
APPENDIX A

RESULTS OF PREVIOUS INVESTIGATIONS AT THE NACA TEST AREA

APPENDIX A-1

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT NACA TEST AREA

WATER QUALITY SURVEILLANCE PROGRAM RESULTS (1980 - 1992)

March 12, 1980 NACA Test Area Demolition Area 1.

Re: Water Quality Surveillance Program

						\	Y Comment		~ /
PARAMETER	 .			SAF	PLE S	TATIO	N		
* 11441 10 00 11	EC-1	EC-2	SC-1	SC-2	HC-1	HC-2	PF #8	PF #6	PF ¥53
ъĦ	Q	Q	Q	Q	Q	Q	Q	Q	Q
Temperature	Q	Q	Q.	0	Q	Q	Q	Q	0
Specific Conductance	Q	q	Q	Q	Q	q	Q	Q	Q
Total Suspended Solids	q	à	0	0	Q	Q	Q	Q	Q_
Biochemical Oxygen Demand -5 day	0	Q	Q		Q	Q	Q	Q	Q_
Total Organic Carbon	s	s	s	s	s	s	s	s	S
Total Kjehldal Nitrogen	s	s	s	5	s	5	S	s	s
Nitrate	s	s	s	S	s	5	s	s	s
Nitrite	s	s	s	s	3	s	s	5	s
Phosphorous	s	s	s	s	s	s	s	s_	s
Oil & Grease	Q	0	Q	Q	l Q	Q	Q	Q	Q
Dissolved Oxygen	Q	Q	Q	Q	0	Q	Q	Q	0
THT		A		A		A	A	A	A
RDX		A		A_		Α_	A	A	A
Copper	A	A	A	A	A	٨	<u> </u>		<u> </u>
Chromium, Total (Hex & Tri)	Α_	A	A		A	<u> </u>	Α_	1.	
Zinc	A	A	A	٨		<u> </u>	Α_		A
Lead	A	A	A		Α_		Α	A	<u> </u>
Fecal Coliform	Q	<u> </u>	Q	10	Q	0	Q	0	Q

Q = Quarterly - 4/times a year (March, June, September & December)

S = Semi-Annually - 2 times a year (June (June & September

A = Annual - Once a year (September).

NOTE: (1) All samples will be taken as a grab sample unless otherwise notified at a future date.

⁽²⁾ The Wastewater Treatment Plant Operator will be responsible for obtaining the Grab Samples.

Re: Water Quality Surveillance Program

PARAMETER		SAMPLE STATION							
	EC-1	EC-2	SC-1					PF #6	PF
рн	Q	Q	Q	Q	Q	Q	Q	Q] 3
Temperature	Q	Q	Q .	Q	Q	Q	Q	Q	_3
Specific Conductance	Q	Q	Q	Q	Q	Q	Q	Q	3
Total Suspended Solids	Q	Q	Q	Q	Q	Q	Q	Q	;
Biochemical Oxygen Demand -5 day	Q	Q	Q	Q_	Q	Q	Q	Q	<u> </u>
Total Organic Carbon	s	s	s	s	s	s	s	s	5
Total Kjehldal Nitrogen	s	S	s	s	S	ş	s	s	s
Nitrate	s	s	s	s	s	s	s	s	s
Nitrite	s	s	s	s_	s	S	S	s	5
Phosphorous	s	S	S	S	S	s	s	s	s
Oil & Grease	Q	Q	Q	Q	Q	Q	Q	Q	0
Dissolved Oxygen	Q	Q	Q	Q	Q	Q	Q	0	
TNT		A		A		A	A	А	4
RDX	ļ	A		A		A	A	A/	A
Copper	A	A	A	A	A	A	A	A	A
Chromium, Total (Hex & Tri)	A	A	A	A	A	A	A	A	A
Zine	A	A	A	A	A	A	A	A	4
Lead	A	A	A	A	A	A	A	A	A
Fecal Coliform	Q	Q	Q	Q	Q	Q	Q	Q	Q

Q = Quarterly - 4/times a year (March, June, September & December)

NOTE: (1) All samples will be taken as a grab sample unless otherwise notified at a future date.

S = Semi-Annually - 2 times a year (June (June & September

A = Annual - Once a year (September).

⁽²⁾ The Wastewater Treatment Plant Operator will be responsible for shtaining the Conh Commiss

RAVENNA ARMY AMMUNITION PLANT

WATER QUALITY SURVEILLANCE PROGRAM

Ravenna Arsenal, Inc.

. March 12, 1980

SAMPLING STATIONS

A.	EAGLE CREEK	Influent Effluent	(North of Area #1 & Block E) (North of Area #3)
в.	SAND CREEK	Influent Effluent	(1/2 Mi. West of Slagle Rd.) (Smalley Road Bridge)
c.	HINCKLEY CREEK	Influent Effluent	(500 Ft. West of Post #32 - Rte. 80) (East of Post #24 - Charleston Perimeter R
D.	PARSHALL FLUME (Area #8)	Effluent	(Between Wayland-Wilcox and Parris Windham Rds on South Perimeter Fence Line Rd.)
E.	PARSHALL FLUME (Area #6)	Effluent	(South of Kelly's Pond and East of Post #2 on South Perimeter Fence Line Rd.)
F.	PARSHALL FLUME	Effluent	(Rte. #534)
	Nomenclature:		Sampling Station:
	EC-1	Influent	Eagle Creek
	EC-2	Effluent	Eagle Creek
	sc-1	Influent	Sand Creek
	SC-2	Effluent	Sand Creek
	HC-1	Influent	Hinckley Creek
×	HC-2	Effluent	Hinckley Creek
	PF #8	Effluent	Parshall Flume - Area #8
	PF #6	Effluent	Parshall Flume - Area #6
	PF #534	Effluent	Parshall Flume - Rte. #534.

TMAIERG

7777 Exchange Street Cleveland, OH 44125-3337

(216) 447-0790

Ravenna Arsenal 8451 State Route 5 Ravenna, Ohio 44266

Attn: Mr. Joe Mound

Samples Received: 9/04/87

Date: November 5, 1987

Project Number: V2466

Results reported in mg/l

except where noted.

TMA-Cleve Sample ID's 43454-43461

	FINAL F	REPORT			· F.	1674 <u>-</u>	-	
Davanahawa	ごかり EC1	EC2	いいなど HCI	\すり HC2	PF8	1. PF534	್ವಾಗಿ⇔೨ <u>SC1</u>	, <u>sc</u>
Parameters_	<u> </u>	<u> </u>						
pH (S.U.) Specific Conductivity (uhmos/cm)	7.8 500	7.8 430	7.6 590	7.9 390	7.9 430	7.9 460	7.9 470	8. 46
Total Suspended Solids	12	13	10	15	12	8	9	8
Nitrate			<0.010			<0.010 0.012	<0.010 0.015	0.
Nitrite		<0.010		0.016	0.014 0.054	0.040	0.013	0.
Total Phosphorus	0.062	0.054 2	0.15 <1	5	1	4	9	ĭ
Oil & Grease			<0.010		<0.010	<0.010	<0.010	<0.
Copper Total Chromium			<0.030			<0.030	<0.030	<0.
Hexavalent Chromium	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0 .
Trivalent Chromium		<0.030	<0.030	<0.030		<0.030	<0.030	
- Zinc	<0.010	<0.610	<0.010	<0.010	0.021	0.099	<0.010	
Lead			<0.070	<0.020	<0.020	<0.020	<0.020 160	7≀
Fecal Coliform	90_	500	880	130	340	81 1.8	5.9	4.
Total Organic Carbon	5.7	3.5	4.6	4.9	6.6 0.70	0.60	0.60	ດ
Total Kjeldahl Nitrogen	0.44	0.65	0.96	0.52 <1.6	<1.6	₹1.6	<1.6	<1.
INI (ug/1) RNY (ug/1)	<1.6 (15)	<1.6 <1.5	51.6 45.	4.8	<1.5	64	5.4	
\	المهمواني					4	٠, ٠	1
2 2000	mir-y	× 7	Act as The	1	, ,	77 7	And To	Ra
RDXS/) \$ 358	ish C		3 2 6	/	77	\sim	April 15	LP.
	Appro	ved by:		mars	Silone	ws		
/o V) 9			Gunars					
/19/ ₁₀₀ × N = 1			Laborat	ory(Mar	ager		,•	
A TANK TO THE TOP OF THE PARTY	Ý 7 3	hut!		/	. 1	T	to k	4.
八个一条	* W	rai i f	TO PACE	V.T.	- T	// T =	r en	11.10

Attn: Mr. Al Custar

Samples Received: 8/04/83

Date: August 31, 1983

Project Number: 6511

Results reported in mg/l except where noted.

