APPENDIX S RADIOLOGICAL SURVEY OF LOAD LINES 2, 3, AND 4

THIS PAGE INTENTIONALLY LEFT BLANK.

EXECUTIVE SUMMARY

RADIATION SURVEY REPORT NO. LRB-TD-EH-R1-04-03 LOADLINES 2,3 & 4 REPORT RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO 11 SEP 01

1. PURPOSE. Radiological surveys of load lines 2,3&4 were conducted to demonstrate that no residual radioactive contamination attributable to Ravenna Army Ammunition Plant (RVAAP) activities is detectable using accepted survey methods for decommissioning. These surveys also demonstrate that the radiological parameters from residual radioactive contamination are below the release criteria for each area surveyed. In addition, records were reviewed to determine if documentation existed to support the proper disposal of the radioactive sources (i.e.Cobalt-60 sealed sources) used in the load lines at the RVAAP.

2. CONCLUSIONS.

2.1 A review of the survey results indicates that there is no detectable cobalt 60 contamination in the load lines.

2.2 Records exist that indicate that the three, sealed cobalt 60 sources were shipped off site in 1971 and 1972.

S-3

1

TABLE OF CONTENTS

1.	REFER	ENCES	1
2.		С Г	1
3.		AL	1
	GENER	ROUND	2
4.			
		SITE BACKGROUND	
		CHRONOLOGY	
	4.3	SITE CONDITION AT TIME OF SURVEY	3
	4.4	POTENTIAL CONTAMINANTS AND RELEASE GUIDELINES	4
5.	RADIA	TION SURVEYS AND RESULTS	
	5.1	INSTRUMENTATION/EQUIPMENT	4
	5.2	INSTRUMENTATION SURVEY	4
	5.3	SAMPLING AND RESULTS	5
	5.4	SURVEY DATA REVIEW	7
6.	HISTO	RICAL RECORDS REVIEW	8
		USIONS	
1.	CONCL		

APPENDICES

70	Deference and Abbrevi	ations	A-1
В	Load Line 2 Survey Rep	orts	В-т
~	Land Line 2 Curryov Per	orts	C-1
C	Load Time 2 Purvey Ker		_ 4
D	Load Line 4 Survey Rep	orts	D-1
-	Higtorianl Bogords		E-1
E	HISCOLICAL RECOLUS	*****	

RADIATION SURVEY REPORT NO. LRB-TD-EH-R1-04-03 LOADLINES 2,3 & 4 REPORT RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO 11 SEP 01

1. REFERENCES. See Appendix A for a list of references.

2. **PURPOSE.** The objectives of the Final Status Survey for load lines 2, 3 & 4 were to:

2.1 Certify that no residual radioactive contamination attributable to RVAAP activities is detectable using accepted survey methods for decommissioning.

2.2 Demonstrate that the radiological parameters from residual radioactive contamination are below the release criteria for each area surveyed.

2.1 Document the disposal of the radioactive sources i.e.Co-60 sealed sources) used in the load lines and result of the FSS.

3. GENERAL.

3.1 Project management for the survey was conducted by the U.S. Army Corps of Engineers, Buffalo District (USACELRB).

3.2 The survey was managed by Mr. Craig Rieman, Chief, Environmental Health, USACELRB. A team of consisting of Mr. Clint Verelle, USACELRB Health Physicist and Mr. Mat Masset, USACELRB, Chemist performed the field surveys.

3.3 The USACE personnel mentioned above have varied expertise in radiological health issues and are qualified to perform the survey. Each individual was provided occupational health and safety training by USACELRB to administer a safe working environment.

3.4 Quality Assurance oversight and independent verification of the project was provided by the USACE Baltimore District (USACENAB) rather than the U.S. Army Center for Health Promotion and Preventive Medicine, Industrial Health Physics Program (USACHPPM-IHPP) as planned because of schedule conflicts. Mr. Karl Ford, Health Physicist reviewed the work

1

plan and to insure a comprehensive survey. He also observed surveys in progress to insure the plan was followed.

3.5 A list of abbreviations used in this report can be found in Appendix A.

4. Site and Project Background.

4.1 Site Background.

4.1.1 DOD activities at Ravenna Army Ammunition Plant(RVAAP) date back to 1940 and include the storage, handling, and packing of military ammunition and explosives. The site is located in northeastern Ohio in Portage and Trumbell Counties, see Appendix B. The installation includes 21,419 acres in a tract approximately 3.5 miles wide by 11 miles long. RVAAP is a government owned contractor operated facility under the control of the US Army Industrial Operations Command.

4.1.2 A site assessment was conducted and documented in: Preliminary Assessment for Ravenna Army Ammunition Plant, February 1996, by Science Applications International Corporation (SAIC). This site assessment did not adequately address the radiological concerns at RVAAP.

4.1.3 A historical assessment of radiological use at RVAAP was conducted in July of 1990, by Olin Ordnance. The report generated from that assessment identified the Monazite Sand Storage and Projectile Radiography operations. These operations were licensed by the Atomic Energy Commission [now the US Nuclear Regulatory Commission (NRC)]. Both licenses were terminated.

4.1.4 Radioactive materials (RAM) were known to be used or stored at four locations on RVAAP.

- Monazite Sand Storage Area
- Projectile Radiography on Load Line 3
- Building 2F4
- Building 130

4.1.4.1 The radiography sources were two 1,000 Ci and one 500 Ci Co-60 sealed sources. The sources were located on load line 3 in building 10A and were properly disposed. Records of surveys were not available for review so this area will be surveyed according to this plan. Other load lines reportedly

utilized industrial x-ray machines, however, this information has not been verified. Consequently a Final Status Survey for load lines 2&4 as well as load line 3 will be conducted.

4.1.4.2 The Monazite sand location and Buildings 2F4 and 130 are not addressed in this plan as directed by Mr. John Jent.

4.2 Chronology.

4.2.1 The USACELRB began preparations for the survey in August 2001.

4.2.2 USACELRB finalized the survey work plan on 8 August 2001; RADIATION FINAL STATUS SURVEY PLAN FOR LOADLINES 2,3&4, RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO, September 2001

4.2.3 On 11 September 2001 the USACELRB conducted the radiological surveys. USACENAB was unable to complete all QA surveys due to RVAAP site security procedures activated in response to the terrorists attacks on that day.

4.2.4 On 19-21 September 2001, USACENAB conducted additional QA survey activities to support the close-out of ammunition load lines 2,3 & 4.

4.2.5 The USACELRB received the QA results from USACENAB on 30 October 2001.

4.3 Site Conditions at time of Survey.

4.3.1 The load lines 2,3 & 4 AOC are abandoned facilities which have deteriorated due to a lack of maintenance over time. Temporary lighting was established so that appropriate work conditions existed.

4.3.2 Various building materials had crumbled from the walls and ceiling in the load lines.

4.3.3 Onsite support was available to the USACE team during the survey; excellent support was provided by Mr. Mark Patterson and the RVAAP security personnel.

4.3.4 An appropriate reference area in Building 1055 was selected (IAW MARSSIM and sampled prior to beginning surveys of the survey units.

4.4 Potential Contaminant. The potential radiological contaminant of concern at RVAAP Loadlines 2,3&4 is Cobalt 60 (Co-60). Co-60 has a 5.2 year half-life and decays by beta emission with a 1.173 MeV gamma.

4.4.1 Co-60 has a 5.2 year half-life and decays by beta emission with a 1.173 MeV gamma.

5. RADIATION SURVEYS and RESULTS.

5.1 Instruments/Equipment.

5.1.1 A list of instruments is provided in table 5-1.

Table 5-1. Instrumentation used during the RVAAP Survey.

