Dibenzo(a,h)anthracene | 53-70-3       | 7/18                         | 0.055 J                      | 0.28 J                       | 0.176                        |                                   | Yes   | Detected organic     | 0.08                       |                |                             | Yes                 |
| 1,3-Dichlorobenzene    | 541-73-1      | 1/18                         | 0.031 J                      | 0.031 J                      | 0.197                        |                                   | Yes   | Detected organic     | NF                         | NF             | NF                          | No                  |
| Benzo(a)anthracene     | 56-55-3       | 15/18                        | 0.027 J                      | 2.6                          | 0.472                        |                                   | Yes   | Detected organic     | 0.08                       |                |                             | Yes                 |
| Benzoic Acid           | 65-85-0       | 4/18                         | 0.39 J                       | 0.57 J                       | 0.721                        |                                   | Yes   | Detected organic     | 20                         |                |                             | No                  |
| Isophorone             | 78-59-1       | 6/18                         | 0.051 J                      | 0.2 J                        | 0.179                        |                                   | Yes   | Detected organic     | 0.03                       |                |                             | Yes                 |
| Acenaphthene           | 83-32-9       | 7/18                         | 0.029 J                      | 0.44                         | 0.184                        |                                   | Yes   | Detected organic     | 29                         |                |                             | No                  |
| Diethyl Phthalate      | 84-66-2       | 2/18                         | 0.069 J                      | 0.14 J                       | 0.196                        |                                   | Yes   | Detected organic     | 23                         |                |                             | No                  |
| Di-n-Butyl Phthalate   | 84-74-2       | 17/18                        | 0.082 J                      | 0.47                         | 0.17                         |                                   | Yes   | Detected organic     | 270                        |                |                             | No                  |
| Phenanthrene           | 85-01-8       | 15/18                        | 0.026 J                      | 3.4                          | 0.611                        |                                   | Yes   | Detected organic     | NF                         | NF             | NF                          | No                  |
| Fluorene               | 86-73-7       | 8/18                         | 0.031 J                      | 0.47                         | 0.191                        |                                   | Yes   | Detected organic     | 28                         |                |                             | No                  |
| Carbazole              | 86-74-8       | 9/18                         | 0.034 J                      | 0.61                         | 0.197                        |                                   | Yes   | Detected organic     | 0.03                       |                |                             | Yes                 |
| Pentachlorophenol      | 87-86-5       | 2/18                         | 0.4 J                        | 0.52 J                       | 0.499                        |                                   | Yes   | Detected organic     | 0.001                      |                |                             | Yes                 |
| Naphthalene            | 91-20-3       | 11/18                        | 0.028 J                      | 0.33 J                       | 0.184                        |                                   | Yes   | Detected organic     | 4                          |                |                             | No                  |
| 2-Methylnaphthalene    | 91-57-6       | 11/18                        | 0.043 J                      | 0.53                         | 0.249                        |                                   | Yes   | Detected organic     | NF                         | 0.75           |                             | No                  |
| 1,2-Dichlorobenzene    | 95-50-1       | 17/18                        | 0.028 J                      | 0.11 J                       | 0.14415                      |                                   | Yes   | Detected organic     | 0.9                        |                |                             | No                  |
| Pesticides             |               |                              |                              |                              |                              |                                   |       |                      |                            |                |                             |                     |
| 4,4'-DDD               | 72-54-8       | 2/2                          | 0.0014                       | 0.0023                       | 0.002                        |                                   | Yes   | Detected organic     | 3                          |                |                             | No                  |
| 4,4'-DDT               | 50-29-3       | 2/2                          | 0.0015                       | 0.0017                       | 0.002                        |                                   | Yes   | Detected organic     | 2                          |                |                             | No                  |
| alpha-Chlordane        | 5103-71-9     | 1/2                          | 0.0015                       | 0.0015                       | 0.002                        |                                   | Yes   | Detected organic     | NF                         | NF             | NF                          | No                  |
| Heptachlor             | 76-44-8       | 2/2                          | 0.001                        | 0.0081                       | 0.005                        |                                   | Yes   | Detected organic     | 1                          | 0.0012         | 0.033                       | No                  |

# Table E-1 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Surface Soils to SSLs

| Analyte      | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(mg/kg) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC<br>Justification | GSSL<br>(DAF=1)<br>(mg/kg) | RSL<br>(mg/kg) | MCL based<br>SSL<br>(mg/kg) | Initial CMCOPC<br>? |
|--------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|----------------------|----------------------------|----------------|-----------------------------|---------------------|
| Lindane      | 58-89-9       | 1/2                          | 0.0013                       | 0.0013                       | 0.001                        |                                   | Yes   | Detected organic     | 0.0005                     |                |                             | Yes                 |
| Methoxychlor | 72-43-5       | 1/2                          | 0.0016                       | 0.0016                       | 0.001                        |                                   | Yes   | Detected organic     | 8                          | 9.9            | 2.2                         | No                  |

Notes:

CMCOPC = Contaminant Migration Contaminant of Potential Concern

SRC = Site Related Contaminant

SSL = Soil Screening Level (USEPA, 1996)

GSSL = Generic Soil Screening Level

MCL = Maximum Contaminant Level

RSL = Risk Based Screening Level (USEPA 2010)

Shaded cells indicate SRCs that exceed the GSSL screen.

# Validation Qualifiers:

*J* = The reported result is an estimated value.

 Table E-2

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Subsurface Soils to SSLs

| Analyte                    | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(ma/ka) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC                | Generic SSL<br>(DAF=1)<br>(ma/ka) | Risk Based<br>SSL<br>(mg/kg) | MCL based<br>SSL<br>(mg/kg) | Initial<br>CMCOPC ? |
|----------------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|--------------------|-----------------------------------|------------------------------|-----------------------------|---------------------|
| Explosives and Propellant  | S             | 2000000                      | (                            | (                            | (                            | (                                 | 01101 |                    | (                                 | (                            | (                           | 0                   |
| 2,4,6-Trinitrotoluene      | 118-96-7      | 1/1                          | 0.1 J                        | 0.1 J                        | 0.218                        |                                   | Yes   | Detected organic   | NF                                | 0.013                        |                             | Yes                 |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2    | 1/1                          | 0.26 J                       | 0.26 J                       | 0.221                        |                                   | Yes   | Detected organic   | NF                                | 0.056                        |                             | Yes                 |
| m-Nitrotoluene             | 99-08-1       | 1/1                          | 0.32 J                       | 0.32 J                       | 0.222                        |                                   | Yes   | Detected organic   | NF                                | 0.88                         |                             | Yes                 |
| Inorganics                 |               |                              |                              |                              |                              |                                   |       | · · · · · ·        |                                   |                              |                             |                     |
| Aluminum                   | 7429-90-5     | 58/58                        | 7,050                        | 18,200                       | 11,991                       | 19,500                            | No    | Below              | No furthe                         | r evaluation r               | needed                      | No                  |
| Antimony                   | 7440-36-0     | 39/58                        | 0.11 J                       | 11.2                         | 0.74                         | 0.96                              | Yes   | Above              | 0.3                               |                              |                             | Yes                 |
| Arsenic                    | 7440-38-2     | 57/58                        | 2                            | 182                          | 18.27                        | 19.8                              | Yes   | Above              | 1                                 |                              |                             | Yes                 |
| Barium                     | 7440-39-3     | 58/58                        | 33.4                         | 932                          | 85.7                         | 124                               | Yes   | Above              | 82                                |                              |                             | Yes                 |
| Beryllium                  | 7440-41-7     | 58/58                        | 0.31                         | 3.9                          | 0.71                         | 0.88                              | Yes   | Above              | 3                                 |                              |                             | Yes                 |
| Cadmium                    | 7440-43-9     | 38/58                        | 0.039                        | 5.5                          | 0.52                         | 0                                 | Yes   | Above              | 0.4                               |                              |                             | Yes                 |
| Calcium                    | 7440-70-2     | 58/58                        | 507                          | 82,400                       | 10,221                       | 35,500                            | No    | Essential nutrient | No furthe                         | er evaluation r              | needed                      | No                  |
| Chromium                   | 7440-47-3     | 58/58                        | 14                           | 186                          | 64.6                         | 27.2                              | Yes   | Above              | 2                                 |                              |                             | Yes                 |
| Cobalt                     | 7440-48-4     | 58/58                        | 4.4                          | 22.3                         | 10.4                         | 23.2                              | No    | Below              | No furthe                         | er evaluation r              | needed                      | No                  |
| Copper                     | 7440-50-8     | 58/58                        | 11.5                         | 2,020                        | 59.6                         | 32.3                              | Yes   | Above              | NF                                | 51                           | 46                          | Yes                 |
| Iron                       | 7439-89-6     | 58/58                        | 19,500                       | 79,400                       | 32,672                       | 35,200                            | No    | Essential nutrient | No furthe                         | er evaluation r              | needed                      | No                  |
| Lead                       | 7439-92-1     | 58/58                        | 5.3                          | 907                          | 60.8                         | 19.1                              | Yes   | Above              | 400                               |                              |                             | Yes                 |
| Magnesium                  | 7439-95-4     | 58/58                        | 1,880                        | 8,830                        | 5,247                        | 8,790                             | No    | Essential nutrient | No furthe                         | er evaluation r              | needed                      | No                  |
| Manganese                  | 7439-96-5     | 58/58                        | 244                          | 1,640                        | 512                          | 3,030                             | No    | Below              | No furthe                         | er evaluation r              | needed                      | No                  |
| Mercury                    | 7439-97-6     | 58/58                        | 0.0042 J                     | 2                            | 0.077                        | 0.044                             | Yes   | Above              | NF                                | 0.03                         | 0.1                         | Yes                 |
| Nickel                     | 7440-02-0     | 58/58                        | 10.4                         | 88.1                         | 28.2                         | 60.7                              | Yes   | Above              | 7                                 |                              |                             | Yes                 |
| Potassium                  | 7440-9-7      | 58/58                        | 650                          | 4,600                        | 1,625                        | 3,350                             | No    | Essential nutrient | No furthe                         | r evaluation r               | needed                      | No                  |
| Selenium                   | 7782-49-2     | 26/58                        | 0.14 J                       | 5.7                          | 0.47                         | 1.5                               | Yes   | Above              | 0.3                               |                              |                             | Yes                 |
| Silver                     | 7440-22-4     | 14/58                        | 0.13                         | 13.5                         | 0.5                          | 0                                 | Yes   | Above              | 2                                 |                              |                             | Yes                 |
| Sodium                     | 7440-23-5     | 58/58                        | 22.8                         | 264                          | 95.2                         | 145                               | No    | Essential nutrient | No furthe                         | er evaluation r              | needed                      | Yes                 |
| Thallium                   | 7440-28-0     | 41/58                        | 0.19                         | 17.3                         | 1.36                         | 0.91                              | Yes   | Above              | 0.04                              |                              |                             | Yes                 |
| Vanadium                   | 7440-62-2     | 58/58                        | 12.3                         | 173                          | 19.2                         | 37.6                              | Yes   | Above              | 300                               |                              |                             | No                  |
| Zinc                       | 7440-66-6     | 58/58                        | 38.9                         | 1,350                        | 96.5                         | 93.3                              | Yes   | Above              | 620                               |                              |                             | Yes                 |
| Semi volatile Organic Com  | pounds        |                              |                              |                              |                              |                                   |       |                    |                                   |                              |                             |                     |
| 1,4-Dichlorobenzene        | 106-46-7      | 1/58                         | 0.022 J                      | 0.022 J                      | 0.199                        |                                   | Yes   | Detected organic   | 0.1                               |                              |                             | Yes                 |

 Table E-2

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Subsurface Soils to SSLs

| Analyte                    | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(mg/kg) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC<br>Justification | Generic SSL<br>(DAF=1)<br>(mg/kg) | Risk Based<br>SSL<br>(mg/kg) | MCL based<br>SSL<br>(mg/kg) | Initial<br>CMCOPC ? |
|----------------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|----------------------|-----------------------------------|------------------------------|-----------------------------|---------------------|
| Bis(2-Ethylhexyl)phthalate | 117-81-7      | 10/58                        | 0.088 J                      | 0.85 J                       | 0.447                        |                                   | Yes   | Detected organic     | 180                               |                              |                             | Yes                 |
| Anthracene                 | 120-12-7      | 8/58                         | 0.03 J                       | 3.1                          | 0.242                        |                                   | Yes   | Detected organic     | 590                               |                              |                             | No                  |
| Pyrene                     | 129-00-0      | 14/58                        | 0.029 J                      | 13                           | 0.56                         |                                   | Yes   | Detected organic     | 210                               |                              |                             | No                  |
| Dibenzofuran               | 132-64-9      | 14/58                        | 0.024 J                      | 0.84                         | 0.1859                       |                                   | Yes   | Detected organic     | NF                                | 0.68                         |                             | Yes                 |
| Benzo(ghi)perylene         | 191-24-2      | 15/58                        | 0.022 J                      | 1.7                          | 0.22302                      |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Indeno(1,2,3-cd)pyrene     | 193-39-5      | 10/58                        | 0.024 J                      | 1.6 Q                        | 0.23783                      |                                   | Yes   | Detected organic     | 0.7                               |                              |                             | Yes                 |
| Benzo(b)fluoranthene       | 205-99-2      | 14/58                        | 0.039 J                      | 13                           | 0.5501                       |                                   | Yes   | Detected organic     | 0.2                               |                              |                             | Yes                 |
| Fluoranthene               | 206-44-0      | 14/58                        | 0.027 J                      | 17                           | 0.65869                      |                                   | Yes   | Detected organic     | 210                               |                              |                             | No                  |
| Benzo(k)fluoranthene       | 207-08-9      | 11/58                        | 0.027 J                      | 4.4 Q                        | 0.29283                      |                                   | Yes   | Detected organic     | 2                                 |                              |                             | Yes                 |
| Acenaphthylene             | 208-96-8      | 5/58                         | 0.034 J                      | 0.14 J                       | 0.19219                      |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Chrysene                   | 218-01-9      | 12/58                        | 0.034 J                      | 7.6                          | 0.39829                      |                                   | Yes   | Detected organic     | 8                                 |                              |                             | No                  |
| Benzo(a)pyrene             | 50-32-8       | 13/58                        | 0.035 J                      | 8.3                          | 0.37993                      |                                   | Yes   | Detected organic     | 0.4                               |                              |                             | Yes                 |
| Dibenzo(a,h)anthracene     | 53-70-3       | 6/58                         | 0.032 J                      | 0.55 Q                       | 0.2                          |                                   | Yes   | Detected organic     | 0.08                              |                              |                             | Yes                 |
| Benzo(a)anthracene         | 56-55-3       | 11/58                        | 0.046 J                      | 8.2                          | 0.37                         |                                   | Yes   | Detected organic     | 0.08                              |                              |                             | Yes                 |
| 2,6-Dinitrotoluene         | 606-20-2      | 1/58                         | 0.047 J                      | 0.047                        | 0.1996                       |                                   | Yes   | Detected organic     | 0.000025                          |                              |                             | Yes                 |
| Benzoic Acid               | 65-85-0       | 1/58                         | 0.32 J                       | 0.32 J                       | 0.581                        |                                   | Yes   | Detected organic     | 20                                |                              |                             | Yes                 |
| Isophorone                 | 78-59-1       | 29/58                        | 0.053 J                      | 1.2                          | 0.211                        |                                   | Yes   | Detected organic     | 0.03                              |                              |                             | Yes                 |
| Acenaphthene               | 83-32-9       | 6/58                         | 0.029 J                      | 0.7                          | 0.198                        |                                   | Yes   | Detected organic     | 29                                |                              |                             | No                  |
| Di-n-Butyl Phthalate       | 84-74-2       | 37/58                        | 0.081 J                      | 0.27 J                       | 0.158                        |                                   | Yes   | Detected organic     | 270                               |                              |                             | Yes                 |
| Phenanthrene               | 85-01-8       | 33/58                        | 0.027 J                      | 11                           | 0.484                        |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Fluorene                   | 86-73-7       | 9/58                         | 0.034 J                      | 1.1                          | 0.197                        |                                   | Yes   | Detected organic     | 28                                |                              |                             | No                  |
| Carbazole                  | 86-74-8       | 8/58                         | 0.033 J                      | 2.2                          | 0.23                         |                                   | Yes   | Detected organic     | 0.03                              |                              |                             | Yes                 |
| Pentachlorophenol          | 87-86-5       | 1/58                         | 0.38 J                       | 0.38 J                       | 0.499                        |                                   | Yes   | Detected organic     | 0.001                             |                              |                             | Yes                 |
| Naphthalene                | 91-20-3       | 31/58                        | 0.021 J                      | 0.98                         | 0.167                        |                                   | Yes   | Detected organic     | 4                                 |                              |                             | No                  |
| 2-Methylnaphthalene        | 91-57-6       | 33/58                        | 0.026 J                      | 0.7                          | 0.174                        |                                   | Yes   | Detected organic     | NF                                | 0.75                         |                             | No                  |
| 1,2-Dichlorobenzene        | 95-50-1       | 4/58                         | 0.024 J                      | 0.049 J                      | 0.191                        |                                   | Yes   | Detected organic     | 0.9                               |                              |                             | Yes                 |
| Volatile Organic Compoun   | ds            | -                            |                              |                              |                              |                                   |       |                      |                                   |                              |                             |                     |
| Ethylbenzene               | 100-41-4      | 1/5                          | 0.15                         | 0.15                         | 0.053                        |                                   | Yes   | Detected organic     | 0.7                               |                              |                             | No                  |
| Toluene                    | 108-88-3      | 2/5                          | 0.012 J                      | 0.31                         | 0.081                        |                                   | Yes   | Detected organic     | 0.6                               |                              |                             | No                  |
| Xylene (Total)             | 1330-20-7     | 1/5                          | 0.36                         | 0.36                         | 0.119                        |                                   | Yes   | Detected organic     | 10                                |                              |                             | No                  |

 Table E-2

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Subsurface Soils to SSLs

| Analyte                   | CAS<br>Number | Frequency<br>of<br>Detection | Minimum<br>Detect<br>(mg/kg) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | Background<br>Criteria<br>(mg/kg) | SRC ? | SRC<br>Justification | Generic SSL<br>(DAF=1)<br>(mg/kg) | Risk Based<br>SSL<br>(mg/kg) | MCL based<br>SSL<br>(mg/kg) | Initial<br>CMCOPC ? |
|---------------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-------|----------------------|-----------------------------------|------------------------------|-----------------------------|---------------------|
| Benzene                   | 71-43-2       | 1/5                          | 0.06                         | 0.06                         | 0.035                        |                                   | Yes   | Detected organic     | 0.002                             |                              |                             | Yes                 |
| 1,2-Dimethylbenzene       | 95-47-6       | 2/5                          | 0.013 J                      | 0.35                         | 0.089                        |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Pesticides                |               |                              |                              |                              |                              |                                   |       |                      |                                   |                              |                             |                     |
| 4,4'-DDE                  | 72-55-9       | 1/5                          | 0.0051                       | 0.0051                       | 0.0051                       |                                   | Yes   | Detected organic     | 3                                 | 0.047                        |                             | No                  |
| 4,4'-DDT                  | 50-29-3       | 2/5                          | 0.013                        | 0.013                        | 0.013                        |                                   | Yes   | Detected organic     | 2                                 | 0.067                        |                             | No                  |
| Aldrin                    | 309-00-2      | 1/5                          | 0.0012 JQ                    | 0.0012 JQ                    | 0.00159                      |                                   | Yes   | Detected organic     | 0.02                              |                              |                             |                     |
| alpha-BHC                 | 319-84-6      | 2/5                          | 0.0013 J                     | 0.011 JQ                     | 0.00358                      |                                   | Yes   | Detected organic     | 0.00003                           |                              |                             | Yes                 |
| beta-BHC                  | 319-85-7      | 1/5                          | 0.0032 JQ                    | 0.0032 JQ                    | 0.00182                      |                                   | Yes   | Detected organic     | 0.0001                            |                              |                             | Yes                 |
| delta-BHC                 | 319-86-8      | 1/5                          | 0.0016 JQ                    | 0.0016 JQ                    | 0.00161                      |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Dieldrin                  | 60-57-1       | 1/5                          | 0.0034 JQ                    | 0.0034 JQ                    | 0.00985                      |                                   | Yes   | Detected organic     | 0.0002                            | 0.00017                      |                             | Yes                 |
| Endosulfan II             | 33213-65-9    | 1/1                          | 0.0036                       | 0.0036                       | 0.013                        |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Endrin Aldehyde           | 7421-93-4     | 1/5                          | 0.005 JQ                     | 0.005 JQ                     | 0.00233                      |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| gamma-Chlordane           | 5566-34-7     | 1/5                          | 0.0054 JQ                    | 0.0054 JQ                    | 0.00217                      |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |
| Heptachlor                | 76-44-8       | 4/5                          | 0.0009 J                     | 0.0058 JQ                    | 0.00232                      |                                   | Yes   | Detected organic     | 1                                 | 0.0012                       | 0.033                       | No                  |
| Heptachlor epoxide        | 1024-57-3     | 1/5                          | 0.00071 JQ                   | 0.00071 JQ                   | 0.00129                      |                                   | Yes   | Detected organic     | 0.03                              | 0.00015                      | 0.0041                      | No                  |
| Methoxychlor              | 72-43-5       | 2/5                          | 0.001 J                      | 0.0058 JQ                    | 0.0021                       |                                   | Yes   | Detected organic     | 8                                 | 9.9                          | 2.2                         |                     |
| Polychlorinated Biphenyls |               |                              |                              |                              |                              |                                   |       |                      |                                   |                              |                             |                     |
| Arochlor-1254             | 11097-69-1    | 1/5                          | 0.14 J                       | 0.14 J                       | 0.03                         |                                   | Yes   | Detected organic     | NF                                | NF                           | NF                          | No                  |

CMCOPC = Contaminant Migration Contaminant of Potential Concern

SRC = Site Related Contaminant

SSL = Soil Screening Level

GSSL = Generic Soil Screening Level

MCL = Maximum Contaminant Level

RSL = Risk Based Screening Level (EPA 2010)

Shaded cells indicate SRCs that exceed the GSSL screen.

Validation Qualifiers:

*J* = The reported result is an estimated value.

Q = One or more quality control criteria failed (e.g., Laboratory Control Sample recovery, surrogate spike recovery or Continuing Calibration Verification)

 Table E-3

 Site Specific Dilution Attenuation (DAF) Calculation for the Sand Creek Landfill

DAF = 1 + { (Kid))/IL }

 $d = \sqrt{(0.012 L^2)} + d_a \{1 - \exp[(-LI)/(Kid_a)]\}$ 

| Parameter                                   | Symbol | Value                   | Units     | Data Source                                                                    |
|---------------------------------------------|--------|-------------------------|-----------|--------------------------------------------------------------------------------|
|                                             |        |                         |           |                                                                                |
| Dilution attenuation factor                 | DAF    | 1.08                    | unit less | Calculated suing the DAF equation shown above                                  |
|                                             |        |                         |           | Literature value based on lithology type (silts, sands and clayey sands), from |
| Aquifer Hydraulic conductivity              | К      | 3.16                    | m/yr      | Fetter C. W., 1992.                                                            |
|                                             |        |                         |           |                                                                                |
| Horizontal hydraulic gradient               | i      | 1.04 x 10 <sup>-1</sup> | m/m       | Estimated based on site topography                                             |
|                                             |        |                         |           |                                                                                |
| Infiltration rate                           | I      | 0.09                    | m/yr      | 10% of annual precipitation from Youngstown WSO AP, Ohio weather station       |
|                                             |        |                         |           |                                                                                |
| Source length parallel top groundwater flow | L      | 40                      | m         | Based on surface area of area with soil impacts                                |
|                                             |        |                         |           | determine from the lower value between d calculated by equation above and      |
| Mixing zone depth                           | d      | 0.84                    | m         | aquifer thickness                                                              |
|                                             |        |                         |           |                                                                                |
| Aquifer thickness                           | da     | 0.84                    | m         | Based on water level detected in the boring logs and the depth of clay lens    |

Notes:

Equations are from EPA, 1996, Soil Screening Guidance: Technical Background Document, EPA Document Number: EPA/540/R-95/128, July, http://www.epa.gov/superfund/health/conmedia/soil/toc.htm#p5

|                            |            |              |                |                |                |         | SSSL       |          |
|----------------------------|------------|--------------|----------------|----------------|----------------|---------|------------|----------|
|                            |            | Frequency of | Minimum Detect | Maximum Detect | Average Result | SSL     | (DAF=1.08) | Refined  |
| Analyte                    | CAS Number | Detection    | (mg/kg)        | (mg/kg)        | (mg/kg)        | (mg/kg) | (mg/kg)    | CMCOPC ? |
| Explosives and Propellant  | S          |              |                |                |                |         |            |          |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 2/18         | 0.26 J         | 3.9            | 0.41           | 0.013   | 0.014      | Yes      |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2 | 1/18         | 0.26 J         | 0.26 J         | 0.22           | 0.056   | 0.060      | Yes      |
| Nitroguanidine             | 556-88-7   | 1/2          | 0.64           | 1.2            | 0.4            | 0.88    | 0.950      | Yes      |
| Inorganics                 |            |              |                |                |                |         |            |          |
| Antimony                   | 7440-36-0  | 11/18        | 0.75           | 17.1           | 2.4            | 0.3     | 0.32       | Yes      |
| Arsenic                    | 7440-38-2  | 17/18        | 4.5            | 36.6           | 14             | 1       | 1.08       | Yes      |
| Barium                     | 7440-39-3  | 18/18        | 1.5            | 764            | 128            | 82      | 88.56      | Yes      |
| Cadmium                    | 7440-43-9  | 16/18        | 0.057          | 12.9           | 1.61           | 0.4     | 0.43       | Yes      |
| Chromium                   | 7440-47-3  | 18/18        | 0.26           | 188            | 79             | 2       | 2.16       | Yes      |
| Cobalt                     | 7440-48-4  | 17/18        | 6.7            | 19.7           | 9.3            | 0.49    | 0.53       | Yes      |
| Copper                     | 7440-50-8  | 18/18        | 0.49           | 726            | 77             | 51      | 55.08      | Yes      |
| Lead                       | 7439-92-1  | 18/18        | 0.88           | 405            | 81             | 400     | 432        | No       |
| Mercury                    | 7439-97-6  | 18/18        | 0.026          | 24.6           | 3.6            | 0.1     | 0.11       | Yes      |
| Nickel                     | 7440-02-0  | 18/18        | 0.08 J         | 48.2           | 25.8           | 7       | 7.56       | Yes      |
| Selenium                   | 7782-49-2  | 15/18        | 0.13           | 3.1            | 1.3            | 0.3     | 0.32       | Yes      |
| Silver                     | 7440-22-4  | 14/18        | 0.095          | 256            | 42.3           | 2       | 2.16       | Yes      |
| Thallium                   | 7440-28-0  | 16/18        | 0.14 J         | 3.2 J          | 1.2            | 0.04    | 0.043      | Yes      |
| Semivolatile Organic Com   | pounds     | -            | -              | _              |                |         |            |          |
| 1,4-Dichlorobenzene        | 106-46-7   | 6/18         | 0.022 J        | 0.27 J         | 0.168          | 0.1     | 0.108      | Yes      |
| Indeno(1,2,3-cd)pyrene     | 193-39-5   | 11/18        | 0.025 J        | 0.81           | 0.233          | 0.7     | 0.756      | Yes      |
| Benzo(b)fluoranthene       | 205-99-2   | 15/18        | 0.039 J        | 4.8            | 0.715          | 0.2     | 0.216      | Yes      |
| Benzo(a)pyrene             | 50-32-8    | 15/18        | 0.026 J        | 2.4            | 0.419          | 0.4     | 0.432      | Yes      |
| Dibenzo(a,h)anthracene     | 53-70-3    | 7/18         | 0.055 J        | 0.28 J         | 0.176          | 0.08    | 0.086      | Yes      |
| Benzo(a)anthracene         | 56-55-3    | 15/18        | 0.027 J        | 2.6            | 0.472          | 0.08    | 0.086      | Yes      |
| Isophorone                 | 78-59-1    | 6/18         | 0.051 J        | 0.2 J          | 0.179          | 0.03    | 0.032      | Yes      |
| Carbazole                  | 86-74-8    | 9/18         | 0.034 J        | 0.61           | 0.197          | 0.03    | 0.032      | Yes      |
| Pentachlorophenol          | 87-86-5    | 2/18         | 0.4 J          | 0.52 J         | 0.499          | 0.001   | 0.0011     | Yes      |
| Pesticides                 |            |              |                |                |                |         |            |          |
| Lindane                    | 58-89-9    | 1/2          | 0.0013         | 0.0013         | 0.001          | 0.0005  | 0.00054    | Yes      |

 Table E-4

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Surface Soils to SSSLs

CMCOPC = Contaminant Migration Contaminant of Potential Concern

SRC = Site Related Contaminant

SSL = Soil Screening Level

SSSL = Site-specific Soil Screening Level

Shaded cells indicated SRCs that were eliminated by screening against SSSLs.

Validation Qualifiers:

*J* = The reported result is an estimated value.

 Table E-5

 Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Subsurface Soils to SSSLs

| Analyta                 | CAS Number | Frequency of | Minimum<br>Detect<br>(ma/ka) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result | SSL<br>(ma/ka) | SSSL<br>(DAF=1.08) | Refined |
|-------------------------|------------|--------------|------------------------------|------------------------------|-------------------|----------------|--------------------|---------|
| Evolosives and Propell  | ants       | Delection    | (ing/kg)                     | (ing/itg)                    | (Hg/Kg)           | (ing/kg)       | (ing/kg)           | CINCOPC |
| 2.4.6-Trinitrotoluene   | 118-96-7   | 1/1          | 0.1                          | 0.1                          | 0.218             | 0.013          | 0.014              | Ves     |
| Dipitrotoluono          | 35572-78-2 | 1/1          | 0.26                         | 0.26                         | 0.221             | 0.056          | 0.060              | Yes     |
|                         | 33372-70-2 | 1/1          | 0.20                         | 0.20                         | 0.221             | 0.000          | 0.000              | 103     |
| Antimony                | 7440-36-0  | 39/58        | 0 11 1                       | 11.2                         | 0.74              | 0.3            | 0.32               | Yes     |
| Arsenic                 | 7440-38-2  | 57/58        | 2                            | 182                          | 18.24             | 1              | 1.08               | Yes     |
| Barium                  | 7440-39-3  | 58/58        | 33.4                         | 932                          | 85.7              | 82             | 88.56              | Yes     |
| Bervllium               | 7440-41-7  | 58/58        | 0.31                         | 3.9                          | 0.71              | 3              | 3 24               | Yes     |
| Cadmium                 | 7440-43-9  | 38/58        | 0.039                        | 5.5                          | 0.52              | 0.4            | 0.43               | Yes     |
| Chromium                | 7440-47-3  | 58/58        | 14                           | 186                          | 64.5              | 2              | 2.16               | Yes     |
| Copper                  | 7440-50-8  | 58/58        | 11.5                         | 2,020                        | 59.6              | 51             | 55.08              | Yes     |
| Lead                    | 7439-92-1  | 58/58        | 4.9                          | 907                          | 60.8              | 400            | 432                | Yes     |
| Mercury                 | 7439-97-6  | 58/58        | 0.0042 J                     | 2                            | 0.076             | 0.1            | 0.11               | Yes     |
| Nickel                  | 7440-02-0  | 58/58        | 10.4                         | 88.1                         | 28.1              | 7              | 7.56               | Yes     |
| Selenium                | 7782-49-2  | 26/58        | 0.14 J                       | 5.7                          | 0.47              | 0.3            | 0.32               | Yes     |
| Silver                  | 7440-22-4  | 14/58        | 0.13                         | 13.5                         | 0.5               | 2              | 2.16               | Yes     |
| Thallium                | 7440-28-0  | 41/58        | 0.19                         | 17.3                         | 1.36              | 0.04           | 0.04               | Yes     |
| Zinc                    | 7440-66-6  | 58/58        | 38.9                         | 1,350                        | 96.5              | 620            | 670                | Yes     |
| Semivolatile Organic Co | ompounds   |              |                              |                              |                   |                |                    |         |
| Dibenzofuran            | 132-64-9   | 14/58        | 0.024                        | 0.84                         | 0.1859            | 0.68           | 0.73               | Yes     |
| Indeno(1,2,3-cd)pyrene  | 193-39-5   | 10/58        | 0.024                        | 1.6                          | 0.23783           | 0.7            | 0.76               | Yes     |
| Benzo(b)fluoranthene    | 205-99-2   | 14/58        | 0.039                        | 13                           | 0.5501            | 0.2            | 0.22               | Yes     |
| Benzo(k)fluoranthene    | 207-08-9   | 11/58        | 0.027                        | 4.4                          | 0.29283           | 2              | 2.16               | Yes     |
| Benzo(a)pyrene          | 50-32-8    | 13/58        | 0.035                        | 8.3                          | 0.37993           | 0.4            | 0.43               | Yes     |
| Dibenzo(a,h)anthracene  | 53-70-3    | 6/58         | 0.032                        | 0.55                         | 0.2               | 0.08           | 0.09               | Yes     |
| Benzo(a)anthracene      | 56-55-3    | 11/58        | 0.046                        | 8.2                          | 0.37              | 0.08           | 0.09               | Yes     |
| 2,6-Dinitrotoluene      | 606-20-2   | 1/58         | 0.047                        | 0.047                        | 0.1996            | 0.000025       | 0.000027           | Yes     |
| Isophorone              | 78-59-1    | 29/58        | 0.053                        | 1.2                          | 0.211             | 0.03           | 0.03               | Yes     |
| Carbazole               | 86-74-8    | 8/58         | 0.033                        | 2.2                          | 0.23              | 0.03           | 0.03               | Yes     |
| Pentachlorophenol       | 87-86-5    | 1/58         | 0.38                         | 0.38                         | 0.499             | 0.001          | 0.0011             | Yes     |

# Table E-5

# Initial CMCOPCs Based on Comparison of SRC Maximum Concentrations in Subsurface Soils to SSSLs

| Analyte                | CAS Number | Frequency of<br>Detection | Minimum<br>Detect<br>(mg/kg) | Maximum<br>Detect<br>(mg/kg) | Average<br>Result<br>(mg/kg) | SSL<br>(mg/kg) | SSSL<br>(DAF=1.08)<br>(mg/kg) | Refined<br>CMCOPC ? |
|------------------------|------------|---------------------------|------------------------------|------------------------------|------------------------------|----------------|-------------------------------|---------------------|
| Volatile Organic Compo | unds       |                           |                              |                              |                              |                |                               |                     |
| Benzene                | 71-43-2    | 1/5                       | 0.06                         | 0.06                         | 0.035                        | 0.002          | 0.0022                        | Yes                 |
| Pesticides             | -          | -                         |                              | -                            | -                            |                |                               |                     |
| alpha-BHC              | 319-84-6   | 2/5                       | 0.0013 J                     | 0.011 JQ                     | 0.00358                      | 0.00003        | 0.000032                      | Yes                 |
| beta-BHC               | 319-85-7   | 1/5                       | 0.0032 JQ                    | 0.0032 JQ                    | 0.00182                      | 0.0001         | 0.00011                       | Yes                 |
| Dieldrin               | 60-57-1    | 1/5                       | 0.0034 JQ                    | 0.0034 JQ                    | 0.00985                      | 0.0002         | 0.00022                       | Yes                 |

Notes:

CMCOPC = Contaminant Migration Contaminant of Potential Concern

SRC = Site Related Contaminant

SSL = Soil Screening Level (USEPA, 2010)

SSSL = Site-specific Soil Screening Level (USEPA, 2010)

Shading indicates SRCs that were eliminated by screening against SSSLs.

|                            |            | Frequency of | Maximum<br>Detect |                   | Кос     |   | Kd       |   |       | т       | CMCOPC         |
|----------------------------|------------|--------------|-------------------|-------------------|---------|---|----------|---|-------|---------|----------------|
| Analyte                    | CAS Number | Detection    | (mg/kg)           | Sample ID         | (L/Kg)  |   | (L/Kg)   |   | R     | (year)  | (T<1000)       |
| Explosives and Propellant  | S          |              |                   |                   |         |   |          |   |       | /       | _ <b>、</b> _ / |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 2/18         | 3.9               | SCSS-069M-0001-SO | 2810    | а | 7.31E+00 |   | 44.8  | 521     | Yes            |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2 | 1/18         | 0.26 J            | SCSS-069M-0001-SO | 283     | с | 7.36E-01 |   | 5.4   | 63      | Yes            |
| Nitroguanidine             | 556-88-7   | 1/2          | 1.2               | SCSD-071M-0001-SD | 20.65   | С | 5.37E-02 |   | 1.3   | 15      | Yes            |
| Inorganics                 |            |              |                   |                   |         |   |          |   |       |         |                |
| Antimony                   | 7440-36-0  | 11/18        | 17.1              | SCSS-061M-0001-SO | NA      |   | 4.50E+01 | а | 271   | 3,147   | No             |
| Arsenic                    | 7440-38-2  | 17/18        | 36.6              | SCSS-062M-0001-SO | NA      |   | 2.00E+02 | а | 1201  | 13,947  | No             |
| Barium                     | 7440-39-3  | 11/18        | 764               | SCSS-061M-0001-SO | NA      |   | 6.00E+01 | а | 361   | 4,192   | No             |
| Cadmium                    | 7440-43-9  | 16/18        | 12.9              | SCSS-061M-0001-SO | NA      |   | 6.40E+00 | а | 39    | 458     | Yes            |
| Chromium                   | 7440-47-3  | 18/18        | 188               | SCSS-076M-0001-SO | NA      |   | 8.50E+02 | а | 5101  | 59,237  | No             |
| Cobalt                     | 7440-48-4  | 17/18        | 19.7              | SCSS-074M-0001-SO | NA      |   | 4.50E+01 | b | 271   | 3,147   | No             |
| Copper                     | 7440-50-8  | 18/18        | 726               | SCSS-064M-0001-SO | NA      |   | 3.50E+01 | b | 211   | 2,450   | No             |
| Lead                       | 7439-92-1  | 18/18        | 405               | SCSS-061M-0001-SO | NA      |   | 9.00E+02 | b | 5401  | 62,721  | No             |
| Mercury                    | 7439-97-6  | 18/18        | 24.6              | SCSS-059M-0001-SO | NA      |   | 1.00E+01 | а | 61    | 708     | Yes            |
| Nickel                     | 7440-02-0  | 18/18        | 48.2              | SCSS-064M-0001-SO | NA      |   | 1.50E+02 | а | 901   | 10,463  | No             |
| Selenium                   | 7782-49-2  | 15/18        | 3.1               | SCSS-062M-0001-SO | NA      |   | 3.00E+02 | а | 1801  | 20,915  | No             |
| Silver                     | 7440-22-4  | 14/18        | 256               | SCSS-061M-0001-SO | NA      |   | 4.60E+01 | а | 277   | 3,217   | No             |
| Thallium                   | 7440-28-0  | 16/18        | 3.2 J             | SCSS-061M-0001-SO | NA      |   | 1.50E+03 | а | 9001  | 104,528 | No             |
| Semivolatile Organic Com   | pounds     |              |                   |                   |         |   |          |   |       |         |                |
| 1,4-Dichlorobenzene        | 106-46-7   | 6/18         | 0.27 J            | SCSS-061M-0001-SO | 6.2E+02 | а | 1.60E+00 |   | 11    | 123     | Yes            |
| Indeno(1,2,3-cd)pyrene     | 193-39-5   | 11/18        | 0.81              | SCSS-060M-0001-SO | 3.5E+06 | а | 9.02E+03 |   | 54133 | 628,641 | No             |
| Benzo(b)fluoranthene       | 205-99-2   | 15/18        | 4.8               | SCSS-060M-0001-SO | 1.2E+06 | а | 3.20E+03 |   | 19189 | 222,840 | No             |
| Benzo(a)pyrene             | 50-32-8    | 15/18        | 2.4               | SCSS-060M-0001-SO | 1.0E+06 | а | 2.65E+03 |   | 15913 | 184,796 | No             |
| Dibenzo(a,h)anthracene     | 53-70-3    | 7/18         | 0.28              | SCSS-060M-0001-SO | 3.8E+06 | a | 9.88E+03 |   | 59281 | 688,425 | No             |
| Benzo(a)anthracene         | 56-55-3    | 15/18        | 2.6               | SCSS-060M-0001-SO | 4.0E+05 | а | 1.03E+03 |   | 6210  | 72,114  | No             |
| Isophorone                 | 78-59-1    | 6/18         | 0.2 J             | SCSS-063M-0001-SO | 4.7E+01 | а | 1.22E-01 |   | 2     | 20      | Yes            |
| Carbazole                  | 86-74-8    | 9/18         | 0.61              | SCSS-059M-0001-SO | 3.4E+03 | а | 8.81E+00 |   | 54    | 626     | Yes            |
| Pentachlorophenol          | 87-86-5    | 2/18         | 0.52 J            | SCSS-060M-0001-SO | 5.0E+03 | с | 1.29E+01 |   | 78    | 910     | Yes            |
| Pesticides                 |            |              |                   |                   |         |   |          |   |       |         |                |
| Lindane                    | 58-89-9    | 1/2          | 0.0013            | SCSS-076M-0001-SO | 1.1E+03 | а | 2.78E+00 |   | 18    | 205     | Yes            |

 Table E-6

 CMCOPCs Based on Arrival Time to Groundwater from Surface Soils

a - USEPA, 1996, Soil Screening Guidance: Technical Background Document, EPA Document Number: EPA/540/R-95/128, July

b - Baes, C. F., and R. D. Sharp, 1983, A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models, Journal of Environmental Quality, 12:17-28.

c - USEPA, 2010, Regional Screening Level (RSL) Chemical-Specific Parameters Supporting Table, EPA Region 9, November

Shaded cells indicate CMCOPCs that are retained for further analysis

Validation Qualifiers:

*J* = The reported result is an estimated value.

|                            |            |              | Maximum |                   | Sample<br>Bottom | Leaching<br>Zone |          |   |                       |        |         |          |
|----------------------------|------------|--------------|---------|-------------------|------------------|------------------|----------|---|-----------------------|--------|---------|----------|
|                            | CAS        | Frequency of | Detect  |                   | Depth            | Thickness        | Кос      |   | Kd                    |        | Т       | CMCOPC   |
| Analyte                    | Number     | Detection    | (mg/kg) | Sample ID         | (ft bgs)         | (ft)             | L/Kg     |   | L/Kg                  | R      | year    | (T<1000) |
| Explosives and Propellan   | ts         | T            |         |                   |                  |                  |          |   |                       |        |         |          |
| 2,4,6-Trinitrotoluene      | 118-96-7   | 1/1          | 0.1 J   | SCSB-049M-0001-SO | 5                | 8                | 2810     | а | 3.37E+00              | 16     | 151     | Yes      |
| 2-Amino-4,6-Dinitrotoluene | 35572-78-2 | 1/1          | 0.26 J  | SCSB-049M-0001-SO | 5                | 8                | 283      | d | 3.40E-01              | 3      | 24      | Yes      |
| Inorganics                 |            |              |         |                   |                  |                  |          |   |                       |        |         |          |
| Antimony                   | 7440-36-0  | 37/58        | 11.2    | SCsb-050M-001-SO  | 5                | 8                | NA       |   | 4.50E+01 <sup>a</sup> | 201    | 1,902   | No       |
| Arsenic                    | 7440-38-2  | 57/58        | 182     | SCSB-037M-0001-SO | 5                | 8                | NA       |   | 2.00E+02 <sup>a</sup> | 889    | 8,422   | No       |
| Barium                     | 7440-39-3  | 58/58        | 932     | SCSB-037M-0001-SO | 5                | 8                | NA       |   | 6.00E+01 <sup>a</sup> | 267    | 2,533   | No       |
| Beryllium                  | 7440-41-7  | 58/58        | 3.9     | SCSB-037M-0001-SO | 5                | 8                | NA       |   | 6.50E+02 <sup>a</sup> | 2,888  | 27,351  | No       |
| Cadmium                    | 7440-43-9  | 38/58        | 5.5     | SCSB-037M-0002-SO | 9                | 4                | NA       |   | 6.40E+00 <sup>a</sup> | 29     | 139     | Yes      |
| Chromium                   | 7440-47-3  | 58/58        | 186     | SCSB-037M-0002-SO | 9                | 4                | NA       |   | 8.50E+02 <sup>a</sup> | 3,776  | 17,882  | No       |
| Copper                     | 7440-50-8  | 58/58        | 2,020   | SCSB-036M-0003-SO | 13               |                  |          |   | AT WATER T            | ABLE   |         |          |
| Lead                       | 7439-92-1  | 58/58        | 907     | SCSB-036M-0003-SO | 13               |                  |          |   | AT WATER T            | ABLE   |         |          |
| Mercury                    | 7439-97-6  | 58/58        | 2       | SCSB-044M-0001-SO | 5                | 8                | NA       |   | 1.00E+01 <sup>a</sup> | 45     | 430     | Yes      |
| Nickel                     | 7440-02-0  | 58/58        | 88.1    | SCSB-044M-0001-SO | 5                | 8                | NA       |   | 1.50E+02 <sup>a</sup> | 667    | 6,319   | No       |
| Selenium                   | 7782-49-2  | 26/58        | 5.7     | SCSB-037M-0002-SO | 9                | 4                | NA       |   | 3.00E+02 <sup>a</sup> | 1,333  | 6,314   | No       |
| Silver                     | 7440-22-4  | 14/58        | 13.5    | SCSB-045M-0001-SO | 5                | 8                | NA       |   | 4.60E+01 <sup>a</sup> | 205    | 1,944   | No       |
| Thallium                   | 7440-28-0  | 41/58        | 17.3    | SCSB-037M-0002-SO | 9                | 4                | NA       |   | 1.50E+03 <sup>a</sup> | 6,663  | 31,553  | No       |
| Zinc                       | 7440-66-6  | 58/58        | 1,350   | SCSB-036M-0003-SO | 13               |                  |          |   | AT WATER T            | ABLE   |         |          |
| Semivolatile Organic Corr  | pounds     | T            |         |                   |                  |                  |          |   |                       |        |         |          |
| Dibenzofuran               | 132-64-9   | 14/58        | 0.84    | SCSB-049M-0001-SO | 5                | 8                |          |   | 0.00E+00              | 1      | 9       | Yes      |
| Indeno(1,2,3-cd)pyrene     | 193-39-5   | 10/58        | 1.6 Q   | SCSB-036M-0003-SO | 13               |                  |          |   | AT WATER T            | ABLE   |         | 1        |
| Benzo(b)fluoranthene       | 205-99-2   | 14/58        | 13      | SCSB-049M-0001-SO | 5                | 8                | 1.2E+06  | а | 1.48E+03              | 6,557  | 62,097  | No       |
| Benzo(k)fluoranthene       | 207-08-9   | 11/58        | 4.4 Q   | SCSB-049M-0001-SO | 5                | 8                | 1.23E+06 | а | 1.48E+03              | 6,557  | 62,097  | No       |
| Benzo(a)pyrene             | 50-32-8    | 13/58        | 8.3     | SCSB-049M-0001-SO | 5                | 8                | 1.0E+06  | а | 1.22E+03              | 5,437  | 51,496  | No       |
| Dibenzo(a,h)anthracene     | 53-70-3    | 6/58         | 0.55 Q  | SCSB-049M-0001-SO | 5                | 8                | 3.8E+06  | а | 4.56E+03              | 20,254 | 191,824 | No       |
| Benzo(a)anthracene         | 56-55-3    | 11/58        | 8.2     | SCSB-049M-0001-SO | 5                | 8                | 4.0E+05  | а | 4.78E+02              | 2,122  | 20,099  | No       |
| 2,6-Dinitrotoluene         | 606-20-2   | 1/58         | 0.047   | SCSB-037M-0004-SO | 17               |                  |          |   | IN GROUNDW            | /ATER  |         |          |
| Isophorone                 | 78-59-1    | 29/58        | 1.2     | SCSB-036M-0003-SO | 13               |                  |          |   | AT WATER T            | ABLE   |         |          |
| Carbazole                  | 86-74-8    | 8/58         | 2.2     | SCSB-049M-0001-SO | 5                | 8                | 3.4E+03  | а | 4.07E+00              | 19     | 181     | Yes      |
| Pentachlorophenol          | 87-86-5    | 1/58         | 0.38 J  | SCSB-050M-0001-SO | 5                | 8                | 5.0E+03  | С | 5.95E+00              | 27     | 260     | Yes      |

 Table E-7

 CMCOPCs Based on Arrival Time to Groundwater from Subsurface Soils

 Table E-7

 CMCOPCs Based on Arrival Time to Groundwater from Subsurface Soils

| Analyte                  | CAS<br>Number | Frequency of Detection | Maximum<br>Detect<br>(mg/kg) | Sample ID         | Sample<br>Bottom<br>Depth<br>(ft bgs) | Leaching<br>Zone<br>Thickness<br>(ft) | Koc<br>L/Kg           | Kd<br>L/Kg | R     | T<br>year | CMCOPC<br>(T<1000) |
|--------------------------|---------------|------------------------|------------------------------|-------------------|---------------------------------------|---------------------------------------|-----------------------|------------|-------|-----------|--------------------|
| Volatile Organic Compour | nds           |                        |                              |                   |                                       |                                       |                       |            |       |           |                    |
| Benzene                  | 71-43-2       | 1/5                    | 0.06                         | SCSB-048D-0001-SO | 5                                     | 8                                     | 5.89E+01 <sup>a</sup> | 7.07E-02   | 1.3   | 12        | Yes                |
| Pesticides               |               |                        |                              |                   |                                       |                                       |                       |            |       |           |                    |
| alpha-BHC                | 319-84-6      | 2/5                    | 0.011 JQ                     | SCSB-037M-0001-SO | 5                                     | 8                                     | 1.23E+03 a            | 1.48E+00   | 7.6   | 72        | Yes                |
| beta-BHC                 | 319-85-7      | 1/5                    | 0.0032 JQ                    | SCSB-037M-0001-SO | 5                                     | 8                                     | 1.26E+03 <sup>a</sup> | 1.51E+00   | 7.7   | 73        | Yes                |
| Dieldrin                 | 60-57-1       | 1/5                    | 0.0034 JQ                    | SCSB-037M-0001-SO | 5                                     | 8                                     | 2.14E+04 a            | 2.57E+01   | 115.1 | 1,090     | No                 |

a - USEPA, 1996, Soil Screening Guidance: Technical Background Document, EPA Document Number: EPA/540/R-95/128, July

b - Baes, C. F., and R. D. Sharp, 1983, A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models, Journal of Environmental Quality, 12:17-28.

c - USEPA, 2010, Regional Screening Level (RSL) Chemical-Specific Parameters Supporting Table, EPA Region 9, November

Shaded cells indicate CMCOPCs that are retained for further analysis.

Validation Qualifiers:

J = The reported result is an estimated value.