Parameter	EC-1 21,323	EC-2 21,824	HC-1 21,825	HC-2 21,825	PF-6 21,827	PF-8 21,328	PF-534 21,829	SC-1 21,830	SC-2 21,83
r _{Hq}	7.E	7.5	7.4	7.3	7.4	7.0	7.5	7.5	7.5
Conductivity ²	<110	360	380	290	360	140	390	290	360
Total Suspended Solids	4	22	13	8	6	13	7	7	4
Biochemical Oxygen Demand	3	2	5	3	2	2	3	2	4
Total Organic Carbon	4	3	4	5	5	à	4	5	2
Total Kjeldahl Nitrogen	0_14	0.16	0.15	0.27	0.44	0.95	0.057	0.12	0.05
Nitrate	0.71	0.45	0.10	0.07	0.16	0.10	0.02	0.01	0.11
Nitrite	<0.010	<0.010	<0.010	<0.010	0.01	<0.010	<0.010	<0.010	<0.01
Total Phosphorus	0.03	0.02	30.0	0.05	0.02	0.04	0.06	0.62	0.07
Oil & Grease	4	3	3	2	2	3	2	<1	2
Dissolved Oxygen	8.8	8.3	6.2	5.5	7.2	6.3	6.9	7.0	7.2
· Copper	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	K0.020	<0.020	<0.00
·Chromium	<0.024	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.04
.HexavaTent Chromium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.019	<0.0
·Zinc	<0.020	<0.020	<0.020	<0.020	<0.020	<0.029	<0.020	<0.020	<0.02
. Lead	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.08
Fecal Coliform	TNTC	320	TNTC	220	160	120	120	590	400
TNT		ND-10		ND-10	ND-10	ND-10	NO-10		ND-1
RDX		ND-10		ND-10	ND-10	ND-10	ND-10		ND-1

pH is reported as S.U.

 $^4\,\text{INT}$ and RDX are both reported as $\mu\text{g/l}$ ND-non-detectable. Detection limits are shown next to "ND" notations.

Centified by:

Art Czabaniuk Laboratory Manager

 $^{^2}$ Conductivity is reported as whomos/cm $^{\circ}$

³Fecal Coliform is reported as /100 ml

TOOLIGHTON OVVOEN BEHAND

ANALYTICAL REPORT

ENVIRONMENTAL RESEARCH GROUP, INC.

Project: V9367 Report Date: 10-30-85

C14=+ I D : HC=2 *		
Client I.D.: HC-2 → ERG Sample No.: 09/137684 Matrix: NATURAL WATER		
Parameter	Result	Units
LINC	ND (0.02) 7.6	mg/L S. U.
Client I.D.: PF-8 ERG Sample No.: 09/137685 Matrix: NATURAL WATER		
Parameter	Result	Units
RGANIC CARBON, TOTAL	4	mg/L
AVERAGE OF DUPLICATE RUNS EXAVALENT CHROMIUM HROMIUM, TOTAL	8: 8 7 8: 8 3	mg/L mg/L
ECAL COLIFORM BACTERIA PECIFIC CONDUCTANCE OPPER, TOTAL	4200 500 <0. 0 2	TC/. 1L umho/c mg/L
IOCHEMICAL DXYGEN DEMAND EAD, TOTAL ITRATE NITROGEN	3 (0.05) 0.03	mg/L mg/L mg/L
ITRITE NITROGEN JELDAHL NITROGEN, TOTAL IL AND GREASE	ND (0.01) 0.46 <1	mg/L mg/L mg/L
XYGEN, DISSOLVED HOSPHORUS, TOTAL DX	7.2 0.35 ND (10)	mg/L mg/L ug/L
USPENDED SOLIDS EMPERATURE IME	7 60 11: 09	mg/L deg≓ AM
Comments: FLOW RATE IS LOW		
NT INC H	ND (10) <0.02 8.0	ug/L mg/L S. U.
Client I.D.: PF-534 ERG Sample No.: 09/137686 Matrix: NATURAL WATER		
<u>Parameter</u>	Result	<u>Units</u>
RGANIC CARBON, TOTAL EXAVALENT CHROMIUM HROMIUM, TOTAL	ND (1) 0 11 0.02	mg/L mg/L mg/L
ECAL COLIFORM BACTERIA PECIFIC CONDUCTANCE OPPER, TOTAL	1400 430 <0. 0 2	TC/.1L umho/c mg/L

Attn: Al Custar

Samples Received: 3/26/81

Date: March 31, 1981

Project Number: 4007

Results reported in mg/l

except where noted.

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Result
13,102	EC-1	рн	6.2 5.
13,103	EC-2	स	7.1 5.
13,104	HC-1	п	6.6 5.
13,105	HC-2	ч	6.6 S.
13,106	SC-1	n	7.0 S.
13,107	SC-2	n	7.0 €.
13,108	PF-534	п	€.9 5.
13,109	PF#6	п	6.7 S.
13,110	PF#8	π	7.0 5.
13,102	EC-1	Biochemical Oxygen Demand	5
13,103	EC-2	ч	<1
13,104	HC-1	π	7
13,105	HC-2	17	< 1.
13,106	SC-1	17	<1
13,107	SC-2	n	<1
13,108	PF-534	n	<1
13,109	P F#6 "	n	<1
13,110	PF#8	я	5

Page 1 of 4

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter .	Resulti
13,102	EC-1	Dissolved Oxygen	10.3
13,103	EC-2	IT	11.6
13,104	HC-1	и	10.7
13,105	HC-2	н	10.2
13,106	SC-1	11	12.7
13,107	SC-2	Ħ	12.5
13,108	PF-534	н	9.3
13,109	PF#6	n	13.1
13,110	PF #8	tt .	12.1
13,102	EC-1	Fecal	<1.2
13,103	EC-2	п	31
13,104	HC-1	н	22
13,105	HC-2	11	4
13,106	SC-1	n	4
13,107	5C-2	н	<1.2
13,108	PF-534	n	13
13,109	PF#6	n	<1.2
13,110	PF#8	π	15

Page 2 of 4

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
13,102	EC-1	Conductivity	230 µmino/:
13,103	EC-2	ħ	220 umbo/e
13,104	HC-1	н	170 umbc/s
13,105	HC-2	18	145 amho/4
13,106	sc-1	Ie .	175 smbo/c
13,107	SC-2	19	190 umbo/0
13,108	PF-534	r	130 umho/
13,109	PF#6	13	195 umho/
13,110	PF # 8	u	225 µmho/
13,102	EC-1	Oil & Grease	1
13,103	EC~2	12	.<1
13,104	HC-1	*1	< <u>;</u>
13,105	HC-2	и	2
13,106	sc-1	15	ı
13,107	SC-2	ıı .	1
13,108	PF-534	. п	1
13,109	PF#6	n	1
13,110	PF#8	п	1

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter .	Result
13,102	EC-1	Suspended Solids	1
13,103	EC-2	н	3
13,104	HC-1	11	<1
13,105	HC-2	u	3
13,106	SC-1	п	1
13,107	SC-2	н	6
13,108	PF-534	п	5
13,109	PF#6	h	2
13,110	PF#8	н	4

cc: Tom Chanda Jack Powell

Certified by:

Art Czabaniuk Laboratory Manager Ravenna, Ohio 44266

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Temp.	Results
12,263	EC-1	рн	3 3 °F	7.G S.U.
12,164	EC-2	tí	33011	6.9 S.U.
12,165	HC-1	t:	33° ''	6.6 S.U.
12,166	HC-2	G	33°"	5.8 S.U.
12,167	SC-1	u	33011	7.0 S.U.
12,168	sc-2	u	330/	6.8 S.U.
12,169	PF-534	n	3300	6.6 S.U.
12,170	PF-6	п	33°"	6.6 S.U.
12,171	PF-8	n	33	6.8 S.U.
12,163	EC-1	Conductivity	Ÿ	560 ಬಹಗಿಂ/ಆತ
12,164	EC-2	n		320 µmho/cm
12,165	HC-1	11		380 umbo/cm
12,166	HC-2	11		370 umho/cm
12,167	sc-1	ħ		7400 umho/c
12,168	SC-2	14		370 µmho/cm
12,169	PF-534	94		370 µmho/cz
12,170	PF~6	п		בס/כמ _{ת 2} 30
12,171	PF-8	n		360 µmho/cm

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
12,163	EC-1	Suspended Solids	4
12,164	EC-2	*	4
12,165	HC-1	11	3
12,166	HC-2	II	4
12,167	SC-1	Ħ	7
12,168	SC-2	'n	4
12,169	PF-534	H	16
12,170	PF-6	H	7
12,171	PF-8	н	14
12,163	EC-1	Biochemical Oxygen Demand	<1
12,164	EC-2	н	<1
12,165	HC-1	n	<1
12,166	HC-2	п	<7
12,167	SC-1	Ħ	<1
12,168	SC-2	n	<1
12,169	PF-534	π	<1
12,170	PF-6	_ **	<1
12,171	PF-8	Ħ	<1

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 198

Project Number: 3661

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
12,163	EC-1	Oil & Grease	Ţ
12,164	EC-2	n	<1
12,165	ac−1	67	<1
12,166	HC-2	n	<1
12,167	SC-1	n	<1
12,158	SC-2	н	<1
3.2,169	PF-534	n	<1
12,170	PF-6	et	<1
12,171	PF-8	1¢	2
12,163	EC-1	Dissolved Oxygen	11.7
12,164	EC-2	4	11.8
12,165	HC-1	n	10.a
12,166	HC-2	H	11.9
12,167	SC-1	Ħ	12.3
12,168	SC-2	Ħ	12.6
12,169	PF-534	er	11.4
12,170	PF-6 _	•	11.8
12,171	FF-8	н	11.9

Attn: Al Custar

Samples Received: 12/4/80

Date: December 31, 1980

Project Number: 3661

Results reported in mg/l except where noted.

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter		Results
12,163	EC-1	Fecal	120	120/100 ml
12,164	EC-2	ч	2000	200/100 ml
12,165	HC-1	11	<u>2</u> 600	360/100 ml
12,166	HC-2	n	620	62/100 ml
12,167	SC-1	jk.	620	62/100 ml
	SC-2	29	520	52/100 ml
12,168		n	500	50/100 ml
12,169	PF-534		350	,
12,170	PF-6	n	3-04	35/100 ml
12,171	PF-8	n		TNTC*

^{*}Too numerous to count.

Certified by:

Laboratory Manager Environmental Resear

Attn: Al Custar

Samples Received: 9/4/80

Date: September 30, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results 18
11,302	EC-1	ЪН	6.7 S.U.
11,303	EC-2	n	7.4 S.U.
11,304	sc-1	n	7.4 S.U. 4
11,305	SC-2	tt	7.5 S.U. 6
11,306	HC-1	n	7.2 S.U.
11,307	HC-2	n	7.4 S.U.
11,308	PF-8	n	7.4 S.U. 6
11,309	PF-6	п	NR
11,310	PF-534	n	7.3 S.U. 🤄
11,302	EC+1	Conductivity	440 umho/c
11,303	EC-2	11	150 umho/c
11,304	sc-1	17	320 µmho/c
11,305	SC-2		420 umho/c
11,306	HC-1	11	480 umho/c
11,307	HC-2	u ·	420 µmho/c
11,308	PF-8	17	$420~\mu mho/c$
11,309	PF-6	11	NR
11,310	PF-534	21	400 µmho/

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Suspended Solids	12
11,303	EC-2	It	3
11,304	SC-1	п	7
11,305	SC-2	11	4
11,306	HC-1	Ħ	3
11,307	HC-2	Ħ	19
11,308	PF-8	11	4
11,309	PF-6	π	NR
11,310	PF-534	. (1	4
		Biochemical Oxyger	n _
11,302	EC+2	Demand	2
11,303	EC-2	n	<1
11,304	SC-1	n	2
11,305	SC-2	я	<1
11,306	HC-1	ri -	4
11,307	HC-2	n	2
11,308	PF-8	r	1
11,309	PF-6	11	NR
11,310	PF-534	π	2

Page 2 of 9

Ravenna Arsenal, Inc.

Ravenna, Ohio 44266

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Total Organic Carbon	32
11,303	EC-2	n	11
11,304	sc-1	n .	8
11,305	sc-2	н	22
11,306	HC-1	н	28
11,307	HC+2	Ħ	12
11,308	PF-8	π	25
11,309	PF-6	n	NR
11,310	PF-534	n	6
11,302	EC-1	Total Kjeldahl Nitrogen	0.20
11,303	EC-2	н	<0.010
11,304	sc-l	н	<0.010
11,305	SC-2	n	0.15
11,306	HC-1	n	0.22
11,307	HC-2	_ n	0.091
11,308	PF-8	n	<0.010
11,309	PF-6	Ħ	NR
11,310	PF-534	n	<0.010

Page 3 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve	Ravenna	1 M	Results
Sample ID	Sample ID	Parameter	<u></u>
11,302 -	EC-1	Nitrate	0.69
11,303	EC-2	п	0.11
11,304	sc-1	. 11	0.024
11,3-5	sc-2	n	0.029
11,306	HC-1	n	0.065
11,307	HC-2	π	0.19
11,308	PF-8	n	0.12
11,309	PF-6	н	NR
11,310	PF-534	It	0.040
11,302	EC-1	Nitrite	0.016
11,303	EC-2	и	<0.010
11,304	sc-l	11	<0.010
11,305	sc-2	n	<0.010
11,306	HC-1	π	0.015
11,307	HC-2	_ #	0.015
11,308	PF-8	n	0.012
11,309	PF-6	IT	NR
11,310	PF-534	Ħ	<0.010

Page 4 of 9

Ravenna Arsenal, Inc.

Date: September 29, 1980

Ravenna, Ohio 44266

Project Number: 3384

Attn: Al Custar

Results reported in mg/l except where noted

Samples Received: 9/4/80

ERG-Cleve	Ravenna	Paramet <u>er</u>	Results
Sample ID	Sample ID		<0.030
11,302	EC-1	Total Phosphorus	
11,303	EC-2	u	0.072
11,304	sc-1	Ħ	<0.030
11,305	sc-2	n	0.041
11,306	HC-1	n	0.14
11,307	HC-2	н	<0.030
11,308	PF-8	n	0.069
11,309	PF-6	н	NR
11,310	PF-534	11	<0.030
11,302	EC-l	Oil & Grease	<1
	EC-2	11	<1
11,303		Ħ	<1
11,304	SC÷l	n	<1
11,305	SC-2		
11,306	HC-1	H	<1
11,307	HC-2	**	<1
11,308	PF-8	п	<1
11,309	PF-6	п	NR
11,310	PF-534	n	<1

Page 5 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302 ~	EC-1	Dissolved Oxygen	6.4
11,303	EC-2	pt .	7.0
11,304	sc-l	W	6.9
11,305	sc-2	n	7.5
11,306	HC-1	11	4.0
11,307	HC-2	n	6.0
11,308	PF-8	n	8.1
11,309	PF-6	n	NR
11,310	PF-534	H	6.8
11,302	EC-1	Copper	0.008
11,303	EC-2	· n	0.039
11,304	sc-1	н	0.012
11,305	SC-2	п	0.025
11,306	HC-1	11	0.067
11,307	HC-2	- π	0.011
11,308	PF-8	Ħ	0.006
11,309	PF-6	H	NR
11,310	PF-534	н	0.025