Instrument (scalar)	Probe Model	Probe Type	Display (units)
Ludlum 2221	Ludlum 44-10	NaI 2x2 crystal	CPM
Ludlum 2221	Ludlum 44-9	Geiger-Mueller pancake	cpm
Ludlum 2929	Ludlum 43-10-1	NaI 2x2 crystal	cpm

5.1.2 All instruments met QA requirements of the FSSP.

5.1.3 The gamma probe used was a 2 inch x 2 inch sodium iodide crystal.

5.1.4 The sensitivity of the gamma survey meter is less than 1 uR/hr and correlates well with NUREG 1575, Table 6.7.

5.1.5 Operational instrument checks were performed with a NIST traceable Cesium-137 source. Checks were made at approximately 1 mm from the source. The same procedures were used for each check to assure reproducibility.

5.1.6 The beta instrument(Ludlum 2221, with 44-9 GM probe) was used to check personnel for contamination and to scan personnel out of the survey areas. This instrument response to a check source was checked daily prior to use.

5.2 <u>INSTRUMENTATION SURVEYS</u>. A suitable reference area for the environmental survey was located and instrument readings

S-8

were collected using the same methods used in the AOC. Reference areas were located outside the load lines on like materials being surveyed.

5.2.1 A gamma walkover scan was performed in each load line to identify potential elevated areas. The gamma rate survey was conducted using the NaI gamma instrument walkover scan of 100% of the area with the probe held within six inches of the surface.

5.2.2 Various elevated measurement locations were marked or consideration as sample points.

5.2.3 One minute integrated counts were also done at each sample location and randomly in each grid square. The 1-minute count was conducted in contact with the ground utilizing the gamma instrument and recorded in counts per minute (cpm).

5.2.4 Direct measurements were taken in areas of elevated activity relative to the survey area as determined by scan data.

5.2.5 Direct measurements were made at contact by one minute counts utilizing a Geiger-Mueller pancake probe.

5.2.6 Wipe samples were not collected since the total activity measurements were less than the removable DCGL $(1000 dpm/100 cm^2)$ during all direct measurement surveys.

5.3 <u>Sampling and Results</u> Samples were collected in accordance with the sampling plan, result are as follows.

5.3.1 Load Line 2 survey results may be found in Appendix B

5.3.1.1 Both the basement and first floor floors of load line 2 NaI scan results indicated background levels of gamma measurements. Background for the survey was determined outside of the load line on similar building materials. NaI scan results ranged from 2,000 to 6,500 cpm for the load line 2 basement with background being 6,000 cpm. NaI scan results ranged from 4,800 to 12,000 cpm for the load line 2 first floor with background being 9,000 cpm.

5.3.1.2 The results of 10 static, one-minute NaI measurements on the basement floor and 23 measurements on the first floor, floor were consistent with the scan data.

5.3.1.3 A total of 33 direct beta measurements were collected in load line 2. Both the basement and first floor

5

floors of load line 2 direct beta measurement results indicated background levels of beta activity. Background for the survey was determined outside of the load line on similar building materials. Direct beta measurement results ranged from 18 cpm to 50 cpm for the load line 2 basement with background being 40 cpm. Direct beta measurement results ranged from 19 to 55 cpm for the load line 2 first floor with background being 40 cpm. Wipe samples were not collected since the total activity measurements were less than the removable DCGL (1000dpm/100cm²).

5.3.2 Load Line 3 survey results may be found in Appendix C

5.3.2.1 The floor survey of load line 3 NaI scan results indicated background levels of gamma measurements. Background for the survey was determined outside of the load line on similar building materials. NaI scan results ranged from 3,400 to 16,000 cpm for load line 3 with background being 13,000 cpm.

5.3.2.2 The results of 32 static, one-minute NaI measurements on the floor were consistent with the scan data.

5.3.2.3 A total of 40 direct beta measurements were collected in load line 3. The floor surveys of load line 3 direct beta measurement results were comparable with background levels of beta activity. Background for the survey was determined outside of the load line on similar building materials. Direct beta measurement results ranged from 25 cpm to 60 cpm for the load line 3 with background being 50 cpm. Wipe samples were not collected since the total activity measurements were less than the removable DCGL (1000dpm/100cm²).

5.3.3 Load Line 4 survey result may be found in Appendix D

5.3.3.1 The floor survey of load line 4 NaI scan results indicated background levels of gamma measurements. Background for the survey was determined outside of the load line on similar building materials. NaI scan results ranged from 3,000 to 9,300 cpm for load line 4 with background being 8,000 cpm.

5.3.3.2 The results of 41 static, one-minute NaI measurements on the floor were consistent with the scan data.

5.3.3.3 A total of 37 direct beta measurements were collected in load line 4. The floor surveys of load line 4 direct beta measurement results were comparable with background levels of beta activity. Background for the survey was determined outside of the load line on similar building

materials. Direct beta measurement results ranged from 25 cpm to 50 cpm for the load line 3 with background being 40 cpm. Wipe samples were not collected since the total activity measurements were less than the removable DCGL (1000dpm/100cm²).

5.4 Survey Data Results.

5.4.1 Instrument Background Results. Background measurements from the reference area were taken for each monitoring instrument and method. The background values were consistent with expected values for the instruments and building materials. These background data are reported on each survey report.

5.4.2 All survey results were within expected background ranges for radioactivity and did not identify elevated contamination in load line 2.

5.4.2.1 The NaI scan and static survey results were within expected background ranges for gamma activity.

5.4.2.2 For the purpose of survey design very conservative Derived Concentration Guideline Levels (DCGL) were selected for Co-60. Actual site-specific, DCGLs were not established. USNRC Regulatory Guide 1.86 release values for Co-60 were utilized. The DCGL used for structures and equipment was 5000 dpm/100 cm² for total activity (DCGLw) and 1000 dpm/100 cm² for removable contamination. The total direct beta measurements reported beta activity less than 1000 dpm/100cm². This activity is well below the DCGL of 5000 dpm/100cm².

5.4.3 All survey results were within expected background ranges for radioactivity and did not identify elevated contamination in load line 3.

5.4.3.1 The NaI scan and static survey results were within expected background ranges for gamma activity and did not identify elevated contamination.

5.4.3.2 The total direct beta measurements reported beta activity less than 1000 dpm/100cm². This activity is well below the DCGL of 5000 dpm/100cm².

5.4.4 All survey results were within expected background ranges for radioactivity and did not identify elevated contamination in load line 4.

5.4.1 The NaI scan and static survey results were within expected background ranges for gamma activity and did not identify elevated contamination.

5.4.2 The total direct beta measurements reported beta activity less than 1000 dpm/100cm². This activity is well below the DCGL of 5000 dpm/100cm².

6. Historical Records Review.

6.1 The historical records available for review in regards to the final disposition of the three Co-60 sealed sources are provided in Appendix E.

6.1.1 A 29 November 1971 Radioactive Materials Movement (Shipment) record reports that on that date RVAAP shipped one 500 curie Co-60 source to Technical Operations, Inc. in Burlington, Massachusetts. Radiological surveys to meet Department of Transportation requirements were noted on the record.

6.1.2 A 9 March 1972 shipping document reports the request of shipment of two 1000 curie Co-60 sources. It appears that one Co-60 source was actually shipped to Technical Operations, Inc. in Burlington, Massachusetts. The shipping record notes that this shipment to be a "First Partial Shipment" which would indicate that a following shipment would be made for the second 1000 curie Co-60 source. No other documentation was available for review to determine the fate of the second 1000 curie Co-60 source.

6.1.3 A 25 July 1990 letter from Mr. H.R. Cooper of the Olin Ordinance, Ravenna Arsenal, Inc. to the US Environmental Protection Agency, Region 5 states that all three Co-60 sources were returned to the "licensed owner".

6.1.4 No documentation of receipt of the shipments or Atomic Energy Commission license actions that would acknowledge the decommissioning of the Co-60 sources was available for review.

