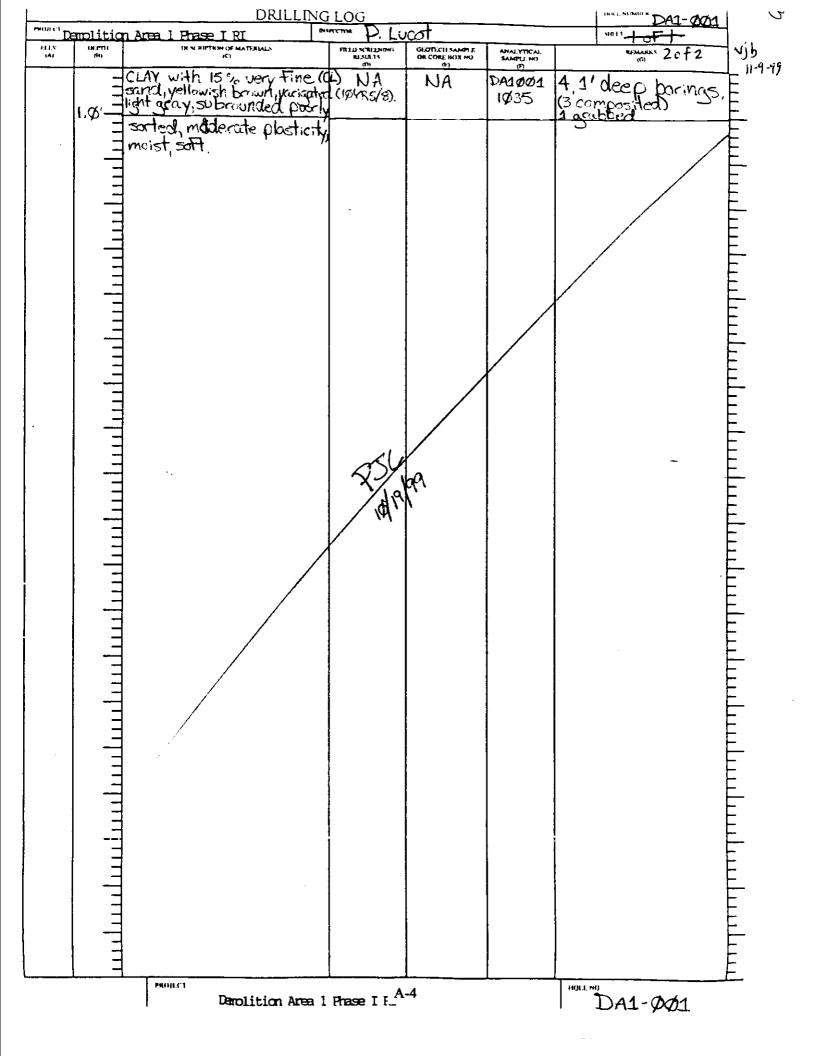
APPENDIX A

SOIL AND GEOPROBE SAMPLING LOGS

APPENDIX A SOIL SAMPLE LOG LOCATOR SHEET

Sample Station	Page
Number	Number
DA1-001	
DA1-002	
DA1-003	
DA1-004	A-11
DA1-005	A-13
DA1-006	A-15
DA1-007	A-17
DA1-008	A-19
DA1-009	A-21
DA1-010	A-23
DA1-011	A-25
DA1-012	A-27
DA1-013	A-29
DA1-014	A-31
DA1-015	
DA1-016	
DA1-017	
DA1-018	
DA1-019	
DA1-020	
DA1-021	
DA1-022	
DA1-022	
DA1-025	
DA1-025	
DA1-025	
DA1-020	
DA1-027	
DA1-028 DA1-029	
DA1-029 DA1-030	
DA1-031 DA1-032	
DA1-033	
DA1-034	
DA1-035	
DA1-036	
DA1-037	
DA1-038	
DA1-039	
DA1-040	
DA1-041	
DA1-042	A-89

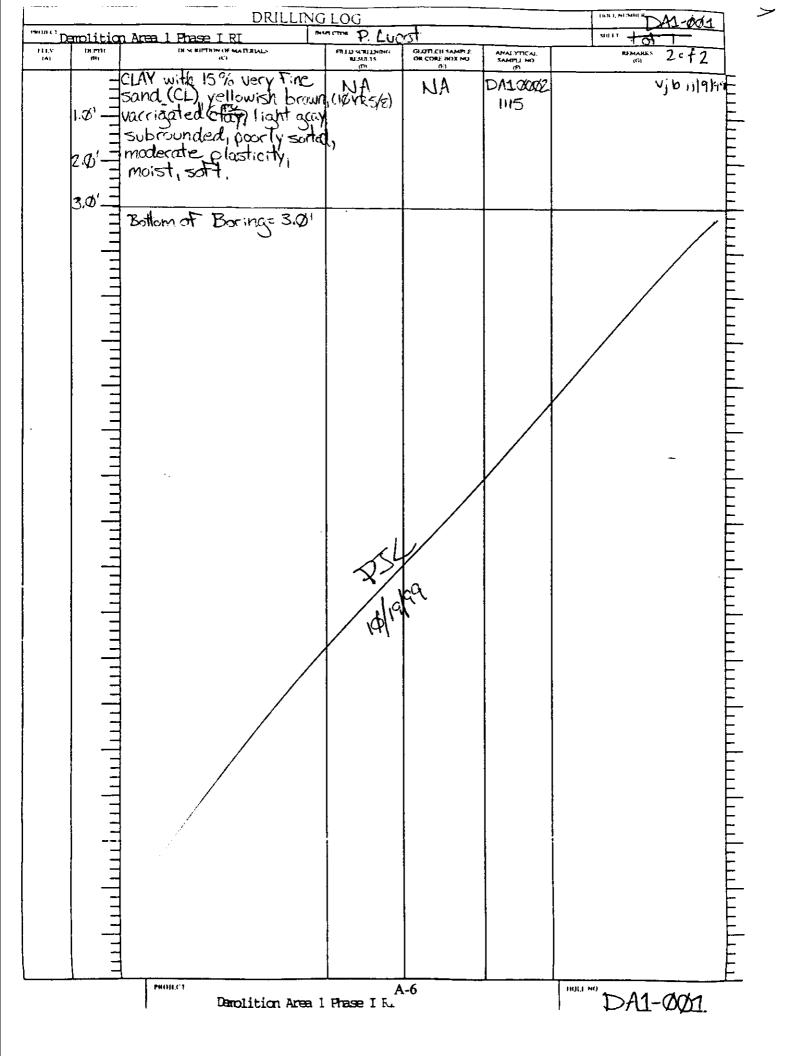
THIS PAGE INTENTIONALLY LEFT BLANK.


SOIL AND GEOPROBE SAMPLING LOGS

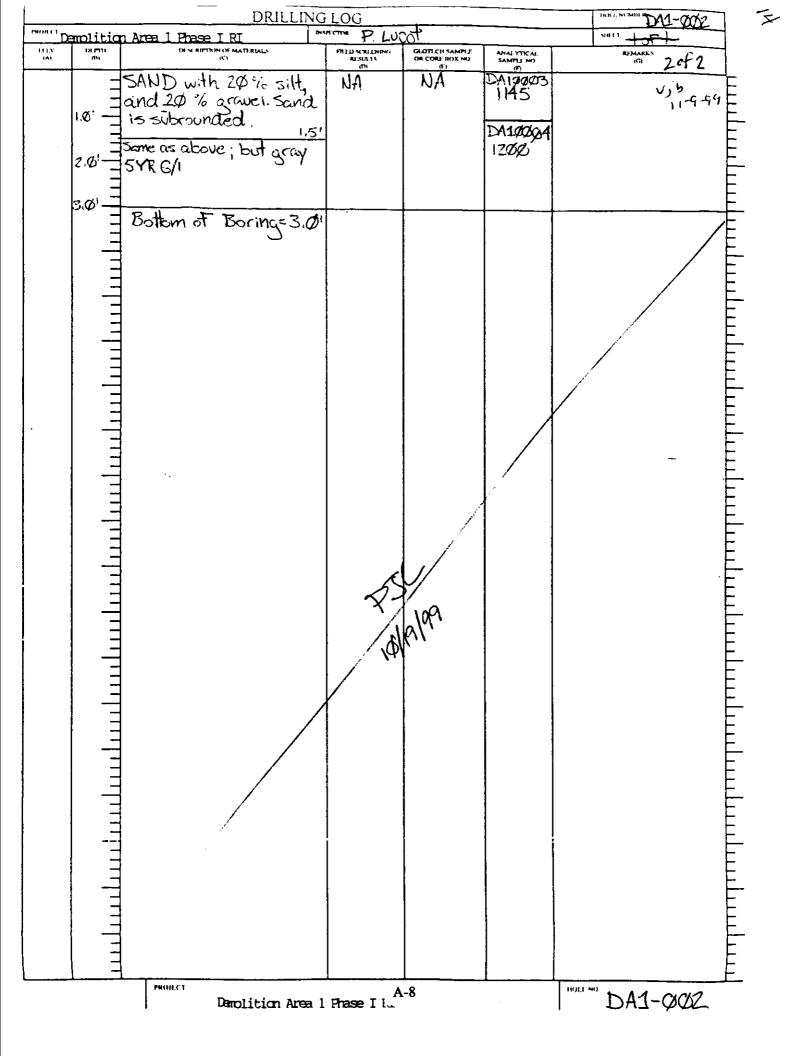
THIS PAGE INTENTIONALLY LEFT BLANK.

		······						IS TRUCT	•									_	·		
HTRW E	DRILL	INC	; LC)G					ται	isvi	lle									аханы 1-01	04
E COMPANY NAME	-							OREL SUR		ACTOR									SHEET	же <u>т. ()</u>	\mathbf{v} +
PROJECT	SAIC								·	Nŕ	1									<u>or</u> 1	2
	Demolit	-i	λ	1	+	דת				4 LCC/			_		_					Vib	-1-9
NAME OF DRILLE	R .	. ~	, izist		a se 1	<u>K1</u>				• MAN	UFACT	CAVE TUPERS	CICIA : DĘSIG:	ATTIN NATION	ATTEL	nitia	n. Pla	<u>hru</u>			<u> </u>
SIZES AND TYPE		JA	20.1					<u> </u>		<u>t</u>	ŚŴ	<u> 2K</u>	<u>et</u> _	Ay	<u> </u>						
AND SAMPLING ED	UPNENT	H		ia Ket	<u>Stail</u> aug		<u>55 570</u>	e		t HOU	:Loca	TION	423	Ã.					515		
			~			5	···			4 SURF	ACE	LEVAT	183	The second	LE				346	277.	.000
									\square				H	71		10	82	2-4	<u> </u>		
									-	IQ DAT	TË STA IM		199			11.0	ATE CON				
12 OVERBURDEN T	HICKNESS		10							IS. DEP			VATER	ENCOUR	neren		ψ_{f}	411		<u> </u>	
	B.T. 3 8-3-3		JA						_				<u>N</u>	<u>A_</u>							
IN THE OF DRUTTED	INTO ROCK	Ν	IA							16. DEP	тн то	WATE	RANDI	al apsei A	TIME AF	ter ör <u>ål</u>	ING CON	PLETED			
14 TOTAL DEPTH O			¥1							17.077	ER W	ATER L		ASURE	MENTS (S	ECFY)					
	<u>3@</u>	1.0	<u>)'</u>										<u>N /</u>	ļ							
IS GEOTECHMCAL	. SAMPLES	NA			NA	RBED		UNDIS	A A	D	1	9 TOT	NA	BER OF	CORE BO	ES.					
20 SAMPLES FOR C					voc		MET			OTHER (SPECT	Υ,		THER (S	FECTEN	01	THER (SPI	ECTEVY	21 TC	TAL COP	
22. DISPOSITION OF		Ø1			ACKFILLE		MONTOR			<u>500</u>			Ex		ives	يكل ا	anic	le	- REGO	202	<u>``</u>
Bento						1			+ '	OTHER (- 1)	23. 5	12			ant.				
LOCATION SI		омм	ENTS						1		_		1	'W		V					
															SCALE	" Į'	'=12	ZØ'			
			Ð										1								
			- F \ 4) VIIIX	<u> </u>			-	$\boldsymbol{\Lambda}$	24		<u> </u>	5								
				ء . مع جد			- Δ			1	•••••		<u>[]</u> }	מכי ג						<u> </u>	
		<u>^2</u>	2			Δ.	11/		ż٦	1			1	5	_	_				1	
	U	T				1¢	Δ e		1	Δ \		٨	38		A	oç 1	Baur	thy		1	
	·····	7	Λ.	24	Â			15 4	 1	Z \	••	4	F		-		÷	····/		+	
	1	1	Δ		// hit.	-A	<u>P/</u>	54	ZH.		•••••		<u>.</u>	1						. [
	~	23			····i			- 		Δ				k						<u> </u>	
	<u>4</u>			25	Δ	Δ°	ŧΔ	Δ		3				4					-	[
			4		8		~200-	21		/		ĽΔ	-31 5	1						•	
						À	$\Delta \gamma_L$	5	4	·/	• • • • • • •	36	ļ	17			÷	.			
	·····Ł	¥		Δ^2	<u> </u>	4		Δ			•••••		35	//							ļ
		<u>X</u>	26			<u>.</u>	<u></u>	<u> </u>			Y	ţ	Ľ	<u>X</u>							
		4	\mathbf{N}		Δ	28															
			1	6		•		4				1	// 1						•••••		
				R.	2	5	33	<u> </u>	.		35	//									
				8	Si A		Ý.	g			¥.		<u>.</u>								
		<u>.</u>			~~<	ĬŽ	\exists	1-1													
	T	ite	h 🖗																•••••		
	اسلاد		P.B								•••••				·····				····	•••••••	
	·····						<u></u>				•••••										
											••••								•••••		
											•••••								•••••		
DUCATO		:															:			<u> </u>	
PROJECT	Demolit	-i	λ	1 -	7	рт											E NC) 			
				1 10	ase 1	<u>KT</u>										D	17-	ØØ	1.		
FNG FORM:	5056-R,	AUG	i 94	_	_	_		_			-						(1	ropon	ent Cl	:CW-9	EG

۰.

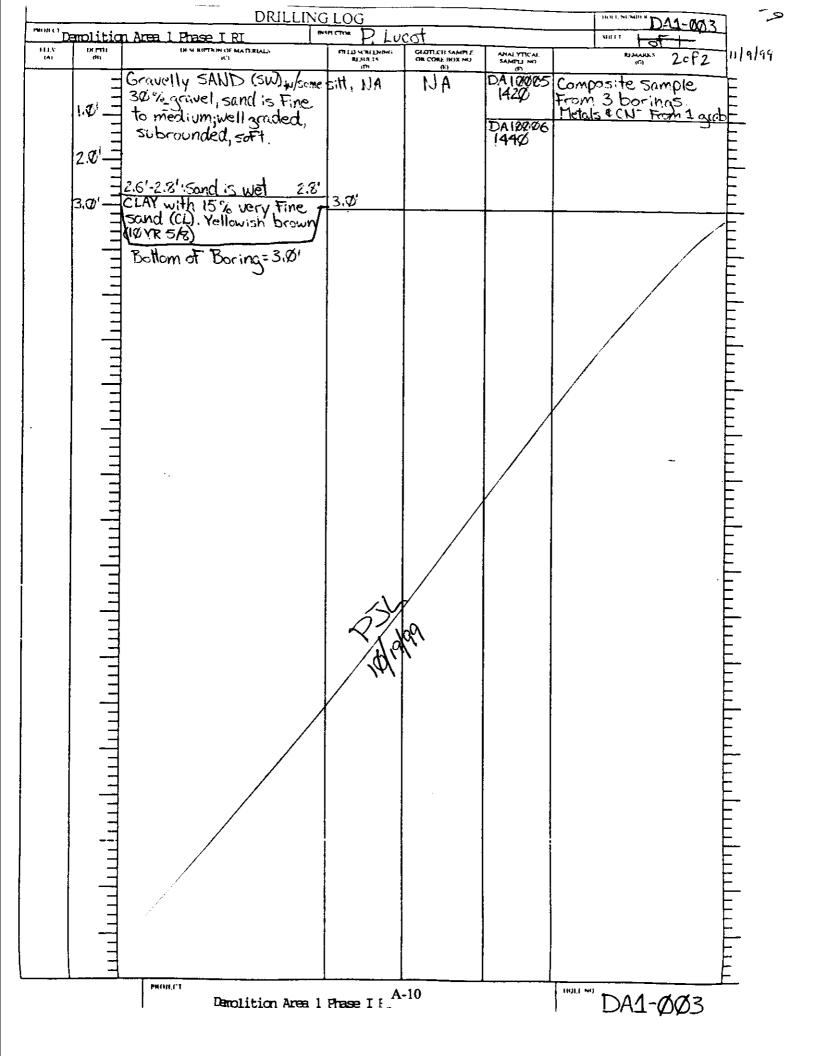

Ŷ

			LLI	ING)G								<u>iisvi</u>												- 0	1
		SAIC				·						<u> </u>	JA		` <u> </u>									58	ਹਿਤ ਹਾ	shifts	2
PROVECT		-				1								4 LCC		_										از∨	11-
NAME OF				· -	Area	<u> </u>	nase	TE	<u> </u>					6 MA	WFACT	Caver Viers		Army Arion	<u>Am</u> of dra	unit u	:im	<u>P1a</u>	±			<u> </u>	
SIZEN AN		S OF D			 ; 	le.	Be	aues		<u> </u>	100			I HOL	ELOCA		<u>= B</u>	car	er								
ANTI SAMPL				_	<u>1 yay</u>		W/	6"	<u>a</u> :	<u></u>	100	<u>e</u> (<	5.			N										_	
_51	ain	les	55	ster	<u>el~</u>		NS	an		por	205	<u>د</u>		4 SUR		NA	ON.										
							···								TE STA	RTED					11. DA	TE ÇOM					
: OVERIU	RDEN 1	HICKN	ESS		•						···		_		2/19 PTH GR	199 OUNDIN	ATER	ENCOL	TI STATE	Ļ	_1q	5/19	[a]				
				N_1	<u> </u>											<u>N</u>	<u>A_</u>										_
ч о е тн с	RILLEI	INTOI	IUCK	N	A									16. DE	ртн то	WATER N.J.		LAPSE) TIME	AFTER	ORILLIN	G COM	четер)			
4 TOTAL	16PTH	OF HOL	3	_		· · · -								17. OT	HER W	NTR H	VEL ME	ASURE	MENTS	(25ECI	EN)	··· ··· -					
8 GEOTEC	INICA	LSAM		Ŷ		- <u>_</u>		STURE	 ED			UNDO	ราวเล	ĒD		1 V / I	AL NUM	BER OF	CORE	BOXES							
SAMPLE	< 600 C	Ň¥	1 1.1	I Yele	_	<u> </u>		ŇV			VETAL	[ЧA	07.7	(SPECT	k	<u>JA</u>										
		<u>b</u> ()				-	~					د 	E	XO				-	PECET O			er (SPE			i tot/ ECOVE	AL CORE	~
22. DISPOSIT		HOLE					BACK	FILLED		MONT	CILNO	WELL		OTHER					IRE OF I		7	4	a.c		<u></u>		
		<u>641</u>											1				ļ	tn	we	i d	<u>mc</u>	<u> 71</u> /	,				
JOCATI		NEIG	.n/C(JMM	ENIS	· <	50	<u>9</u>	51	Ket	ich	0	n	α	zet	12			SCA	LE?							
		-			-										<u>}</u>												
								•••••							 :	 	•						•••••				•••••
						0				1		Ľ		<u>.</u>			Γ	 . 1					•••••				
			<u> </u>		2	α	YY H	بع n ^{i s}	•••••	10	Cc	i Th	0)	Υ	ω	<u>}</u>	рH		- C	90	۱	0	<u>n.</u>	\mathcal{F}	ig!	-2	
		e		P	3		<u></u> []	<u>n. S</u>		12		<u>n</u>	ST		πL	è	de	Sc.	rif	ithe	در	O	Ł.		he	•	
		١	<u>7</u> 2	X	ţ	3	<u>2-0</u>	vb,	110	نم.		in	h	<u>غ</u> لع	<u>l -</u>												
														ļ	<u>.</u>	<u>.</u>		<u>.</u>									
							ļ					-															
																											•••••
														.	<u>.</u>												
											•••••																
												÷															
				•••••														<u>.</u>								ļ	
															<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>								
																								-			
	-						:																				···· [
											•••••												•••••	·····	•••••		
• • • • • • • • • • •					•					•••••			•••••	 	•••••												
										•••••			•	÷					·····				· • · · · ·				
														÷													
																		<u>.</u>									
		<u>.</u>					<u> </u>			<u> </u>	<u> </u>				<u> </u>	<u>:</u>	<u>.</u>	-						}	<u> </u>		
ROJEO	C'T	D -		I	N		-1 .													T	HOL						
		vem	ont	la	Are	a 1 H	rmag	eΙ	KĽ												T	>A1	-0	10Y			