Page 6 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

		<u>-</u> ·	
ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Chromium	<0.005
11,303	EC-2	ŧī	<0.005
11,304	sc-l	π	<0.005
11,305	SC-2	п	<0.005
11,306	HC-1	п	<0.005
11,307	HC-2	lt .	<0.005
11,308	PF-8	п	<0.005
11,309	PF-6	н	NR
11,310	PF-534	n	<0.005
11,302	EC-1	Hexavalent Chromium	<0.010
11,303	EC-2	и	<0.010
11,304	sc-l	91	<0.010
11,305	sc-2	n	<0.010
11,306	HC-1	n	<0.010
11,307	HC-2	· · ·	<0.010
11,308	PF-8	n	<0.010
11,309	PF-6	n	NR
11,310	PF-534	π	<0.010

Page 7 of 9

Attn: Al Custar

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

		•	
ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Zinc	0.044
11,303	EC-2		0.050
11,304	SC-1	พ	0.023
11,305	SC-2	11	0.051
11,3-6	HC-1	11	0.066
11,307	HC-2	н	0.031
11,308	PF-8	Ħ	0.034
11,309	PF-6	n	NR
11,310	PF-534	Ħ	0.035
11,302	EC-1	Lead	<0.039
•	EC-2	Ħ	<0.039
11,303	sc-1	n	<0.039
11,304		n	<0.03 9
11,305	sc-2	н	<0.039
11,306	HC-1	11	<0.039
11,307	HC-2	11	<0.039
11,308	PF-8		
11,309	PF-6	n	NR
11,310	PF-534	n	<0.039

Page 8 of 9

Samples Received: 9/4/80

Date: September 29, 1980

Project Number: 3384

Attn: Al Custar

Results reported in mg/l except where noted

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results
11,302	EC-1	Fecal Coliform	120/100 ml
11,303	EC-2	H	140/100 ml
11,304	sc-1	, 19	120/100 ml
11,305	sc-2	u	230/100 ml
11,306	HC-1	11	TNTC
11,307	нс-2	H	270/100 ml
·	PF-8	н	270/100 m
11,308		N	NR
11,309	PF-6	'n	190/100 m
11,310	PF-534	Ħ	100\ 100 W

NR-Not Received

Certified by

Laboratory Manager

__ ==

ADDENDUM

Ravenna Arsenal, Inc. Ravenna, Ohio 44266 Date: November 6, 1980

Project Number: 3384

Attn: Al Custar

Samples Received: 9/4/80

ERG-Cleve Sample ID	Ravenna Sample ID	Parameter	Results	Detection Limit
11,303	EC-2	TNT	ND	0.04 ppb
11,305	SC-2	# .	ИD	0.04 ppb
11,307	HC-2	11	ND	0.04 ppb
11,308	PF-8	u	ND	0.04 ppb
11,309	PF-6	н	ND	0.04 pph
11,310	PF-534	11	ND	0.04 ppt
11,303	EC-2	RDX	ND	12 ppb
11,305	SC-2	11	ND	12 ppb
11,307	HC-2	19	ND	12 ppb
11,308	PF-8	n	ND	12 ppb
11,309	PF-6	n	ND	12 ppb
11,310	PF-534	tt	ND	12 ppb

Certified by:

David L. Lanzola

Laboratory Manager

Ravenna Arsenal, Inc. Ravenna, Ohio 44266

Attn: Al Custar

Results reported in mg/l except where noted

Project Number: 3164

Date: June 30,1980

Samples Received: 6/12/80

	Nitrite-N	<0.010	<0.010	710 0	0.01	<0.010	0.017	(r	<0.010	<0.010	<0.010	010 07	
	Nitrate-N	0.50	0.29	•	0.19	0.062	0.21		0.40	0.18	0.14	u	660.0
	TKN	.088	044	· ·	1.1	0.12	0.088	•	0.41	0.73	36		0.42
Biochemical	Oxygen Demand	m	<	•	2	73	c	n	9	ß	ć	7	2
	Suspended Solids	10		11	7	11		4.5	16	10	. (28	S
	Conductivity	410		390	340	330))	360	310	370		260	340
	Hd	Hd .		7.5 "	7.1 "	= 9 1	.	7.5 "	7 . R ==	, L	· · · ·	7.4 "	7.3 "
	Ravenna Sample ID		EC-1 /.	EC-2 7.	SC-1 7.		SC=2	HC-1 7	110-2		/ 8-4d	PF-6 7	PF-534 7
	ERG/Cleve	Sample 15	10,740	10,741	742		10,743	10,744	7 7 7	C#//OT	10,746	10,747	z 10,748

Ravenna Arsenal, Inc. Ravenna, Ohio 44266

Attn: Al Custar

Date: June 30,1980 Project Number: 3164

mg/1	
Results reported in	except where noted

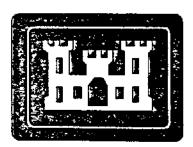
in Temples PI		8'2 0	8.2	_			4.4		
lifor	$110 \qquad 36$	190	•	310 56	710 36	260 36	330	270 60	089
Dissolved Oxygen	9.3	0.6	9.4	9.6	8.1	7.9	8.0	9.3	8.0
Oil and Grease	<1	<1	1	<1	<1	<1	<1	<1	1
Total Phosphorous	0.11	0.21	0.16	0.075	0.16	0.19	0.19	96.0	0.35
Ravenna Sample ID	EC-1	EC-2	SC-1	SC-2	HC-1	HC-2	PF-8	PF-6	PF-534
ERG/Cleve Sample ID	10,740	10,741	10,742	10,743	10,744	10,745	10,746	10,747	10,748
									EN'

Certified by: David L. Lanzola Laboratory Manager

Samples Received: 6/12/80

APPENDIX A-2

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT NACA TEST AREA


PRELIMINARY ASSESSMENT (1996)

PRELIMINARY ASSESSMENT

·FOR

THE RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

PREPARED FOR

U.S. ARMY CORPS OF ENGINEERS NASHVILLE DISTRICT

CONTRACT No. DACA62-94-D-0029 Delivery Order 0009

February 1996

4.2.5 RVAAP-36 (Pistol Range)

The Pistol Range, due north of RVAAP-05 (Winklepeck Burning Grounds) was used by the installation security force and occasionally other outside agencies for pistol qualification. The qualifier stood on the south side of the creek and shot over the creek at targets on the north side. The north bank, 150 to 200 feet from the edge of the creek, was the stopping point for the bullets.

4.2.6 RVAAP-37 (Pesticide Building S-4452)

This facility was used as the pest control shop from the early 1970s until 1993. Small quantities of pesticide were mixed inside the building and vehicle-mounted sprayers were filled and mixed along the western side of the building. This building is located to the southeast of the 1037 building (Headquarters).

4.2.7 RVAAP-38 (NACA Test Area)

The NACA was trying to develop explosion-proof fuel tanks for aircraft, or explosion-proof fuel. An airplane would land on an old clay runway and taxi to the east (the test facility). The planes were hooked up to a conveyor or catapult and rammed into a wall. The facility is due east of the RVAAP-03 (Demolitions Area #1).

95-090P/020996 4-18

APPENDIX A-3

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT NACA TEST AREA

NACA INFORMATION PAPER (1997)

HACA

DRAFT

INFORMATION PAPER

AGOH-OT-RTLS

24 SEPTEMBER 1997

PURPOSE: TO DEFINE PREVIOUS USAGE OF NACA CRASH STRIP.