6.1.5 Based on the review of these documents it appears that the three Co-60 sources were returned to Technical Operations, Inc. in Burlington, Massachusetts. However, efforts are being taken to locate any additional pertinent information regarding the fate of the second 1,000-curie Co-60 source.

7. CONCLUSIONS.

7.1 A review of the survey results indicates that there is no detectable cobalt 60 contamination in the load lines.

7.2 Records exist that indicate that the three, sealed cobalt 60 sources were shipped off site in 1971 and 1972.

Craig R. Rieman Chief, Environmental Health Section Buffalo District Corps of Engineers

Appendix A

REFERENCES and ABBREVIATIONS

1. REFERENCES.

1.1 4 AR 385-11, 1 May 1980, Ionizing Radiation protection (Licensing, Control, Transportation, Disposal, and Radiation Safety).

1.2 ER and EM 385-1-80, 30 May 1997, Ionizing Radiation Protection, and Radiation Protection, USACE.

1.3 EM-385-1-1, 3 Sep 1996, Safety and Health Requirements Manual, USACE.

1.4 NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), August 2000.

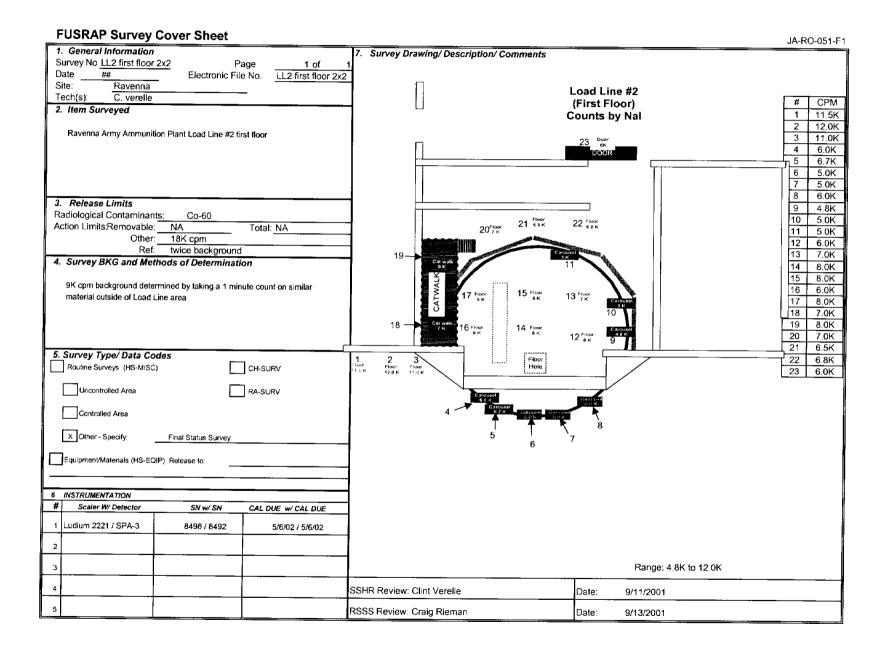
1.5 TG 155, February 1993, Environmental Sampling Guide, US Army Environmental Hygiene Agency (USACHPPM).

1.6 Title 10, CFR, 1996 rev, Chapter I, Nuclear Regulatory Commission (USNRC).

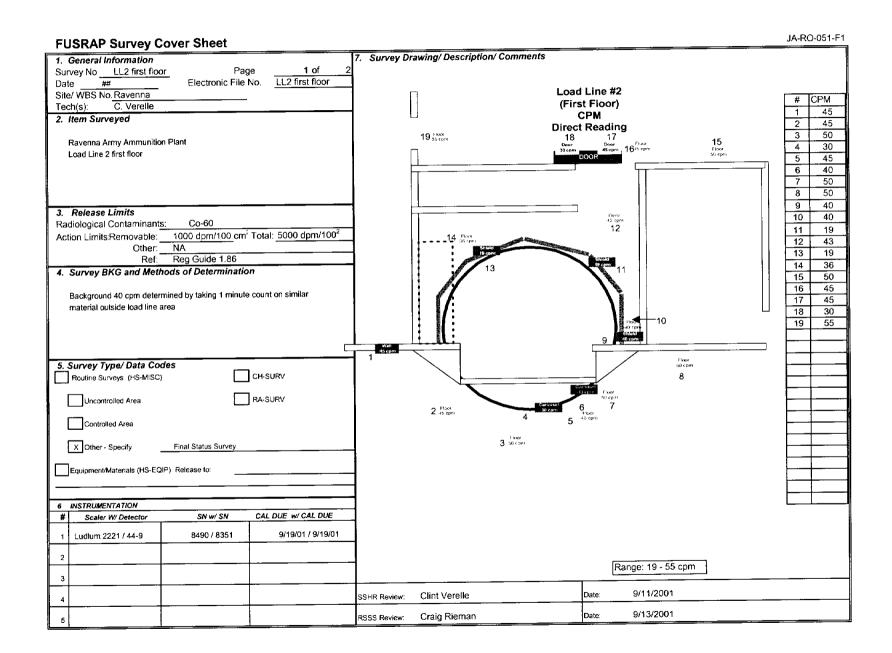
1.7 USACESWT, Radiation Survey Plan, Radiation Final Status Survey Plan for Load Lines 2,3&4, Ravenna Army Ammunition Plant, Ravenna, OH, September 2001.

1.8 Preliminary Assessment for Ravenna Army Ammunition Plant, February 1996, by Science Applications International Corporation (SAIC).

1.9 Letter dated July 25, 1990, from Olin Ordnance, RVAAP, to USEPA, Subject: Request for information pursuant to section 104 (e) of CERCLA as amended for industrial landfill INC.