Q = One or more quality control criteria failed (e.g., Laboratory Control Sample recovery, surrogate spike recovery or Continuing Calibration Verification)

 Table E-8

 Physical and Chemical Properties of Initial CMCOPCs Selected for SESOIL Modeling

|                                 | Water      | Coefficient in         | Henry's Law |                 |                | Molecular |           | Degradation |
|---------------------------------|------------|------------------------|-------------|-----------------|----------------|-----------|-----------|-------------|
|                                 | Solubility | Alr                    | Constant    | K <sub>oc</sub> | K <sub>d</sub> | weight    | Hair Life | Rate        |
| Analyte                         | (mg/L)     | (cm <sup>2</sup> /sec) | m3/mole)    | (L/Kg)          | (L/Kg)         | (g/mole)  | (hour)    | (per hour)  |
| Explosives and Propell          | ants       |                        |             |                 |                |           |           |             |
| 2,4,6-Trinitrotoluene           | 1.15E+02   | NF                     | 2.08E-08    | 2810            |                | 227.13    | 8,640     | 3.3E-06     |
| Dinitrotoluene                  | 3.19E+02   | NF                     | 1.62E-10    | 283             |                | 197.15    | NF        | NF          |
| Nitroguanidine                  | 4.40E+03   | NF                     | 4.49E-12    | 20.65           |                | 104.07    | NF        | NF          |
| Inorganics                      |            |                        |             |                 |                |           |           |             |
| Cadmium                         | 0.00E+00   | 0.0E+00                |             |                 | 7.50E+01       | 112.41    |           | 0.0E+00     |
| Mercury                         | 6.00E-02   | 3.07E-02               | 1.1E-02     |                 | 5.20E+01       | 200.59    |           | 0.0E+00     |
| Semi volatile Organic Compounds |            |                        |             |                 |                |           |           |             |
| Dibenzofuran                    | 3.1        | 7.38E-06               | 2.13E-04    | 9161            |                | 168.2     | 2,688     | 1.1E-05     |
| 1,4 Dichlorobenzene             | 8.13E+01   | 5.50E-02               | 2.41E-03    | 375.3           |                | 147       | 17,280    | 1.7E-06     |
| Carbazole                       | 7.48E+00   | 3.90E-02               | 1.53E-08    | 3.39E+03        |                | 167.207   | NF        | NF          |
| Pentachlorophenol               | 1.40E+01   | 5.60E-02               | 2.45E-08    | 4959            |                | 266.34    | 36,480    | 7.9E-07     |
| Volatile Organic Comp           | ounds      |                        |             |                 |                |           |           |             |
| Benzene                         | 1.79E+03   | 8.95E-02               | 5.55E-03    | 145.8           |                | 78.11     | 17,520    | 1.6E-06     |
| Pesticides                      |            |                        |             |                 |                |           |           |             |
| alpha-BHC                       | 2.00E+00   | 1.40E-02               | 1.06E-05    | 1.23E+03        |                | 290.83    | 6,480     | 4.5E-06     |
| beta-BHC                        | 2.40E-01   | 1.40E-02               | 7.43E-07    | 1.26E+03        |                | 290.83    | 5,952     | 4.9E-06     |
| Lindane                         | 6.80E+00   | 1.40E-02               | 1.40E-04    | 2.14E+04        |                | 290.83    | 9,912     | 2.9E-06     |

NF

NA = Not applicable

Highest half life (lowest degradation rate) obtained from: Handbook of Environmental Degradation Rates, Lewis Publishers.

Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., and Michalenko, E.M., 1991,

Parameters except of half life obtained from the following sources:

USEPA, 1996, Soil Screening Guidance: Technical Background Document, EPA Document Number: EPA/540/R-95/128, July

Baes, C. F., and R. D. Sharp, 1983, A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models, Journal of Environmental Quality, 12:17-28.

USEPA, 2010, Regional Screening Level (RSL) Chemical-Specific Parameters Supporting Table, EPA Region 9, November

|           |          |       |          |        |                                 |               |          |            | Model   |
|-----------|----------|-------|----------|--------|---------------------------------|---------------|----------|------------|---------|
|           | Air Temp | Cloud |          |        | Evapotranspiration <sup>2</sup> | Precipitation | Duration | Storms per | Days in |
| Month     | (°C)     | Cover | Humidity | Albedo | (cm/d)                          | (cm)          | (days)   | Month      | Month   |
|           |          |       |          |        |                                 |               |          |            |         |
| October   | 12       | 0.6   | 0.7      | 0.17   | 0                               | 6.46          | 0.42     | 5.33       | 30.4    |
| November  | 5.22     | 0.7   | 0.75     | 0.24   | 0                               | 7.4           | 0.53     | 6.67       | 30.4    |
| December  | -1.06    | 0.8   | 0.75     | 0.31   | 0                               | 7.06          | 0.57     | 6.14       | 30.4    |
| January   | -2.94    | 0.8   | 0.8      | 0.3    | 0                               | 7.06          | 0.61     | 5.69       | 30.4    |
| February  | -2.33    | 0.7   | 0.75     | 0.32   | 0                               | 5.76          | 0.53     | 5.09       | 30.4    |
| March     | 2.33     | 0.7   | 0.7      | 0.29   | 0                               | 8.26          | 0.55     | 7.14       | 30.4    |
| April     | 9.11     | 0.7   | 0.7      | 0.19   | 0                               | 8.83          | 0.48     | 7.4        | 30.4    |
| May       | 14.61    | 0.6   | 0.7      | 0.16   | 0                               | 8.46          | 0.45     | 7.15       | 30.4    |
| June      | 19.89    | 0.6   | 0.7      | 0.16   | 0                               | 9.07          | 0.36     | 6.57       | 30.4    |
| July      | 21.89    | 0.5   | 0.7      | 0.16   | 0                               | 9.8           | 0.3      | 6.06       | 30.4    |
| August    | 21.11    | 0.55  | 0.7      | 0.16   | 0                               | 8.14          | 0.3      | 6.06       | 30.4    |
| September | 17.67    | 0.55  | 0.7      | 0.16   | 0                               | 7.85          | 0.4      | 5.44       | 30.4    |

 Table E-9

 Climatic Data for SESOIL Modeling

Data is for 1996, from Youngstown, Ohio Weather Service Office- Airport Station

|                           |               |          | Layer    |        |              | Maximum Soil  |
|---------------------------|---------------|----------|----------|--------|--------------|---------------|
| A                         | No. of Lovoro | Lover No | Inickess | NO. Of | Sublayor No. | Concentration |
| Analyte                   | NO. OF Layers |          |          |        |              | (ing/kg)      |
|                           |               |          |          |        | 1            | 3.9           |
|                           |               |          |          |        |              | 0.1           |
|                           |               | 2        | 4        | 4      | 2            | 0.1           |
|                           |               |          |          |        |              | 0.1           |
|                           |               |          |          |        | 4            | 0.1           |
| 2/1.6-Trinitrotoluene     | 1             |          |          |        | 2            | 0             |
| 2,4,0-1111111010101010110 | 7             | 3        | 4        | 4      | 2            | 0             |
|                           |               |          |          |        | <u> </u>     | 0             |
|                           |               |          |          |        | 1            | 0             |
|                           |               |          |          |        | 2            | 0             |
|                           |               | 4        | 4        | 4      | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               | 1        | 1        | 1      | 1            | 0.26          |
|                           |               | •        |          | •      | 1            | 0.26          |
|                           |               |          |          |        | 2            | 0.26          |
|                           |               | 2        | 4        | 4      | 3            | 0.26          |
|                           |               |          |          |        | 4            | 0.26          |
|                           |               |          |          |        | 1            | 0             |
| 2-Amino-4,6-              | 4             | 0        | 4        | 4      | 2            | 0             |
| Dinitrotoluene            |               | 3        |          |        | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               | 4        |          |        | 1            | 0             |
|                           |               |          |          |        | 2            | 0             |
|                           |               |          | 4        | 4      | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               | 1        | 1        | 1      | 1            | 1.2           |
|                           | 4             | 2        | 4        | 4      | 1            | 0             |
|                           |               |          |          |        | 2            | 0             |
|                           |               |          |          |        | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               | 3        | 4        | 4      | 1            | 0             |
| Nitroguanidine            |               |          |          |        | 2            | 0             |
|                           |               |          |          |        | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               |          |          |        | 1            | 0             |
|                           |               | 4        | Δ        | Δ      | 2            | 0             |
|                           |               | т        | т        | т      | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               | 1        | 1        | 1      | 1            | 12.9          |
|                           |               |          |          |        | 1            | 0             |
|                           |               | 2        | 4        | 4      | 2            | 0             |
|                           |               | -        |          |        | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |
|                           |               |          |          |        | 1            | 5.5           |
| Cadmium                   | 4             | 3        | 4        | 4      | 2            | 5.5           |
|                           |               |          | 4        | 4      | 3            | 5.5           |
|                           |               |          |          |        | 4            | 5.5           |
|                           |               |          |          |        | 1            | U             |
|                           |               | 4        | 4        | 4      | 2            | U             |
|                           |               | -        |          |        | 3            | 0             |
|                           |               |          |          |        | 4            | 0             |

 Table E-10

 Source Term Loading Data for SESOIL Model

|                     |               |                       | Layer    |           |              | Maximum Soil  |
|---------------------|---------------|-----------------------|----------|-----------|--------------|---------------|
|                     |               |                       | Thickess | No. of    |              | Concentration |
| Analyte             | No. of Layers | Layer No.             | (feet)   | Sublayers | Sublayer No. | (mg/kg)       |
|                     | 5             | 1                     | 1        | 1         | 1            | 24.6          |
|                     |               |                       |          |           | 1            | 2             |
|                     |               |                       |          |           | 2            | 2             |
|                     |               | 2                     | 4        | 4         | 3            | 2             |
|                     |               |                       |          |           | 4            | 2             |
|                     |               |                       |          |           | 1            | 0             |
| Mercury             | 4             | _                     |          |           | 2            | 0             |
| inoi oui j          |               | 3                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               |                       |          |           | 1            | 0             |
|                     |               |                       |          |           | 2            | 0             |
|                     |               | 4                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               | 1                     | 1        | 1         | 1            | 0             |
|                     |               | •                     |          | •         | 1            | 0.84          |
|                     |               | _                     |          |           | 2            | 0.84          |
|                     |               | 2                     | 4        | 4         | 3            | 0.84          |
|                     |               |                       |          |           | 4            | 0.84          |
|                     |               |                       |          |           | 1            | 0             |
| Dibenzofuran        | 4             | _                     | 4        | 4         | 2            | 0             |
| Dibenzoraran        | •             | 3                     |          |           | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               |                       |          |           | 1            | 0             |
|                     |               |                       |          |           | 2            | 0             |
|                     |               | 4                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               | 1                     | 1        | 1         | 1            | 0.27          |
|                     |               |                       |          | •         | 1            | 0             |
|                     | 4             |                       | 4        | 4         | 2            | 0             |
|                     |               | 2                     |          |           | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               | 3                     | 4        | 4         | 1            | 0             |
| 1 4 Dichlorobenzene |               |                       |          |           | 2            | 0             |
| 1,1 Dichiorobenzene |               |                       |          |           | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               |                       |          |           | 1            | 0             |
|                     |               |                       |          |           | 2            | 0             |
|                     |               | 4                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               | 1                     | 1        | 1         | 1            | 0.61          |
|                     |               |                       |          | •         | 1            | 2.2           |
|                     |               |                       |          |           | 2            | 2.2           |
|                     |               | 2                     | 4        | 4         | 3            | 2.2           |
|                     |               |                       |          |           | 4            | 2.2           |
|                     |               |                       |          |           | 1            | 0             |
| Carbazole           | 4             | _                     |          |           | 2            | 0             |
| Carnazole           | 4             | 3                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |
|                     |               | <b>├</b> ─── <b>┼</b> |          |           | 1            | 0             |
|                     |               |                       |          |           | 2            | 0             |
|                     |               | 4                     | 4        | 4         | 3            | 0             |
|                     |               |                       |          |           | 4            | 0             |

 Table E-10

 Source Term Loading Data for SESOIL Model

|                   |               |           | Layer    |           |                | Maximum Soil  |      |  |  |   |
|-------------------|---------------|-----------|----------|-----------|----------------|---------------|------|--|--|---|
|                   |               |           | Thickess | No. of    |                | Concentration |      |  |  |   |
| Analyte           | No. of Layers | Layer No. | (feet)   | Sublayers | Sublayer No.   | (mg/kg)       |      |  |  |   |
| ,<br>,            |               | 1         | 1        | 1         | 1              | 0.52          |      |  |  |   |
|                   |               |           |          |           | 1              | 0.38          |      |  |  |   |
|                   |               | 0         |          |           | 2              | 0.38          |      |  |  |   |
|                   |               | 2         | 4        | 4         | 3              | 0.38          |      |  |  |   |
|                   |               |           |          |           | 4              | 0.38          |      |  |  |   |
|                   |               |           |          |           | 1              | 0             |      |  |  |   |
| Pentachlorophenol | 4             |           |          |           | 2              | 0             |      |  |  |   |
|                   |               | 3         | 4        | 4         | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | 4              | 0             |      |  |  |   |
|                   |               |           |          |           | 1              | 0             |      |  |  |   |
|                   |               |           |          |           | 2              | 0             |      |  |  |   |
|                   |               | 4         | 4        | 4         | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | 4              | 0             |      |  |  |   |
|                   |               | 1         | 1        | 1         | 1              | 0.0013        |      |  |  |   |
|                   |               |           |          |           | 1              | 0             |      |  |  |   |
|                   |               |           |          |           | 2              | 0             |      |  |  |   |
|                   |               | 2         | 4        | 4         | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | 4              | 0             |      |  |  |   |
|                   |               |           |          |           | 1              | 0             |      |  |  |   |
| Lindane           | 4             |           | 4        | 4         | 2              | 0             |      |  |  |   |
| Lindano           | т             | 3         |          |           | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | 4              | 0             |      |  |  |   |
|                   |               | 4         |          |           | 1              | 0             |      |  |  |   |
|                   |               |           |          |           | 2              | 0             |      |  |  |   |
|                   |               |           | 4        | 4         | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | 4              | 0             |      |  |  |   |
|                   |               | 1         | 1        | 1         | 1              | 0             |      |  |  |   |
|                   |               |           |          |           | '              | 1             | 0.06 |  |  |   |
|                   |               | 2         | 4        | 4         | 2              | 0.00          |      |  |  |   |
|                   |               |           |          |           | 3              | 0.00          |      |  |  |   |
|                   |               |           |          |           | <u> </u>       | 0.00          |      |  |  |   |
|                   |               | 3         | 4        | 4         | 1              | 0.00          |      |  |  |   |
| Benzene           | 4             |           |          |           | 2              | 0             |      |  |  |   |
| Denzene           |               |           |          |           | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | <u> </u>       | 0             |      |  |  |   |
|                   |               |           |          |           | 1              | 0             |      |  |  |   |
|                   |               |           |          |           | 2              | 0             |      |  |  |   |
|                   |               | 4         | 4        | 4         | 3              | 0             |      |  |  |   |
|                   |               |           |          |           | <u> </u>       | 0             |      |  |  |   |
|                   |               | 1         | 1        | 1         | 1              | 0             |      |  |  |   |
|                   |               | I         | '        | '         | 1              | 0.011         |      |  |  |   |
|                   |               |           |          |           | 2              | 0.011         |      |  |  |   |
|                   |               | 2         | 4        | 4         | 3              | 0.011         |      |  |  |   |
|                   |               |           |          |           |                | 0.011         |      |  |  |   |
| alpha-BHC         |               |           |          |           | 1              | 0.011         |      |  |  |   |
|                   | Δ             |           |          |           | 2              | 0             |      |  |  |   |
|                   | 4             | 3         | 4        | 4         | 2              | 0             |      |  |  |   |
|                   |               |           |          |           | <u>л</u>       | 0             |      |  |  |   |
|                   |               |           |          |           | - <del>1</del> | 0             |      |  |  |   |
|                   |               |           |          |           | 2              | 0             |      |  |  |   |
|                   |               | 4         | 4        | 4         | 2              | 0             |      |  |  |   |
|                   |               |           |          |           | <u> </u>       | 0             |      |  |  |   |
|                   |               |           |          |           |                |               |      |  |  | 4 |

 Table E-10

 Source Term Loading Data for SESOIL Model

| Table E-10                                |
|-------------------------------------------|
| Source Term Loading Data for SESOIL Model |

| Analyte  | No. of Layers | Layer No. | Layer<br>Thickess<br>(feet) | No. of<br>Sublayers | Sublayer No. | Maximum Soil<br>Concentration<br>(mg/kg) |
|----------|---------------|-----------|-----------------------------|---------------------|--------------|------------------------------------------|
|          |               | 1         | 1                           | 1                   | 1            | 0                                        |
|          |               |           |                             |                     | 1            | 0.0032                                   |
|          |               | C         | 4                           | 4                   | 2            | 0.0032                                   |
|          | 4             | 2         | 4                           | 4                   | 3            | 0.0032                                   |
|          |               |           |                             |                     | 4            | 0.0032                                   |
|          |               | 3         |                             |                     | 1            | 0                                        |
| beta-BHC |               |           | 4                           | 4                   | 2            | 0                                        |
|          |               |           |                             |                     | 3            | 0                                        |
|          |               |           |                             |                     | 4            | 0                                        |
|          |               |           |                             |                     | 1            | 0                                        |
|          |               | Λ         | 4                           | 4                   | 2            | 0                                        |
|          |               | 4         | 4                           | 4                   | 3            | 0                                        |
|          |               |           |                             |                     | 4            | 0                                        |

mg/kg = milligrams per kilogram























# Appendix F Human Health Risk Assessment Tables

# General UCL Statistics for Full Data Sets - Sand Creek Deep Soils National Guard Trainee

# **User Selected Options**

From File N:\Shared\Employees Work Folder\Perwak,Jody\Ravenna\Sand Creek\UCLs\NGT DS for UCLs.wst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Arsenic

# General Statistics

Number of Valid Observations 9

### Raw Statistics

Minimum 6 Maximum 155 Mean 28.9 Median 15.4 SD 47.43 Coefficient of Variation 1.641 Skewness 2.965

# Number of Distinct Observations 9

# Log-transformed Statistics

Minimum of Log Data 1.792 Maximum of Log Data 5.043 Mean of log Data 2.803 SD of log Data 0.909

Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

# **Relevant UCL Statistics**

Normal Distribution Test

Shapiro Wilk Test Statistic 0.46 Shapiro Wilk Critical Value 0.829 Data not Normal at 5% Significance Level

# Assuming Normal Distribution

95% Student's-t UCL 58.3 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL 71.6 95% Modified-t UCL 60.9

# Gamma Distribution Test

k star (bias corrected) 0.759 Theta Star 38.09 MLE of Mean 28.9 MLE of Standard Deviation 33.18 nu star 13.66 Approximate Chi Square Value (.05) 6.336 Adjusted Level of Significance 0.0231 Adjusted Chi Square Value 5.322

Anderson-Darling Test Statistic 1.742 Anderson-Darling 5% Critical Value 0.743 Kolmogorov-Smirnov Test Statistic 0.46 Kolmogorov-Smirnov 5% Critical Value 0.287 Data not Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

Potential LICL to Lise

95% Approximate Gamma UCL 62.28 95% Adjusted Gamma UCL 74.16

Use 95% Chebyshev (Mean, Sd) UCL 97.81

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.721

Shapiro Wilk Critical Value 0.829
Data not Lognormal at 5% Significance Level

# Assuming Lognormal Distribution

95% H-UCL 66.26 95% Chebyshev (MVUE) UCL 55.63 97.5% Chebyshev (MVUE) UCL 69.52 99% Chebyshev (MVUE) UCL 96.81

Data Distribution Data do not follow a Discernable Distribution (0.05)

# Nonparametric Statistics

95% CLT UCL 54.9 95% Jackknife UCL 58.3 95% Standard Bootstrap UCL 53.43 95% Bootstrap-t UCL 297.5 95% Hall's Bootstrap UCL 349.6 95% Percentile Bootstrap UCL 60.03 95% BCA Bootstrap UCL 61.93 95% Chebyshev(Mean, Sd) UCL 97.81 97.5% Chebyshev(Mean, Sd) UCL 186.2

# **General Statistics**

# Number of Valid Observations 9

# **Raw Statistics**

Minimum 6.6 Maximum 507 Mean 88.42 Median 40.8 SD 157.4 Coefficient of Variation 1.78 Skewness 2.969

# Number of Distinct Observations 9

# Log-transformed Statistics

Minimum of Log Data 1.887 Maximum of Log Data 6.229 Mean of log Data 3.776 SD of log Data 1.098

# Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

# Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.447 Shapiro Wilk Critical Value 0.829 Data not Normal at 5% Significance Level

# Assuming Normal Distribution

95% Student's-t UCL 186 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 230.2 95% Modified-t UCL 194.6

# Gamma Distribution Test

k star (bias corrected) 0.631 Theta Star 140.1 MLE of Mean 88.42 MLE of Standard Deviation 111.3 nu star 11.36 Approximate Chi Square Value (.05) 4.807 Adjusted Level of Significance 0.0231 Adjusted Chi Square Value 3.948

Anderson-Darling Test Statistic 1.847 Anderson-Darling 5% Critical Value 0.749 Kolmogorov-Smirnov Test Statistic 0.473 Kolmogorov-Smirnov 5% Critical Value 0.288 Data not Gamma Distributed at 5% Significance Level

# Assuming Gamma Distribution

95% Approximate Gamma UCL 208.9 95% Adjusted Gamma UCL 254.4

Potential UCL to Use

Use 99% Chebyshev (Mean, Sd) UCL 610.4

Recommended UCL exceeds the maximum observation

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.719 Shapiro Wilk Critical Value 0.829 Data not Lognormal at 5% Significance Level

# Assuming Lognormal Distribution

95% H-UCL 305.9 95% Chebyshev (MVUE) UCL 193.1 97.5% Chebyshev (MVUE) UCL 245.2 99% Chebyshev (MVUE) UCL 347.5

Data Distribution Data do not follow a Discernable Distribution (0.05)

# Nonparametric Statistics

95% CLT UCL 174.7 95% Jackknife UCL 186 95% Standard Bootstrap UCL 168.7 95% Bootstrap-t UCL 3249 95% Hall's Bootstrap UCL 2199 95% Percentile Bootstrap UCL 191.9 95% BCA Bootstrap UCL 237 95% Chebyshev(Mean, Sd) UCL 317.1 97.5% Chebyshev(Mean, Sd) UCL 416 99% Chebyshev(Mean, Sd) UCL 610.4

# General UCL Statistics for Data Sets with Non-Detects - Sand Creek Discrete Surface Soils - NGT

# User Selected Options

From File N:\Shared\Employees Work Folder\Perwak,Jody\Ravenna\Sand Creek\UCLs\NGT SS Discrete for UCLs rev.wst Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

# Arsenic

# General Statistics

Number of Distinct Observations 21

Minimum of Log Data 1.946

Maximum of Log Data 5.204

Mean of log Data 2.678

SD of log Data 0.625

Log-transformed Statistics

# Raw Statistics

Number of Valid Observations 22

Minimum 7 Maximum 182 Mean 21.04 Median 13.4 SD 36.12 Coefficient of Variation 1.717 Skewness 4.621

# Relevant UCL Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.641 Shapiro Wilk Critical Value 0.911 Data not Lognormal at 5% Significance Level

# Assuming Lognormal Distribution

95% H-UCL 23.65 95% Chebyshev (MVUE) UCL 28.3 97.5% Chebyshev (MVUE) UCL 32.96 99% Chebyshev (MVUE) UCL 42.12

# Data Distribution

Data do not follow a Discernable Distribution (0.05)

# Nonparametric Statistics

95% CLT UCL 33.7 95% Jackknife UCL 34.29 95% Standard Bootstrap UCL 33.75 95% Bootstrap-t UCL 120.3 95% Hall's Bootstrap UCL 98.15 95% Percentile Bootstrap UCL 36.16 95% BCA Bootstrap UCL 44.73 95% Chebyshev(Mean, Sd) UCL 54.6 97.5% Chebyshev(Mean, Sd) UCL 69.12

99% Chebyshev(Mean, Sd) UCL 97.65

Use 95% Chebyshev (Mean, Sd) UCL 54.6

Normal Distribution Test Shapiro Wilk Test Statistic 0.303 Shapiro Wilk Critical Value 0.911 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 34.29

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 41.81 95% Modified-t UCL 35.55

# Gamma Distribution Test

k star (bias corrected) 1.33 Theta Star 15.82 MLE of Mean 21.04 MLE of Standard Deviation 18.24 nu star 58.5 Approximate Chi Square Value (.05) 41.92 Adjusted Level of Significance 0.0386 Adjusted Chi Square Value 40.87

Anderson-Darling Test Statistic 4.105 Anderson-Darling 5% Critical Value 0.759 Kolmogorov-Smirnov Test Statistic 0.365 Kolmogorov-Smirnov 5% Critical Value 0.189

# Data not Gamma Distributed at 5% Significance Level

# Assuming Gamma Distribution

95% Approximate Gamma UCL 29.36 95% Adjusted Gamma UCL 30.11

Potential UCL to Use

# Barium

General Statistics

Number of Valid Observations 22

#### Raw Statistics

Minimum 45 Maximum 932 Mean 124.5 Median 79.05 SD 183.9 Coefficient of Variation 1.477 Skewness 4.407

Shapiro Wilk Test Statistic 0.382

## **Relevant UCL Statistics**

#### Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.786 Shapiro Wilk Critical Value 0.911 Data not Lognormal at 5% Significance Level

# Assuming Lognormal Distribution

95% H-UCL 149.6 95% Chebyshev (MVUE) UCL 179.1 97.5% Chebyshev (MVUE) UCL 209.5 99% Chebyshev (MVUE) UCL 269.2

# Data Distribution

Data do not follow a Discernable Distribution (0.05)

# Nonparametric Statistics

95% CLT UCL 189

- 95% Jackknife UCL 191.9
- 95% Standard Bootstrap UCL 187.2
  - 95% Bootstrap-t UCL 415.9 95% Hall's Bootstrap UCL 432.5
- 95% Percentile Bootstrap UCL 199.7
- 95% BCA Bootstrap UCL 244.8
- 95% Chebyshev(Mean, Sd) UCL 295.4
- 97.5% Chebyshev(Mean, Sd) UCL 369.3
- 99% Chebyshev(Mean, Sd) UCL 514.6

Use 95% Chebyshev (Mean, Sd) UCL 295.4

Shapiro Wilk Critical Value 0.911
Data not Normal at 5% Significance Level

# Assuming Normal Distribution

Normal Distribution Test

95% Student's-t UCL 191.9 **95% UCLs (Adjusted for Skewness)** 95% Adjusted-CLT UCL 228.3 95% Modified-t UCL 198.1

# Gamma Distribution Test

k star (bias corrected) 1.442 Theta Star 86.32 MLE of Mean 124.5 MLE of Standard Deviation 103.7 nu star 63.45 Approximate Chi Square Value (.05) 46.12 Adjusted Level of Significance 0.0386 Adjusted Chi Square Value 45.02

Anderson-Darling Test Statistic 2.51 Anderson-Darling 5% Critical Value 0.758 Kolmogorov-Smirnov Test Statistic 0.261 Kolmogorov-Smirnov 5% Critical Value 0.188 Data not Gamma Distributed at 5% Significance Level

# Assuming Gamma Distribution

95% Approximate Gamma UCL 171.2 95% Adjusted Gamma UCL 175.4

Potential UCL to Use

Number of Distinct Observations 22

# Log-transformed Statistics

Minimum of Log Data 3.807 Maximum of Log Data 6.837 Mean of log Data 4.488 SD of log Data 0.653

# Cadmium

|                                                            | General Sta | tistics                                               |        |
|------------------------------------------------------------|-------------|-------------------------------------------------------|--------|
| Number of Valid Data                                       | 22          | Number of Detected Data                               | 11     |
| Number of Distinct Detected Data                           | 11          | Number of Non-Detect Data                             | 11     |
|                                                            |             | Percent Non-Detects                                   | 50.00% |
|                                                            |             |                                                       |        |
| Raw Statistics                                             |             | Log-transformed Statistics                            |        |
| Minimum Detected                                           | 0.062       | Minimum Detected                                      | -2.781 |
| Maximum Detected                                           | 1.6         | Maximum Detected                                      | 0.47   |
| Mean of Detected                                           | 0.417       | Mean of Detected                                      | -1.169 |
| SD of Detected                                             | 0.411       | SD of Detected                                        | 0.792  |
| Minimum Non-Detect                                         | 0.042       | Minimum Non-Detect                                    | -3.17  |
| Maximum Non-Detect                                         | 0.11        | Maximum Non-Detect                                    | -2.207 |
| Note: Data have multiple DLs - Use of KM Method is recomme | nded        | Number treated as Non-Detect                          | 12     |
| For all methods (except KM, DL/2, and ROS Methods),        |             | Number treated as Detected                            | 10     |
| Observations < Largest ND are treated as NDs               |             | Single DL Non-Detect Percentage                       | 54.55% |
|                                                            |             |                                                       |        |
| Name Distribution Tasta dit Data de divisione Orbe         | UCL Statis  | stics                                                 |        |
| Normal Distribution Test with Detected Values Only         | 0.007       | Lognormal Distribution Test with Detected values Only | 0.010  |
| Shapiro Wilk Test Statistic                                | 0.637       | Shapiro Wilk Test Statistic                           | 0.919  |
| 5% Snapiro Wilk Critical Value                             | 0.85        | 5% Snapiro Wilk Critical Value                        | 0.85   |
| Data not normal at 576 Significance Level                  |             | Data appear Lognormana. 5 % Orginicance Lever         |        |
| Assuming Normal Distribution                               |             | Assuming Lognormal Distribution                       |        |
| DL/2 Substitution Method                                   |             | DL/2 Substitution Method                              |        |
| Mean                                                       | 0.223       | Mean                                                  | -2.42  |
| SD                                                         | 0.347       | SD                                                    | 1.417  |
| 95% DL/2 (t) UCL                                           | 0.35        | 95% H-Stat (DL/2) UCL                                 | 0.458  |
| Maximum Likelihood Estimate(MLE) Method                    |             | Log ROS Method                                        |        |
| Mean                                                       | 0.0007067   | Mean in Log Scale                                     | -2.211 |
| SD                                                         | 0.557       | SD in Log Scale                                       | 1.269  |
| 95% MLE (t) UCL                                            | 0.205       | Mean in Original Scale                                | 0.231  |
| 95% MLE (Tiku) UCL                                         | 0.269       | SD in Original Scale                                  | 0.342  |
|                                                            |             | 95% Percentile Bootstrap UCL                          | 0.358  |
|                                                            |             | 95% BCA Bootstrap UCL                                 | 0.421  |
| Gamma Distribution Test with Detected Values Only          |             | Data Distribution Test with Detected Values Only      |        |
| k star (bias corrected)                                    | 1.398       | Data appear Gamma Distributed at 5% Significance Leve | 1      |
| Theta Star                                                 | 0.299       |                                                       |        |
| nu star                                                    | 30.76       |                                                       |        |
|                                                            |             |                                                       |        |
| A-D Test Statistic                                         | 0.691       | Nonparametric Statistics                              |        |
| 5% A-D Critical Value                                      | 0.74        | Kaplan-Meier (KM) Method                              |        |
| K-S Test Statistic                                         | 0.74        | Mean                                                  | 0.24   |
| 5% K-S Critical Value                                      | 0.259       | SD                                                    | 0.329  |
| Data appear Gamma Distributed at 5% Significance Lev       | /ei         | SE of Mean                                            | 0.0735 |
|                                                            |             | 95% KM (t) UCL                                        | 0.366  |
| Assuming Gamma Distribution                                |             | 95% KM (z) UCL                                        | 0.361  |
| Gamma ROS Statistics using Extrapolated Data               |             | 95% KM (jackknife) UCL                                | 0.348  |

Gamma ROS Statistics using Extrapolated Data Minimum 0.062 95% KM (bootstrap t) UCL Maximum 1.6

0.479

0.454

95% KM (BCA) UCL

| 95% KM (Percentile Bootstrap) UCL | 0.406 |
|-----------------------------------|-------|
| 95% KM (Chebyshev) UCL            | 0.56  |
| 97.5% KM (Chebyshev) UCL          | 0.699 |
| 99% KM (Chebyshev) UCL            | 0.972 |
|                                   |       |

# Potential UCLs to Use

Log-transformed Statistics

95% KM (t) UCL 0.366

Minimum of Log Data 1.569

Maximum of Log Data 3.105

Mean of log Data 2.229

SD of log Data 0.323

Mean 0.417 0.404 Median SD 0.284 3.076 k star Theta star 0.135 135.4 Nu star 109.5 AppChi2 95% Gamma Approximate UCL 0.515 0.523 95% Adjusted Gamma UCL

Note: DL/2 is not a recommended method.

Cobalt

# Number of Distinct Observations 17

Number of Valid Observations 22

General Statistics

#### Raw Statistics

Minimum 4.8 Maximum 22.3 Mean 9.786 Median 9.3 SD 3.534 Coefficient of Variation 0.361 Skewness 2.029

# Normal Distribution Test

Shapiro Wilk Test Statistic 0.801 Shapiro Wilk Critical Value 0.911 Data not Normal at 5% Significance Level

# Assuming Normal Distribution

95% Student's-t UCL 11.08 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 11.37 95% Modified-t UCL 11.14

#### Gamma Distribution Test

k star (bias corrected) 8.463 Theta Star 1.156 MLE of Mean 9.786 MLE of Standard Deviation 3.364 nu star 372.4 Approximate Chi Square Value (.05) 328.6 Adjusted Level of Significance 0.0386 Adjusted Chi Square Value 325.6

Anderson-Darling Test Statistic 0.667 Anderson-Darling 5% Critical Value 0.744 Kolmogorov-Smirnov Test Statistic 0.185 Kolmogorov-Smirnov 5% Critical Value 0.185 Data appear Gamma Distributed at 5% Significance Level

# Assuming Gamma Distribution

95% Approximate Gamma UCL 11.09 95% Adjusted Gamma UCL 11.19

Potential UCL to Use

# Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.932 Shapiro Wilk Critical Value 0.911 Data appear Lognormal at 5% Significance Level

# Assuming Lognormal Distribution

95% H-UCL 11.15 95% Chebyshev (MVUE) UCL 12.74 97.5% Chebyshev (MVUE) UCL 14.02 99% Chebyshev (MVUE) UCL 16.55

Data Distribution

Data appear Gamma Distributed at 5% Significance Level

# Nonparametric Statistics

- 95% CLT UCL 11.03
- 95% Jackknife UCL 11.08
- 95% Standard Bootstrap UCL 10.99 95% Bootstrap-t UCL 11.55
  - 95% Hall's Bootstrap UCL 17.04
- 95% Percentile Bootstrap UCL 11.02
- 95% BCA Bootstrap UCL 11.35
- 95% Chebyshev(Mean, Sd) UCL 13.07
- 97.5% Chebyshev(Mean, Sd) UCL 14.49
- 99% Chebyshev(Mean, Sd) UCL 17.28

Use 95% Approximate Gamma UCL 11.09

**Relevant UCL Statistics**
#### General Statistics

#### Number of Valid Observations 22

#### Raw Statistics

Minimum 8.7 Maximum 325 Mean 47.23 Median 35.3 SD 67.25 Coefficient of Variation 1.424 Skewness 3.747

Shapiro Wilk Test Statistic 0.491

#### Relevant UCL Statistics

#### Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.898 Shapiro Wilk Critical Value 0.911 Data not Lognormal at 5% Significance Level

#### Assuming Lognormal Distribution

95% H-UCL 67.76 95% Chebyshev (MVUE) UCL 79.65 97.5% Chebyshev (MVUE) UCL 95.62 99% Chebyshev (MVUE) UCL 127

#### Data Distribution

Data do not follow a Discernable Distribution (0.05)

#### Nonparametric Statistics

95% CLT UCL 70.81

- 95% Jackknife UCL 71.9
- 95% Standard Bootstrap UCL 69.48
  - 95% Bootstrap-t UCL 141.4
- 95% Hall's Bootstrap UCL 191.8 95% Percentile Bootstrap UCL 74.6
- 0701 Creentile Bootstrap COL 74.0
- 95% BCA Bootstrap UCL 88.2 95% Chebyshev(Mean, Sd) UCL 109.7
- 97.5% Chebyshev(Mean, Sd) UCL 136.8
- 99% Chebyshev(Mean, Sd) UCL 189.9

Use 95% Chebyshev (Mean, Sd) UCL 109.7

Shapiro Wilk Critical Value 0.911
Data not Normal at 5% Significance Level

#### Assuming Normal Distribution

Normal Distribution Test

95% Student's-t UCL 71.9 **95% UCLs (Adjusted for Skewness)** 95% Adjusted-CLT UCL 83.05 95% Modified-t UCL 73.81

#### Gamma Distribution Test

k star (bias corrected) 1.14 Theta Star 41.43 MLE of Mean 47.23 MLE of Standard Deviation 44.23 nu star 50.16 Approximate Chi Square Value (.05) 34.9 Adjusted Level of Significance 0.0386 Adjusted Chi Square Value 33.95

Anderson-Darling Test Statistic 1.553 Anderson-Darling 5% Critical Value 0.764 Kolmogorov-Smirnov Test Statistic 0.259 Kolmogorov-Smirnov 5% Critical Value 0.189 Data not Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

95% Approximate Gamma UCL 67.88 95% Adjusted Gamma UCL 69.78

Potential UCL to Use

Number of Distinct Observations 21

#### Log-transformed Statistics

Minimum of Log Data 2.163 Maximum of Log Data 5.784 Mean of log Data 3.418 SD of log Data 0.847

#### Manganese

General Statistics

Number of Valid Observations 22

#### Raw Statistics

Assuming Normal Distribution

95% UCLs (Adjusted for Skewness)

Gamma Distribution Test

Minimum 244 Maximum 1640 Mean 596.3 Median 480 SD 319.6 Coefficient of Variation 0.536 Skewness 1.962

95% Student's-t UCL 713.6

95% Adjusted-CLT UCL 738.9

95% Modified-t UCL 718.3

k star (bias corrected) 4.229 Theta Star 141 MLE of Mean 596.3

nu star 186.1

MLE of Standard Deviation 290

Adjusted Level of Significance 0.0386 Adjusted Chi Square Value 153.5

Anderson-Darling Test Statistic 0.635

Anderson-Darling 5% Critical Value 0.746

Kolmogorov-Smirnov Test Statistic 0.161

95% Approximate Gamma UCL 713.5 95% Adjusted Gamma UCL 723.2

Kolmogorov-Smirnov 5% Critical Value 0.186

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Potential UCL to Use

Approximate Chi Square Value (.05) 155.5

#### Number of Distinct Observations 21

Log-transformed Statistics

Minimum of Log Data 5.497 Maximum of Log Data 7.402 Mean of log Data 6.284 SD of log Data 0.451

#### Relevant UCL Statistics

Normal Distribution Test Lognormal Distribution Test Shapiro Wilk Test Statistic 0.807 Shapiro Wilk Test Statistic 0.958 Shapiro Wilk Critical Value 0.911 Shapiro Wilk Critical Value 0.911 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level

#### Assuming Lognormal Distribution

95% H-UCL 719.4 95% Chebyshev (MVUE) UCL 846 97.5% Chebyshev (MVUE) UCL 956.5 99% Chebyshev (MVUE) UCL 1174

#### Data Distribution

Data appear Gamma Distributed at 5% Significance Level

#### Nonparametric Statistics

- 95% CLT UCL 708.4
- 95% Jackknife UCL 713.6
- 95% Standard Bootstrap UCL 702.9
- 95% Bootstrap-t UCL 774
- 95% Hall's Bootstrap UCL 873.2
- 95% Percentile Bootstrap UCL 713.5
  - 95% BCA Bootstrap UCL 750.9
- 95% Chebyshev(Mean, Sd) UCL 893.3
- 97.5% Chebyshev(Mean, Sd) UCL 1022
- 99% Chebyshev(Mean, Sd) UCL 1274

Use 95% Approximate Gamma UCL 713.5

### Benzo(a)anthracene

#### **General Statistics**

| Number of Detected Data   | 9      |
|---------------------------|--------|
| Number of Non-Detect Data | 13     |
| Percent Non-Detects       | 59.09% |

#### Number of Valid Data 22 Number of Distinct Detected Data

8

| Raw Statistics                                              |       | Log-transformed Statistics      |        |
|-------------------------------------------------------------|-------|---------------------------------|--------|
| Minimum Detected                                            | 0.046 | Minimum Detected                | -3.079 |
| Maximum Detected                                            | 8.2   | Maximum Detected                | 2.104  |
| Mean of Detected                                            | 1.182 | Mean of Detected                | -1.18  |
| SD of Detected                                              | 2.651 | SD of Detected                  | 1.511  |
| Minimum Non-Detect                                          | 0.4   | Minimum Non-Detect              | -0.916 |
| Maximum Non-Detect                                          | 0.41  | Maximum Non-Detect              | -0.892 |
| Note: Data have multiple DLs - Use of KM Method is recommen | ded   | Number treated as Non-Detect    | 20     |
| For all methods (except KM, DL/2, and ROS Methods),         |       | Number treated as Detected      | 2      |
| Observations < Largest ND are treated as NDs                |       | Single DL Non-Detect Percentage | 90.91% |

#### Warning: There are only 9 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

#### It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

|                                                     | UCL Statistic | S                                                     |        |
|-----------------------------------------------------|---------------|-------------------------------------------------------|--------|
| Normal Distribution Test with Detected Values Only  |               | Lognormal Distribution Test with Detected Values Only |        |
| Shapiro Wilk Test Statistic                         | 0.476         | Shapiro Wilk Test Statistic                           | 0.891  |
| 5% Shapiro Wilk Critical Value                      | 0.829         | 5% Shapiro Wilk Critical Value                        | 0.829  |
| Data not Normal at 5% Significance Level            |               | Data appear Lognormal at 5% Significance Level        |        |
| Assuming Normal Distribution                        |               | Assuming Lognormal Distribution                       |        |
| DL/2 Substitution Method                            |               | DL/2 Substitution Method                              |        |
| Mean                                                | 0.604         | Mean                                                  | -1.421 |
| SD                                                  | 1.708         | SD                                                    | 0.955  |
| 95% DL/2 (t) UCL                                    | 1.231         | 95% H-Stat (DL/2) UCL                                 | 0.736  |
| Maximum Likelihood Estimate(MLE) Method             | N/A           | Log ROS Method                                        |        |
| MLE method failed to converge properly              |               | Mean in Log Scale                                     | -1.519 |
|                                                     |               | SD in Log Scale                                       | 1.218  |
|                                                     |               | Mean in Original Scale                                | 0.634  |
|                                                     |               | SD in Original Scale                                  | 1.71   |
|                                                     |               | 95% Percentile Bootstrap UCL                          | 1.345  |
|                                                     |               | 95% BCA Bootstrap UCL                                 | 1.789  |
| Gamma Distribution Test with Detected Values Only   |               | Data Distribution Test with Detected Values Only      |        |
| k star (bias corrected)                             | 0.391         | Data appear Lognormal at 5% Significance Level        |        |
| Theta Star                                          | 3.022         |                                                       |        |
| nu star                                             | 7.038         |                                                       |        |
| A-D Test Statistic                                  | 1.169         | Nonparametric Statistics                              |        |
| 5% A-D Critical Value                               | 0.775         | Kaplan-Meier (KM) Method                              |        |
| K-S Test Statistic                                  | 0.775         | Mean                                                  | 0.596  |
| 5% K-S Critical Value                               | 0.295         | SD                                                    | 1.673  |
| Data not Gamma Distributed at 5% Significance Level |               | SE of Mean                                            | 0.379  |
|                                                     |               | 95% KM (t) UCL                                        | 1.249  |
| Assuming Gamma Distribution                         |               | 95% KM (z) UCL                                        | 1.22   |
| Gamma ROS Statistics using Extrapolated Data        |               | 95% KM (jackknife) UCL                                | 1.227  |
| Minimum                                             | 0.046         | 95% KM (bootstrap t) UCL                              | 4.963  |
| Maximum                                             | 8.2           | 95% KM (BCA) UCL                                      | 1.329  |
| Mean                                                | 1.194         | 95% KM (Percentile Bootstrap) UCL                     | 1.305  |
| Median                                              | 0.828         | 95% KM (Chebyshev) UCL                                | 2.25   |
| SD                                                  | 1.678         | 97.5% KM (Chebyshev) UCL                              | 2.965  |
| k star                                              | 0.873         | 99% KM (Chebyshev) UCL                                | 4.371  |
| Theta star                                          | 1.368         |                                                       |        |
| Nu star                                             | 38.42         | Potential UCLs to Use                                 |        |

25.22

1.819

1.878

#### .965

| 97.5% KM (Ch | byshev) UCL 2 |
|--------------|---------------|
|--------------|---------------|

# Nu star

- AppChi2 95% Gamma Approximate UCL
- 95% Adjusted Gamma UCL

#### Benzo(a)pyrene

| General Statistics                                           |             |                                                       |        |  |
|--------------------------------------------------------------|-------------|-------------------------------------------------------|--------|--|
| Number of Valid Data                                         | 22          | Number of Detected Data                               | 10     |  |
| Number of Distinct Detected Data                             | 10          | Number of Non-Detect Data                             | 12     |  |
|                                                              |             | Percent Non-Detects                                   | 54.55% |  |
| Raw Statistics                                               |             | Log-transformed Statistics                            |        |  |
| Minimum Detected                                             | 0.035       | -<br>Minimum Detected                                 | -3.352 |  |
| Maximum Detected                                             | 8.3         | Maximum Detected                                      | 2.116  |  |
| Mean of Detected                                             | 1.118       | Mean of Detected                                      | -1.302 |  |
| SD of Detected                                               | 2.55        | SD of Detected                                        | 1.603  |  |
| Minimum Non-Detect                                           | 0.4         | Minimum Non-Detect                                    | -0.916 |  |
| Maximum Non-Detect                                           | 0.41        | Maximum Non-Detect                                    | -0.892 |  |
| Note: Data have multiple DLs - Use of KM Method is recommen- | ded         | Number treated as Non-Detect                          | 19     |  |
| For all methods (except KM, DL/2, and ROS Methods),          |             | Number treated as Detected                            | 3      |  |
| Observations < Largest ND are treated as NDs                 |             | Single DL Non-Detect Percentage                       | 86.36% |  |
|                                                              | UCL Statist | ics                                                   |        |  |
| Normal Distribution Test with Detected Values Only           |             | Lognormal Distribution Test with Detected Values Only |        |  |
| Shapiro Wilk Test Statistic                                  | 0.47        | Shapiro Wilk Test Statistic                           | 0.925  |  |
| 5% Shapiro Wilk Critical Value                               | 0.842       | 5% Shapiro Wilk Critical Value                        | 0.842  |  |
| Data not Normal at 5% Significance Level                     |             | Data appear Lognormal at 5% Significance Level        |        |  |
| ·                                                            |             |                                                       |        |  |
| Assuming Normal Distribution                                 |             | Assuming Lognormal Distribution                       |        |  |
| DL/2 Substitution Method                                     |             | DL/2 Substitution Method                              |        |  |
| Mean                                                         | 0.619       | Mean                                                  | -1.458 |  |
| SD                                                           | 1.733       | SD                                                    | 1.06   |  |
| 95% DL/2 (t) UCL                                             | 1.255       | 95% H-Stat (DL/2) UCL                                 | 0.874  |  |
| Maximum Likelihood Estimate(MLE) Method                      | N/A         | Log ROS Method                                        |        |  |
| MLE yields a negative mean                                   |             | Mean in Log Scale                                     | -1.724 |  |
|                                                              |             | SD in Log Scale                                       | 1.322  |  |
|                                                              |             | Mean in Original Scale                                | 0.608  |  |
|                                                              |             | SD in Original Scale                                  | 1.74   |  |
|                                                              |             | 95% Percentile Bootstrap UCL                          | 1.305  |  |
|                                                              |             | 95% BCA Bootstrap UCL                                 | 1.749  |  |
| Gamma Distribution Test with Detected Values Only            |             | Data Distribution Test with Detected Values Only      |        |  |
| k star (bias corrected)                                      | 0.386       | Data appear Lognormal at 5% Significance Level        |        |  |
| Theta Star                                                   | 2.897       |                                                       |        |  |
| nu star                                                      | 7.717       |                                                       |        |  |
| A-D Test Statistic                                           | 1.05        | Nonparametric Statistics                              |        |  |
| 5% A-D Critical Value                                        | 0.785       | Kaplan-Meier (KM) Method                              |        |  |
| K-S Test Statistic                                           | 0.785       | Mean                                                  | 0.599  |  |
| 5% K-S Critical Value                                        | 0.282       | SD                                                    | 1.7    |  |
| Data not Gamma Distributed at 5% Significance Level          |             | SE of Mean                                            | 0.383  |  |
| -                                                            |             | 95% KM (t) UCL                                        | 1.259  |  |
| Assuming Gamma Distribution                                  |             | 95% KM (z) UCL                                        | 1.229  |  |
| Gamma ROS Statistics using Extrapolated Data                 |             | 95% KM (jackknife) UCL                                | 1.24   |  |
| Minimum                                                      | 1E-09       | 95% KM (bootstrap t) UCL                              | 5.024  |  |
| Maximum                                                      | 8.3         | 95% KM (BCA) UCL                                      | 1.326  |  |
| Mean                                                         | 1.089       | 95% KM (Percentile Bootstrap) UCL                     | 1.314  |  |

95% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use

2.27

2.993

4.413

2.993

| Maximum                   | 8.3   |
|---------------------------|-------|
| Mean                      | 1.089 |
| Median                    | 0.607 |
| SD                        | 1.732 |
| k star                    | 0.366 |
| Theta star                | 2.98  |
| Nu star                   | 16.09 |
| AppChi2                   | 8.022 |
| 95% Gamma Approximate UCL | 2.184 |

95% Gamma Approximate UCL2.18495% Adjusted Gamma UCL2.306

#### Benzo(b)fluoranthene

| General Statistics                                           |          |                                                             |        |  |
|--------------------------------------------------------------|----------|-------------------------------------------------------------|--------|--|
| Number of Valid Data                                         | 22       | Number of Detected Data                                     | 11     |  |
| Number of Distinct Detected Data                             | 11       | Number of Non-Detect Data                                   | 11     |  |
|                                                              |          | Percent Non-Detects                                         | 50.00% |  |
|                                                              |          |                                                             |        |  |
| Raw Statistics                                               |          | Log-transformed Statistics                                  |        |  |
| Minimum Detected                                             | 0.039    | Minimum Detected                                            | -3.244 |  |
| Maximum Detected                                             | 13       | Maximum Detected                                            | 2.565  |  |
| Mean of Detected                                             | 1.714    | Mean of Detected                                            | -0.937 |  |
| SD of Detected                                               | 3.819    | SD of Detected                                              | 1.741  |  |
| Minimum Non-Detect                                           | 0.4      | Minimum Non-Detect                                          | -0.916 |  |
| Maximum Non-Detect                                           | 0.41     | Maximum Non-Detect                                          | -0.892 |  |
|                                                              |          |                                                             |        |  |
| Note: Data have multiple DLs - Use of KM Method is recommend | ded      | Number treated as Non-Detect                                | 16     |  |
| For all methods (except KM, DL/2, and ROS Methods),          |          | Number treated as Detected                                  | 6      |  |
| Observations < Largest ND are treated as NDs                 |          | Single DL Non-Detect Percentage                             | 72.73% |  |
|                                                              |          | lation                                                      |        |  |
| Normal Distribution Test with Detected Values Only           | UCL SIAL | I ognormal Distribution Test with Detected Values Only      |        |  |
| Shaniro Wilk Test Statistic                                  | 0.486    | Shaniro Wilk Test Statistic                                 | 0 952  |  |
| 5% Shapiro Wilk Critical Value                               | 0.400    | 5% Shapiro Wilk Critical Value                              | 0.85   |  |
| Data not Normal at 5% Significance   evel                    | 0.00     | Data appear I ognormal at 5% Significance I evel            | 0.00   |  |
|                                                              |          |                                                             |        |  |
| Assuming Normal Distribution                                 |          | Assuming Lognormal Distribution                             |        |  |
| DL/2 Substitution Method                                     |          | DL/2 Substitution Method                                    |        |  |
| Mean                                                         | 0.959    | Mean                                                        | -1.263 |  |
| SD                                                           | 2.746    | SD                                                          | 1.247  |  |
| 95% DL/2 (t) UCL                                             | 1.967    | 95% H-Stat (DL/2) UCL                                       | 1.355  |  |
|                                                              |          |                                                             |        |  |
| Maximum Likelihood Estimate(MLE) Method                      | N/A      | Log ROS Method                                              |        |  |
| MLE yields a negative mean                                   |          | Mean in Log Scale                                           | -1.703 |  |
|                                                              |          | SD in Log Scale                                             | 1.593  |  |
|                                                              |          | Mean in Original Scale                                      | 0.919  |  |
|                                                              |          | SD in Original Scale                                        | 2.759  |  |
|                                                              |          | 95% Percentile Bootstrap UCL                                | 2.034  |  |
|                                                              |          | 95% BCA Bootstrap UCL                                       | 2.799  |  |
| Commo Distribution Test with Detected Values Only            |          | Date Distribution Test with Datested Values Only            |        |  |
| k star (bias corrected)                                      | 0.38     | Data Distribution Test with Detected Values Only            | avel   |  |
| Theta Star                                                   | 4 511    | Data Poliow Appr. Gamma Distribution at 5 % Significance Le | 5401   |  |
| nu star                                                      | 8.36     |                                                             |        |  |
|                                                              | 0.50     |                                                             |        |  |
| A-D Test Statistic                                           | 0.811    | Nonparametric Statistics                                    |        |  |
| 5% A-D Critical Value                                        | 0.793    | Kaplan-Meier (KM) Method                                    |        |  |
| K-S Test Statistic                                           | 0.793    | Mean                                                        | 0.92   |  |
| 5% K-S Critical Value                                        | 0.271    | SD                                                          | 2.695  |  |
| Data follow Appr. Gamma Distribution at 5% Significance Le   | vel      | SE of Mean                                                  | 0.603  |  |
|                                                              |          | 95% KM (t) UCL                                              | 1.958  |  |
| Assuming Gamma Distribution                                  |          | 95% KM (z) UCL                                              | 1.913  |  |
| Gamma ROS Statistics using Extrapolated Data                 |          | 95% KM (jackknife) UCL                                      | 1.934  |  |