THE NACA CRASH STRIP IS LOCATED IN TRAINING AREA "G" AT THE RAVENNA TRAINING AND LOGISTICS SITE (RTLS), ON THE RAVENNA ARMY AMMUNITION PLANT (RVAAP). THE STRIP IS A CONCRETE AIRSTRIP APPROXIMATELY 1600' LONG, COMPRISED OF THREE PARALLEL CONCRETE STRIPS. THE TWO OUTBOARD CONCRETE STRIPS PROVIDED A SURFACE UPON WHICH THE AIRCRAFTS' MAIN LANDING WHEELS TRAVELLED. THE CENTER STRIP SUPPORTED A MONORAIL WHICH LOCKED-IN THE AIRCRAFTS' NOSE OR TAILWHEEL (SEE ATTACHMENT). THE STRIP WAS UTILIZED BY THE NATIONAL ADVISORY COMMITTEE ON AERONAUTICS (NACA) BETWEEN 1947 AND 1953 FOR CLASSIFIED TESTING.

DURING THIS PERIOD, FOUR CURTISS C-46 "COMMANDOES" AND THIRTEEN FAIRCHILD C-82 "PACKETS" (WAR WEARY TWIN-ENGINE CARGO AIRCRAFT FROM THE U.S. AIR FORCE) WERE UTILIZED FOR FULL-SCALE CRASH-FIRE STUDIES AT THE SITE (SEE ATTACHMENTS).

THE CRASH-FIRE TESTING CONDUCTED PERMITTED IDENTIFICATION OF THE MECHANISMS FOR CRASH FIRES, AND THE TRUE NATURE OF THE DISRUPTION SUFFERED BY AIRPLANES, RELATING SPECIFICALLY TO FUEL SPILLAGE, COMBUSTIBLE VAPOR DISTRIBUTION, GENERATION OF IGNITION SOURCES, FIRE INCIDENCE AND PROGRESSION, AND TEMPERATURES AND TOXIC GAS CONCENTRATION. THE CONDITIONS AT RVAAP PERMITTED FULLY-INSTRUMENTED AIRCRAFT TO BE PLACED (UNDER THEIR OWN POWER) IN CONTROLLED CRASHES INTO A FIXED CRASH BARRIER AT SPEEDS OF 80-105 MPH.

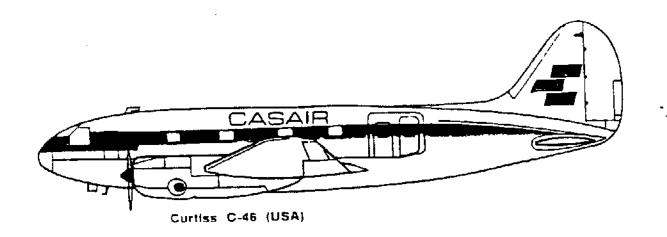
THE C-46 AIRCRAFT UTILIZED HAD A 108.1' WINGSPAN, AND A LENGTH OF 76.4'. THE CRASH WEIGHT WAS APPROXIMATELY 24,060 LBS., INCLUDING 7,090 LBS OF OCTANE GRADE 100/130 AVIATION FUEL OR LOW VOLATILITY FUEL. THE C-82 AIRCRAFT UTILIZED HAD A WINGSPAN OF 109.3' AND A LENGTH OF 86.6'. THE CRASH WEIGHT OF APPROXIMATELY 40,781 LBS. ALSO INCLUDED 7,090 LBS. OF OCTANE GRADE 100/130 AVIATION FUEL OR LOW VOLATILITY FUEL. THE AIRCRAFT NORMALLY TRAVELLED LESS THAN 400' AFTER STRIKING THE CRASH BARRIER.

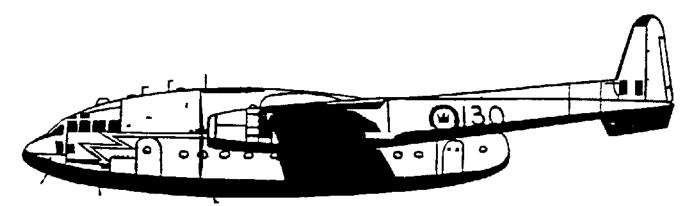
COMBUSTIBLE LIQUIDS INVOLVED IN THIS CRASH-FIRE STUDY INCLUDED THE 100/130 DCTANE AVIATION FUEL, THE LOW VOLATILITY FUEL, LUBRICATING OIL, COOLANT COMPOUNDS, HYDRAULIC FLUID, ALCOHOL FOR DE-ICING SYSTEMS AND BRAKE FLUID. THE UNBURNED COMBUSTIBLE LIQUIDS WERE GENERALLY FOUND WITHIN A FAN-SHAPED AREA BEGINNING AT THE CRASH BARRIER, AND EXTENDING OUTWARD (EASTWARD) UP TO 100' (SEE ATTACHMENT). A SMALL DRAINAGE POND IS LOCATED AT THE SOUTH EDGE OF, AND SLIGHTLY DOWN-GRADIENT FROM THE FAN.

WHILE 17,850 GALLONS (120,530 LBS.) OF AVIATION FUEL WERE CONSUMED DURING THIS STUDY, EXACT AMOUNTS OF THE OTHER COMBUSTIBLE LIQUIDS EXPENDED (LISTED ABOVE) ARE UNAVAILABLE AND UNKNOWN. THEIR CONSUMPTION AND IMPACT WAS NOT CONSIDERED SIGNIFICANT TO THE CONDUCT OF THE STUDY.

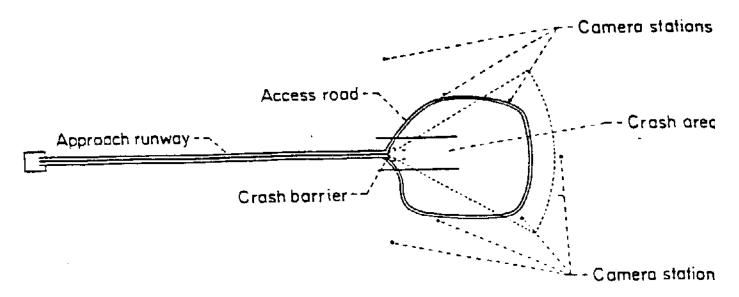
AN UNDISCLOSED NUMBER OF THE AIRCRAFT WERE NEARLY TOTALLY CONSUMED DURING THE CRASH FIRES. OTHERS HOWEVER, WERE SIGNIFICANTLY DAMAGED, BUT NOT TOTALLY BURNED. OTHER THAN TELEMETRY AND INSTRUMENTATION REMOVED FOR SALVAGE OR REUSE, THE DAMAGED AND BURNED AIRFRAMES WERE BULLDOZED INTO AN AREA EAST OF THE END OF THE STRIP AND BURIED. A FEW REMNANTS OF THE BURIED