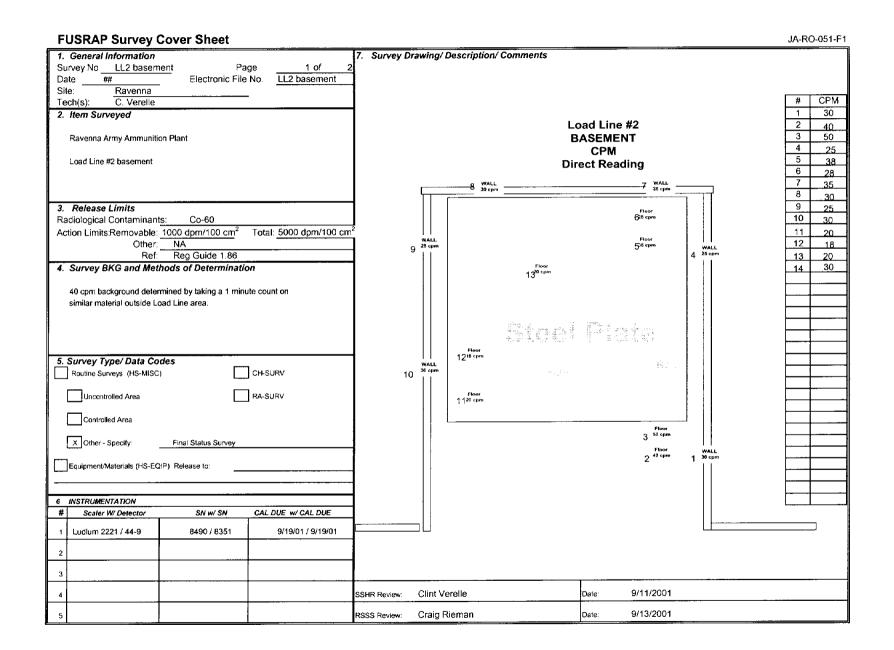

1.10 Regulation Guide 1.86, Termination of Operating Licenses for Nuclear Reactors, June 1974.

2. ABBREVIATIONS.


AOC	Areas of concern
bkg	background
BEC	Base Realignment and Closure Environmental Coordinator
BRAC	Base Realignment and Closure
cal	calibration
CM	centimeter
cm^2	square centimeter
cpm	counts per minute
Cs-137	Cesium-137
Co-60	Cobalt-60
DAC	Department of the Army Civilian
dpm	disintegrations per minute
dpm/100cm ²	disintegrations per minute per 100 square
	centimeters
eff	efficiency
g	gram
H-3	hydrogen-3 (tritium)
inst	instrument
IAW	In Accordance with
LLD	Lower Level of Detection
MACOM	major Army command
MDA	Minimum Detectable Activity
mCi	millicurie
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
NUREG	Nuclear Regulatory Guide
pCi	picocurie
RVAAP	Ravenna Army Ammunition Plant
RCCCD	Radiologic, Classic and Clinical Chemistry Division
RPO	Radiation Protection Officer
SN	serial number
SOP	standing operating procedure
U-238	Uranium-238
USACE	United States Army Corps of Engineers
USACELRB	USACE, Buffalo District
USACENAB	USACE, Baltimore District
USAEHA	United States Army Environmental Hygiene Agency
USACHPPM	USA Center for Health Promotion & Preventive
	Medicine
uR/hr	microroentgen per hour
uCi	microcurie

Appendix B

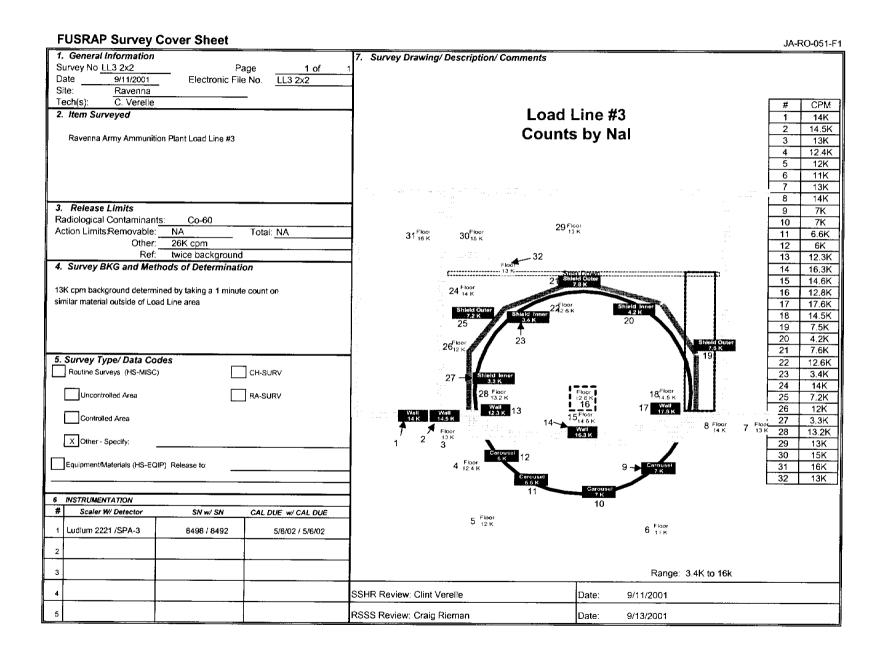
Load Line 2 Survey Reports

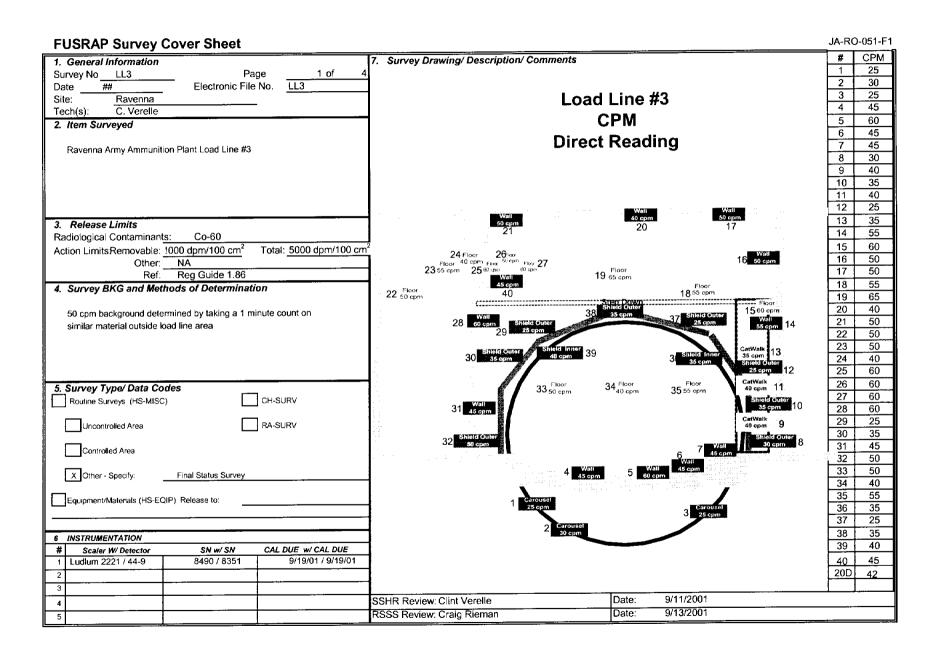

S-17

FUSRAP Survey Data Sheet

Date	9/11	/2001	Site	-		Ra	venna											
urveyor(s): C. Verelle Count Rm NA																		
Notes:		dose rt	(unem) = Direct Reading Instr.									Total			[Removabl		
istr kristrume	nt	Gamma	(cptm) = Direct Reading Instr.				Parameters	dose rate	Gamma	Corr uR	Alpha		Beta-Gam	na	Aipha		Beta-Gar	mma
= Corr Coeffic	ient	con une	em (urem):				Instr.						L2221 / 44-9					
fint = Y Intercep	intercept Direct									a sin fa								
:= eff = cpm/dp		Alphe (dpm) = (cpm - Bopmi/(eff * ACF)	5			Yint									liga e ette	en i lutti .	
	bes Correction Factor Beta (dpm) = (cpm - Bcpm)/(eff * ACF)				E				<u></u>		0.107							
6 = Backgroun			ovable			вка	Bcpm		•				40					
	iample Count Time Alpha (dpm) = (cpm - Bcpm)) eff						ACF						0.155					
	= Bkagd count rate Beta (dpm) = (cpm - Bcpm)/eff m ≏ Background cpm = R ₀ * dpm readings are per 100cm ²						t _e						1				ļ	de-states
всрт – васко	rouna apro = R _b	apm re	sadings are per toucm:				t <u>s</u>		n na na sere				1					
							L. MDC				£		887.15 1955.18			-		
No.	1	Descriptions		1	,	<u> </u>	2	urem/uR	cpm	 ↓ R	cpm	*dpm	cpm	*dpm	cpm	*apm		-
	See map	· · · · ·				1		BIGHT BIC			op,ir	opin	45		- c.pm	upm	cpm	*dpr
	See map												45	301.48				
	See map					·							1 1			<u> </u>		
	See map										łł.		50	602.95				
	See map						+				<u>} </u>		30	-602.95				
													45	301.48				
	See map									·	<u>}</u> ∔		40	0.00				
	See map												50	602.95		Į		
	See map												50	602.95		Į		-
	See map						[40	0.00				
	See map												40	0.00				
11	See map												19	-1266 20				
12	See map												43	180.89				
13	See map												19	-1266.20				
14	See map												36	-241.18				
15	See map												50	502 95		1		
	See map					1							45	301.48		t	· · · · ·	+
10	See map							-				· · · · ·		301.48				-!
				- +		<u>†</u>							45	-502.95		<u> </u>		1
17	See map					1							30	-004.95		1	L	
17 18	See map See map		· · · · · · · · · · · · · · · · · · ·	1									55	904,43				