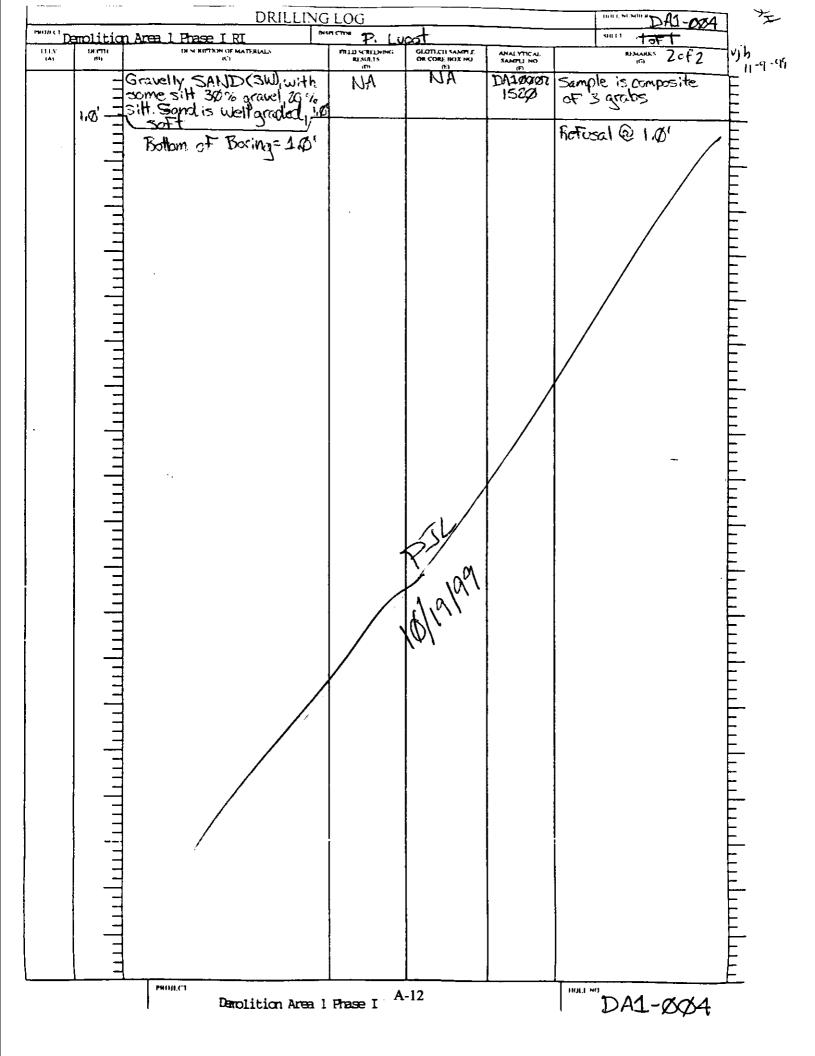

FNG FORM 5056-R, A

Ъ,

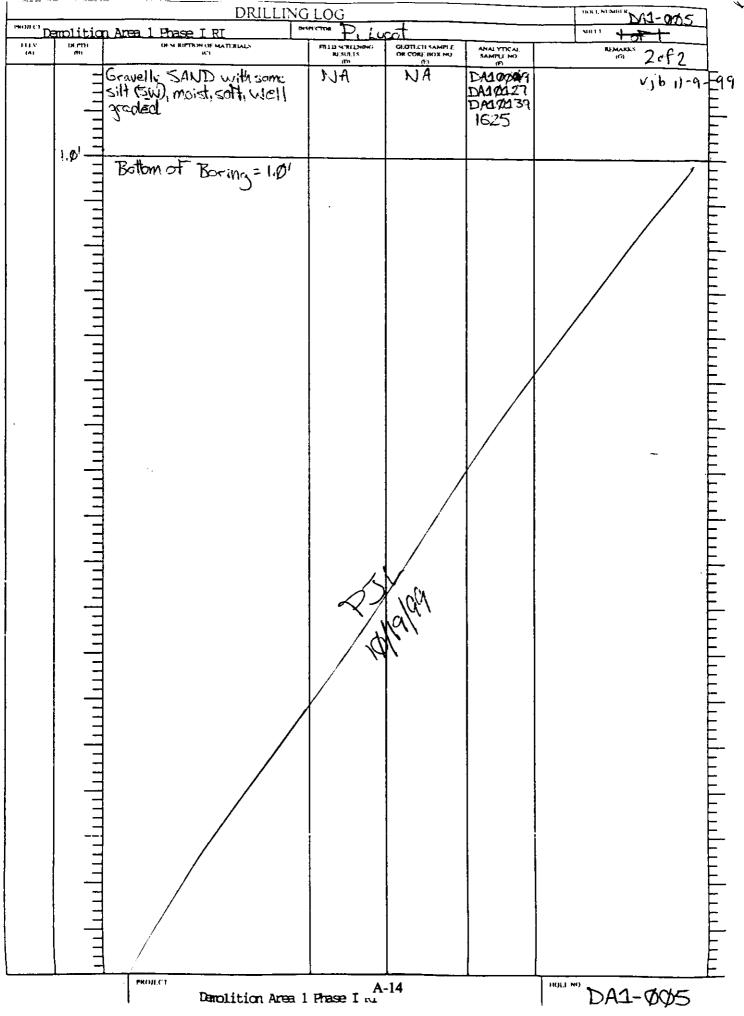
HTRW DRILLING LOG	DISTRUCT	<u></u>				1001. NI N	44.k
	: DRAL SUNCO:	<u>uisville</u>	- <u></u>	<u></u>		DA1-	-002
SAIC	<u> </u>	А				or	12
		4 LOCATION					10 13)9)9
• NAME OF (IRALER ~			<u>ocket</u> ł	OF DRIL	<u>on Plant</u>		
AND SAME IN EDUCTION AND AND AND AND AND AND AND AND AND AN	l bucket steel	I HOLE LOCATION	n R				
bow band speaks	21661	V SURFACE ELEV.	ATION I.C.	111 <u>-</u>	1.6.16		
	···	10 DATE STARTE		83.	UATE CONOLET	EI)	
		10/19/0	<u> 19</u>		10/19/9	9	
1: OVERGURDEN THOCKNESS				TERED			
IS DEPTH DRALED INTO ROCK NA		16. DEPTH TO WA	TER AND ELAPSE	D TIME AFTER DI	ILLING COMPLET	20	
IN TOTAL DEPTH OF HOLE 3,001			LEVEL MEASURE	MENTS (SPECIFY)		
IN GEOTECHNICAL SAMPLES DISTURBED	NDISTUR	RBED 19 TO	OTAL NUMBER OF	CORE BOXES	. <u> </u>	<u> </u>	
20 SAMPLES FOR CHENICAL ANALYSIS VOC	METALS	OTHER (SPECIFY)	OTHER (S		OTHER (SPECIFY	RECOVE	
DA100037DA10004 BACKFULED	MONTORING WELL	OTHER ISPECTEV	23. SIGNATI		xclosives/		
Bentonite				aut	Inco		
LOCATION SKETCH/COMMENTS See 5	ketch or	n Daac	<u>#2</u>	SCALE			
		1-1					
						-	
/5.	Ney da	2 4	r 00		‡	1 7 11	
				unpe	<u> </u>		
	I+		497.	5000	<u>,</u>		//
λ eas	hna, i	2070	6319.	0000		·····	/
						·····	
		•					
					·····		
PROJECT	<u></u>	<u>_i . ii</u>	<u> </u>	<u></u> Н	OLE NO	• •	
Demolition Area 1 Phase I RI				}	D.AI	-002	2
ENG FORM 505G-R, AUG 94				I		ionent CE	


(Proponent_CECW4EG)

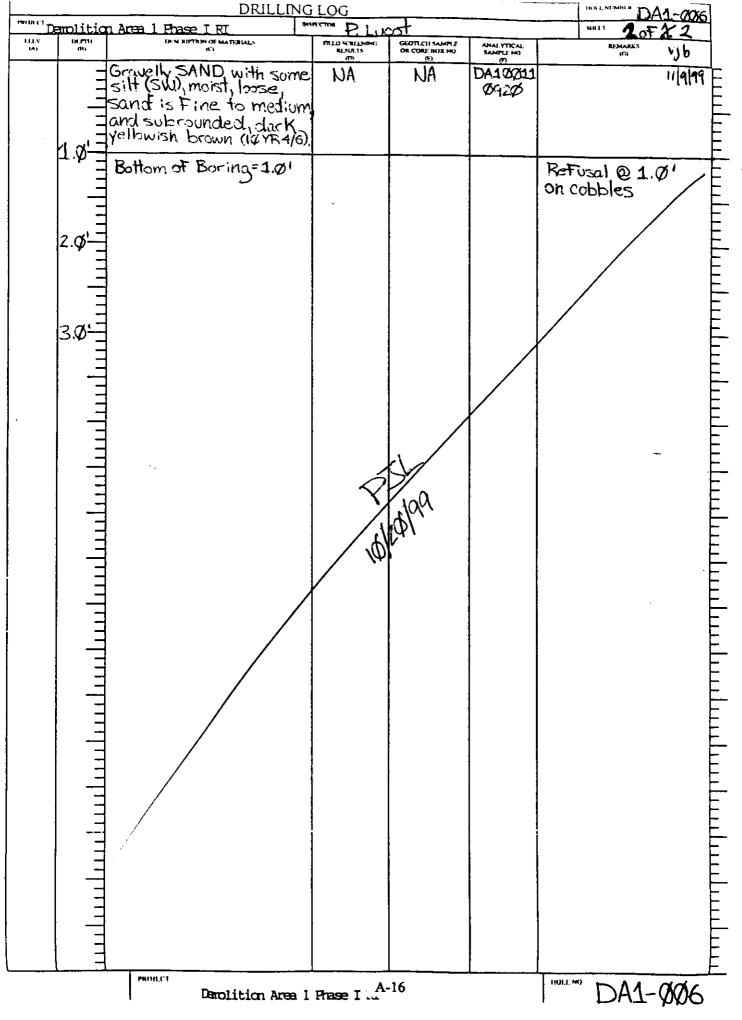
HTRW DRILLING LOG		uisville		DA1-0013							
SAIC	2 DREL SUBCON			SHEET SHEETS							
V PROVECT	<u></u>	4 LOCATION		Vjb 11-1-							
Demolition Arma 1 Phase I RI		RAVETTA ATTAX MANUFACTURERS DESIGNATION C	Amunition Plant								
NA STENAMO TYPE: OF DRUING 3" dia. stainless :		BUCKET AUGE	-								
ANTISAMPLING EDITIONENT											
stall bowls and sprons.		* SURFACE ELEVATION	310	·							
		IN DATE STARTED	H. DATE CONPLET	E)							
1: OVERBURDEN THICKNESS		15. DEPTH GROUNDWATER ENCOUNT	<u> </u>								
NA		<u>NA</u>									
DEPTH DRILLED INTO ROCK		16. DEPTH TO WATER AND ELAPSED	TIME AFTER DRILLING COMPLETE	D							
H TOTAL DEPTH OF HOLE		17. OTHER WATER LEVEL MEASUREN	ENTS (SPECIFY)								
FILD 30101 103.01 IS GENTECTIMICAL SAMPLES A DISTURBED	INDRUK	BED 19 TOTAL NUMBER OF C	ORE BOXES								
20 SAMPLES FOR CHEMICAL ANALYSIS VOC T	METALS	NA									
DM0005/DA10006		other (SPECTY) OTHER (SP		21 TOTAL CORE RECOVERY							
22: DISPOSITION OF HALE BACKFILLED BACKFILLED	MONTTORING WELL	OTHER (SPECIFY) 23, SIGNATUR	LE OF DISPECTOR	<u></u>							
LOCATION SKETCH/COMMENTS	·····	trau	due.								
See ska	sch on c	$ne^{\pm 2}$	SCALE: NONE								
	1	\mathcal{L}									
Samala ID#	741-00	3 Junio									
	55140	3, Survey 18.00000	data)								
	γ_{j}/γ_{j}										
l easting".	237431	9.00000	/								
			· · ·								
			••••••								
PROJECT		· · · · · · · · · · · · · · · · · · ·	HOLE NO	·····							
Demolition Area 1 Phase I RI			DA1-	ØØ3							
NG FORM 5056-R, AUG 94		<u>+</u>	(Prop	orient CECW-EG)							


.

-6-



HTRW DRILLING LOG	OISTRICT	uisville	······································		MAL ST SOIL
T UMPANY NAME	2 DELL SURCON	TRACTOR			SHEET SHEETS
SAIC		+ LOCATION	<u> </u>		1
Demolition Arma 1 Phase I RI		Raver	na Army Amuni	tion Plant	Yb11)9/9
NAME OF DRALLER NA		· MANUFACTURERS	AUGO		
	pugers.	1 HOLE LUCATION	5		
Spoors Stat	books and	SURFACELEVATI	35		
	· · · · · · · · · · · · · · · · · · ·	132:2JA	1083.		
		10 DATE STARTED		10/19/99	
12 OVERDURIDEN THICKNESS		15. DEPTH GROUNDW	ATER ENCOUNTERED		
		16. DEPTH TO WATER	AND ELAPSED TIME AFTER	DRELLING COMPLETED	
		17. OTHER WATER LE	VEL MEASUREMENTS (SPEC	E Y2	
<u>3@1.0'</u>	. <u></u>	<u> </u>	VEL MENSUREMENTS (SPEC		
IS GENTECHNICAL SAMPLES DISTURBED	UNDISTUR		L NUMBER OF CORE BOXES		
20 SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECERY)	OTHER (SPECIFY)	OTHER (SPECIFY)	ZI TOTAL CORE RECOVERY
22. DISPUSITION OF HOLE BACKFILLED	MONTTORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF ASPEC		RECOVERY
Ecotonite		·	Hauld	AUTO	
LOCATION SKETCH/COMMENTS	etchon	Daare #	2 SCALE:		
		puic-a	<u>~</u>		
/ Survey S	xate tr	<u>am So</u>	mple ba	ta trom	DA1-004
1 northin			00000		
l easthree	*: 23×	46303	00000)	
\sim	`				· · · · · · · · · · · · · · · · · · ·
		••••••			
			•••••••••••••••••••••••••••••••••••••••		
<u> </u>	<u> : : </u>		······	HOLENO	
Demolition Area 1 Phase I RI				DA1-Q	2024
FNG FORM 5056-R, AUG 94		<u> </u>	1		nent_CECW_EG)

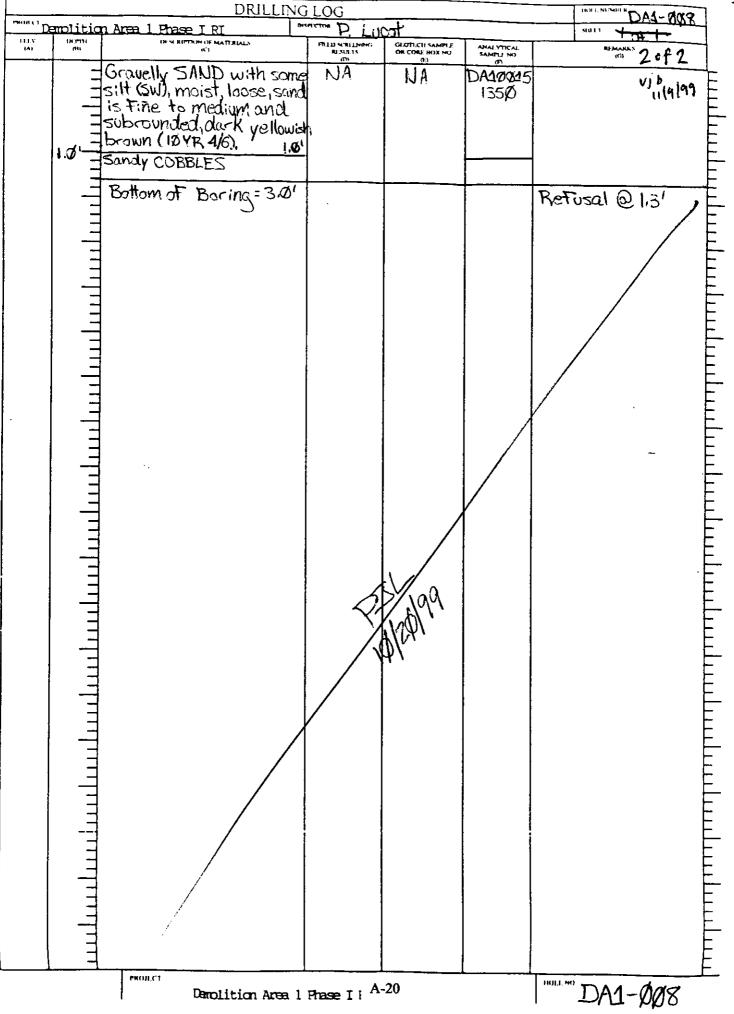

7%

HTRW DRILL	ING LO	 G		OISTRICT								_	u: strai		7
L COMPANY NAME				2 DRAL SUBC			<u> </u>	<u> </u>	·				<u>A1-7</u>	MD	
SAIC SAIC				<u> </u>	<u>KM</u> 1 440					-			<u> _or</u> 	<u>+2</u>	$\frac{1}{2}$
NAME OF DRELER	im Ama	<u>l Phase I (</u>	RT	_		<u> </u>	<u>MPO</u>	na Ari	<u>v Ann</u>	uniticn	Plant		• J	11-9-	-119
<u> </u>	JA					Bue	Ket			tle E		(a	wer f	loor	·
" SIZES AND TYPES OF DRILLIN AND SAMPLING EQUIPMENT	" <u>13'a</u> Dack	ia stainle	<u>295 Jte</u> Stain	<u>e</u>	* HOL	Ber	10N 1013	. J				·		2-	1
sted bow	sand	spoons.			- * SU/R	53	VBITT	ξ υ	10	83.0	<u>~80</u>				-
					10 DA	TE STAR		. <u>.</u>			THEOMPLET	יובר		<u> </u>	-
OVERBURDEN THICKNESS					15.05		<u>199</u>	ATER ENCO	UNTERE	12	<u>/19/99</u>	•		<u>-</u>	4
	_NA						\mathcal{V}	<u>A</u>					_		
13 DEPTH DRULLED INTO ROCK	NA				16. DE	и от нтч Д	ATER	AND ELAP:	SED TIME	AFTER ORILL	NG COMPLET	Ð			
14 TOTAL DEPTH OF HOLE	3'				17. OT			VEL MEASU	REMENTS	(SPECIFY)		i			1
IS GEOTECHNICAL SAMPLES)A	DISTUR	850	UNDIS N		19	TOTA	L MUMBER	OF CORE	OXES					
20 SAMPLES FOR CHEMICAL AT	NALYSIS	voc		METALS	OTHER	SPECIFY	. 1	07HEF	(SPECTY	01	HER (SPECIFY	۱ T	I TOTAL	CORE	-
DALODADALES	27/2000	BACKFILLEL	> MON	TTORING WELL	Exph	Sive:					J-		ĨĈĈĴ		-
Ben	tonite							Hai	<u>I.(.</u>	Auch					
LOCATION SKETCH/O	COMMENTS	500	1000	e#2					SCA	LE:					
			$\frac{r_{uv}}{1}$:										-
										•••••			_		·
						2		<u></u>				<u> </u>			
	- /	xinver								artic	<u>, C</u>	PN1	<u>- 0</u>	<u>, s:</u>)	H -
		()OUHV	ing		5/3										
	- <u> </u>	east	ng	e ×3	46	26	7.	000	200						
										•••••					-
													ļļ.		
					•						ļļ		ļļ.		
													ļļ.		
]
									•••••						1
							•••••		••••						1
PROJECT		4 <u>-</u>	· · · · · · · · · · · · · · · · · · ·	<u></u>		• <u> </u>		·		НО	E NO		<u> </u>		1
		1 Phase I	RI							Ľ	SA1				
FNG FORM 5056-R	, AUG 94										(170	onen	L CEC	w.‡Gi	ļ.

HTRW DRILLING LOG	OSTRUCT						HOU, NU	aurs,	` ٦
E COMPANY SAME	2 DRUL SUBCON	<u>uisville</u> TRACTOR	<u> </u>				DA1-	- 006	
SAIC		4 LUCATION						12	
Demplition Arma 1 Phase T RT	<u></u>		<u>Zavenna</u>	ייע אווונא	mmitic	n Pla nt		Yjb	11/1
· NANG OF DRALER -		• MANUFACT		NATION OF DI					1
NEES AND TYPE: OF DERLING 3" dia, stainless 5	teel	* HOLE LOCA	אסח	//	JORTHI	NG: 3	51328	,00000	\mathbf{k}
steel bowls and sprons,	toinless	SURFACE	<u>Bern</u>			16:23		00000	_わ
	·····		ATHUS A		· · · · · · · · · · · · · · · · · · ·	22.89			4
		10/2	<u>0/9</u> 2		15	6/2019	<u>.</u>		
I: OVERBURLIEN THICKNESS NA		US. DEPTH'GR	NA.	ENCOUNTER	Ð	, ,			1
DEPTH DRELED INTO RUCK		16. DEPTH TO	WATER AND	ELAPSED TIM	E AFTER DRIL	ING COMPLETE	ט		1
		17. OTHER W		EASUREMENT	S (SPECIFY)				{
IN GEOTECHNICAL SAMPLES DISTURBED	UNDISTUR		NA 9 TOTAL NUT	BER OF COR	BOXES				{
SO SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECT	<u>NA</u>	THER (SPECIF	<u>n 1 a</u>	THER (SPECIFY)	21 707	AL CORE	
DA4011 DA10011		Procella	nts Ey	volosiv	es C	ranide	RECUVE	D D	
22. DISPOSITION OF HOLE BACKFELED MO	ONTORING WELL	OTHER (SPECT	Y) 23.	MONATURGO	SUPERFOR	. Ж]
LOCATION SKETCH/COMMENTS				s¢		1. 10	~ I		
				· · ·	<u> </u>	<u> </u>	<u>D'</u>	· · · ·	
							ļ		
							-		ļ
Ron	way								ł
Demo	T X		1	//					
22 Areal	X IT	AIR	1		24		\mathcal{N}		
	10 1		<u>À</u>		λ		Å		
	A ¹⁶	5 AH	2	A 36	1				
23			N		11				
<u>1</u> <u>▶</u> 25 <u>∧</u>			3	A ³⁶	A37				1
8	A20 A	21, Δ	<i></i>	A 36	. i. i. 1: i		}		1
26	$\Lambda = -$	× 9			(. 				1
26	₹ ∆6_	5	A 34	i ja	35				
	28	A ³²	RTS.	/ p					
	SA VA	J B	33/	k					1
Plane Storage Area	>A	X	N.		OC I	soundr	y		
- In the Area		7_/							
Ditch									ł
									4
PROJECT Demolition Area 1 Phase I RI							ፈፈ		
ENG FORM 5056-R, AUG 94						DA1-]
TACLE AND ACCOUNT AND A REAL PRODUCTION AND A REAL PRODUCTION AND A REAL PRODUCTION AND A REAL PRODUCTION AND A						- стор	onent CE0	- w (1:0)	

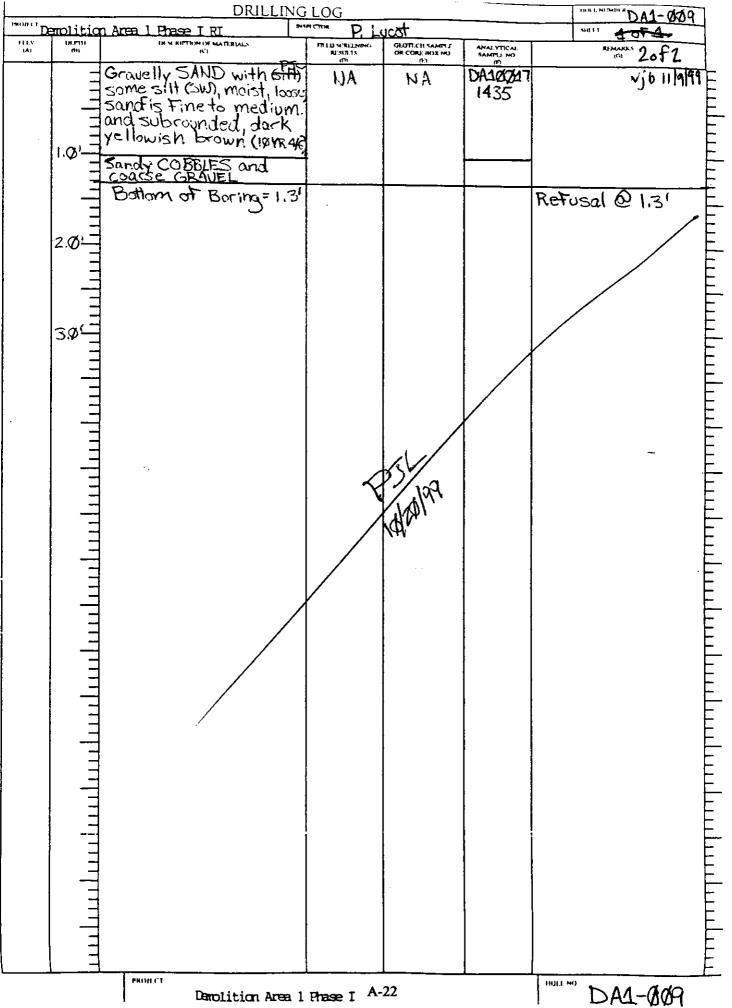
Ŷ

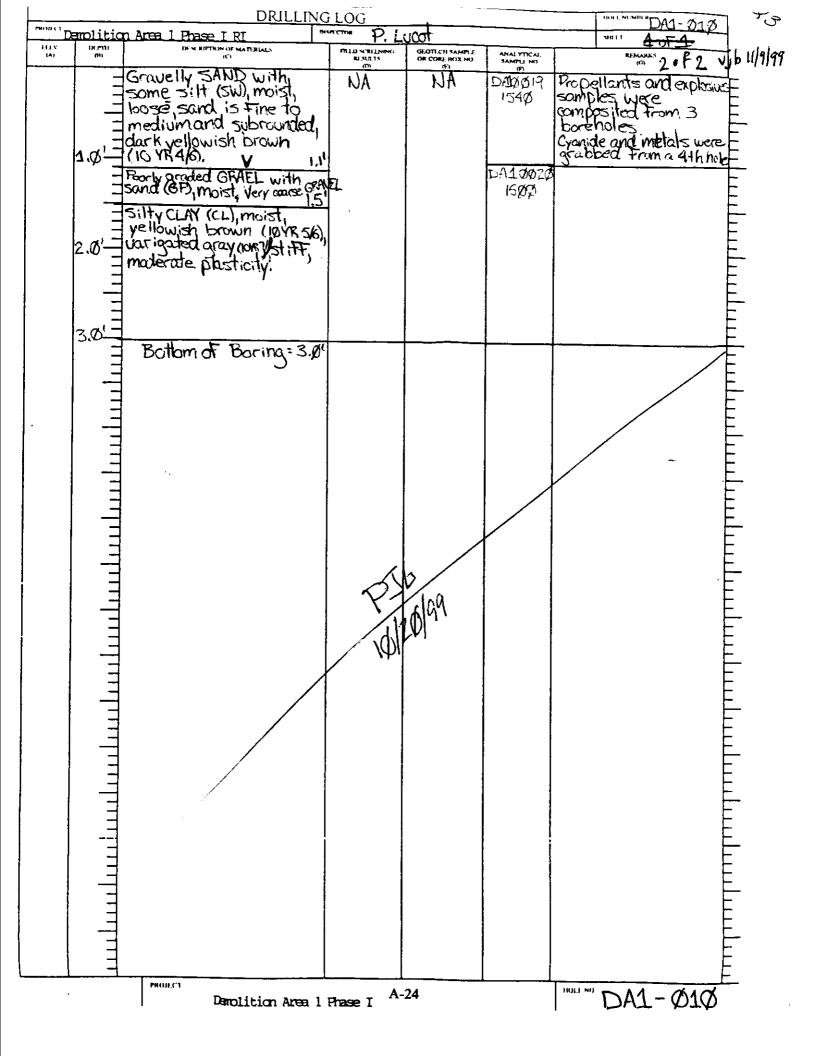
HTRW DRILLING LOC		DISTRICT LOUIS	ville		DA1-007
COMPANY NAME		2 DREL SUBCONTRAC		<u> </u>	SHEET SHOTTY
PROVECT		<u> </u>	OCATION	- <u>, </u>	or \$ 2
Demolition_Arma_1	Dhace T DT			and a second	lant vjb
NAME OF DRILLER ILA		6 7	MANUFACTURERS DESIGN	ATTINY Annunition P	
SIZES AND TYPE: OF DRILLING 3" CAL	. bucket auges	~ .	BUCKET A	luger	
	ess steel bo		On Ber	m	
and spoons		* :	HARFACE ELEVATION -C		
· · · · ·			DATE STARTED	* 1083.2	
			0/20/99		20139
OVERDURDEN THICKNESS		- 15.	DEPTH GROUNDWATER E	NCOUNTERED	
DEPTH DRELLED INTO ROCK	· <u> </u>	16.	DEPTH TO WATER AND FI	LAPSED TIME AFTER DRILLING C	
NA.			NA		
+ TOTAL DEPTH OF HOLE 3.01		17.	OTHER WATER LEVEL ME	ASUREMENTS (SPECIFY)	
S GEOTECHNICAL SAMPLES	DISTURBED	UNDISTURBED	19 TOTAL NUM	BER OF CORE BOXES	
,			· NA		
ALOZIZ DALOZIA DALOZIA					ISPECIFY) 21. TOTAL CORE RECOVERY
2. DISPOSITION OF HOLE				CHATTLE OF ANDER OF	ellants 100
Bentanite				and Jucot)
OCATION SKETCH/COMMENTS	See page	# つ		SCALE:	
	see puge	<u> </u>		. <u></u>	· · · · · · · · · · · · · · · · · · ·
					-
	7				.
	10			N N	
	/SURUE	y by		location (
	Inort	hina :	5513	50.000	00
	l east	na	23461	54-000	00
		8			
		<u></u>	•••••	•••••	/
		·····			
					·
		: : : :	: : :		
					: : : : :
				1	
ROJECT Demolition Area	1 Reas 7 PT			HOLE	- 4 - 4