DRAFT

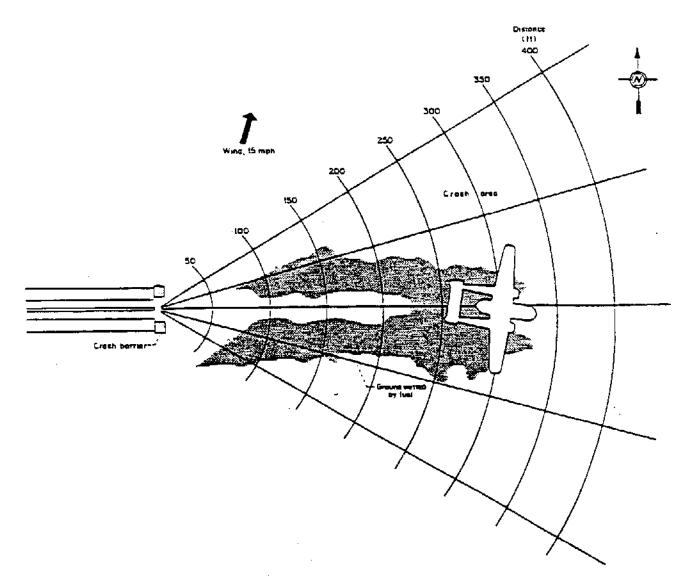

DRAFT

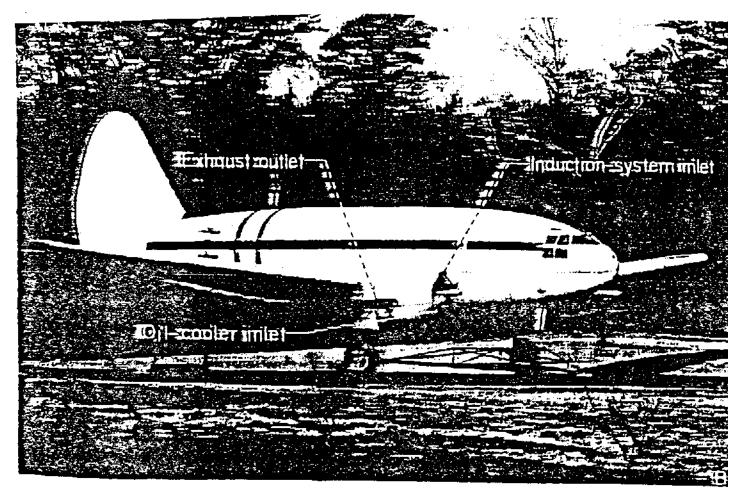

AIRFRAMES PROTRUDE FROM THE SOIL IN VARIOUS POINTS WITHIN THE TRAINING AREA, WHERE THEY HAD PREVIOUSLY BEEN BURIED. THESE AIRFRAME REMNANTS ARE FOUND OFF THE EXISTING ROADS AND TRAILS UTILIZED BY THE NACA AND SUBSEQUENT USERS.

A LARGE PROPORTION OF THE COMBUSTIBLE LIQUIDS SPILLED ON THE GROUND SOAKED QUICKLY INTO THE UNFROZEN SOIL. THESE LIQUIDS RELEASED COMBUSTIBLE VAPORS INTO THE AIR WHICH BURNED LONG AFTER THE CRASH, UNTIL THE VAPORS EMANATING FROM THE SOIL HAD DIMINISHED TO A POINT WHERE THEY WOULD NO LONGER SUPPORT COMBUSTION.

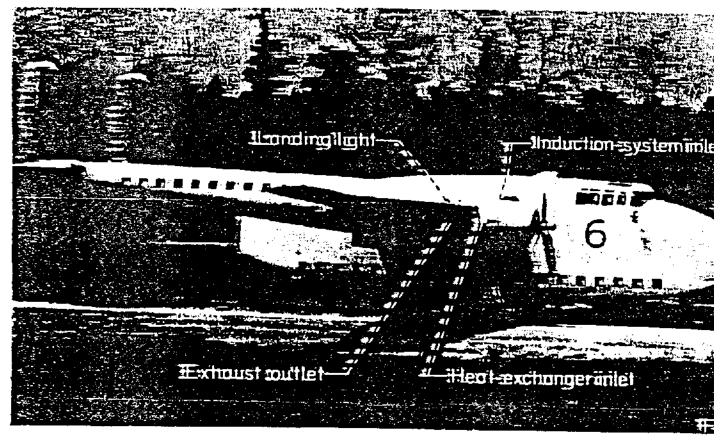

THE OHIO ARMY NATIONAL GUARD HAS BEEN THE LICENSED USER OF TRAINING AREA "G" SINCE 1969. AN ARCHEOLOGICAL SURVEY OF TRAINING AREAS "D" THROUGH "G" WAS COMPLETED DURING 1997, BY MIDWEST ENVIRONMENTAL CONSULTANTS, INC. TRAINING AREA "G" HAS BEEN UTILIZED SINCE 1969 FOR DISMOUNTED TROOP TRAINING, BIVOUAC OF THE TROOPS IN TRAINING AND VEHICULAR PARKING. DURING THE SAME PERIOD, THE TRAINING AREA HAS ALSO BEEN UTILIZED AS AN HELICOPTER DAY AND NIGHT LANDING ZONE. FIRING OF BLANK AMMUNITION OF 7.62MM AND SMALLER IS PERMITTED WITHIN THE TRAINING AREA BETWEEN 1000 AND 2200 HOURS DAILY.

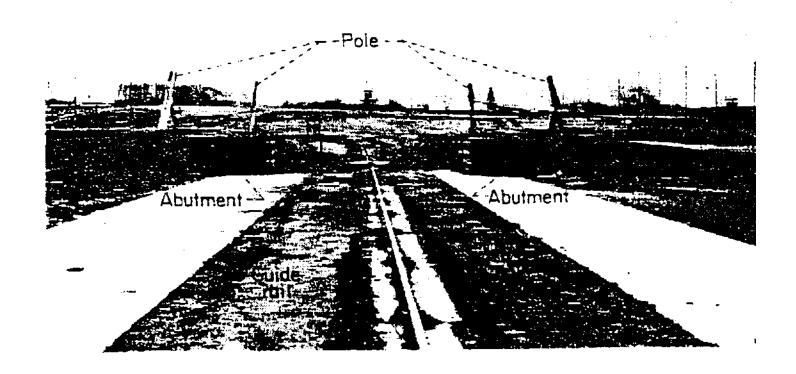
ADJUTANT GENERAL OF OHIO PAMPHLET (AGOH PAM) 210-1, DATED 9 AUG 97 ELABORATES ON THE USES OF AND RESTRICTIONS TO THE USE OF THIS TRAINING AREA. A PRINTED COPY OF THIS AGOH PAM IS PROVIDED TO, AND ITS CONTENTS ARE ALSO BRIEFED TO EACH INCOMING UNIT IN TRAINING, ACTIVE AND RESERVE COMPONENT, REGARDLESS OF BRANCH OR RECENT HISTORY OF PREVIOUS USE. THE AGOH PAM RESTRICTS VEHICULAR TRAFFIC AND PARKING TO THE CONCRETE RUNWAY AND ESTABLISHED TRAILS WITHIN THE TRAINING AREA. THE AGOH PAM ALSO PROHIBITS TROOPS FROM DIGGING INTO THE SOIL, DISCHARGING GRAY WATER (MESS OPERATION WASTE), DISPOSING OF TRASH OR GARBAGE WITHIN THE TRAINING AREA. THE AGOH PAM ALSO PROHIBITS LIVE-FIRE OF ANY WEAPON OR WEAPON SYSTEM, ALL PYROTECHNIC USAGE, AND FIRES OF ANY KIND. THE TROOPS ARE ALSO CAUTIONED VERBALLY NOT TO CONSUME OR INGEST THE SOIL OR GROUND WATER.

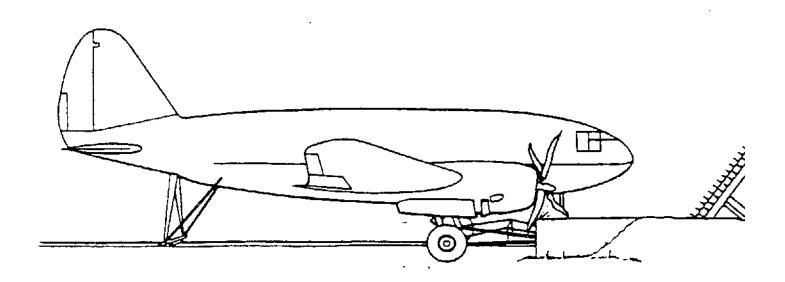




Fairchild C-119G Flying Boxcar (1946, USA)




Schematic drawing of test site for aircraft crash-fir program.



-C-46 airplane used in aircraft crash-fire program.