95% KM (jackknife) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

95% KM (t) UCL

95% KM (Percentile Bootstrap) UCL

Potential UCLs to Use

95% KM (BCA) UCL

1.934

9.014

2.055

2.048

3.55

4.688

6.923

1.958

|             | •                                 |       |
|-------------|-----------------------------------|-------|
| Gamma ROS S | tatistics using Extrapolated Data |       |
|             | Minimum                           | 1E-09 |
|             | Maximum                           | 13    |
|             | Mean                              | 1.587 |
|             | Median                            | 0.967 |
|             | SD                                | 2.688 |
|             | k star                            | 0.366 |
|             | Theta star                        | 4.333 |
|             | Nu star                           | 16.12 |
|             | AppChi2                           | 8.045 |
|             | 95% Gamma Approximate UCL         | 3.18  |
|             | 95% Adjusted Gamma UCL            | 3.357 |
|             |                                   |       |

#### Dibenzo(a,h)anthracene

|                                                             | General S | tatistics                       |        |
|-------------------------------------------------------------|-----------|---------------------------------|--------|
| Number of Valid Data                                        | 22        | Number of Detected Data         | 5      |
| Number of Distinct Detected Data                            | 5         | Number of Non-Detect Data       | 17     |
|                                                             |           | Percent Non-Detects             | 77.27% |
| Raw Statistics                                              |           | Log-transformed Statistics      |        |
| Minimum Detected                                            | 0.032     | Minimum Detected                | -3.442 |
| Maximum Detected                                            | 0.55      | Maximum Detected                | -0.598 |
| Mean of Detected                                            | 0.156     | Mean of Detected                | -2.496 |
| SD of Detected                                              | 0.222     | SD of Detected                  | 1.153  |
| Minimum Non-Detect                                          | 0.4       | Minimum Non-Detect              | -0.916 |
| Maximum Non-Detect                                          | 0.42      | Maximum Non-Detect              | -0.868 |
| Note: Data have multiple DLs - Use of KM Method is recommer | nded      | Number treated as Non-Detect    | 21     |
| For all methods (except KM, DL/2, and ROS Methods),         |           | Number treated as Detected      | 1      |
| Observations < Largest ND are treated as NDs                |           | Single DL Non-Detect Percentage | 95.45% |

#### Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

#### It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

|                                                    | UCL Statisti | CS                                                    |        |
|----------------------------------------------------|--------------|-------------------------------------------------------|--------|
| Normal Distribution Test with Detected Values Only |              | Lognormal Distribution Test with Detected Values Only |        |
| Shapiro Wilk Test Statistic                        | 0.656        | Shapiro Wilk Test Statistic                           | 0.858  |
| 5% Shapiro Wilk Critical Value                     | 0.762        | 5% Shapiro Wilk Critical Value                        | 0.762  |
| Data not Normal at 5% Significance Level           |              | Data appear Lognormal at 5% Significance Level        |        |
| Assuming Normal Distribution                       |              | Assuming Lognormal Distribution                       |        |
| DL/2 Substitution Method                           |              | DL/2 Substitution Method                              |        |
| Mean                                               | 0.193        | Mean                                                  | -1.794 |
| SD                                                 | 0.0992       | SD                                                    | 0.637  |
| 95% DL/2 (t) UCL                                   | 0.23         | 95% H-Stat (DL/2) UCL                                 | 0.397  |
| Maximum Likelihood Estimate(MLE) Method            | N/A          | Log ROS Method                                        |        |
| MLE method failed to converge properly             |              | Mean in Log Scale                                     | -2.832 |
|                                                    |              | SD in Log Scale                                       | 0.847  |
|                                                    |              | Mean in Original Scale                                | 0.0883 |
|                                                    |              | SD in Original Scale                                  | 0.113  |
|                                                    |              | 95% Percentile Bootstrap UCL                          | 0.133  |
|                                                    |              | 95% BCA Bootstrap UCL                                 | 0.16   |

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

#### Nonparametric Statistics

| Kaplan-Meier (KM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.0794 |
| SD                                | 0.106  |
| SE of Mean                        | 0.0284 |
| 95% KM (t) UCL                    | 0.128  |
| 95% KM (z) UCL                    | 0.126  |
| 95% KM (jackknife) UCL            | 0.128  |
| 95% KM (bootstrap t) UCL          | 0.232  |
| 95% KM (BCA) UCL                  | 0.136  |
| 95% KM (Percentile Bootstrap) UCL | 0.129  |
| 95% KM (Chebyshev) UCL            | 0.203  |
| 97.5% KM (Chebyshev) UCL          | 0.257  |
| 99% KM (Chebyshev) UCL            | 0.362  |
|                                   |        |
| Potential UCLs to Use             |        |
| 95% KM (t) UCL                    | 0.128  |

#### Gamma Distribution Test with Detected Values Only k star (bias corrected)

Theta Star 0.311 nu star 5.004

0.5

- A-D Test Statistic 0.629
- 5% A-D Critical Value 0.694
- K-S Test Statistic 0.694 5% K-S Critical Value 0.365
- Data appear Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

| Gamma ROS Statistics using Extrapolated Data |       |
|----------------------------------------------|-------|
| Minimum                                      | 1E-09 |
| Maximum                                      | 0.55  |
| Mean                                         | 0.143 |
| Median                                       | 0.146 |
| SD                                           | 0.115 |
| k star                                       | 0.538 |
| Theta star                                   | 0.267 |
| Nu star                                      | 23.65 |
| AppChi2                                      | 13.59 |
| 95% Gamma Approximate UCL                    | 0.25  |
| 95% Adjusted Gamma UCL                       | 0.261 |
|                                              |       |

#### General UCL Statistics for Full Data Sets - Sand Creek Deep Soils - RF

#### **User Selected Options**

 From File
 N:\Shared\Employees Work Folder\Perwak,Jody\Ravenna\Sand Creek\UCLs\RF DS for UCLs all detects.wst

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Copper

#### General Statistics

Number of Valid Observations 40

#### **Raw Statistics**

Minimum 11.5 Maximum 2020 Mean 78.96 Median 17.7 SD 317.1 Coefficient of Variation 4.016 Skewness 6.187

#### Number of Distinct Observations 32

#### Log-transformed Statistics

Minimum of Log Data 2.442 Maximum of Log Data 7.611 Mean of log Data 3.182 SD of log Data 0.936

#### **Relevant UCL Statistics**

#### Normal Distribution Test

Shapiro Wilk Test Statistic 0.212 Shapiro Wilk Critical Value 0.94

#### Data not Normal at 5% Significance Level

#### Assuming Normal Distribution

95% Student's-t UCL 163.4

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 213.8 95% Modified-t UCL 171.6

#### Gamma Distribution Test

k star (bias corrected) 0.507 Theta Star 155.7 MLE of Mean 78.96 MLE of Standard Deviation 110.9 nu star 40.58 Approximate Chi Square Value (.05) 26.98 Adjusted Level of Significance 0.044 Adjusted Chi Square Value 26.56

Anderson-Darling Test Statistic 10.51 Anderson-Darling 5% Critical Value 0.81 Kolmogorov-Smirnov Test Statistic 0.445 Kolmogorov-Smirnov 5% Critical Value 0.147 Data not Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

95% Approximate Gamma UCL 118.7 95% Adjusted Gamma UCL 120.6

Potential UCL to Use

#### Lognormal Distribution Test Shapiro Wilk Test Statistic 0.543 Shapiro Wilk Critical Value 0.94

Data not Lognormal at 5% Significance Level

#### Assuming Lognormal Distribution

95% H-UCL 52.97 95% Chebyshev (MVUE) UCL 64 97.5% Chebyshev (MVUE) UCL 75.79 99% Chebyshev (MVUE) UCL 98.93

#### Data Distribution

Data do not follow a Discernable Distribution (0.05)

#### Nonparametric Statistics

95% CLT UCL 161.4 95% Jackknife UCL 163.4 95% Standard Bootstrap UCL 161.9 95% Bootstrap-t UCL 893.9 95% Hall's Bootstrap UCL 809 95% Percentile Bootstrap UCL 178 95% BCA Bootstrap UCL 236.6 95% Chebyshev(Mean, Sd) UCL 297.5 97.5% Chebyshev(Mean, Sd) UCL 392.1 99% Chebyshev(Mean, Sd) UCL 577.8

Use 95% Chebyshev (Mean, Sd) UCL 297.5

#### General Statistics

Number of Valid Observations 40

#### **Raw Statistics**

Minimum 6.6 Maximum 907 Mean 75.11 Median 37.95 SD 161.7 Coefficient of Variation 2.153 Skewness 4.265

#### **Relevant UCL Statistics**

#### Normal Distribution Test

Shapiro Wilk Test Statistic 0.389 Shapiro Wilk Critical Value 0.94 Data not Normal at 5% Significance Level

#### Assuming Normal Distribution

95% Student's-t UCL 118.2 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 135.6 95% Modified-t UCL 121.1

#### Gamma Distribution Test

k star (bias corrected) 0.744 Theta Star 101 MLE of Mean 75.11 MLE of Standard Deviation 87.08 nu star 59.51 Approximate Chi Square Value (.05) 42.77 Adjusted Level of Significance 0.044 Adjusted Chi Square Value 42.24

Anderson-Darling Test Statistic 5.177 Anderson-Darling 5% Critical Value 0.788 Kolmogorov-Smirnov Test Statistic 0.37 Kolmogorov-Smirnov 5% Critical Value 0.145 Data not Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

95% Approximate Gamma UCL 104.5 95% Adjusted Gamma UCL 105.8

Potential UCL to Use

Number of Distinct Observations 38

#### Log-transformed Statistics

Minimum of Log Data 1.887 Maximum of Log Data 6.81 Mean of log Data 3.562 SD of log Data 1.018

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.838 Shapiro Wilk Critical Value 0.94 Data not Lognormal at 5% Significance Level

#### Assuming Lognormal Distribution

95% H-UCL 87.98 95% Chebyshev (MVUE) UCL 105.8 97.5% Chebyshev (MVUE) UCL 126.5 99% Chebyshev (MVUE) UCL 167

#### Data Distribution

Data do not follow a Discernable Distribution (0.05)

#### **Nonparametric Statistics**

95% CLT UCL 117.2 95% Jackknife UCL 118.2 95% Standard Bootstrap UCL 115.8 95% Bootstrap-t UCL 192.1 95% Hall's Bootstrap UCL 217.9 95% Percentile Bootstrap UCL 120.3 95% BCA Bootstrap UCL 139 95% Chebyshev(Mean, Sd) UCL 186.6 97.5% Chebyshev(Mean, Sd) UCL 234.8 99% Chebyshev(Mean, Sd) UCL 329.5

Use 99% Chebyshev (Mean, Sd) UCL 329.5

#### Vanadium

#### **General Statistics**

Number of Valid Observations 40

#### **Raw Statistics**

Minimum 12.6 Maximum 173 Mean 20.96 Median 16.6 SD 25.05 Coefficient of Variation 1.195 Skewness 6.039

#### Number of Distinct Observations 28

#### Log-transformed Statistics

Minimum of Log Data 2.534 Maximum of Log Data 5.153 Mean of log Data 2.873 SD of log Data 0.418

#### **Relevant UCL Statistics**

#### Normal Distribution Test

Shapiro Wilk Test Statistic 0.261 Shapiro Wilk Critical Value 0.94 Data not Normal at 5% Significance Level

#### Assuming Normal Distribution

95% Student's-t UCL 27.64 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 31.52 95% Modified-t UCL 28.27

#### Gamma Distribution Test

k star (bias corrected) 2.888 Theta Star 7.26 MLE of Mean 20.96 MLE of Standard Deviation 12.34 nu star 231 Approximate Chi Square Value (.05) 196.8 Adjusted Level of Significance 0.044 Adjusted Chi Square Value 195.6

Anderson-Darling Test Statistic 8.23 Anderson-Darling 5% Critical Value 0.754 Kolmogorov-Smirnov Test Statistic 0.367 Kolmogorov-Smirnov 5% Critical Value 0.14 Data not Gamma Distributed at 5% Significance Level

#### Assuming Gamma Distribution

95% Approximate Gamma UCL 24.6 95% Adjusted Gamma UCL 24.75

#### Potential UCL to Use

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.515 Shapiro Wilk Critical Value 0.94 Data not Lognormal at 5% Significance Level

#### Assuming Lognormal Distribution

95% H-UCL 21.86 95% Chebyshev (MVUE) UCL 24.99 97.5% Chebyshev (MVUE) UCL 27.47 99% Chebyshev (MVUE) UCL 32.34

#### Data Distribution

Data do not follow a Discernable Distribution (0.05)

#### Nonparametric Statistics

95% CLT UCL 27.48 95% Jackknife UCL 27.64 95% Standard Bootstrap UCL 27.43 95% Bootstrap-t UCL 76.66 95% Hall's Bootstrap UCL 59.54 95% Percentile Bootstrap UCL 28.54 95% BCA Bootstrap UCL 36.41 95% Chebyshev(Mean, Sd) UCL 38.23 97.5% Chebyshev(Mean, Sd) UCL 45.7 99% Chebyshev(Mean, Sd) UCL 60.37

> Use 95% Student's-t UCL 27.64 or 95% Modified-t UCL 28.27

#### General UCL Statistics for Data Sets with Non-Detects - Sand Creek Deep Soils - RF (some NDs)

#### **User Selected Options**

 From File
 N:\Shared\Employees Work Folder\Perwak,Jody\Ravenna\Sand Creek\UCLs\RF DS for UCLs some nds.wst

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Antimony

|                                                              | General Stati | stics                                                 |         |
|--------------------------------------------------------------|---------------|-------------------------------------------------------|---------|
| Number of Valid Data                                         | 40            | Number of Detected Data                               | 27      |
| Number of Distinct Detected Data                             | 24            | Number of Non-Detect Data                             | 13      |
|                                                              |               | Percent Non-Detects                                   | 32.50%  |
| Daw Statistics                                               |               | Log-transformed Statistics                            |         |
| Minimum Detected                                             | 0 11          | Log-subsidience of added                              | -2 207  |
| Maximum Detected                                             | 11.2          | Maximum Detected                                      | 2 4 1 6 |
| Mean of Detected                                             | 1 375         | Mean of Detected                                      | _0 134  |
| SD of Detected                                               | 2.086         | SD of Detected                                        | 0.878   |
| Minimum Non-Detect                                           | 0.27          | Minimum Non-Detect                                    | -1 309  |
| Maximum Non-Detect                                           | 1.4           | Maximum Non-Detect                                    | 0.336   |
|                                                              |               |                                                       |         |
| Note: Data have multiple DLs - Use of KM Method is recommend | ed            | Number treated as Non-Detect                          | 33      |
| For all methods (except KM, DL/2, and ROS Methods),          |               | Number treated as Detected                            | 7       |
| Observations < Largest ND are treated as NDs                 |               | Single DL Non-Detect Percentage                       | 82.50%  |
|                                                              | UCL Statist   | ics                                                   |         |
| Normal Distribution Test with Detected Values Only           |               | Lognormal Distribution Test with Detected Values Only |         |
| Shapiro Wilk Test Statistic                                  | 0.464         | Shapiro Wilk Test Statistic                           | 0.953   |
| 5% Shapiro Wilk Critical Value                               | 0.923         | 5% Shapiro Wilk Critical Value                        | 0.923   |
| Data not Normal at 5% Significance Level                     |               | Data appear Lognormal at 5% Significance Level        |         |
| Assuming Normal Distribution                                 |               | Assuming Lognormal Distribution                       |         |
| DL/2 Substitution Method                                     |               | DL/2 Substitution Method                              |         |
| Mean                                                         | 1.029         | Mean                                                  | -0.533  |
| SD                                                           | 1.78          | SD                                                    | 0.985   |
| 95% DL/2 (t) UCL                                             | 1.503         | 95% H-Stat (DL/2) UCL                                 | 1.255   |
| Maximum Likelihood Estimate(MLE) Method                      | N/A           | Log ROS Method                                        |         |

Mean in Log Scale

Mean in Original Scale

95% BCA Bootstrap UCL

95% Percentile Bootstrap UCL

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

SD in Original Scale

SD in Log Scale

-0.534

0.962

1.021

1.782

1.522

1.82

#### MLE yields a negative mean

| Gamma Distribution Test with Detected Values Only |  |
|---------------------------------------------------|--|

| k star (bias corrected) | 1.131 |
|-------------------------|-------|
| Theta Star              | 1.216 |
| nu star                 | 61.08 |

| A-D Test Statistic                                  | 1.398 | Nonparametric Statistics          |       |
|-----------------------------------------------------|-------|-----------------------------------|-------|
| 5% A-D Critical Value                               | 0.768 | Kaplan-Meier (KM) Method          |       |
| K-S Test Statistic                                  | 0.768 | Mean                              | 1.028 |
| 5% K-S Critical Value                               | 0.172 | SD                                | 1.759 |
| Data not Gamma Distributed at 5% Significance Level |       | SE of Mean                        | 0.284 |
|                                                     |       | 95% KM (t) UCL                    | 1.507 |
| Assuming Gamma Distribution                         |       | 95% KM (z) UCL                    | 1.496 |
| Gamma ROS Statistics using Extrapolated Data        |       | 95% KM (jackknife) UCL            | 1.505 |
| Minimum                                             | 1E-09 | 95% KM (bootstrap t) UCL          | 2.322 |
| Maximum                                             | 11.2  | 95% KM (BCA) UCL                  | 1.601 |
| Mean                                                | 1.159 | 95% KM (Percentile Bootstrap) UCL | 1.547 |
| Median                                              | 0.77  | 95% KM (Chebyshev) UCL            | 2.267 |
| SD                                                  | 1.776 | 97.5% KM (Chebyshev) UCL          | 2.803 |
| k star                                              | 0.346 | 99% KM (Chebyshev) UCL            | 3.856 |
| Theta star                                          | 3.348 |                                   |       |
| Nu star                                             | 27.68 | Potential UCLs to Use             |       |
| AppChi2                                             | 16.68 | 95% KM (BCA) UCL                  | 1.601 |
| 95% Gamma Approximate UCL                           | 1.923 |                                   |       |

1.96

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

Arsenic

|                                  | General Sta | tistics                    |       |
|----------------------------------|-------------|----------------------------|-------|
| Number of Valid Data             | 40          | Number of Detected Data    | 39    |
| Number of Distinct Detected Data | 35          | Number of Non-Detect Data  | 1     |
|                                  |             | Percent Non-Detects        | 2.50% |
| Raw Statistics                   |             | Log-transformed Statistics |       |
| Minimum Detected                 | 6           | Minimum Detected           | 1.792 |
| Maximum Detected                 | 182         | Maximum Detected           | 5.204 |
| Mean of Detected                 | 21.6        | Mean of Detected           | 2.703 |
| SD of Detected                   | 34.93       | SD of Detected             | 0.644 |
| Minimum Non-Detect               | 1.8         | Minimum Non-Detect         | 0.588 |
| Maximum Non-Detect               | 1.8         | Maximum Non-Detect         | 0.588 |

|                                                    | UCL Statistic | S                                                     |       |
|----------------------------------------------------|---------------|-------------------------------------------------------|-------|
| Normal Distribution Test with Detected Values Only |               | Lognormal Distribution Test with Detected Values Only |       |
| Shapiro Wilk Test Statistic                        | 0.339         | Shapiro Wilk Test Statistic                           | 0.686 |
| 5% Shapiro Wilk Critical Value                     | 0.939         | 5% Shapiro Wilk Critical Value                        | 0.939 |
| Data not Normal at 5% Significance Level           |               | Data not Lognormal at 5% Significance Level           |       |
| Assuming Normal Distribution                       |               | Assuming Lognormal Distribution                       |       |
| DL/2 Substitution Method                           |               | DL/2 Substitution Method                              |       |
| Mean                                               | 21.08         | Mean                                                  | 2.633 |
| SD                                                 | 34.64         | SD                                                    | 0.775 |
| 95% DL/2 (t) UCL                                   | 30.31         | 95% H-Stat (DL/2) UCL                                 | 23.54 |
| Maximum Likelihood Estimate(MLE) Method            |               | Log ROS Method                                        |       |
| Mean                                               | 20.55         | Mean in Log Scale                                     | 2.669 |
| SD                                                 | 34.78         | SD in Log Scale                                       | 0.67  |
| 95% MLE (t) UCL                                    | 29.82         | Mean in Original Scale                                | 21.15 |
| 95% MLE (Tiku) UCL                                 | 28.94         | SD in Original Scale                                  | 34.6  |
|                                                    |               | 95% Percentile Bootstrap UCL                          | 31.88 |
|                                                    |               | 95% BCA Bootstrap UCL                                 | 36.28 |

| Data Distribution Test with Detected Values Only     |
|------------------------------------------------------|
| Data do not follow a Discernable Distribution (0.05) |

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean

SE of Mean

95% KM (t) UCL

95% KM (z) UCL

95% KM (BCA) UCL

95% KM (jackknife) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

95% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

Potential UCLs to Use

SD

21.21

34.14

5.468

30.42

30.2

30.4

93.56

31.18

30.61

45.04

55.35

75.61

45.04

| Gamma Distribution Test with Detected Values Only |  |
|---------------------------------------------------|--|
| k star (bias corrected)                           |  |

| k star (bias corrected)                             | 1.399 |
|-----------------------------------------------------|-------|
| Theta Star                                          | 15.43 |
| nu star                                             | 109.1 |
|                                                     |       |
| A-D Test Statistic                                  | 6.718 |
| 5% A-D Critical Value                               | 0.766 |
| K-S Test Statistic                                  | 0.766 |
| 5% K-S Critical Value                               | 0.144 |
| Data not Gamma Distributed at 5% Significance Level | I     |
|                                                     |       |
| Assuming Gamma Distribution                         |       |
| Gamma ROS Statistics using Extrapolated Data        |       |
| Minimum                                             | 1E-09 |
| Maximum                                             | 182   |
| Mean                                                | 21.06 |
| Median                                              | 14.85 |
| SD                                                  | 34.65 |
| k star                                              | 0.623 |
| Theta star                                          | 33.78 |
| Nu star                                             | 49.86 |
| AppChi2                                             | 34.65 |

95% Gamma Approximate UCL 95% Adjusted Gamma UCL

Note: DL/2 is not a recommended method.

Thallium

|                                                              | General Sta | itistics                        |        |
|--------------------------------------------------------------|-------------|---------------------------------|--------|
| Number of Valid Data                                         | 40          | Number of Detected Data         | 30     |
| Number of Distinct Detected Data                             | 21          | Number of Non-Detect Data       | 10     |
|                                                              |             | Percent Non-Detects             | 25.00% |
| Raw Statistics                                               |             | Log-transformed Statistics      |        |
| Minimum Detected                                             | 0.34        | Minimum Detected                | -1.079 |
| Maximum Detected                                             | 17.3        | Maximum Detected                | 2.851  |
| Mean of Detected                                             | 2.132       | Mean of Detected                | 0.398  |
| SD of Detected                                               | 3.023       | SD of Detected                  | 0.749  |
| Minimum Non-Detect                                           | 0.28        | Minimum Non-Detect              | -1.273 |
| Maximum Non-Detect                                           | 0.29        | Maximum Non-Detect              | -1.238 |
| Note: Data have multiple DLs - Use of KM Method is recommend | ed          | Number treated as Non-Detect    | 10     |
| For all methods (except KM, DL/2, and ROS Methods),          |             | Number treated as Detected      | 30     |
| Observations < Largest ND are treated as NDs                 |             | Single DL Non-Detect Percentage | 25.00% |

#### UCL Statistics

30.3

30.72

| Normal Distribution Test with Detected Values Only |       | Lognormal Distribution Test with Detected Values Only |       |
|----------------------------------------------------|-------|-------------------------------------------------------|-------|
| Shapiro Wilk Test Statistic                        | 0.431 | Shapiro Wilk Test Statistic                           | 0.91  |
| 5% Shapiro Wilk Critical Value                     | 0.927 | 5% Shapiro Wilk Critical Value                        | 0.927 |
| Data not Normal at 5% Significance Level           |       | Data not Lognormal at 5% Significance Level           |       |

#### Assuming Lognormal Distribution

#### DL/2 Substitution Method

| Mean                  | -0.191 |
|-----------------------|--------|
| SD                    | 1.219  |
| 95% H-Stat (DL/2) UCL | 2.008  |

#### Log ROS Method

| Mean in Log Scale            | -0.0156 |
|------------------------------|---------|
| SD in Log Scale              | 0.987   |
| Mean in Original Scale       | 1.675   |
| SD in Original Scale         | 2.728   |
| 95% Percentile Bootstrap UCL | 2.482   |
| 95% BCA Bootstrap UCL        | 2.982   |

#### Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

#### Nonparametric Statistics

| Kaplan-Meier (KM) Method          |       |
|-----------------------------------|-------|
| Mean                              | 1.684 |
| SD                                | 2.688 |
| SE of Mean                        | 0.432 |
| 95% KM (t) UCL                    | 2.413 |
| 95% KM (z) UCL                    | 2.395 |
| 95% KM (jackknife) UCL            | 2.399 |
| 95% KM (bootstrap t) UCL          | 3.766 |
| 95% KM (BCA) UCL                  | 2.619 |
| 95% KM (Percentile Bootstrap) UCL | 2.479 |
| 95% KM (Chebyshev) UCL            | 3.569 |
| 97.5% KM (Chebyshev) UCL          | 4.384 |
| 99% KM (Chebyshev) UCL            | 5.986 |
|                                   |       |
| Potential UCLs to Use             |       |

#### 95% KM (BCA) UCL 2.619

#### Assuming Normal Distribution

#### DL/2 Substitution Method

| Mean             | 1.635 |
|------------------|-------|
| SD               | 2.749 |
| 95% DL/2 (t) UCL | 2.367 |

#### Maximum Likelihood Estimate(MLE) Method

| 1.085 | Mean               |
|-------|--------------------|
| 3.281 | SD                 |
| 1.958 | 95% MLE (t) UCL    |
| 1.966 | 95% MLE (Tiku) UCL |
|       |                    |

#### Gamma Distribution Test with Detected Values Only

|                                      | •                |       |
|--------------------------------------|------------------|-------|
| k star (                             | bias corrected)  | 1.406 |
|                                      | Theta Star       | 1.517 |
|                                      | nu star          | 84.35 |
|                                      |                  |       |
| A-I                                  | D Test Statistic | 1.971 |
| 5% A-I                               | D Critical Value | 0.763 |
| К-                                   | S Test Statistic | 0.763 |
| 5% K-5                               | S Critical Value | 0.163 |
| Data not Gamma Distributed at 5% Sig | gnificance Level |       |
|                                      |                  |       |
| Assuming Gamma Distrib               | ution            |       |
|                                      |                  |       |

#### Assum

|       | Gamma ROS Statistics using Extrapolated Data |
|-------|----------------------------------------------|
| 1E-09 | Minimum                                      |
| 17.3  | Maximum                                      |
| 1.699 | Mean                                         |
| 1.25  | Median                                       |
| 2.723 | SD                                           |
| 0.285 | k star                                       |
| 5.957 | Theta star                                   |
| 22.82 | Nu star                                      |
| 12.95 | AppChi2                                      |
| 2.993 | 95% Gamma Approximate UCL                    |
| 3.059 | 95% Adjusted Gamma UCL                       |
|       |                                              |

Note: DL/2 is not a recommended method.

#### Benzo(a)anthracene

|                                  | General Statist | ics                        |        |
|----------------------------------|-----------------|----------------------------|--------|
| Number of Valid Data             | 40              | Number of Detected Data    | 11     |
| Number of Distinct Detected Data | 10              | Number of Non-Detect Data  | 29     |
|                                  |                 | Percent Non-Detects        | 72.50% |
| Raw Statistics                   |                 | Log-transformed Statistics |        |
| Minimum Detected                 | 0.046           | Minimum Detected           | -3.079 |
| Maximum Detected                 | 8.2             | Maximum Detected           | 2.104  |
| Mean of Detected                 | 1.09            | Mean of Detected           | -1.208 |
| SD of Detected                   | 2.396           | SD of Detected             | 1.53   |
| Minimum Non-Detect               | 0.4             | Minimum Non-Detect         | -0.916 |
| Maximum Non-Detect               | 0.41            | Maximum Non-Detect         | -0.892 |

| 37     | Number treated as Non-Detect    |
|--------|---------------------------------|
| 3      | Number treated as Detected      |
| 92.50% | Single DL Non-Detect Percentage |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Normal Distribution Test with Detected Values Only

| CL Statistics |                                                       |       |
|---------------|-------------------------------------------------------|-------|
|               | Lognormal Distribution Test with Detected Values Only | ,     |
| .479          | Shapiro Wilk Test Statistic                           | 0.925 |
| 0.85          | 5% Shapiro Wilk Critical Value                        | 0.85  |
|               | Data appear Lognormal at 5% Significance Level        |       |
|               |                                                       |       |
|               | Assuming Lognormal Distribution                       |       |
|               | DL/2 Substitution Method                              |       |
| .446          | Mean                                                  | -1.49 |
| .278          | SD                                                    | 0.795 |
| .787          | 95% H-Stat (DL/2) UCL                                 | 0.435 |

#### Log ROS Method

| Mean in Log Scale            | -1.727 |
|------------------------------|--------|
| SD in Log Scale              | 1.203  |
| Mean in Original Scale       | 0.465  |
| SD in Original Scale         | 1.287  |
| 95% Percentile Bootstrap UCL | 0.853  |
| 95% BCA Bootstrap UCL        | 1.109  |

95% BCA Bootstrap UCL

#### Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

#### Nonparametric Statistics

| Kaplan-Meier (KM) Method          |       |
|-----------------------------------|-------|
| Mean                              | 0.426 |
| SD                                | 1.269 |
| SE of Mean                        | 0.213 |
| 95% KM (t) UCL                    | 0.784 |
| 95% KM (z) UCL                    | 0.776 |
| 95% KM (jackknife) UCL            | 0.773 |
| 95% KM (bootstrap t) UCL          | 1.767 |
| 95% KM (BCA) UCL                  | 0.831 |
| 95% KM (Percentile Bootstrap) UCL | 0.841 |
| 95% KM (Chebyshev) UCL            | 1.353 |
| 97.5% KM (Chebyshev) UCL          | 1.754 |
| 99% KM (Chebyshev) UCL            | 2.542 |
|                                   |       |

#### Potential UCLs to Use

95% KM (Chebyshev) UCL 1.353

| 0.479 | Shapiro Wilk Test Statistic              |
|-------|------------------------------------------|
| 0.85  | 5% Shapiro Wilk Critical Value           |
|       | Data not Normal at 5% Significance Level |
|       |                                          |
|       | Assuming Normal Distribution             |
|       | DL/2 Substitution Method                 |
| 0.446 | Mean                                     |
| 1.278 | SD                                       |
| 0.787 | 95% DL/2 (t) UCL                         |
|       |                                          |
|       | Maximum Likelihood Estimate(MLE) Method  |
| 5.185 | Mean                                     |
| 3.301 | SD                                       |

| 00                 | 0.001 |
|--------------------|-------|
| 95% MLE (t) UCL    | 6.065 |
| 95% MLE (Tiku) UCL | 8.295 |

UCL

#### Gamma Distribution Test with Detected Values Only

| damma Biotribation Toot mar   | Dettetteta Valado ollig |       |
|-------------------------------|-------------------------|-------|
|                               | k star (bias corrected) | 0.418 |
|                               | Theta Star              | 2.605 |
|                               | nu star                 | 9.204 |
|                               |                         |       |
|                               | A-D Test Statistic      | 1.022 |
|                               | 5% A-D Critical Value   | 0.783 |
|                               | K-S Test Statistic      | 0.783 |
|                               | 5% K-S Critical Value   | 0.269 |
| Data not Gamma Distributed at | 5% Significance Level   |       |
|                               |                         |       |
| Assuming Gamma                | Distribution            |       |
| Gamma ROS Statistics us       | ing Extrapolated Data   |       |
|                               | Minimum                 | 1E-09 |
|                               | Maximum                 | 8.2   |
|                               | Mean                    | 0.98  |
|                               | Median                  | 0.905 |
|                               | SD                      | 1.315 |
|                               | k star                  | 0.278 |
|                               | Theta star              | 3.52  |
|                               | Nu star                 | 22.27 |
|                               | AppChi2                 | 12.54 |

95% Gamma Approximate UCL

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

#### Benzo(a)pyrene

|                                  | General Statistics |                           |        |
|----------------------------------|--------------------|---------------------------|--------|
| Number of Valid Data             | 40                 | Number of Detected Data   | 13     |
| Number of Distinct Detected Data | 13                 | Number of Non-Detect Data | 27     |
|                                  |                    | Percent Non-Detects       | 67.50% |

1.74

1.779

#### Log-transformed Statistics

Minimum Detected Maximum Detected

Mean of Detected

Minimum Non-Detect

Maximum Non-Detect

Number treated as Non-Detect

Single DL Non-Detect Percentage

Number treated as Detected

SD of Detected

#### **Raw Statistics**

| Minimum Detected   | 0.035 |
|--------------------|-------|
| Maximum Detected   | 8.3   |
| Mean of Detected   | 0.997 |
| SD of Detected     | 2.255 |
| Minimum Non-Detect | 0.4   |
| Maximum Non-Detect | 0.41  |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

#### UCL Statistics

0.474 0.866

0.461 1.306 0.809

N/A

| Lognormal Distribution | Test with Detected | Values Only |
|------------------------|--------------------|-------------|
|------------------------|--------------------|-------------|

| Data appear Lognormal at 5% Significance Level |       |  |
|------------------------------------------------|-------|--|
| 5% Shapiro Wilk Critical Value                 | 0.866 |  |
| Shapiro Wilk Test Statistic                    | 0.922 |  |

#### Assuming Lognormal Distribution

|       | DL/2 Substitution Method |
|-------|--------------------------|
| -1.55 | Mean                     |
| 0.927 | SD                       |
| 0.478 | 95% H-Stat (DL/2) UCL    |

#### Log ROS Method

-3.352

2.116

-1.45

1.666

-0.916

-0.892

90.00%

36

4

| Mean in Log Scale      | -2.024 |
|------------------------|--------|
| SD in Log Scale        | 1.342  |
| Mean in Original Scale | 0.435  |
| SD in Original Scale   | 1.318  |

95% Percentile Bootstrap UCL 0.842

95% BCA Bootstrap UCL 1.029

#### Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

#### Nonparametric Statistics

| Kaplan-Meier (KM) Method          |       |
|-----------------------------------|-------|
| Mean                              | 0.418 |
| SD                                | 1.302 |
| SE of Mean                        | 0.216 |
| 95% KM (t) UCL                    | 0.782 |
| 95% KM (z) UCL                    | 0.774 |
| 95% KM (jackknife) UCL            | 0.773 |
| 95% KM (bootstrap t) UCL          | 1.901 |
| 95% KM (BCA) UCL                  | 0.832 |
| 95% KM (Percentile Bootstrap) UCL | 0.825 |
| 95% KM (Chebyshev) UCL            | 1.36  |
| 97.5% KM (Chebyshev) UCL          | 1.768 |
| 99% KM (Chebyshev) UCL            | 2.569 |
|                                   |       |

#### Potential UCLs to Use

95% KM (Chebyshev) UCL 1.36

| Normal Distribution Test with Detected Values Only |  |
|----------------------------------------------------|--|
| Shapiro Wilk Test Statistic                        |  |
| 5% Shapiro Wilk Critical Value                     |  |
| Data not Normal at 5% Significance Level           |  |

#### Assuming Normal Distribution

| DL/2 Substitution Method |  |
|--------------------------|--|
| Mean                     |  |
| SD                       |  |
| 95% DL/2 (t) UCL         |  |
|                          |  |

#### Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean

#### Gamma Distribution Test with Detected Values Only

| k star (bias corrected)                             | 0.395 |
|-----------------------------------------------------|-------|
| Theta Star                                          | 2.524 |
| nu star                                             | 10.27 |
|                                                     |       |
| A-D Test Statistic                                  | 1.026 |
| 5% A-D Critical Value                               | 0.801 |
| K-S Test Statistic                                  | 0.801 |
| 5% K-S Critical Value                               | 0.252 |
| Data not Gamma Distributed at 5% Significance Level |       |
|                                                     |       |
| Assuming Gamma Distribution                         |       |
| Gamma ROS Statistics using Extrapolated Data        |       |
| Minimum                                             | 1E-09 |
| Maximum                                             | 8.3   |
| Mean                                                | 0.901 |
| Median                                              | 0.765 |
| SD                                                  | 1.317 |
| k star                                              | 0.315 |
| Theta star                                          | 2.856 |

| Median     | 0.765 |
|------------|-------|
| SD         | 1.317 |
| k star     | 0.315 |
| Theta star | 2.856 |
| Nu star    | 25.24 |

AppChi2 95% Gamma Approximate UCL

1.537 95% Adjusted Gamma UCL 1.569

Note: DL/2 is not a recommended method.

14.79

| General Statistics                                             |          |                                                            |             |  |
|----------------------------------------------------------------|----------|------------------------------------------------------------|-------------|--|
| Number of Valid Data                                           | 40       | Number of Detected Data                                    | 14          |  |
| Number of Distinct Detected Data                               | 14       | Number of Non-Detect Data                                  | 26          |  |
|                                                                |          | Percent Non-Detects                                        | 65.00%      |  |
| Raw Statistics                                                 |          | Log-transformed Statistics                                 |             |  |
| Minimum Detected                                               | 0.039    | Minimum Detected                                           | -3.244      |  |
| Maximum Detected                                               | 13       | Maximum Detected                                           | 2.565       |  |
| Mean of Detected                                               | 1.645    | Mean of Detected                                           | -0.988      |  |
| SD of Detected                                                 | 3.467    | SD of Detected                                             | 1.764       |  |
| Minimum Non-Detect                                             | 0.4      | Minimum Non-Detect                                         | -0.916      |  |
| Maximum Non-Detect                                             | 0.41     | Maximum Non-Detect                                         | -0.892      |  |
| Note: Data have multiple DLs - Lise of KM Method is recommende | Þe       | Number treated as Non-Detect                               | 33          |  |
| For all methods (excent KM_DI /2 and BOS Methods)              | 54       | Number treated as Detected                                 | 7           |  |
| Observations < I arrest ND are treated as NDs                  |          | Single DI Non-Detect Percentage                            | ,<br>82 50% |  |
| Observations · Eurgest ND are included as NDS                  |          |                                                            | 02.00 /0    |  |
|                                                                | UCL Stat | istics                                                     |             |  |
| Normal Distribution Test with Detected Values Only             |          | Lognormal Distribution Test with Detected Values Only      |             |  |
| Shapiro Wilk Test Statistic                                    | 0.52     | Shapiro Wilk Test Statistic                                | 0.945       |  |
| 5% Shapiro Wilk Critical Value                                 | 0.874    | 5% Shapiro Wilk Critical Value                             | 0.874       |  |
| Data not Normal at 5% Significance Level                       |          | Data appear Lognormal at 5% Significance Level             |             |  |
| Assuming Normal Distribution                                   |          | Assuming Lognormal Distribution                            |             |  |
| DL/2 Substitution Method                                       |          | DL/2 Substitution Method                                   |             |  |
| Mean                                                           | 0.707    | Mean                                                       | -1.384      |  |
| SD                                                             | 2.12     | SD                                                         | 1.061       |  |
| 95% DL/2 (t) UCL                                               | 1.272    | 95% H-Stat (DL/2) UCL                                      | 0.631       |  |
| Maximum Likelihood Estimate(MLE) Method                        | N/A      | Log ROS Method                                             |             |  |
| MLE yields a negative mean                                     |          | Mean in Log Scale                                          | -1.912      |  |
|                                                                |          | SD in Log Scale                                            | 1.521       |  |
|                                                                |          | Mean in Original Scale                                     | 0.673       |  |
|                                                                |          | SD in Original Scale                                       | 2.131       |  |
|                                                                |          | 95% Percentile Bootstrap UCL                               | 1.307       |  |
|                                                                |          | 95% BCA Bootstrap UCL                                      | 1.663       |  |
| Gamma Distribution Test with Detected Values Only              |          | Data Distribution Test with Detected Values Only           |             |  |
| k star (bias corrected)                                        | 0.391    | Data Follow Appr. Gamma Distribution at 5% Significance Le | vel         |  |
| Theta Star                                                     | 4.211    |                                                            |             |  |
| nu star                                                        | 10.94    |                                                            |             |  |
| A-D Test Statistic                                             | 0.868    | Nonparametric Statistics                                   |             |  |
| 5% A-D Critical Value                                          | 0.806    | Kaplan-Meier (KM) Method                                   |             |  |
| K-S Test Statistic                                             | 0.806    | Mean                                                       | 0.652       |  |
| 5% K-S Critical Value                                          | 0.244    | SD                                                         | 2.108       |  |
| Data follow Appr. Gamma Distribution at 5% Significance Le     | vel      | SE of Mean                                                 | 0.347       |  |
|                                                                |          | 95% KM (t) UCL                                             | 1.236       |  |
| Assuming Gamma Distribution                                    |          | 95% KM (z) UCL                                             | 1.222       |  |
| Gamma ROS Statistics using Extrapolated Data                   |          | 95% KM (jackknife) UCL                                     | 1.222       |  |

0.039

1.553

1.432

2.021

13

Minimum

Maximum

Mean Median

SD

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

95% KM (BCA) UCL

3.804

1.299

1.267

2.163

2.817

| 99% KM (Chebyshev) UCL 4.101 | 0.998 | k star                    |
|------------------------------|-------|---------------------------|
|                              | 1.555 | Theta star                |
| al UCLs to Use               | 79.88 | Nu star                   |
| 95% KM (t) UCL 1.236         | 60.28 | AppChi2                   |
|                              | 2.057 | 95% Gamma Approximate UCL |

2.079

95% Adjusted Gamma UCL

Note: DL/2 is not a recommended method.

Dibenzo(a,h)anthracene

| General Statistics |                               |                                                                                                                         |
|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 40                 | Number of Detected Data       | 6                                                                                                                       |
| 6                  | Number of Non-Detect Data     | 34                                                                                                                      |
|                    | Percent Non-Detects           | 85.00%                                                                                                                  |
|                    | General Statistics<br>40<br>6 | General Statistics       40     Number of Detected Data       6     Number of Non-Detect Data       Percent Non-Detects |

| Raw Statistics     |       | Log-transformed Statistics |        |
|--------------------|-------|----------------------------|--------|
| Minimum Detected   | 0.032 | Minimum Detected           | -3.442 |
| Maximum Detected   | 0.55  | Maximum Detected           | -0.598 |
| Mean of Detected   | 0.183 | Mean of Detected           | -2.27  |
| SD of Detected     | 0.21  | SD of Detected             | 1.171  |
| Minimum Non-Detect | 0.4   | Minimum Non-Detect         | -0.916 |
| Maximum Non-Detect | 0.42  | Maximum Non-Detect         | -0.868 |

39

1

Note: Data have multiple DLs - Use of KM Method is recommended Number treated as Non-Detect For all methods (except KM, DL/2, and ROS Methods), Number treated as Detected Observations < Largest ND are treated as NDs Single DL Non-Detect Percentage 97.50%

#### Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

|                                                    | UCL Statistic | 3S                                                    |        |
|----------------------------------------------------|---------------|-------------------------------------------------------|--------|
| Normal Distribution Test with Detected Values Only |               | Lognormal Distribution Test with Detected Values Only |        |
| Shapiro Wilk Test Statistic                        | 0.788         | Shapiro Wilk Test Statistic                           | 0.902  |
| 5% Shapiro Wilk Critical Value                     | 0.788         | 5% Shapiro Wilk Critical Value                        | 0.788  |
| Data appear Normal at 5% Significance Level        |               | Data appear Lognormal at 5% Significance Level        |        |
| Assuming Normal Distribution                       |               | Assuming Lognormal Distribution                       |        |
| DL/2 Substitution Method                           |               | DL/2 Substitution Method                              |        |
| Mean                                               | 0.2           | Mean                                                  | -1.697 |
| SD                                                 | 0.0755        | SD                                                    | 0.485  |
| 95% DL/2 (t) UCL                                   | 0.22          | 95% H-Stat (DL/2) UCL                                 | 0.296  |
| Maximum Likelihood Estimate(MLE) Method            | N/A           | Log ROS Method                                        |        |
| MLE method failed to converge properly             |               | Mean in Log Scale                                     | -2.596 |
|                                                    |               | SD in Log Scale                                       | 0.865  |
|                                                    |               | Mean in Original Scale                                | 0.108  |
|                                                    |               | SD in Original Scale                                  | 0.107  |
|                                                    |               | 95% Percentile Bootstrap UCL                          | 0.137  |
|                                                    |               | 95% BCA Bootstrap UCL                                 | 0.142  |
| Gamma Distribution Test with Detected Values Only  |               | Data Distribution Test with Detected Values Only      |        |
| k star (bias corrected)                            | 0.615         | Data appear Normal at 5% Significance Level           |        |
| Theta Star                                         | 0.297         |                                                       |        |
| nu star                                            | 7.386         |                                                       |        |

| A-D Test Statistic                                    | 0.452  | Nonparametric Statistics          |        |
|-------------------------------------------------------|--------|-----------------------------------|--------|
| 5% A-D Critical Value                                 | 0.715  | Kaplan-Meier (KM) Method          |        |
| K-S Test Statistic                                    | 0.715  | Mean                              | 0.121  |
| 5% K-S Critical Value                                 | 0.341  | SD                                | 0.127  |
| Data appear Gamma Distributed at 5% Significance Leve | H      | SE of Mean                        | 0.0529 |
|                                                       |        | 95% KM (t) UCL                    | 0.21   |
| Assuming Gamma Distribution                           |        | 95% KM (z) UCL                    | 0.208  |
| Gamma ROS Statistics using Extrapolated Data          |        | 95% KM (jackknife) UCL            | 0.22   |
| Minimum                                               | 0.032  | 95% KM (bootstrap t) UCL          | 0.408  |
| Maximum                                               | 0.55   | 95% KM (BCA) UCL                  | 0.22   |
| Mean                                                  | 0.182  | 95% KM (Percentile Bootstrap) UCL | 0.223  |
| Median                                                | 0.182  | 95% KM (Chebyshev) UCL            | 0.351  |
| SD                                                    | 0.0754 | 97.5% KM (Chebyshev) UCL          | 0.451  |
| k star                                                | 5.52   | 99% KM (Chebyshev) UCL            | 0.647  |
| Theta star                                            | 0.0329 |                                   |        |
| Nu star                                               | 441.6  | Potential UCLs to Use             |        |
| AppChi2                                               | 393.9  | 95% KM (t) UCL                    | 0.21   |
| 95% Gamma Approximate UCL                             | 0.204  | 95% KM (Percentile Bootstrap) UCL | 0.223  |
| 95% Adjusted Gamma UCL                                | 0.204  |                                   |        |

Note: DL/2 is not a recommended method.

Indeno(1,2,3-cd)pyrene

|                                                              | General Stati | stics                                                 |        |
|--------------------------------------------------------------|---------------|-------------------------------------------------------|--------|
| Number of Valid Data                                         | 40            | Number of Detected Data                               | 10     |
| Number of Distinct Detected Data                             | 9             | Number of Non-Detect Data                             | 30     |
|                                                              |               | Percent Non-Detects                                   | 75.00% |
| Raw Statistics                                               |               | Log-transformed Statistics                            |        |
| Minimum Detected                                             | 0.024         | Minimum Detected                                      | -3.73  |
| Maximum Detected                                             | 1.6           | Maximum Detected                                      | 0.47   |
| Mean of Detected                                             | 0.411         | Mean of Detected                                      | -1.934 |
| SD of Detected                                               | 0.634         | SD of Detected                                        | 1.506  |
| Minimum Non-Detect                                           | 0.4           | Minimum Non-Detect                                    | -0.916 |
| Maximum Non-Detect                                           | 0.41          | Maximum Non-Detect                                    | -0.892 |
| Note: Data have multiple DLs - Use of KM Method is recommend | led           | Number treated as Non-Detect                          | 38     |
| For all methods (except KM, DL/2, and ROS Methods),          |               | Number treated as Detected                            | 2      |
| Observations < Largest ND are treated as NDs                 |               | Single DL Non-Detect Percentage                       | 95.00% |
|                                                              | UCL Statist   | ics                                                   |        |
| Normal Distribution Test with Detected Values Only           |               | Lognormal Distribution Test with Detected Values Only |        |
| Shapiro Wilk Test Statistic                                  | 0.621         | Shapiro Wilk Test Statistic                           | 0.902  |
| 5% Shapiro Wilk Critical Value                               | 0.842         | 5% Shapiro Wilk Critical Value                        | 0.842  |
| Data not Normal at 5% Significance Level                     |               | Data appear Lognormal at 5% Significance Level        |        |
| Assuming Normal Distribution                                 |               | Assuming Lognormal Distribution                       |        |
| DL/2 Substitution Method                                     |               | DL/2 Substitution Method                              |        |
| Mean                                                         | 0.255         | Mean                                                  | -1.681 |
| SD                                                           | 0.318         | SD                                                    | 0.739  |
| 95% DL/2 (t) UCL                                             | 0.339         | 95% H-Stat (DL/2) UCL                                 | 0.365  |

#### Log ROS Method

N/A

Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly

- Mean in Log Scale -2.36
- SD in Log Scale 1.199
- Mean in Original Scale 0.203
- SD in Original Scale 0.347
- 95% Percentile Bootstrap UCL 0.299
  - 95% BCA Bootstrap UCL 0.326

#### Data Distribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

#### Gamma Distribution Test with Detected Values Only

| k star (bias corrected) | 0.481   |
|-------------------------|---------|
| Theta Sta               | r 0.854 |
| nu sta                  | r 9.628 |
|                         |         |
| A-D Test Statistic      | 0.836   |
| 5% A-D Critical Value   | e 0.77  |
| K-S Test Statistic      | 0.77    |
| 5% K-S Critical Value   | e 0.279 |
|                         |         |

Data follow Appr. Gamma Distribution at 5% Significance Level

#### Assuming Gamma Distribution

|       | Gamma ROS Statistics using Extrapolated Data |
|-------|----------------------------------------------|
| 1E-09 | Minimum                                      |
| 1.6   | Maximum                                      |
| 0.376 | Mean                                         |
| 0.354 | Median                                       |
| 0.352 | SD                                           |
| 0.453 | k star                                       |
| 0.829 | Theta star                                   |
| 36.23 | Nu star                                      |
| 23.46 | AppChi2                                      |
| 0.58  | 95% Gamma Approximate UCL                    |
| 0.59  | 95% Adjusted Gamma UCL                       |
|       |                                              |

Note: DL/2 is not a recommended method.