<u>د</u>

0-

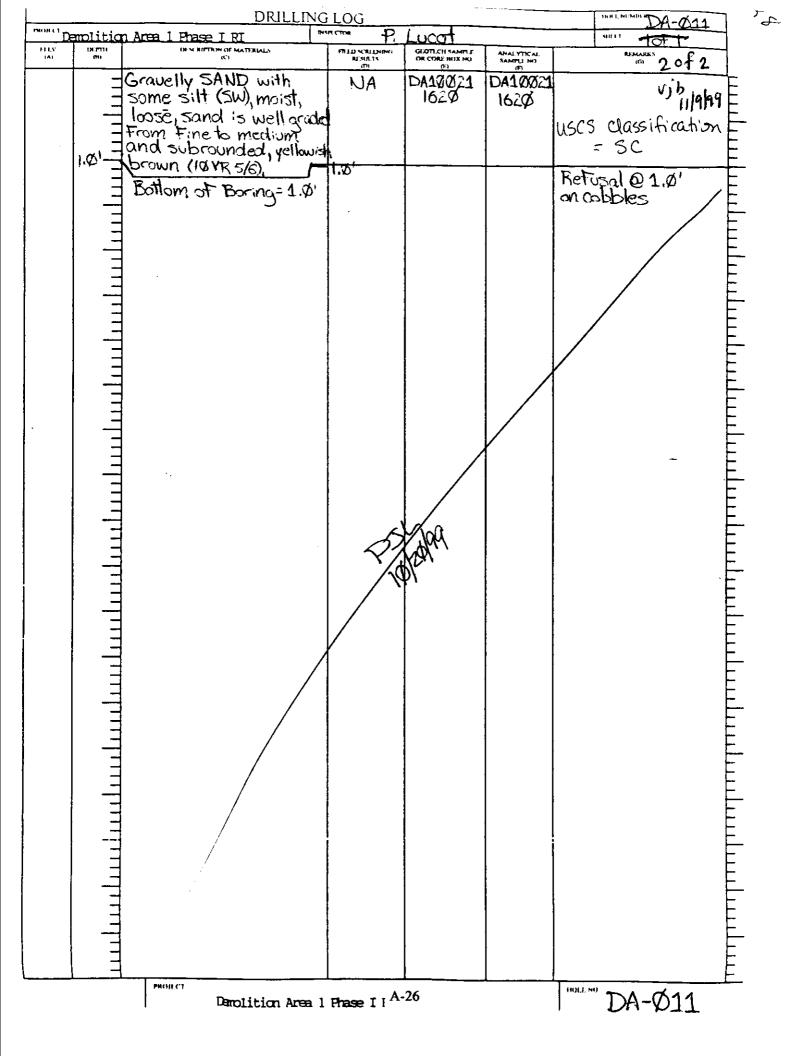
r				_															_							
HTRW DRILLING LOG						_	oisr		Lau	isvi	lle				-)A1	ачак - О С	 }⊄			
L COMPANY NAM	 SAIC									2.06	all SUP		ACTOR					<u> </u>						EFT	SHIET	Y.
V PROJECT		-								<u> </u>		-	4 LOC.	-			<u> </u>								<u>, 1</u> 10 j b	
1 NASE OF DRALL	Denc	liti v	ي ۲۰	rea.	1 P	hase	TR	<u>1</u>				-+	• MAN	UFACT	Cave Vices	nna Design	Army Army	ATT	init u	Ja	<u>Pla</u>	nt			i	19/1
SIZEN AMD TYPE			<u>H</u> U T	57.4	<u>in -</u>	<u>-</u>	zink	•<0	~1	~P	—			<u>suc</u>	<u>Ket</u>	- n	Uas					<u> </u>				
ANTI SAATPLING EX	- +	wit		SUC	Ket	Qυ	$\frac{1}{2}$				55	_	(Dn		er	m									
steel			<u>s a</u>	Ϋ́Χ.	<u>sh</u>	<u>2010:</u>	<u> </u>						$\mathbf{L}_{\mathbf{i}}$	$\frac{n}{2}$	JAT	2		10	83	\$_\$	15	0	_			
													10 DA	™ ¢//		199				11.00	TE CON	19 519	9			
12 OVERBURDEN	THICKN	EXX	NA	l					·			T	13. DE	TH GR		4 TERI	ENCOU	NTERE	>	<u>.</u> ,		+	-			
13 DEPTH DRILLET	DINTO	IUCK	1)	Δ					_				16. DE	סז וודי	WATE	RANDI	LAPSE	DTIME	AFTER	DREIN	IG COM	PLETEL	J	_		
H TOTAL DEPTH	OF HOL	<u>ا</u>	يم ج،	<u>,</u>									17. OT	ER W/		1 <u>H</u> 177 M	EASURE	MENTS	(SPECI	FY)						
IS GEOTECHNICA		ES			<u></u>		ISTURB	ED			UNDE	STURBE	Ð	- 	9 T OT	NH AL NUN	BEROF	CORE	BOXES		-					
20 SAMPLES FOR	CHEMIC	JOY	LYSIS				 x		-	METALS	5		OTHER	(SPECT	-Y)	Ŋ	A THER (S	PECTY		σπ	ER (SPE	: CIF 1)			L COR	2
22. DISPOSITION O	FHOLE	DA	100	<u>15</u>		BACK		-	MONT	TORING	WELL		And			Pr	ø	llar	15	Ç	5-			Ø	<u>9</u> ř	••
				ite					·								Gi	ik	[.J	<u>uc</u>	<u>A</u>					
LOCATION S	SKETC	CH/CO	DMM:	ENTS	<		_ م	. F	\mathbf{n}	ক	#	2						sch	LE:							
							\sim	ł	~~	5		(-					
					•••••																			-		
			/																				5			
		/	2	j.	20	7 را	''	\sum	at	<u></u>			~	1		<u>at</u>					11-		\sim	 5		
			n n	<u>)</u> \(`\ c	<u></u>		<u>}</u>	<u>م</u> ې			5					$\frac{2}{2}$			7	<u>. UU</u>	<u></u>	<u> </u>	<u> </u>	2		
			4	ກ <	; - -	έ. Έ	J	•		4	•	•	•	•	•	00										
			$\overline{\ }$		<u>ر . ۱۰ کې</u>		2			10																
													·													
					••••						<u>.</u>													-		
																										,
			<u>.</u>																							
					•••••																					
											ļ		ļ													
· · · · · · • • • • • • • • • • • • • •		•	:	: :		:	:	:			-	:	-	:	:	•	:	1	•	-	1		1	;	:	
15117 - 1777 - 1777						<u> </u>				<u> </u>	• <u>.</u>			<u> </u>	:	÷		•	<u> </u>			<u>.</u>	<u> </u>	<u> </u>		An.
PROJECT	Dem	olit	ion	<u>i i</u> Area	1 F	- has	e I l	: RI		<u> </u>	•	<u>.</u>	<u> </u>	<u>. </u>	<u>. </u>	<u> </u>	·	•			: ΕΝΟ Λ1	;) (<u>.</u> 70			<u>.</u>

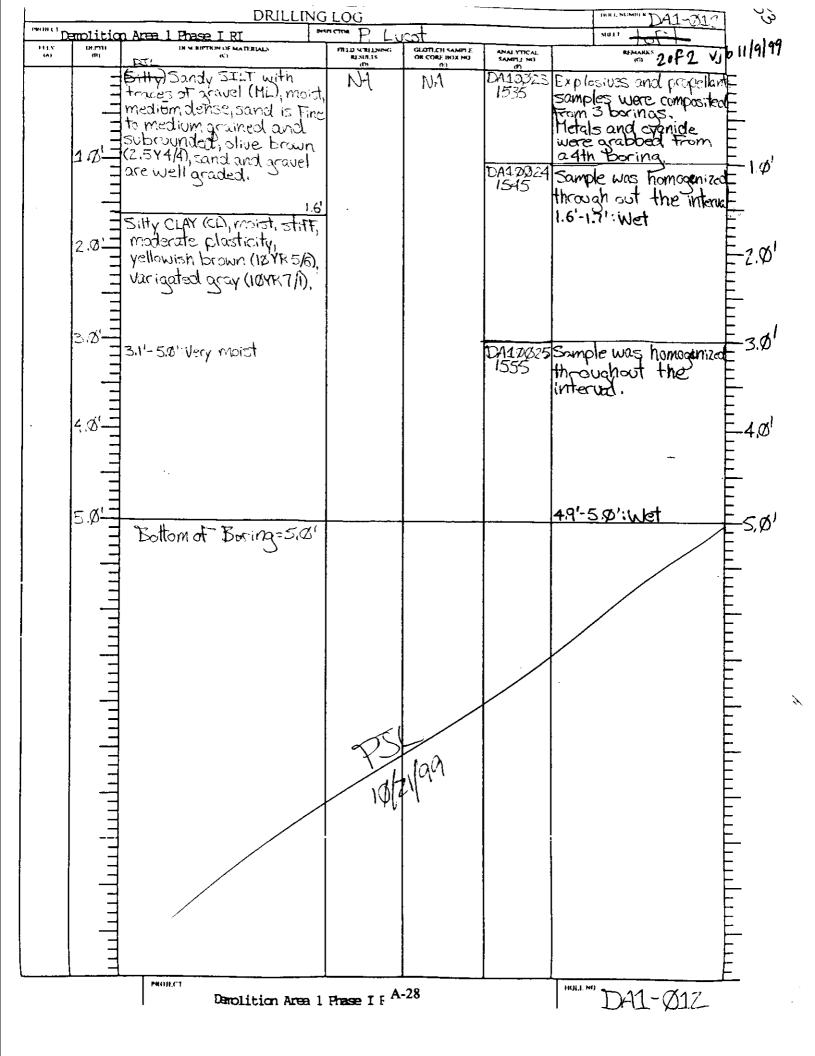

Ŷ


HTRW DRILLING LOG	OISTRICT LO	uisville		DAL-000
L COMPANY NAME	1 DREL SUBCON	TRACTOR	<u> </u>	SHEET SHEETS
SAIC	<u>N</u> ,	4 LUCATION		1 or 2
Demolition Area 1. Phase T RT				Vj b Walas
NANG OF DRULER		A MANUFACTURERS	DESIGNATION OF DESIGN	
SIZES AND TOPOLOF DRUM 3" dia, bucket auge		Bucket	AUDER	
ANTI NANDUNG FOURMENT	is and	+ HOLE LOCATION	Social States	
	n <u>s ana</u>	" SURFACE ELEVATI	25.11 1084.03	
	·	_ AJATA	31-03 1084.03	<u>}0</u>
		10 DATE STARTED	19 In DATE COMPL	15a
12 OVERBURDEN THICKNESS		15. DEPTH GROUNDW	ATER ENCOUNTERED	
NA			AND ELAPSED TIME AFTER DRELING COMPL	ETED
IN TOTAL DEPTH OF HOLE 1 21		17. OTHER WATER LE	EVEL MEASUREMENTS (SPECIFY)	····
		<u>NA</u>	<u> </u>	
None			AL MUMBER OF CORE BOXES	
	HET ALS	OTHER (SPECTFY)	OTHER (SPECIFY) OTHER (SPECI	FY) 21 TOTAL CORE
22. DISPOSITION OF HOLE BACCIFLED MONT	TORING WELL	OTHER (SPECIFY)	Propellante, CN-	IQUERY .
Bentonite		UTAER (SPECIFY)	23. SON TURE OF INSPECTOR	
	/		SCALE:	
LOCATION SKETCH/COMMENTS See Sketc	ch on	Dage #	2 SCALE:	
				-
Survey		Ω	location #)	A1-0091
				AI-00-11
/ northing		1471,00		
1 eastina):	23	46132	.0000	
				•••••
PROJECT	· · · · · · · · · · · · · · · · · · ·	•	HOLE NO	
Demolition Area 1 Phase I RI			DA1	-17/19
1-NG FORM 5056-R, AUG 94	<u></u>			ponent CECW-EG)

د

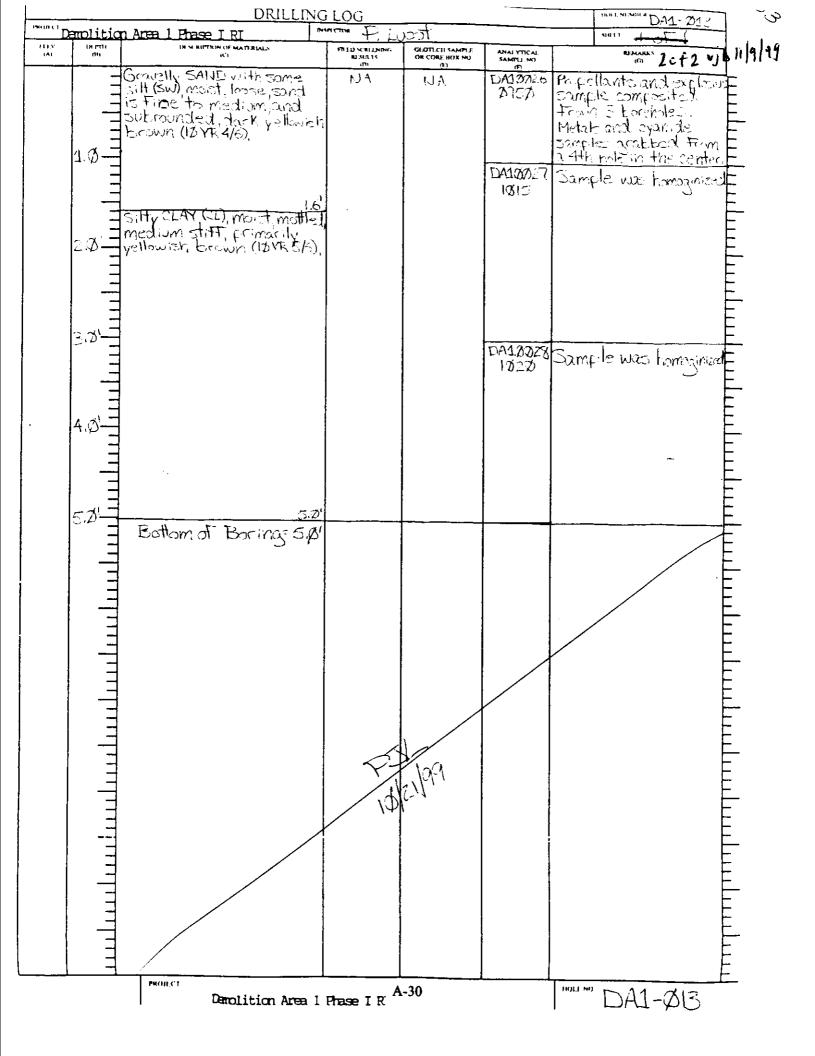
A-21


	DISTRICT			HOLE SUNDER
HTRW DRILLING LOG		<u>uisville</u>		DA1-010
SAIC	2 DELL SURCOS		·	SHELT SHEET
1 2Kc0ECT		4 LOCATION		vjb11(919
Demolition Area 1 Phase T. RT	<u> </u>		103 Army Amenition Plant	
NA		Bixket	ALAS	
AND SANDLING EOLONENT 2020CC, Stanles		THOLELOCATION	· · · · · · · · · · · · · · · · · · ·	
and spoon - more the	<u>21981 DOM.</u>	SURFACE ELEVATION	<u>rm</u>	
· · · · · · · · · · · · · · · · · · ·	<u></u>	13322-1	1083.510	
······································	<u> </u>	10 DATE STARTED	19 11. UATE COMPLETE	,
12 OVERBURDEN THICKNESS		15. DEPTH GROUNDW	ATER ENCOUNTERED	
DEPTH DRELED INTO ROCK	, .	16. DEPTH TO WATER		
=		17. OTHER WATER LE	VEL MEASUREMENTS (SPECIFY)	
IN ITEOTECHNICAL SAMPLES NA NA DISTURBED	UNDISTUR NA	UBED IN TOTA	L NUMBER OF CORE BOXES	
20 SAMPLES FOR CHENICAL ANALYSIS VOC		OTHER (SPECIFY)	OTHER (SPECIFY) OTHER (SPECIFY)	21. TOTAL CORE
DA187A9/DA12022	MONTORING WELL		Explosing/exploration	RECOVERY
Bentonite		Structure (arecuter)	23. SIGNATURETOPONSPECTOR	
	00- #2		SCALE:	
	prae #2		· · · · · · · · · · · · · · · · · · ·	
				-
k.	Duc.	× +-		
		Data	tor DAI-01	
	orthin	s. * 5	51516.00000	$\sum_{i=1}^{n}$
$\lambda \varepsilon$	asting	7: 2	346179.000	04
	c \sim			
				••••••
PROJECT			HOLENO	
Demolition Area 1 Phase I RI			DA1-0	010
ENG FORM 5056-R, AUG 94				nent CECW-EG)

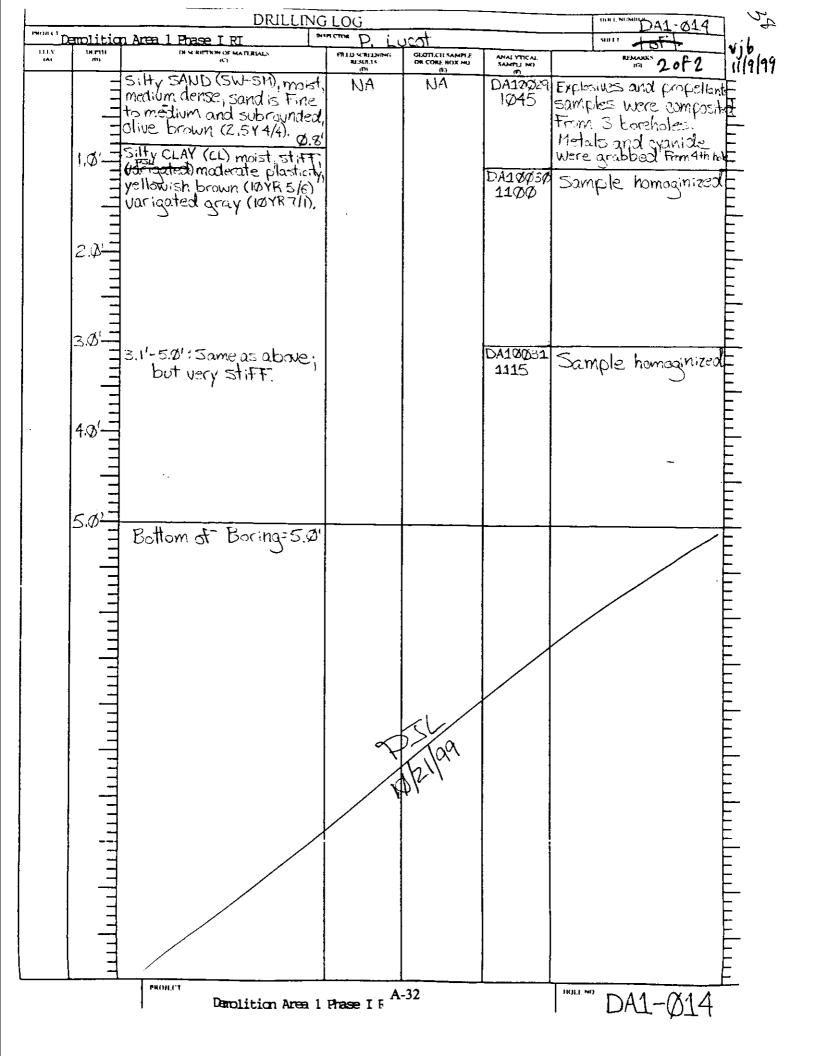

HTRW	HTRW DRILLING LOG						OSTRUCT LOUISVILLE 2 DRLL SUBCONTRACTOR								DA1-011											
SAIC							2.04	RALL SUI	RCONTR	ито) Л	۱A						SHEET					SHEETS				
PROFECT					_ ······,·					L			4 600	ATION						or Z						
NAME OF DRI		liti	نصب ^ه		1 2	hase	II	2 <u> </u>		BATTAN ATTAL							unit	ition Plant								
			<u> </u>	<u>)4</u>						Rucket Ainer							<u> </u>									
" SIZEN AND TY AND SAMPLING				<u>"di</u> ve	<u>a.s</u> <u>C.</u> s	stai Stai	nles	<u>సా</u> సా	itee ste	<u>el 1</u>	bov	<u></u>	E HOL	ELOCA		1		2								
ands	poor	<u>'S</u> i	• ·						-		_	_	+ SUTE	FACE E	المنهو المر ا	\$~		10	15	2	7	24	0			
											·	_		TE STA	120	100				Т 11. 0л 10		s/a	<u> </u>			·
12 OVERDURDE	N THICKN	EXS	N	A	_								15. DE				ENCOU	TERED		<u> </u>	10		<u> </u>			
U DEPTH DR.L.	EI) INTO P	NOCK	<u>N</u>	À									16. DE	нто ТН ТО		LAND	ELAPSEI	TIME	AFTER	ORELO	NG CON	PLETE			<u> </u>	
14 TOTAL DEPT	H OF HOLE	0	1.6	8	-						<u> </u>		17. OT	HERWA		VEL M	EASURE	MENTS	(SPECI	ε γ)						
			D21	<u> </u>	D	N XX	олятиян 021					STURBE	D	•	9 TOT.		GER OF	CORE	IOXES							
20 SAMPLES FO		17X			-			-		METAL	\$	_		(SPECT	-		THER (S				HER (SP	ECIFYI		IL TOT		E
22. DISPOSITION	OF HOLE				-	BACK	त्वयात्र		MONT	TOREN	WELL		other	SIV (SPECT	<u>25</u> Yi		<u>pell</u>			2	T			1.17	<u>D</u>	
			nton							_]	Ha	ulÇ		M	N					
LOCATION	SKETC	:H/CC	DMMI	ENTS			<u></u>		\leq	<u>>0</u>	e	ρ	$i\alpha$	<u> </u>	+2			SCÁ	LE:						_	
													\cup													
						-								•										-		
										-																
					/											; ;	1				1	1				
	••••			7	$\overline{}$	5	US	·····		K	5	ta		f	~	T	šΛ			1 1		i X				
					<u>ر ۲</u>	<u></u>	<u> </u>		<u>}</u>							<u>.</u>					<u> </u>	<u>}</u>	<u>.</u>			
•••••				[X	<u>, , , , , , , , , , , , , , , , , , , </u>	2	th.	<u>i.m</u>		8 2 0		05	15	\$5	[. .	<u>00</u>	00	\sim			÷+				
				. L		G	st	1.1.1	<u>;'c</u> l	<u>.</u>	¢	2	3	<u>4</u> 4	2	3	7	20	0	<u> </u>	<u>.</u>	ij				
																ļ						/ 				
							-						•													
								:			1				;						·					
																	÷				÷					
								•••••													÷					
	••••											<u>.</u>														
														ļ												
														<u>.</u>												
																				ļ		-				
	•••••				•••••														•••••			1		1		
••••••					•••••									 			÷						·			
PROJECT	_ <u>;</u>		:			<u>.</u>	:	<u>:</u>	:	<u>:</u>	:	<u>.</u>	<u>:</u>	:	:	:	<u>:</u>	<u>.</u>	<u>:</u> 	<u>:</u> HOI	i E No	:		:	<u> </u>	<u>:</u>
		olit	ion .	Area	11	Phas	еI	RI												\mathbf{h}	Δ'	1-	Ŕ	11		
FNG FOR							-													<u> </u>	11	t l'row	$\frac{\gamma}{\gamma}$	CE:	. w.	i (i)
C 1 2 2 1 2 2 2 2																						e requ	11244	2010		

.