APPENDIX A-4

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT NACA TEST AREA

NACA ANNUAL REPORT (1953)

THIRTY-NINTH ANNUAL REPORT

OF THE

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

PLASH LIGHT CHEE WIMELERAL - B CHEE WIMELERAL - B

1953

FUECS DEICILG

OLL ITUDIZANLIC FLUIDS

CIZOR LAS

INCLUDING TECHNICAL REPORTS

NOS. 1111 to 1157

FIRE EXTLIBURITY ICAT

CB STIVE

VUCS SVUCS PCB'S METALS

MATRIS FROM ES

SOURCES
FUEL

PRICING FLUINS

OIL

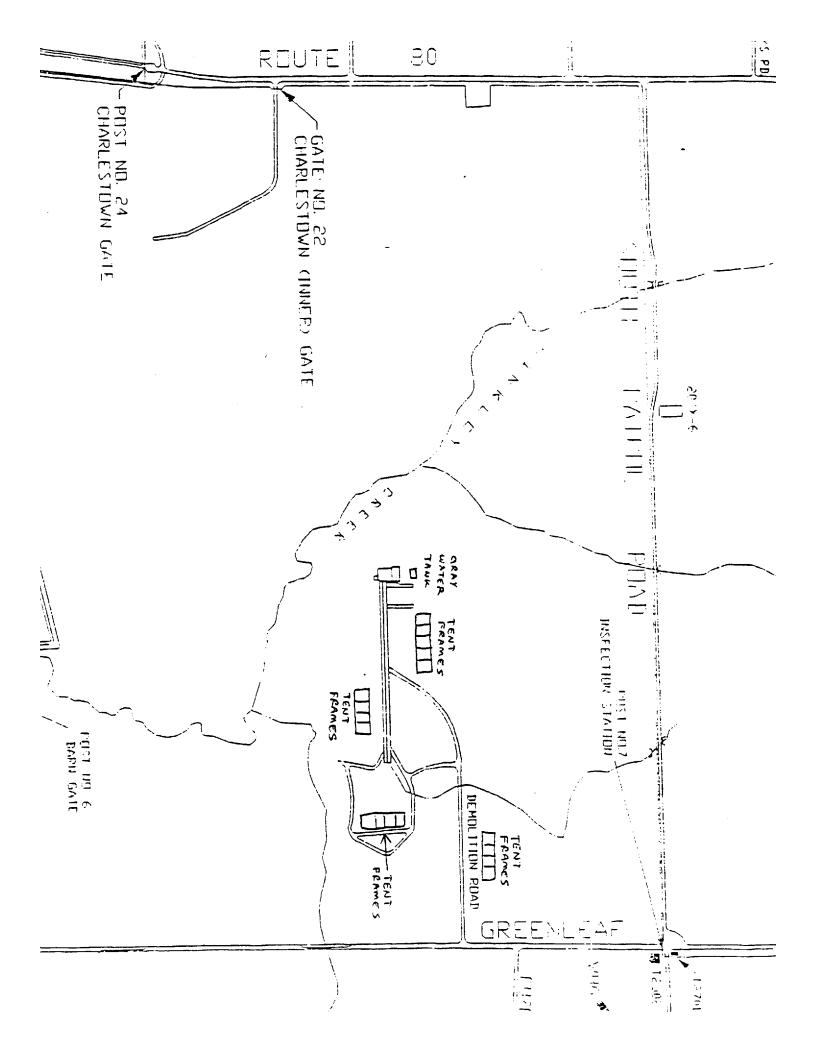
HUD, CAMEIL FLUINS

FIRE EXTMOUSIFAL ACENTS

BURNG ENGINAS - METAIS

PAPE I

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1955


poserved were provided by the burning of the fireaguishing agent employed in the engine induction syson. The agent in this case was bromochloromethane CH-BrCl., known as CB. This material decomposes thermally at the temperatures of the engine exhaust-system netal, and some of the decomposition fragments released will burn in air. Photographs of this agent burning on the surface of a heated section of exhaust stack are shown in figure 39. In normal application during fire extinguishment, enough CB is employed to provide an inerting atmosphere around the decomposition products, and their ignition does not occur. In a crash, unfortunately, there can be no control of the quantity of extinguishing agent passing through the engine, because the displacement of the pistons meters the extinguishing agent throughput according to the engine rotational speed and the current throttle setting of the damaged engine, neither of which can be specified in a crash. Although high concentrations of CB were provided at the engine inlet of the crashed airplane, the quantity passed through the engine was small enough to allow a sufficient residence time for the CB in the high-temperature environment of the exhaust-disposal system to decompose thermally. Upon contact with the air at the tail-pipe exit, the decomposition products ignited to provide the series of exhaust flames shown in figure 12.

Halocarbons involving bromme and fluorine, in piete substitution of hydrogen is obtained. wou. satisfactory fire-extinguishing agents for engine inlet meaing, because their decomposition products do not burn a engine metal temperature. Compounds in this class includ trifluorobromomethane CBrF, and difluorodibromomethan CBr₂F₂, which have recently become available in restricte quantities.

After the first crash in this series, the water-spray system was mounted to remain with the exhaust-disposal syste should the engine be displaced, and carbon dioxide was er ployed at the engine inlet because it does not decompo appreciably at engine exhaust temperatures. In the next s crashes, one ignition occurred by the movement of $\hat{\mathbf{r}}_t$ through the hot-air duct to the exhaust-gas heat exchang as was described in the discussion of liquid-fuel spilla This result called attention to the need for more care distribution of the water spray in the heat exchanger : to the desirability of a safety gate in the hot-air duct. A: coming to rest, the other five unburned crashed airpla carrying the inerting system appeared as shown in hig 40. The only visible evidence of the presence the inerting system was the volume of water vapor isst from the nacelle. On humid days, the condensed w vapor persisted in the atmosphere long enough to have appearance shown in some of the photographs.

Figure 42.—Crash area for high-contact-angle crash.

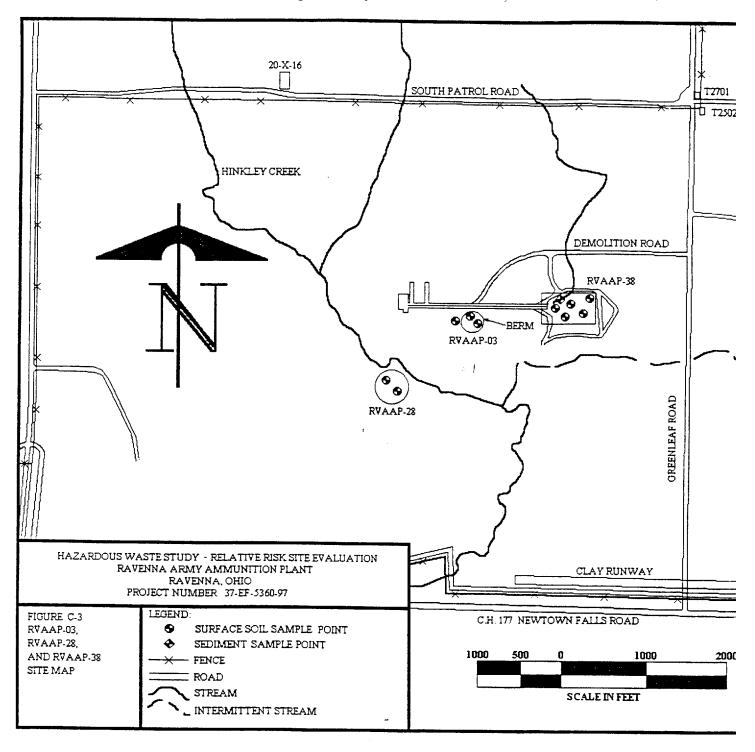
APPENDIX A-5

SELECTED PORTIONS FROM PREVIOUS ENVIRONMENTAL INVESTIGATIONS AT NACA TEST AREA

RELATIVE RISK SITE EVALUATION (1996)

U.S. Army Center for Health Promotio and Preventive Medicine

HAZARDOUS AND MEDICAL WASTE STUDY NO. 37-EF-5360-9
RELATIVE RISK SITE EVALUATION
RAVENNA ARMY AMMUNITION PLANT
RAVENNA, OHIO
28 OCTOBER - 1 NOVEMBER 1996


VOLUME I

Distribution limited to U.S. Government agencies only; protection of privile information evaluating another command; Mar 97. Requests for this document be referred to Commander's Representative, Ravenna Army Ammunit Plant. 8451 State Route 5, Ravenna, OH 44266-9297.