FUSRAP Survey Cover Sheet			JA-RO-051-F1
1. General Information Survey No L12 basement 2x2 Page 1 of Date ## Electronic File No. LL2 basement Site: Ravenna Electronic File No. LL2 basement Tech(s): C. verelle C. Item Surveyed Ravenna Army Ammunition Plant Load Line #2 basement C. C.	7. Survey Drawing/ Description/ Comments ent 2x2	Load Line #2 BASEMENT Counts by Nal	# CPM 1 6.3K 2 6.5K 3 6.0K 4 2.5K 5 2.0K 6 2.0K 7 2.5K 8 5K
3. Release Limits			9 6K
Radiological Contaminants: Co-60 Action Limits:Removable: NA Total: NA Other: 12K cpm Ref: twice background	6 Floor 2 K	5 Floor 2 K	10 6K
4. Survey BKG and Methods of Determination			
6K cpm background determined by taking a 1 minute count on similar material outside of Load Line area			
	7 Floor 2.5 K	4 Floor	
S. Survey Type/ Data Codes Routine Surveys (HS-MISC) Uncontrolled Area Controlled Area		2.5 K	
X Other - Specify: Final status Survey			
Equipment/Materials (HS-EQIP) Release to:	B Floor δ 5 κ	3 Floor 6K	
6 INSTRUMENTATION	G Floor		
# Scaler W/ Detector SN w/ SN CAL DUE w/ CAL DU	9 Floor 6 K	2 Floor 6.5 K	
1 Ludium 2221 / SPA-3 8498 / 8492 5/6/02 / 5/6/02	210 ^{Flaor} 6 K	1 Floor 6.3 K	
3		Range: 2.0K to 6.5K	
4	SSHR Review: Clint Verelle	Date: 9/11/2001	
5	RSSS Review: Craig Rieman	Date: 9/13/2001	


S-21


ate9/1	1/2001	Site		Ra	venna											
urveyor(s):	C. Verelle	Count Rm		NA												
otes:	dose n: (uner	m) ≖ Direct Reading mstr								Total				Removable)	
itr Instrument	Gamma (cpt	m) = Direct Reading instr.			Parameters	dose rate	Gamma	Corr uR	Alpha		Beta-Gam	na	Alpha		Beta-Gam	nma
= Corr. Coefficient	con urem (u	rrem)			instr.						L2221/44-9					
nt = Y Intercept	Direct				x											
= eff = cpm/dpm) = {cpm - Bcom)/(eff * ACF)			Yint							naga palatag Ngga palatag	an ann an			
CF ≈ Area Correction Factor		= (opm - Bopm)/(eff * ACF)			<u>Е</u>	i inter internet dat	ur 1.34 580 •				0.107					1.1.1.1.1
= Background Count Time	Removal			BKO	Bepm ACF						0.155		oprituite de la com		Sho Biblionia	
,≕ Sample Count Time _b ≕ Bkgd count rate) = (cpm - Bcpm)/ eff = (cpm - Bcpm)/ eff			ACF te	naa maha pij		The second second	·		0.133					
sb – bkgc count rate Bopm = Background opm ≃ R ₆		gs are per 100 cm ²			t _s						1	i lati dini capa				
Solver Sample and Ann 14					L,						887.15			1. I. K. I		1003 (2003)
					MDC						1955.18					
No.	Descriptions		x	У	z	urem/uR	cpm	uR	cpm	"dpm	cpm	*dpm	cpm	*dpm	срт	*dpn
1 See map					T						30	-602.95				
2 See map					1						40	0.00				
3 See map				-	1						50	602.95				
4 See map											25	-904.43				-
5 See map					1						28	-120.59				
6 See map					+			+				-723.55				
											35	-301.48				
7 See map					1		· · ·····	+								
8 See map				_							30	-602.95	•••			
9 See map											25	-904.43				
10 See map					-						30	-602.95				
11 See map											20	-1205.91				
12 See map									-		18	-1326.50				_
13 See map											20	-1205.91				
14											30	-602.95				
15	1 8 10 1 1 1 1 8															_
16																1
17																
17				1												
18																

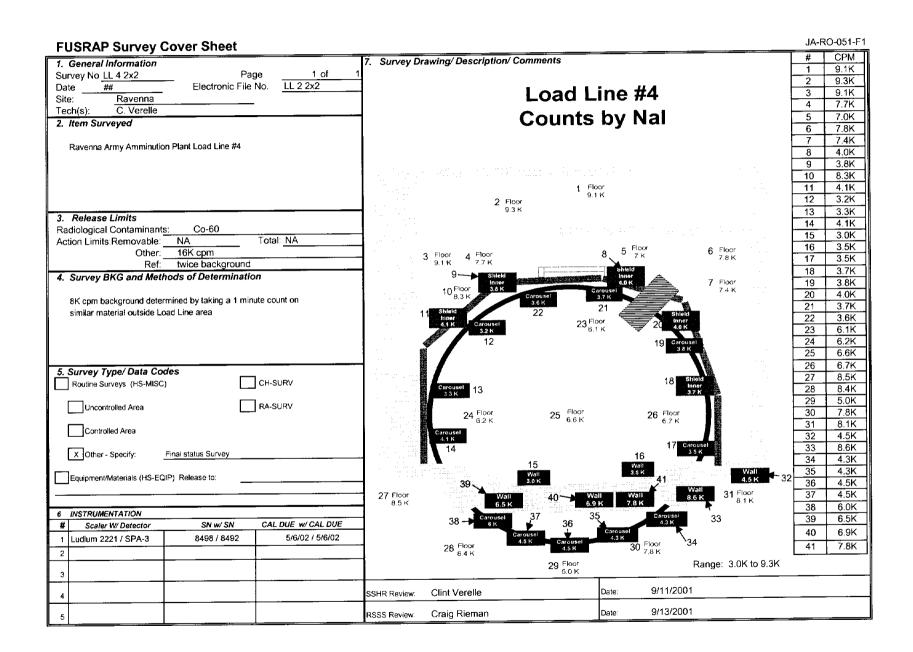
S-22

Appendix C

Load Line 3 Survey Reports

urvey No.	<u> </u>	L3	Page 2	of	4	_	Comments	s: Load Lime	2 #3								
ate	9/11/2	001	Site		Ra	ivenna											
urveyor(s): <u>c</u>	Verelle	Count Rm		NA												
otes:		dose	n (urom) = Direct Reading Instr.								Total	18			Removable)	
ir Instrument		Gem	na (optra) = Direct Reading Instr		1	Parameters	dose rate	Gamma	ConuR	Alpha		Beta-Gam	na	Alpha		Beta-Gamm	na
Corr. Coefficie	ભ	COIT &	rem (wrem) :			instr.			- 19			L2221 / 44-9					
ni = Y Intercept		Dire	ct				all shares			10 M 10				1 P. H.	<u></u>		
e eff = com/dpr	,	Alphe	(dpm) = (cpm - Bcpmi/(eff * ACF)		j	Yint				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	na ins					1.1.1.1.	<u></u>
F = Area Corre			(dpm) = (cpm · Bopm)/(eff * ACF)			E		<u> </u>				0.107					
Seckground			novable		вко	Ворт		F				50		5 C			
= Sample Cou			i(dpm)≍(opm - Bopm)/af		 	ACF		-				0.155				<u> </u>	
u = Bkgd.coun Scpm ≍ Backgro			(dpm) = (cpm - Bopm)/ eff reedings are per 100cm ²			(g		+			and a Barner	+				<u> </u>	
ocpri - cacego	and child - M		reenigrant per recent					-				991.86					<u>j6</u>
						MDC						2164.61					
Nia.		Descriptions		x	y	z	urem/uR	cpm	uR	cpm	*atom	cpm	*dpm	cpm	*dpm	срт	*dp
	See map							1				25	-1507.39				
2	· · · ·							1			1	30	-1205.91				
3						-		1			1	25	-1507.39			1	
4					-						1	45	-301.48			1	
5										· · · · ·	1	60					
6												45					
													-301.48				
8												43 V			<u> </u>		
						-	<u> </u>					****				<u> </u>	-
9								+		ł		40	-602.95				
10												38	-904.43				
11					+		<u> </u>		l		<u> </u>	40	-602.95				+
12									<u> </u>		l	25					
13								L			···	36	-904 43			I	
14					1			l	ļ		L	55				I	-
15					- 			l			I	60	602.95			ļ	
16								L			L	50	0.00				
												50	0.00				
17										ļ		56	301.45				
17																	
												65	904.43				