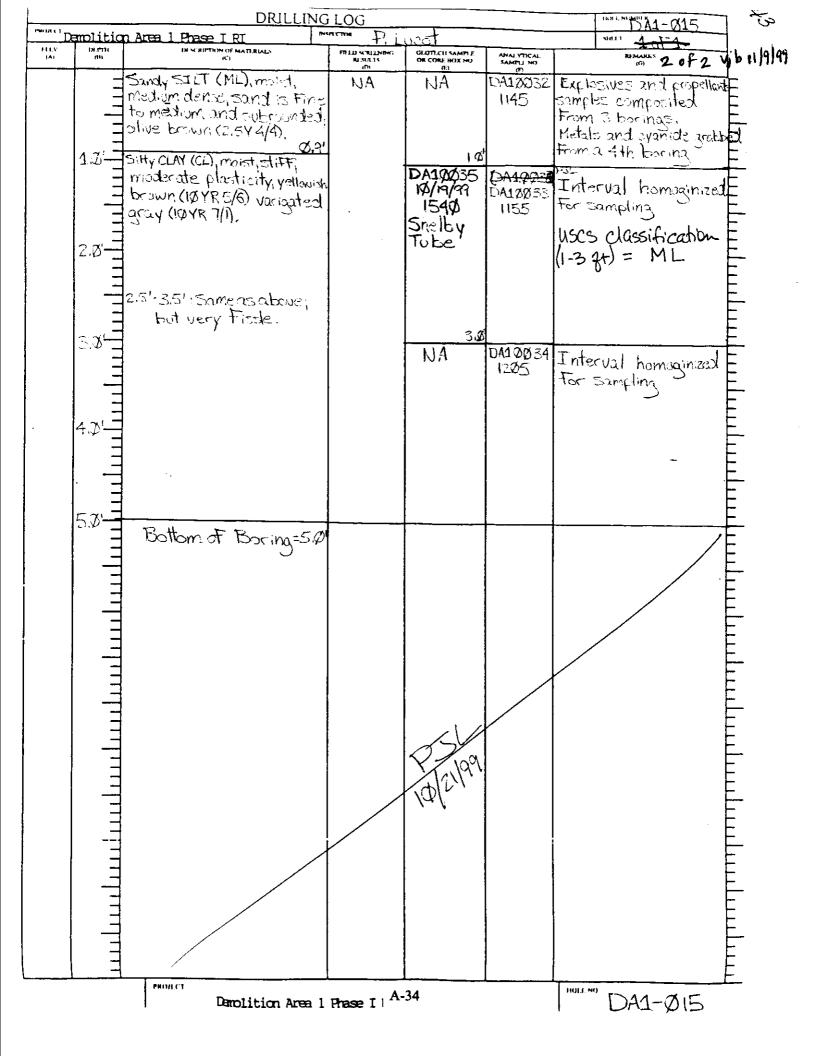
C.L

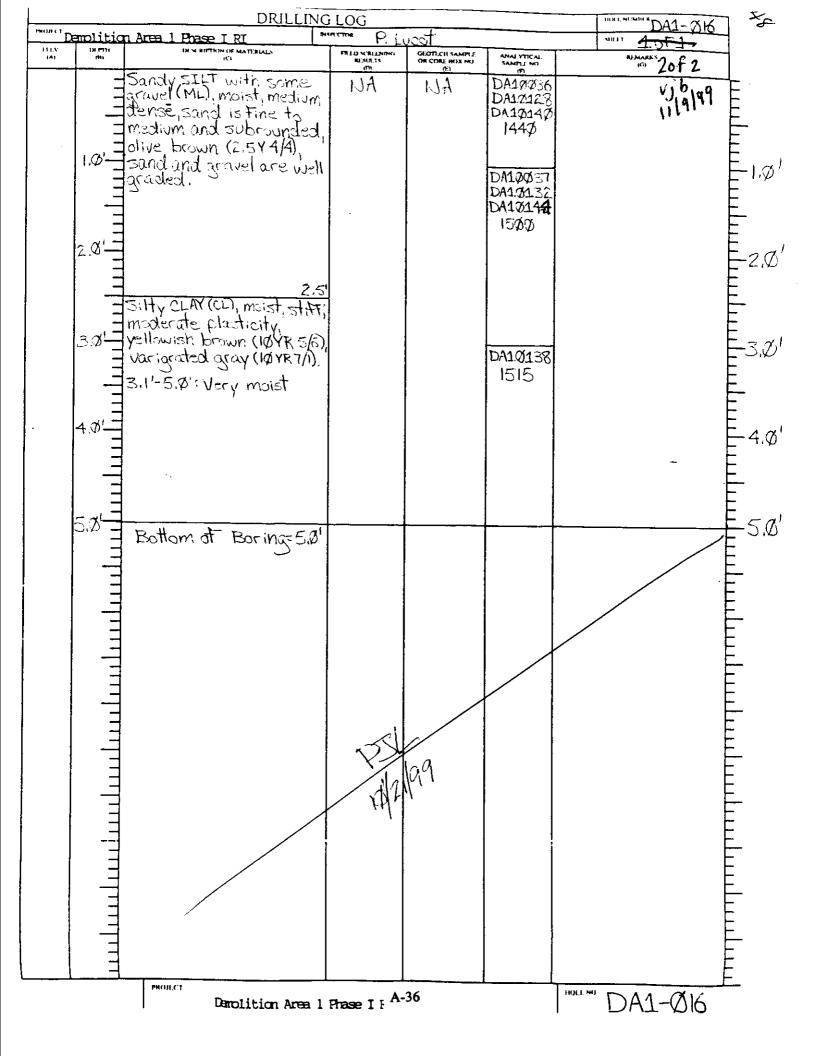


HTRW DRILLING LOG		Louisville										
SAIC	2 DROIL SURCE	NTRACTOR			DAU-AL							
	<u>},</u>	4 LOCATION			l or to							
Devolition Area 1 Phase I RI		Rave	<u>ona Army Amunit</u>	ion Plant								
NA		BUCKET	DESIGNATION OF DREL									
SIZES AND TYPE OF DRULING		* HOLE LOCATION										
Streps bout and score	"stantes	SUMPACE ELEVATION S										
		VIDEACE ELEVATION S ALT 3-24-00 1083.790 UDATE STARTED										
	· · · · ·	10 DATE STARTED 10/21/99										
		15. DEPTH GROUND	VATER ENCOUNTERED									
I DEPTH DRALED INTO ROCK	16. DEPTH TO WATE	R AND ELAPSED TIME AFTER	DRELENG COMPLETED									
A TOTAL DEPTH OF HOLE		17. OTHER WATER I	EVEL MEASUREMENTS (SPECT									
<u> </u>		L NA		· · ·								
S GEOTECIONICAL SANGLESI			AL MUMBER OF CORE BOXES									
IS SAMPLES FOR CHEMICAL ANALYSIS	METALS	OTHER (SPECEY)	OTHER (SPECIFY)	OTHER (SPECTRY)	21 TOTAL CORE RECOVERY							
DA4.2025/T-A1.27.31/DA1223	MONTORING WELL	OTHER (SPECIFY)	23/AGNATURE OR INSPEC	Qranite (?)	I DA							
Fierdonite.			- Mullita	The second secon								
OCATION SKETCH/COMMENTS	20 hare #	:7	ŞCĂLE:	~								
			·····									
·												
	SURU	<u>) E y D</u>	ATTA FOR T	DAI-OI	9 /							
	(nort	hina	551512	2.0000	ى ا							
	least	nau	23462-									
		í í			1							
			••••••									
				HOLENO								
ROJECT Demolition Area 1 Phase I R			1		100							

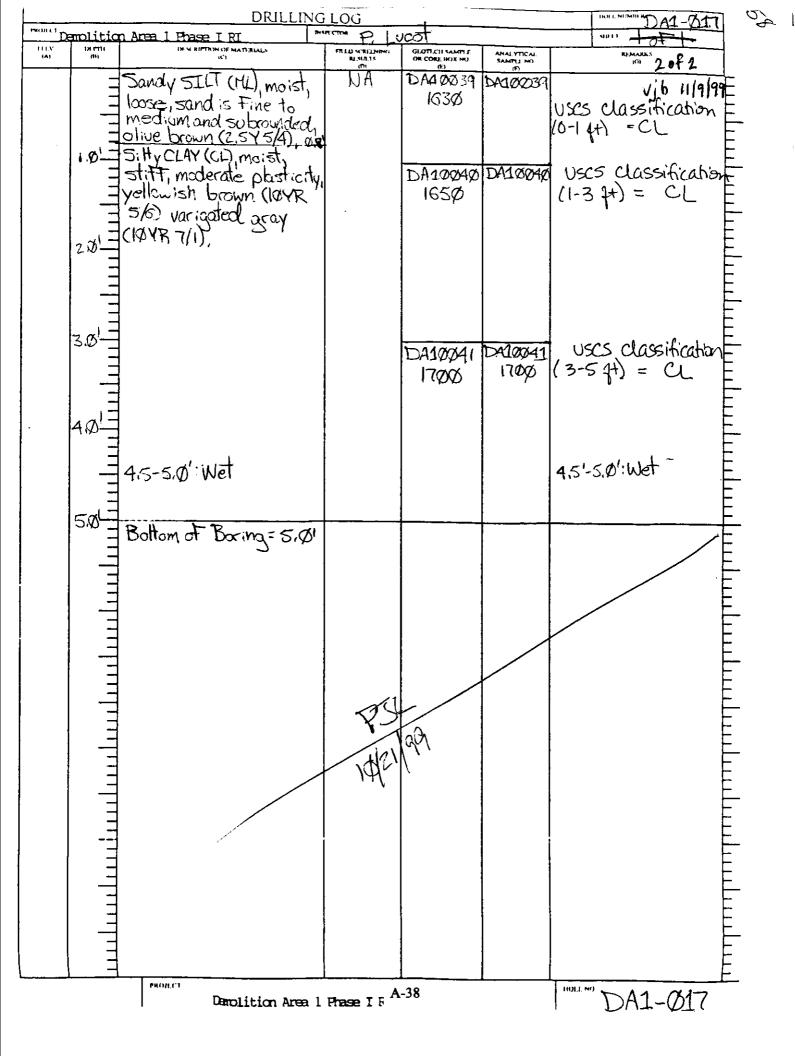


HTRW DRILLING LOG	DISTRICT LO	uisville				DA:	1-031	3
SAIC	: DRAL SUBCON	TRACTOR	· · · · · · · · · · · · · · · · · · ·			SHEET	SHILLT OF X	2
CRUE CRUE		4 LOCATION	<u> </u>		<u></u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	vih	
Demilition Area 1 Phase T RI		MANUFACTURER		Amaniti Form	on Plant.			<u>11/1</u>
SIZES AND TYPES OF DIRELING B"dia. Stainless S	top hirks	BICKO + HOLE LUCATION		_				
DUDERS STOURIESS S	Tool Econt	Insio	<u>le Be</u>	m.				
and sprons		the with the	<u> </u>	584.2	230			
		10 DATE STARTED	ام	ti	1017119			
OVERDURIEN THICKNESS		15. DEPTH GROUND		TERED	+ */+- { 			
V DEPTH DRELED INTO ROCK		16. DEPTH TO WATE	ř	TIME AFTER DE	RELING COMPLET	ED		
TOTAL DEPTH OF HOLE		17. OTHER WATER	EVEL MEASUREN	ENTS (SPECTY	<u></u>		<u> </u>	
361.01/1.05.01	UNDISTUR	<u> </u>	AL MUMBER OF					
			NA.					
0 SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECIFY)	EXUD.	THES	OTHER ISPECTEN		OTAL COR	
2. DISPOSITION OF HOLE BACKFILLED	MONTORING WELL	OTHER (SPECTFY)	23. SIGNATU	J W. IT	74			
OCATION SKETCH/COMMENTS	~ #2		<u>1_1072</u> /	SCALE:	<u>~</u>			
See Da	$\frac{2e+2}{2}$: : ~	· · · · ·					
SURSE	The Dra	TA for	DA1	- 913	<u>></u>			
f port	hing	65150	5.00	000			-	
Least		23462	29.	<u>000</u>	<u>, </u>			
	Y							
		•						
WOJECT						<u> </u>	. —	ļ
Demolition Area 1 Phase I RI					DA1 -	Ø13		


(Proponent CECW-EG)


HTRW DRILLING LOG	(HSTRICT				TAA 2014						
I COMPANY NAME	2 DRDL SUBCO			SHEET SHEET'S							
SAIC	<u> </u>										
Demolition_Area_1_Phase_I_RI			<u>ana Anny Ann</u> an	ition Plant	vj6 []						
· NANG OF DRELER		· MANUFACTURER	S DESIGNATION OF DRAL								
AND AND TYPES OF DRELING 3 dia stainless	steel Lucke	HUELOCATION DECKA									
and spann, S		* BUT ALTE LLEVAT		070	······						
		10 DATE STARTED	II. DATE COMPLETES	,							
12 OVERBURDEN TROCKNESS		15. DEPTH GROUND	WATER ENCOUNTERED	17/21/ 11							
	16. DEPTH TO WATE	R AND ELAPSED TIME AFT	ER DRELLING COMPLETED								
INA INTAL DEPTH OF HOLE	~ .	17. OTHER WATER I	EVEL MEASUREMENTS (SPI								
<u> </u>		<u> </u>	-]	· · · · · · · · · · · · · · · · · · ·							
NA NA	NA	(f	TAL NUMBER OF CORE BOX								
20 SAMPLES FOR CHENOCAL ANALYSIS VOC DA120229/DA1208:07/DA1202:1 1/3/19	METALS	OTHER (SPECIFY)	OTHER (SPECIFY)		21 TOTAL CORE RECOVERY						
22. DISPOSITION OF HOLE I BACKFELED	MONITORING WELL	OTHER (SPECTFY)	23. SICHATURE OF DISF		· · · · · · · · · · · · · · · · · · ·						
LOCATION SKETCH/COMMENTS		+ ~	SCALE	<u>/11/2/5</u>							
LOCATION SKETCH COMMENTS See	proe ?	# <u> </u>	SCALE								
	· ~										
	<i>,</i>				-						
/	SURVEY	Data -	for Loca	+	778-014						
		5	5/476.0	6000							
	10rthike		46087.0		/						
			ng <u></u> 0								
PROJECT		_: :	<u> </u>	HOLE NO							
Demolition Area 1 Phase I RI				DA1-0	014						
ENG FORM 5056-R, AUG 94		· · · · · · · · · · · · · · · · · · ·			nent CECW-EG)						

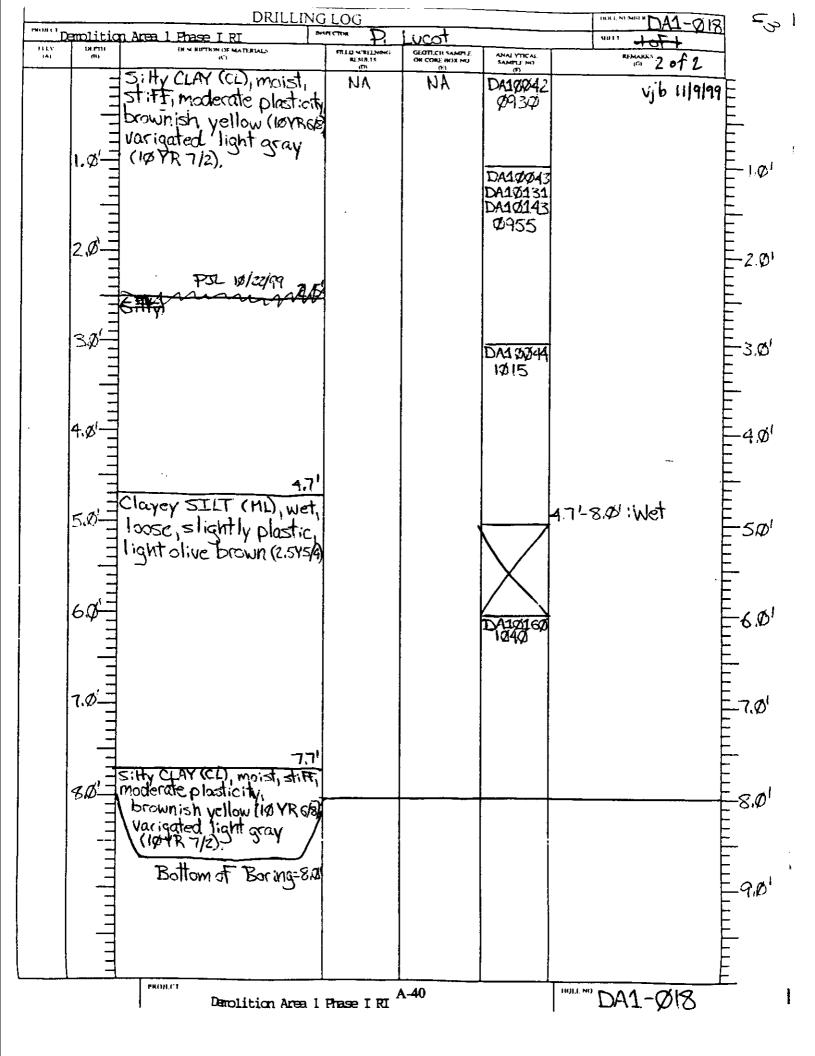
HTRW DRILLING LOG	<u>uisville</u>								DA1-215					
SAIC	S DRUE LEAD SUBCON	IA								SHELT SHELTS				
A PROTECT	<u>.</u>	4 LOCATION								از√	<u>-</u> 11 11			
Demolition Area 1 Phase T RI		• MANUFACTURES: DESIGNATION OF DELL												
NAL STORES STORE				<u>thre(</u>	-						·			
NUMERAL DURCENT DURCE STONLES STON	bout	ITra	ide r	$\frac{-}{2}$										
and sprons 2		ALS I	Levation		108	3.	57	,0						
		IN DATE STARTED II. DATE CONFLET												
: OVERDURDEN TRICKNESS			OUNDWATER	ENCOUNTE	<u>ب</u>	<u>12/</u>	<u>279</u>	<u> </u>		<u> </u>				
3 OPTH DRALED INTO ROCK , I A			WATER AND											
NA	N.		ELAPSED (1	AE AFTER		GCOMPLE				_				
TOTAL DEPTH OF HOLE 301.01/105.01			TER LEVEL M											
DALOBS (NA) 540 NA	12/4/455	BELLOV35	9. TOTAL NUN	BER OF CO	e Boxes									
	AETALS	OTHER (SPECE		THER (SPEC	FN	отн	ER (SPECT	m	21 TOT	AL COR				
DAL 37 7 / DAL 3 2 7 / DAL 37 4 //	ORING WELL	other (spect		COT. N.		CIJ TOR	-		RECOV	<u> </u>	<u> </u>			
Rontonie			_	Fruit	17: .	int)							
LOCATION SKETCH/COMMENTS	Kotak	NO EV	100 [#]	$2^{\overline{sc}}$	ALE:			_	_					
				<u> </u>	:	: :		:	:	: .				
			þ								<u>.</u>			
SURV SURV		<u>)ata</u>	-tor	<u> </u>	-		<u>#</u> ز			3()	<u> </u>			
	thing	5	55 234	47	5	<u> </u>	$\circ \phi$	<u>0</u>			. .			
\Q18	sting		234	67	41	<u> </u>	⊃ ¢ ⊂	\sim	<u>.</u>		/			
				ļ										
					-									
							•••••							
					1									
	· · · · · · · ·			<u> </u>				_	<u>^</u>		<u> </u>			
ROJECT Demolition Area 1 Phase I RI	• • • •			• • • •		HOLI	<u>ено</u> 1-0	х		<u></u>	<u> </u>			



HTRW DRILLING LOG	CUSTRUCT	uisville		DAJ - Ø16
	2 DEAL SUBCON			DA1 - Ø16
SAIC	<u>r</u>		·····	Vil viala
Demolition Area L Phase T R	21	REVENDA	Army Amunition Plan	vjb 11/9/199
NA		Bucket	AUCEC	
AND SAMPLING EDURATION D' dia DUCKET	havers.	I HOLE LOCATION	Berm	
spers.		* SURFACE ELEVATION	5.2.00 /083.	400
		IN DATE STARTED	11. DATE COM 1(2)/21	
1: OVERBURDEN THICKNESS		10/21/99 15. DEPTH GROUNDWATT	<u></u>	199
NA		NA		
O DEPTH ORILLED INTO RUCK NA		16. DEPTH TO WATER AN	ID ELAPSED TIME AFTER DRILLING COM	
14 TUTAL DEPTH OF HULE 1051/301		17. OTHER WATER LEVEL	MEASUREMENTS (SPECIFY)	
IN GEOTECHNICAL SAMPLES DISTURE	A NA	BED 19 TOTAL	AMBER OF CORE BOXES	
20 SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECIFY)	OTHER (SPECIFY) OTHER (SPE	A RECOVERY
DAA 21/36/DAI 21/8/DAI 24-4/DAI 22. DISPOSITION OF HOLE BACKFELLED	A157/DA10132/DA	0140/D/10238 OTHER (SPECIFY) 2	tionellant Explosines	
Frinte			Arul Jul	7
	Dage #Z		SCALE:/	
				_
1	RUEY DO	ta		
	~+h ~	511/22	0000	
λ'		02/17/1	,00000) 8.00004)	
199	Sting -	27618	γ.00000 /	
		•		
PROJECT	<u> </u>	<u> </u>	HOLE NO	,
Demolition Area 1 Phase I	RI		DA1	-Ø16
ING FORM 5056-R, AUG 94	<u> </u>			roponent CECW-EG)