#### Nonparametric Statistics

| Kaplan-Meier | r (KM) Method |
|--------------|---------------|
|--------------|---------------|

| Mean                              | 0.188  |
|-----------------------------------|--------|
| SD                                | 0.338  |
| SE of Mean                        | 0.0644 |
| 95% KM (t) UCL                    | 0.296  |
| 95% KM (z) UCL                    | 0.294  |
| 95% KM (jackknife) UCL            | 0.296  |
| 95% KM (bootstrap t) UCL          | 0.394  |
| 95% KM (BCA) UCL                  | 0.309  |
| 95% KM (Percentile Bootstrap) UCL | 0.293  |
| 95% KM (Chebyshev) UCL            | 0.469  |
| 97.5% KM (Chebyshev) UCL          | 0.59   |
| 99% KM (Chebyshev) UCL            | 0.828  |
|                                   |        |

#### Potential UCLs to Use

95% KM (t) UCL 0.296

### Appendix G Ecological Screening Values

### Table G-1 Proposed Soil Ecological Screening Levels for Ravenna Army Ammunition Plant Page 1 of 4

|                                        |         | Ecological Screening Values for Soil |                                       |                                   |                            |                                   |                                     |                                     |                                                                |                                           |  |  |
|----------------------------------------|---------|--------------------------------------|---------------------------------------|-----------------------------------|----------------------------|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------|-------------------------------------------|--|--|
|                                        |         |                                      | USEPA<br>Eco SSL<br>2010 <sup>a</sup> | ORNL<br>PRGs<br>1997 <sup>b</sup> | Region 5<br>ESLs<br>2003 ° | LANL<br>ESLs<br>2010 <sup>d</sup> | Talmage et al.<br>1999 <sup>e</sup> | Persistent,<br>Bioaccumulative, and | Recommended<br>Soil Ecological<br>Screening Value <sup>g</sup> | Is the<br>ESV Protective<br>of Food Chain |  |  |
| COPEC                                  | Log Kow | CAS Number                           | (mg/kg)                               | (mg/kg)                           | (mg/kg)                    | (mg/kg)                           | (mg/kg)                             | Toxic Pollutant <sup>†</sup>        | (mg/kg)                                                        | Effects?                                  |  |  |
| Explosives (USEPA SW-846 8330B)        |         | -                                    |                                       |                                   |                            |                                   |                                     |                                     |                                                                |                                           |  |  |
| 1,3,5-Trinitrobenzene                  | 1.45    | 99-35-4                              | NA                                    | NA                                | 0.376                      | 6.6                               | 9.7                                 | No (Log Kow < 3.0)                  | 0.376                                                          | Yes                                       |  |  |
| 1,3-Dinitrobenzene                     | 1.63    | 99-65-0                              | NA                                    | NA                                | 0.655                      | 0.073                             | 0.41                                | No (Log Kow < 3.0)                  | 0.655                                                          | Yes                                       |  |  |
| 2,4,6-Trinitrotoluene                  | 1.99    | 118-96-7                             | NA                                    | NA                                | NA                         | 6.4                               | 5.6                                 | No (Log Kow < 3.0)                  | 6.4                                                            | Yes                                       |  |  |
| 2,4-Dinitrotoluene                     | 2.18    | 121-14-2                             | NA                                    | NA                                | 1.28                       | 0.52                              | NA                                  | No (Log Kow < 3.0)                  | 1.28                                                           | Yes                                       |  |  |
| 2,6-Dinitrotoluene                     | 2.18    | 606-20-2                             | NA                                    | NA                                | 0.0328                     | 0.37                              | NA                                  | No (Log Kow < 3.0)                  | 0.0328                                                         | Yes                                       |  |  |
| Dinitrotoluene (2,4/2,6-) Mixture (ca) | 2.18    | 25321-14-6                           | NA                                    | NA                                | NA                         | NA                                | NA                                  | No (Log Kow < 3.0)                  | NA                                                             | Yes                                       |  |  |
| 2-Amino-4,6-dinitrotoluene             | 1.84    | 35572-78-2                           | NA                                    | NA                                | NA                         | 2.1                               | 80                                  | No (Log Kow < 3.0)                  | 2.1                                                            | Yes                                       |  |  |
| 2-Nitrotoluene                         | 2.36    | 88-72-2                              | NA                                    | NA                                | NA                         | 2                                 | NA                                  | No (Log Kow < 3.0)                  | 2                                                              | Yes                                       |  |  |
| 3-Nitrotoluene                         | 2.36    | 99-08-1                              | NA                                    | NA                                | NA                         | 2.4                               | NA                                  | No (Log Kow < 3.0)                  | 2.4                                                            | Yes                                       |  |  |
| 3,5-Dinitroaniline                     | 1.29    | 618-87-1                             | NA                                    | NA                                | NA                         | NA                                | NA                                  | No (Log Kow < 3.0)                  | NA                                                             | NA                                        |  |  |
| 4-Amino-2,6-dinitrotoluene             | 1.84    | 19406-51-0                           | NA                                    | NA                                | NA                         | 0.73                              | NA                                  | No (Log Kow < 3.0)                  | 0.73                                                           | Yes                                       |  |  |
| 4-Nitrotoluene                         | 2.36    | 99-99-0                              | NA                                    | NA                                | NA                         | 4.4                               | NA                                  | No (Log Kow < 3.0)                  | 4.4                                                            | Yes                                       |  |  |
| HMX                                    | 0.82    | 2691-41-0                            | NA                                    | NA                                | NA                         | 27                                | 5.6                                 | No (Log Kow < 3.0)                  | 27                                                             | Yes                                       |  |  |
| Nitrobenzene                           | 1.81    | 98-95-3                              | NA                                    | NA                                | 1.31                       | 2.2                               | NA                                  | No (Log Kow < 3.0)                  | 1.31                                                           | Yes                                       |  |  |
| Nitroglycerin                          | 1.51    | 55-63-0                              | NA                                    | NA                                | NA                         | /1                                | NA                                  | No (Log Kow < 3.0)                  | /1                                                             | Yes                                       |  |  |
| Nitroguanidine                         | -1.72   | 556-88-7                             | NA                                    | NA                                | NA                         | NA                                | NA                                  | No (Log Kow < 3.0)                  | NA                                                             | NA                                        |  |  |
| PETN                                   | 2.38    | 78-11-5                              | NA                                    | NA                                | NA                         | 8600                              | NA                                  | No (Log Kow < 3.0)                  | 8600                                                           | Yes                                       |  |  |
| RDX                                    | 0.68    | 121-82-4                             | NA                                    | NA                                | NA                         | 7.5                               | 15                                  | No (Log Kow < 3.0)                  | 7.5                                                            | Yes                                       |  |  |
| Tetryl                                 | 1.64    | 479-45-8                             | NA                                    | NA                                | NA                         | 0.99                              | 4.4                                 | No (Log Kow < 3.0)                  | 0.99                                                           | Yes                                       |  |  |
| Metals (USEPA SW-846 6010B)            |         | -                                    |                                       |                                   |                            |                                   |                                     |                                     |                                                                |                                           |  |  |
| Aluminum                               | NA      | 7429-90-5                            | Narrative                             | NA                                | NA                         | Narrative                         | NA                                  | No (not USEPA IBC)                  | NA                                                             | NA                                        |  |  |
| Antimony                               | NA      | 7440-36-0                            | 0.27                                  | 5                                 | 0.142                      | 0.05                              | NA                                  | No (not USEPA IBC)                  | 0.27                                                           | Yes                                       |  |  |
| Arsenic                                | NA      | 7440-38-2                            | 18                                    | 9.9                               | 5.7                        | 6.8                               | NA                                  | Yes (USEPA IBC)                     | 18                                                             | Yes                                       |  |  |
| Barium                                 | NA      | 7440-39-3                            | 330                                   | 283                               | 1.04                       | 110                               | NA                                  | No (not USEPA IBC)                  | 330                                                            | Yes                                       |  |  |
| Beryllium                              | NA      | 7440-41-7                            | 21                                    | 10                                | 1.06                       | 2.5                               | NA                                  | No (not USEPA IBC)                  | 21                                                             | Yes                                       |  |  |
| Cadmium                                | NA      | 7440-43-9                            | 0.36                                  | 4                                 | 0.00222                    | 0.27                              | NA                                  | Yes (USEPA IBC)                     | 0.36                                                           | Yes                                       |  |  |
| Calcium                                | NA      | 7440-70-2                            | NA                                    | NA                                | NA                         | NA                                | NA                                  | No (not USEPA IBC)                  | Nutrient                                                       | NA                                        |  |  |
| Cobalt                                 | NA      | 7440-48-4                            | 13                                    | 20                                | 0.14                       | 13                                | NA                                  | No (not USEPA IBC)                  | 13                                                             | Yes                                       |  |  |
| Copper                                 | NA      | 7440-50-8                            | 28                                    | 60                                | 5.4                        | 15                                | NA                                  | Yes (USEPA IBC)                     | 28                                                             | Yes                                       |  |  |
| Chromium (as Cr <sup>3+</sup> )        | NA      | 7440-47-3                            | 26                                    | 0.4                               | 0.4                        | 2.3                               | NA                                  | No (not USEPA IBC)                  | 26                                                             | Yes                                       |  |  |
| Chromium (as Cr <sup>6+</sup> )        | NA      | 18540-29-9                           | 130                                   | NA                                | NA                         | 0.34                              | NA                                  | Yes (USEPA IBC)                     | 130                                                            | Yes                                       |  |  |
| Iron                                   | NA      | 4739-89-6                            | Narrative                             | NA                                | NA                         | NA                                | NA                                  | No (not USEPA IBC)                  | NA                                                             | NA                                        |  |  |
| Lead                                   | NA      | 7439-92-1                            | 11                                    | 40.5                              | 0.0537                     | 14                                | NA                                  | Yes (USEPA IBC)                     | 11                                                             | Yes                                       |  |  |
| Magnesium                              | NA      | 7439-95-4                            | NA                                    | NA                                | NA                         | NA                                | NA                                  | No (not USEPA IBC)                  | Nutrient                                                       | NA                                        |  |  |
| Manganese                              | NA      | 7439-96-5                            | 220                                   | NA                                | NA                         | 220                               | NA                                  | No (not USEPA IBC)                  | 220                                                            | Yes                                       |  |  |
| Mercury                                | NA      | 7439-97-6                            | NA                                    | 0.00051                           | 0.1                        | 0.013                             | NA                                  | Yes (OEPA PBT)                      | 0.00051                                                        | Yes                                       |  |  |
| Nickel                                 | NA      | 7440-02-0                            | 38                                    | 30                                | 13.6                       | 9.7                               | NA                                  | Yes (USEPA IBC)                     | 38                                                             | Yes                                       |  |  |
| Selenium                               | NA      | 7782-49-2                            | 0.52                                  | 0.21                              | 0.0276                     | 0.52                              | NA                                  | Yes (USEPA IBC)                     | 0.52                                                           | Yes                                       |  |  |
| Silver                                 | NA      | 7440-22-4                            | 4.2                                   | 2                                 | 4.04                       | 2.6                               | NA                                  | Yes (USEPA IBC)                     | 4.2                                                            | Yes                                       |  |  |
| Sodium                                 | NA      |                                      | NSV                                   | NSV                               | NSV                        | NSV                               | NA                                  | No (not USEPA IBC)                  | Nutrient                                                       | NA                                        |  |  |
| Strontium                              | NA      | 7440-24-6                            | NA                                    | NA                                | NA                         | 96                                | NA                                  | No (not USEPA IBC)                  | 96                                                             | Yes                                       |  |  |
| Thallium                               | NA      | 7440-28-0                            | NSV                                   | 1                                 | 0.0569                     | 0.032                             | NA                                  | No (not USEPA IBC)                  | 1                                                              | Yes                                       |  |  |
| Vanadium                               | NA      | 7440-62-2                            | 7.8                                   | 2                                 | 1.59                       | 0.025                             | NA                                  | No (not USEPA IBC)                  | 7.8                                                            | Yes                                       |  |  |
| Zinc                                   | NA      | 7440-66-0                            | 46                                    | 8.5                               | 6.62                       | 48                                | NA                                  | Yes (USEPA IBC)                     | 46                                                             | Yes                                       |  |  |
| Volatile Organic Compounds             |         |                                      |                                       |                                   |                            |                                   |                                     |                                     |                                                                |                                           |  |  |
| Chloroethane                           | 1.58    | 75-00-3                              | NSV                                   | NSV                               | NSV                        | NSV                               | NA                                  | No (Log Kow < 3.0)                  | NA                                                             | NA                                        |  |  |

# Table G-1 Proposed Soil Ecological Screening Levels for Ravenna Army Ammunition Plant Page 2 of 4

|                             |         |            | Ecological Screening Values for Soil |                                   |                                       |                                   |                                     |                                     |                                                                |                                           |  |  |  |
|-----------------------------|---------|------------|--------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------|-------------------------------------------|--|--|--|
|                             |         |            | USEPA<br>Eco SSL<br>2010 ª           | ORNL<br>PRGs<br>1997 <sup>b</sup> | Region 5<br>ESLs<br>2003 <sup>c</sup> | LANL<br>ESLs<br>2010 <sup>d</sup> | Talmage et al.<br>1999 <sup>e</sup> | Persistent,<br>Bioaccumulative, and | Recommended<br>Soil Ecological<br>Screening Value <sup>g</sup> | Is the<br>ESV Protective<br>of Food Chain |  |  |  |
| COPEC                       | Log Kow | CAS Number | (mg/kg)                              | (mg/kg)                           | (mg/kg)                               | (mg/kg)                           | (mg/kg)                             | Toxic Pollutant <sup>f</sup>        | (mg/kg)                                                        | Effects?                                  |  |  |  |
| SVOCs (USEPA SW-846 8270C)  |         |            |                                      |                                   |                                       |                                   |                                     |                                     |                                                                |                                           |  |  |  |
| 1,2,4-Trichlorobenzene      | 3.93    | 120-82-1   | NA                                   | 20                                | 11.1                                  | 0.27                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 20                                                             | No                                        |  |  |  |
| 1,2-Dichlorobenzene         | 3.28    | 95-50-1    | NA                                   | NA                                | 2.96                                  | 0.92                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 2.96                                                           | Yes                                       |  |  |  |
| 1,3-Dichlorobenzene         | 3.28    | 541-73-1   | NA                                   | NA                                | 37.7                                  | 0.73                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 37.7                                                           | Yes                                       |  |  |  |
| 1,4-Dichlorobenzene         | 3.28    | 106-46-7   | NA                                   | 20                                | 0.546                                 | 0.88                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 20                                                             | No                                        |  |  |  |
| 2,4,5-Trichlorophenol       | 3.45    | 95-95-4    | NA                                   | 9                                 | 14.1                                  | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 9                                                              | No                                        |  |  |  |
| 2,4,6-Trichlorophenol       | 3.45    | 88-06-2    | NA                                   | 4                                 | 9.94                                  | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 4                                                              | No                                        |  |  |  |
| 2,4-Dichlorophenol          | 2.8     | 120-83-2   | NA                                   | NA                                | 87.5                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 87.5                                                           | Yes                                       |  |  |  |
| 2,4-Dimethylphenol          | 2.61    | 105-67-9   | NA                                   | NA                                | 0.01                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 0.01                                                           | No                                        |  |  |  |
| 2,4-Dinitrophenol           | 1.73    | 51-28-5    | NA                                   | 20                                | 0.0609                                | NA                                | NA                                  | No (Log Kow < 3.0)                  | 20                                                             | No                                        |  |  |  |
| 2,4-Dinitrotoluene          | 2.18    | 121-14-2   | NA                                   | NA                                | 1.28                                  | 0.52                              | NA                                  | No (Log Kow < 3.0)                  | 1.28                                                           | No                                        |  |  |  |
| 2,6-Dinitrotoluene          | 2.18    | 606-20-2   | NA                                   | NA                                | 0.0328                                | 0.37                              | NA                                  | No (Log Kow < 3.0)                  | 0.0328                                                         | No                                        |  |  |  |
| 2-Chloronaphthalene         | 3.81    | 91-58-7    | NA                                   | NA                                | 0.0122                                | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 0.0122                                                         | Yes                                       |  |  |  |
| 2-Chlorophenol              | 2.16    | 95-57-8    | NA                                   | NA                                | 0.243                                 | 0.39                              | NA                                  | No (Log Kow < 3.0)                  | 0.243                                                          | Yes                                       |  |  |  |
| 2-Methylnaphthalene         | 3.72    | 91-57-6    | NA                                   | NA                                | 3.24                                  | 2.5                               | NA                                  | Yes (Log Kow ≥ 3.0)                 | 3.24                                                           | Yes                                       |  |  |  |
| 2-Methylphenol              | 2.06    | 95-48-7    | NA                                   | NA                                | 40.4                                  | 0.67                              | NA                                  | No (Log Kow < 3.0)                  | 40.4                                                           | Yes                                       |  |  |  |
| 2-Nitroaniline              | 2.02    | 88-74-4    | NA                                   | NA                                | 74.1                                  | 5.4                               | NA                                  | No (Log Kow < 3.0)                  | 74.1                                                           | Yes                                       |  |  |  |
| 2-Nitrophenol               | 1.91    | 88-75-5    | NA                                   | NA                                | 1.6                                   | NA                                | NA                                  | No (Log Kow < 3.0)                  | 1.6                                                            | Yes                                       |  |  |  |
| 3 & 4-Methylphenol          | 2.06    | CASID30030 | NA                                   | NA                                | 3.49                                  | 0.69                              | NA                                  | No (Log Kow < 3.0)                  | 3.49                                                           | Yes                                       |  |  |  |
| 3,3'-Dichlorobenzidine      | 3.21    | 91-94-1    | NA                                   | NA                                | 0.646                                 | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 0.646                                                          | Yes                                       |  |  |  |
| 3-Nitroaniline              | 1.47    | 99-09-2    | NA                                   | NA                                | 3.16                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 3.16                                                           | Yes                                       |  |  |  |
| 4,6-Dinitro-2-methylphenol  | 2.27    | 534-52-1   | NA                                   | NA                                | 0.144                                 | NA                                | NA                                  | No (Log Kow < 3.0)                  | 0.144                                                          | Yes                                       |  |  |  |
| 4-Bromophenyl-phenyl ether  | 4.94    | 101-55-3   | NA                                   | NA                                | NA                                    | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | NA                                                             | NA                                        |  |  |  |
| 4-Chloro-3-methylphenol     | 2.7     | 59-50-7    | NA                                   | NA                                | 7.95                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 7.95                                                           | Yes                                       |  |  |  |
| 4-Chloroaniline             | 1.72    | 106-47-8   | NA                                   | NA                                | 1.1                                   | 1                                 | NA                                  | No (Log Kow < 3.0)                  | 1.1                                                            | Yes                                       |  |  |  |
| 4-Chlorophenyl-phenyl ether | 4.69    | 7005-72-3  | NA                                   | NA                                | NA                                    | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | NA                                                             | NA                                        |  |  |  |
| 4-Nitroaniline              | 1.47    | 100-01-6   | NA                                   | NA                                | 21.9                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 21.9                                                           | Yes                                       |  |  |  |
| 4-Nitrophenol               | 1.91    | 100-02-7   | NA                                   | 7                                 | 5.12                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 7                                                              | No                                        |  |  |  |
| Acenaphthene                | 4.15    | 83-32-9    | 29                                   | 20                                | 682                                   | 0.25                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 29                                                             | Yes                                       |  |  |  |
| Acenaphthylene              | 3.94    | 208-96-8   | 29                                   | NA                                | 682                                   | 120                               | NA                                  | Yes (Log Kow ≥ 3.0)                 | 29                                                             | Yes                                       |  |  |  |
| Anthracene                  | 4.35    | 120-12-7   | 29                                   | NA                                | 1480                                  | 6.8                               | NA                                  | Yes (Log Kow ≥ 3.0)                 | 29                                                             | Yes                                       |  |  |  |
| Benzo(a)anthracene          | 5.52    | 56-55-3    | 1.1                                  | NA                                | 5.21                                  | 3                                 | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Benzo(a)pyrene              | 6.11    | 50-32-8    | 1.1                                  | NA                                | 1.52                                  | 53                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Benzo(b)fluoranthene        | 6.11    | 205-99-2   | 1.1                                  | NA                                | 59.8                                  | 18                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Benzo(g,h,i)perylene        | 6.7     | 191-24-2   | 1.1                                  | NA                                | 119                                   | 24                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Benzo(k)fluoranthene        | 6.11    | 207-08-9   | 1.1                                  | NA                                | 148                                   | 62                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Benzoic acid                | 1.87    | 65-85-0    | NA                                   | NA                                | NA                                    | 1                                 | NA                                  | No (Log Kow < 3.0)                  | 1                                                              | Yes                                       |  |  |  |
| Benzyl alcohol              | 1.08    | 100-51-6   | NA                                   | NA                                | 65.8                                  | 120                               | NA                                  | No (Log Kow < 3.0)                  | 65.8                                                           | Yes                                       |  |  |  |
| Bis(2-chloroethoxy)methane  | 1.3     | 111-91-1   | NA                                   | NA                                | 0.302                                 | NA                                | NA                                  | No (Log Kow < 3.0)                  | 0.302                                                          | Yes                                       |  |  |  |
| Bis(2-chloroethyl)ether     | 1.56    | 111-44-4   | NA                                   | NA                                | 23.7                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 23.7                                                           | Yes                                       |  |  |  |
| Bis(2-chloroisopropyl)ether | 2.39    | 108-60-1   | NA                                   | NA                                | 19.9                                  | NA                                | NA                                  | No (Log Kow < 3.0)                  | 19.9                                                           | Yes                                       |  |  |  |
| Bis(2-ethylhexyl)phthalate  | 8.39    | 117-81-7   | NA                                   | NA                                | 0.925                                 | 0.02                              | NA                                  | Yes (Log Kow ≥ 3.0)                 | 0.925                                                          | Yes                                       |  |  |  |
| Butylbenzylphthalate        | 4.84    | 85-68-7    | NA                                   | NA                                | 0.239                                 | 90                                | NA                                  | Yes (Log Kow ≥ 3.0)                 | 0.239                                                          | Yes                                       |  |  |  |
| Carbazole                   | 3.23    | 86-74-8    | NA                                   | NA                                | NA                                    | 0.00008                           | NA                                  | Yes (Log Kow ≥ 3.0)                 | 0.00008                                                        | Yes                                       |  |  |  |
| Chrysene                    | 5.52    | 218-01-9   | 1.1                                  | NA                                | 4.73                                  | 2.4                               | NA                                  | Yes (Log Kow ≥ 3.0)                 | 1.1                                                            | Yes                                       |  |  |  |
| Di-n-butylphthalate         | 4.61    | 84-74-2    | NA                                   | 200                               | 0.15                                  | 0.011                             | NA                                  | Yes (Log Kow ≥ 3.0)                 | 200                                                            | No                                        |  |  |  |
| Di-n-octylphthalate         | 8.54    | 117-84-0   | NA                                   | NA                                | 709                                   | 1.1                               | NA                                  | Yes (Log Kow ≥ 3.0)                 | 709                                                            | Yes                                       |  |  |  |

# Table G-1 Proposed Soil Ecological Screening Levels for Ravenna Army Ammunition Plant Page 3 of 4

|                                |         |             | Ecological Screening Values for Soil |                                   |                                       |                                   |                                     |                                         |                                                                |                                           |  |  |  |  |  |
|--------------------------------|---------|-------------|--------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------|----------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|
|                                |         |             | USEPA<br>Eco SSL<br>2010 ª           | ORNL<br>PRGs<br>1997 <sup>b</sup> | Region 5<br>ESLs<br>2003 <sup>c</sup> | LANL<br>ESLs<br>2010 <sup>d</sup> | Talmage et al.<br>1999 <sup>e</sup> | Persistent,<br>Bioaccumulative, and     | Recommended<br>Soil Ecological<br>Screening Value <sup>g</sup> | Is the<br>ESV Protective<br>of Food Chain |  |  |  |  |  |
| COPEC                          | Log Kow | CAS Number  | (mg/kg)                              | (mg/kg)                           | (mg/kg)                               | (mg/kg)                           | (mg/kg)                             | Toxic Pollutant <sup>f</sup>            | (mg/kg)                                                        | Effects?                                  |  |  |  |  |  |
| Dibenzo(a,h)anthracene         | 6.7     | 53-70-3     | 1.1                                  | NA                                | 18.4                                  | 12                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 1.1                                                            | Yes                                       |  |  |  |  |  |
| Dibenzofuran                   | 3.71    | 132-64-9    | NA                                   | NA                                | NA                                    | 6.1                               | NA                                  | Yes (Log Kow ≥ 3.0)                     | 6.1                                                            | Yes                                       |  |  |  |  |  |
| Diethylphthalate               | 2.65    | 84-66-2     | NA                                   | 100                               | 24.8                                  | 100                               | NA                                  | No (Log Kow < 3.0)                      | 100                                                            | No                                        |  |  |  |  |  |
| Dimethylphthalate              | 1.66    | 131-11-3    | NA                                   | NA                                | 734                                   | 10                                | NA                                  | No (Log Kow < 3.0)                      | 734                                                            | Yes                                       |  |  |  |  |  |
| Fluoranthene                   | 4.93    | 206-44-0    | 29                                   | NA                                | 122                                   | 10                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 29                                                             | Yes                                       |  |  |  |  |  |
| Fluorene                       | 4.02    | 86-73-7     | 29                                   | NA                                | 122                                   | 3.7                               | NA                                  | Yes (Log Kow ≥ 3.0)                     | 29                                                             | Yes                                       |  |  |  |  |  |
| Hexachlorobenzene              | 5.86    | 118-74-1    | NA                                   | NA                                | 0.199                                 | 0.079                             | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.199                                                          | Yes                                       |  |  |  |  |  |
| Hexachlorobutadiene            | 4.72    | 87-68-3     | NA                                   | NA                                | 0.0398                                | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.0398                                                         | Yes                                       |  |  |  |  |  |
| Hexachlorocyclopentadiene      | 4.63    | 77-47-4     | NA                                   | 10                                | 0.755                                 | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 10                                                             | No                                        |  |  |  |  |  |
| Hexachloroethane               | 4.03    | 67-72-1     | NA                                   | NA                                | 0.596                                 | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.596                                                          | Yes                                       |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene         | 6.7     | 193-39-5    | 1.1                                  | NA                                | 109                                   | 62                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 1.1                                                            | Yes                                       |  |  |  |  |  |
| Isophorone                     | 2.62    | 78-59-1     | NA                                   | NA                                | 139                                   | NA                                | NA                                  | No (Log Kow < 3.0)                      | 139                                                            | Yes                                       |  |  |  |  |  |
| N-Nitroso-di-n-propylamine     | 1.33    | 621-64-7    | NA                                   | NA                                | 0.544                                 | NA                                | NA                                  | No (Log Kow < 3.0)                      | 0.544                                                          | Yes                                       |  |  |  |  |  |
| N-Nitrosodiphenylamine & Diphn | 3.16    | 86-30-6     | NA                                   | NA                                | 0.545                                 | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.545                                                          | Yes                                       |  |  |  |  |  |
| Naphthalene                    | 3.17    | 91-20-3     | 29                                   | NA                                | 0.0994                                | 1                                 | NA                                  | Yes (Log Kow ≥ 3.0)                     | 29                                                             | Yes                                       |  |  |  |  |  |
| Nitrobenzene                   | 1.81    | 98-95-3     | NA                                   | NA                                | 1.31                                  | 2.2                               | NA                                  | No (Log Kow < 3.0)                      | 1.31                                                           | Yes                                       |  |  |  |  |  |
| Pentachlorophenol              | 4.74    | 87-86-5     | 2.1                                  | 3                                 | 0.119                                 | 0.36                              | NA                                  | Yes (Log Kow ≥ 3.0)                     | 2.1                                                            | Yes                                       |  |  |  |  |  |
| Phenanthrene                   | 4.35    | 85-01-8     | 29                                   | NA                                | 45.7                                  | 5.5                               | NA                                  | Yes (Log Kow ≥ 3.0)                     | 29                                                             | Yes                                       |  |  |  |  |  |
| Phenol                         | 1.51    | 108-95-2    | NA                                   | 30                                | 120                                   | 0.79                              | NA                                  | No (Log Kow < 3.0)                      | 30                                                             | No                                        |  |  |  |  |  |
| Pyrene                         | 4.93    | 129-00-0    | 1.1                                  | NA                                | 78.5                                  | 10                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 1.1                                                            | Yes                                       |  |  |  |  |  |
| Pesticides                     |         | -           |                                      |                                   |                                       |                                   |                                     |                                         |                                                                |                                           |  |  |  |  |  |
| 4,4'-DDD                       | 5.87    | 72-54-8     | 0.021                                | NSV                               | 0.758                                 | 0.0063                            | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.021                                                          | Yes                                       |  |  |  |  |  |
| 4,4'-DDT                       | 6.79    | 50-29-3     | 0.021                                | NSV                               | 0.0035                                | 0.044                             | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.021                                                          | Yes                                       |  |  |  |  |  |
| Heptachlor                     | 5.86    | 76-44-8     | NSV                                  | NSV                               | 0.00598                               | 0.059                             | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.00598                                                        | Yes                                       |  |  |  |  |  |
| PCBs (Method SW-846 8082A)     |         |             |                                      |                                   |                                       |                                   |                                     |                                         |                                                                |                                           |  |  |  |  |  |
| Aroclor 1016                   | 5.69    | 12674-11-2  | NA                                   | 0.371                             | 0.000332                              | 1                                 | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1221                   | 4.4     | 11104-28-2  | NA                                   | 0.371                             | 0.000332                              | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1232                   | 4.4     | 11141-16-5  | NA                                   | 0.371                             | 0.000332                              | NA                                | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1242                   | 6.34    | 53469-21-9  | NA                                   | 0.371                             | 0.000332                              | 0.041                             | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1248                   | 6.34    | 12672-29-6  | NA                                   | 0.371                             | 0.000332                              | 0.0072                            | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1254                   | 6.98    | 11097-69-1  | NA                                   | 0.371                             | 0.000332                              | 0.041                             | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| Aroclor 1260                   | 8.27    | 11096-82-5  | NA                                   | 0.371                             | 0.000332                              | 0.14                              | NA                                  | Yes (Log Kow ≥ 3.0)                     | 0.371                                                          | No                                        |  |  |  |  |  |
| General Chemistry              |         | •           |                                      |                                   |                                       |                                   |                                     |                                         |                                                                |                                           |  |  |  |  |  |
| Cyanide, Total                 | NA      | 57-12-5     | NSV                                  | NSV                               | 1.33                                  | 0.1                               | NA                                  | NA                                      | 1.33                                                           | Yes                                       |  |  |  |  |  |
| Modified)                      |         |             |                                      |                                   |                                       |                                   |                                     |                                         |                                                                |                                           |  |  |  |  |  |
| Nitrocellulose                 | NA      | 9004-70-0   | NA                                   | NA                                | NA                                    | NA                                | NA                                  | No (Log Kow < 3.0)                      | NA                                                             | NA                                        |  |  |  |  |  |
| Total Organic Carbon           |         | -           |                                      |                                   |                                       |                                   |                                     | · - · · · · · · · · · · · · · · · · · · |                                                                |                                           |  |  |  |  |  |
| Total Organic Carbon           | NA      | TOC (mg/kg) | NA                                   | NA                                | NA                                    | NA                                | NA                                  | NA                                      | NA                                                             | NA                                        |  |  |  |  |  |
| рН                             | NA      | pH (Units)  | NA                                   | NA                                | NA                                    | NA                                | NA                                  | NA                                      | NA                                                             | NA                                        |  |  |  |  |  |

#### Notes:

<sup>a</sup> Ecological Soil Screening Levels (EcoSSLs), (EPA, 2008) online updates from http://www.epa.gov/ecotox/ecossl/.

<sup>b</sup> ORNL: Efroymson, R.A., Suter II, G.W., Sample, B.E. and Jones, D.S., 1997. *Preliminary Remediation Goals for Ecological Endpoints*, ES/ER/TM-162/R2.

<sup>c</sup> Ecological Screening Levels (ESLs), US EPA Region V, August 2003.

<sup>d</sup> Los Alamos National Laboratory (LANL), Eco Risk Database, Release 2.5, October 2010.

<sup>e</sup> From *Nitroaromatic Munition Compounds: Environmental Effects and Screening Values*, Talmage et al., 1999, Rev. Environ. Contamin. Toxicol., 161: 1-156.

# Table G-1 Proposed Soil Ecological Screening Levels for Ravenna Army Ammunition Plant Page 4 of 4

|       |         |            |                                                                                                                                             |  |  | Ecologica | al Screening Value | s for Soil |  |  |  |  |  |
|-------|---------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----------|--------------------|------------|--|--|--|--|--|
|       |         |            |                                                                                                                                             |  |  |           |                    |            |  |  |  |  |  |
|       |         |            | USEPA ORNL Region 5 LANL Recommended                                                                                                        |  |  |           |                    |            |  |  |  |  |  |
|       |         |            | Eco SSL PRGs ESLs ESLs Talmage et al. Persistent, Soil Ecological                                                                           |  |  |           |                    |            |  |  |  |  |  |
|       |         |            | 2010 <sup>a</sup> 1997 <sup>b</sup> 2003 <sup>c</sup> 2010 <sup>d</sup> 1999 <sup>e</sup> Bioaccumulative, and Screening Value <sup>g</sup> |  |  |           |                    |            |  |  |  |  |  |
| COPEC | Log Kow | CAS Number | er (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Toxic Pollutant <sup>f</sup> (mg/kg)                                                             |  |  |           |                    |            |  |  |  |  |  |

<sup>f</sup> Analyte identified as a persistent, bioaccumulative, and toxic (PBT) compound (OEPA DERR ERA Guidance, April 2008).

<sup>9</sup> The following hierarchy (based on OEPA DERR ERA Guidance, April 2008) was used to select the soil screening values:

1. USEPA EcoSSL (plants, invertebrates, wildlife)

2. ORNL (1997) [plants, invertebrates, wildlife]

3. USEPA Region 5 ESLs (2003)

4. LANL (2010) [various endpoints]

5. Talmage et al. (1999)

CAS = Chemical Abstract Service.

mg/kg = milligrams per kilogram.

NA = RVAAP-specific screening level not available.

RVAAP = Ravenna Army Ammunition Plant.

RL = reporting limit.

SVOC = semivolatile organic compound

### Table G-2 Proposed Surface Water Ecological Screening Levels for Ravenna Army Ammunition Plant Page 1 of 3

|                                        |               |                     | Surface Water               |                     |                     |                     |                     |                     |                              |  |  |  |  |  |  |
|----------------------------------------|---------------|---------------------|-----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------------|--|--|--|--|--|--|
|                                        |               |                     | Ecological Screening Values |                     |                     |                     |                     |                     |                              |  |  |  |  |  |  |
|                                        |               |                     |                             |                     |                     | Ū                   |                     |                     | Recommended<br>Surface Water |  |  |  |  |  |  |
|                                        | Log           |                     | Surface Water               | Ohio WQC            | Region 5 ESLs       | ORNL PRGs           | LANL ESLs           | Talmage et al.      | Ecological Screening         |  |  |  |  |  |  |
| Analyte                                | Kow           | CAS Number          | Background Values           | (2009) <sup>a</sup> | (2003) <sup>b</sup> | (1997) <sup>c</sup> | (2010) <sup>d</sup> | (1999) <sup>e</sup> | Value <sup>f</sup>           |  |  |  |  |  |  |
| Explosives (USEPA SW-846 8330B)        |               |                     | (µg/L)                      | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)                       |  |  |  |  |  |  |
| 1,3,5-Trinitrobenzene                  | 1.45          | 99-35-4             | NA                          | 11                  | NA                  | NA                  | 60000               | 11                  | 11                           |  |  |  |  |  |  |
| 1,3-Dinitrobenzene                     | 1.63          | 99-65-0             | NA                          | 22                  | 22                  | NA                  | 26                  | 20                  | 22                           |  |  |  |  |  |  |
| 2,4,6-Trinitrotoluene                  | 1.99          | 118-96-7            | NA                          | 13                  | NA                  | NA                  | 40000               | 90                  | 13                           |  |  |  |  |  |  |
| 2,4-Dinitrotoluene                     | 2.18          | 121-14-2            | NA                          | 44                  | 44                  | NA                  | 310                 | NA                  | 44                           |  |  |  |  |  |  |
| 2,6-Dinitrotoluene                     | 2.18          | 606-20-2            | NA                          | 81                  | 81                  | NA                  | 60                  | NA                  | 81                           |  |  |  |  |  |  |
| Dinitrotoluene (2,4/2,6-) Mixture (ca) | 2.18          | 25321-14-6          | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                           |  |  |  |  |  |  |
| 2-Amino-4,6-dinitrotoluene             | 1.84          | 35572-78-2          | NA                          | 18                  | NA                  | NA                  | 12000               | 20                  | 18                           |  |  |  |  |  |  |
| 2-Nitrotoluene                         | 2.36          | 88-72-2             | NA                          | 71                  | NA                  | NA                  | 8000                | NA                  | 71                           |  |  |  |  |  |  |
| 3-Nitrotoluene                         | 2.36          | 99-08-1             | NA                          | 42                  | NA                  | NA                  | 9600                | NA                  | 42                           |  |  |  |  |  |  |
| 3,5-Dinitroaniline                     | 1.29          | 618-87-1            | NA                          | 70                  | NA                  | NA                  | NA                  | NA                  | 70                           |  |  |  |  |  |  |
| 4-Amino-2,6-dinitrotoluene             | 1.84          | 19406-51-0          | NA                          | 11                  | NA                  | NA                  | 8600                | na                  | 11                           |  |  |  |  |  |  |
|                                        | 2.30          | 99-99-0             | NA                          | 46                  | NA<br>NA            | NA<br>NA            | 17000               | NA 220              | 46                           |  |  |  |  |  |  |
|                                        | 0.02          | 2091-41-0           | NA<br>NA                    | 220                 | 1NA<br>220          | NA<br>NA            | 330000              | 330                 | 220                          |  |  |  |  |  |  |
| Nitroglycerin                          | 1.01          | 90-90-3<br>55-63-0  | NA                          | 18                  | 220<br>NA           | NA<br>NA            | 430000              | NA<br>NA            | 18                           |  |  |  |  |  |  |
| Nitroquanidine                         | -1.72         | 556-88-7            | NA                          | NA                  | NA                  |                     | 430000<br>NA        |                     | ΝΔ                           |  |  |  |  |  |  |
|                                        | 2 38          | 78-11-5             | NA<br>NA                    | NA                  | ΝA                  |                     | 26000000            | NΔ                  | 2600000                      |  |  |  |  |  |  |
| RDX                                    | 0.68          | 121-82-4            | NA                          | 79                  | NA                  | NA                  | 44000               | 190                 | 79                           |  |  |  |  |  |  |
| Tetryl                                 | 1.64 479-45-8 |                     | NA                          | NA                  | NA                  | NA                  | 5800                | NA                  | 5800                         |  |  |  |  |  |  |
| Metals (USEPA SW-846 6010B)            | 1.04          | 475 40 0            | (ug/L)                      | (ug/L)              | (ug/L)              | (ug/L)              | (ug/L)              | (ug/L)              | (ug/L)                       |  |  |  |  |  |  |
| Aluminum                               | NA            | 7429-90-5           | 3.370                       | NA                  | NA                  | 87                  | 87                  | NA                  | 87                           |  |  |  |  |  |  |
| Antimony                               | NA            | 7440-36-0           | NA                          | 190                 | 80                  | 30                  | 100                 | NA                  | 190                          |  |  |  |  |  |  |
| Arsenic                                | NA            |                     | 3.2                         | 150                 | 148                 | 3.1                 | 150                 | NA                  | 150                          |  |  |  |  |  |  |
| Barium                                 | NA            | 7440-39-3           | 47.5                        | 220                 | 220                 | 4                   | 3.8                 | NA                  | 220                          |  |  |  |  |  |  |
| Cadmium                                | NA            | 7440-43-9           | NA                          | 2.5                 | 0.15                | 1.1                 | 0.15                | NA                  | 2.5                          |  |  |  |  |  |  |
| Calcium                                | NA            | 7440-70-2           | 41,400                      | NA                  | NA                  | NA                  | NA                  | NA                  | NA                           |  |  |  |  |  |  |
| Copper                                 | NA            | 7440-50-8           | 7.9                         | 9.3                 | 1.58                | 12                  | 5                   | NA                  | 9.3                          |  |  |  |  |  |  |
| Chromium (as Cr <sup>3+</sup> )        | NA            | 7440-47-3           | NA                          | 86                  | 42                  | 210                 | 77                  | NA                  | 86                           |  |  |  |  |  |  |
| Chromium (as Cr <sup>6+</sup> )        | NA            | 18540-29-9          | NA                          | 11                  | 42                  | 11                  | 11                  | NA                  | 11                           |  |  |  |  |  |  |
| Iron                                   | NA            | 4739-89-6           | 2,560                       | NA                  | NA                  | 1000                | 1000                | NA                  | 1000                         |  |  |  |  |  |  |
| Lead                                   | NA            | 7439-92-1           | NA                          | 6.4                 | 1.17                | 3.2                 | 1.2                 | NA                  | 6.4                          |  |  |  |  |  |  |
| Magnesium                              | NA            | 7439-95-4           | 10,800                      | NA                  | NA                  | NA                  | NA                  | NA                  | NA                           |  |  |  |  |  |  |
| Manganese                              | NA            | 7439-96-5           | 391                         | NA                  | NA                  | 120                 | 80                  | NA                  | 120                          |  |  |  |  |  |  |
| Mercury                                | NA            | 7439-97-6           | NA                          | 0.91                | 0.0013              | 0.0026              | 0.0028              | NA                  | 0.91                         |  |  |  |  |  |  |
| Strontium                              | NA            | 7440-24-6           | NA                          | 21000               | NA                  | 1500                | 620                 | NA                  | 21000                        |  |  |  |  |  |  |
| Zinc                                   | NA            | 7440-66-0           | 42                          | 120                 | 65.7                | 110                 | 66                  | NA                  | 120                          |  |  |  |  |  |  |
| SVOCs (USEPA SW-846 8270C)             |               |                     | (µg/L)                      | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)              | (µg/L)                       |  |  |  |  |  |  |
| 1,2,4-Trichlorobenzene                 | 3.93          | 120-82-1            | NA                          | NA                  | 30                  | 110                 | 110                 | NA                  | 30                           |  |  |  |  |  |  |
| 1,2-Dichlorobenzene                    | 3.28          | 95-50-1             | NA                          | 23                  | 14                  | 14                  | NA                  | NA                  | 23                           |  |  |  |  |  |  |
| 1,3-Dichlorobenzene                    | 3.28          | 541-73-1            | NA                          | 22                  | 38                  | 71                  | NA                  | NA                  | 22                           |  |  |  |  |  |  |
| 1,4-Dichlorobenzene                    | 3.28          | 106-46-7            | NA                          | 9.4                 | 9.4                 | 15                  | 15                  | NA                  | 9.4                          |  |  |  |  |  |  |
| 2,4,5-1 richlorophenol                 | 3.45          | 95-95-4             | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                           |  |  |  |  |  |  |
| 2,4,6-1 richlorophenol                 | 3.45          | 88-06-2             | NA                          | 4.9                 | 4.9                 | NA                  | NA                  | NA                  | 4.9                          |  |  |  |  |  |  |
| 2,4-Dicnioropnenol                     | 2.8           | 120-83-2            | NA<br>NA                    | 11                  | 11                  | NA                  | NA                  | NA<br>NA            | 11                           |  |  |  |  |  |  |
| 2,4-Dimethylphenol                     | 2.01          | 105-67-9<br>51.00 F | INA<br>NA                   | 15                  | 0.1                 | NA<br>NA            | INA<br>NA           | NA<br>NA            | 15                           |  |  |  |  |  |  |
| 2.4-Dinitrophenol                      | 1.13          | 01-20-0             |                             |                     | 19                  |                     | NA<br>210           |                     | 19                           |  |  |  |  |  |  |
| 2.6 Dipitrotoluono                     | 2.10          | 606-20-2            | NA<br>NA                    | 44<br>01            | 44<br>01            |                     | 60                  |                     | 44<br>01                     |  |  |  |  |  |  |
|                                        | 2.10          | 000-20-2            | INA                         | 01                  | 01                  | INA                 | 00                  | INA                 | 01                           |  |  |  |  |  |  |

### Table G-2 Proposed Surface Water Ecological Screening Levels for Ravenna Army Ammunition Plant Page 2 of 3

|                                 |        |                     | Surface Water               |                     |                     |                     |                     |                     |                      |  |  |  |  |  |
|---------------------------------|--------|---------------------|-----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|--|--|--|--|--|
|                                 |        |                     | Ecological Screening Values |                     |                     |                     |                     |                     |                      |  |  |  |  |  |
|                                 |        |                     |                             |                     |                     |                     | <b>.</b>            |                     |                      |  |  |  |  |  |
|                                 |        |                     |                             |                     |                     |                     |                     |                     | Recommended          |  |  |  |  |  |
|                                 |        |                     |                             |                     |                     |                     |                     |                     | Surface Water        |  |  |  |  |  |
|                                 | Loa    |                     | Surface Water               | Ohio WQC            | Region 5 ESLs       | ORNL PRGs           | LANL ESLs           | Talmage et al.      | Ecological Screening |  |  |  |  |  |
| Analyte                         | Kow    | CAS Number          | Background Values           | (2009) <sup>a</sup> | (2003) <sup>b</sup> | (1997) <sup>c</sup> | (2010) <sup>d</sup> | (1999) <sup>e</sup> | Value <sup>f</sup>   |  |  |  |  |  |
| 2-Chloronaphthalene             | 3.81   | 91-58-7             | NA                          | NA                  | 0.396               | NA                  | NA                  | NA                  | 0.396                |  |  |  |  |  |
| 2-Chlorophenol                  | 2.16   | 95-57-8             | NA                          | 32                  | 24                  | NA                  | 43                  | NA                  | 32                   |  |  |  |  |  |
| 2-Methylnaphthalene             | 3.72   | 91-57-6             | NA                          | NA                  | 330                 | NA                  | 2                   | NA                  | 330                  |  |  |  |  |  |
| 2-Methylphenol                  | 2.06   | 95-48-7             | NA                          | 67                  | 67                  | 13                  | NA                  | NA                  | 67                   |  |  |  |  |  |
| 2-Nitroaniline                  | 2.02   | 88-74-4             | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| 2-Nitrophenol                   | 1.91   | 88-75-5             | NA                          | 73                  | NA                  | NA                  | NA                  | NA                  | 73                   |  |  |  |  |  |
| 3 & 4-Methylphenol              | 2.06   | CASID30030          | NA                          | 53                  | 25                  | NA                  | NA                  | NA                  | 53                   |  |  |  |  |  |
| 3,3'-Dichlorobenzidine          | 3.21   | 91-94-1             | NA                          | NA                  | 4.5                 | NA                  | NA                  | NA                  | 4.5                  |  |  |  |  |  |
| 3-Nitroaniline                  | 1.47   | 99-09-2             | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| 4,6-Dinitro-2-methylphenol      | 2.27   | 534-52-1            | NA                          | NA                  | 23                  | NA                  | NA                  | NA                  | 23                   |  |  |  |  |  |
| 4-Bromophenyl-phenyl ether      | 4.94   | 101-55-3            | NA                          | NA                  | 1.5                 | NA                  | NA                  | NA                  | 1.5                  |  |  |  |  |  |
| 4-Chloro-3-methylphenol         | 2.7    | 59-50-7             | NA                          | NA                  | 34.8                | NA                  | NA                  | NA                  | 34.8                 |  |  |  |  |  |
| 4-Chloroaniline                 | 1.72   | 106-47-8            | NA                          | NA                  | 232                 | NA                  | NA                  | NA                  | 232                  |  |  |  |  |  |
| 4-Chlorophenyl-phenyl ether     | 4.69   | 7005-72-3           | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| 4-Nitroaniline                  | 1.47   | 100-01-6            | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| 4-Nitrophenol                   | 1.91   | 100-02-7            | NA                          | NA                  | 60                  | 300                 | NA                  | NA                  | 60                   |  |  |  |  |  |
| Acenaphthene                    | 4.15   | 83-32-9             | NA                          | 15                  | 38                  | 23                  | 23                  | NA                  | 15                   |  |  |  |  |  |
| Acenaphthylene                  | 3.94   | 208-96-8            | NA                          | NA                  | 4840                | NA                  | 30                  | NA                  | 4840                 |  |  |  |  |  |
| Anthracene                      | 4.35   | 120-12-7            | NA                          | 0.02                | 0.035               | 0.73                | 0.0013              | NA                  | 0.02                 |  |  |  |  |  |
| Benzo(a)anthracene              | 5.52   | 56-55-3             | NA                          | NA                  | 0.025               | 0.027               | 0.027               | NA                  | 0.025                |  |  |  |  |  |
| Benzo(a)pyrene                  | 6.11   | 50-32-8             | NA                          | NA                  | 0.014               | 0.014               | 0.014               | NA                  | 0.014                |  |  |  |  |  |
| Benzo(b)fluoranthene            | 6.11   | 205-99-2            | NA                          | NA                  | 9.07                | NA                  | 30                  | NA                  | 9.07                 |  |  |  |  |  |
| Benzo(g,h,i)perylene            | 6.7    | 191-24-2            | NA                          | NA                  | 7.64                | NA                  | 30                  | NA                  | 7.64                 |  |  |  |  |  |
| Benzo(k)fluoranthene            | 6.11   | 207-08-9            | NA                          | NA                  | NA                  | NA                  | 30                  | NA                  | 30                   |  |  |  |  |  |
| Benzoic acid                    | 1.87   | 65-85-0             | NA                          | NA                  | NA                  | 42                  | 41                  | NA                  | 42                   |  |  |  |  |  |
| Benzyl alcohol                  | 1.08   | 100-51-6            | NA                          | NA                  | 8.6                 | 8.6                 | NA                  | NA                  | 8.6                  |  |  |  |  |  |
| Bis(2-chloroethoxy)methane      | 1.3    | 111-91-1            | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| Bis(2-chloroethyl)ether         | 1.56   | 111-44-4            | NA                          | NA                  | 19000               | NA                  | NA                  | NA                  | 19000                |  |  |  |  |  |
| Bis(2-chloroisopropyl)ether     | 2.39   | 108-60-1            | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| Bis(2-ethylnexyl)phthalate      | 8.39   | 117-81-7            | NA                          | 8.4                 | 0.3                 | 0.12                | 32                  | NA                  | 8.4                  |  |  |  |  |  |
| Butylbenzylphthalate            | 4.84   | 85-68-7             | NA                          | 23                  | 23                  | 19                  | 22                  | NA                  | 23                   |  |  |  |  |  |
|                                 | 3.23   | 86-74-8             | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| Chrysene<br>Die hut dahth alata | 5.52   | 218-01-9            | NA                          | NA                  | NA<br>0.7           | NA                  | 30                  | NA                  | 30                   |  |  |  |  |  |
| Di-n-butyiphthalate             | 4.61   | 84-74-2             | NA                          | NA                  | 9.7                 | 1                   | 32                  | NA                  | 9.7                  |  |  |  |  |  |
| Di-n-ociyiphinalale             | 8.54   | 117-84-0<br>52 70 2 | NA NA                       | INA<br>NA           | 30                  |                     | 320                 | NA<br>NA            | 30                   |  |  |  |  |  |
| Dibenzo(a,n)anthracene          | 0.7    | 53-70-3             | NA NA                       | INA 4               | INA 4               |                     | 30                  | NA<br>NA            | 30                   |  |  |  |  |  |
| Dibenzolulari                   | 3.71   | 132-04-9            | NA<br>NA                    | 4                   | 4                   | 3.7                 | 20                  | NA<br>NA            | 4                    |  |  |  |  |  |
| Directly/philliplate            | 2.00   | 04-00-2             | NA<br>NA                    | 220                 | NA NA               | 210                 | 1NA<br>220          |                     | 220                  |  |  |  |  |  |
| Elucrophono                     | 1.00   | 206.44.0            | NA<br>NA                    | 1100                | 1.0                 | 6 2                 | 530<br>6 1          |                     | 0.9                  |  |  |  |  |  |
| Fluoropo                        | 4.93   | 200-44-0            | NA<br>NA                    | 0.0                 | 1.9                 | 0.2                 | 0.1                 |                     | 0.0                  |  |  |  |  |  |
|                                 | 5.86   | 118-74-1            | NA<br>NA                    | 19<br>NA            | 19                  | 5.9<br>NA           | 5.9<br>NA           |                     | 0.0003               |  |  |  |  |  |
| Heyachlorobutadiene             | 4 72   | 87-68-3             | NA<br>NA                    |                     | 0.0003              |                     | N/A<br>N/A          |                     | 0.0003               |  |  |  |  |  |
| Hexachlorocyclopentadiene       | 4.72   | 77_47_4             | NΔ                          | NΔ                  | 77                  | NΔ                  | NΔ                  | ΝΔ                  | 77                   |  |  |  |  |  |
| Heyachloroethane                | 4.03   | 67.72.1             | NA<br>NA                    |                     | 8                   | 12                  | NA<br>NA            |                     | 2 11<br>2            |  |  |  |  |  |
| Indeno(1.2.3-cd)pyrene          | 67     | 103-30-5            | NΔ                          | NΔ                  | 4 31                | NΔ                  | 30                  | NΔ                  | <u> </u>             |  |  |  |  |  |
| Isophorone                      | 2.62   | 78-59-1             | ΝΔ                          | 920                 | 920                 | ΝΔ                  | NA                  | NA                  | 920                  |  |  |  |  |  |
| N-Nitroso-di-n-propylamine      | 1.33   | 621-64-7            | NA                          | NA                  | NA                  | NA                  | NA                  | NA                  | NA                   |  |  |  |  |  |
| N-Nitrosodiphenvlamine & Diphn  | 3.16   | 86-30-6             | NA                          | NA                  | NA                  | 210                 | NA                  | NA                  | 210                  |  |  |  |  |  |
|                                 | 1 0.10 | 00-00-0             |                             |                     |                     | 210                 | 11/7                |                     | 210                  |  |  |  |  |  |

### Table G-2 Proposed Surface Water Ecological Screening Levels for Ravenna Army Ammunition Plant

Page 3 of 3

|                            |            |             |                                    |                                 |                                      | Surface Water                    |                                  |                                       |                                                                            |
|----------------------------|------------|-------------|------------------------------------|---------------------------------|--------------------------------------|----------------------------------|----------------------------------|---------------------------------------|----------------------------------------------------------------------------|
|                            |            |             |                                    |                                 |                                      | Ecologica                        | I Screening Va                   | lues                                  |                                                                            |
| Analyte                    | Log<br>Kow | CAS Number  | Surface Water<br>Background Values | Ohio WQC<br>(2009) <sup>a</sup> | Region 5 ESLs<br>(2003) <sup>b</sup> | ORNL PRGs<br>(1997) <sup>c</sup> | LANL ESLs<br>(2010) <sup>d</sup> | Talmage et al.<br>(1999) <sup>e</sup> | Recommended<br>Surface Water<br>Ecological Screening<br>Value <sup>f</sup> |
| Naphthalene                | 3.17       | 91-20-3     | NA                                 | 21                              | 13                                   | 12                               | 23                               | NA                                    | 21                                                                         |
| Nitrobenzene               | 1.81       | 98-95-3     | NA                                 | 380                             | 220                                  | NA                               | 270                              | NA                                    | 380                                                                        |
| Pentachlorophenol          | 4.74       | 87-86-5     | NA                                 | 6.7                             | 4                                    | NA                               | 2.4                              | NA                                    | 6.7                                                                        |
| Phenanthrene               | 4.35       | 85-01-8     | NA                                 | 2.3                             | 3.6                                  | 6.3                              | 6.3                              | NA                                    | 2.3                                                                        |
| Phenol                     | 1.51       | 108-95-2    | NA                                 | 160                             | 180                                  | 110                              | 110                              | NA                                    | 160                                                                        |
| Pyrene                     | 4.93       | 129-00-0    | NA                                 | 4.6                             | 0.3                                  | NA                               | 30                               | NA                                    | 4.6                                                                        |
| PCBs (Method SW-846 8082A) |            | •           | (µg/L)                             | (µg/L)                          | (µg/L)                               | (µg/L)                           | (µg/L)                           | (µg/L)                                | (µg/L)                                                                     |
| Aroclor 1016               | 5.69       | 12674-11-2  | NA                                 | 0.001                           | 0.00012                              | 0.23                             | 0.014                            | NA                                    | 0.001                                                                      |
| Aroclor 1221               | 4.4        | 11104-28-2  | NA                                 | 0.001                           | 0.00012                              | 0.28                             | NA                               | NA                                    | 0.001                                                                      |
| Aroclor 1232               | 4.4        | 11141-16-5  | NA                                 | 0.001                           | 0.00012                              | 0.58                             | NA                               | NA                                    | 0.001                                                                      |
| Aroclor 1242               | 6.34       | 53469-21-9  | NA                                 | 0.001                           | 0.00012                              | 0.047                            | 0.06                             | NA                                    | 0.001                                                                      |
| Aroclor 1248               | 6.34       | 12672-29-6  | NA                                 | 0.001                           | 0.00012                              | 0.0019                           | 0.01                             | NA                                    | 0.001                                                                      |
| Aroclor 1254               | 6.98       | 11097-69-1  | NA                                 | 0.001                           | 0.00012                              | 0.0019                           | 0.02                             | NA                                    | 0.001                                                                      |
| Aroclor 1260               | 8.27       | 11096-82-5  | NA                                 | 0.001                           | 0.00012                              | 94                               | 10                               | NA                                    | 0.001                                                                      |
| Nitrocellulose             |            |             | (µg/L)                             | (µg/L)                          | (µg/L)                               | (µg/L)                           | (µg/L)                           | (µg/L)                                | (µg/L)                                                                     |
| Nitrocellulose             | -4.56      | 9004-70-0   | NA                                 | NA                              | NA                                   | NA                               | NA                               | NA                                    | NA                                                                         |
| Total Organic Carbon       |            |             |                                    |                                 |                                      |                                  |                                  |                                       |                                                                            |
| Total Organic Carbon       | NA         | TOC (mg/kg) | NA                                 | NA                              | NA                                   | NA                               | NA                               | NA                                    | NA                                                                         |
| рН                         | NA         | pH (Units)  | NA                                 | 6.5 - 9                         | NA                                   | NA                               | NA                               | NA                                    | pH =6.5 - 9                                                                |

#### Notes:

<sup>a</sup> Ohio Administrative Code 3745-1, Ohio River Basin Aquatic Life Criteria, OMZA, October 20, 2009. Based on total recoverable metals, assuming a hardness of 100 mg/L for hardness-dependent criteria, and a pH of 7.0 for pH-dependent criteria. Iron criterion is based on protection of agricultural use. PCBs criteria are based on wildlife protection.