FUSRAP	Survey	Data Shee	t


ate	9/11/	2001	Site				Ravenna											
urveyor(s):	veyor(s): <u>C Verelle</u> Count Rm <u>NA</u>																	
lotes:			lose rt (urem) = Direct Reading	instr.								Total				Removabi	9	
str - Instrument			3emma (optro) = Direct Reading				Parameters	dose rate	Gamma	Con uR	Alpha	-	Beta-Gamm	a	Alpha		Beta-Gam	ma
Corr. Coefficient		c	ort u tem (u tem)				Instr.				ļ		L2221/44-9				ļ	
nt = Y Intercept		I	Direct				<i>x</i>				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				de alterite			<u></u>
≃ eff ≃ cpm/dpm			Alphe (dpm) = (opm · Bopm)/(ef	ACF)			Yint				3.1 × × ×		a fa da		1997 (B. 1997) 1997 - 1997 (B. 1997)		10.040	
CF = Area Correction	n Fector		Bete (dpm) = (apm - Bcpm)/(eff	' ACF)		- I	E	· · · · · · · · · · · · · · · · · · ·		<u>`</u>	Į	<u>. '</u>	0.107			- E-		
B = Background Cour	unt Time	1	Removable			вка	Верт		•	·			50					
s = Sample Count Tir			Alpha (dom) = (com - Bopm)/ eff	f			ACF				· · · ·	· · · · · · · · · · · · · · · · · · ·	0.155					
ξ _b ∓ Bkgd countrete			Beta (dpm) = (cpm - Bcpm ⊮eff				t,						1					
Bopm = Beckground	icpm ≭ R _b	•	dpm readings are per 100cm ²				(s						991.86					
							 MDC			:			2164.61	<u></u>		·.	· · · · · · · · · · · · · · · · · · ·	
							7	urem/uR	com	υR	்றா	*dpm	cpm	dom	cpm	*dpm	cpm	*dpr
No.		Descrip	aons			_ <u></u>		District					40	-602.95				1
	ee map												40				1	1
21										<u> </u>	·····		50	0.00			<u> </u>	
22									ļ				50	0.00			+	
23													50	0.00			<u> </u>	
24													40	-602.95				1
25													60	602.95	,			
26													60	602.95	į			
27													60	602.95	, ,			
28										<u> </u>	1		60	602.95				
									<u> </u>				26	-1507.39	1			
29											<u>+</u>			-904.43				-
30									 							+		
31						_			<u> </u>	· · · · · ·	<u> </u>		45	-301.45				
32										 			50	0.00	1	+		
33								<u> </u>		ļ			50	0 00		+		
34								L		<u> </u>	ļ		40	-502.95	ļ			
35											L		55	301.48	·		+	1
36													35	-904.43				
37													25	- 1507.39	,			1
										1	T		35	-904.43				

FUSRAP Survey Data Sheet

Date	9/11/2001	Site		Ravenna												
Surveyor((s): <u>C. Varelle</u>	Count Rm		NA												
Notes:		dose ri (v rem) = Direct Reading Instr.								Total				Removable	,	
str Instrume	nt	Gemme (optm) = Direct Reading Instr.			Parameters	dose rate	Gamma	Carr uR	Alpha		Beta-Gamr		Aipha		Beta-Gamm	па
= Corr. Coeffic	pient	cort u tem (u rem):			Instr.						L2221/44-9				<u> </u>	
fint = Y Intercep	pt	Direct			x			1.							nggan are	
= eff = cpm/dp	pm	Alphe (dpm) = (cpm - Bcpm)/(eff * ACF)			Yint				1 A.				2			
CF = Area Cor	mection Factor	Bets (dpm) = {cpm - Bopm)/(eff * ACF)			E	1.		an lightige			0.107					
g = Beckgrour	nd Count Time	Removable		вка	Bapm		•	1.000			50			· · · · ·	Ļ	3.73
₆ = Sample Co		Alphe (dpm) = (cpm - Bcpm)/ eff			ACF		ļ				0.155			1.4.1.5	<u> </u>	
R _b = Bkgd ook	unt rete	Bete (dpm) = (cpm - Bopm)/ eff			t,		ļ				1				L	
'Bopm = Backç	ground com = R _e	° dpm readings are per 100cm ²				L					1			ante e	<u> </u>	
					L.			1979 - 19 19		ette ette	991.86				 	
					MDC		· ·	<u> </u>			2164.61				Ļ	
No.	De	scnptions	×	<u> </u>	,	urem/uR	срт	μR	cpm	*dpm	срлт	*alpm	cpm	*dpm	cpm	do
9	See map										40	-602.95				
0		-					I				45	-301.48				
0D				1			1	1			42	-482.36				
00				1			1									1
· · · · · · · · · · · · · · · · · · ·	-			-							+					+
					· ·									┣────	<u> </u>	+
														<u> </u>	<u> </u>	+
															Ļ	_
																_
							1									
		···· · · · · · ·		1	1						<u> </u>					
		· · · ·												-		-
					+									+ [;]	<u> </u>	+
							I							 	<u> </u>	+
<u> </u>											ļ			L	L	+
					_						L				 	
															1	
	1			1			1						·			1
					$t_s(1 + t_s / t_s)$		L		L ₁₁₋₁₁₋₁			·		<u> </u>		<u> </u>
	$\frac{\sqrt{R_b \cdot t_s (1 + t_s / t_B)}}{E^* t_s * ACF}$															

Appendix D

Load Line 4 Survey Reports

1. General Information	7. Survey Drawing/ Description/ Comments	#	CPM
Survey No LL4 Page 1 of 3		1	40
Date ## Electronic File No. LL4		2	40
Site: Ravenna		3	35
Tech(s): C. Verelle	Load Line #4	4	50
2. Item Surveyed		5	28
	СРМ	6	45
Ravenna Army Ammunition Plant Load Line #4	Direct Booding	7	40
	Direct Reading	8	27
		9	29
		10	30
		11 12	45
2 Defense Limite			43 40
3. Release Limits		13 14	40 35
Radiological Contaminants: Co-60 Action Limits Removable: 1000 dpm/100 cm ² Total: 5000 dpm/100 cm ²		14	35
Action Limits:Removable: 1000 dpm/100 cm ² Total: 5000 dpm/100 cm ² Other: NA		15	35
Ref: Reg Guide 1.86		17	30
4. Survey BKG and Methods of Determination		18	30
4. Survey Bro and memous of Determination	Floor Floor 45 ppp	19	25
40 cpm background based on 1 minute count on similar material	40 cpm	20	35
outside Load Line area	Flour 23 cpm	21	30
	40 cpm	22	25
	Phone Store	23	40
	ad opping Caroused	24	38
		25	40
5. Survey Type/ Data Codes		26	35
Routine Surveys (HS-MISC)		27	30
	Chicusol Cater m.	28	50
Uncontrolled Area RA-SURV		29	50
	Filcer Filcer Filcer Filcer St. cpm 56 cpm 45 cpm	30 31	45 45
Controlled Area	Carousol	31	45 45
X Other - Specify: Final Status Survey	Wall Wall Wall Wall Wall	33	40
A Joiner - Specify. Prinar status Survey		34	40
Equipment/Materials (HS-EQIP) Release to:	Wali 35 gan Wali 36 gan 45 gan 45 gan	35	30
	Flour Finor Wall Wall Wall Wall 40 cpm 35 cpm Wall 35 cpm	36	25
	35 cpm 35 cpm	37	25
6 INSTRUMENTATION	Carousel Carousol 43 opm 27 opm	20D	37
# Scaler W/ Detector SN w/ SN CAL DUE w/ CAL DUE	Carousel Carousel 45 opm Carousel 28 opm Floor		
	S5 opm 28 opm		
1 L2221 / 44-9 8490 / 8357 9/19/01 / 9/19/01	Floor St. opm		
2			
**			
3			
4	SSHR Review: Clint Verelie Date: 9/11/2001		
5	RSSS Review: Craig Rieman Date: 9/13/2001		