HTRW DRILLING LOG	DISTRUCT				HOLE NEADER	
	2 DELL SURCO	uisville_		<u> </u>	DA1-017	
SAIC) <u>A</u>	<u> </u>		or 12	
Demolition Area 1 Phase T RT.		+ LOCATION	- - - - - - - - - - - - - - - - - - -	minition Diant	Vjb lila	
NAME OF ORBLER NA		O MANUFACTI	RERS DESIGNATION OF C	-		
SIZES AND TYPE: OF ORLENG 3" dia . Stainess	steel bucket		JON			
and spoons, Stainless	Stor Dants	V SURFACE EL				
		10 DATE STOR	UA			
	······································	10/2	1/99	IO/ZI/	19	
		15. DEPTH GRO	UNDWATER ENCOUNTER	en 1'		
IV DEPTH DRILLED INTO ROCK		16. DEPTH TO Y	WATER AND ELAPSED TO	E AFTER DRELLING COMPLETE		
H TOTAL DETHICF HOLE	·	17. OTHER WA	TER LEVEL MEASUREMEN	ITS (SPECIFY)		
301.01/103.01 IS GENTECHIMICALSAMPLES DISTURBED			TOTAL NUMBER OF CON	LE BOXES		
DA10839/DA10846/DA1984	NA METALS	OTHER (SPECT	NA			
DA (0037/DA10040/DA10041	3 1	Propellants	() Erobsives		TØØ	
22. DISPOSITION OF HOLE BACKFILLED	MONTORING WELL	OTHER (SPECT		ELAPSED THE AFTER DRELING COMPLETED ELAPSED THE AFTER DRELING COMPLETED		
LOCATION SKETCH/COMMENTS	Le Page	2	sc	ALE:		
	·····				-	
	4				.	
	JURDEU	DAT	A FOR T	DA1-017	\mathbf{N}	
<u> </u>	northin		551415	0000		
	Costino	0 - 6	134623	6.0000		
)				
				••••••••		
PROJECT						
Demolition Area 1 Phase I RI				DA1-	-017	
ENG FORM 5056-R, AUG 94		<u> </u>				

l

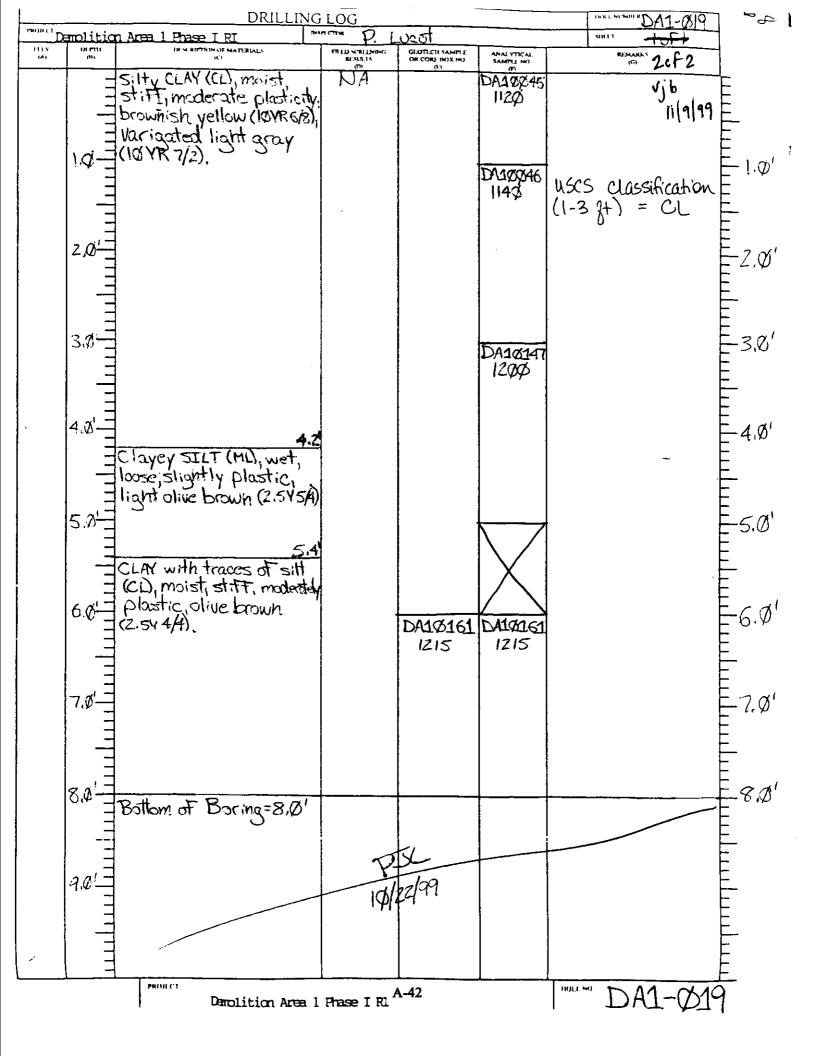


HTRW DRILLING LOG	(aus tra		ui er ei			_	<u> </u>			•••••	<u> </u>				
I CONFRANT NAME	2 082	LOC LL SUBCON	<u>uisvi</u> TRACTOR			<u> </u>	——-					- - -	HEET	-0 SHEET	UN OIL
SAIC	l_		4 1007		1/1	·							0	<u> </u>	2
Demolition Area 1 Phase T	RI		6 MAN	R2 NFACTU					nitic	n P	lant.			Vj Þ	H[9]
SIZES AMI TYPE: OF UNLINE 3" dig. Sta	nless stee	<u>. </u>	B	LICH	<u>let</u>	n		-							
ANTISANTUNGEOUTNENT DUCKET OLD	ers. Stain		5 HOL	Int	side	2 7	<u>Ser</u>	m	ł						
steel bowls and spoons	2 <u></u>		+ surre Ì	14	羿	200			108	32	.0	00			
				TESTAR	100			-			OMPLET	_		<u> </u>	
12 OVERBURDEN THICKNESS NA				THICRO				RED	1 #	$\Psi \mu$	41	¶			
IS DEPTH DRALED INTO ROCK N			16. DEP	TH TO W) (X			ME AF	TER ORI	LING C	OMPLET	Ð			
	<u>al</u>		17. OTH			EL MEAS	SUREME	NTS (S	PECEYI						
		UNDISTUR		\underline{N}	<u>A</u>										
NA NA		NA		SPECTY	NA										
DA100A2DA100A5DA1033VDA1014	30419144	100060	Ø Pro	20el	anti	Erok	ER (SPEC	05			SPECIFYI	-	21 TOT	AL COR	E
DEPTON OF HOLE BACKFILE	D MONTORING V		OTHER (SPECTRY		23. 54	ATURE	PF/	PECTOR	$\overline{\mathcal{X}}$					
	page # 2		_				S								
	Luge Z	<u>~</u>	; ;					I		•	<u> </u>	. <u></u>	•		<u> </u>
	•••••••														
											,			• • • • • • • •	
	6				,						\sum				
	DURUE	<u></u>	\mathcal{D}	<u>x to</u>	<u>ن</u> ــــــــــــــــــــــــــــــــــــ	YOX.	<u></u> #	= 1		$\cdot \phi$	18	7			
	northi	ne.			55	.14	08	. Ç	60	ė	<u>ہ</u>				
	eastr	<u>مم</u>	A 60	2	34	66	283	3.	00	0	00]			
												/			
			ŀ									ļ			
												•••••			
						•••••						•			
						•••••					••••••		•		
					•••••	•••••									
					•••••	•••••									
												•••••			
				••••••	•••••										
ROJECT	<u></u>		<u> </u>	<u>.</u>	<u> </u>	<u>;</u>	:		T HO	LE N	: IO	2			
Demolition Area 1 Phase I	RI									\mathbf{D}	A1 -	-()	N S		
NG FORM 5056-R, AUG 94	· ··		<u> </u>								يلي». (1'rope	ncul		W I	 (G)

k

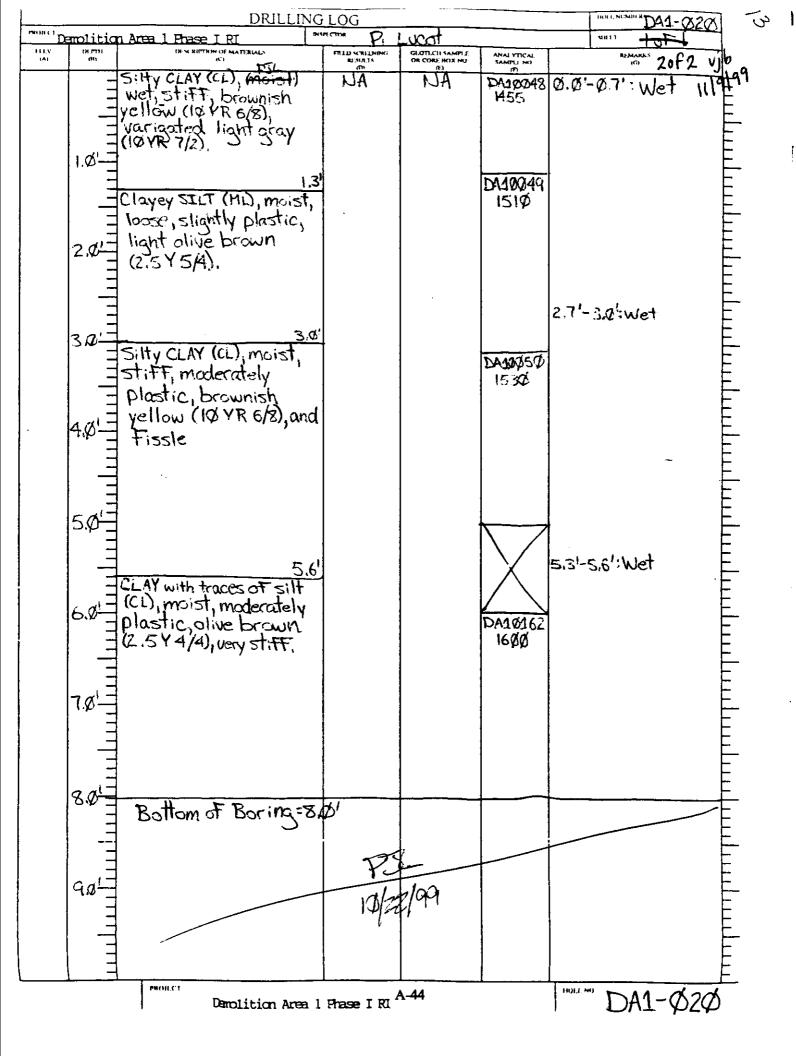
ł

1

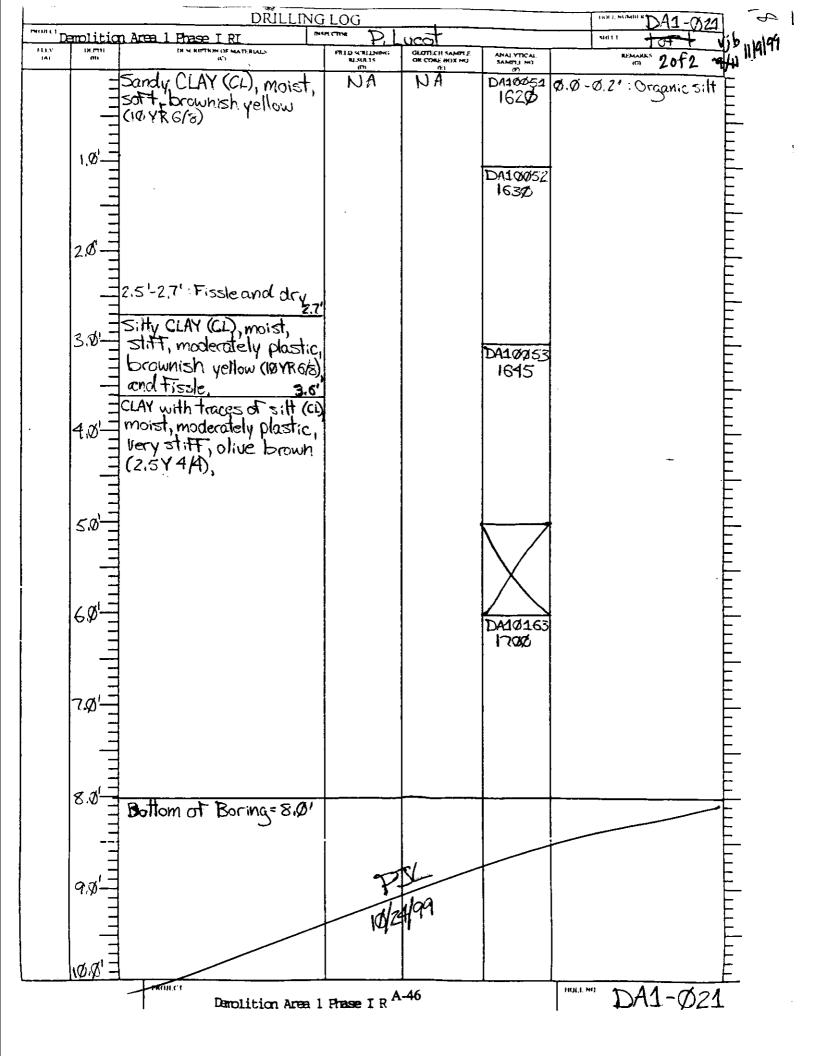

HTRW DRILLING LOG	DISTRICT	uisville									1-0	519
SAIC	1 DRAL SUBCON	TRACTOR	JA							SHEET	SHITE	• 7
C PROVECT		+ LOCATION								<u>1 1</u> V	ib II	1111
Demolition Appe I Phage I RI		. MANUFAC	Parven Turers c	ESIGNAT		anif L	um.	Pla	nt-		v	
SEES AND TYPE: OF DRELING 3" dig. bucket awee	<u>. </u>	THOLELOG	Ket	Auc	5							
and spoons	ZNE	In:	side	$\frac{1}{2}B$	<u>er 11</u>	1						
	·····	HUST	FA		10	$\phi 8$	3-1	18	5			-
			1221	99			ĬØ	ECOM 122				
12 OVERDURUEN THOCKNESS NA		13. DEPTH GE	<u>ionniv</u> 4,2	TER ENC	OUNTERE	¢						
IT DEPTH DRALLED INTO ROCK		16. DEPTH TO	WATER	AND ELA	SED TIME	AFTER	DRELIN	G COM	LETED			
TOTAL DEPTH OF HOLE 3@ 1.0' 10 8.0	 /	17. OTHER W		TEL MEAS	REMENTS	SPECE	FY)	· · ·				
IS GEOTECHNICAL SAMPLES DISTURBED	went		<u>N</u> M 19 TOTA	NUMBER	OF CORE	BOXES		•				
		OTHER (SPECT	FO 1	<u>)</u> А отне	R (SPECJFY	<u>, </u>	ਂਹਜਕ	ER ISPE	ರ್ಣಾಗ		TAL CO	
DA12045/DA10246/DA10447/DM10261 3 22. DISPOSITION OF HOLE BACKFELED MONTH	ORING WELL	XOIDSIN		23. SIGN	TURENE			<u>v</u>	(3)	NECU Z	<u>Č</u>	<u>~</u>
Bentanite				$\underline{-}k$	ulf	·Lu	cot	>				
LOCATION SKETCH/COMMENTS	sketcl	n on	$\Box \alpha$	e# ;	2 SCA	LE:						
						;						
										·····		
/											••••••	
RIR	TUR	ATA	-G		Ora-	і Бо	د	Ψ		_ ດາ	č.\	
	-+6	ATA	551	140	<u>२</u>	50	00	20	<u>KU,</u>	<u> </u>	╾┺╼┪	
\ e	stine)	23	46	181.	0	00	0	0		~~ /	
		8	sa.xo.									1
											•••••••	
ROJECT Demolition Area 1 Phase I RI							HOLL	ENC A	4	α	Q	
									_		- 1	

ł

ŕ


ا رہ

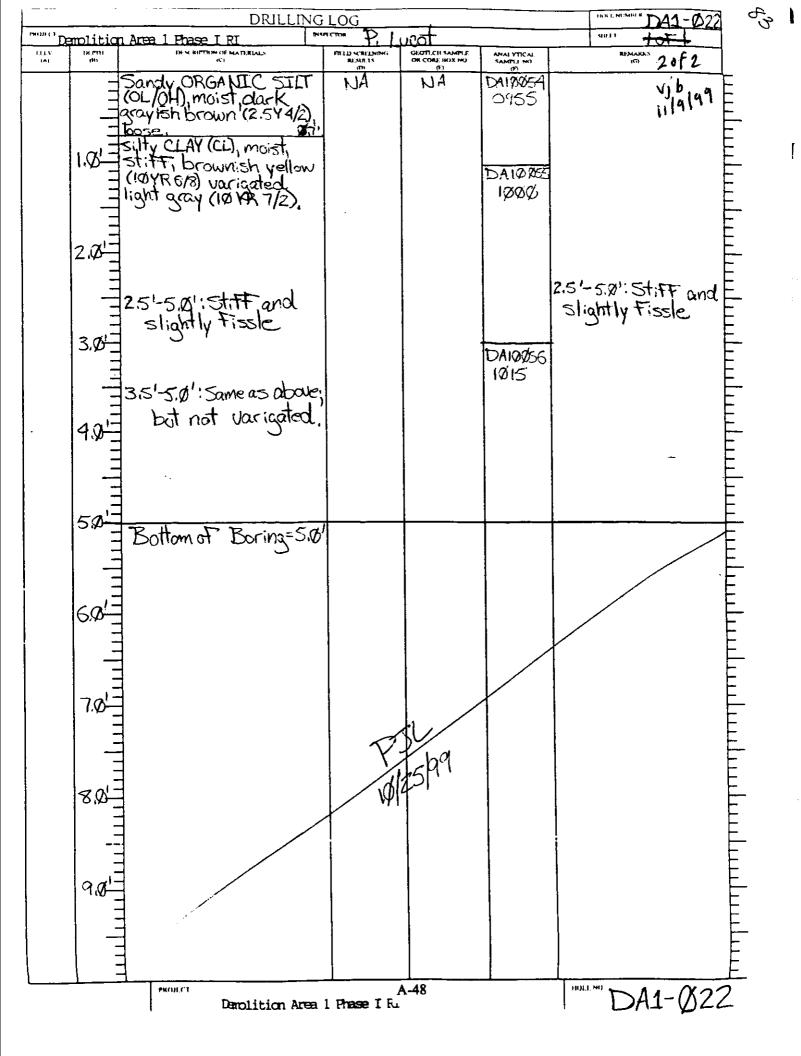
!


HTRW DRILLING LOG	DISTRUCT LC	uisvi11								1	7.2/×
SAIC	: DRAL SURCOS	TRACTOR							SHEET		1
UPROFET		+ LOCATIO	0N	<u> </u>		<u> </u>				<u>* 7</u>	
Demolition Area 1 Phase I RT			Pave	<u>ma j</u>	Army Am	anit.	ion Pla	ant.		ijЬ	11/9
		B	CTURERS	DESIGN	AURE						_
STED AND TYPE: OF DRILLING 3" dia stainless St		I HOLE LO	1	<u>~</u>	7	·					
steel bowls and spaces, sta	<u>linless</u>		<u>5 ЮС</u> тырал		Serm					<u> </u>	
		13-2	1 Aff	4	Ø	80		d			
		10 DATES	STARTED	laa			I DATE COL	APLETED			
2 OVERDURDEN THOCKNESS		U. DEPTH	GROUNDY	VATER E	ENCOUNTERE	l	19120	1-1			
	· · · · · · ·	16 DEPTH	N/A		LAPSED TIME	45757 0	88 1 BIC CO	der ErrErs			
NA			NA			AFTER U					
IN TOTAL DEPTH OF HOLE 30101 00	\mathcal{O}^{\prime}	17. OTHER	NATER U	EVEL ME	EASUREMENTS	SPECE	n in in				
IS GEOTECHNICAL SAMPLES	UNDSTUR	USED	<u> </u>		BER OF CORE	BOXES	,			<u> </u>	<u> </u>
20 SAMPLES FOR CHENICAL ANALYSIS VOC	METALS UA	OTHER (SPE		_	THER (SPECIFY		OTHER (SP	ECEN	11 10	TAL COP	
DA10443/DA18449/D419459/DA19462 2	4 SUCCE	rocella	nts(1)		losives	· .	vanid		NECUT	ERY C	•
2. DISPOSITION OF HOLE BACKFILLED M	ONTFORING WELL	OTHER (SPE	ECTFY)	23.5	IGNATURE OF	INSPECT	okj	1			
OCATION SKETCH/COMMENTS				<u> </u>	SCA		Jucot	<u> </u>		_	_
See Da	$xe^{\mp 2}$				SCA	LEI					
										1	
									-	•••••••	••••••
											Δ
	SURVE			-					$1 - \zeta$	ğ.Ə.	Ø\
	northin	No. R			1353						
	eastin		S.	340	=238		2000	\mathcal{D}			
		٢									
							į				
										•	
										-	
							·····			••••••	
ROJECT			i	:	<u> </u>	i ji Fi	IOLE NO	; ;			<u> </u>
Demolition Area 1 Phase I RI							DA	1-	Ø2	Ø	
NG FORM 505G-R, AUG 94							، است	ronom		i Chur	

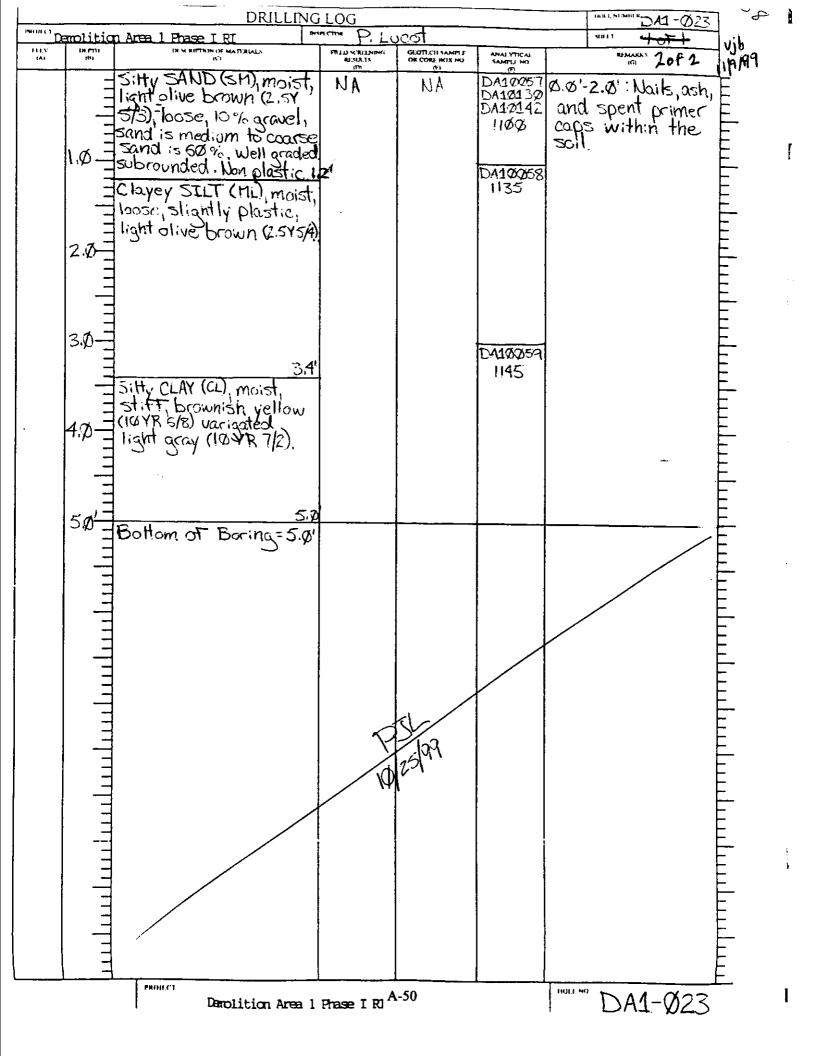
1

ITRW DRILLING LOG	to	<u>uisvill</u> e						11-(7121
SAIC	2 DRAL SURCON	TRACTOR					SHEE		レム」 エッ レク
PROVECT		4 LOCATION					<u> </u>	Vib	<u>u</u>
Demolition Area 1 Phase T RT		• MANUFACTURERS	INA ANITY DESIGNATION O	Annanit	im Pl	ant		90	
SEES AND THE OF DELLAS 3' dia Stanless St	reel bucket	Bucket	<u>Auce</u>	5					_ <u></u>
ALISANDUNG EDURAENT QUARTS, STAINESS 5		Insid		<u>m</u>					
and spoons.		* SURFACE ELEVATIC	2-24-	02	108	۵. ()Q.	\mathcal{O}	
		10 DATE STARTED	0		IL DATE CO				
OVERDURDEN THICKNESS		15. DEPTH GROUNDW	ATER ENCOUN		1012	<u>4-1 1</u>			<u> </u>
DEPTH DRELED INTO ROCK		16. DEPTH TO WATER	AND ELAPSED	TIME AFTER	DRALING CO	MPLETED			
TOTAL DEPTH OF HOLE		17. OTHER WATER LE	VEL MEASUREN	ENTS (SPECT					·
J@ 1.0'/ 10.8.0'	(a.m.mt -	NA			· · ·			·	
NA	UA	NA							
SAMPLES FOR CHEMOCAL ANALYSIS VOC	METALS 4	OTHER (SPECTY)	OTHER (SP		OTHER IS			TOTAL C	ORE
DISPOSITION OF HOLE / BACKFILLED N Bentonite	MONITORING WELL	OTHER (SPECIFY)	23. SIGMATUT	E AF ASPEC	PR 1		<u></u> (*_~~	
OCATION SKETCH/COMMENTS	 		₩7III	$\frac{1}{2}$	ICTO				
Dee	page #	2							
	` <u>`</u>								
	4						\sum		
	Burr	ey Da	to ti	v Da	91÷0) Q (
	(nort	hina	55	. in the second	8.0	$\phi \phi$	0		
	l east	nner	234	-23	8.0	¢0 ¢	2		
		Ø							
					, ,				
				•••••					
ROJECT			• • •		HOLE N			*	<u></u>
Demolition Area 1 Phase I RI					_		-		