Readiness Thru Health

B-10

Hazardous and Medical Waste Program Study No. 37-EF-5360-97, 28 OCT - 4 NOV 1996

- --

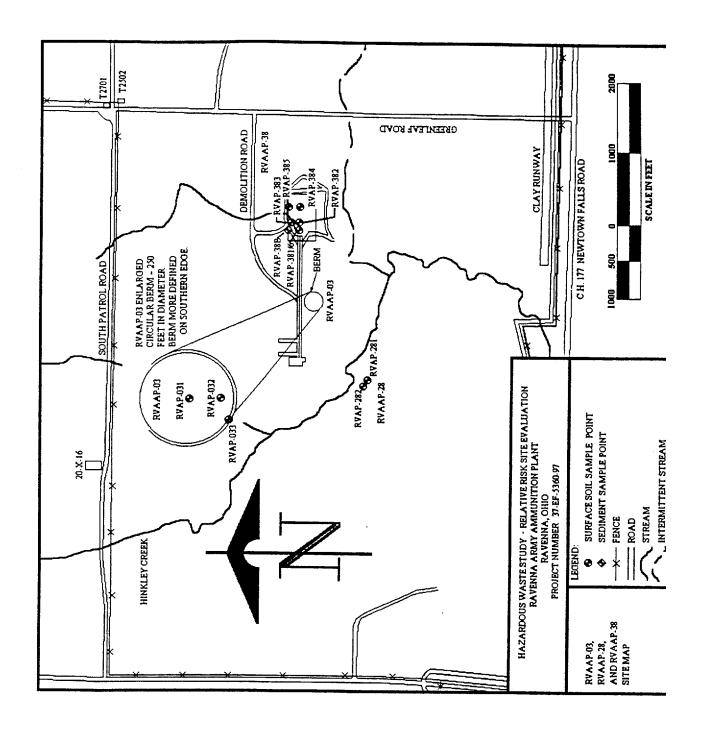
- → 1. Site Name: RVAAP-38, NACA Test Area.
 - 2. Site Summary: This area was used as an aircraft test area. Airplanes with full fuel loads were rammed into an obstacle that sheared off the left side landing gear to intentionally cause crashes. These tests were to develop explosion-proof fuel tanks and/or fuels. The area was used during the 1950's. Five soil samples and one sediment sample were taken and analyzed for metals, semivolatile organic compounds, and volatile organic compounds (soil only for VOCs).

3. Pathway Evaluation:

- a. Ground Water: Not Evaluated. There is no ground water associated with this site.
- b. Surface Water/Human Endpoint: Not Evaluated. There is no surface water associated with this site.
- c. Sediment/Human Endpoint: Low. Two compounds: 4-chloro-3-methyphenol at a concentration of 4 mg/kg and 2-methylnaphthalene at a concentration of 1.6 mg/kg were detected in the sediment sample, but are not in the *Primer* and are not included in calculating the CHF.

(1) Contaminant Hazard Factor: 0.63 = Minimal.

Contaminant	Max Concentration (mg/kg)	Standard (mg/kg)	Ratio
arsenic	3.9	22	0.18
barium	67.6	5300	0.01
chromium	20.3	3000	0.01
copper	4.95	2800	0
zinc	44.2	23000	0
phenol	3.8	39000	0
2-chlorophenol	3.6	330	0.01
1,3-dichlorobenzene	2	2800	0
1,4-dichlorobenzene	1.9	740	0
n-nitroso-di-n-propylamine	2.3	6.3	0.37
1,2,4-trichlorobenzene	2.1	620	0
acenaphthene	2	360	0
2,4-dinitrotoluene	2.2	130	0.02
4-nitrophenol	3.9	4800	0
pentachlorophenol	4.4	250	0.02
pyrene	2.2	2000	0


- (2) Migration Pathway Factor: *Potential*. There is no evidence that site contaminants are migrating. However, there are no physical barriers in place to prevent migration.
- (3) Receptor Pathway Factor: *Potential*. This area is not used for production and is not populated with workers. However, access to the site is not restricted in any manner.
- d. Surface Water/Ecological Endpoint: Not Evaluated. There is no surface water associated with this site. Furthermore, this site does not impact any critical habitat, as defined in the Primer.
 - e. Sediment/Ecological Endpoint: Medium.
 - (1) Contaminant Hazard Factor: 6.60 = Moderate.

Contaminant	Max Concentration (mg/kg)	Standard (mg/kg)	Ratio		
Arsenic	3.9	6	0.65		
Chromium	20.3	26	0.78		
Copper	4.95	16	0.31		
Zinc	44.2	120	0.37		
Pyrene	2.2	0.49	4.49		

- (2) Migration Pathway Factor: Potential. There is no evidence that site contaminants are migrating. However, there are no physical barriers in place to prevent migration.
- (3) Receptor Pathway Factor: Potential. Sediment running off of this site could enter into Sand Creek, which is known habitat for State Endangered Species.
 - f. Surface Soil: Medium.
 - (1) Contaminant Hazard Factor: 3.20 = Moderate.

Contaminant	Max Concentration (mg/kg)	Standard (mg/kg)	Ratio
Arsenic	12.7	22	0.58
Barium	179	5300	0.038
Cadmium	46	18	2.56
Chromium	48.3	3000	0.02
Copper	13.4	2800	0
Zinc	53	23000	0
Methylene Chloride	12	1100	0.01

- (2) Migration Pathway Factor: Potential. There is no evidence that site contaminants are migrating. However, there are no physical barriers in place to prevent migration.
- (3) Receptor Pathway Factor: *Potential*. This area is not used for production and is not populated with workers. However, access to the site is not restricted in any manner.
- 4. Final Score. Medium (2), three Media of Concern.

Summary of Detected Compounds (Cont)

ンタのを

	ent	3		9		3	15		2		~	2			~			2		2	6	-	2
	Sediment	38B	3.9	9.79	•	20.3	4.95	•	44.2	•	3.8	3.6	2	1.9	2.3	2.1	4	9'1	7	2.2	3.9	4.4	2.2
		386	10.5	105	•	34.6	9.15	,	53	·	•		,	,	•		,		•	•	1	•	•
P-38		385	9.94	50.5	•	36.8	7.88	,	30.7	0.01		'	,	1	1	1	١	,	•	,	٠		٠
RVAAP-38	Soil	384	10.0	115	•	20	9.56	ı	50.4			,	ı	r	•	•	•	ı	ı	ı	•	,	•
	Surface Soil	383	11.6	142	1	24.7	89.6	,	51.9	0.012	1	•		,	1	1		,	ı	'	,	'	,
		382	12.7	179	ı	37.1	11.8	·	51.7	0.00													
		381	8.82	162	46	48.3	13.4		50.9	900'0	-		•	•		-	,	,	1	ı	•	•	,
	Sediment	36B	8.03	56		6.85	5.62	,	31.3	,		,	,	-	1	,		'	-	ı	•	1	,
36		364	11.7	25		18.1	372	4309	901	1		1	1	ı		·	,	1	1	1	,	1	•
RVAAP-36	e Soil	363	17.4	48		20.4	214	2840	81.4		ı	t	,	ı	•	,	-	1	ı	'	-	,	-
	Surface Soil	362	16.6	72.9	1	54.6	174	1682	9'.29			,		٠.	'	,	,	,	,	,	,	, 	,
		361	11.3	80.9		21.6	15.7	39	155			,					,	-	,	•	•	,	'
Site Number	Sample Type	Sample Number	arsenic	barium	cadmium	chromium	copper	lead	zinc	methylene chloride	phenol	2-chlorphenol	1,3-dichlorobenzene	1,4-dichlorobenzene	n-nitroso-di-n-propylamine	1,2,4-trichlorobenzene	4-chloro-3-methyphenol	2-methylnaphthalene	acenaphthene	2,4-dinitrotoluene	4-nitrophenol	pentachlorophenol	pyrene
Sit	Sa	Sa		(Compound (soil/sediment mg/kg -surface/groundwater µg/L)																		