FUSRAP Survey Data Sheet

Survey No.	~	<u>LL4</u>		2	of	3	-	Comment	s: Load Lin	e 4								
)ate	9/11	1/2001	Site	-	- -	Ravenna												
Gurveyor(s):	C. Verelle	Count Rm	-		NA												
lotes:		đ	ose rt (urem) ≠ Direct Reading Instr.									Total				Removabl	9	
str Instrument		G	iamma (cptm) = Direct Reading Instr.				Parameters	dose rate	Gamma	Corr uR	Aipha		Beta-Gamn	na	Alpha		Beta-Gam	ima
= Corr. Coefficie	nt	-	orr u rem (u rem) -				instr.						L2221 / 44-9				ing an end the	01 0 1040 <i>1</i> , 1
int = Y Intercept		C	Direct				<u>x</u>			36476544						5.117771 5.1471 4		
= off = cpm/dpm	•		Alpha (dpm) = (cpm - Bcpm)/(eff * ACF))		ļ	Yint								9.9. AB 46436			
CF = Area Corre			Seta (dpm) = (cpm - Bcpm)/(eff * ACF)				E	- 41-11-11-11-1					0.107					Station of
e = Background			Removable			вко	Bepm		ľ.				0.155					
s = Sample Cour			Npha (dpm) ≃ (cpm - Bcpm)/ eff			 	ACF	atro (1925)					0.155					
R _b = Bkgd coun'			Seta (dpm) ≈ (cpm - Bcpm)/ eff dpm readings are per 100cm ²				t _B				1		1					List, is
"Beprn = Backgro	una cpm = K _b		apin leadings are per roccin				L.						887.15		·			
							MDC						1955.18					
No.		Descrip	tions		×	У	1	urem/uR	cpm	υR	cpm	*dpm	срт	*dpm	cpm	*dpm	cpm	*dpm
	See map					1				1			40	0.00				ή
	Oce map										1	1	40	0.00				
2													35	-301.48				1
3						-							50	602.95				
4						-									·			-
5									l				28	-723.65	·			
6								-			+-····	ł	45	301.46				
7										L			40	0.00	· · ···			
8													27	783.84				_
9												L	28	-723.55				-
10													30	-602.95				
11											1		45	301.48				
12													43	180.89				
13										1			40	0.00	,			
14													35	-301.46				
15				·		-					1	1	35	-301.48			1	
							1		+	<u> </u>		<u> </u>	35	-301.46		<u> </u>	1	
16										 		<u> </u>	30	-602.95				
17							+		<u> </u>								· · · · · ·	
18													30	-602.95	1			-
19				i					l	<u> </u>	<u>I</u>	l	25	-904.43	I	l	l	_L
$a = \frac{1.645}{E}$	$R_b \cdot t_s(1 +$	-ts/tB	٨	/DC =	3-	+ $3.29\sqrt{R_{b}}$	$t_s(1+t_s / t_s)$	<u>)</u>			PROJECT	THP:		RSO:				

FUSRAP Survey Data Sheet

Survey Na.	<u>LL4</u>	Page <u>3</u>	Comment	s: Load Line	9 4											
Date 9/11/2001 Site				Ravenna												
Surveyor(s):	rveyor(s): <u>C. Verelle</u> Count Rm			NA												
Notes: some ri (lose ri (urem) ≃ Direct Reading Instr.				JI			Total			Removab		Removabl	vie	
tstr instrument		Gamma (optm) = Direct Reading Instr.			Parameters	dose rate	Gamma	Corr uR	Alpha		Beta-Gamn	na	Alpha		Beta-Gam	ma
c= Corr. Coefficient		con urem (urem):			instr.						L2221/44-9					
rint ≃ Yintercept		Direct			x		-				fothat manufactoria					
E = eff = cpm/dpm		Alpha (dom) = (com - Bopm)/(eff * ACF)			Yint					he receited						
ACF = Area Correction	Factor	Beta (dpm) = (cpm - Bcpm)/(off * ACF)			Ē						0.107					
t _B = Background Cour	nt Time	Removable		BKG	Bepm		·				40					
t _s = Sample Count Tir	me	Avpha (dpm) = {cpm - Bcpm}/ eff			ACF			n niñe an		gardiga a Ne	0.155	#14 (J. 4)				
R _b = Bkgd count rate		Beta (dpm) ≃ (cpm - Bcpm)/ eff			t _B				L		1		 			
*Bepm = Background e	cprr = R _b	* dpm readings are per 100cm ²			ts						1				ļ	
					L,					the production of the second s	887.15				,	
				<u></u>	MDC	antista de la			1	1	1955.18		1	1	<u> </u>	- 1990 - 1991 T
No.		criptions	×	<u> </u>	,	urem/uR	cpm	uR	cpm	*dpm	срт	*dpm	cpm	*dpm	cpm	*dpm
20 Se	e map										35	-301.48			 	╉────
21										_	30	-602.95			───	+
22			+		-		ļ				26	-904.43	-		──	
23											40	0.00		ļ	ļ	
24											38	-120.59				
25											40	0.00				
26											35	-301.48				
27											30	-602.95				
28											50	602.95				
29						· · · · · · · · · · · · · · · · · · ·				1	50	602.95				1
30									1		45	301.48				
31											45	301.48	t i			1
32						<u>.</u>				1	46	301.48				1
33			1		+		1				40	0.00				+
33				+	+	<u> </u>				1	40	0.00			<u> </u>	+
34								· · · ·	1						<u> </u>	+
						<u> </u>				┨────	30	-602.95			<u> </u>	+
36				-	-		<u> </u>		 		25	-904 43			<u> </u>	+
37				+	+		<u> </u>			 	25	-904.43			 	
0D											37	-180.89	<u></u>	l .	<u> </u>	
$c = \frac{1.645\sqrt{R_{h}}}{E * t}$	$\frac{b \cdot t_{s}(1 + t_{s} / t_{B})}{t_{s} * ACF}$	MDC =	3+	$\frac{-3.29\sqrt{R_b}}{E*ts}$	$t_s(1+t_s / t_s)$ * ACF	<u>a)</u>			PROJEC	T HP:	(INI)	R\$O:	(INI)			

Appendix E

Historical Records

RAVENNA ARSENAL, ING. 8451 STATE ROUTE 5, RAVENNA, OHIO 44266-9297 TELEPHONE: (216) 358-7111 • FAX: (216) 297-3216

July 25, 1990

THRU: Contracting Officer's Representative Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna, Ohio 44266-9297

n. 1-1

- TO: U. S. Environmental Protection Agency Region 5 ATTN: 5HS - 11 (Mr. David Meyer) 230 S. Dearborn Street Chicago, IL 60604
- Subject: Request For Information Pursuant to Section 104 (e) of CERCLA As Amended For Industrial Landfill, Inc. (Ref. USEPA's 21 June 1990 Letter to Ravenna Army Ammunition Plant, Same Subject as Above)

Dear Mr. Meyer,

As requested by the reference USEPA letter, the Ravenna Army Ammunition Plant (RVAAP) has researched its historical use of radiological materials. There's record of two periods in which radiological materials have been stored and/or used at RVAAP.