:

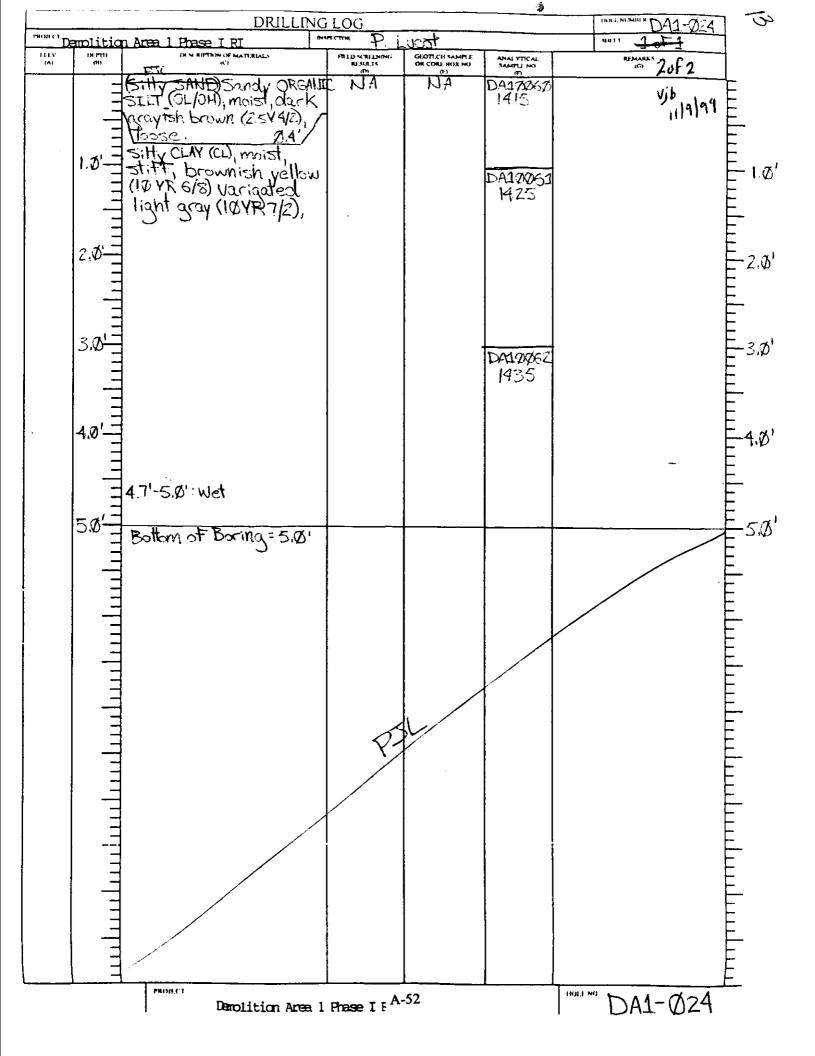

HTRW D	RILLI	NG L	0G					015178			isvi:										D	A1		22
	AIC							2 064	LL SUR	N/		_									SHE	or	SHEET:	2
raoien C	emoliti		. 1		T P.						1.007											<u> </u>	<u>.</u>	11)9)
NAME OF DRILLER		NIA	a-t-#1	<u> </u>	<u> K</u>	<u>+</u>				-+		UFACT						tion	<u>Pla</u>	<u>nt.</u>			<u> </u>	
SIZES AND TYPES I		3"	dia,			35		eel				<u>incr</u>	Ke	1	<u>Au</u> > '	5								
stee	bou	Ibu Ils ar	<u>cket</u>	 2000	ल्हा प्रमु	5	.51	ain	les	5	<u>O</u> Marine	<u>, TC</u> 3' 544	<u>iOk</u> Sati	<u>ి</u>	<u>D</u>	ēr	•							
				1							10 041	24 TE STAI		<u> </u>				280		4 (01515				
WERBURDEN TH	K TUNESS								_	_	1	\$/	25	99				IØ	25	5/9	7			
		NA									_	N_{2}	1		NCOUN									
) (DEPTH (DRELLET) II	NTO ROCK	NA									16. DEP		₩^TEP -{	LAND E	LAPSEI	TIME	AFTER	DRELIN	IG COM	PLETE)			
TOTAL DEPTH OF	#VLE 36	9.1.Q	5//1	@ł	5.0	\mathcal{N}^{\prime}					17. OTI	er wa λλ	тах (с)	VEL ME	ASURE	MENTS	(SPEC	FN						
S GEOTECHNICALS			Τ		STURP			-			D	- (v	TOTA		BER OF	CORE	BOXES		-		-			
O SAMPLES FOR CH			A 10 2	vo.		-		ŒTALS			OTHER				IHER (S				DER (SPI		8	I TOTA		
DAUDOS	ilite		Abor	BACKF	tueb	-	MONT	ORENG	WELL		<u></u>			<u>EX</u> 23. s	CKC ENAN	NUC REAF	<u>* (⊰)</u> 1941-ec	Cya	<u>vic</u>	le S	<u>></u>	Tøg		
	<u>Bentor</u>										_		-	-#	ĆU	Ul	ŧχ	UU	70					
OCATION SK	EICH/CO	IMMENT	ა 	\leq	<u>5e</u>	e	\mathcal{O}	<u>ao</u>	C	#	2	•				SCA	LE:		_					
								4	ノ															
							ĺ						•••••											
						Ĺ																		
						\triangle	<u>su</u>	٢V	ور	4	D	At	Α.	<u>f</u>	27		۶A] - (¢.) (\sum			
						<u>۲</u>	ĴΟ	٢Ŧ	hì	n na	ن مر		5	5	5	3	3.	20	>¢)	0]		
					[Ç	5	sti	<u>ارا</u>	جبذ		2	3	44	<i>•0</i>	0	3.	0	20	0				
																					/			
																ļ								
																		<u>.</u>						
														<u>.</u>		ļ					<u>.</u>			
															ļ	ļ								
																	<u>.</u> 	11121	17 1-1	<u>.</u>				
ROJECT	Demolit	ion An	a 1 1	hase	εI	RI												HOL T	.ε. Να Δ	, 1-	(Λ)	77		
NGFORM						_												Ĺ		<u>.</u> Рторы	VI		• (*)17	<u> </u>

ł


[

. k

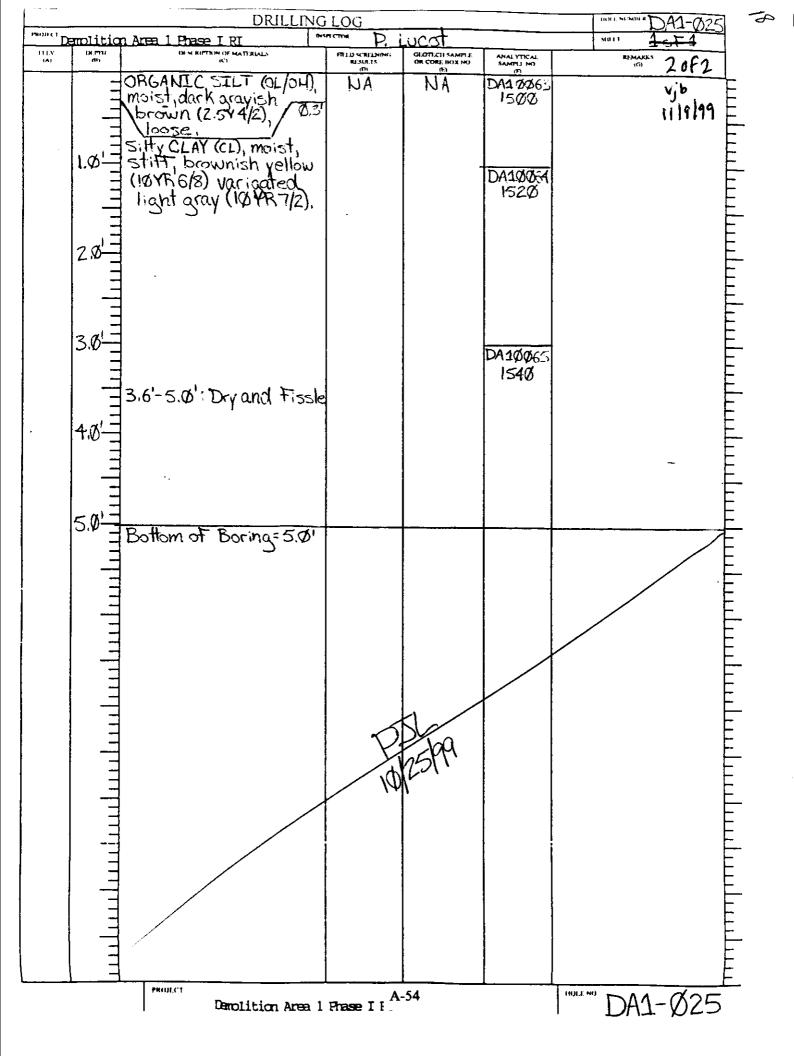
l



· · · · · · · · · · · · · · · · · · ·					-					·														
HTRW D	DRILLIN	NG LO)G					tist.		Lai	ടഗ	lle									ľ		- A	্হী
I COMPANY NAME								2.08		KONTR L											51	<u>астт</u>	SHIET	
	SAIC									<u>_</u>	4L		- <u></u> -	-								<u> </u> or	X	2
L PROVECT	Demolitic	** 7 *****	1 -	h	т г	э т					1 100						• •		-				vjb	n]
* NAME OF DRILLE				0392	_1_5	<u> </u>					• .YAT	MEACT	aver Irers	na /	<u>4 по</u> й и пой	<u>Ann</u> Iof dri	<u>umit</u> µ	im	<u>P1</u> 3	nt_			5	
		N K					.1			_	Q	374	P	$\frac{1}{20}$	ke	t /	lua	20						
" SIZES AND TYPE AND SAMPLING EQ		Eve D d	la « ket	<u>:taly</u> 101	<u>ाल्ड</u> १०८२			nles	<u> </u>	_	E HOL		TON C	10	R	ecn	<u>~</u>	د						
Steel	LOWE		500	$\frac{1}{2}$	5	·····	31001	<u>11(</u> 2,	<u>~</u> _>		y stra	FACEE	EVAT	<u>교는</u> 합동	<u>ب</u> سرد	<u>, , , , , , , , , , , , , , , , , , , </u>		~~	<u> </u>	.1	 -,		<u> </u>	
												$\overline{\mathcal{M}}$	FT 9	32	12		1	$\mathcal{O}\mathcal{B}$	1-	410	ر 			
											10 DA	те яти X / 2		2				1.0		PLETT	20			
12 OVERBURDEN T	HICKNESS	ΛÁ									17. DE	PTH GRO	-/	ATER 6	NCOU	NTERED		•¥.	44					
	11	JA										N,	4											
IN DEPTH DRILLED	INTO ROCK	14									14. DE			LAND E	LAPSEI	DTIME	AFTER	ORILLA	IG CON	QUETE	D D			
A TOTAL DEPTH C		<u>ant</u>	α	i	$\overline{\frown}$		A			-	17. OT	HERWA	TER LE	VEL ME	ASURE	MENTS	(SPECT	τn.						
	\geq	$\underline{\Im}$].	$\underline{\mathcal{D}'}$		_	5	φ	, —				<u></u>	٩								_			
IN GENTECHNICAL	lsamples N/4	7		κſ	A	εE)			1	A	ар Г		۲۰۲	u num A	BER OF	CORE	BOXES							
20 SAMPLES FOR C	HENSCAL ANAL	YSIS		vo	× (3			I METAL:			OTHER	SPECE	<u> </u>			PECTY		-	ŒR iSP			21 TOTA	AL COR	
DAV2257/1		X153142	<u>/144</u>		8/D	Ald		TORENO	uniti T			(SPECT		Ē	3	ينين.	5 Cl	nn (le.	PCE	5	T S	Ż_	
	Bentor	te	+			_+		-		+'			-, 	4.5	\mathcal{L}	RE OF	1	UČ	为					
LOCATION S			<u>_</u> S		_			-		<u> </u>	щ.			1	<u></u>	scA	. /	[<u></u>					
			-		_	5e	e	\mathbf{p}	ગ્રેપ્	$\frac{2}{2}$	Η,	\angle				34								
									-									:		1	1	:		
													•••••			:					÷	÷		
																: :			ļ			-		
			<u> </u>	$\underline{\mathcal{L}}$					<u></u>															
			1/3	S.	In	10.		T		h	2		ا ل	A	i - 1	09	5 7	ξŇ	Ż			:		
			1	\sim		ū]		· ···	122	ليستغ	<u></u>		C C					1					
			ŧ	. X. A	O'	:,	ρ.u	: 、]	ć		\mathbf{D}	5/4	2	7	$\mathcal{O}($	υc		ر.).	<u></u>				
			<u></u>	R	<u>25</u>	it ٦.	na		f	à	34	15	22	5.	0	00	Do	<u>.</u>	/		<u>.</u>			
						-	1	Ø																
																			-	-		1		
													•••••									÷		
												·····	•••••			ļ					ļ			
								<u>.</u>			•					<u>.</u>			<u>.</u>			<u>.</u>		
																:			-	-		-		
												-								÷				
													•••••]									•••••
				÷					; ;									<u>.</u>						
														-	-	-			:		-			
												-												
																				·		·	•••••	
												<u>.</u>						.						
												. .												
			·•••••																				••••••	
	•••••••••••••••••••••••••••••••••••••••			• • • • • • • • •	•••••							<u>.</u>									-			
						<u>:</u>	<u>:</u>	:	: 		<u> </u>	:		<u>.</u>	:	:	:	:		:	-	:	-	
	<u>: : :</u> :																							
PROJECT	Demoliti		_ •															HOL	E No) \ /	(メっ	2	

HTRW DRILLING LOG		<u>isville</u>							DA1	лан. Ø	24
SAIC	: DRAL SUNCON								SHEET	SHLET	2
SATC		4 LOCATION			<u> </u>			1		<u>r r</u> Vjk	<u> </u>
Demolition Arma 1 Phase I RI		NAMUFACT		ATTIN A	mini	tim	Plan	<u>-</u>		((1
SEES AND TYPES OF DRALING 3" dia, stainters	steel	BUC .	<u>-Ke</u>	+ Au							
Bucket augers, 3			JS	de 1	Zer	m					
steel bowls and spoore		* SURFACE EL	124	r	10	82	1.10	<u>ن</u>			
		10 DATE STAL		<u> </u>	<u></u>		TE COMPI	_	-		
		13. DEPTH GRO		R ENCOUNT	RED	ΙX	<u>9/25</u>	<u>1.1</u>	1		
			<u>N</u> 7	<u> </u>							
NA		I6. DEPTH TO	VATER ANI) ELAPSED T	ME AFTER	DRELD	NG COMPL	eted			
	5'	17. OTHER WA		MEASUREME	NTS (SPEC	IFY)		-			
GENTECHNICAL SAMPLES DISTURBED	UNDISTURE	10 ED 11	TOTAL N	MBER OF CO	RE BOXES		·				
SAMPLES FOR CHENOCAL ANALYSIS VOC	METALS	OTHER (SPECT	$\frac{\mathcal{N}^{4}}{\mathcal{N}}$	OTHER (SPE	-Fn	τī	ER (SPEC)	Fn		AL COR	
DA 100500 DA 1005 VLA 10052	3 E	A CLOSIVE		SIGNATURE			mide	\odot	RECOV	<u>ľý</u>	`
Bentonite				f	AN I	11 .	Mar	6			
OCATION SKETCH/COMMENTS	mo #	2		S	CALE:	17					
	the i	<u>.</u>		: :	:	;	: :	:	:	<u>.</u>	<u>.</u>
							<u>.</u>				
/ SURVE	y Da	$t_0 +$	20	10cc	iti	ىر,	Pr	<u> 11-</u>	0D	41	
Inorti	sthe :		514	158	2.0	0	00	Ó			Ī
Castin	J.	Q	46	066						\searrow	
	9						H				
								·			
										÷	
							ļļ.				
							•				
			•••••								
ROJECT		· · · · · · · · · · · · · · · · · · ·	:	<u>i</u> i	<u> </u>		<u>e no</u>	 _	~	<u></u>	<u> </u>
Demolition Area 1 Phase I RI					1	Ť	$\Sigma A'$	1	117	Л	

×



HTRW DRILLING LOG	OISTRUT LO	uisville		<u>,,, , , , , , , , , , , , , , , , , , </u>	HOLE NO	-0525
COMIFANT NAME SAIC	: DRAL SURCON	TRACTOR			SHELT	12
י אינגער אינג אינגער אינגער	<u> </u>	4 LOCATION		<u> </u>		Vjb inf
Demolition Area 1 Phase I RI.	<u></u>	MANUFACTURER	S PESIGNATION OF	munition Plan		<u> </u>
NA NA Stanley	s steel	BUCKE THOLE LOCATION	et Aung	2		
bucket avaers	stainless		de Ber	m		
steel towls and spoons?		the state		082-49	10	
		10 DATE STARTED	'ag	11. DATE CONT	5/29	
: OVERBURDEN THICKNESS NA		15. DEPTH GROUND		ар Гар		
UEPTH DRALED INTO RUCK		16. DEPTH TO WAT	RAND ELAPSED TO	E AFTER DRILLING COMP	LETED	
TOTAL DEPTH OF HOLE	α	17. OTHER WATER		TS (SPECIFY)		
S DECTECHNICAL SAMPLES DISTURBED			NA TAL NUMBER OF CO	<u> </u>		
S GEOTECHMICAL SAMPLES A DISTURBED ANALYSIS VOC	NETALS 1	OTHER (SPECTY)	NA			
DA1 00/53/DA100/64/DA120055	3	moellants(co Cyanid	BECOV	
Dentonite BACKFILED	MONITORING WELL	OTHER (SPECIFY)	23. SIGNATURE	DE DISPECTOR		
	xae #2	•	SC SC	ALE:		
	une T	<u> </u>	· · · ·		· · ·	
						\sum
/ JURN	12 j Dat			IAN DAI	1-020	$\underline{\neg}$
	thing	5513				
\ @ 85	ting	2346	058.	00000		
	0					
		•				
						<u>.</u>
				4		
	· ·	··· · · · · · · · · · · · · · · · · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·	
ROJECT Demolition Area 1 Phase I RI	• • • • • • • • • • • • • • • • • • •			HOLE NO	~ ~ ~ ~	

ļ

l

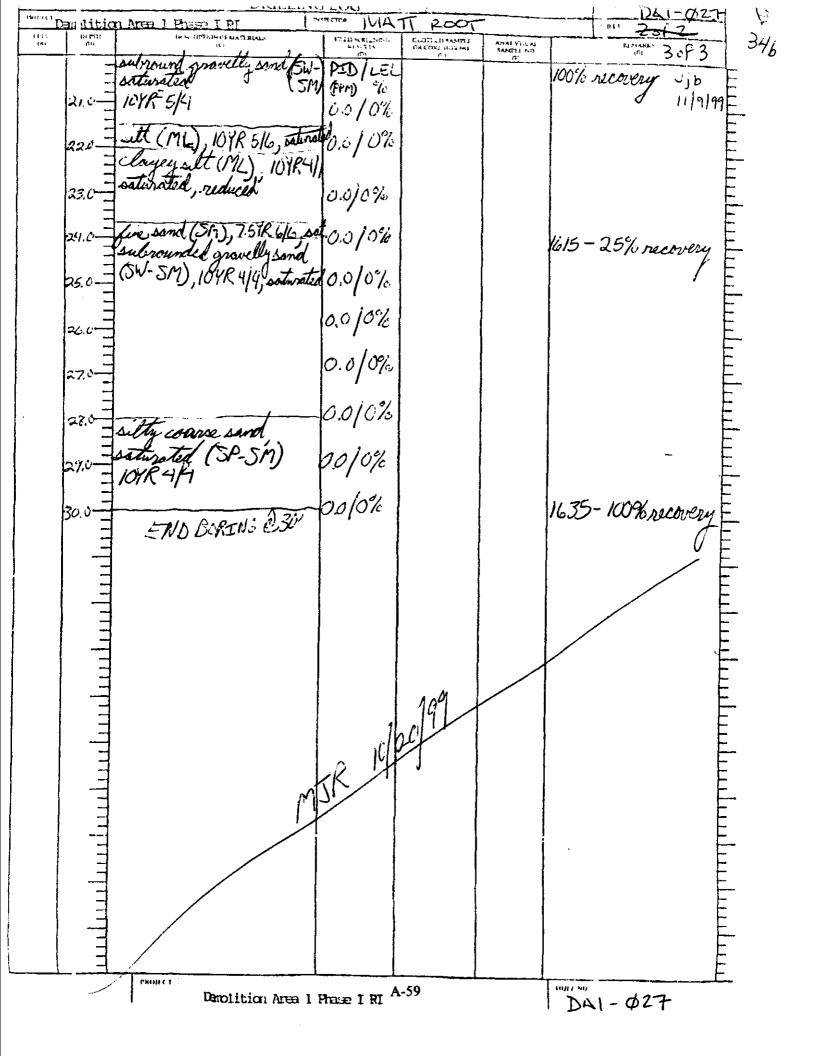
FORM 5056-R. A



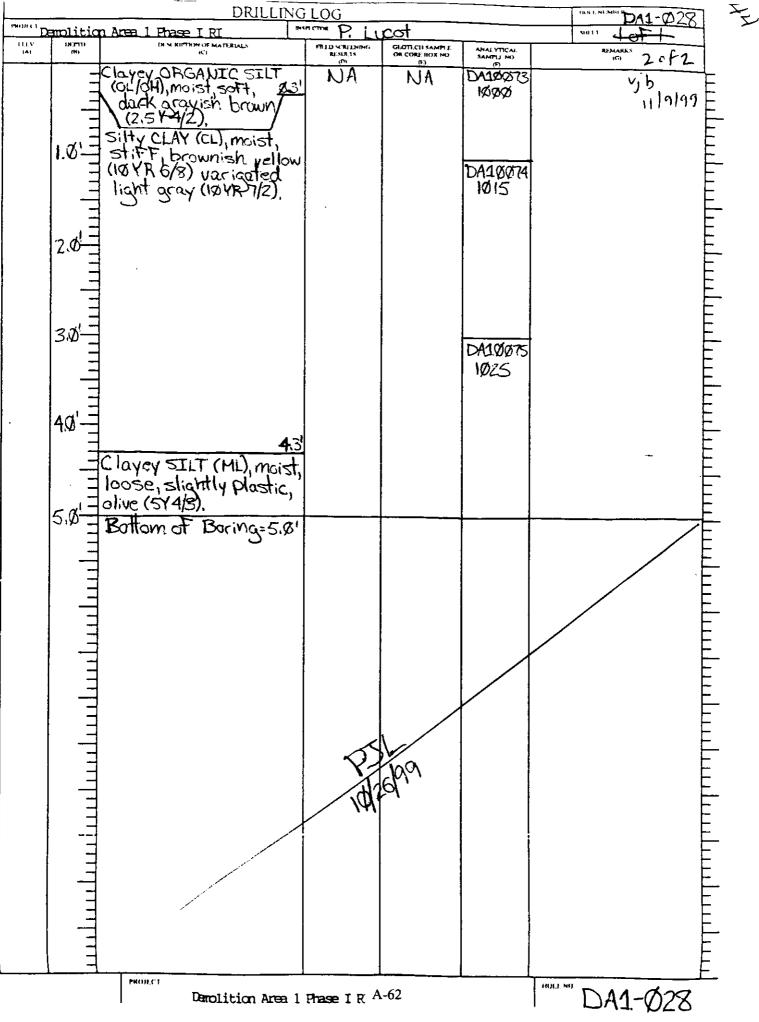
HTRW DRILLING LOG	DISTRICT							<u></u>	IROLE N	1.XII.K	
L COMPANY NAME	2 DELL SURCO	<u>uisville</u> TRACTOR			,			<u></u>	DAY.	7→(\) 1→(\)	
SAIC	(JA T 4 LOCATION								or 🖌	
Demolition Anna 1 Phase I RI			Ravenna	Army A	mmi	tim	<u>Pla</u>	ot.		Vjb	11/9/59
SAME OF DROLLER SCOTT Stood		Rix	TURERS DESIG	NATION OF	DREL						
AND SAMPLING EDUTATION 3" dia. Stain 1955 5		: HOLE LOC	ATION	5						·	
steel bowls and spoored	lainless_	JUC :	side t	<u>Bern</u>			<u>Cr</u>	<u> </u>		<u> </u>	
	·	IN DATE ST	A		<u>רט</u>	1-	<u> </u>	10			
			$\leq \tilde{l}$			Ϊĝ	12	519	9		
12 OVERDURDEN THICKNESS NA		IS. DEPTH G	OUNDWATER	ENCOUNTE	RED		1	_			
DEPTH DRELED INTO ROCK		IS. DEPTH T	WATER AND	ELAPSED TO	ME AFTER		IG COM	PLETED			
H TOTAL DEPTH OF HOLE			ATER LEVEL N	EASUREME	NTS (SPEC	ምነን					
	บพอเราบ	N,	19 TOTAL NUT	MBER OF CO	REBOIT		-				
NA NA	\mathbb{N}	1	NA								
20 SAMPLES FOR CHENGCAL ANALYSIS VOC	METALS	OTHER ISPEC	- I	THER SPEC			ER ISPE		PECC	DVERY	^{لو} م
22. (ASPOSITION OF HOLE BACKFILLED M	ONITORING WELL	OTHER (SPEC	FY) 23.	SIGNATURE	OF DIGTED	TOR	Ł	<u>~~ 1</u> ,	<u></u>		
LOCATION SKETCH/COMMENTS				H311	<u>× 4</u> .	(ur)	M				
EUCATION SKETCH/COMMENTS See P	<u>xaae #2</u>	, 		SC	CALE!						
										-	
						1					
AIDUS.	Date	O D	<u>r 100</u>		~	1 /1	<u> </u>	-	\overline{a}		
		$\sim T^{1}$				25					
(I)OITHI	S.	$\sum ()$	$+\alpha\alpha$			0					
Leastin		2345	776	<u> </u>	00	o	P			<u></u>	
	Y										
		· · ·									
										•••••••	
									••••••		••••••
									•••••	••••	
									•••••		
								•••••			
Demolition Area 1 Phase I RI						HOL			スつく	<u> </u>	
						$\underline{\nu}$			<u>D2</u> (
NG FORM 5056-R, AUG 94							(\mathbf{I})	'ronoi	uent C	ECW-	F(G)