<sup>b</sup> Ecological Screening Levels (ESLs), US EPA Region V, August 2003.

<sup>c</sup> ORNL: Efroymson, R.A., Suter II, G.W., Sample, B.E. and Jones, D.S., 1997. *Preliminary Remediation Goals for Ecological Endpoints*, ES/ER/TM-162/R2.

<sup>d</sup> Los Alamos National Laboratory (LANL), Eco Risk Database, Release 2.5, October 2010.

<sup>e</sup> From Nitroaromatic Munition Compounds: Environmental Effects and Screening Values, Talmage et al., 1999, Rev. Environ. Contamin. Toxicol., 161: 1-156.

<sup>f</sup> The following hierarchy (based on OEPA DERR ERA Guidance, April 2008) was used to select the surface water screening values:

1. Ohio water quality criteria (2009) [aquatic life, OMZA]

2. USEPA Region 5 ESLs (2003)

3. ORNL (1997) [plants, invertebrates, wildlife]

4. LANL (2010) [various endpoints]

5. Talmage et al. (1999)

CAS = Chemical Abstract Service.

µg/L = micrograms per liter

NA = RVAAP-specific screening level not available.

RVAAP = Ravenna Army Ammunition Plant.

SVOC = semivolatile organic compound

# Table G-3 Proposed Sediment Ecological Screening Levels for Ravenna Army Ammunition Plant Page 1 of 4

|                                        |         |            | Sediment                                   |                                      |                                   |                                           |                                           |                                    |                                                                     |                                                                    |                          |  |  |  |
|----------------------------------------|---------|------------|--------------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|--|--|--|
|                                        |         |            |                                            |                                      |                                   |                                           | Ecological Scr                            | reening Values                     |                                                                     |                                                                    |                          |  |  |  |
| Analyte                                | Log Kow | CAS Number | Sediment<br>Background<br>Value<br>(mg/kg) | MacDonald et al.<br>2000ª<br>(mg/kg) | Region 5 ESLs<br>2003ª<br>(ma/ka) | ORNL PRGs<br>1997 <sup>c</sup><br>(ma/ka) | LANL ESLs<br>2010 <sup>c</sup><br>(ma/ka) | Talmage et al.<br>1999a<br>(ma/kg) | Persistent,<br>Bioaccumulative, and<br>Toxic Pollutant <sup>f</sup> | Recommended Sediment<br>Ecological Screening<br>Value <sup>9</sup> | Is the ESV Protective of |  |  |  |
| Explosives (LISEPA SW-846 8330B)       | LUG KUW |            | (9/9/                                      | (                                    | (9/                               | (                                         | (99)                                      | (                                  |                                                                     | Value                                                              |                          |  |  |  |
| 1.3.5-Trinitrobenzene                  | 1.45    | 99-35-4    | NA                                         | NA                                   | NA                                | NA                                        | 1300                                      | 0.024                              | No (Log Kow < 3.0)                                                  | 1300                                                               | Yes                      |  |  |  |
| 1,3-Dinitrobenzene                     | 1.63    | 99-65-0    | NA                                         | NA                                   | 0.00861                           | NA                                        | 0.92                                      | 0.067                              | No (Log Kow < 3.0)                                                  | 0.00861                                                            | No                       |  |  |  |
| 2.4.6-Trinitrotoluene                  | 1.99    | 118-96-7   | NA                                         | NA                                   | NA                                | NA                                        | 420                                       | 0.92                               | No (Log Kow < 3.0)                                                  | 420                                                                | Yes                      |  |  |  |
| 2,4-Dinitrotoluene                     | 2.18    | 121-14-2   | NA                                         | NA                                   | 0.0144                            | NA                                        | 0.29                                      | NA                                 | No (Log Kow < 3.0)                                                  | 0.0144                                                             | No                       |  |  |  |
| 2,6-Dinitrotoluene                     | 2.18    | 606-20-2   | NA                                         | NA                                   | 0.0398                            | NA                                        | 1.9                                       | NA                                 | No (Log Kow < 3.0)                                                  | 0.0398                                                             | No                       |  |  |  |
| Dinitrotoluene (2,4/2,6-) Mixture (ca) | 2.18    | 25321-14-6 | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (Log Kow < 3.0)                                                  | NA                                                                 | No                       |  |  |  |
| 2-Amino-4,6-dinitrotoluene             | 1.84    | 35572-78-2 | NA                                         | NA                                   | NA                                | NA                                        | 7                                         | NA                                 | No (Log Kow < 3.0)                                                  | 7                                                                  | Yes                      |  |  |  |
| 2-Nitrotoluene                         | 2.36    | 88-72-2    | NA                                         | NA                                   | NA                                | NA                                        | 5.6                                       | NA                                 | No (Log Kow < 3.0)                                                  | 5.6                                                                | Yes                      |  |  |  |
| 3-Nitrotoluene                         | 2.36    | 99-08-1    | NA                                         | NA                                   | NA                                | NA                                        | 4.9                                       | NA                                 | No (Log Kow < 3.0)                                                  | 4.9                                                                | Yes                      |  |  |  |
| 3,5-Dinitroaniline                     | 1.29    | 618-87-1   | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (Log Kow < 3.0)                                                  | NA                                                                 | NA                       |  |  |  |
| 4-Amino-2,6-dinitrotoluene             | 1.84    | 19406-51-0 | NA                                         | NA                                   | NA                                | NA                                        | 1.9                                       | NA                                 | No (Log Kow < 3.0)                                                  | 1.9                                                                | Yes                      |  |  |  |
| 4-Nitrotoluene                         | 2.36    | 99-99-0    | NA                                         | NA                                   | NA                                | NA                                        | 10                                        | NA                                 | No (Log Kow < 3.0)                                                  | 10                                                                 | Yes                      |  |  |  |
| HMX                                    | 0.82    | 2691-41-0  | NA                                         | NA                                   | NA                                | NA                                        | 27000                                     | 0.047                              | No (Log Kow < 3.0)                                                  | 27000                                                              | Yes                      |  |  |  |
| Nitrobenzene                           | 1.81    | 98-95-3    | NA                                         | NA                                   | 0.145                             | NA                                        | 32                                        | NA                                 | No (Log Kow < 3.0)                                                  | 0.145                                                              | No                       |  |  |  |
| Nitroglycerin                          | 1.51    | 55-63-0    | NA                                         | NA                                   | NA                                | NA                                        | 1700                                      | NA                                 | No (Log Kow < 3.0)                                                  | 1700                                                               | Yes                      |  |  |  |
| Nitroguanidine                         | -1.72   | 556-88-7   | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (Log Kow < 3.0)                                                  | NA                                                                 | NA                       |  |  |  |
| PETN                                   | 2.38    | 78-11-5    | NA                                         | NA                                   | NA                                | NA                                        | 120000                                    | NA                                 | No (Log Kow < 3.0)                                                  | 120000                                                             | Yes                      |  |  |  |
| RDX                                    | 0.68    | 121-82-4   | NA                                         | NA                                   | NA                                | NA                                        | 45                                        | 0.13                               | No (Log Kow < 3.0)                                                  | 45                                                                 | Yes                      |  |  |  |
| Tetryl                                 | 1.64    | 479-45-8   | NA                                         | NA                                   | NA                                | NA                                        | 100                                       | NA                                 | No (Log Kow < 3.0)                                                  | 100                                                                | Yes                      |  |  |  |
| Metals (USEPA SW-846 6010B)            |         |            |                                            |                                      |                                   |                                           |                                           |                                    |                                                                     |                                                                    |                          |  |  |  |
| Aluminum                               | NA      | 7429-90-5  | 13900                                      | NA                                   | NA                                | NA                                        | 280                                       | NA                                 | No (not USEPA IBC)                                                  | 280                                                                | Yes                      |  |  |  |
| Antimony                               | NA      | 7440-36-0  | NA                                         | NA                                   | NA                                | NA                                        | 0.36                                      | NA                                 | No (not USEPA IBC)                                                  | 0.36                                                               | Yes                      |  |  |  |
| Arsenic                                | NA      | 7440-38-2  | 19.5                                       | 9.79                                 | 9.79                              | 42                                        | 12                                        | NA                                 | Yes (USEPA IBC)                                                     | 9.79                                                               | No                       |  |  |  |
| Barium                                 | NA      | 7440-39-3  | 123                                        | NA                                   | NA                                | NA                                        | 48                                        | NA                                 | No (not USEPA IBC)                                                  | 48                                                                 | No                       |  |  |  |
| Beryllium                              | NA      | 7440-41-7  | 0.38                                       | NA                                   | NA                                | NA                                        | 73                                        | NA                                 | No (not USEPA IBC)                                                  | 73                                                                 | Yes                      |  |  |  |
| Cadmium                                | NA      | 7440-43-9  | NA                                         | 0.99                                 | 0.99                              | 4.2                                       | 0.33                                      | NA                                 | Yes (USEPA IBC)                                                     | 0.99                                                               | No                       |  |  |  |
| Calcium                                | NA      | 7440-70-2  | 5510                                       | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (not USEPA IBC)                                                  | NA                                                                 | NA                       |  |  |  |
| Cobalt                                 | NA      | 7440-48-4  | 9.1                                        | NA                                   | 50                                | NA                                        | 230                                       | NA                                 | No (not USEPA IBC)                                                  | 50                                                                 | No                       |  |  |  |
| Copper                                 | NA      | 7440-50-8  | 27.6                                       | 31.6                                 | 31.6                              | 77.7                                      | 23                                        | NA                                 | Yes (USEPA IBC)                                                     | 31.6                                                               | No                       |  |  |  |
| Chromium (as Cr <sup>3+</sup> )        | NA      | 7440-47-3  | 18.1                                       | 43.4                                 | 43.4                              | 159                                       | 56                                        | NA                                 | No (not USEPA IBC)                                                  | 43.4                                                               | No                       |  |  |  |
| Chromium (as Cr <sup>6+</sup> )        | NA      | 18540-29-9 | NA                                         | NA                                   | NA                                | NA                                        | 8                                         | NA                                 | Yes (USEPA IBC)                                                     | 8                                                                  | No                       |  |  |  |
| Iron                                   | NA      | 4739-89-6  | 28200                                      | NA                                   | NA                                | NA                                        | 20                                        | NA                                 | No (not USEPA IBC)                                                  | 20                                                                 | No                       |  |  |  |
| Lead                                   | NA      | 7439-92-1  | 27.4                                       | 35.8                                 | 35.8                              | 110                                       | 27                                        | NA                                 | Yes (USEPA IBC)                                                     | 35.8                                                               | No                       |  |  |  |
| Magnesium                              | NA      | 7439-95-4  | 2760                                       | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (not USEPA IBC)                                                  | NA                                                                 | NA                       |  |  |  |
| Manganese                              | NA      | 7439-96-5  | 1950                                       | NA                                   | NA                                | NA                                        | 720                                       | NA                                 | No (not USEPA IBC)                                                  | 720                                                                | No                       |  |  |  |
| Mercury                                | NA      | 7439-97-6  | 0.059                                      | 0.18                                 | 0.174                             | 0.7                                       | 0.00046                                   | NA                                 | Yes (OEPA PBT)                                                      | 0.18                                                               | No                       |  |  |  |
| Nickel                                 | NA      | 7440-02-0  | 17.7                                       | 22.7                                 | 22.7                              | 38.5                                      | 13                                        | NA                                 | Yes (USEPA IBC)                                                     | 22.7                                                               | No                       |  |  |  |
| Selenium                               | NA      | 7782-49-2  | 1.7                                        | NA                                   | NA                                | NA                                        | 0.9                                       | NA                                 | Yes (USEPA IBC)                                                     | 0.9                                                                | Yes                      |  |  |  |
| Silver                                 | NA      | 7440-22-4  | ND                                         | NA                                   | 0.5                               | 1.8                                       | 1                                         | NA                                 | Yes (USEPA IBC)                                                     | 0.5                                                                | No                       |  |  |  |
| Sodium                                 | NA      |            | 112                                        | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (not USEPA IBC)                                                  | Nutrient                                                           | NA                       |  |  |  |
| Strontium                              | NA      | 7440-24-6  | NA                                         | NA                                   | NA                                | NA                                        | 1700                                      | NA                                 | No (not USEPA IBC)                                                  | 1700                                                               | Yes                      |  |  |  |
| Thallium                               | NA      | 7440-28-0  | 0.89                                       | NA                                   | NA                                | NA                                        | 0.044                                     | NA                                 | No (not USEPA IBC)                                                  | 0.044                                                              | Yes                      |  |  |  |
| Vanadium                               | NA      | 7440-62-2  | 26.1                                       | NA                                   | NA                                | NA                                        | 30                                        | NA                                 | No (not USEPA IBC)                                                  | 30                                                                 | Yes                      |  |  |  |
| Zinc                                   | NA      | 7440-66-0  | 532                                        | 121                                  | 121                               | 270                                       | 65                                        | NA                                 | Yes (USEPA IBC)                                                     | 121                                                                | No                       |  |  |  |
| General Chemistry                      |         |            |                                            |                                      |                                   |                                           |                                           |                                    |                                                                     |                                                                    |                          |  |  |  |

# Table G-3 Proposed Sediment Ecological Screening Levels for Ravenna Army Ammunition Plant Page 2 of 4

|                             |         |            | Sediment                        |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |
|-----------------------------|---------|------------|---------------------------------|---------------------------------------|------------------------|--------------------------------|--------------------------------|-------------------------|-------------------------------------|----------------------------------------------|--------------------------|--|--|
|                             |         |            |                                 |                                       |                        |                                |                                | rooping Values          |                                     |                                              |                          |  |  |
|                             |         |            |                                 |                                       | 1                      | 1                              | Ecological SCI                 | eening values           |                                     |                                              |                          |  |  |
|                             |         |            | Sediment<br>Background<br>Value | MacDonald et al.<br>2000 <sup>a</sup> | Region 5 ESLs<br>2003ª | ORNL PRGs<br>1997 <sup>c</sup> | LANL ESLs<br>2010 <sup>c</sup> | Talmage et al.<br>1999a | Persistent,<br>Bioaccumulative, and | Recommended Sediment<br>Ecological Screening | Is the ESV Protective of |  |  |
| Analyte                     | Log Kow | CAS Number | (mg/kg)                         | (mg/kg)                               | (mg/kg)                | (mg/kg)                        | (mg/kg)                        | (mg/kg)                 | Toxic Pollutant <sup>f</sup>        | Value <sup>g</sup>                           | Food Chain Effects?      |  |  |
| Cyanide, Total              |         | 57-12-5    | NA                              | NA                                    | 0.0001                 | NA                             | 0.1                            | NA                      | No (not USEPA IBC)                  | 0.0001                                       | No                       |  |  |
| Volatile Organic Compounds  |         |            |                                 |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |
| Acetone                     | -0.24   | 67-64-1    | NA                              | NA                                    | 0.0099                 | 0.0091                         | 0.065                          | NA                      | No (not USEPA IBC)                  | 0.0099                                       | No                       |  |  |
| SVOCs (USEPA SW-846 8270C)  |         |            |                                 |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |
| 1,2,4-Trichlorobenzene      | 3.93    | 120-82-1   | NA                              | NA                                    | 5.062                  | 9.7                            | 0.33                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 5.062                                        | No                       |  |  |
| 1,2-Dichlorobenzene         | 3.28    | 95-50-1    | NA                              | NA                                    | 0.294                  | 0.33                           | 1.1                            | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.294                                        | No                       |  |  |
| 1,3-Dichlorobenzene         | 3.28    | 541-73-1   | NA                              | NA                                    | 1.315                  | 1.7                            | 0.92                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 1.315                                        | No                       |  |  |
| 1,4-Dichlorobenzene         | 3.28    | 106-46-7   | NA                              | NA                                    | 0.318                  | 0.35                           | 0.35                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.318                                        | No                       |  |  |
| 2,4,5-Trichlorophenol       | 3.45    | 95-95-4    | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | Yes (Log Kow ≥ 3.0)                 | NA                                           | NA                       |  |  |
| 2,4,6-Trichlorophenol       | 3.45    | 88-06-2    | NA                              | NA                                    | 0.208                  | NA                             | NA                             | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.208                                        | No                       |  |  |
| 2,4-Dichlorophenol          | 2.8     | 120-83-2   | NA                              | NA                                    | 0.0817                 | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.0817                                       | No                       |  |  |
| 2,4-Dimethylphenol          | 2.61    | 105-67-9   | NA                              | NA                                    | 0.304                  | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.304                                        | No                       |  |  |
| 2,4-Dinitrophenol           | 1.73    | 51-28-5    | NA                              | NA                                    | 0.00621                | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.00621                                      | No                       |  |  |
| 2,4-Dinitrotoluene          | 2.18    | 121-14-2   | NA                              | NA                                    | 0.014                  | NA                             | 0.29                           | NA                      | No (Log Kow < 3.0)                  | 0.014                                        | No                       |  |  |
| 2,6-Dinitrotoluene          | 2.18    | 606-20-2   | NA                              | NA                                    | 0.0398                 | NA                             | 1.9                            | NA                      | No (Log Kow < 3.0)                  | 0.0398                                       | No                       |  |  |
| 2-Chloronaphthalene         | 3.81    | 91-58-7    | NA                              | NA                                    | 0.417                  | NA                             | NA                             | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.417                                        | No                       |  |  |
| 2-Chlorophenol              | 2.16    | 95-57-8    | NA                              | NA                                    | 0.0319                 | NA                             | 0.057                          | NA                      | No (Log Kow < 3.0)                  | 0.0319                                       | No                       |  |  |
| 2-Methylnaphthalene         | 3.72    | 91-57-6    | NA                              | NA                                    | 0.0202                 | NA                             | 0.18                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.0202                                       | No                       |  |  |
| 2-Methylphenol              | 2.06    | 95-48-7    | NA                              | NA                                    | 0.0554                 | 0.012                          | 1900                           | NA                      | No (Log Kow < 3.0)                  | 0.0554                                       | No                       |  |  |
| 2-Nitroaniline              | 2.02    | 88-74-4    | NA                              | NA                                    | NA                     | NA                             | 8.1                            | NA                      | No (Log Kow < 3.0)                  | 8.1                                          | Yes                      |  |  |
| 2-Nitrophenol               | 1.91    | 88-75-5    | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | NA                                           | NA                       |  |  |
| 3 & 4-Methylphenol          | 2.06    | CASID30030 | NA                              | NA                                    | 0.0202                 | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.0202                                       | No                       |  |  |
| 3,3'-Dichlorobenzidine      | 3.21    | 91-94-1    | NA                              | NA                                    | 0.127                  | NA                             | NA                             | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.127                                        | No                       |  |  |
| 3-Nitroaniline              | 1.47    | 99-09-2    | NA                              | NA                                    | NA                     | NA                             | 8.1 <sup>L</sup>               | NA                      | No (Log Kow < 3.0)                  | 8.1                                          | Yes                      |  |  |
| 4,6-Dinitro-2-methylphenol  | 2.27    | 534-52-1   | NA                              | NA                                    | 0.104                  | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.104                                        | No                       |  |  |
| 4-Bromophenyl-phenyl ether  | 4.94    | 101-55-3   | NA                              | NA                                    | 1.55                   | 1.2                            | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 1.55                                         | No                       |  |  |
| 4-Chloro-3-methylphenol     | 2.7     | 59-50-7    | NA                              | NA                                    | 0.388                  | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.388                                        | No                       |  |  |
| 4-Chloroaniline             | 1.72    | 106-47-8   | NA                              | NA                                    | 0.146                  | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.146                                        | No                       |  |  |
| 4-Chlorophenyl-phenyl ether | 4.69    | 7005-72-3  | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | NA                                           | NA                       |  |  |
| 4-Nitroaniline              | 1 47    | 100-01-6   | NA                              | NA                                    | NA                     | NA                             | 81 <sup>L</sup>                | NA                      | No $(1 \text{ or } Kow < 3.0)$      | 81                                           | Yes                      |  |  |
| 4-Nitrophenol               | 1.91    | 100-02-7   | NA                              | NA                                    | 0.0133                 | NA                             | NA                             | NA                      | No $(l \text{ og } Kow < 3.0)$      | 0.0133                                       | No                       |  |  |
| Acenaphthene                | 4.15    | 83-32-9    | NA                              | NA                                    | 0.00671                | 0.089                          | 0.62                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00671                                      | No                       |  |  |
| Acenaphthylene              | 3.94    | 208-96-8   | NA                              | NA                                    | 0.00587                | 0.13                           | 0.044                          | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00587                                      | No                       |  |  |
| Anthracene                  | 4.35    | 120-12-7   | NA                              | 0.0572                                | 0.0572                 | 0.25                           | 0.00039                        | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.0572                                       | No                       |  |  |
| Benzo(a)anthracene          | 5.52    | 56-55-3    | NA                              | 0.108                                 | 0.108                  | 0.69                           | 0.11                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.108                                        | No                       |  |  |
| Benzo(a)pyrene              | 6.11    | 50-32-8    | NA                              | 0.15                                  | 0.15                   | 0.394                          | 0.35                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.15                                         | No                       |  |  |
| Benzo(b)fluoranthene        | 6.11    | 205-99-2   | NA                              | NA                                    | 10.4                   | 4                              | 0.24                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 10.4                                         | No                       |  |  |
| Benzo(a,h,i)pervlene        | 6.7     | 191-24-2   | NA                              | NA                                    | 0.17                   | 6.3                            | 0.29                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.17                                         | No                       |  |  |
| Benzo(k)fluoranthene        | 6.11    | 207-08-9   | NA                              | NA                                    | 0.24                   | 4                              | 0.24                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.24                                         | No                       |  |  |
| Benzoic acid                | 1.87    | 65-85-0    | NA                              | NA                                    | NA                     | NA                             | 0.065                          | NA                      | No (Log Kow $< 3.0$ )               | 0,065                                        | No                       |  |  |
| Benzyl alcohol              | 1.08    | 100-51-6   | NA                              | NA                                    | 0.00104                | 0.0011                         | 330                            | NA                      | No (Log Kow $< 3.0$ )               | 0.00104                                      | No                       |  |  |
| Bis(2-chloroethoxy)methane  | 1.3     | 111-91-1   | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | No (Loa Kow < 3.0)                  | NA                                           | NA                       |  |  |
| Bis(2-chloroethyl)ether     | 1.56    | 111-44-4   | NA                              | NA                                    | 3.52                   | NA                             | NA                             | NA                      | No (Log Kow $< 3.0$ )               | 3,52                                         | No                       |  |  |
| Bis(2-chloroisopropyl)ether | 2.39    | 108-60-1   | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | NA                                           | NA                       |  |  |
| Bis(2-ethylhexyl)phthalate  | 8.39    | 117-81-7   | NA                              | NA                                    | 0.182                  | 2.7                            | 0.026                          | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.182                                        | No                       |  |  |
| Butylbenzylphthalate        | 4.84    | 85-68-7    | NA                              | NA                                    | 1.97                   | NA                             | 13                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 1.97                                         | No                       |  |  |
|                             |         |            |                                 |                                       | 1. · · ·               |                                | -                              |                         |                                     |                                              | ·                        |  |  |

# Table G-3 Proposed Sediment Ecological Screening Levels for Ravenna Army Ammunition Plant Page 3 of 4

|                                | 1       | · · · · ·                | Codiment                        |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |  |
|--------------------------------|---------|--------------------------|---------------------------------|---------------------------------------|------------------------|--------------------------------|--------------------------------|-------------------------|-------------------------------------|----------------------------------------------|--------------------------|--|--|--|
|                                |         |                          | Seuiment                        |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |  |
|                                |         |                          |                                 |                                       |                        |                                | Ecological Scr                 | eening Values           |                                     |                                              |                          |  |  |  |
|                                |         |                          | Sediment<br>Background<br>Value | MacDonald et al.<br>2000 <sup>a</sup> | Region 5 ESLs<br>2003ª | ORNL PRGs<br>1997 <sup>c</sup> | LANL ESLs<br>2010 <sup>c</sup> | Talmage et al.<br>1999a | Persistent,<br>Bioaccumulative, and | Recommended Sediment<br>Ecological Screening | Is the ESV Protective of |  |  |  |
| Analyte                        | Log Kow | CAS Number               | (mg/kg)                         | (mg/kg)                               | (mg/kg)                | (mg/kg)                        | (mg/kg)                        | (mg/kg)                 | Toxic Pollutant <sup>f</sup>        | Value <sup>g</sup>                           | Food Chain Effects?      |  |  |  |
| Carbazole                      | 3.23    | 86-74-8                  | NA                              | NA                                    | NA                     | NA                             | 0.00014                        | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00014                                      | Yes                      |  |  |  |
| Chrysene                       | 5.52    | 218-01-9                 | NA                              | 0.166                                 | 0.166                  | 0.85                           | 0.5                            | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.166                                        | No                       |  |  |  |
| Di-n-butylphthalate            | 4.61    | 84-74-2                  | NA                              | NA                                    | 1.114                  | 240                            | 0.014                          | NA                      | Yes (Log Kow ≥ 3.0)                 | 1.114                                        | No                       |  |  |  |
| Di-n-octylphthalate            | 8.54    | 117-84-0                 | NA                              | NA                                    | 40.6                   | NA                             | 1.3                            | NA                      | Yes (Log Kow ≥ 3.0)                 | 40.6                                         | No                       |  |  |  |
| Dibenzo(a,h)anthracene         | 6.7     | 53-70-3                  | NA                              | 0.033                                 | 0.033                  | 0.0282                         | 0.015                          | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.033                                        | No                       |  |  |  |
| Dibenzofuran                   | 3.71    | 132-64-9                 | NA                              | NA                                    | 0.449                  | 0.42                           | 2.3                            | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.449                                        | No                       |  |  |  |
| Diethylphthalate               | 2.65    | 84-66-2                  | NA                              | NA                                    | 0.295                  | 0.61                           | 4500                           | NA                      | No (Log Kow < 3.0)                  | 0.295                                        | No                       |  |  |  |
| Dimethylphthalate              | 1.66    | 131-11-3                 | NA                              | NA                                    | NA                     | NA                             | 120                            | NA                      | No (Log Kow < 3.0)                  | 120                                          | Yes                      |  |  |  |
| Fluoranthene                   | 4.93    | 206-44-0                 | NA                              | 0.423                                 | 0.423                  | 0.834                          | 2.9                            | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.423                                        | No                       |  |  |  |
| Fluorene                       | 4.02    | 86-73-7                  | NA                              | 0.0774                                | 0.0774                 | 0.14                           | 0.54                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.0774                                       | No                       |  |  |  |
| Hexachlorobenzene              | 5.86    | 118-74-1                 | NA                              | NA                                    | 0.02                   | NA                             | 0.1                            | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.02                                         | No                       |  |  |  |
| Hexachlorobutadiene            | 4.72    | 87-68-3                  | NA                              | NA                                    | 0.0265                 | NA                             | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.0265                                       | No                       |  |  |  |
| Hexachlorocyclopentadiene      | 4.63    | 77-47-4                  | NA                              | NA                                    | 0.901                  | NA                             | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.901                                        | No                       |  |  |  |
| Hexachloroethane               | 4.03    | 67-72-1                  | NA                              | NA                                    | 0.584                  | 1                              | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.584                                        | No                       |  |  |  |
| Indeno(1,2,3-cd)pyrene         | 6.7     | 193-39-5                 | NA                              | NA                                    | 0.2                    | 0.837                          | 0.078                          | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.2                                          | No                       |  |  |  |
| Isophorone                     | 2.62    | 78-59-1                  | NA                              | NA                                    | 0.432                  | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | 0.432                                        | No                       |  |  |  |
| N-Nitroso-di-n-propylamine     | 1.33    | 621-64-7                 | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | No (Log Kow < 3.0)                  | NA                                           | NA                       |  |  |  |
| N-Nitrosodiphenylamine & Diphn | 3.16    | 86-30-6                  | NA                              | NA                                    | NA                     | NA                             | NA                             | NA                      | Yes (Log Kow ≥ 3.0)                 | NA                                           | NA                       |  |  |  |
| Naphthalene                    | 3.17    | 91-20-3                  | NA                              | 0.176                                 | 0.176                  | 0.39                           | 0.47                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.176                                        | No                       |  |  |  |
| Nitrobenzene                   | 1.81    | 98-95-3                  | NA                              | NA                                    | 0.145                  | NA                             | 32                             | NA                      | No (Log Kow < 3.0)                  | 0.145                                        | No                       |  |  |  |
| Pentachlorophenol              | 4.74    | 87-86-5                  | NA                              | NA                                    | 23                     | NA                             | 0.48                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 23                                           | No                       |  |  |  |
| Phenanthrene                   | 4.35    | 85-01-8                  | NA                              | 0.204                                 | 0.204                  | 0.54                           | 0.85                           | NA                      | Yes (Log Kow ≥ 3.0)                 | 0.204                                        | No                       |  |  |  |
| Phenol                         | 1.51    | 108-95-2                 | NA                              | NA                                    | 0.0491                 | 0.032                          | 840                            | NA                      | No (Log Kow < 3.0)                  | 0.0491                                       | No                       |  |  |  |
| Pyrene                         | 4.93    | 129-00-0                 | NA                              | 0.195                                 | 0.195                  | 1.4                            | 0.57                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.195                                        | No                       |  |  |  |
| Pesticides                     |         |                          |                                 |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |  |
| 4,4'-DDD                       | 5.87    | 72-54-8                  | NA                              | 0.00488                               | 0.00488                | 0.0078                         | 0.0084                         | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00488                                      | No                       |  |  |  |
| 4,4'-DDE                       | 6       | 72-55-9                  | NA                              | 0.00316                               | 0.00316                | 0.027                          | 0.0022                         | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00316                                      | No                       |  |  |  |
| 4,4'-DDT                       | 6.79    | 50-29-3                  | NA                              | 0.00416                               | 0.00416                | 0.052                          | 0.0015                         | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00416                                      | No                       |  |  |  |
| alpha-Chlordane                | 6.26    | 5103-71-9                | NA                              | 0.00324                               | 0.00324                | 0.0048                         | 0.0005                         | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.00324                                      | No                       |  |  |  |
| beta-BHC                       | 4.26    | 319-84-6                 | NA                              | NA                                    | 0.006                  | 120                            | 0.14                           | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.006                                        | No                       |  |  |  |
| delta-BHC                      | 4.26    | 319-86-8                 | NA                              | NA                                    | 7.15                   | 120                            | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 7.15                                         | No                       |  |  |  |
| Dieldrin                       | 5.45    | 60-57-1                  | NA                              | 0.0019                                | 0.0019                 | 0.0043                         | 0.0056                         | NA                      | Yes (Log Kow $\geq$ 3.0)            | 0.0019                                       | No                       |  |  |  |
| Endosultan Sultate             | 3.64    | 1031-7-8                 | NA                              | NA                                    | 34.6                   | NA                             | NA                             | NA                      | Yes (Log Kow $\geq$ 3.0)            | 34.6                                         | No                       |  |  |  |
| Endrin Aldehyde                | 4.8     | /421-93-4                | NA                              | NA                                    | 0.48                   | NA                             | NA                             | NA                      | Yes (Log Kow $\geq 3.0$ )           | 0.48                                         | No                       |  |  |  |
| gamma-Chlordane                | 6.26    | 5103-74-2                | NA                              | 0.00324                               | 0.00324                | 0.0048                         | 0.0005                         | NA                      | Yes (Log Kow $\geq 3.0$ )           | 0.00324                                      | No                       |  |  |  |
| Heptachior                     | 5.86    | 76-44-8                  | NA                              | NA                                    | 0.6                    | 13                             | 0.01                           | NA                      | Yes (Log Kow $\geq 3.0$ )           | 0.0                                          | NO                       |  |  |  |
| Methoxychior                   | 5.67    | /2-43-5                  | NA                              | NA                                    | 0.0136                 | 0.019                          | 0.03                           | NA                      | Yes (Log Kow $\geq 3.0$ )           | 0.0136                                       | NO                       |  |  |  |
| PCBS (Method SW-846 8082A)     | F (0    | 10/7/11.0                | NIA                             | 0.0500                                | 0.0500                 | 0.50                           | 0.01                           | NIA                     |                                     | 0.0500                                       | NL.                      |  |  |  |
| Arocior 1016                   | 5.69    | 126/4-11-2               | NA                              | 0.0598                                | 0.0598                 | 0.53                           | 0.01                           | NA                      | Yes (Log Kow $\geq 3.0$ )           | 0.0598                                       | NO                       |  |  |  |
| Alocior 1221                   | 4.4     | 11141-17                 | NA<br>NA                        | 0.0598                                | 0.0598                 | 0.12                           | NA<br>NA                       | NA                      | Tes (Log Kow $\geq 3.0$ )           | 0.0598                                       | NO<br>No                 |  |  |  |
| Aluciul 1232                   | 4.4     | 11141-10-5<br>E24(0.21.0 | INA                             | 0.0598                                | 0.0598                 | 0.0                            |                                | NA<br>NA                | Tes (Log Kow $\ge 3.0$ )            | 0.0598                                       | INO                      |  |  |  |
| Aroclor 1242                   | 0.34    | 23409-21-9               | NA<br>NA                        | 0.0598                                | 0.0598                 | 29                             | 0.031                          | NA<br>NA                | Tes (Log Kow $\ge 3.0$ )            | 0.0598                                       | INO<br>N-                |  |  |  |
| ALOCIOF 1248                   | 6.34    | 120/2-29-6               | NA<br>NA                        | 0.0598                                | 0.0598                 | 1                              | 0.009                          | NA                      | Tes (Log Kow $\geq 3.0$ )           | 0.0598                                       | NO<br>No                 |  |  |  |
| Arodor 1260                    | 0.98    | 1100/02 5                | INA<br>NA                       | 0.0598                                | 0.0598                 | 12                             | 0.031                          | NA<br>NA                | Tes (Log Kow $\ge 3.0$ )            | 0.0598                                       | INO<br>No                |  |  |  |
| Arodor 1260                    | ŏ.27    | 11090-82-5               | INA<br>NA                       | 0.0598                                | 0.0598                 | 03                             | 0.031                          | NA<br>NA                | Tes (Log Kow $\ge 3.0$ )            | 0.0598                                       | INO<br>No                |  |  |  |
|                                |         |                          | NA                              | INA                                   | 0.0098                 | NA                             | INA                            | NA                      | res (Log Kow ≥ 3.0)                 | 0.00%                                        | INU                      |  |  |  |
| NITOCEIIUIOSE                  |         |                          |                                 |                                       |                        |                                |                                |                         |                                     |                                              |                          |  |  |  |

## Table G-3 Proposed Sediment Ecological Screening Levels for Ravenna Army Ammunition Plant Page 4 of 4

|                      |         |            |                                            |                                      |                                   |                                           | Sediment                                  |                                    |                                                                     |                                                                    |                                                 |
|----------------------|---------|------------|--------------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|
|                      |         |            |                                            |                                      |                                   |                                           | Ecological Scr                            | eening Values                      |                                                                     |                                                                    |                                                 |
| Analyte              | Log Kow | CAS Number | Sediment<br>Background<br>Value<br>(mg/kg) | MacDonald et al.<br>2000ª<br>(mg/kg) | Region 5 ESLs<br>2003ª<br>(mg/kg) | ORNL PRGs<br>1997 <sup>c</sup><br>(mg/kg) | LANL ESLs<br>2010 <sup>c</sup><br>(mg/kg) | Talmage et al.<br>1999a<br>(mg/kg) | Persistent,<br>Bioaccumulative, and<br>Toxic Pollutant <sup>f</sup> | Recommended Sediment<br>Ecological Screening<br>Value <sup>g</sup> | Is the ESV Protective of<br>Food Chain Effects? |
| Nitrocellulose       | -4.56   | 9004-70-0  | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | No (Log Kow < 3.0)                                                  | NA                                                                 | NA                                              |
| Total Organic Carbon |         |            |                                            |                                      |                                   |                                           |                                           |                                    |                                                                     |                                                                    |                                                 |
| Total Organic Carbon | NA      | TOC        | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | NA                                                                  | NA                                                                 | NA                                              |
| рН                   | NA      | pH (Units) | NA                                         | NA                                   | NA                                | NA                                        | NA                                        | NA                                 | NA                                                                  | NA                                                                 | NA                                              |

Notes:

<sup>a</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger, 2000, Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems, Arch. Environ. Contam. Toxicol. 39:20-31.

TEC = threshold effect concentration.

<sup>b</sup> Ecological Screening Levels (ESLs), US EPA Region V, August 2003.

<sup>c</sup> ORNL: Efroymson, R.A., Suter II, G.W., Sample, B.E. and Jones, D.S., 1997. Preliminary Remediation Goals for Ecological Endpoints, ES/ER/TM-162/R2.

<sup>d</sup> Los Alamos National Laboratory (LANL), Eco Risk Database, Release 2.5, October 2010.

<sup>e</sup> From Nitroaromatic Munition Compounds: Environmental Effects and Screening Values, Talmage et al., 1999, Rev. Environ. Contamin. Toxicol., 161: 1-156. Sediment benchmarks

originally reported as mg compound per kg total organic carbon (TOC) in sediment, and 10% TOC assumed.

<sup>*f*</sup> Analyte identified as a persistent, bioaccumulative, and toxic (PBT) compound (OEPA DERR ERA Guidance, April 2008).

<sup>g</sup> The following hierarchy (based on OEPA DERR ERA Guidance, April 2008) was used to select the sediment screening values:

1. MacDonald et al. (2000)

2. USEPA Region 5 ESLs (2003)

3. ORNL (1997) [plants, invertebrates, wildlife]

4. LANL (2010) [various endpoints]

5. Talmage et al. (1999)

CAS = Chemical Abstract Service.

mg/kg = milligrams per kilogram.

NA = RVAAP-specific screening level not available

RVAAP = Ravenna Army Ammunition Plant.

SVOC = semivolatile organic compound

### Appendix H Ecological Risk Assessment Tables

#### Table H-1 Chemicals of Potential Concern Exposure Doses and Hazard Quotients for the Short-tailed Shrew Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

| Chemical |          | Surface Water<br>Exposure<br>Point<br>Concentration | Units | Sediment<br>Exposure<br>Point<br>Concentration | Units | Surface Soil<br>Exposure<br>Point<br>Concentration | Units | Soil BAF | Fish BAF | Aq. Invert.<br>BAF | . Terr. Invert.<br>BAF | Aq. Plant<br>BAF<br>nitless | Terr. Plant<br>BAF | Mammal<br>BAF | Bird BAF | EED<br>Surface<br>Water<br>mg/kg-d | EED<br>Sediment<br>mg/kg-d | EED Soil<br>mg/kg-d | EED Fish<br>mg/kg-d | EED Aq.<br>Invert.<br>mg/kg-d | EED Terr.<br>Invert.<br>mg/kg-d | EED Aq<br>Plants<br>mg/kg-c |
|----------|----------|-----------------------------------------------------|-------|------------------------------------------------|-------|----------------------------------------------------|-------|----------|----------|--------------------|------------------------|-----------------------------|--------------------|---------------|----------|------------------------------------|----------------------------|---------------------|---------------------|-------------------------------|---------------------------------|-----------------------------|
| Metals   |          |                                                     |       |                                                |       |                                                    |       |          |          |                    |                        |                             |                    |               |          |                                    |                            |                     |                     |                               |                                 |                             |
| Mercury  | MAX      | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.46E+01                                           | mg/kg | 1.00E+00 |          |                    | 1.26E-01               |                             | 8.43E-02           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.74E+00            | 0.00E+00            | 0.00E+00                      | 1.52E+00                        | 0.00E+0                     |
| Mercury  | AVG      | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 3.60E+00                                           | mg/kg | 1.00E+00 |          |                    | 4.58E-01               |                             | 2.04E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 2.54E-01            | 0.00E+00            | 0.00E+00                      | 8.04E-01                        | 0.00E+0                     |
| Mercury  | SCSS-057 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 1.51E+01                                           | mg/kg | 1.00E+00 |          |                    | 1.75E-01               |                             | 1.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.07E+00            | 0.00E+00            | 0.00E+00                      | 1.29E+00                        | 0.00E+0                     |
| Mercury  | SCSS-058 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 1.11E+01                                           | mg/kg | 1.00E+00 |          |                    | 2.16E-01               |                             | 1.22E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 7.84E-01            | 0.00E+00            | 0.00E+00                      | 1.17E+00                        | 0.00E+0                     |
| Mercury  | SCSS-059 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.46E+01                                           | mg/kg | 1.00E+00 |          |                    | 1.26E-01               |                             | 8.43E-02           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.74E+00            | 0.00E+00            | 0.00E+00                      | 1.52E+00                        | 0.00E+0                     |
| Mercury  | SCSS-060 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 8.80E+00                                           | mg/kg | 1.00E+00 |          |                    | 2.52E-01               |                             | 1.35E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 6.21E-01            | 0.00E+00            | 0.00E+00                      | 1.08E+00                        | 0.00E+0                     |
| Mercury  | SCSS-061 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.70E+00                                           | mg/kg | 1.00E+00 |          |                    | 5.56E-01               |                             | 2.33E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.91E-01            | 0.00E+00            | 0.00E+00                      | 7.31E-01                        | 0.00E+0                     |
| Mercury  | SCSS-062 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.00E-01                                           | mg/kg | 1.00E+00 |          |                    | 1.72E+00               |                             | 5.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.53E-02            | 0.00E+00            | 0.00E+00                      | 4.19E-01                        | 0.00E+0                     |
| Mercury  | SCSS-063 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.50E-01                                           | mg/kg | 1.00E+00 |          |                    | 1.61E+00               |                             | 4.84E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.88E-02            | 0.00E+00            | 0.00E+00                      | 4.32E-01                        | 0.00E+0                     |
| Mercury  | SCSS-064 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 7.80E-02                                           | mg/kg | 1.00E+00 |          |                    | 5.97E+00               |                             | 1.19E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 5.51E-03            | 0.00E+00            | 0.00E+00                      | 2.27E-01                        | 0.00E+0                     |
| Mercury  | SCSS-065 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.90E-02                                           | mg/kg | 1.00E+00 |          |                    | 1.16E+01               |                             | 1.88E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 2.05E-03            | 0.00E+00            | 0.00E+00                      | 1.64E-01                        | 0.00E+0                     |
| Mercury  | SCSS-066 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 7.00E-02                                           | mg/kg | 1.00E+00 |          |                    | 6.42E+00               |                             | 1.25E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.94E-03            | 0.00E+00            | 0.00E+00                      | 2.19E-01                        | 0.00E+0                     |
| Mercury  | SCSS-067 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.60E-02                                           | mg/kg | 1.00E+00 |          |                    | 1.25E+01               |                             | 1.97E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.84E-03            | 0.00E+00            | 0.00E+00                      | 1.58E-01                        | 0.00E+0                     |
| Mercury  | SCSS-068 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 3.10E-02                                           | mg/kg | 1.00E+00 |          |                    | 1.11E+01               |                             | 1.82E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 2.19E-03            | 0.00E+00            | 0.00E+00                      | 1.67E-01                        | 0.00E+0                     |
| Mercury  | SCSS-069 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 6.10E-02                                           | mg/kg | 1.00E+00 |          |                    | 7.04E+00               |                             | 1.33E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.31E-03            | 0.00E+00            | 0.00E+00                      | 2.09E-01                        | 0.00E+0                     |
| Mercury  | SCSS-072 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 6.30E-02                                           | mg/kg | 1.00E+00 |          |                    | 6.89E+00               |                             | 1.31E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.45E-03            | 0.00E+00            | 0.00E+00                      | 2.12E-01                        | 0.00E+0                     |
| Mercury  | SCSS-073 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.70E-01                                           | mg/kg | 1.00E+00 |          |                    | 2.60E+00               |                             | 6.72E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.91E-02            | 0.00E+00            | 0.00E+00                      | 3.42E-01                        | 0.00E+0                     |
| Mercury  | SCSS-074 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 1.30E-01                                           | mg/kg | 1.00E+00 |          |                    | 4.24E+00               |                             | 9.40E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 9.18E-03            | 0.00E+00            | 0.00E+00                      | 2.69E-01                        | 0.00E+0                     |
| Mercury  | SCSS-075 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.40E-02                                           | mg/kg | 1.00E+00 |          |                    | 7.64E+00               |                             | 1.41E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.81E-03            | 0.00E+00            | 0.00E+00                      | 2.01E-01                        | 0.00E+0                     |
| Mercury  | SCSS-076 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 4.90E-02                                           | mg/kg | 1.00E+00 |          |                    | 8.16E+00               |                             | 1.47E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.46E-03            | 0.00E+00            | 0.00E+00                      | 1.95E-01                        | 0.00E+0                     |

Intake Equation

$$Ej = \left(\frac{A}{HR} \left[\sum_{i=1}^{m} \left(\frac{IRixCij}{BW}\right)\right]\right]$$

 $\prod K \lfloor i=1 \setminus DW$ Where: Ej = Total Exposure to Chemical A = Site Area HR = Home Range m = Total number of ingested media i = counter IRi = Consumption Rate for Medium Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L) BW = Body Weight

Notes: BAF = Bioaccumulation Factor (may be BCF if this is the only value available)

EED = Estimated Exposure Dose

EEQ = Ecological Effects Quotient.L = LOAEL based; N = NOAEL based

LOAEL = Lowest Observed Adverse Effect Level

NOAEL = No Observed Adverse Effect Level

NA = Not applicable/Not available

BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor)

Some BAF (or BCF) values how appropriate text tables (BCF = biochicentration relation) Some BAF (or BCF) values based on media regression equations (value in box): LOAEL and NOAEL values from appropriate toxicity summary tables in the text. UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium.