The utilized material were two (ea.) units of 1,000 Curies, Cobalt 60, solid radiographic source and one (ea.) unit of 500 Curies, Cobalt 60, solid radiographic source. These three radiographic sources were used from 1969 to 1972 for quality assurance processes to determine uniformity of solidified explosive following melt pour into military projectiles. These cobalt sources were returned to the licensed lender/owner following their discontinued use at RVAAP. All actions that transpired regarding this lend-use agreement were oversighted by the then known Atomic Energy Commission (AEC). Attachment #1 delineates return of these active

The other radiological material that existed at RVAAP was monazite ore. The ore was a low-specific-activity material that generated a radiological characteristic by naturally contained thorium. The thorium constituent was identified as being less that 10% of the monazite ore compound. The ore was under ownership by Federal Supply Service, Property Management Division of the General Services Administration (GSA) that had leased above ground tank (fully enclosed) space at RVAAP. The exact time of the ore's

> OLIN DEFENSE SYSTEMS GROUP OLIN CORPORATION

Section 104 (e) CERCLA

emplacement within the RVAAP confines is uncertain due to installation records being destroyed; it can only be approximated. that the ore had arrived at RVAAP sometime in the late 1950's or early 1960's. In June 1974 the monazite ore was removed from RVAAP and exported to Rotterdam, Holland under an AEC licensed Following the ore's removal, processes were transaction. undertaken to decontaminate the storage tanks and affected ground surface area probably contaminated with the ore's fines during the loading operation. All collected contaminants were identified as being transported to an AEC approved burial location in Kentucky. RVAAP made a diligent effort to make personal contact with respective personnel of GSA and the service organization involved with the decontamination process; with the objective to confirm the subject activity and pinpoint the exact location of the disposal No personal contacts were able to be completed due to site. disbandment of the specified agency within GSA; GSA records were lost due to the agency's policy to destroy documents of completed transactions that are seven years or older; and the vendor performing the decontamination has since gone out of business without any traceability to the whereabouts of employees and company records. RVAAP terminated any further efforts in obtaining additional information on the subject. Attachment #2 provides all available historical records associated to the monazite ore.

RVAAP's point of contact for further discussion or request regarding any of the above subject matter will be Mr. Thomas M. Chanda, Environmental Engineer, at phone 216-297-3221.

Sincerely,

RAVENNA ARSENAL, INC.

HR. Corpe

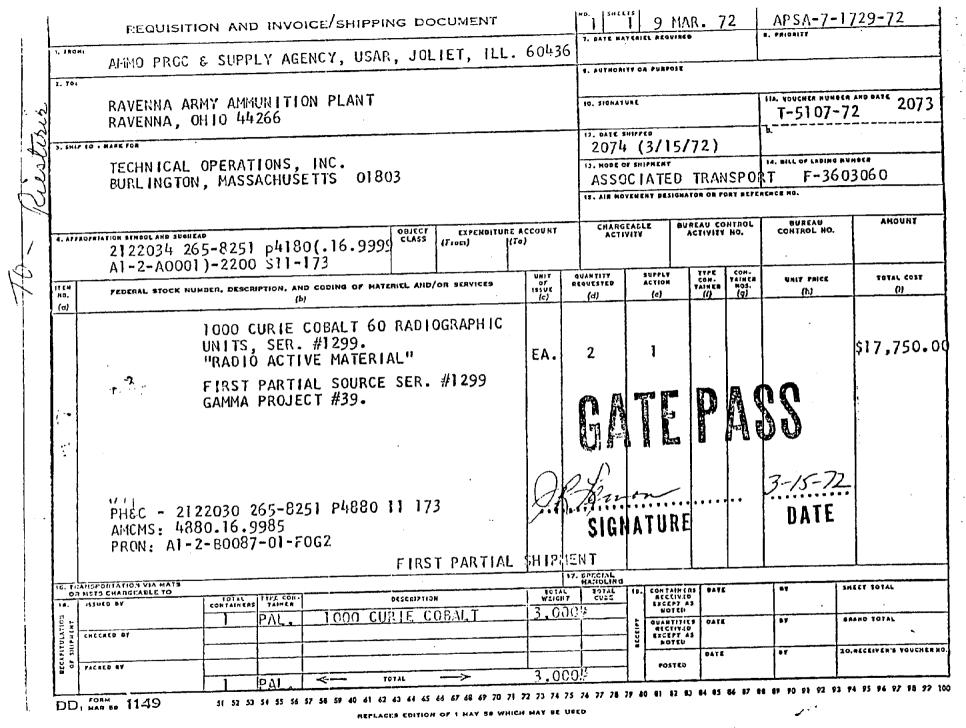
H. R. Cooper Plant Engineer

TMC/wt/tc90056

Attachment

- cf: AMCCOM ATTN: AMSMC-ISE-M (Capt. Michael Leggieri)
- cc: N. Wulff G. Wolfgang T. Chanda File

F#	uun al this l	SHIPMENT	REC	EIPT Deputy Chief of Stall for 1	Lagistics,						
		. (See instruction)									
To gradie the			F SHIPMENT	ZIB Codel		013-9					
Technical	Opera	tions, Inc.	Ravenna	Arsenal, Inc							
		cts Division	Ravenna Army Ammunition Plant								
Burlingto	n, Mas	trial Park sachusetts	Ravenna,	Ohio 14266							
APSA -7-3507	-71	4. SECURITY CLASSIFICATION		L HOOE OF SHIPMENT Commercial		Ezpress)					
s. cc	MMODITY O	ESCRIPTION	7.	RADIOACTIVITY	¥						
······································	NUMBER	· · · · ·			A LEVEL						
CONTAINERS	0# 17 EH3 4	NGMERCLATURE	QUANTITY, I	107072 ING FORM	AT BURFACE	AT ONE METER					
l Wooden	1	Cobalt 60 Radio-	500 Çuri	es, Cobalt	2 MR/H	אר א					
Transport		graphic Source	60, Soli	d	-						
Package		T.O. Model #520									
Nodel No.											
SK-1351	1										
		-									
						н					
Reference	e 6th I	liance with Speci Ind. LOG-TR-TEB-53 r AFSA-7-3507-71	al Permit 82, July 1	(SP) No. 580 L, 1971	0						
S. SPECIAL PRECA	UTIONS										
2 114	310 7/	bolo en Baskers E									
		abels on Package E abel on Package Ex									
		abels on Truck Ext abel in Truck Cab	erlor								
1 T.A											
1 Les	ak Test		- 4								
1 Lea 1 Col	balt 60	O Source Decay Cha									
1 Lea 1 Col	balt 60			D.C.T. (SP)	No. 58	00					
1 Lea 1 Col	balt 60	O Source Decay Cha		D.C.T. (SP)	No. 58	00					
1 Lea 1 Col	balt 60	O Source Decay Cha		- D.C.T. (SP)	No. 58	00					
1 Lea 1 Col	balt 60	O Source Decay Cha cification Plywood	. Container	- D.C.T. (SP)	No. 58	00					
1 Lea 1 Col	balt 60	O Source Decay Cha cification Plywood	Container	•	DATE						
1 Lea 1 Col	balt 60	O Source Decay Cha cification Plywood	. Container	•	Nov. 2						
1 Lea 1 Col	balt 60	O Source Decay Cha cification Plywood	Arsenal,	•	DATE						
1 Lea 1 Col	Adviation	D Source Decay Cha cification Plywood Revenue Taylon Officer (Shipping Organis Son of TA Fors	Arsenal,	•	NOV. 2						


· •..

(Paper size, 3" = 10%"; image size, 7-4/10" = 10")

r,

:

1

S-38