1

÷


A-55

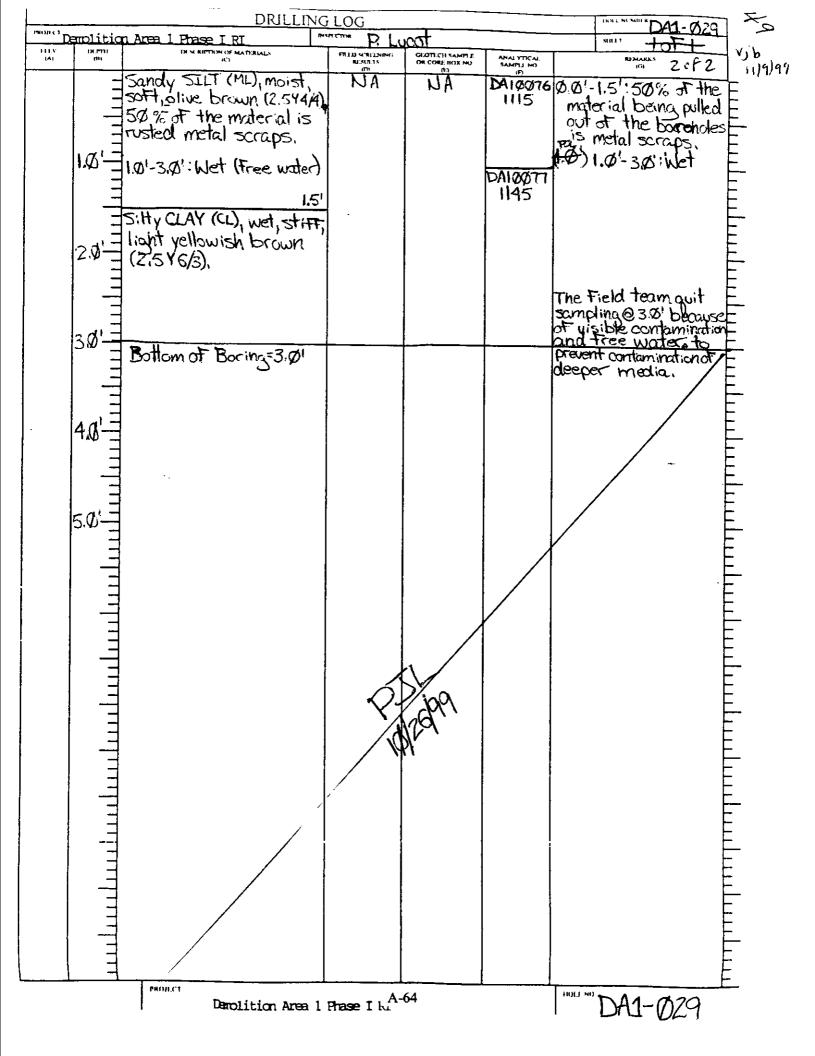
ITRW DRILLING LO	G	DISTRICT LO	uisville	e					HU NIN	-12
CUMPANY NAME STATC		2 DRAL SUHCON		<u> </u>						3
SAIC		1	4 LOCATIO	N	<u> </u>				or	3
Demlition Arma	1 Phage I RI	. <u> </u>		Raven	DESIGNATION	Ammini	tim	Plant		
ANDY ST	EFFE		ה אוניין אין אין אין אין אין אין אין אין אין	CTURERS T	ESIGNATION	of drill.				
SIZES AND TYPE: OF DRALING	macrocare &	lower	: HOLELON		در د ا				÷	
The K	12791		4 SURFACE	ELEVATIO	× /					— <u>—</u> —
			1		148	<u>81.5</u>	qø	· · · · · · · · · · · · · · · · · · ·		
	<u> </u>		10 DATES	0199			10.04	20191		
OVERBURDEN THICKNESS	——————————————————————————————————————		11. DEPTH	GROUNDW	TER ENCOUR	TERED				
DEPTH DEALED INTO ROCK		· · · · · · · · · · · · · · · · · · ·	16. DEPTH	TO WATER	AND ELAPSE	TING AFTE		COMPLETED		
			15.	<u>85 </u>	VEL MEASURE	has				
Source 32			WA			MEN IS (SPE)	uar 1)			
GENTECHNICAL SAMPLES	DISTURBED	UNDISTUR DA100		1) TOTA	L MIMBER OF	CORE BOXE	s			
SAMPLES FOR CHENOCAL ANALYSIS	VOC	METALS	OTHER (SPE		THER (S	PECITY	отно	RISPECTY	1 TOTAL	
WATER DISPOSITION OF HOLE	BACKFILLED MO	X NITORING WELL	X	CIFYI	23. SIGNATU		CTOR		~7_	140
	Centanit:				13. SIGNATL	<u>T </u>	200	٢	(H	<u>s''</u>
OCATION SKETCH/COMMENTS						SCALE:	N	ONE	•	
										X
184	Vey Data	わう	Sai	~~~~		hand		#DAI	- ~	17
	Veg juin									
	mingi	55/3								
L cas	ting.	2346	,101 -	<u>, 0</u>	000	0				/
			\bigcirc	Λ	Ē	Ħ	(
	N-1-1	+	M	11	275		7			
	4 سيل ()		- t /·				<u> </u>			•••••
										·····
						ļ				
										ļ
										•••••
								,		
						ļļ				
11/ NTEV/ YE							HOL	ENO		
ROJECT Demolition Area						j	N A	A	2	


١.

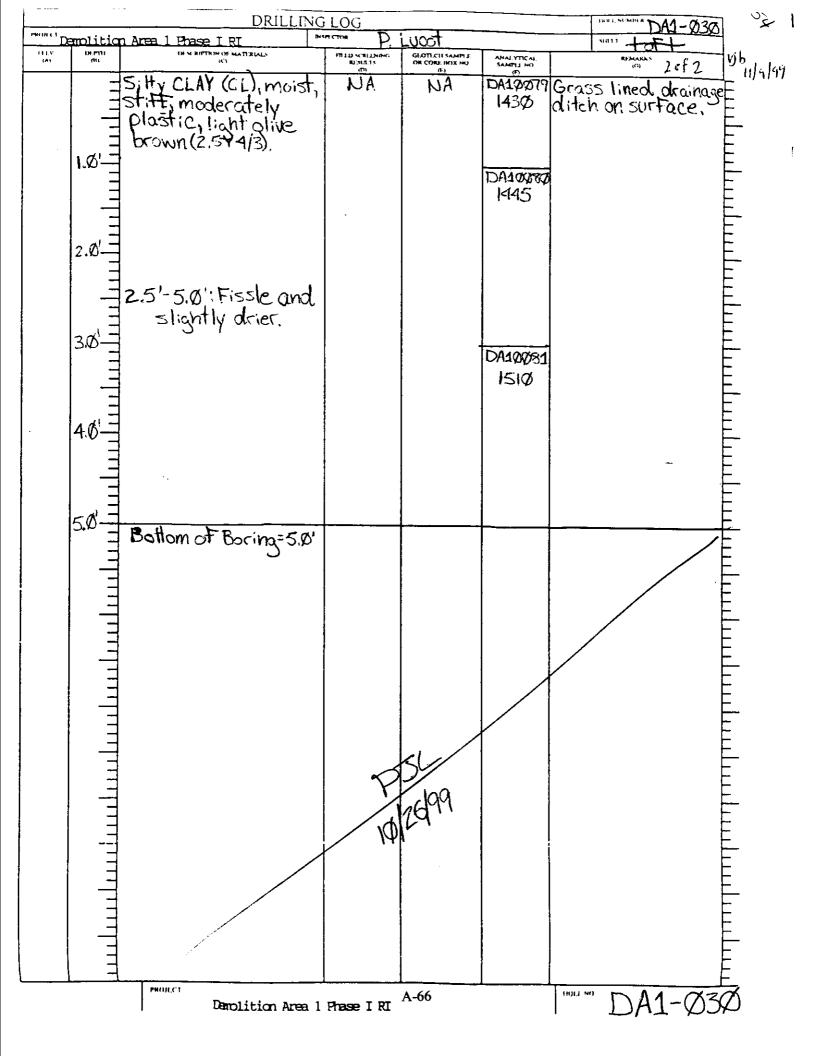
Ę DRILLING LOG 5A1-127 Demolition Area 1 MATI ROOT Phase I RI √յե 1113 (A) 121.(P110 (F11 RIPTION OF MATERIALS GEOTECH SAMPLE ON CORU: NOX NO NULLS SCRULLNI RUSUT TS ANALYTICAL SAMPLE NO REMARKS 20F3 11-9-95 re metty friel PID/LEL 0730 - 100% Malever DAI-QOIG Con clay, dig, 10th s/10 (477) 1344 C. 1 24 1.0' USCS classification DA10072 10/n/99 1600 Shelby Tube (1-3 gH = CL U.5/ 2630 Detroit 2.0 DAD-1007 vades To moist, 101R 4/3 0.31-201 1135 30 (.1/ 20,5 (V ы.e M1-00Z much line, dry, 2.5; 25/3. 0.012470 mpit dilate 1135 apon st clay, 10th 5/4, some (CH) J motting 5 0/ 3.1.70 7.2 ~~(**e#**0) F.) 10:20 - 10% necess and is above 1.0/0% Me 9.0 sul anget 1018 - 1010 10 10 10 10 (0.0/0% μ . 13.0 - moist, 161R 3/6 0.010% 1009 -75 % necrosen p.c / 6% 140 O OJ OK 15.0 1029 - 50% nacosen 100 040% some as about 0.0/ 0% - ^مر: -WL @ 17.5 18.0 19.0 PROJECT "DAI-\$27. A-58 Demolition Area 1 Phase I

THIS PAGE INTENTIONALLY LEFT BLANK

HTRW DRILLING LOG	выпист Гст	uisvi 11		<u> </u>	<u></u>						120
E COMPANY NAME SAIC	2 ORAL SURCONT								SHEET	- <u>r</u> 	(<u>~0</u> []
1 PROJECT		+ LUCATI			·				<u> </u>	Jit	<u>,</u>
NAME OF DEGLER ITA		6 MANUF	Raver ACTURERS	ITA AIT	V Ann N OF DRA	uniti	m <u>P</u> 1;	ant.			11-9-0
SULS AND THE OF DIRLING 31 dias stainless ste	el bucket	BUX	CKet	Aug	<u>9</u>						
avers, stainless stee		<u> </u>	TSIC	<u>e B</u>	erm	<u>}</u>					
		ASH	HT.	<u> </u>	280	>-4	80				
			126/	99		'	$\hat{\phi}/2$	6/99	7		
1: OVERDURDEN TRICKNESS NA		IS. DEPTH	GROUNDW A	ATER ENCO	INTERED		,				
IS DEPTH DRELED INTO ROCK		16. DEPTH	A A	AND ELAPS	ED TIME /	AFTER OR	LLING COI	MPLETED			
14 TOTAL DEPTH OF HOLE 301,0'/10,5,0'		17. OTHER		VEL MEASUR	EMENTS	(SPECIFY)					
IS GENTECHMICAL SAMPLES	UNDISTURE	IED		L NUMBER O	F CORE E	OXES	<u> </u>				
20 SAMPLES FOR CHEMICAL ANALYSIS VOC 1		OTHER (SP		OTHER	SPECTY		OTHER (SF	· · · · ·	l escri	OTAL CO	DRE
22. DISPOSITION OF HOLE BACKFILLED MONT	CRONG WELL	OTHER (SPI		2.500	ibyT:	S(IC)	<u>vanic</u>	de (3)) 10	<u>ov</u>	
LOCATION SKETCH/COMMENTS				TAN		IMAN)				
See p	aae #	2			B CAI	LE:					
	\mathcal{O}										
							<u> </u>			-	
/ Survey Date +	<u>er 100</u>	<u>b-tio</u>	فرر	FDA	<u> </u>	22	<u>8</u>				
(rorthing:	55129	72.	φd	000	0			ļ			
Leasting 2	3461:	58.	. O ¢	000	0			_			
N							<u> </u>				
										••••	
										•••••	
Demolition Area 1 Phase I RI						HC) \1	<i>d</i> -	Q	
NG FORM 5056-R, AUG 94		<u> </u>						\ Рторон	$\underline{\mathcal{V}}$	<u></u>	

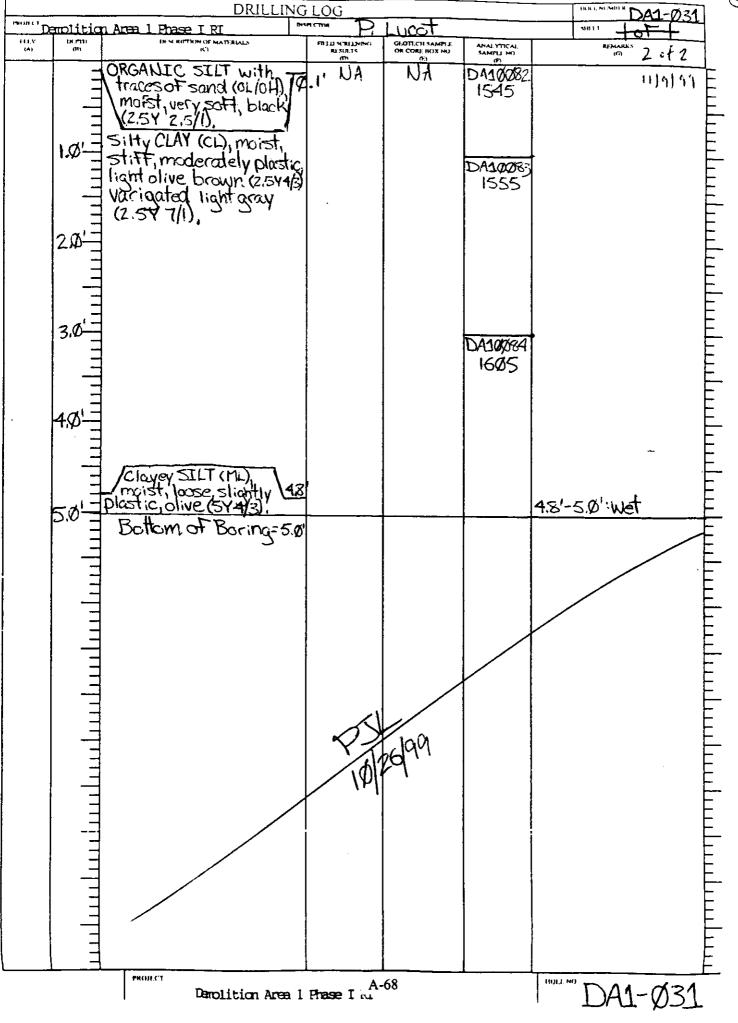

HTRW D	RILLING I			013		·				·					14	ou. NO	114 N	
L. COMPANY NAME			···· ····		RAL SURCO											<u>)A'</u>		29
- PROVECT	AIC		<u> </u>		<u> </u>	JA Liux	ATION			<u> . </u>						~~~	_	_
	emolition_Ap	ea 1 Phas	<u>e î Ri</u>		<u></u>	ļ			ma)	Armv	Amm OF OREL	niti	m.p	lant.		0)9		
 NAME OF DRELER 	<u>NA</u>							Ke		AUG						2 (1 (v) 2 (2) V) (b (1)) O TI 2 11 TOTAL CORE ECONTRACORE ECONTRACORE ECONTRACORE		
* SIZEN AND TYPES (AND SAMPLING EQUI	PRENT	dia 3	iainles Joers. S		ae	<u> </u>	ELOCI	TION			<u>err</u>							
steel b	owls and	Spoons	5051.5.0	STOMUE:	<u> </u>	* SUR	FALLE	LEVA TR				-	/		~			
<u>.</u>		• 	·				53 TE STA	~ ~	<u>] A</u>			<u>67</u>						
12 OVERDURDEN TH	ICX NESS					11	Ø[1	<u>26/</u>	99				$ \phi _2$	26/9	9			
- <u> </u>	<u>NA</u>	·				13. DE	ринск 	JA	VATER I	ENCOUN	TERED			•				
13 DEPTH DRILLED O	NA					lé, DE	тн то	ŇÄ	R AND E	LAPSEL	TIME A	TER DR	LLING C	OMPLET	æ			
4 TOTAL DEPTH OF	301.0'	103	.05)		• •-	17. OT	HER W		VEL ME	EASURE	MENTS (PECTY						{
IS GEOTECHNICAL	<u> </u>		DISTURBED		UNDISTU	RBED	[AL NUM	BER OF	CORE BO	XES						
20 SAMPLES FOR CH	ENICAL ANALYSIS			META		OTHER	(SPECT	<u>N</u>		THER (SI	PECEY		OTHER	SPECIFY		21 TOT	AL COR	<u></u>
DAIONTE	DAIOSTI		Z	2 MONTTORD					83(2)E		sides		rpella	1	REC NY	Ż	<u>`</u>
	Bontonite								1. S	A A			uto	Б				
LOCATION SK	ETCH/COMMEN		see	\sim	<u></u> # ·	2					SCAL	ŧ:						
		<u> </u>	<u> </u>	puce		<u> </u>		:		: :			:		:	:	:	
	/																	
	$-/\alpha$	- 1-	~		0										\square			
		rvey	100	<u>toi</u>	for		$\frac{1}{2}$	34	<u>ز ي ا</u>		<u>+</u>]	<u> </u>	<u> -</u> C	<u>bg</u>	9]		
	$\int Dc$	SC HAVY	ngs		551	2	38	, C	20	o c	b Ö				/	ļ		
	L Co	istin	5.2		23	46	0	93	3.	0c	0	ې د			/			
			<u> </u>															
													ļ					
												•••••				•		
						•••••		•••••			•••••			••••				
						•••••••			•••••	•••••			••••					
									•••••		••••••		•					
											••••••			••••				
PROJECT	<u> </u>			: :		_:	<u>:</u>	<u>.</u>					E I					
	emolition Ar	ea 1 Phas	æ I RI										$\overline{\Box}$	Δ1	-0	520	ł	
NC FORM 5	056.R AUG 9	.1										1 1		<u> </u>	×	j29		

FNG FORM 5056-R, AUG 94

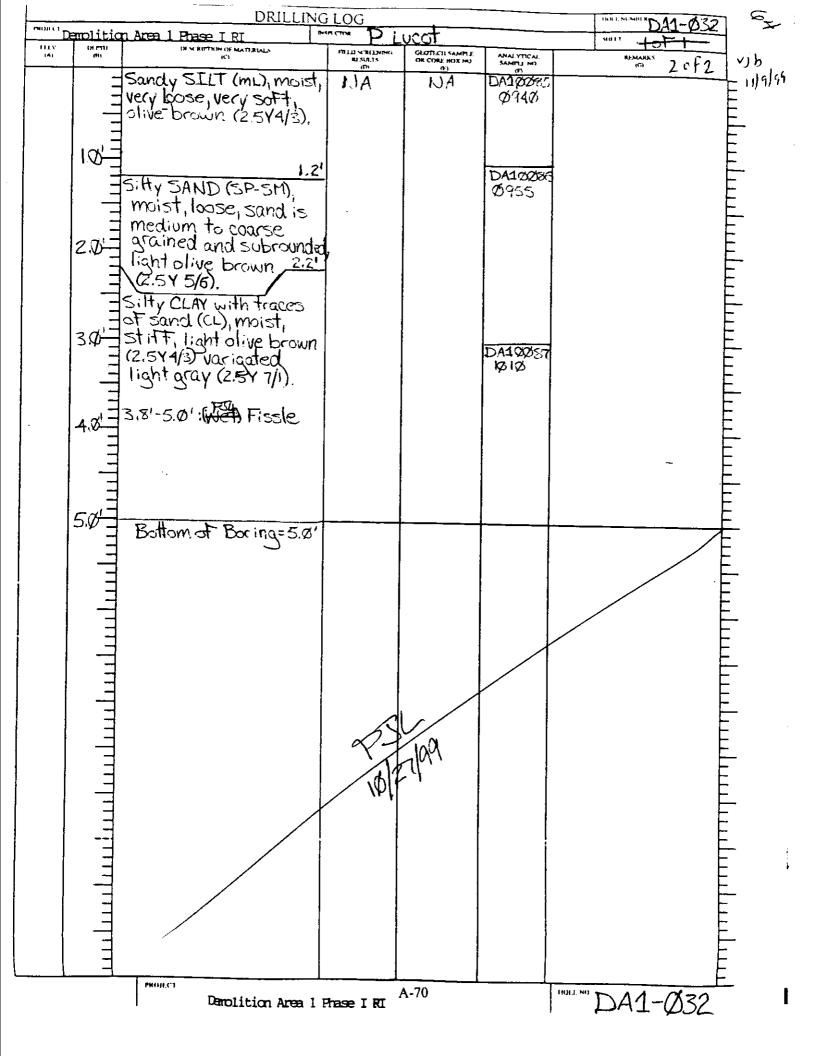

(Proponent CECW-EG)