Receptor diet data and home range data from appropriate text table. Exposure point concentrations (EPCs) from appropriate text tables.

| EED Aq.<br>Plants | EED Terr.<br>Plants | EED<br>Mammals | EED<br>Birds | Total<br>FFD | TRV      |                     | TRV      |          |
|-------------------|---------------------|----------------|--------------|--------------|----------|---------------------|----------|----------|
| i laino           | i lanto             | Mariniaio      | Dirao        | 220          | NOAEL    |                     | LOAEL    |          |
| mg/kg-d           | mg/kg-d             | mg/kg-d        | mg/kg-d      | mg/kg-d      | mg/kg-d  | HQ <sub>NOAEL</sub> | mg/kg-d  | HQ LOAEL |
|                   |                     |                |              |              |          |                     |          |          |
| 0.00E+00          | 1.51E-01            | 0.00E+00       | 0.00E+00     | 3.40E+00     | 1.30E+01 | 2.62E-01            | 1.32E+02 | 2.58E-02 |
| 0.00E+00          | 5.35E-02            | 0.00E+00       | 0.00E+00     | 1.11E+00     | 1.30E+01 | 8.55E-02            | 1.32E+02 | 8.42E-03 |
| 0.00E+00          | 1.16E-01            | 0.00E+00       | 0.00E+00     | 2.47E+00     | 1.30E+01 | 1.90E-01            | 1.32E+02 | 1.87E-02 |
| 0.00E+00          | 9.82E-02            | 0.00E+00       | 0.00E+00     | 2.05E+00     | 1.30E+01 | 1.57E-01            | 1.32E+02 | 1.55E-02 |
| 0.00E+00          | 1.51E-01            | 0.00E+00       | 0.00E+00     | 3.40E+00     | 1.30E+01 | 2.62E-01            | 1.32E+02 | 2.58E-02 |
| 0.00E+00          | 8.67E-02            | 0.00E+00       | 0.00E+00     | 1.79E+00     | 1.30E+01 | 1.37E-01            | 1.32E+02 | 1.35E-02 |
| 0.00E+00          | 4.58E-02            | 0.00E+00       | 0.00E+00     | 9.67E-01     | 1.30E+01 | 7.44E-02            | 1.32E+02 | 7.33E-03 |
| 0.00E+00          | 1.84E-02            | 0.00E+00       | 0.00E+00     | 4.73E-01     | 1.30E+01 | 3.64E-02            | 1.32E+02 | 3.58E-03 |
| 0.00E+00          | 1.94E-02            | 0.00E+00       | 0.00E+00     | 4.91E-01     | 1.30E+01 | 3.77E-02            | 1.32E+02 | 3.72E-03 |
| 0.00E+00          | 6.75E-03            | 0.00E+00       | 0.00E+00     | 2.39E-01     | 1.30E+01 | 1.84E-02            | 1.32E+02 | 1.81E-03 |
| 0.00E+00          | 3.96E-03            | 0.00E+00       | 0.00E+00     | 1.70E-01     | 1.30E+01 | 1.31E-02            | 1.32E+02 | 1.29E-03 |
| 0.00E+00          | 6.37E-03            | 0.00E+00       | 0.00E+00     | 2.30E-01     | 1.30E+01 | 1.77E-02            | 1.32E+02 | 1.74E-03 |
| 0.00E+00          | 3.73E-03            | 0.00E+00       | 0.00E+00     | 1.64E-01     | 1.30E+01 | 1.26E-02            | 1.32E+02 | 1.24E-03 |
| 0.00E+00          | 4.10E-03            | 0.00E+00       | 0.00E+00     | 1.74E-01     | 1.30E+01 | 1.34E-02            | 1.32E+02 | 1.32E-03 |
| 0.00E+00          | 5.91E-03            | 0.00E+00       | 0.00E+00     | 2.20E-01     | 1.30E+01 | 1.69E-02            | 1.32E+02 | 1.66E-03 |
| 0.00E+00          | 6.02E-03            | 0.00E+00       | 0.00E+00     | 2.22E-01     | 1.30E+01 | 1.71E-02            | 1.32E+02 | 1.68E-03 |
| 0.00E+00          | 1.32E-02            | 0.00E+00       | 0.00E+00     | 3.74E-01     | 1.30E+01 | 2.88E-02            | 1.32E+02 | 2.83E-03 |
| 0.00E+00          | 8.90E-03            | 0.00E+00       | 0.00E+00     | 2.87E-01     | 1.30E+01 | 2.21E-02            | 1.32E+02 | 2.17E-03 |
| 0.00E+00          | 5.54E-03            | 0.00E+00       | 0.00E+00     | 2.10E-01     | 1.30E+01 | 1.62E-02            | 1.32E+02 | 1.59E-03 |
| 00E+00            | 5 25E-03            | 0.00E+00       | 0.00E+00     | 2 03E-01     | 1.30E+01 | 1.56E-02            | 1.32E+02 | 1.54E-03 |
|                   | 0.202 00            | 0.002100       | 0.002100     | 2.002 01     |          |                     |          |          |
|                   |                     |                |              |              |          |                     |          |          |

| Species-Specific Factors          |         |          |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------|---------|----------|--|--|--|--|--|--|--|--|--|--|--|
| Terrestrial plant diet fraction = | 0.13    | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Aquatic plant diet fraction =     | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Plant root diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Fish diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Aq. Invert diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Terr. Invert diet fraction =      | 0.87    | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Mammal diet fraction =            | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Bird diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Soil ingestion rate =             | 0.0012  | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Sediment ingestion rate =         | 0       | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Food ingestion rate =             | 0.00952 | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Body weight =                     | 0.017   | kg       |  |  |  |  |  |  |  |  |  |  |  |
| Home range =                      | 0.96    | acres    |  |  |  |  |  |  |  |  |  |  |  |
| Water intake rate =               | 0.0038  | L/d      |  |  |  |  |  |  |  |  |  |  |  |
| Site Area =                       | 2       | acres    |  |  |  |  |  |  |  |  |  |  |  |
| Area Use Factor (AUF) =           | 1       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Exposure Frequency (EF) =         | 1       | unitless |  |  |  |  |  |  |  |  |  |  |  |

#### Table H-2 **Chemicals of Potential Concern** Exposure Doses and Hazard Quotients for the American Robin Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

|         |          |               |       |               |       |               |       |          |          |             |               |           |             |          |          | EED      |          |          |          |          |           |          |           |          |          |          |           |          |           |                   |
|---------|----------|---------------|-------|---------------|-------|---------------|-------|----------|----------|-------------|---------------|-----------|-------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|----------|----------|----------|-----------|----------|-----------|-------------------|
|         |          | Surface Water |       | Sediment      |       | Surface Soil  |       |          |          | Aq. Invert. | Terr. Invert. | Aq. Plant | Terr. Plant | Mammal   |          | Surface  | EED      |          |          | EED Aq.  | EED Terr. | EED Aq.  | EED Terr. | EED      | EED      | Total    |           |          |           |                   |
|         |          | Exposure      |       | Exposure      |       | Exposure      |       | Soil BAF | Fish BAF | BAF         | BAF           | BAF       | BAF         | BAF      | Bird BAF | Water    | Sediment | EED Soil | EED Fish | Invert.  | Invert.   | Plants   | Plants    | Mammals  | Birds    | EED      | TRV NOAEL |          | TRV LOAEL |                   |
|         |          | Point         |       | Point         |       | Point         |       |          | -        |             |               |           |             |          |          |          |          |          |          |          |           |          |           |          |          |          |           |          |           |                   |
| Chem    | nical    | Concentration | Units | Concentration | Units | Concentration | Units |          |          |             |               |           |             |          |          | mg/kg-d  | mg/kg-d  | mg/kg-d  | mg/kg-d  | mg/kg-d  | mg/kg-d   | mg/kg-d  | mg/kg-d   | mg/kg-d  | mg/kg-d  | mg/kg-d  | mg/kg-d   | HQ NOAEL | mg/kg-d   | HQ LOAEL          |
| Metals  |          |               |       |               |       |               |       |          |          |             |               |           |             |          |          |          |          |          |          |          |           |          |           |          |          |          |           |          |           |                   |
| Mercury | MAX      | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.46E+01      | mg/kg | 1.00E+00 |          |             | 1.26E-01      |           | 8.43E-02    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.48E+00 | 0.00E+00 | 0.00E+00 | 1.87E+00  | 0.00E+00 | 1.24E+00  | 0.00E+00 | 0.00E+00 | 4.59E+00 | 4.50E-01  | 1.02E+01 | 9.00E-01  | 5.10E+00 MAX      |
| Mercury | AVG      | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 3.60E+00      | mg/kg | 1.00E+00 |          |             | 4.58E-01      |           | 2.04E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 2.16E-01 | 0.00E+00 | 0.00E+00 | 9.90E-01  | 0.00E+00 | 4.41E-01  | 0.00E+00 | 0.00E+00 | 1.65E+00 | 4.50E-01  | 3.66E+00 | 9.00E-01  | 1.83E+00 AVG      |
| Mercury | SCSS-057 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 1.51E+01      | mg/kg | 1.00E+00 |          |             | 1.75E-01      |           | 1.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 9.06E-01 | 0.00E+00 | 0.00E+00 | 1.59E+00  | 0.00E+00 | 9.56E-01  | 0.00E+00 | 0.00E+00 | 3.45E+00 | 4.50E-01  | 7.67E+00 | 9.00E-01  | 3.83E+00 SCSS-057 |
| Mercury | SCSS-058 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 1.11E+01      | mg/kg | 1.00E+00 |          |             | 2.16E-01      |           | 1.22E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 6.66E-01 | 0.00E+00 | 0.00E+00 | 1.44E+00  | 0.00E+00 | 8.10E-01  | 0.00E+00 | 0.00E+00 | 2.91E+00 | 4.50E-01  | 6.47E+00 | 9.00E-01  | 3.23E+00 SCSS-058 |
| Mercury | SCSS-059 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.46E+01      | mg/kg | 1.00E+00 |          |             | 1.26E-01      |           | 8.43E-02    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.48E+00 | 0.00E+00 | 0.00E+00 | 1.87E+00  | 0.00E+00 | 1.24E+00  | 0.00E+00 | 0.00E+00 | 4.59E+00 | 4.50E-01  | 1.02E+01 | 9.00E-01  | 5.10E+00 SCSS-059 |
| Mercury | SCSS-060 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 8.80E+00      | mg/kg | 1.00E+00 |          |             | 2.52E-01      |           | 1.35E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 5.28E-01 | 0.00E+00 | 0.00E+00 | 1.33E+00  | 0.00E+00 | 7.14E-01  | 0.00E+00 | 0.00E+00 | 2.57E+00 | 4.50E-01  | 5.72E+00 | 9.00E-01  | 2.86E+00 SCSS-060 |
| Mercury | SCSS-061 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.70E+00      | mg/kg | 1.00E+00 |          |             | 5.56E-01      |           | 2.33E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.62E-01 | 0.00E+00 | 0.00E+00 | 9.00E-01  | 0.00E+00 | 3.77E-01  | 0.00E+00 | 0.00E+00 | 1.44E+00 | 4.50E-01  | 3.20E+00 | 9.00E-01  | 1.60E+00 SCSS-061 |
| Mercury | SCSS-062 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 5.00E-01      | mg/kg | 1.00E+00 |          |             | 1.72E+00      |           | 5.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 3.00E-02 | 0.00E+00 | 0.00E+00 | 5.16E-01  | 0.00E+00 | 1.52E-01  | 0.00E+00 | 0.00E+00 | 6.98E-01 | 4.50E-01  | 1.55E+00 | 9.00E-01  | 7.75E-01 SCSS-062 |
| Mercury | SCSS-063 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 5.50E-01      | mg/kg | 1.00E+00 |          |             | 1.61E+00      |           | 4.84E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 3.30E-02 | 0.00E+00 | 0.00E+00 | 5.33E-01  | 0.00E+00 | 1.60E-01  | 0.00E+00 | 0.00E+00 | 7.25E-01 | 4.50E-01  | 1.61E+00 | 9.00E-01  | 8.06E-01 SCSS-063 |
| Mercury | SCSS-064 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 7.80E-02      | mg/kg | 1.00E+00 |          |             | 5.97E+00      |           | 1.19E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 4.68E-03 | 0.00E+00 | 0.00E+00 | 2.80E-01  | 0.00E+00 | 5.57E-02  | 0.00E+00 | 0.00E+00 | 3.40E-01 | 4.50E-01  | 7.55E-01 | 9.00E-01  | 3.78E-01 SCSS-064 |
| Mercury | SCSS-065 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.90E-02      | mg/kg | 1.00E+00 |          |             | 1.16E+01      |           | 1.88E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.74E-03 | 0.00E+00 | 0.00E+00 | 2.02E-01  | 0.00E+00 | 3.26E-02  | 0.00E+00 | 0.00E+00 | 2.36E-01 | 4.50E-01  | 5.24E-01 | 9.00E-01  | 2.62E-01 SCSS-065 |
| Mercury | SCSS-066 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 7.00E-02      | mg/kg | 1.00E+00 |          |             | 6.42E+00      |           | 1.25E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 4.20E-03 | 0.00E+00 | 0.00E+00 | 2.70E-01  | 0.00E+00 | 5.25E-02  | 0.00E+00 | 0.00E+00 | 3.26E-01 | 4.50E-01  | 7.25E-01 | 9.00E-01  | 3.63E-01 SCSS-066 |
| Mercury | SCSS-067 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.60E-02      | mg/kg | 1.00E+00 |          |             | 1.25E+01      |           | 1.97E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.56E-03 | 0.00E+00 | 0.00E+00 | 1.95E-01  | 0.00E+00 | 3.08E-02  | 0.00E+00 | 0.00E+00 | 2.27E-01 | 4.50E-01  | 5.04E-01 | 9.00E-01  | 2.52E-01 SCSS-067 |
| Mercury | SCSS-068 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 3.10E-02      | mg/kg | 1.00E+00 |          |             | 1.11E+01      |           | 1.82E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.86E-03 | 0.00E+00 | 0.00E+00 | 2.06E-01  | 0.00E+00 | 3.38E-02  | 0.00E+00 | 0.00E+00 | 2.42E-01 | 4.50E-01  | 5.37E-01 | 9.00E-01  | 2.69E-01 SCSS-068 |
| Mercury | SCSS-069 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 6.10E-02      | mg/kg | 1.00E+00 |          |             | 7.04E+00      |           | 1.33E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 3.66E-03 | 0.00E+00 | 0.00E+00 | 2.58E-01  | 0.00E+00 | 4.87E-02  | 0.00E+00 | 0.00E+00 | 3.10E-01 | 4.50E-01  | 6.89E-01 | 9.00E-01  | 3.45E-01 SCSS-069 |
| Mercury | SCSS-072 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 6.30E-02      | mg/kg | 1.00E+00 |          |             | 6.89E+00      |           | 1.31E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 3.78E-03 | 0.00E+00 | 0.00E+00 | 2.61E-01  | 0.00E+00 | 4.96E-02  | 0.00E+00 | 0.00E+00 | 3.14E-01 | 4.50E-01  | 6.98E-01 | 9.00E-01  | 3.49E-01 SCSS-072 |
| Mercury | SCSS-073 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.70E-01      | mg/kg | 1.00E+00 |          |             | 2.60E+00      |           | 6.72E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 1.62E-02 | 0.00E+00 | 0.00E+00 | 4.21E-01  | 0.00E+00 | 1.09E-01  | 0.00E+00 | 0.00E+00 | 5.46E-01 | 4.50E-01  | 1.21E+00 | 9.00E-01  | 6.07E-01 SCSS-073 |
| Mercury | SCSS-074 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 1.30E-01      | mg/kg | 1.00E+00 |          |             | 4.24E+00      |           | 9.40E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 7.80E-03 | 0.00E+00 | 0.00E+00 | 3.31E-01  | 0.00E+00 | 7.33E-02  | 0.00E+00 | 0.00E+00 | 4.12E-01 | 4.50E-01  | 9.16E-01 | 9.00E-01  | 4.58E-01 SCSS-074 |
| Mercury | SCSS-075 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 5.40E-02      | mg/kg | 1.00E+00 |          |             | 7.64E+00      |           | 1.41E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 3.24E-03 | 0.00E+00 | 0.00E+00 | 2.48E-01  | 0.00E+00 | 4.56E-02  | 0.00E+00 | 0.00E+00 | 2.96E-01 | 4.50E-01  | 6.59E-01 | 9.00E-01  | 3.29E-01 SCSS-075 |
| Mercury | SCSS-076 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 4.90E-02      | mg/kg | 1.00E+00 |          |             | 8.16E+00      |           | 1.47E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00 | 0.00E+00 | 2.94E-03 | 0.00E+00 | 0.00E+00 | 2.40E-01  | 0.00E+00 | 4.33E-02  | 0.00E+00 | 0.00E+00 | 2.86E-01 | 4.50E-01  | 6.36E-01 | 9.00E-01  | 3.18E-01 SCSS-076 |

Intake Equation:  

$$Ej = \left(\frac{A}{HR} \left[\sum_{i=1}^{m} \left(\frac{IRi \, xCij}{BW}\right)\right]$$

Where: Ej = Total Exposure to Chemical 

 IRi = Consumption Rate for Medium

 Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L)

 BW = Body Weight

 Notes:

 BAF = Bioaccumulation Factor (may be BCF if this is the only value available)

 EED = Estimated Exposure Dose

 EEQ = Ecological Effects Quotient.

 L = LOAEL based; N = NOAEL based

 LOAEL = Lowest Observed Adverse Effect Level

 NOAEL = No Observed Adverse Effect Level

 NA = Not applicable/Not available

 BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) roluces from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) roluces from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) roluces from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) roluces from appropriate text tables (BCF = bioconcentration factor)

 Some BAF (or BCF) roluces from appropriate text tables in the text.

 UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF

 A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium.

 Receptor diet data and home range data from appropriate text tables.

 Exposure point concentrations (EPCs) from appropriate text tables.

| Species-Specific Factors          |         |          |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------|---------|----------|--|--|--|--|--|--|--|--|--|--|
| Terrestrial plant diet fraction = | 0.5     | unitless |  |  |  |  |  |  |  |  |  |  |
| Aquatic plant diet fraction =     | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Plant root diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Fish diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Aq. Invert diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Terr. Invert diet fraction =      | 0.5     | unitless |  |  |  |  |  |  |  |  |  |  |
| Mammal diet fraction =            | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Bird diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |
| Soil ingestion rate =             | 0.00486 | kg/d     |  |  |  |  |  |  |  |  |  |  |
| Sediment ingestion rate =         | 0       | kg/d     |  |  |  |  |  |  |  |  |  |  |
| Food ingestion rate =             | 0.0972  | kg/d     |  |  |  |  |  |  |  |  |  |  |
| Body weight =                     | 0.081   | kg       |  |  |  |  |  |  |  |  |  |  |
| Home range =                      | 0.618   | acres    |  |  |  |  |  |  |  |  |  |  |
| Water intake rate =               | 0.011   | L/d      |  |  |  |  |  |  |  |  |  |  |
| Site Area =                       | 2       | acres    |  |  |  |  |  |  |  |  |  |  |
| Area Use Factor (AUF) =           | 1       | unitless |  |  |  |  |  |  |  |  |  |  |
| Exposure Frequency (EF) =         | 1       | unitless |  |  |  |  |  |  |  |  |  |  |

#### Table H-3 Chemicals of Potential Concern Exposure Doses and Hazard Quotients for the Meadow Vole Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

| Chemical |          | Surface Water<br>Exposure<br>Point<br>Concentration | Units | Sediment<br>Exposure<br>Point<br>Concentration | Units | Surface Soil<br>Exposure<br>Point<br>Concentration | Units | Soil BAF F | ish BAF | Aq. Invert. Terr. Invert.<br>BAF BAF | Aq. Plant<br>BAF | Terr. Plant<br>BAF | Mammal<br>BAF | Bird BAF | EED<br>Surface<br>Water<br>mg/kg-d | EED<br>Sediment<br>ma/ka-d | EED Soil<br>ma/ka-d | EED Fish<br>ma/ka-d | EED Aq.<br>Invert.<br>ma/ka-d | EED Terr.<br>Invert.<br>ma/ka-d | EED Aq.<br>Plants<br>mg/kg-d | EED Terr.<br>Plants<br>mg/kg-d | EED<br>Mammals<br>mg/kg-d | EED<br>Birds<br>ma/ka-d | Total<br>EED<br>mg/kg-d | TRV <sub>NOAEL</sub><br>ma/ka-d | HQ       | TRV <sub>LOAEL</sub><br>ma/ka-d | HQuar      |
|----------|----------|-----------------------------------------------------|-------|------------------------------------------------|-------|----------------------------------------------------|-------|------------|---------|--------------------------------------|------------------|--------------------|---------------|----------|------------------------------------|----------------------------|---------------------|---------------------|-------------------------------|---------------------------------|------------------------------|--------------------------------|---------------------------|-------------------------|-------------------------|---------------------------------|----------|---------------------------------|------------|
| Metals   |          |                                                     |       |                                                |       |                                                    |       |            |         | 0.                                   |                  |                    |               |          | 3.3.                               | 3.3                        | 3 3 4               | 3. 3 .              | 3.3.                          | 3. 3.                           | 3. 3.                        | 3 5 7                          | 3. 3.                     | 3 3                     | 3. 3.                   | 3.3                             | NUAEL    | 3.3.                            | II S LOAEL |
| Mercury  | MAX      | 0.00E+00                                            | ma/l  | 0.00E+00                                       | ma/ka | 2 46E+01                                           | ma/ka | 1 00E+00   |         | 1 26E-01                             |                  | 8 43E-02           | 1 92E-01      | 1 92E-01 | 0.00E+00                           | 0.00E+00                   | 1 64F-01            | 0.00F+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 6 84F-01                       | 0.00E+00                  | 0.00E+00                | 8 48E-01                | 1.30E+01                        | 6.53E-02 | 1.32E+02                        | 6 43E-03   |
| Mercury  | AVG      | 0.00E+00                                            | ma/L  | 0.00E+00                                       | ma/ka | 3.60E+00                                           | ma/ka | 1.00E+00   |         | 4.58E-01                             |                  | 2.04E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 2.40E-02            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.42E-01                       | 0.00E+00                  | 0.00E+00                | 2.66E-01                | 1.30E+01                        | 2.05E-02 | 1.32E+02                        | 2.02E-03   |
| Mercury  | SCSS-057 | 0.00E+00                                            | ma/L  | 0.00E+00                                       | ma/ka | 1.51E+01                                           | ma/ka | 1.00E+00   |         | 1.75E-01                             |                  | 1.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.01E-01            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 5.26E-01                       | 0.00E+00                  | 0.00E+00                | 6.27E-01                | 1.30E+01                        | 4.82E-02 | 1.32E+02                        | 4.75E-03   |
| Mercurv  | SCSS-058 | 0.00E+00                                            | ma/L  | 0.00E+00                                       | ma/ka | 1.11E+01                                           | ma/ka | 1.00E+00   |         | 2.16E-01                             |                  | 1.22E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 7.40E-02            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 4.45E-01                       | 0.00E+00                  | 0.00E+00                | 5.19E-01                | 1.30E+01                        | 3.99E-02 | 1.32E+02                        | 3.93E-03   |
| Mercurv  | SCSS-059 | 0.00E+00                                            | ma/L  | 0.00E+00                                       | ma/ka | 2.46E+01                                           | ma/ka | 1.00E+00   |         | 1.26E-01                             |                  | 8.43E-02           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.64E-01            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 6.84E-01                       | 0.00E+00                  | 0.00E+00                | 8.48E-01                | 1.30E+01                        | 6.53E-02 | 1.32E+02                        | 6.43E-03   |
| Mercurv  | SCSS-060 | 0.00E+00                                            | ma/L  | 0.00E+00                                       | ma/ka | 8.80E+00                                           | ma/ka | 1.00E+00   |         | 2.52E-01                             |                  | 1.35E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 5.87E-02            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 3.93E-01                       | 0.00E+00                  | 0.00E+00                | 4.52E-01                | 1.30E+01                        | 3.47E-02 | 1.32E+02                        | 3.42E-03   |
| Mercury  | SCSS-061 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.70E+00                                           | mg/kg | 1.00E+00   |         | 5.56E-01                             |                  | 2.33E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.80E-02            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.08E-01                       | 0.00E+00                  | 0.00E+00                | 2.26E-01                | 1.30E+01                        | 1.74E-02 | 1.32E+02                        | 1.71E-03   |
| Mercury  | SCSS-062 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.00E-01                                           | mg/kg | 1.00E+00   |         | 1.72E+00                             |                  | 5.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.33E-03            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 8.35E-02                       | 0.00E+00                  | 0.00E+00                | 8.68E-02                | 1.30E+01                        | 6.68E-03 | 1.32E+02                        | 6.58E-04   |
| Mercury  | SCSS-063 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.50E-01                                           | mg/kg | 1.00E+00   |         | 1.61E+00                             |                  | 4.84E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.67E-03            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 8.79E-02                       | 0.00E+00                  | 0.00E+00                | 9.16E-02                | 1.30E+01                        | 7.04E-03 | 1.32E+02                        | 6.94E-04   |
| Mercury  | SCSS-064 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 7.80E-02                                           | mg/kg | 1.00E+00   |         | 5.97E+00                             |                  | 1.19E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 5.20E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 3.06E-02                       | 0.00E+00                  | 0.00E+00                | 3.11E-02                | 1.30E+01                        | 2.40E-03 | 1.32E+02                        | 2.36E-04   |
| Mercury  | SCSS-065 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.90E-02                                           | mg/kg | 1.00E+00   |         | 1.16E+01                             |                  | 1.88E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.93E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 1.79E-02                       | 0.00E+00                  | 0.00E+00                | 1.81E-02                | 1.30E+01                        | 1.40E-03 | 1.32E+02                        | 1.37E-04   |
| Mercury  | SCSS-066 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 7.00E-02                                           | mg/kg | 1.00E+00   |         | 6.42E+00                             |                  | 1.25E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.67E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.89E-02                       | 0.00E+00                  | 0.00E+00                | 2.93E-02                | 1.30E+01                        | 2.26E-03 | 1.32E+02                        | 2.22E-04   |
| Mercury  | SCSS-067 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.60E-02                                           | mg/kg | 1.00E+00   |         | 1.25E+01                             |                  | 1.97E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.73E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 1.69E-02                       | 0.00E+00                  | 0.00E+00                | 1.71E-02                | 1.30E+01                        | 1.31E-03 | 1.32E+02                        | 1.29E-04   |
| Mercury  | SCSS-068 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 3.10E-02                                           | mg/kg | 1.00E+00   |         | 1.11E+01                             |                  | 1.82E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 2.07E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 1.86E-02                       | 0.00E+00                  | 0.00E+00                | 1.88E-02                | 1.30E+01                        | 1.45E-03 | 1.32E+02                        | 1.42E-04   |
| Mercury  | SCSS-069 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 6.10E-02                                           | mg/kg | 1.00E+00   |         | 7.04E+00                             |                  | 1.33E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.07E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.68E-02                       | 0.00E+00                  | 0.00E+00                | 2.72E-02                | 1.30E+01                        | 2.09E-03 | 1.32E+02                        | 2.06E-04   |
| Mercury  | SCSS-072 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 6.30E-02                                           | mg/kg | 1.00E+00   |         | 6.89E+00                             |                  | 1.31E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 4.20E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.73E-02                       | 0.00E+00                  | 0.00E+00                | 2.77E-02                | 1.30E+01                        | 2.13E-03 | 1.32E+02                        | 2.10E-04   |
| Mercury  | SCSS-073 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 2.70E-01                                           | mg/kg | 1.00E+00   |         | 2.60E+00                             |                  | 6.72E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 1.80E-03            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 5.99E-02                       | 0.00E+00                  | 0.00E+00                | 6.17E-02                | 1.30E+01                        | 4.74E-03 | 1.32E+02                        | 4.67E-04   |
| Mercury  | SCSS-074 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 1.30E-01                                           | mg/kg | 1.00E+00   |         | 4.24E+00                             |                  | 9.40E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 8.67E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 4.03E-02                       | 0.00E+00                  | 0.00E+00                | 4.12E-02                | 1.30E+01                        | 3.17E-03 | 1.32E+02                        | 3.12E-04   |
| Mercury  | SCSS-075 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 5.40E-02                                           | mg/kg | 1.00E+00   |         | 7.64E+00                             |                  | 1.41E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.60E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.51E-02                       | 0.00E+00                  | 0.00E+00                | 2.55E-02                | 1.30E+01                        | 1.96E-03 | 1.32E+02                        | 1.93E-04   |
| Mercury  | SCSS-076 | 0.00E+00                                            | mg/L  | 0.00E+00                                       | mg/kg | 4.90E-02                                           | mg/kg | 1.00E+00   |         | 8.16E+00                             |                  | 1.47E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                           | 0.00E+00                   | 3.27E-04            | 0.00E+00            | 0.00E+00                      | 0.00E+00                        | 0.00E+00                     | 2.38E-02                       | 0.00E+00                  | 0.00E+00                | 2.41E-02                | 1.30E+01                        | 1.86E-03 | 1.32E+02                        | 1.83E-04   |

Intake Equation:  $Ej = \left(\frac{A}{HR}\left[\sum_{i=1}^{m} \left(\frac{IRixCij}{BW}\right)\right]\right)$ 

Where: Ej = Total Exposure to Chemical A = Site Area HR = Home Range m = Total number of ingested media i = counter IRi = Counter IRi = Consumption Rate for Medium Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L) BW = Body Weight

Notes: BAF = Bioaccumulation Factor (may be BCF if this is the only value available)

EED = Estimated Exposure Dose EEQ = Ecological Effects Quotient.

L = LOAEL based LOAEL = Lowest Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level

NA = Not applicable/Not available

NA = Not applicable/Not available BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor) Some BAF (or BCF) values based on media regression equations (value in box): LOAEL and NOAEL values from appropriate toxicity summary tables in the text. UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium. Receptor diet data and home range data from appropriate text table. Exposure point concentrations (EPCs) from appropriate text tables.

| Species-Specific Factors          |         |          |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------|---------|----------|--|--|--|--|--|--|--|--|--|--|--|
| Terrestrial plant diet fraction = | 1       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Aquatic plant diet fraction =     | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Plant root diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Fish diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Aq. Invert diet fraction =        | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Terr. Invert diet fraction =      | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Mammal diet fraction =            | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Bird diet fraction =              | 0       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Soil ingestion rate =             | 0.00022 | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Sediment ingestion rate =         | 0       | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Food ingestion rate =             | 0.01089 | kg/d     |  |  |  |  |  |  |  |  |  |  |  |
| Body weight =                     | 0.033   | kg       |  |  |  |  |  |  |  |  |  |  |  |
| Home range =                      | 0.07    | acres    |  |  |  |  |  |  |  |  |  |  |  |
| Water intake rate =               | 0.00594 | L/d      |  |  |  |  |  |  |  |  |  |  |  |
| Site Area =                       | 2       | acres    |  |  |  |  |  |  |  |  |  |  |  |
| Area Use Factor (AUF) =           | 1       | unitless |  |  |  |  |  |  |  |  |  |  |  |
| Exposure Frequency (EF) =         | 1       | unitless |  |  |  |  |  |  |  |  |  |  |  |

#### Table H-4 Chemicals of Potential Concern Exposure Doses and Hazard Quotients for the Red-tailed Hawk Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

|          |          | Surface Water |       | Sediment      |       | Surface Soil  |       |                  | Aq. Inver | t. Terr. Invert. | Aq. Plant | Terr. Plant | Mammal   |          | EED<br>Surface | EED      |           |          | EED Aq.   | EED Terr.  | EED Aq.  | EED Terr. | EED      | EED        | Total    |           |          |           |           |
|----------|----------|---------------|-------|---------------|-------|---------------|-------|------------------|-----------|------------------|-----------|-------------|----------|----------|----------------|----------|-----------|----------|-----------|------------|----------|-----------|----------|------------|----------|-----------|----------|-----------|-----------|
|          |          | Exposure      |       | Exposure      |       | Exposure      |       | Soil BAF Fish BA | BAF       | BAF              | BAF       | BAF         | BAF      | Bird BAF | Water          | Sediment | EED Soil  | EED Fish | Invert.   | Invert.    | Plants   | Plants    | Mammals  | Birds      | EED      | TRV NOAEL |          | TRV LOAEL |           |
| Chemical |          | Point         | Units | Point         | Units | Concentration | Units |                  |           |                  | nitlass   |             |          |          | ma/ka-d        | ma/ka-d  | ma/ka-d   | ma/ka-d  | ma/ka-d   | ma/ka-d    | ma/ka-d  | ma/ka-d   | ma/ka-d  | ma/ka-d    | ma/ka-d  | ma/ka-d   | ЦО       | ma/ka-d   | ЦО        |
| Motolo   |          | Concentration | onito | Concentration | onno  | Concentration | onito |                  |           | 0                | 111633    |             |          |          | ing/itg u      | ing/ng u | ing/itg u | mg/ng u  | ilig/kg u | ilig/itg u | ing/kg u | ing/kg u  | mg/ng u  | ilig/itg u | ing/ng u | ing/kg u  | NOAEL    | ing/kg u  | I & LOAEL |
| Mercury  | МАХ      | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 2 46E+01      | ma/ka | 1 00E+00         |           | 1 26E-01         |           | 8 43E-02    | 1 92E-01 | 1 92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 5 20E-01 | 0.00E+00   | 5 20E-01 | 4 50E-01  | 1 15E+00 | 9.00E-01  | 5 77E-01  |
| Mercury  | AVG      | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 3.60E+00      | ma/ka | 1.00E+00         |           | 4.58E-01         |           | 2.04E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 7.60E-01 | 0.00E+00   | 7.60E-02 | 4.50E-01  | 1.69E-01 | 9.00E-01  | 8.45E-02  |
| Mercury  | SCSS-057 | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 1.51E+01      | ma/ka | 1.00E+00         |           | 1.75E-01         |           | 1.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 3 19E-01 | 0.00E+00   | 3 19E-01 | 4.50E-01  | 7.09E-01 | 9.00E-01  | 3.54E-02  |
| Mercury  | SCSS-058 | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 1.01E+01      | ma/ka | 1.00E+00         |           | 2 16E-01         |           | 1.00E 01    | 1.92E-01 | 1.02E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 2 34E-01 | 0.00E+00   | 2 34E-01 | 4.50E-01  | 5.21E-01 | 9.00E-01  | 2.60E-01  |
| Mercury  | SCSS-059 | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 2 46E+01      | ma/ka | 1.00E+00         |           | 1 26E-01         |           | 8.43E-02    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 5 20E-01 | 0.00E+00   | 5 20E-01 | 4.50E-01  | 1 15E+00 | 9.00E-01  | 5 77E-01  |
| Mercury  | SCSS-060 | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 8 80E+00      | ma/ka | 1 00E+00         |           | 2.52E-01         |           | 1.35E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.86E-01 | 0.00E+00   | 1 86E-01 | 4 50E-01  | 4 13E-01 | 9.00E-01  | 2 07E-01  |
| Mercury  | SCSS-061 | 0.00E+00      | ma/l  | 0.00E+00      | ma/ka | 2 70E+00      | ma/ka | 1 00E+00         |           | 5.56E-01         |           | 2.33E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 5 70E-02 | 0.00E+00   | 5 70E-02 | 4 50E-01  | 1 27E-01 | 9.00E-01  | 6.34E-02  |
| Mercury  | SCSS-062 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 5.00E-01      | ma/ka | 1.00E+00         |           | 1.72E+00         |           | 5.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.06E-02 | 0.00E+00   | 1.06E-02 | 4.50E-01  | 2.35E-02 | 9.00E-01  | 1.17E-02  |
| Mercury  | SCSS-063 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 5.50E-01      | ma/ka | 1.00E+00         |           | 1.61E+00         |           | 4.84E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.16E-02 | 0.00E+00   | 1.16E-02 | 4.50E-01  | 2.58E-02 | 9.00E-01  | 1.29E-02  |
| Mercury  | SCSS-064 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 7.80E-02      | ma/ka | 1.00E+00         |           | 5.97E+00         |           | 1.19E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.65E-03 | 0.00E+00   | 1.65E-03 | 4.50E-01  | 3.66E-03 | 9.00E-01  | 1.83E-03  |
| Mercury  | SCSS-065 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 2.90E-02      | ma/ka | 1.00E+00         |           | 1.16E+01         |           | 1.88E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 6.12E-04 | 0.00E+00   | 6.12E-04 | 4.50E-01  | 1.36E-03 | 9.00E-01  | 6.81E-04  |
| Mercury  | SCSS-066 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 7.00E-02      | ma/ka | 1.00E+00         |           | 6.42E+00         |           | 1.25E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.48E-03 | 0.00E+00   | 1.48E-03 | 4.50E-01  | 3.29E-03 | 9.00E-01  | 1.64E-03  |
| Mercury  | SCSS-067 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 2.60E-02      | ma/ka | 1.00E+00         |           | 1.25E+01         |           | 1.97E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 5.49E-04 | 0.00E+00   | 5.49E-04 | 4.50E-01  | 1.22E-03 | 9.00E-01  | 6.10E-04  |
| Mercury  | SCSS-068 | 0.00E+00      | ma/L  | 0.00E+00      | ma/ka | 3.10E-02      | ma/ka | 1.00E+00         |           | 1.11E+01         |           | 1.82E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 6.55E-04 | 0.00E+00   | 6.55E-04 | 4.50E-01  | 1.45E-03 | 9.00E-01  | 7.27E-04  |
| Mercury  | SCSS-069 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 6.10E-02      | mg/kg | 1.00E+00         |           | 7.04E+00         |           | 1.33E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.29E-03 | 0.00E+00   | 1.29E-03 | 4.50E-01  | 2.86E-03 | 9.00E-01  | 1.43E-03  |
| Mercury  | SCSS-072 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 6.30E-02      | mg/kg | 1.00E+00         |           | 6.89E+00         |           | 1.31E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.33E-03 | 0.00E+00   | 1.33E-03 | 4.50E-01  | 2.96E-03 | 9.00E-01  | 1.48E-03  |
| Mercury  | SCSS-073 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 2.70E-01      | mg/kg | 1.00E+00         |           | 2.60E+00         |           | 6.72E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 5.70E-03 | 0.00E+00   | 5.70E-03 | 4.50E-01  | 1.27E-02 | 9.00E-01  | 6.34E-03  |
| Mercury  | SCSS-074 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 1.30E-01      | mg/kg | 1.00E+00         |           | 4.24E+00         |           | 9.40E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 2.75E-03 | 0.00E+00   | 2.75E-03 | 4.50E-01  | 6.10E-03 | 9.00E-01  | 3.05E-03  |
| Mercury  | SCSS-075 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 5.40E-02      | mg/kg | 1.00E+00         |           | 7.64E+00         |           | 1.41E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.14E-03 | 0.00E+00   | 1.14E-03 | 4.50E-01  | 2.53E-03 | 9.00E-01  | 1.27E-03  |
| Mercury  | SCSS-076 | 0.00E+00      | mg/L  | 0.00E+00      | mg/kg | 4.90E-02      | mg/kg | 1.00E+00         |           | 8.16E+00         |           | 1.47E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00 | 0.00E+00  | 1.03E-03 | 0.00E+00   | 1.03E-03 | 4.50E-01  | 2.30E-03 | 9.00E-01  | 1.15E-03  |
| •        |          |               | 5     |               | 2 0   |               | 5 0   |                  |           | P                |           |             |          |          |                |          |           |          |           |            |          |           |          |            |          |           |          |           |           |

Intake Equation  $Ej = \left(\frac{A}{HR}\left[\sum_{i=1}^{m} \left(\frac{IRixCij}{BW}\right)\right]\right)$ 

 

 Where:

 Ej = Total Exposure to Chemical

 A = Site Area

 HR = Home Range

 m = Total number of ingested media

 i = counter IRi = Consumption Rate for Medium Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L) BW = Body Weight

Notes: BAF = Bioaccumulation Factor (may be BCF if this is the only value available) EED = Estimated Exposure Dose EEQ = Ecological Effects Quotient. L = LOAEL based; N = NOAEL based LOAEL = Lowest Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level NA = Not applicable/Not available BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor) Some BAF (or BCF) values based on media regression equations (value in box): LOAEL and NOAEL values from appropriate toxicity summary tables in the text. UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium. Receptor diet data and home range data from appropriate text table. Exposure point concentrations (EPCs) from appropriate text tables.

| Species-Sp | ecific Factors |
|------------|----------------|
|------------|----------------|

| Terrestrial plant diet fraction = | 0       | unitless |  |
|-----------------------------------|---------|----------|--|
| Aquatic plant diet fraction =     | 0       | unitless |  |
| Plant root diet fraction =        | 0       | unitless |  |
| Fish diet fraction =              | 0       | unitless |  |
| Aq. Invert diet fraction =        | 0       | unitless |  |
| Terr. Invert diet fraction =      | 0       | unitless |  |
| Mammal diet fraction =            | 1       | unitless |  |
| Bird diet fraction =              | 0       | unitless |  |
| Soil ingestion rate =             | 0       | kg/d     |  |
| Sediment ingestion rate =         | 0       | kg/d     |  |
| Food ingestion rate =             | 0.1243  | kg/d     |  |
| Body weight =                     | 1.13    | kg       |  |
| Home range =                      | 1722    | acres    |  |
| Water intake rate =               | 0.06441 | L/d      |  |
| Site Area =                       | 2       | acres    |  |
| Area Use Factor (AUF) =           | 1       | unitless |  |
| Exposure Frequency (EF) =         | 1       | unitless |  |
|                                   |         |          |  |
#### Table H-5 Chemicals of Potential Concern Exposure Doses and Hazard Quotients for the Barn Owl Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

|         |          | Surface Water                      |        | Sediment                           |       | Surface Soil                       |              | <b>DAE E</b> 1 | Aq. Inve | ert. Terr. Invert. | Aq. Plant | Terr. Plant | Mammal   |          | EED<br>Surface | EED       |           |           | EED Aq.   | EED Terr. | EED Aq.   | EED Terr. | EED       | EED       | Total     |                      |          |                      |          |
|---------|----------|------------------------------------|--------|------------------------------------|-------|------------------------------------|--------------|----------------|----------|--------------------|-----------|-------------|----------|----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------------|----------|----------------------|----------|
| c       | `hemical | Exposure<br>Point<br>Concentration | llnite | Exposure<br>Point<br>Concentration | Unite | Exposure<br>Point<br>Concentration | 501<br>Unite | BAF FISN I     | SAF BAF  | BAF                | BAF       | BAF         | BAF      | Bird BAF | water          | Sediment  | EED Soll  | EED Fish  | Invert.   | Invert.   | Plants    | Plants    | Mammais   | Birds     | EED       | TRV <sub>NOAEL</sub> | ЦО       | TRV <sub>LOAEL</sub> | НО       |
| Matala  | hemical  | Concentration (                    | onna   | Concentration                      | onita | Concentration                      | onita        |                |          | 0                  | milless   |             |          |          | ilig/kg-u      | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | ilig/kg-u | iiig/kg-u            | HQ NOAEL | ilig/kg-u            | HQ LOAEL |
| Mercury | ΜΔΧ      | 0.005+00                           | ma/l   | 0.00E+00                           | ma/ka | 2 46E±01                           | ma/ka 1.00   | E+00           |          | 1 26E-01           | 1         | 8/3E-02     | 1 92E-01 | 1 92E-01 | 0.00E±00       | 0.00E+00  | 0.00E+00  | 0.00F±00  | 0.005+00  | 0.00F±00  | 0.00E±00  | 0.00F±00  | 5 90E-01  | 0.00E±00  | 5 90E-01  | 4 50E-01             | 1 31E±00 | ΝΔ                   | NΔ       |
| Mercury | AVG      | 0.00E+00                           | ma/l   | 0.00E+00                           | ma/ka | 3.60E+01                           | mg/kg 1.00   |                |          | 4.58E-01           | -         | 2.04E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.002+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 8.64E-02  | 0.00E+00  | 8.64E-01  | 4.50E-01             | 1 92E-01 | NΔ                   | NΔ       |
| Mercury | SCSS-057 | 0.00E+00                           | ma/l   | 0.00E+00                           | ma/ka | 1.51E+01                           | mg/kg 1.00   | E+00           |          | 1.75E-01           | -         | 1.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 3.62E-02  | 0.00E+00  | 3.62E-02  | 4 50E-01             | 8.05E-01 | NA                   | NA       |
| Mercury | SCSS-058 | 0.00E+00                           | ma/l   | 0.00E+00                           | ma/ka | 1.01E+01                           | mg/kg 1.00   | E+00           |          | 2 16E-01           | -         | 1.00E 01    | 1.02E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 2.66E-01  | 0.00E+00  | 2.66E-01  | 4 50E-01             | 5.92E-01 | NA                   | NA       |
| Mercury | SCSS-059 | 0.00E+00                           | ma/L   | 0.00E+00                           | ma/ka | 2.46E+01                           | ma/ka 1.00   | E+00           |          | 1 26E-01           |           | 8 43E-02    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 5.90E-01  | 0.00E+00  | 5.90E-01  | 4.50E-01             | 1.31E+00 | NA                   | NA       |
| Mercury | SCSS-060 | 0.00E+00                           | ma/L   | 0.00E+00                           | ma/ka | 8.80E+00                           | ma/ka 1.00   | E+00           |          | 2.52E-01           |           | 1.35E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 2.11E-01  | 0.00E+00  | 2.11E-01  | 4.50E-01             | 4.69E-01 | NA                   | NA       |
| Mercury | SCSS-061 | 0.00E+00                           | ma/L   | 0.00E+00                           | ma/ka | 2.70E+00                           | ma/ka 1.00   | E+00           |          | 5.56E-01           |           | 2.33E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 6.48E-02  | 0.00E+00  | 6.48E-02  | 4.50E-01             | 1.44E-01 | NA                   | NA       |
| Mercury | SCSS-062 | 0.00E+00                           | ma/L   | 0.00E+00                           | ma/ka | 5.00E-01                           | ma/ka 1.00   | E+00           |          | 1.72E+00           | -         | 5.06E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.20E-02  | 0.00E+00  | 1.20E-02  | 4.50E-01             | 2.67E-02 | NA                   | NA       |
| Mercury | SCSS-063 | 0.00E+00                           | ma/L   | 0.00E+00                           | ma/ka | 5.50E-01                           | ma/ka 1.00   | E+00           |          | 1.61E+00           | -         | 4.84E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.32E-02  | 0.00E+00  | 1.32E-02  | 4.50E-01             | 2.93E-02 | NA                   | NA       |
| Mercury | SCSS-064 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 7.80E-02                           | mg/kg 1.00   | E+00           |          | 5.97E+00           |           | 1.19E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.87E-03  | 0.00E+00  | 1.87E-03  | 4.50E-01             | 4.16E-03 | NA                   | NA       |
| Mercury | SCSS-065 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 2.90E-02                           | mg/kg 1.00   | E+00           |          | 1.16E+01           |           | 1.88E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 6.96E-04  | 0.00E+00  | 6.96E-04  | 4.50E-01             | 1.55E-03 | NA                   | NA       |
| Mercury | SCSS-066 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 7.00E-02                           | mg/kg 1.00   | E+00           |          | 6.42E+00           |           | 1.25E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.68E-03  | 0.00E+00  | 1.68E-03  | 4.50E-01             | 3.73E-03 | NA                   | NA       |
| Mercury | SCSS-067 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 2.60E-02                           | mg/kg 1.00   | E+00           |          | 1.25E+01           |           | 1.97E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 6.24E-04  | 0.00E+00  | 6.24E-04  | 4.50E-01             | 1.39E-03 | NA                   | NA       |
| Mercury | SCSS-068 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 3.10E-02                           | mg/kg 1.00   | E+00           |          | 1.11E+01           |           | 1.82E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 7.44E-04  | 0.00E+00  | 7.44E-04  | 4.50E-01             | 1.65E-03 | NA                   | NA       |
| Mercury | SCSS-069 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 6.10E-02                           | mg/kg 1.00   | E+00           |          | 7.04E+00           |           | 1.33E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.46E-03  | 0.00E+00  | 1.46E-03  | 4.50E-01             | 3.25E-03 | NA                   | NA       |
| Mercury | SCSS-072 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 6.30E-02                           | mg/kg 1.00   | E+00           |          | 6.89E+00           |           | 1.31E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.51E-03  | 0.00E+00  | 1.51E-03  | 4.50E-01             | 3.36E-03 | NA                   | NA       |
| Mercury | SCSS-073 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 2.70E-01                           | mg/kg 1.00   | E+00           |          | 2.60E+00           |           | 6.72E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 6.48E-03  | 0.00E+00  | 6.48E-03  | 4.50E-01             | 1.44E-02 | NA                   | NA       |
| Mercury | SCSS-074 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 1.30E-01                           | mg/kg 1.00   | E+00           |          | 4.24E+00           |           | 9.40E-01    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 3.12E-03  | 0.00E+00  | 3.12E-03  | 4.50E-01             | 6.93E-03 | NA                   | NA       |
| Mercury | SCSS-075 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 5.40E-02                           | mg/kg 1.00   | E+00           |          | 7.64E+00           |           | 1.41E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.30E-03  | 0.00E+00  | 1.30E-03  | 4.50E-01             | 2.88E-03 | NA                   | NA       |
| Mercury | SCSS-076 | 0.00E+00                           | mg/L   | 0.00E+00                           | mg/kg | 4.90E-02                           | mg/kg 1.00   | E+00           |          | 8.16E+00           | ]         | 1.47E+00    | 1.92E-01 | 1.92E-01 | 0.00E+00       | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00  | 1.18E-03  | 0.00E+00  | 1.18E-03  | 4.50E-01             | 2.61E-03 | NA                   | NA       |

Intake Equation  $Ej = \left(\frac{A}{HR}\left[\sum_{i=1}^{m} \left(\frac{IRixCij}{BW}\right)\right]\right)$ 

Where: Ej = Total Exposure to Chemical A = Site Area HR = Home Range m = Total number of ingested media i = counter IRi = Consumption Rate for Medium Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L) BW = Body Weight

Notes: BAF = Bioaccumulation Factor (may be BCF if this is the only value available) EED = Estimated Exposure Dose EEQ = Ecological Effects Quotient. L = LOAEL based; N = NOAEL based LOAEL = Lowest Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level NA = Not applicable/Not available BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor) Some BAF (or BCF) values based on media regression equations (value in box): LOAEL and NOAEL values from appropriate toxicity summary tables in the text. UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium. Receptor diet data and home range data from appropriate text table. Exposure point concentrations (EPCs) from appropriate text tables.

|  | S | pecies-S | Specific | Factors |
|--|---|----------|----------|---------|
|--|---|----------|----------|---------|

| Terrestrial plant diet fraction = | 0       | unitless |  |
|-----------------------------------|---------|----------|--|
| Aquatic plant diet fraction =     | 0       | unitless |  |
| Plant root diet fraction =        | 0       | unitless |  |
| Fish diet fraction =              | 0       | unitless |  |
| Aq. Invert diet fraction =        | 0       | unitless |  |
| Terr. Invert diet fraction =      | 0       | unitless |  |
| Mammal diet fraction =            | 1       | unitless |  |
| Bird diet fraction =              | 0       | unitless |  |
| Soil ingestion rate =             | 0       | kg/d     |  |
| Sediment ingestion rate =         | 0       | kg/d     |  |
| Food ingestion rate =             | 0.05825 | kg/d     |  |
| Body weight =                     | 0.466   | kg       |  |
| Home range =                      | 617.8   | acres    |  |
| Water intake rate =               | 0.0163  | L/d      |  |
| Site Area =                       | 2       | acres    |  |
| Area Use Factor (AUF) =           | 1       | unitless |  |
| Exposure Frequency (EF) =         | 1       | unitless |  |

#### Table H-6 Chemicals of Potential Concern Exposure Doses and Hazard Quotients for the Red Fox Sand Creek Dump Ravenna Army Ammunition Plant, Ravenna, Ohio

| Chamical |          | Surface Water<br>Exposure<br>Point | Unite | Sediment<br>Exposure<br>Point | Unite | Surface Soil<br>Exposure<br>Point | llaite | Soil BAF | Fish BAF | Aq. Invert.<br>BAF BAF BAF | Aq. Plant<br>BAF | Terr. Plant<br>BAF | Mammal<br>BAF | Bird BAF | EED<br>Surface<br>Water | EED<br>Sediment | EED Soil | EED Fish | EED Aq.<br>Invert. | EED Terr.<br>Invert. | EED Aq.<br>Plants | EED Terr.<br>Plants | EED<br>Mammals | EED<br>Birds | Total<br>EED | TRV <sub>NOAEL</sub> |                     | TRV <sub>LOAEL</sub> |                     |
|----------|----------|------------------------------------|-------|-------------------------------|-------|-----------------------------------|--------|----------|----------|----------------------------|------------------|--------------------|---------------|----------|-------------------------|-----------------|----------|----------|--------------------|----------------------|-------------------|---------------------|----------------|--------------|--------------|----------------------|---------------------|----------------------|---------------------|
| Cnemical |          | Concentration                      | Units | Concentration                 | Units | Concentration                     | Units  |          |          |                            | Initless         | 1                  |               |          | mg/kg-a                 | mg/kg-a         | mg/ĸg-a  | тд/кд-а  | mg/kg-a            | тд/кд-а              | mg/kg-a           | mg/kg-a             | mg/ĸg-a        | тд/кд-а      | mg/ĸg-a      | тд/кд-а              | HQ <sub>NOAEL</sub> | mg/kg-a              | HQ <sub>LOAEL</sub> |
| Metals   | MAN      | 0.005.00                           |       | 0.005.00                      |       | 0.405.04                          |        | 1.005.00 |          | 4.005.04                   |                  | 0.405.00           | 4.005.04      | 4 005 04 | 0.005.00                | 0.005.00        | 4 705 00 | 0.005.00 | 0.005.00           | 0.005.00             | 0.005.00          | 0.505.00            | 0.445.04       | 0.005.00     | 0.055.04     | 1.005.00             | 0.055.04            | E 00E . 00           | 7.005.00            |
| Mercury  | MAX      | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.46E+01                          | mg/kg  | 1.00E+00 |          | 1.26E-01                   |                  | 8.43E-02           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 4.72E-02 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 6.59E-03            | 3.11E-01       | 0.00E+00     | 3.65E-01     | 1.00E+00             | 3.65E-01            | 5.00E+00             | 7.30E-02            |
| Mercury  | AVG      | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 3.60E+00                          | mg/kg  | 1.00E+00 |          | 4.58E-01                   |                  | 2.04E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 6.91E-03 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.33E-03            | 4.56E-02       | 0.00E+00     | 5.48E-02     | 1.00E+00             | 5.48E-02            | 5.00E+00             | 1.10E-02            |
| Mercury  | 5055-057 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 1.51E+01                          | mg/kg  | 1.00E+00 |          | 1.75E-01                   |                  | 1.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 2.90E-02 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 5.06E-03            | 1.91E-01       | 0.00E+00     | 2.25E-01     | 1.00E+00             | 2.25E-01            | 5.00E+00             | 4.50E-02            |
| Mercury  | 5055-058 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 1.11E+01                          | mg/kg  | 1.00E+00 |          | 2.16E-01                   |                  | 1.22E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 2.13E-02 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 4.29E-03            | 1.40E-01       | 0.00E+00     | 1.66E-01     | 1.00E+00             | 1.66E-01            | 5.00E+00             | 3.32E-02            |
| Mercury  | SCSS-059 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.46E+01                          | mg/kg  | 1.00E+00 |          | 1.26E-01                   |                  | 8.43E-02           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 4.72E-02 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 6.59E-03            | 3.11E-01       | 0.00E+00     | 3.65E-01     | 1.00E+00             | 3.65E-01            | 5.00E+00             | 7.30E-02            |
| Mercury  | 5055-060 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 8.80E+00                          | mg/kg  | 1.00E+00 |          | 2.52E-01                   |                  | 1.35E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.69E-02 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 3.78E-03            | 1.11E-01       | 0.00E+00     | 1.32E-01     | 1.00E+00             | 1.32E-01            | 5.00E+00             | 2.64E-02            |
| Mercury  | 5055-061 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.70E+00                          | mg/kg  | 1.00E+00 |          | 5.56E-01                   |                  | 2.33E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 5.18E-03 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.00E-03            | 3.42E-02       | 0.00E+00     | 4.13E-02     | 1.00E+00             | 4.13E-02            | 5.00E+00             | 8.27E-03            |
| Mercury  | 5055-062 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 5.00E-01                          | mg/kg  | 1.00E+00 |          | 1.72E+00                   |                  | 5.06E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 9.59E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 8.04E-04            | 6.33E-03       | 0.00E+00     | 8.09E-03     | 1.00E+00             | 8.09E-03            | 5.00E+00             | 1.62E-03            |
| Mercury  | SCSS-063 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 5.50E-01                          | mg/kg  | 1.00E+00 |          | 1.61E+00                   |                  | 4.84E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.06E-03 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 8.47E-04            | 6.96E-03       | 0.00E+00     | 8.86E-03     | 1.00E+00             | 8.86E-03            | 5.00E+00             | 1.77E-03            |
| Mercury  | SCSS-064 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 7.80E-02                          | mg/kg  | 1.00E+00 |          | 5.97E+00                   |                  | 1.19E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.50E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.95E-04            | 9.87E-04       | 0.00E+00     | 1.43E-03     | 1.00E+00             | 1.43E-03            | 5.00E+00             | 2.86E-04            |
| Mercury  | 5055-065 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.90E-02                          | mg/kg  | 1.00E+00 |          | 1.16E+01                   |                  | 1.88E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 5.57E-05 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 1.73E-04            | 3.67E-04       | 0.00E+00     | 5.95E-04     | 1.00E+00             | 5.95E-04            | 5.00E+00             | 1.19E-04            |
| Mercury  | SCSS-066 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 7.00E-02                          | mg/kg  | 1.00E+00 |          | 6.42E+00                   |                  | 1.25E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.34E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.78E-04            | 8.86E-04       | 0.00E+00     | 1.30E-03     | 1.00E+00             | 1.30E-03            | 5.00E+00             | 2.60E-04            |
| Mercury  | SCSS-067 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.60E-02                          | mg/kg  | 1.00E+00 |          | 1.25E+01                   |                  | 1.97E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 4.99E-05 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 1.63E-04            | 3.29E-04       | 0.00E+00     | 5.42E-04     | 1.00E+00             | 5.42E-04            | 5.00E+00             | 1.08E-04            |
| Mercury  | SCSS-068 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 3.10E-02                          | mg/kg  | 1.00E+00 |          | 1.11E+01                   |                  | 1.82E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 5.95E-05 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 1.79E-04            | 3.92E-04       | 0.00E+00     | 6.31E-04     | 1.00E+00             | 6.31E-04            | 5.00E+00             | 1.26E-04            |
| Mercury  | SCSS-069 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 6.10E-02                          | mg/kg  | 1.00E+00 |          | 7.04E+00                   |                  | 1.33E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.17E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.58E-04            | 7.72E-04       | 0.00E+00     | 1.15E-03     | 1.00E+00             | 1.15E-03            | 5.00E+00             | 2.29E-04            |
| Mercury  | SCSS-072 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 6.30E-02                          | mg/kg  | 1.00E+00 |          | 6.89E+00                   |                  | 1.31E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.21E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.63E-04            | 7.97E-04       | 0.00E+00     | 1.18E-03     | 1.00E+00             | 1.18E-03            | 5.00E+00             | 2.36E-04            |
| Mercury  | SCSS-073 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 2.70E-01                          | mg/kg  | 1.00E+00 |          | 2.60E+00                   |                  | 6.72E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 5.18E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 5.76E-04            | 3.42E-03       | 0.00E+00     | 4.51E-03     | 1.00E+00             | 4.51E-03            | 5.00E+00             | 9.02E-04            |
| Mercury  | SCSS-074 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 1.30E-01                          | mg/kg  | 1.00E+00 |          | 4.24E+00                   |                  | 9.40E-01           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 2.49E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 3.88E-04            | 1.64E-03       | 0.00E+00     | 2.28E-03     | 1.00E+00             | 2.28E-03            | 5.00E+00             | 4.57E-04            |
| Mercury  | SCSS-075 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 5.40E-02                          | mg/kg  | 1.00E+00 |          | 7.64E+00                   |                  | 1.41E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 1.04E-04 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.42E-04            | 6.83E-04       | 0.00E+00     | 1.03E-03     | 1.00E+00             | 1.03E-03            | 5.00E+00             | 2.06E-04            |
| Mercury  | SCSS-076 | 0.00E+00                           | mg/L  | 0.00E+00                      | mg/kg | 4.90E-02                          | mg/kg  | 1.00E+00 |          | 8.16E+00                   |                  | 1.47E+00           | 1.92E-01      | 1.92E-01 | 0.00E+00                | 0.00E+00        | 9.40E-05 | 0.00E+00 | 0.00E+00           | 0.00E+00             | 0.00E+00          | 2.29E-04            | 6.20E-04       | 0.00E+00     | 9.43E-04     | 1.00E+00             | 9.43E-04            | 5.00E+00             | 1.89E-04            |

Intake Equation:

 $Ej = \left(\frac{A}{HR}\left[\sum_{i=1}^{m} \left(\frac{IRixCij}{BW}\right)\right]\right]$ 

Where: Ej = Total Exposure to Chemical A = Site Area HR = Home Range m = Total number of ingested media i = counter IRi = Consumption Rate for Medium

Cij = Chemical concentration (j) in medium (l) (mg/kg or mg/L)

BW = Body Weight

Notes: BAF = Bioaccumulation Factor (may be BCF if this is the only value available) EED = Statutinatation ractor (indy be BCF in this f EED = Estimated Exposure Dose EEQ = Ecological Effects Quotient. L = LOAEL based; N = NOAEL based LOAEL = Lowest Observed Adverse Effect Level NOAEL = No Observed Adverse Effect Level NA = Not applicable/Not available BAF (or BCF) values from appropriate text tables (BCF = bioconcentration factor) Some BAF (or BCF) values based on media regression equations (value in box): LOAEL and NOAEL values from appropriate toxicity summary tables in the text. UF = Uncertainty Factor for toxicity factor extrapolation, and Adjusted LOAEL or NOAEL = LOAEL/UF or NOAEL/UF A "0" entry in the exposure concentration column indicates this chemical not selected as a COPEC for this medium. Receptor diet data and home range data from appropriate text table. Exposure point concentrations (EPCs) from appropriate text tables.

#### Species-Specific Factors

| Terrestrial plant diet fraction = | 0.046  | unitless |
|-----------------------------------|--------|----------|
| Aquatic plant diet fraction =     | 0      | unitless |
| Plant root diet fraction =        | 0      | unitless |
| Fish diet fraction =              | 0      | unitless |
| Aq. Invert diet fraction =        | 0      | unitless |
| Terr. Invert diet fraction =      | 0      | unitless |
| Mammal diet fraction =            | 0.954  | unitless |
| Bird diet fraction =              | 0      | unitless |
| Soil ingestion rate =             | 0.009  | kg/d     |
| Sediment ingestion rate =         | 0      | kg/d     |
| Food ingestion rate =             | 0.324  | kg/d     |
| Body weight =                     | 4.69   | kg       |
| Home range =                      | 1472.7 | acres    |
| Water intake rate =               | 0.399  | L/d      |
| Site Area =                       | 2      | acres    |
| Area Use Factor (AUF) =           | 1      | unitless |
| Exposure Frequency (EF) =         | 1      | unitless |
|                                   |        |          |

## Appendix I Investigation-Derived Waste Management

(Note: Data Submitted on Compact Disc.)

#### Table of Contents \_\_\_\_\_

| Acro | nyms | and Abbreviations                   | I-3  |
|------|------|-------------------------------------|------|
| 1.0  | Inve | stigation-Derived Waste Management  | I-5  |
|      | 1.1  | IDW Collection and Containerization | I-5  |
|      | 1.2  | Waste Container Labeling            | I-6  |
|      | 1.3  | IDW Field Staging                   | I-6  |
|      | 1.4  | Weekly Inspection Inventories       | I-6  |
|      | 1.5  | IDW Sampling                        | I-6  |
|      | 1.6  | Listed Waste Screening              | I-7  |
|      | 1.7  | Characteristic Waste Screening      | I-7  |
|      | 1.8  | IDW Transport and Disposal          | I-11 |

### List of Tables \_\_\_\_\_

| Table I-1 | Summary of Remedial Investigation-Derived Waste          | .I-6 |
|-----------|----------------------------------------------------------|------|
| Table I-2 | Investigation-Derived Waste Analysis Methods             | .I-7 |
| Table I-3 | Detected Analytes in Investigation-Derived Waste Samples | .I-8 |

### List of Attachments\_\_\_\_\_

Attachment 1 Investigation-Derived Waste Analytical Results (Data Submitted on Compact Disk)

Attachment 2 Investigation-Derived Waste Profiles

Attachment 3 Investigation-Derived Waste Manifest

This page intentionally left blank.

## Acronyms and Abbreviations\_

| AOC   | Area of Concern                                |
|-------|------------------------------------------------|
| CFR   | Code of Federal Regulations                    |
| DL    | decontamination liquids                        |
| FSAP  | Facility-Wide Sampling and Analysis Plan       |
| IDW   | Investigation-Derived Waste                    |
| µg/l  | micrograms per liter                           |
| mg/kg | milligrams per kilogram                        |
| mg/L  | milligrams per liter                           |
| PPE   | personal protective equipment                  |
| RCRA  | Resource Conservation and Recovery Act         |
| RI    | Remedial Investigation                         |
| RVAAP | Ravenna Army Ammunition Plant                  |
| SAIC  | Science Applications International Corporation |
| Shaw  | Shaw Environmental & Infrastructure, Inc.      |
| SO    | soil and dry sediment                          |
| SVOC  | semivolatile organic compound                  |
| TCLP  | Toxicity Characteristic Leaching Procedure     |
| USEPA | U.S. Environmental Protection Agency           |
| Vista | Vista Environmental Sciences Corporation       |
| VOC   | volatile organic compound                      |

\_\_\_\_\_

This page intentionally left blank.

### **1.0 Investigation-Derived Waste Management**

Three types of Investigation-Derived Waste (IDW) were generated during the remedial investigation (RI) activities conducted at the RVAAP-34 Sand Creek Disposal Road Landfill and RVAAP-05 Open Demolition Area #1, Ravenna Army Ammunition Plant (RVAAP), Ohio between September and November 2010. These IDW types consisted of the following:

- Environmental Media (soil and dry sediment) derived from the surface soil, subsurface soil and dry sediment sampling activities.
- Solid Waste (decontamination fluids) derived from decontamination of sampling equipment and drilling equipment.
- Solid Waste (expendable waste debris) including personal protective equipment (PPE) and disposable sampling equipment.

All IDW generated during the RI activities was managed in accordance with sampling requirements of the *Field Sampling and Analysis Plan Addendum No. 1* (Shaw, 2010); hereafter referred to as the Addendum and Section 7.0 of the Facility-Wide Sampling and Analysis Plan (FSAP; SAIC, 2001).

#### **1.1 IDW Collection and Containerization**

Environmental media and solid waste were contained separately. For the environmental media, unsaturated soils were segregated from saturated soils. For solid waste, decontamination fluids were containerized separately from expendable solid waste debris. Characterization and classification of the different types of IDW were based on the specific protocols described below.

- Soils and Dry Sediment: Drilling spoils and excess surface soils and dry sediment were placed in 55-gallon steel drums with gasketed ring-topped lids.
- **Decontamination Fluids:** Decontamination fluids were placed in 55-gallon steel drums with gaskted ring-topped lids.
- **Expendable Waste Debris:** Expendable waste debris was segregated as noncontaminated and potentially contaminated material based on visual inspection, use of the waste material and field screening using field screening instruments. Expendable waste debris considered to be non-contaminated and potentially contaminated was placed in trash bags and stored in 55-gallon drums sealed with gasketed ring-topped lids.

A summary of IDW generated is presented in **Table I-1**.

| Drum ID<br>Number   | Container Size and<br>Type | Contents and Volume                   | Generation Dates  |  |  |  |  |  |  |  |  |
|---------------------|----------------------------|---------------------------------------|-------------------|--|--|--|--|--|--|--|--|
| Environmental Media |                            |                                       |                   |  |  |  |  |  |  |  |  |
| Shaw-02             | 55-gallon open top         | Unsaturated soil; full                | 9/21 to 9/30/10   |  |  |  |  |  |  |  |  |
| Shaw-03             | 55-gallon open top         | Unsaturated soil; full                | 9/21 to 9/30/10   |  |  |  |  |  |  |  |  |
| Shaw-04             | 55-gallon open top         | Unsaturated soil; full                | 9/21 to 9/30/10   |  |  |  |  |  |  |  |  |
| Shaw-08             | 55-gallon open top         | Unsaturated soil; full                | 11/09 to 11/10/10 |  |  |  |  |  |  |  |  |
| Solid Waste         |                            |                                       |                   |  |  |  |  |  |  |  |  |
| Shaw-01             | 55-gallon open top         | Decontamination liquids; 35 gallons   | 9/21 to 9/29/10   |  |  |  |  |  |  |  |  |
| Shaw-05             | 55-gallon open top         | PPE and used sampling equipment; full | 9/21 to 11/10/10  |  |  |  |  |  |  |  |  |
| Shaw-07             | 55-gallon open top         | Decontamination liquids; 25 gallons   | 11/09 to 11/10/10 |  |  |  |  |  |  |  |  |

Table I-1Summary of Remedial Investigation-Derived Waste

### **1.2 Waste Container Labeling**

All containerized waste was labeled as specified in Section 7.2 of the *FSAP*. Label information on each container was written in indelible ink and included at a minimum; container number, contents, source of the waste, source location, project name and site identification, physical characteristics of the waste, and generation dates. Each label was placed on the side of each container at a location that was protected from damage or degradation.

### **1.3 IDW Field Staging**

At the end of each day, Shaw staged all IDW at Building 1036 in accordance with the RVAAP Waste Management Guidelines. All drums were staged on wooden pallets at Building 1036 and were labeled as "On Hold Pending Analysis" until analytical results were received. To avoid potential drum rupture due to freezing conditions, drums containing liquid IDW were filled only to 75 percent capacity.

### 1.4 Weekly Inspection Inventories

Shaw contracted Vista Environmental Services (Vista) to conduct weekly inspection inventories of the containerized IDW in accordance with 40 CFR 262. The weekly inspections were performed by Vista for the duration of the waste storage at the facility. Once analytical results were received by Shaw, Vista placed the appropriate waste characterization label on each drum.

### 1.5 IDW Sampling

The IDW samples were analyzed by the following United States Environmental Protection Agency (USEPA) methods:

| Sample Name                                                                  | Analysis                                                                                                                | Methods                                                          |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| RVAAP-001-IDW-SO<br>RVAAP-002-IDW-SO<br>RVAAP-001-IDW-DL<br>RVAAP-002-IDW-DL | RCRA List Metals<br>RCRA List SVOCs<br>RCRA List VOCs<br>Explosives<br>Propellants<br>RCRA Characteristics <sup>1</sup> | 6010C,7471A<br>8270C<br>8260B<br>8330B<br>8330, 9056M<br>Various |

## Table I-2Investigation-Derived Waste Analysis Methods

Notes:

<sup>1</sup>RCRA Characteristics include analysis for reactive cyanide and sulfide, flashpoint and pH. DL = decontamination liquids IDW = Investigation-Derived Waste RCRA = Resource Conservation and Recovery Act SO = soils and dry sediment

SVOCs = semivolatile organic compounds VOCs = volatile organic compounds

The detected analytical results for each of the IDW samples are presented in **Table I-3**. The IDW analytical data is presented in **Attachment 1**.

#### **1.6 Listed Waste Screening**

Review of available historical documents and generator knowledge, does not support that wastes generated from the either the Sand Creek Disposal Road Landfill or Open Demolition Area #1 Areas of Concerns (AOCs) meet the listed description as defined in RCRA Part 261 Subpart D. Therefore, all IDW generated from these sites were not considered listed.

#### 1.7 Characteristic Waste Screening

All solid environmental media was evaluated to determine if it exhibited characteristics of a hazardous waste. Based on site knowledge and the nature of the media, the IDW was not anticipated to be reactive, ignitable, or corrosive. To check for the characteristic of toxicity, the analytical results from soil samples were compared to 20-times the RCRA Toxicity Characteristic Leaching Procedure (TCLP) regulatory levels. All detected analytes were below the toxicity limits (**Table I-3**).

All liquid environmental media was evaluated to determine if the media exhibits characteristics of a hazardous waste. Based on site knowledge and the nature of the media, the IDW was not anticipated to be reactive, ignitable, or corrosive. To check for the characteristic of toxicity, the analytical results from groundwater were directly compared to the RCRA TCLP regulatory levels. All detected analytes were below the toxicity limits (**Table I-3**). Therefore, the decontamination liquid purge water in both drums did not exhibit characteristics of a hazardous waste and was not required to be managed as such.

## Table I-3Detected Analytes in Investigation-Derived Waste Samples

|                     |                |               |        |                       |        |       | Character                      | aluation                                                                                 |                     |
|---------------------|----------------|---------------|--------|-----------------------|--------|-------|--------------------------------|------------------------------------------------------------------------------------------|---------------------|
| Sample ID           | Sample<br>Date | Test<br>Group | Method | Analyte               | Result | Units | EPA<br>Hazardous<br>Waste Code | $\begin{array}{c} \textbf{RCRA} \\ \textbf{TCLP Level} \\ (\textbf{mg/L})^1 \end{array}$ | TCLP x<br>20 (mg/L) |
| Environmental Media |                |               |        |                       |        |       |                                |                                                                                          |                     |
| RVAAP-001-IDW-SO    | 09-Sep-10      | Metals        | 6010C  | Arsenic               | 14.5   | mg/kg | D004                           | 5                                                                                        | 100                 |
|                     |                | Metals        | 6010C  | Barium                | 91.1   | mg/kg | D005                           | 100                                                                                      | 2,000               |
|                     |                |               | 6010C  | Cadmium               | 0.93 J | mg/kg | D006                           | 1                                                                                        | 20                  |
|                     |                | Metals        | 6010C  | Chromium              | 19.6   | mg/kg | D007                           | 5                                                                                        | 100                 |
|                     |                |               | 6010C  | Lead                  | 41.9   | mg/kg | D008                           | 5                                                                                        | 100                 |
|                     | Metals         |               | 6010C  | Selenium              | 0.65   | mg/kg | D010                           | 1                                                                                        | 20                  |
|                     |                | Metals        | 6010C  | Silver                | 8.5 J  | mg/kg | D011                           | 5                                                                                        | 100                 |
|                     | Metals         | Metals        | 7471A  | Mercury               | 0.081  | mg/kg | D009                           | 0.2                                                                                      | 4                   |
|                     | Metals         | SVOCs         | 8270C  | 2-Methylnaphthalene   | 54 J   | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Anthracene            | 82 J   | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Benzo(a)anthracene    | 250 J  | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Benzo(a)pyrene        | 300 J  | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Benzo(b)fluoranthene  | 420 J  | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Benzo(ghi)perylene    | 210 J  | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Benzo(k)fluoranthene  | 100 J  | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Carbazole             | 61 J   | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Dibenzo(ah)anthracene | 55 J   | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Dibenzofuran          | 37 J   | µg/kg |                                |                                                                                          |                     |
|                     |                | SVOCs         | 8270C  | Fluoranthene          | 540    | µg/kg |                                |                                                                                          |                     |

|                  |                |               |        |                     |        |       | Character                      | istic Waste Eva                                                                          | aluation            |
|------------------|----------------|---------------|--------|---------------------|--------|-------|--------------------------------|------------------------------------------------------------------------------------------|---------------------|
| Sample ID        | Sample<br>Date | Test<br>Group | Method | Analyte             | Result | Units | EPA<br>Hazardous<br>Waste Code | $\begin{array}{c} \textbf{RCRA} \\ \textbf{TCLP Level} \\ (\textbf{mg/L})^1 \end{array}$ | TCLP x<br>20 (mg/L) |
|                  |                | SVOCs         | 8270C  | Fluorene            | 32 J   | µg/kg |                                |                                                                                          |                     |
|                  |                | SVOCs         | 8270C  | Indeno(123cd)pyrene | 200 J  | µg/kg |                                |                                                                                          |                     |
|                  |                | SVOCs         | 8270C  | Naphthalene         | 50 J   | µg/kg |                                |                                                                                          |                     |
|                  |                | SVOCs         | 8270C  | Phenanthrene        | 300 J  | µg/kg |                                |                                                                                          |                     |
|                  |                | SVOCs         | 8270C  | Pyrene              | 420 J  | µg/kg |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | Ethylbenzene        | 7.6 J  | µg/kg |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | m & p-Xylene        | 23 J   | µg/kg |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | o-Xylene            | 17 J   | µg/kg |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | Toluene             | 17 J   | µg/kg |                                |                                                                                          |                     |
| RVAAP-002-IDW-SO | 11-Nov-10      | Metals        | 6010C  | Arsenic             | 7.1    | mg/kg | D004                           | 5                                                                                        | 100                 |
|                  |                | Metals        | 6010C  | Barium              | 50 J   | mg/kg | D005                           | 100                                                                                      | 2,000               |
|                  |                |               | 6010C  | Cadmium             | 0.41   | mg/kg | D006                           | 1                                                                                        | 20                  |
|                  |                | Metals        | 6010C  | Chromium            | 12.1   | mg/kg | D007                           | 5                                                                                        | 100                 |
|                  |                |               | 6010C  | Lead                | 9.5 J  | mg/kg | D008                           | 5                                                                                        | 100                 |
|                  | Metals         |               | 6010C  | Selenium            | 0.6    | mg/kg | D010                           | 1                                                                                        | 20                  |
|                  |                | Metals        | 7471A  | Mercury             | 0.04   | mg/kg | D009                           | 0.2                                                                                      | 4                   |
| Solid Waste      | Metals         |               |        |                     |        |       |                                |                                                                                          |                     |
| RVAAP-001-IDW-DL | MeSap-10       | Metals        | 6010C  | Barium              | 71     | µg/L  | D005                           | 100                                                                                      |                     |
|                  |                | Metals        | 6010C  | Cadmium             | 0.17 J | µg/L  | D006                           | 1                                                                                        |                     |
|                  |                | Metals        | 6010C  | Chromium            | 15.2   | µg/L  | D007                           | 5                                                                                        |                     |
|                  |                | Metals        | 6010C  | Lead                | 139    | µg/L  | D008                           | 5                                                                                        |                     |

|                  |                |               |        |                            |        |       | Characteristic Waste Evaluat   |                                                                                          | aluation            |
|------------------|----------------|---------------|--------|----------------------------|--------|-------|--------------------------------|------------------------------------------------------------------------------------------|---------------------|
| Sample ID        | Sample<br>Date | Test<br>Group | Method | Analyte                    | Result | Units | EPA<br>Hazardous<br>Waste Code | $\begin{array}{c} \textbf{RCRA} \\ \textbf{TCLP Level} \\ (\textbf{mg/L})^1 \end{array}$ | TCLP x<br>20 (mg/L) |
|                  |                | Metals        | 7470A  | Mercury                    | 0.47   | µg/L  | D009                           | 0.2                                                                                      |                     |
|                  |                | SVOCs         | 8270C  | Bis(2-ethylhexyl)phthalate | 6.6 J  | µg/L  |                                |                                                                                          |                     |
|                  |                | SVOCs         | 8270C  | Diethylphthalate           | 13 J   | µg/L  |                                |                                                                                          |                     |
|                  |                | Explosives    | 8330B  | 2-Nitrotoluene             | 5.7 J  | µg/L  |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | Acetone                    | 15,000 | µg/L  |                                |                                                                                          |                     |
|                  |                | VOCs          | 8260B  | Toluene                    | 59 J   | µg/L  |                                |                                                                                          |                     |
| RVAAP-002-IDW-DL | 11-Nov-10      | Metals        | 6010C  | Arsenic                    | 83.1   | µg/L  | D004                           | 5                                                                                        |                     |
|                  |                | Metals        | 6010C  | Barium                     | 296    | µg/L  | D005                           | 100                                                                                      |                     |
|                  |                | Metals        | 6010C  | Cadmium                    | 5.6    | µg/L  | D006                           | 1                                                                                        |                     |
|                  |                | Metals        | 6010C  | Chromium                   | 295    | µg/L  | D007                           | 5                                                                                        |                     |
|                  |                | Metals        | 6010C  | Lead                       | 75.9   | µg/L  | D008                           | 5                                                                                        |                     |
|                  |                | Metals        | 6010C  | Selenium                   | 5.8 J  | µg/L  | D010                           | 1                                                                                        |                     |
|                  |                | Metals        | 7470A  | Mercury                    | 0.71   | µg/L  | D009                           | 0.2                                                                                      |                     |
|                  |                | SVOCs         | 8270C  | Hexachlorobenzene          | 0.47 J | µg/L  |                                |                                                                                          |                     |

Notes:

<sup>1</sup>Toxicity Characteristic Leaching Procedure (TCLP), 40 CFR 261.24 DL = decontamination liquids

*IDW* = *Investigation* –*Derived Waste* 

 $\mu g/kg = microgams per kilogram$ 

 $\mu g/L = microgams per liter$ 

mg/kg milligrams per kilogram

mg/L = milligrams per liter

SO = soil and dry sediment

*SVOC* = *semivolatile organic compounds* 

*VOC* = volatile organic compound

Validation Qualifiers

 $\overline{J}$  = The reported result is an estimated value

#### **1.8 IDW Transport and Disposal**

Based on the analytical data and the screening criteria discussed above, the drums containing waste soils and dry sediments and decontamination liquids did not exhibit characteristics of a hazardous solid waste. All waste disposal documents were reviewed by the RVAAP Facility Manager prior to off-site disposal in accordance with the RVAAP Waste Management Guidelines. All generated waste was transported off-site for disposal at the Spring Grove Resource Recovery, Inc. at Cincinnati, Ohio, by Clean Harbors Environmental Services out of Cleveland, Ohio on January 6, 2011. The drums of soil and dry sediment (Shaw-02, -03, -04, and -08) and PPE and sampling equipment (Shaw-05) were disposed as non-hazardous, non-DOT solid waste (non-DOT regulated). The drums of decontamination liquids (Shaw-01 and Shaw-07) were disposed as non-hazardous, non-DOT regulated liquid. The approved-waste profile and non-hazardous manifest are provided in **Attachment 2** and **Attachment 3**, respectively.

This page intentionally left blank.

#### ATTACHMENT 1 Investigation-Derived Waste Analytical Results (Data Submitted on Compact Disk)

This page intentionally left blank.

|                            | Location Code  | RVAAP-001-IDW    | RVAAP-002-IDW    |
|----------------------------|----------------|------------------|------------------|
|                            | Sample Number  | RVAAP-001-IDW-DL | RVAAP-002-IDW-DL |
|                            | Sample Date    | 9/30/2010        | 11/11/2010       |
|                            | Depth          | 0 - 0 ft         | 0 - 0 ft         |
|                            | Sample Purpose | REG              | REG              |
| Parameter                  | Units          | Result Qual      | Result Qual      |
| Explosives                 | •              | -                |                  |
| 1,3,5-Trinitrobenzene      | μg/L           | <0.58 U          | <0.46 U          |
| 1,3-Dinitrobenzene         | μg/L           | <0.5 U           | <0.4 U           |
| 2,4,6-Trinitrotoluene      | μg/L           | <0.55 U          | <0.44 U          |
| 2,4-Dinitrotoluene         | μg/L           | <0.75 U          | <0.6 U           |
| 2,6-Dinitrotoluene         | μg/L           | <0.6 U           | <0.48 U          |
| 2-Amino-4,6-Dinitrotoluene | μg/L           | <0.6 U           | <0.48 U          |
| 3,5-Dinitroaniline         | μg/L           |                  | <0.46 U          |
| 4-Amino-2,6-Dinitrotoluene | μg/L           | <0.7 U           | <0.56 U          |
| НМХ                        | μg/L           | <0.63 U          | <0.5 U           |
| m-Nitrotoluene             | μg/L           | <0.58 U          | <0.46 U          |
| Nitrobenzene               | μg/L           | <0.55 U          | <0.44 U          |
| Nitrocellulose             | μg/L           | <5000 UJ         | <4000 U          |
| Nitroglycerin              | μg/L           | <5.5 U           | <4.4 U           |
| Nitroguanidine             | μg/L           | <28 U            | <28 U            |
| o-Nitrotoluene             | μg/L           | 5.7 J            | <0.8 U           |
| Petn                       | μg/L           | <7.5 U           | <6 U             |
| p-Nitrotoluene             | μg/L           | <0.55 U          | <0.44 U          |
| RDX                        | μg/L           | <0.45 U          | <0.36 U          |
| Tetryl                     | μg/L           | <0.53 U          | <0.42 U          |
| FIELD TESTS                | <u>.</u>       |                  |                  |
| pH                         | STD UNIT       | 7.38             | 7.96             |
| GEN CHEMISTRY              |                |                  |                  |
| Cyanide, Total             | μg/L           | <10000 U         | <10000 U         |
| Flashpoint                 | F              | 140              | 140              |
| Sulfide                    | μg/L           | <2000 U          | <2000 U          |
| Metals                     |                |                  |                  |
| Arsenic                    | μg/L           | <4 U             | 83.1             |
| Barium                     | μg/L           | 71               | 296              |
| Cadmium                    | μg/L           | 0.17 J           | 5.6              |
| Chromium                   | μg/L           | 15.2             | 295              |
| Lead                       | μg/L           | 139              | 75.9             |
| Mercury                    | μg/L           | 0.47             | 0.71             |
| Selenium                   | μg/L           | <2.3 U           | 5.8 J            |
| Silver                     | µg/L           | <0.7 U           | <0.7 U           |
| Semivolatiles              |                |                  |                  |
| 1,2,4-Trichlorobenzene     | µg/L           | <2 U             |                  |
| 1,2-Dichlorobenzene        | μg/L           | <2.1 U           |                  |
| 1,3-Dichlorobenzene        | μg/L           | <2.3 U           |                  |

|                             | Location Code  | RVAAP-001-IDW      | RVAAP-   | 002-IDW  |
|-----------------------------|----------------|--------------------|----------|----------|
|                             | Sample Number  | RVAAP-001-IDW-DL   | RVAAP-00 | 2-IDW-DL |
|                             | Sample Date    | 9/30/2010          | 11/11    | /2010    |
|                             | Depth          | 0 - 0 ft           | 0 -      | 0 ft     |
|                             | Sample Purpose | REG                | R        | EG       |
| Parameter                   | Units          | <b>Result Qual</b> | Result   | Qual     |
| 1,4-Dichlorobenzene         | μg/L           | <2.2 U             | < 0.2    | U        |
| 2,4,5-Trichlorophenol       | μg/L           | <13 U              | <1.1     | U        |
| 2,4,6-Trichlorophenol       | μg/L           | <12 U              | <1       | U        |
| 2,4-Dichlorophenol          | μg/L           | <12 U              |          |          |
| 2,4-Dimethylphenol          | μg/L           | <9.5 U             |          |          |
| 2,4-Dinitrophenol           | μg/L           | <17 U              |          |          |
| 2,4-Dinitrotoluene          | μg/L           | <2.4 U             | < 0.22   | U        |
| 2,6-Dinitrotoluene          | μg/L           | <3.3 U             |          |          |
| 2-Chloronaphthalene         | μg/L           | <2.1 U             |          |          |
| 2-Chlorophenol              | μg/L           | <10 U              |          |          |
| 2-Methylnaphthalene         | μg/L           | <2 U               |          |          |
| 2-Nitroaniline              | μg/L           | <2.6 U             |          |          |
| 2-Nitrophenol               | μg/L           | <10 U              |          |          |
| 3,3'-Dichlorobenzidine      | μg/L           | <7.7 U             |          |          |
| 3-Nitroaniline              | μg/L           | <3 U               |          |          |
| 4,6-Dinitro-2-Methylphenol  | μg/L           | <19 U              |          |          |
| 4-Bromophenyl Phenyl Ether  | µg/L           | <2.3 U             |          |          |
| 4-Chloro-3-Methylphenol     | μg/L           | <8.8 U             |          |          |
| 4-Chloroaniline             | μg/L           | <1.4 U             |          |          |
| 4-Chlorophenyl Phenyl Ether | μg/L           | <2.1 U             |          |          |
| 4-Nitrobenzenamine          | μg/L           | <1.7 U             |          |          |
| 4-Nitrophenol               | μg/L           | <13 U              |          |          |
| Acenaphthene                | µg/L           | <2.1 U             |          |          |
| Acenaphthylene              | µg/L           | <2 U               |          |          |
| Anthracene                  | μg/L           | <1.3 U             |          |          |
| Benzo(a)anthracene          | µg/L           | <1.4 U             |          |          |
| Benzo(a)pyrene              | μg/L           | <1.6 U             |          |          |
| Benzo(b)fluoranthene        | μg/L           | <2 U               |          |          |
| Benzo(ghi)perylene          | μg/L           | <2.4 U             |          |          |
| Benzo(k)fluoranthene        | μg/L           | <2.3 U             |          |          |
| Benzoic Acid                | μg/L           | <130 U             |          |          |
| Benzyl Alcohol              | μg/L           | <6.3 U             |          |          |
| Bis(2-Chloroethoxy)methane  | μg/L           | <2.2 U             |          |          |
| Bis(2-Chloroethyl)ether     | μg/L           | <2.4 U             |          |          |
| Bis(2-Chloroisopropyl)ether | μg/L           | <2.6 U             |          |          |
| Bis(2-Ethylhexyl)phthalate  | μg/L           | 6.6 J              |          |          |
| Butyl Benzyl Phthalate      | μg/L           | <5.5 U             |          |          |
| Carbazole                   | μg/L           | <1.4 U             |          |          |
| Chrysene                    | μg/L           | <1.9 U             |          |          |

|                            | Location Code  | RVAAP-001-IDW    | RVAAP-002-IDW      |  |
|----------------------------|----------------|------------------|--------------------|--|
|                            | Sample Number  | RVAAP-001-IDW-DL | RVAAP-002-IDW-DL   |  |
|                            | Sample Date    | 9/30/2010        | 11/11/2010         |  |
|                            | Depth          | 0 - 0 ft         | 0 - 0 ft           |  |
|                            | Sample Purpose | REG              | REG                |  |
| Parameter                  | Units          | Result Qual      | <b>Result Qual</b> |  |
| Cresols (Total)            | μg/L           | <16 U            | <1.4 U             |  |
| Dibenzo(a,h)anthracene     | μg/L           | <2 U             |                    |  |
| Dibenzofuran               | μg/L           | <2.2 U           |                    |  |
| Diethyl Phthalate          | μg/L           | 13 J             |                    |  |
| Dimethyl Phthalate         | μg/L           | <6.3 U           |                    |  |
| Di-n-Butyl Phthalate       | μg/L           | <7.8 U           |                    |  |
| Di-n-Octyl Phthalate       | μg/L           | <5.7 U           |                    |  |
| Fluoranthene               | μg/L           | <1.5 U           |                    |  |
| Fluorene                   | μg/L           | <2.2 U           |                    |  |
| Hexachlorobenzene          | μg/L           | <3.1 U           | 0.47 J             |  |
| Hexachlorobutadiene        | μg/L           | <2.1 U           | <0.19 U            |  |
| Hexachlorocyclopentadiene  | μg/L           | <3 U             |                    |  |
| Hexachloroethane           | μg/L           | <2.6 U           | <0.23 U            |  |
| Indeno(1,2,3-cd)pyrene     | μg/L           | <2.1 U           |                    |  |
| Isophorone                 | μg/L           | <2.1 U           |                    |  |
| Naphthalene                | μg/L           | <2.1 U           |                    |  |
| Nitrobenzene               | μg/L           | <1.9 U           | <0.16 U            |  |
| N-Nitroso-di-n-Propylamine | μg/L           | <2.1 U           |                    |  |
| N-Nitrosodiphenylamine     | μg/L           | <4.2 U           |                    |  |
| o-Cresol                   | μg/L           | <10 U            | <0.89 U            |  |
| Pentachlorophenol          | μg/L           | <13 U            | <1.1 U             |  |
| Phenanthrene               | μg/L           | <3.5 U           |                    |  |
| Phenol                     | μg/L           | <5.6 U           |                    |  |
| Pyrene                     | μg/L           | <1.5 U           |                    |  |
| Pyridine                   | μg/L           |                  | <0.64 U            |  |
| Volatiles                  |                |                  |                    |  |
| 1,1,1-Trichloroethane      | μg/L           | <42 U            |                    |  |
| 1,1,2,2-Tetrachloroethane  | μg/L           | <38 U            |                    |  |
| 1,1,2-Trichloroethane      | μg/L           | <52 U            |                    |  |
| 1,1-Dichloroethane         | μg/L           | <40 U            |                    |  |
| 1,1-Dichloroethylene       | μg/L           | <48 U            | <48 U              |  |
| 1,2-Dibromoethane          | μg/L           | <32 U            |                    |  |
| 1,2-Dichloroethane         | μg/L           | <60 U            | <60 U              |  |
| 1,2-Dichloropropane        | μg/L           | <44 U            |                    |  |
| 1,2-Dimethylbenzene        | μg/L           | <48 U            |                    |  |
| 2-Hexanone                 | μg/L           | <800 U           |                    |  |
| Acetone                    | μg/L           | <15000           |                    |  |
| Benzene                    | μg/L           | <38 U            | <38 U              |  |
| Bromochloromethane         | µg/L           | <38 U            |                    |  |

| I                         | Location Code | RVAAP-001-IDW    | RVAAP-002-IDW |           |
|---------------------------|---------------|------------------|---------------|-----------|
| Sa                        | mple Number   | RVAAP-001-IDW-DL | RVAAP-0       | 02-IDW-DL |
|                           | Sample Date   | 9/30/2010        | 11/1          | 1/2010    |
|                           | Depth         | 0 - 0 ft         | 0 -           | 0 ft      |
| Sa                        | mple Purpose  | REG              | R             | EG        |
| Parameter                 | Units         | Result Qual      | Result        | Qual      |
| Bromodichloromethane      | μg/L          | <40 U            |               |           |
| Bromoform                 | μg/L          | <44 U            |               |           |
| Bromomethane              | μg/L          | <100 U           |               |           |
| Carbon Disulfide          | μg/L          | <100 U           |               |           |
| Carbon Tetrachloride      | μg/L          | <46 U            | <46           | U         |
| Chlorobenzene             | μg/L          | <48 U            | <48           | U         |
| Chloroethane              | μg/L          | <80 U            |               |           |
| Chloroform                | μg/L          | <30 U            | <30           | U         |
| Chloromethane             | μg/L          | <80 U            |               |           |
| cis-1,2-Dichloroethene    | μg/L          | <50 U            |               |           |
| cis-1,3-Dichloropropene   | μg/L          | <38 U            |               |           |
| Dibromochloromethane      | μg/L          | <38 U            |               |           |
| Ethylbenzene              | μg/L          | <44 U            |               |           |
| Methyl Ethyl Ketone       | μg/L          | <480 U           | <480          | U         |
| Methyl Isobutyl Ketone    | μg/L          | <600 U           |               |           |
| Methylene Chloride        | μg/L          | <80 U            |               |           |
| Styrene                   | μg/L          | <40 U            |               |           |
| Tetrachloroethylene       | μg/L          | <60 U            | <60           | U         |
| Toluene                   | μg/L          | 59 J             |               |           |
| trans-1,2-Dichloroethene  | μg/L          | <50 U            |               |           |
| trans-1,3-Dichloropropene | μg/L          | <38 U            |               |           |
| Trichloroethylene         | μg/L          | <42 U            | <42           | U         |
| Vinyl Chloride            | μg/L          | <36 U            | <36           | U         |
| Xylene, (Total)           | μg/L          | <100 U           |               |           |

Note:

J denotes the detection is estimated.

U denotes analtye not detected.

UJ denotes the analyte is not detected and the detection limits are approximate.

|                            | Location Code  | RVAAP-001-IDW    | RVAAP-002-IDW      |
|----------------------------|----------------|------------------|--------------------|
|                            | Sample Number  | RVAAP-001-IDW-SO | RVAAP-002-IDW-SO   |
|                            | Sample Date    | 9/30/2010        | 11/11/2010         |
|                            | Depth          | 0 - 0 ft         | 0 - 0 ft           |
|                            | Sample Purpose | REG              | REG                |
| Parameter                  | Units          | Result Qual      | <b>Result Qual</b> |
| Explosives                 |                |                  |                    |
| 1,3,5-Trinitrobenzene      | mg/kg          | <0.13 U          | <0.13 U            |
| 1,3-Dinitrobenzene         | mg/kg          | <0.08 U          | <0.08 U            |
| 2,4,6-Trinitrotoluene      | mg/kg          | <0.09 U          | <0.09 U            |
| 2,4-Dinitrotoluene         | mg/kg          | <0.2 U           | <0.2 U             |
| 2,6-Dinitrotoluene         | mg/kg          | <0.07 U          | <0.07 U            |
| 2-Amino-4,6-Dinitrotoluene | mg/kg          | <0.05 U          | <0.05 U            |
| 3,5-Dinitroaniline         | mg/kg          | <0.09 U          | <0.09 U            |
| 4-Amino-2,6-Dinitrotoluene | mg/kg          | <0.07 U          | <0.07 U            |
| HMX                        | mg/kg          | <0.12 U          | <0.12 U            |
| m-Nitrotoluene             | mg/kg          | <0.07 U          | <0.07 U            |
| Nitrobenzene               | mg/kg          | <0.04 U          | <0.04 U            |
| Nitrocellulose             | mg/kg          | <7 U             | <7 U               |
| Nitroglycerin              | mg/kg          | <0.5 U           | <0.5 U             |
| Nitroguanidine             | mg/kg          | <0.061 U         | <0.061 U           |
| o-Nitrotoluene             | mg/kg          | <0.09 U          | <0.09 U            |
| Petn                       | mg/kg          | <0.5 U           | <0.5 U             |
| p-Nitrotoluene             | mg/kg          | <0.07 U          | <0.07 U            |
| RDX                        | mg/kg          | <0.16 U          | <0.16 U            |
| Tetryl                     | mg/kg          | <0.09 U          | <0.09 U            |
| FIELD TESTS                |                | -                |                    |
| pН                         | STD UNIT       | 6.92             | 6.28               |
| GEN CHEMISTRY              |                |                  |                    |
| Cyanide, Total             | mg/kg          | <24.63 U         | 24 U               |
| Flashpoint                 | F              | 140              | 140                |
| Sulfide                    | mg/kg          | <4.93 U          | 5 U                |
| Total Solids               | Percent        | 81.2             | 81.5               |
| Metals                     | -              |                  | •                  |
| Arsenic                    | mg/kg          | 14.5             | 7.1                |
| Barium                     | mg/kg          | 91.1             | 50 J               |
| Cadmium                    | mg/kg          | 0.93 J           | 0.41 J             |
| Chromium                   | mg/kg          | 19.6 J           | 12.1               |
| Lead                       | mg/kg          | 41.9             | 9.5 J              |
| Mercury                    | mg/kg          | 0.081            | 0.04               |
| Selenium                   | mg/kg          | 0.65             | 0.6                |
| Silver                     | mg/kg          | 8.5 J            | 0.021 J            |
| Semivolatiles              |                |                  |                    |
| 1,2,4-Trichlorobenzene     | ug/kg          | <26 UJ           |                    |
| 1,2-Dichlorobenzene        | ug/kg          | <30 UJ           |                    |

|                             | Location Code  | RVAAP-001-IDW    | RVAAP-002-ID  | W   |
|-----------------------------|----------------|------------------|---------------|-----|
|                             | Sample Number  | RVAAP-001-IDW-SO | RVAAP-002-IDW | -SO |
|                             | Sample Date    | 9/30/2010        | 11/11/2010    |     |
|                             | Depth          | 0 - 0 ft         | 0 - 0 ft      |     |
|                             | Sample Purpose | REG              | REG           |     |
| Parameter                   | Units          | Result Qual      | Result Qual   |     |
| 1,3-Dichlorobenzene         | ug/kg          | <25 UJ           |               |     |
| 1,4-Dichlorobenzene         | ug/kg          | <23 UJ           | <23 U         |     |
| 2,4,5-Trichlorophenol       | ug/kg          | <160 U           | <160 U        |     |
| 2,4,6-Trichlorophenol       | ug/kg          | <160 U           | <160 U        |     |
| 2,4-Dichlorophenol          | ug/kg          | <150 U           |               |     |
| 2,4-Dimethylphenol          | ug/kg          | <120 U           |               |     |
| 2,4-Dinitrophenol           | ug/kg          | <850 U           |               |     |
| 2,4-Dinitrotoluene          | ug/kg          | <30 U            | <29 U         |     |
| 2,6-Dinitrotoluene          | ug/kg          | <30 U            |               |     |
| 2-Chloronaphthalene         | ug/kg          | <28 U            |               |     |
| 2-Chlorophenol              | ug/kg          | <420 UJ          |               |     |
| 2-Methylnaphthalene         | ug/kg          | 54 J             |               |     |
| 2-Nitroaniline              | ug/kg          | <28 U            |               |     |
| 2-Nitrophenol               | ug/kg          | <350 U           |               |     |
| 3,3'-Dichlorobenzidine      | ug/kg          | <190 U           |               |     |
| 3-Nitroaniline              | ug/kg          | <27 U            |               |     |
| 4,6-Dinitro-2-Methylphenol  | ug/kg          | <330 U           |               |     |
| 4-Bromophenyl Phenyl Ether  | ug/kg          | <31 U            |               |     |
| 4-Chloro-3-Methylphenol     | ug/kg          | <470 U           |               |     |
| 4-Chloroaniline             | ug/kg          | <48 U            |               |     |
| 4-Chlorophenyl Phenyl Ether | ug/kg          | <32 U            |               |     |
| 4-Nitrobenzenamine          | ug/kg          | <37 U            |               |     |
| 4-Nitrophenol               | ug/kg          | <490 U           |               |     |
| Acenaphthene                | ug/kg          | <30 U            |               |     |
| Acenaphthylene              | ug/kg          | <30 U            |               |     |
| Anthracene                  | ug/kg          | 82 J             |               |     |
| Benzo(a)anthracene          | ug/kg          | 250 J            |               |     |
| Benzo(a)pyrene              | ug/kg          | 300 J            |               |     |
| Benzo(b)fluoranthene        | ug/kg          | 420 J            |               |     |
| Benzo(ghi)perylene          | ug/kg          | 210 J            |               |     |
| Benzo(k)fluoranthene        | ug/kg          | 100 J            |               |     |
| Benzoic Acid                | ug/kg          | <360 U           |               |     |
| Benzyl Alcohol              | ug/kg          | <100 UJ          |               |     |
| Bis(2-Chloroethoxy)methane  | ug/kg          | <28 UJ           |               |     |
| Bis(2-Chloroethyl)ether     | ug/kg          | <31 UJ           |               |     |
| Bis(2-Chloroisopropyl)ether | ug/kg          | <37 U            |               |     |
| Bis(2-Ethylhexyl)phthalate  | ug/kg          | <110 U           |               |     |
| Butyl Benzyl Phthalate      | ug/kg          | <90 U            |               |     |
| Carbazole                   | ug/kg          | 61 J             |               |     |

|                            | Location Code | e RVAAP-001-IDW    | RVAAP-002-IDW |           |
|----------------------------|---------------|--------------------|---------------|-----------|
|                            | Sample Number | r RVAAP-001-IDW-SO | RVAAP-0       | 02-IDW-SO |
|                            | Sample Date   | e 9/30/2010        | 11/1          | 1/2010    |
|                            | Deptl         | n 0 - 0 ft         | 0 -           | • 0 ft    |
|                            | Sample Purpos | e REG              | R             | EG        |
| Parameter                  | Units         | Result Qual        | Result        | Qual      |
| Chrysene                   | ug/kg         | 240 J              |               |           |
| Cresols (Total)            | ug/kg         | <800 U             | <790          | U         |
| Dibenzo(a,h)anthracene     | ug/kg         | 55 J               |               |           |
| Dibenzofuran               | ug/kg         | 37 J               |               |           |
| Diethyl Phthalate          | ug/kg         | <79 U              |               |           |
| Dimethyl Phthalate         | ug/kg         | <78 U              |               |           |
| Di-n-Butyl Phthalate       | ug/kg         | <98 U              |               |           |
| Di-n-Octyl Phthalate       | ug/kg         | <73 U              |               |           |
| Fluoranthene               | ug/kg         | 540                |               |           |
| Fluorene                   | ug/kg         | 32 J               |               |           |
| Hexachlorobenzene          | ug/kg         | <35 U              | <34           | U         |
| Hexachlorobutadiene        | ug/kg         | <77 UJ             | <75           | U         |
| Hexachlorocyclopentadiene  | ug/kg         | <64 UJ             |               |           |
| Hexachloroethane           | ug/kg         | <41 UJ             | <40           | U         |
| Indeno(1,2,3-cd)pyrene     | ug/kg         | 200 J              |               |           |
| Isophorone                 | ug/kg         | <62 U              |               |           |
| Naphthalene                | ug/kg         | 50 J               |               |           |
| Nitrobenzene               | ug/kg         | <73 UJ             | <72           | U         |
| N-Nitroso-di-n-Propylamine | ug/kg         | <86 U              |               |           |
| N-Nitrosodiphenylamine     | ug/kg         | <62 U              |               |           |
| o-Cresol                   | ug/kg         | <520 U             | <510          | U         |
| Pentachlorophenol          | ug/kg         | <300 U             | <290          | U         |
| Phenanthrene               | ug/kg         | 300 J              |               |           |
| Phenol                     | ug/kg         | <200 U             |               |           |
| Pyrene                     | ug/kg         | 420 J              |               |           |
| Pyridine                   | ug/kg         |                    | <47           | UJ        |
| Volatiles                  |               |                    |               |           |
| 1,1,1-Trichloroethane      | ug/kg         | <8.1 U             |               |           |
| 1,1,2,2-Tetrachloroethane  | ug/kg         | <4.8 U             |               |           |
| 1,1,2-Trichloroethane      | ug/kg         | <6.5 U             |               |           |
| 1,1-Dichloroethane         | ug/kg         | <8.9 U             |               |           |
| 1,1-Dichloroethylene       | ug/kg         | <13 U              | <20           | U         |
| 1,2-Dibromoethane          | ug/kg         | <8.1 U             |               |           |
| 1,2-Dichloroethane         | ug/kg         | <9.7 U             | <15           | U         |
| 1,2-Dichloropropane        | ug/kg         | <5.7 U             |               |           |
| 1,2-Dimethylbenzene        | ug/kg         | 17 J               |               |           |
| 2-Hexanone                 | ug/kg         | <55 U              |               |           |
| Acetone                    | ug/kg         | <51 U              |               |           |
| Benzene                    | ug/kg         | <4 U               | <6.1          | U         |

|                           | Location Code | RVAAP-001-IDW    | RVAAP-002-IDW    |  |
|---------------------------|---------------|------------------|------------------|--|
| Sa                        | mple Number   | RVAAP-001-IDW-SO | RVAAP-002-IDW-SO |  |
|                           | Sample Date   | 9/30/2010        | 11/11/2010       |  |
|                           | Depth         | 0 - 0 ft         | 0 - 0 ft         |  |
| S                         | ample Purpose | REG              | REG              |  |
| Parameter                 | Units         | Result Qual      | Result Qual      |  |
| Bromochloromethane        | ug/kg         | <6.5 U           |                  |  |
| Bromodichloromethane      | ug/kg         | <7.3 U           |                  |  |
| Bromoform                 | ug/kg         | <4.8 U           |                  |  |
| Bromomethane              | ug/kg         | <24 U            |                  |  |
| Carbon Disulfide          | ug/kg         | <12 U            |                  |  |
| Carbon Tetrachloride      | ug/kg         | <8.9 U           | <13 U            |  |
| Chlorobenzene             | ug/kg         | <6.5 U           | <9.8 U           |  |
| Chloroethane              | ug/kg         | <15 U            |                  |  |
| Chloroform                | ug/kg         | <7.3 U           | <11 U            |  |
| Chloromethane             | ug/kg         | <20 U            |                  |  |
| cis-1,2-Dichloroethene    | ug/kg         | <8.1 U           |                  |  |
| cis-1,3-Dichloropropene   | ug/kg         | <8.1 U           |                  |  |
| Dibromochloromethane      | ug/kg         | <6.5 U           |                  |  |
| Ethylbenzene              | ug/kg         | 7.6 J            |                  |  |
| Methyl Ethyl Ketone       | ug/kg         | <81 U            | <120 U           |  |
| Methyl Isobutyl Ketone    | ug/kg         | <66 U            |                  |  |
| Methylene Chloride        | ug/kg         | <32 U            |                  |  |
| Styrene                   | ug/kg         | <4.8 U           |                  |  |
| Tetrachloroethylene       | ug/kg         | <6.5 U           | <9.8 U           |  |
| Toluene                   | ug/kg         | 17 J             |                  |  |
| trans-1,2-Dichloroethene  | ug/kg         | <8.9 U           |                  |  |
| trans-1,3-Dichloropropene | ug/kg         | <5.7 U           |                  |  |
| Trichloroethylene         | ug/kg         | <8.1 U           | <12 U            |  |
| Vinyl Chloride            | ug/kg         | <11 U            | <17 U            |  |
| Xylene, (Total)           | ug/kg         | 23 J             |                  |  |

Note:

J denotes the detection is estimated.

U denotes analtye not detected.

UJ denotes the analyte is not detected and the detection limits are approximate.

### ATTACHMENT 2 INVESTIGATION-DERIVED WASTE PROFILES

This page intentionally left blank.

| CleanHa                                                                                                                                                                                                                                                                                   | bors 1                                                                                                                                                                                                                                                                                           | NASTE MATERIA                                                                                                                                                                                                                                                                                                                                                                                                  | L PROFILE S                                                                                                                                                                                                                     | HEET Soil 4                                                                                                                     | 399                                                                |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|
| A. GENERAL INFORMATIC                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  | Clean Harbors Profile                                                                                                                                                                                                                                                                                                                                                                                          | NO. CH474137                                                                                                                                                                                                                    | Non Har<br>Army Ammunition Plant                                                                                                | 2 Waste                                                            |                            |
| GENERATOR CODE (Assig<br>ADDRESS 8451 State R                                                                                                                                                                                                                                             | ned by Clean Harbors)                                                                                                                                                                                                                                                                            | <b>RA1704</b> CITY                                                                                                                                                                                                                                                                                                                                                                                             | Ravenna STATE/                                                                                                                                                                                                                  | PROVINCE <b>OH</b> ZIP/POST                                                                                                     | AL CODE <b>44266</b>                                               | ;                          |
| CUSTOMER CODE (Assign<br>ADDRESS 100 Technol                                                                                                                                                                                                                                              | ed by Clean Harbors)<br><b>ogy Center Dr</b>                                                                                                                                                                                                                                                     | SH0902 CUSTO<br>CITY                                                                                                                                                                                                                                                                                                                                                                                           | MER NAME: Shaw E<br>Stoughton STATE/F                                                                                                                                                                                           | PHONE: <b>(330) 358-7312</b><br>invironmental<br>PROVINCE <b>MA</b> ZIP/POST                                                    | AL CODE 02072                                                      | 2                          |
| B. WASTE DESCRIPTION<br>WASTE DESCRIPTION:                                                                                                                                                                                                                                                | Soil and PPE                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                 | <u></u>                                                                                                                         |                                                                    |                            |
| PROCESS GENERATING V                                                                                                                                                                                                                                                                      | VASTE: Coll                                                                                                                                                                                                                                                                                      | ection of Drill cuttings and used F                                                                                                                                                                                                                                                                                                                                                                            | PE                                                                                                                                                                                                                              |                                                                                                                                 | ······                                                             |                            |
| IS THIS WASTE CONTAINE                                                                                                                                                                                                                                                                    | D IN SMALL PACKAG                                                                                                                                                                                                                                                                                | ING CONTAINED WITHIN A LARGER S                                                                                                                                                                                                                                                                                                                                                                                | HIPPING CONTAINER ? No                                                                                                                                                                                                          | )                                                                                                                               | p                                                                  |                            |
| C. PHYSICAL PROPERTIE                                                                                                                                                                                                                                                                     | S (at 25C or 77F)                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                    |                            |
| PHYSICAL STATE<br>SOLID WITHOUT FREE LIQUID<br>POWDER<br>MONOLITHIC SOLID<br>LIQUID WITH NO SOLIDS<br>LIQUID/SOLID MIXTURE                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  | NUMBER OF PHASES/LAYERS<br>1 2 3 TOF<br>% BY VOLUME (Approx.) MID<br>BOT                                                                                                                                                                                                                                                                                                                                       | о 0.00<br>DLE 0.00<br>ГТОМ 0.00                                                                                                                                                                                                 | VISCOSITY (If liquid present)<br>1 - 100 (e.g. Water)<br>101 - 500 (e.g. Motor Oil)<br>501 - 10,000 (e.g. Molasses)<br>> 10,000 | COLOR<br><u>varies</u>                                             |                            |
| % FREE LIQUID<br>% SETTLED SOLID<br>% TOTAL SUSPENDE<br>SLUDGE<br>GAS/AEROSOL                                                                                                                                                                                                             | :D SOLID                                                                                                                                                                                                                                                                                         | ODOR<br>NONE<br>MILD<br>STRONG<br>Describe:                                                                                                                                                                                                                                                                                                                                                                    | BOILING POINT °F (°C)<br><= 95 (<=35)<br>95 - 100 (35-38)<br>101 - 129 (38-54)<br>>= 130 (>54)                                                                                                                                  | MELTING POINT °F (°C)<br>< 140 (<60)<br>140-200 (60-93)<br>✓ > 200 (>93)                                                        | <b>TOTAL ORGANIC</b><br><b>CARBON</b><br>(<= 1%)<br>1-9%<br>>= 10% |                            |
| FLASH POINT °F (°C)<br>< 73 (<23)<br>73 - 100 (23-38)<br>101 -140 (38-60)<br>141 -200 (60-93)<br>> 200 (>93)                                                                                                                                                                              | pH<br><= 2<br>2.1 - 6.9<br>▼ 7 (Neutral)<br>7.1 - 12.4<br>>= 12.5                                                                                                                                                                                                                                | SPECIFIC GRAVITY           < 0.8 (e.g. Gasoline)           0.8-1.0 (e.g. Ethanol)           1.0 (e.g. Water)           1.0-1.2 (e.g. Antifreeze)           > 1.2 (e.g. Methylene Chloride)                                                                                                                                                                                                                     | ASH<br>< 0.1<br>0.1 - 1.0<br>1.1 - 5.0<br>5.1 - 20.0                                                                                                                                                                            | > 20<br>Unknown<br>→ 10,000 (≈<br>Actual:                                                                                       | 4.6)<br>0 (4.6-11.6)<br>00 (11.6-23.2)<br>>23.2)                   |                            |
| D. COMPOSITION (List<br>used                                                                                                                                                                                                                                                              | the complete composition<br>, please supply an MSE                                                                                                                                                                                                                                               | on of the waste, include any inert compor<br>DS. Please do not use abbreviations.)                                                                                                                                                                                                                                                                                                                             | nents and/or debris. Ranges for in                                                                                                                                                                                              | ndividual components are acceptab                                                                                               | le. If a trade name is                                             |                            |
| CHEMICAL                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | MIN                                                                                                                             | MAX                                                                | UOM                        |
| PPE (PERSONAL PRO                                                                                                                                                                                                                                                                         | <b>FECTIVE EQUIPME</b>                                                                                                                                                                                                                                                                           | NT)                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                 | 0.0000000                                                                                                                       | 100.0000000                                                        | %                          |
| SOIL                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 0.0000000                                                                                                                       | 100.0000000                                                        | . %                        |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | OP BIDING STUT THICK OP STO                                                                                                     | VEG V                                                              | NO                         |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE >                                                                                                                                                                                                                      | FAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?                                                                                                                                                                                                                                                 | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12° LONG, METAL VAL                                                                                                                                                                                                                                                                                                                                              | UBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE                                                                                                                                                                         | TE REINFORCING BAR OR                                                                                                           |                                                                    |                            |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl                                                                                                                                                                                            | TAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>uding dimensions;                                                                                                                                                                                                                            | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL                                                                                                                                                                                                                                                                                                                                              | DBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE                                                                                                                                                                         | TE REINFORCING BAR OR                                                                                                           |                                                                    |                            |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT                                                                                                                                                                    | TAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>uding dimensions:<br>TAIN ANY METALS IN 1                                                                                                                                                                                                    | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12° LONG, METAL VAL                                                                                                                                                                                                                                                                                                                                              | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE                                                                                                                                                                       | TE REINFORCING BAR OR                                                                                                           | YES                                                                | NO                         |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTION                                                                                                                  | TAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>TAIN GIMENSIONS:<br>TAIN ANY METALS IN 1<br>TAIN OR HAS IT CONT<br>CAL WASTE, PATHOLO<br>JS MATERIAL?                                                                                                                                        | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D                                                                                                                                                                                                                                       | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>PERIVED SERUMS OR PROTEIN                                                                                                  | D, BLOOD PRODUCTS, BODY                                                                                                         | YES VES                                                            | NO                         |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTION<br>I acknowledge that<br>based on my knowledge                                                                   | FAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>FAIN ANY METALS IN I<br>FAIN OR HAS IT CONT<br>AL WASTE, PATHOLO<br>JS MATERIAL?<br>this waste material is ne<br>adge of the material. Se                                                                                                    | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D<br>either infectious nor does it contain any or<br>elect the answer below that applies:                                                                                                                                               | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>RERIVED SERUMS OR PROTEIN<br>INGANISM KNOWN to be a threat to f                                                            | D, BLOOD PRODUCTS, BODY<br>NS OR ANY OTHER                                                                                      | YES 🗹<br>YES 🗹                                                     | NO                         |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTIOU<br>I acknowledge that<br>based on my knowledge that<br>based on my knowledge that based on my knowledge that     | FAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>IAIN ANY METALS IN I<br>FAIN OR HAS IT CONT<br>AL WASTE, PATHOLO<br>JS MATERIAL?<br>this waste material is ne<br>adge of the material. So<br>ar exposed to potentially                                                                       | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D<br>either infectious nor does it contain any or<br>elect the answer below that applies:<br>y infectious material.                                                                                                                     | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>RERIVED SERUMS OR PROTEIN<br>Inganism known to be a threat to f                                                            | ), BLOOD PRODUCTS, BODY<br>NS OR ANY OTHER                                                                                      | YES VES                                                            | NO                         |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTION<br>I acknowledge that<br>based on my knowl<br>The waste was new<br>Chemical disinfection                         | AIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>IAIN ANY METALS IN I<br>TAIN OR HAS IT CONT<br>CAL WASTE, PATHOLO<br>JS MATERIAL?<br>this waste material is ne<br>adge of the material. So<br>ar exposed to potentially<br>in or some other form of                                           | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D<br>either infectious nor does it contain any or<br>elect the answer below that applies:<br>y infectious material.<br>f sterilization has been applied to the was                                                                      | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>VERIVED SERUMS OR PROTEIN<br>Inganism known to be a threat to f                                                            | D, BLOOD PRODUCTS, BODY<br>NS OR ANY OTHER                                                                                      | YES VES                                                            | NO<br>NO<br>NO             |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTION<br>I acknowledge that<br>based on my knowledge that<br>the waste was new<br>Chemical disinfection                | TAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>TAIN GIMENSIONS:<br>TAIN ANY METALS IN I<br>TAIN OR HAS IT CONT<br>CAL WASTE, PATHOLO<br>JS MATERIAL?<br>This waste material is no<br>adge of the material. So<br>ar exposed to potentially<br>in or some other form o<br>THIS PROFILE MEETS | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D<br>either infectious nor does it contain any or<br>elect the answer below that applies:<br>y infectious material.<br>f sterilization has been applied to the was<br>THE CLEAN HARBORS BATTERY PAC                                     | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>PERIVED SERUMS OR PROTEIN<br>INTERIVED SERUMS OR PROTEIN<br>STRANS REQUIREMENTS.                                           | D, BLOOD PRODUCTS, BODY<br>NS OR ANY OTHER                                                                                      | YES<br>YES<br>YES<br>YES<br>YES                                    | NO<br>NO<br>NO<br>NO       |
| DOES THIS WASTE CONT<br>LONG, METAL REINFORC<br>PIECES OF CONCRETE ><br>If yes, describe, incl<br>DOES THIS WASTE CONT<br>FLUIDS, MICROBIOLOGIC<br>POTENTIALLY INFECTIOU<br>I acknowledge that<br>based on my knowl<br>The waste was new<br>Chemical disinfection<br>I ACKNOWLEDGE THAT T | TAIN ANY HEAVY GAU<br>ED HOSE >12" LONG,<br>3")?<br>TAIN ANY METALS IN I<br>FAIN OR HAS IT CONT<br>SAL WASTE, PATHOLO<br>JS MATERIAL?<br>This waste material is ne<br>adge of the material. Se<br>exposed to potentially<br>on or some other form of<br>'HIS PROFILE MEETS<br>AY FRIABLE ASBESTO | GE METAL DEBRIS OR OTHER LARGE<br>METAL WIRE >12" LONG, METAL VAL<br>POWDERED OR OTHER FINELY DIVID<br>ACTED ANY OF THE FOLLOWING; AN<br>DGICAL WASTE, HUMAN OR ANIMAL D<br>either infectious nor does it contain any or<br>elect the answer below that applies:<br>y infectious material.<br>If sterilization has been applied to the was<br>THE CLEAN HARBORS BATTERY PAC<br>DS WASTE IS DOUBLE BAGGED AND V | E OBJECTS (EX., METAL PLATE<br>VES, PIPE FITTINGS, CONCRE<br>ED FORM?<br>IMAL WASTES, HUMAN BLOOD<br>RERIVED SERUMS OR PROTEIN<br>IMAL WASTES, HUMAN BLOOD<br>RERIVED SERUMS OR PROTEIN<br>INTER A SERUM AND A SERUM<br>STREED. | D, BLOOD PRODUCTS, BODY<br>NS OR ANY OTHER                                                                                      | YES VES<br>YES<br>YES<br>YES<br>YES                                | NO<br>NO<br>NO<br>NO<br>NO |



#### E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge Z Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

| RCRA       | REGULATED METALS           | REGULATORY<br>LEVEL (mg/l) | TCLP<br>mg/l | TOTAL                     | UOM        | NOT APPLICABLE                          |              |
|------------|----------------------------|----------------------------|--------------|---------------------------|------------|-----------------------------------------|--------------|
| D004       | ARSENIC                    | 5.0                        |              |                           |            | V                                       |              |
| D005       | BARIUM                     | 100.0                      |              |                           |            | Ø                                       | -            |
| D006       | CADMIUM                    | 1.0                        |              |                           |            | N                                       | •            |
| D007       | CHROMIUM                   | 5.0                        |              |                           |            | <b>v</b>                                | •            |
| D008       | LEAD                       | 5.0                        |              |                           |            | ····· 🕅                                 | -            |
| D009       | MERCURY                    | 0.2                        |              |                           |            | ····· 🕅                                 | -            |
| D010       | SELENILIM                  | 10                         |              |                           |            | ·····                                   | -            |
| D011       | SILVED                     | 50                         |              |                           |            | ••••••••••••••••••••••••••••••••••••••• | -            |
|            |                            |                            |              |                           |            |                                         | •            |
| 0040       |                            | 0.5                        |              | OTHER CONSTITUEN          | TS         | MAX UOM                                 |              |
| 0018       | BENZENE                    | 0.5                        |              | - BROMINE                 |            |                                         | AFFLICADLE   |
| D019       | CARBON TETRACHLORIDE       | 0.5                        |              | BRUININE                  |            |                                         |              |
| D021       | CHLOROBENZENE              | 100.0                      |              | CHLORINE                  |            |                                         |              |
| D022       | CHLOROFORM                 | 6.0                        |              | FLUORINE                  |            |                                         |              |
| D028       | 1,2-DICHLOROETHANE         | 0.5                        |              | IODINE                    |            |                                         |              |
| D029       | 1,1-DICHLOROETHYLENE       | 0.7                        |              | SULFUR                    |            |                                         | <u></u>      |
| D035       | METHYL ETHYL KETONE        | 200.0                      |              | POTASSIUM                 |            |                                         | <u>y</u>     |
| D039       | TETRACHLOROETHYLENE        | 0.7                        |              | SODIUM                    |            |                                         | <u> </u>     |
| D040       | TRICHLOROETHYLENE          | 0.5                        |              | AMMONIA                   |            |                                         | <u>I</u>     |
| D043       | VINYL CHLORIDE             | 0.2                        |              | CYANIDE AMENABLE          |            |                                         |              |
|            | SEMI-VOLATILE COMPOUNI     | DS                         |              | CYANIDE REACTIVE          |            |                                         |              |
| D023       | o-CRESOL                   | 200.0                      |              | CYANIDE TOTAL             |            |                                         |              |
| D024       | m-CRESOL                   | 200.0                      |              | SULFIDE REACTIVE          |            |                                         | 2            |
| D025       | p-CRESOL                   | 200.0                      |              |                           |            |                                         |              |
| D026       | CRESOL (TOTAL)             | 200.0                      |              | . HOCS                    |            | PCBS                                    |              |
| 0027       | 1 4-DICHI OROBENZENE       | 7.5                        |              | NONE                      |            | NONE                                    |              |
| D030       |                            | 0 13                       |              | - < 1000 PPM              |            | < 50 PPM                                |              |
| 0032       |                            | 0.13                       |              | - >= 1000 PPM             |            | >=50 PPM                                |              |
| D032       |                            | 0.10                       |              | -                         |            | IF PCBS ARE PRES                        | ENT, IS THE  |
| 0034       |                            | 20                         |              | -                         |            | CFR 761?                                | D BY TSCA 40 |
| D034       | NUTROPENIZENE              | 3.0                        |              | •                         |            |                                         | r*3          |
| 0007       |                            | 400.0                      |              | - 1                       |            | I YES                                   | V NO         |
| D037       | PENTACHLOROPHENOL          | 100.0                      |              | •                         |            |                                         |              |
| D038       | PYRIDINE                   | 5.0                        |              |                           |            |                                         |              |
| D041       | 2,4,5-TRICHLOROPHENOL      | 400.0                      |              |                           |            |                                         |              |
| D042       | 2,4,6-TRICHLOROPHENOL      | 2.0                        |              |                           |            |                                         |              |
|            | PESTICIDES AND HERBICID    | ES                         |              |                           |            |                                         |              |
| D012       | ENDRIN                     | 0.02                       |              | -                         |            |                                         |              |
| D013       | LINDANE                    | 0.4                        |              |                           |            |                                         |              |
| D014       | METHOXYCHLOR               | 10.0                       |              |                           |            |                                         |              |
| D015       | TOXAPHENE                  | 0.5                        |              |                           |            |                                         |              |
| D016       | 2,4-D                      | 10.0                       |              |                           |            |                                         |              |
| D017       | 2,4,5-TP (SILVEX)          | 1.0                        |              |                           |            |                                         |              |
| D020       | CHLORDANE                  | 0.03                       |              | •                         |            |                                         |              |
| D031       | HEPTACHLOR (AND ITS EPOXID | E) 0.008                   |              | •                         |            |                                         |              |
| ADDITIONAL | L HAZARDS                  |                            |              | •                         |            |                                         |              |
| DOES THIS  | WASTE HAVE ANY UNDISCLOSED | HAZARDS OR PRIOR IN        | CIDENTS AS   | SOCIATED WITH IT, WHICH ( | COULD AFFE | CT THE WAY IT SHOULD                    | BE HANDLED?  |
| YES        | NO (If yes, explain)       |                            |              |                           |            |                                         |              |
| CHOOSE AL  | L THAT APPLY               |                            |              |                           |            |                                         |              |
|            |                            |                            |              |                           |            |                                         |              |

| DE | EA REGULATED SUBSTANCE | EXPLOSIVE                                                                                                      | FUMING | OSHA REGULATED CARCINOGENS |
|----|------------------------|----------------------------------------------------------------------------------------------------------------|--------|----------------------------|
| PC | DLYMERIZABLE           | RADIOACTIVE                                                                                                    |        | NONE OF THE ABOVE          |
|    |                        | المتباري المتحيين التجريبي المجري المتحري والمحيد والمحيد والمحيد والمحيد والمحيد والمحيد والمحيد والمحيد والم |        |                            |



#### F. REGULATORY STATUS

| YES        | V NO         | USEPA HAZARDOUS WASTE?                                                                                                                                                                                                                                                                            |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YES        | NO NO        | DO ANY STATE WASTE CODES APPLY?                                                                                                                                                                                                                                                                   |
|            |              | Texas Waste Code                                                                                                                                                                                                                                                                                  |
| YES        | V NO         | DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?                                                                                                                                                                                                                                                     |
| YES        | VNO          | IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?                                                                                                                                                                                                        |
|            |              | LDR CATEGORY: Not subject to LDR VARIANCE INFO:                                                                                                                                                                                                                                                   |
| YES        | 🗹 NO         | IS THIS A UNIVERSAL WASTE?                                                                                                                                                                                                                                                                        |
| YES        | NO NO        | IS THE GENERATOR OF THE WASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR (CESQG)?                                                                                                                                                                                                |
| YES        | NÖ           | IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?                                                                                                                                                                                |
| YES        | 🗹 NO         | DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?                                                                                                                                                                                                                                      |
| YES        | NO           | IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?                                                                                                                                                                                           |
| YES        | Y NO         | DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?                                                                                                                                                                                                                                        |
| YES        | NO           | DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?                                                                                                                                                                                       |
| YES        | V NO         | DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?                                                                                                                                                                                  |
| YES        | V NO         | IS THIS CERCLA REGULATED (SUPERFUND ) WASTE ?                                                                                                                                                                                                                                                     |
| YES        | M NO         | IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?                                                                                                                                                                                                                                        |
|            |              | Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)                                                                                                                                                                                                          |
| YES        | NO           | IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?                                                                                                                                                                                                                      |
|            | YES          | NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process? |
|            | YES          | NO Is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?                                                                                                                                                                                          |
|            | What is the  | P TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)                                                                                                                                                                                                                                |
|            | The basis t  | for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing                                                                                                                                                                                                                  |
|            | Describe the | ne knowledge :                                                                                                                                                                                                                                                                                    |
| G. DOT/TDG | INFORMAT     | ON                                                                                                                                                                                                                                                                                                |
| DOT/TDG PF | ROPER SHIP   | PING NAME:                                                                                                                                                                                                                                                                                        |
| NON        | E, NON DO    | DT REGULATED, (SOIL AND PPE), N/A                                                                                                                                                                                                                                                                 |
| H TOANE    | OBTATION     |                                                                                                                                                                                                                                                                                                   |

| ESTIMATED SHIPMENT FRE                                    | EQUENCY ONE TIME | WEEKLY MONTHLY | QUARTERLY YEARL           | Y 📝 OTHE | R <u>As needed</u>                  |                                |      |
|-----------------------------------------------------------|------------------|----------------|---------------------------|----------|-------------------------------------|--------------------------------|------|
| CONTAINERIZED                                             |                  | · ]            | BULK LIQUID               |          | BULK SOL                            | ID                             |      |
| 1-20 CONTAINERS/S<br>STORAGE CAPACITY:<br>CONTAINER TYPE: | HIPMENT<br>25    | GALLONS/SHIP   | MENT: <b>0 Min -0 Max</b> | GAL.     | SHIPMENT UOM:<br>TONS/YARDS/SHIPMEN | TON<br>F: <b>0 Min - 0 Max</b> | YARD |
| CUBIC YARD BOX<br>TOTE TANK                               | PALLET           |                |                           |          |                                     |                                |      |
| OTHER:                                                    | DRUM SIZE: 55    | ł              |                           |          |                                     |                                |      |

Fac. Man.

I. SPECIAL REQUEST

COMMENTS OR REQUESTS:

lab sample RVAAP-001-IDW-SO

#### GENERATOR'S CERTIFICATION

I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste. If Clean Harbors discovers a discrepancy during the approval process, Generator grants Clean Harbors the authority to amend the profile, as Clean Harbors deems necessary, to reflect the discrepancy.

Mark Patterson

AUTHORIZED SIGNATURE fatte

DATE 610

12

|                                                                                                                                                                                                                                                                                          |                                                                                | 5441                                                                                                                   |                   |                                         |                                                                                                                | Ľ                                    | Secon fl                                                                       | mids                                          |                         |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|---------|
| CleanHa                                                                                                                                                                                                                                                                                  | hors V                                                                         | VASTE MATE                                                                                                             | <u>ŘIA</u>        | L PROFI                                 | LE S                                                                                                           | HEET                                 | NonHaz                                                                         | 2 11                                          | laste_                  |         |
|                                                                                                                                                                                                                                                                                          | Clean Harbors Profile No. CH473928                                             |                                                                                                                        |                   |                                         |                                                                                                                |                                      |                                                                                |                                               |                         |         |
| A. GENERAL INFORMATIC<br>GENERATOR EPA ID #RE<br>GENERATOR CODE (Assig<br>ADDRESS 8451 State R<br>CUSTOMER CODE (Assign                                                                                                                                                                  | ON<br>GISTRATION #<br>ned by Clean Harbors)<br>Poute 5<br>ed by Clean Harbors) | OH5210020736<br>RA1704<br>SH0902                                                                                       | GENERATOR NAME: F |                                         | Ravenna Army Ammunition Plant<br>STATE/PROVINCE OH ZIP/POSTAL C<br>PHONE: (330) 358-7312<br>Show Environmental |                                      |                                                                                | AL CODE                                       | ODE <b>44266</b>        |         |
| ADDRESS 100 Technol                                                                                                                                                                                                                                                                      | ogy Center Dr                                                                  | 0110002                                                                                                                | CITY              | Stoughton                               | STATE/P                                                                                                        | ROVINCE                              | MA ZIP/POST                                                                    | AL CODE                                       | 02072                   | ?       |
| B. WASTE DESCRIPTION<br>WASTE DESCRIPTION:                                                                                                                                                                                                                                               | decontamination fl                                                             | uids                                                                                                                   |                   |                                         |                                                                                                                |                                      |                                                                                |                                               | ·····                   | <u></u> |
| PROCESS GENERATING V                                                                                                                                                                                                                                                                     | VASTE: deco                                                                    | entamination of sampling                                                                                               | equipme           |                                         |                                                                                                                |                                      |                                                                                |                                               |                         |         |
| IS THIS WASTE CONTAINE                                                                                                                                                                                                                                                                   | ED IN SMALL PACKAGI                                                            | ING CONTAINED WITHIN A LA                                                                                              | RGER SI           | HIPPING CONTAINER                       | <u> </u>                                                                                                       |                                      |                                                                                |                                               |                         |         |
| C. PHYSICAL PROPERTIES                                                                                                                                                                                                                                                                   | S (at 25C or 77F)                                                              |                                                                                                                        | VEDO              |                                         |                                                                                                                | VISCOSITY                            | If light and a second                                                          | —                                             | <u></u>                 |         |
| PHYSICAL STATE<br>SOLID WITHOUT FREE<br>POWDER<br>MONOLITHIC SOLID<br>I LIQUID WITH NO SOLI                                                                                                                                                                                              | e liquid<br>Ds                                                                 | NUMBER OF PHASESLA<br>1 2 3<br>% BY VOLUME (Approx.)                                                                   | TOP<br>MID<br>BO1 | DLE 0.00<br>TOM 0.00                    | :                                                                                                              | 1 - 100 (€<br>101 - 500<br>501 - 10, | if liquid present)<br>e.g. Water)<br>) (e.g. Motor Oil)<br>000 (e.g. Molasses) |                                               | <u>varies</u>           |         |
| LIQUID/SOLID MIXTUR<br>% FREE LIQUID<br>% SETTLED SOLID<br>% TOTAL SUSPENDE                                                                                                                                                                                                              | ed solid                                                                       | ODOR<br>NONE                                                                                                           |                   | BOILING POINT °F (°C)                   |                                                                                                                | > 10,000<br>MELTING POINT °F (°C)    |                                                                                | TOTAL                                         | ORGANIC<br>N            |         |
| SLUDGE<br>GAS/AEROSOL                                                                                                                                                                                                                                                                    |                                                                                | MILD<br>STRONG<br>Describe:                                                                                            |                   | 95 - 100 (×<br>101 - 129<br>🖌 >= 130 (× | 35-38)<br>(38-54)<br>54)                                                                                       | < 14<br>140-<br>> 20                 | 0 (<60)<br>200 (60-93)<br>0 (>93)                                              |                                               | <= 1%<br>1-9%<br>>= 10% |         |
| 4<br>FLASH POINT ℉ (°C)<br>< 73 (<23)<br>73 - 100 (23-38)<br>101 -140 (38-60)<br>141 -200 (60-93)                                                                                                                                                                                        | pH<br><= 2<br>2.1 - 6.9<br>7 (Neutral)<br>✓ 7.1 - 12.4                         | SPECIFIC GRAVITY<br>< 0.8 (e.g. Gasoline)<br>0.8-1.0 (e.g. Ethanol)<br>✓ 1.0 (e.g. Water)<br>1.0-1.2 (e.g. Antifreeze) | )                 | ASH<br>< 0.1<br>0.1 - 1.0<br>1.1 - 5.0  |                                                                                                                | > 20<br>Jnknown                      | BTU/LB (MJ/kg)<br><2,000 (< 2,000-5,00 5,000-10,0 > 10,000 (                   | 4.6)<br>)0 (4.6-11.)<br>)00 (11.6-2<br>>23.2) | 6)<br>23.2)             |         |
| > 200 (>93)                                                                                                                                                                                                                                                                              | >= 12.5                                                                        | > 1.2 (e.g. Methylene C                                                                                                | hloride)          | 0.1 - 20.0                              |                                                                                                                |                                      | Actual:                                                                        |                                               |                         |         |
| D. COMPOSITION (List used                                                                                                                                                                                                                                                                | the complete composition                                                       | on of the waste, include any ine<br>S. Please do not use abbreviati                                                    | t compon          | ents and/or debris. Ra                  | inges for in                                                                                                   | ndividual comp                       | onents are acceptat                                                            | ole. If a tra                                 | de name is              |         |
| CHEMICAL         MIN          MAX         UOM           WATER DECON FLUIDS         100.0000000          100.0000000         %                                                                                                                                                            |                                                                                |                                                                                                                        |                   |                                         |                                                                                                                |                                      |                                                                                |                                               |                         |         |
| DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR >12" YES NO<br>:LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR<br>PIECES OF CONCRETE >3")? |                                                                                |                                                                                                                        |                   |                                         |                                                                                                                |                                      |                                                                                |                                               |                         |         |

If yes, describe, including dimensions:

DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?

🖌 NO DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY V NO YES FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER POTENTIALLY INFECTIOUS MATERIAL? I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies: The waste was never exposed to potentially infectious material. YES NO NO YES Chemical disinfection or some other form of sterilization has been applied to the waste. NO

I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS. YES I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED. YES SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE. SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE. W101 G19

NO

YES



#### Clean Harbors Profile No. CH473928

#### E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

| RCRA       | REGULATED METALS                        | REGULATORY<br>LEVEL (mg/l)             | TCLP<br>mg/l          | TOTAL                                   | UOM | NOT APPLICABLE     |                                       |
|------------|-----------------------------------------|----------------------------------------|-----------------------|-----------------------------------------|-----|--------------------|---------------------------------------|
| D004       | ARSENIC                                 | 5.0                                    |                       |                                         |     | <b>V</b>           |                                       |
| D005       | BARIUM                                  | 100.0                                  |                       |                                         |     |                    |                                       |
| D006       | CADMIUM                                 | 1.0                                    |                       |                                         |     |                    |                                       |
| D007       | CHROMIUM                                | 5.0                                    | ********              | ***********************                 |     |                    |                                       |
| D008       | LEAD                                    | 5.0                                    |                       |                                         |     |                    |                                       |
| D009       | MERCURY                                 | 0.2                                    |                       |                                         |     | <b>V</b>           |                                       |
| D010       | SELENIUM                                | 1.0                                    |                       |                                         |     | ·····              |                                       |
| D011       | SILVER                                  | 5.0                                    |                       |                                         |     | ·····              |                                       |
|            | VOLATILE COMPOUNDS                      | · · · · · · · · · · · · · · · · · · ·  |                       | OTHER CONSTITUENTS                      |     | MAX LIOM           | NOT                                   |
| D018       | BENZENE                                 | 0.5                                    |                       | ••••••••••••••••••••••••••••••••••••••• |     |                    | APPLICABLE                            |
| D019       | CARBON TETRACHLORIDE                    | 0.5                                    |                       | BROMINE                                 |     |                    |                                       |
| D021       | CHLOROBENZENE                           | 100.0                                  |                       | CHLORINE                                |     |                    |                                       |
| D022       | CHLOROFORM                              | 6.0                                    |                       | FLUORINE                                |     |                    | N N N N N N N N N N N N N N N N N N N |
| D028       | 1.2-DICHLOROETHANE                      | 0.5                                    |                       | IODINE                                  |     |                    | 7                                     |
| D029       | 1 1-DICHLOROFTHYLENE                    | 07                                     |                       | SULFUR                                  |     |                    | ·····                                 |
| D035       | METHYL ETHYL KETONE                     | 200.0                                  |                       | POTASSIUM                               |     |                    | ·····                                 |
| D030       |                                         | 0.7                                    |                       | SODIUM                                  |     |                    | ·····                                 |
| D039       |                                         | 0.7                                    |                       |                                         |     |                    |                                       |
| 0040       | RICHLOROE (HYLENE                       | 0.5                                    |                       |                                         |     |                    |                                       |
| D043       | VINYL CHLORIDE                          | 0.2                                    |                       | CTANIDE AMENABLE                        |     |                    |                                       |
|            | SEMI-VOLATILE COMPOUND                  | )S                                     |                       | CYANIDE REACTIVE                        |     |                    |                                       |
| D023       | o-CRESOL                                | 200.0                                  |                       | CYANIDE TOTAL                           |     |                    | <u>IXI</u>                            |
| D024       | m-CRESOL                                | 200.0                                  |                       | SULFIDE REACTIVE                        |     |                    | <u> </u>                              |
| D025       | p-CRESOL                                | 200.0                                  |                       | HOCs                                    |     | PCBs               |                                       |
| D026       | CRESOL (TOTAL)                          | 200.0                                  |                       |                                         |     |                    |                                       |
| D027       | 1,4-DICHLOROBENZENE                     | 7.5                                    |                       | NONE                                    |     | NONE               |                                       |
| D030       | 2,4-DINITROTOLUENE                      | 0.13                                   |                       | < 1000 PPM                              |     | < 50 PPM           |                                       |
| D032       | HEXACHLOROBENZENE                       | 0.13                                   |                       | >= 1000 PPW                             |     | 2-50 PPIN          |                                       |
| D033       | HEXACHLOROBUTADIENE                     | 0.5                                    |                       |                                         |     | IF PCBS ARE PRESEN | T, IS THE                             |
| D034       | HEXACHLOROETHANE                        | 3.0                                    |                       |                                         |     | CFR 761?           | 1 100/140                             |
| D036       | NITROBENZENE                            | 2.0                                    |                       |                                         |     | VES                | NO                                    |
| D037       | PENTACHI OROPHENOI                      | 100.0                                  |                       |                                         |     |                    |                                       |
| 0038       | PYRIDINE                                | 5.0                                    |                       |                                         |     |                    |                                       |
| D041       |                                         | 400 0                                  |                       |                                         |     |                    |                                       |
| D042       |                                         | 20                                     | • • • • • • • • • • • |                                         |     |                    |                                       |
|            |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                       |                                         |     |                    |                                       |
| D012       |                                         | <b>LO</b> 0.02                         |                       |                                         |     |                    |                                       |
|            |                                         | 0.02                                   |                       |                                         |     |                    |                                       |
| D013       |                                         | 0.4                                    |                       |                                         |     |                    |                                       |
| D014       | METHOXYCHLOR                            | 10.0                                   |                       |                                         |     |                    |                                       |
| D015       | TOXAPHENE                               | 0.5                                    |                       |                                         |     |                    |                                       |
| D016       | 2,4-D                                   | 10.0                                   |                       |                                         |     |                    |                                       |
| D017       | 2,4,5-TP (SILVEX)                       | 1.0                                    |                       |                                         |     |                    |                                       |
| D020       | CHLORDANE                               | 0.03                                   |                       |                                         |     |                    |                                       |
| D031       | HEPTACHLOR (AND ITS EPOXIDE             | E) 0.008                               |                       |                                         |     |                    |                                       |
| ADDITIONAL | L HAZARDS<br>WASTE HAVE ANY UNDISCLOSED |                                        |                       |                                         |     |                    | HANDLED?                              |
| YES        | NO (If yes, explain)                    |                                        |                       |                                         |     |                    |                                       |
| CHOOSE AL  |                                         |                                        |                       |                                         |     |                    |                                       |
| DEA R      | EGULATED SUBSTANCE                      | EXPLOSIVE                              |                       | FUMING                                  |     | OSHA REGULATE      | D CARCINOGENS                         |
| POLYN      | IERIZABLE                               | RADIOACTIVE                            |                       | REACTIVE MATERIA                        | AL  | NONE OF THE AB     | OVE                                   |



| F. REGULA              | TORY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΤΑΤΙ             | S                                                                                     |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO               | USEPA HAZARDOUS WASTE?                                                                |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| YES                    | <b>Y</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO               | O DO ANY STATE WASTE CODES APPLY?                                                     |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Texas Waste Code                                                                      |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO               | DO ANY CANADIAN PROVINCIAI                                                            | L WASTE CODES APPLY?                                                                                                                               |                                                                                                                              |  |  |  |  |
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO               | IS THIS WASTE PROHIBITED FR                                                           | OM LAND DISPOSAL WITHOUT FURTHER TREATMENT                                                                                                         | PER 40 CFR PART 268?                                                                                                         |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | LDR CATEGORY: Not su                                                                  | bject to LDR                                                                                                                                       |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90               |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| YES                    | in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | NO               | IS THE GENERATOR OF THE WA                                                            | ASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMALL                                                                                                      | QUANTITY GENERATOR (CESQG)?                                                                                                  |  |  |  |  |
| YES                    | 1<br>1730 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO<br>NO         | IS THIS MATERIAL GOING TO BE                                                          | E MANAGED AS A RCRA EXEMPT COMMERCIAL PRODU                                                                                                        | CT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?                                                                                 |  |  |  |  |
| YES                    | i Mi I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | DOES TREATMENT OF THIS WA                                                             | STE GENERATE A F006 OR F019 SLUDGE?                                                                                                                |                                                                                                                              |  |  |  |  |
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | DOES THIS WASTE STREAM SUBJE                                                          |                                                                                                                                                    | IBITION FOUND AT 40 CFR 268.3(C)?                                                                                            |  |  |  |  |
| VES                    | ا المتنا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | DOES THE WASTE CONTAIN OF                                                             | CONCENTRATIONS ~- 500 PPW?                                                                                                                         |                                                                                                                              |  |  |  |  |
| VEC                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | DOED THE WASTE CONTAIN OF                                                             |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| TES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | DUES THIS WASTE CONTAIN AM                                                            | NORGANIC CONSTITUENT WHICH IN ITS PORE FORM F                                                                                                      | AS A VAPOR PRESSURE > // KPA (11.2 PSIA)?                                                                                    |  |  |  |  |
| YES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | IS THIS CERCLA REGULATED (S                                                           | SUPERFUND ) WASTE ?                                                                                                                                |                                                                                                                              |  |  |  |  |
| TEO                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VV               | IS THE WASTE SUBJECT TO ON                                                            | E OF THE FOLLOWING NESHAP RULES?                                                                                                                   | eduction (subpart CCC)                                                                                                       |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Hazardous Organic NESHAP                                                              |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| TES                    | ا<br>مربعہ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO.              | IF THIS IS A US EPA HAZARDOU                                                          | IS WASTE, DOES THIS WASTE STREAM CONTAIN BENZ                                                                                                      | ENE?                                                                                                                         |  |  |  |  |
|                        | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | NO Does the waste stream of<br>NESHAP rules because t                                 | ome from a facility with one of the SIC codes listed under be<br>the original source of the waste is from a chemical manufacti                     | nzene NESHAP or is this waste regulated under the benzene<br>uring, coke by-product recovery, or petroleum refinery process? |  |  |  |  |
|                        | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | NO Is the generating source                                                           | of this waste stream a facility with Total Annual Benzene (TA                                                                                      | B) >10 Mg/year?                                                                                                              |  |  |  |  |
|                        | What                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is the           | TAB quantity for your facility?                                                       | Megagram/year (1 Mg = 2,200 lbs)                                                                                                                   |                                                                                                                              |  |  |  |  |
|                        | The b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | asis f           | or this determination is: Knowledge                                                   | of the Waste Or Test Data                                                                                                                          | Knowledge Testing                                                                                                            |  |  |  |  |
|                        | Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ibe th           | e knowledge : L                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| G. DOT/TDG             | INFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITAN             | N                                                                                     |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| DOT/TDG PR             | ROPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHIP             | PING NAME:                                                                            |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| NON                    | NE, NOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N HA             | ZARDOUS, NON D.O.T. REGI                                                              | ULATED LIQUID, (DECON WATER), N/A                                                                                                                  |                                                                                                                              |  |  |  |  |
| H. TRANSI<br>ESTIMATEL | PORTAT<br>D SHIPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ION              | REQUIREMENTS<br>FREQUENCY V ONE TIME V                                                | NEEKLY MONTHLY QUARTERLY YEARLY OT                                                                                                                 | HER                                                                                                                          |  |  |  |  |
| 1-1                    | Jean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a                | Sprox - 35 gal.                                                                       |                                                                                                                                                    | BULK SOLID                                                                                                                   |  |  |  |  |
| 1-15                   | CONTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INEF             | S/SHIPMENT                                                                            |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| STORAGE                | CAPACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TY:              | 15                                                                                    | GALLONS/SHIPMENT: O Min -O Max GAL                                                                                                                 | SHIPMENT UOM: TON YARD                                                                                                       |  |  |  |  |
| CONTAINE               | R TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ם חר             |                                                                                       |                                                                                                                                                    | TONS/YARDS/SHIPMENT: 0 Min - 0 Max                                                                                           |  |  |  |  |
| то                     | ΟΤΕ ΤΔΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K K              |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| то                     | THER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | DDI M CIZE: 55                                                                        |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       | •                                                                                                                                                  |                                                                                                                              |  |  |  |  |
| I. SPECIAL R           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                | e.                                                                                    |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| COMMENT                | o on neu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10231            |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| GENERATOR'S            | S CERTIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATI             | DN                                                                                    |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| Clean Harbo            | tity that all<br>ors discove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | intom<br>ers a d | ation submitted in this and attached docu<br>screpancy during the approval process, ( | iments is correct to the best of my knowledge. I also certify that any si<br>Generator grants Clean Harbors the authority to amend the profile, as | Imples submitted are representative of the actual waste. If Clean Harbors deems necessary, to reflect the discrepancy.       |  |  |  |  |
| Al I                   | THORIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EDS              | GNATURE                                                                               |                                                                                                                                                    | DATE                                                                                                                         |  |  |  |  |
| Mark                   | fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                | = Mark                                                                                | Patterson Fax, Ma                                                                                                                                  | 12/6/10                                                                                                                      |  |  |  |  |
| -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
| <u></u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | i<br>                                                                                 |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                       |                                                                                                                                                    |                                                                                                                              |  |  |  |  |

### ATTACHMENT 3 Investigation-Derived Waste Manifest

This page intentionally left blank.

## NON-HAZARDOUS WASTE MANIFEST

3

Ever

4. 12 14

•

D53263905

| Please print or type (Form designed for use on elite                                     | (12 pitch) typewriter) |                       |          |                                       |                         |                            |  |  |  |
|------------------------------------------------------------------------------------------|------------------------|-----------------------|----------|---------------------------------------|-------------------------|----------------------------|--|--|--|
| NON-HAZARDOUS<br>WASTE MANIFEST                                                          | 1. Generator's US EF   | OH521002073           | 3        | Manifest<br>Document No.              | 63905                   | - 2. Page 1<br>of <b>1</b> |  |  |  |
| 3. Generator's Name and Mailing Address<br>Ravenna Army Ammunition<br>8451 State Route 5 | Depot                  | eoot                  |          |                                       | SILLA Address :<br>SAME |                            |  |  |  |
| Ravenna OH 44266<br>4. Generator's Phone ( )                                             | 4 <u>:</u> .           | •                     |          |                                       |                         | 2                          |  |  |  |
| 5. Transporter 1 Company Name                                                            |                        | 6 US EPA ID Number    |          | A. State Trans                        | porter's ID             |                            |  |  |  |
| Clean Harbors Environmenta                                                               | Services Inc           | MAD039322250          | t, s.    | B. Transporter                        | 1 Phone [781] 7         | 92-5000                    |  |  |  |
| 7. Transporter 2 Company Name                                                            |                        | 8. US EPA ID Number   |          | C. State Transporter's ID             |                         |                            |  |  |  |
| RORRED WOOD                                                                              | •                      | ALD 067138911         |          | D. Transporter 2 Phone                |                         |                            |  |  |  |
| 9. Designated Facility Name and Site Address                                             |                        | 10. US EPA ID Number  |          | E. State Facility's ID                |                         |                            |  |  |  |
| Spring Grove Resource Reco                                                               | very inc               |                       |          |                                       |                         |                            |  |  |  |
| 4879 Spring Grove Avenue<br>Cincinnati, ÖH 45232                                         | - UHDOOOSIGU           |                       |          | F. Facility's Phone<br>(513) 681-5738 |                         |                            |  |  |  |
| 11. WASTE DESCRIPTION                                                                    | ý                      |                       | C        | ontainers                             | 13.<br>Total            | 14.<br>Unit                |  |  |  |
|                                                                                          |                        | د                     | No.      | Туре                                  | Quantity                | Wt./Vol.                   |  |  |  |
| a. NON HAZARDOUS, NON D.O                                                                | T. REGULATED           | LIQUID, (DECON WATER) | 2        | AM                                    | 110                     |                            |  |  |  |
|                                                                                          |                        |                       | <u> </u> |                                       |                         |                            |  |  |  |



| X Mark Patterson                                                            | K Mark Patterson Los                                       | $\sim 01061^{\prime}$                                                                                          |
|-----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 17. Transporter 1 Acknowledgement of Receipt of Materials                   | <b>V</b> ,                                                 | Date                                                                                                           |
| Printed/Typed Name<br>BUDSIN Beleau                                         | a Signature                                                | Month Day Year                                                                                                 |
| 0 18. Transporter 2 Acknowledgement of Receipt of Materials                 |                                                            | Date                                                                                                           |
| Printed/Typed Name                                                          | Signature                                                  | Month Day Year                                                                                                 |
| A DAUSO NSPPLE                                                              | Dailmah                                                    | 11411                                                                                                          |
| 19. Discrepancy Indication Space                                            |                                                            | *                                                                                                              |
| 20. Facility Owner or Operator: Certification of receipt of the waste mater | ials covered by this manifest, except as noted in item 19. | Date                                                                                                           |
| Printed/Typed Name                                                          | Signature Mudded                                           | Month Day Year                                                                                                 |
| CF14 © 2002 LABEL MASTER (800) 621-5808 www.labe                            | Imaster.com                                                | PRINTED ON RECYCLED PAREN                                                                                      |
|                                                                             |                                                            | a second a first second second second second second second second second second second second second second se |
This page intentionally left blank.