I

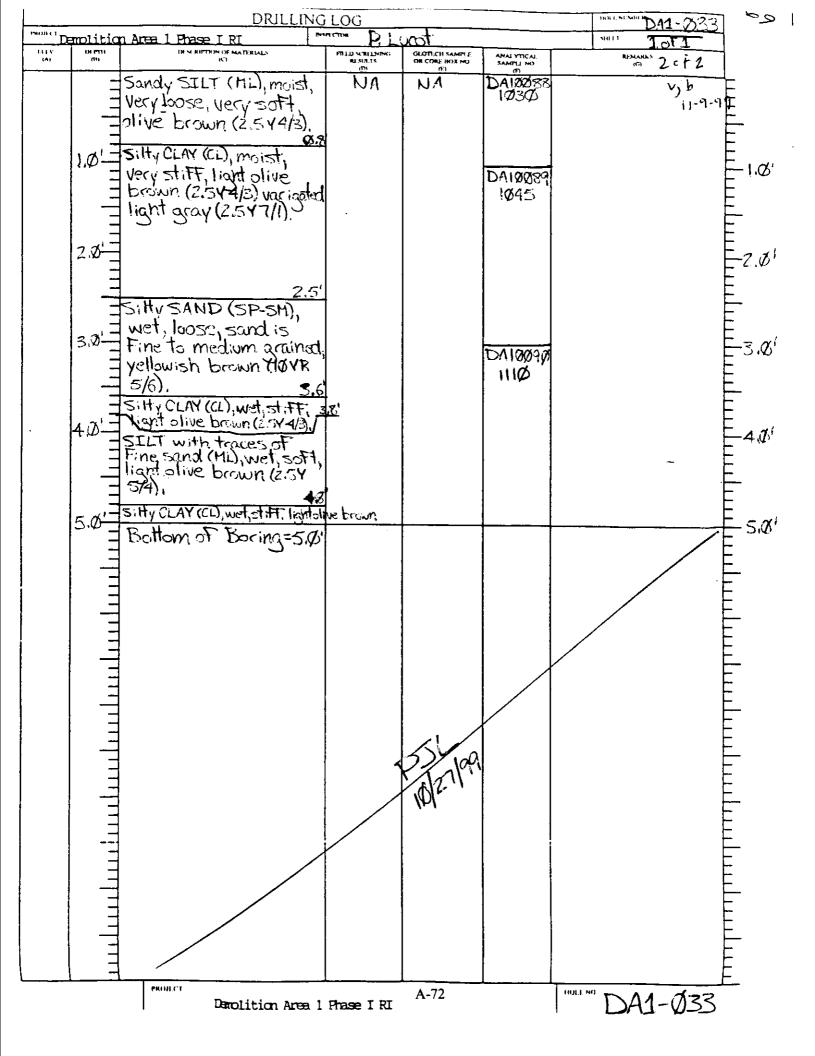
1



HTR				NG	LC	G					0.575			isvi										1 -			530
E COMPANY		: SAIC									2.06	ut stie	AU	LUTON	ι								-		EET	SHIET	
E PROPERT		-	•••••			1 -								4 100							<u> </u>			EI EI EI BI TOTAL CORE BECIMEEN	<u>~</u>		
NAME OF			k 1	α Δ	Arra	<u>1 p</u>	nase		<u> 1</u>				+		WFACT	URERS	nna_	Army ARON	OF DRI	uni u	tim	<u>P1</u> 2	nt_		11.1		
SIZEN AND				12	3″ d	ia.	sta	inte	SS	<i>s</i> t	સ્ટ				BOX ELOCA	_	21_	<u>M</u>	ne	<u> </u>							
			5	- <u> </u> 		<u>ংলা</u> ০ন	<u>20</u>	<u>sec</u>		Sta	inle	22		- și ju		1t 5	ide	e T	<u>3e</u>	rm	Ì						
				<u>, vv 1.</u>			-94		الا في ما					Vip	X	F	<u> </u>		10	<u>)</u>	7.	2	<u>3 c</u>)			
							-					-		10 04	Ф	rted 26	199				IO	129	519	3			
II: OVERAUI	RDEN T	нски	255	N	A									IN DE	PTH GR	ound	ATERI	ENCOU	TERED	•						·	<u> </u>
D DEPTH D	RELIFT)	INTO R	UCK	M	À						•		-	16. DE	тк то	WATE	R AND E	LAPSE	TIME	AFTER	ORELA	IG COM	PLETE	1			
14 TOTAL D		F HOLE	2	<u>බ</u>	$\overline{1}$	17	16	95	$\overline{50}$	51				17. OT	HER W/	<u>ער</u> יואי	EVEL M	EASURE	MENTS	(SPEC	ົະທ						
IS GEOTECI	INICAL	. SAMPI	<u>ں</u> ۱ ھ	<u>س</u> ۱۸	ι.γ.	<u>'</u>				, 		UND	TURBE	л	<u></u> _	<u>JH</u> , тот	AL NUN	BER OF	CORE	BOXES		•					
10 SAMPLES	S FOR C	HENGC.			<u> </u>	-		<u>N/</u>	 	····· ,	VETALS	<u> </u>	4		SPECT		NA	THER (S				ER (SP	EC 3711		U TOT	AL COP	F
DA 100			Ŵ	80)	DAI	200		FILLED	-	3)		R	000	Har	雨	Ex	olos	Ne				de		ΫØ	<u>8</u>	` <u>`</u>
**. (*ei r \'oit	10119 WF		ent	on	te		BACK	-	-	MONI	FORENG				(SPECT		23.5	Ha		I TA	UN	ζ			•		
LOCATIO	ON S	KETC	H/CO	DMM	ENTS			S	6	ſ	$\hat{\mathbf{x}}$	e	#;	2					sc	LE:		-					
									<u> </u>			5		<u> </u>													;
												•••••															
	•••••			<u>.</u>	/			 																			
				1	$\overline{\mathbf{S}}$		rv.		7		+		0		1		<u></u>		•	÷		 		5	<u>.</u>		
	•••••							Ū	6	2	10			•	•	•				<u> </u>	<u>אט</u>	<u> -</u>	$\frac{O}{C}$	<u>S. (</u>	2)		
				<u>{</u>	X	10		hī		5							00										
	•••••				<u>ب</u>	\sim	st		g	•	•••••	\propto	. 	7.9	РЖ.	<u> </u>	.00	200	ت م						/		
											•••••				<u>.</u>												
																							<u>.</u>				
											•••••	•••••															
												•••••															
													•••••														
																			ļ			<u>.</u>				<u>.</u>	
																				<u>.</u>							
	V.F						:		-											<u>.</u>							<u> </u>
PROJEC		Dem	olit	im	Area	11	Phas	еŤ	RT						-*						HOL	E NG) ^/	_(オウ	đ	
								~ +	•••	_					مو							$\boldsymbol{\nu}$	AT N	1	115	\mathcal{V}	

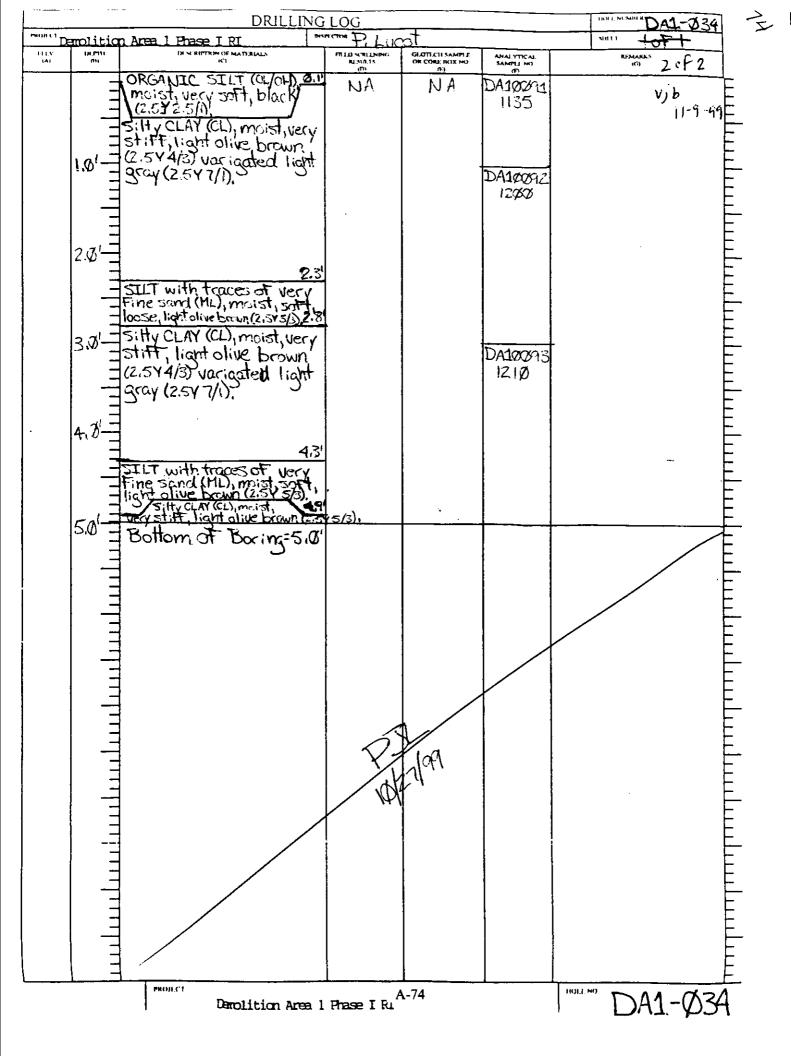

HTRW DRILLING LOG	LC	uisville						1		- <i>d</i>	21
SAIC	2 DRALL SURCE	TRACTOR					,	-		SHULT	
L PRAVECT		4 LOCATION					<u></u>	1		lih	
Demolition Area 1 Phase I RT	· · · · ·	6 MANUFACTY	RERS DESIG	ATTEN OF D	mmit	:im	Plant.			<u> </u>	-4.9
SEESAND TYPE: OF DRUING 3" dig. Stailles	steel	BUC THOLE LOCAT		Aug	2						
STEELAND THE OF DURLING 3" dia, Stainless Ducket Quarts	Stainless	Outs	ide	Ba	m						
Steel Dembanuspuic	· · · · · · · · · · · · · · · · · · ·	3.2.5	A	_ 1	08	<i>о</i> .	380	2			
		10 DATE STAR	3199			ľØ	1261	19			
12 OVERBURDEN THOCKNESS		13. DEPTH GRO	NOWATER	ENCOUNTER	an			<u> </u>			
I) DEPTH DRELED INTO ROCK NA		IS. DEPTH TO V		ELAPSED TIM	E AFTER	DRILLIN	IG COMPLET	ED			
14 TOTAL DEPTH OF HOLE 301,01/105,0	 J	17. OTHER WAT	I ER LEVEL M	EASUREMEN	TS (SPECI		<u>.</u>				
	unperu	<u>I_N/A</u>	TOTAL MIN	BER OF COR	E BOXES						
	METALS	OTHER (SPECTEY	ŅД.	THER (SPEC)	- ni T	στι	ER (SPECIF)	<u> </u>	21 TOT.	AL CORE	
DA1073 82/DA100737DA10784	3 MONTORING WELL	topellan	<u>s(Ex</u>	DIOS IV	<u>59</u>	2,00	inicle	(3)	RECOVE I	λΥ)	\geq
Bentonite				Fau	17.5	lico	0				
LOCATION SKETCH/COMMENTS	Dage #	ŧ2		SC	ALE:						
	1 J										
			•••••				١		~		
Survey	Dota	for-		روالله	Ω L	A١	-03	X			
Docthy		55127	•					\mathbf{h}	•		
l eastin		23465						1			
	ð						/	/			
		-									
								•			
PROJECT											\square
Demolition Area 1 Phase I RI							ε NO ΣΔ1	-1	ねて	1	
	<u> </u>					1	τ 14	. \	$ \underline{\nu}_{\underline{-}} $	<u></u>	

l

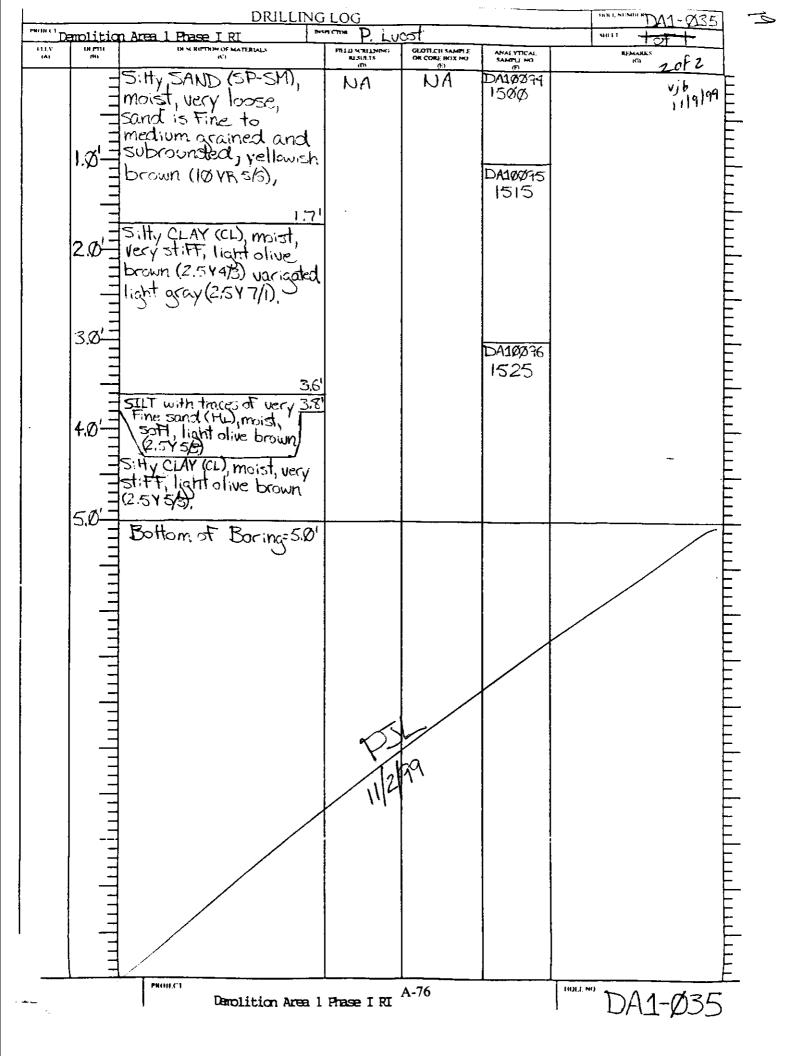


1 é

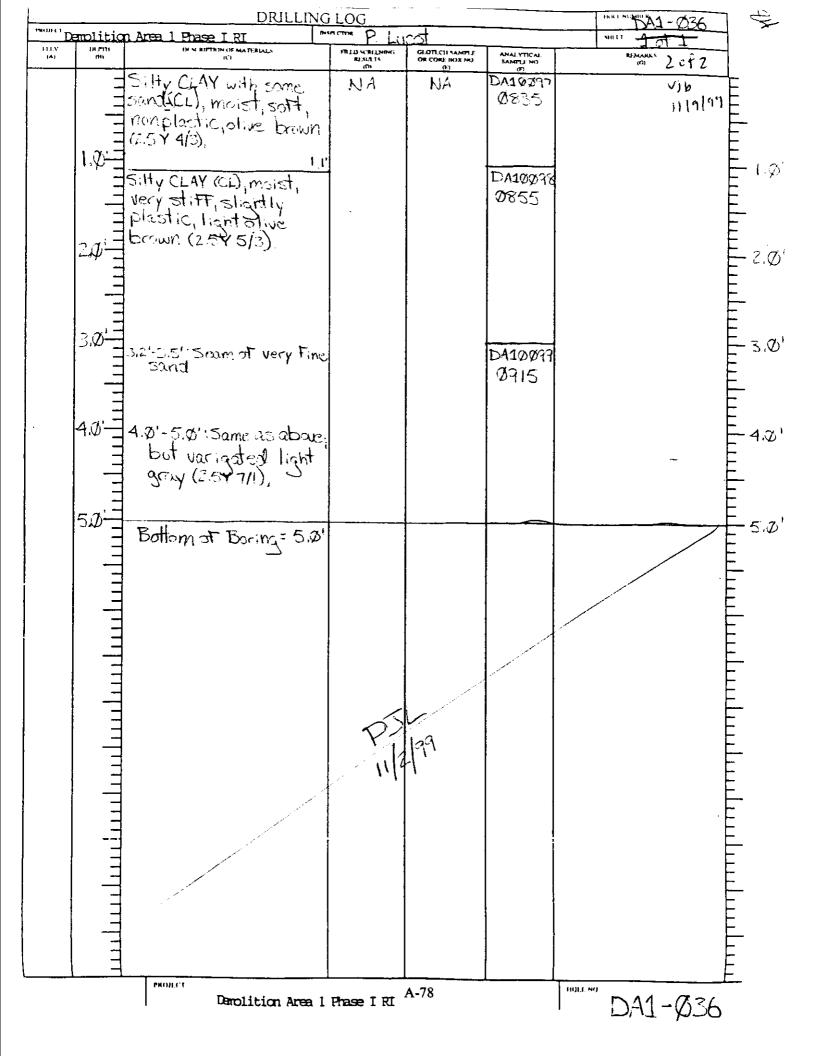
HTRW DRILLING LOG	DISTRICT	uisville						ب الم	20			
1 COMPANY NAME	2 DRALL SUBCON						DA	1-03 SHEET	26-			
SAIC	<u> </u>	NA						er.+				
		+ LUCATION				_		Vib	· 1) 1			
Demolition Arm 1 Phase T RT		MANUFACTURE	ETTINA ATTEN O	Annii Forai	tion Pl	ant		<u> </u>				
		Bucke	t Auge									
AND SAMPLING EDUTING 3" dia. Stainless St DUCKET QUARTS, Stai	nlass	T HOLE LOCATION	5									
steel bowle and spoons	niess -	" SURFACE HEV	<u>I</u>	1 1 1		<u> </u>						
	······	N3247		148	1.44	÷φ						
		10 DATE STARTER	ilaa		IL DATE CO	TIAO)					
COVERBURDEN THICKNESS	10/27/99 13. DEPTH droundiwater encountered											
<u> </u>		L NA					_					
IS DEPTH DRULED INTO ROCK NA		IS DEPTH TO WAT	TER AND ELAPSED 1	TIME AFTER	DRELING CO	MPLETED						
IN TOTAL DEPTH OF HOLE 30101/1050'		17. OTHER WATER	LEVEL MEASUREM	ENTS (SPECT	FY)							
	เงกราน		TAL NUMBER OF C				<u></u>					
NA NA	NA		A NUMBER OF C	OKE BOXES								
¥	METALS	OTHER (SPECTFY)	OTHER (SPE		OTHER (S	<u> </u>		TAL COR				
DA 10085 DA 10086 DA 10087	3) 1	TOPPIDITS (1) EYCLOS		<u>Cyanis</u>	de (3)	18	ϱ				
Bentonite -			+ P	ull-	Tuck							
LOCATION SKETCH/COMMENTS	<u>^</u>	#0	S	SCALE:	<u> </u>							
<u> </u>	page	<u>,#2</u>]			
	ڊ '											
							-					
7				····:		X						
	\sim											
/ Durvey Date	a tor	loca	HON	<u>DAI-</u>	03'	9-1						
northing	551	1280.	0000	0								
easting :	234	6282.	0000	J.		1						
				Ŭ								
····												
				····-								
							····	••••				
									,.			
	·····											
				:	: :	: ;						
PROJECT Demolition Area 1 Phase I RI					HOLE N DF	()	733					



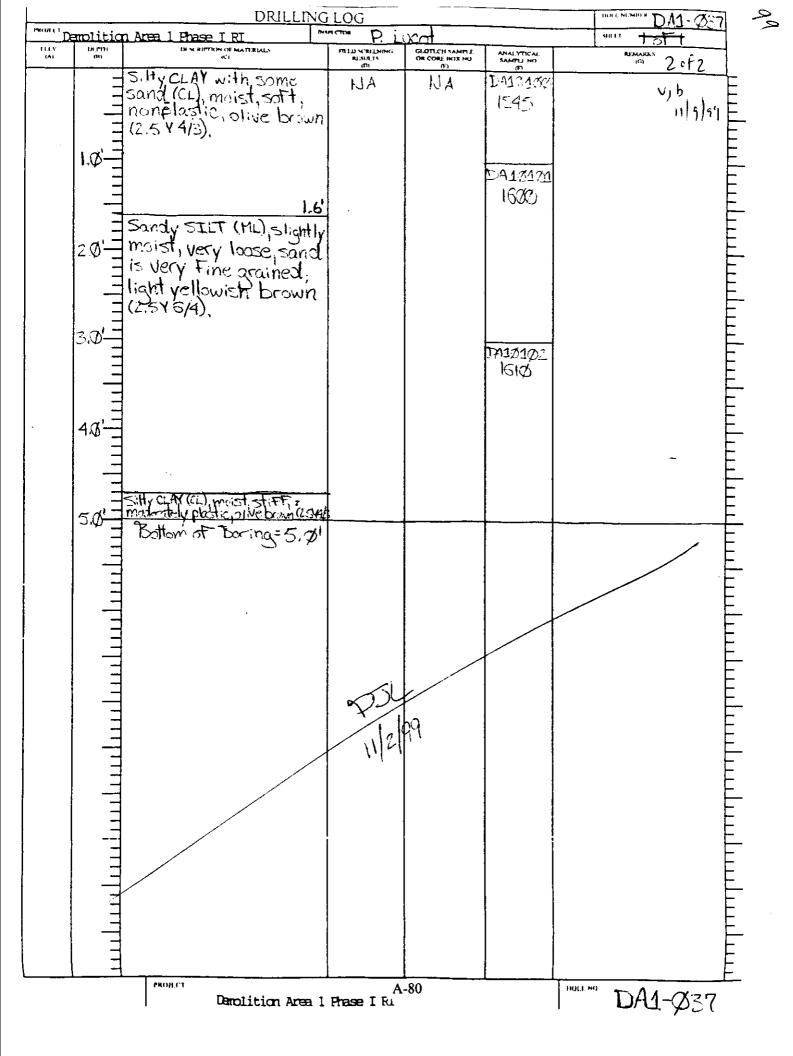
FNG FORM	Demol.				1 L	mas	e 1	KT.					÷							<u> </u>	<u>بر</u>	<u>11:</u>	<u>-V</u>	<u>)5</u> CE0	<u>)</u> .w.i	
ROJECT				•																HOL	ÊNC)		(~~		
																					-					
																			<u>.</u>	<u>.</u>	· · ·	<u>.</u>				
																		 			: : :					
					•••••																					
				••••							•••••															
															•••••											•••••
	<u> </u>	<u> </u>				<u>.</u>	<u> </u>											<u>.</u>								
			<u>e</u>	a	5+	$\tilde{\Lambda}$	<u>م</u> ريم مريم	, .		c	Υ.ζ	54	<u>ع</u>	53	<u> .</u>	0	00	þC	0							
			U	0	Υ.	<u>v</u> i	no	ς. ¢			<u> </u>	2	5	/2	38	-	o	20 20	<u>0</u>	${\cal O}$						
		5	<u>X </u>	ni		<u></u>	\mathbb{D}	<u>1 «</u>	<u>Q</u>	<i>T</i>	γ			2				#			·	<u>د</u>	<u> </u>			
		k		~ .		<u>.</u>	<u> </u>	<u></u> –	•••••	· (-		Ĩ			<u>۲</u> ۰۰					 1 1	\sim	3	21.			
	····	<u>/</u>		•••••		 					- • • • • •							<u>.</u>			·····					
											•••••				•••••											
CATION SK	LICH		MME	IN IS				See	s t	$\tilde{\mathbf{x}}_{0}$	۴Ì	H'Z	•					SCA	LE:							
	Ron											- <u> </u> -			-	ŀ	au	<u>14</u>	<u>uc</u>	IN I						
DISPOSITION OF I	IOLE	1	T				FILED			ORING	WELL			SPECT				RE OF			<u>urao</u>	12.1-	2/1	100		
SAMPLES FOR CH				51	dar		ос			ÆTALS		1		SPECT				PECTRY			ER ISPE		ه لد		L CORE	
		<u> N</u>	H		Ĺ		NA				<u>N</u>	A			/	H		COREI								
GEOTECHNICAL	SAMPLES		<u>2</u>	<u>1,</u> ¢	<u>}</u>		<u>)5</u>				LINTO	STURBS			N/						•					
4 TOTAL DEPTH OF	HOLE	2			17	/ A		<u>~.</u>]				\rightarrow	17. 013	ER WA	<u></u>	VEL M	EASURE	MENTS	(SPECI	FΥ				-		
OEPTH DRILLED I	NTO ROC	¥	N	Δ					<u> </u>			-+	16. DE	סד אדי			ELAPSE	TIME	AFTER	DRELA	IG COM	PLETE)			
OVERBURDEN TH	ICKNESS	N	1	A									13.00	THICKO			ENCOU	NTERED	<u>.</u>	<u>, 14</u>	1	'	•			
			_									\neg	10 DA	iesta/		(AC)					TE, CON	ецяте / 90				
			<u>, 14</u>										it	H	٢			07	9.	64	<u>4</u> C)				
Steel		<u></u>	E S a	<u>ਲਹੀ</u> ਨੂੰ ਨੂੰ	<u>ke</u> ł	<u>)</u>	ine.	_	_ /	inte	835,		<u> </u>	<u>)(1</u>	53	k	B	<u>x 11</u>	ì					. <u></u>		
SIZEN AND TYPES ND NAMPLING EQU			13	"d	ia.	st	ainl	203	<u>st</u>	<u>ee</u> l			HQU HQU			<u>r A</u>		<u>ec</u>								
NAME OF ORTLER	enoli		1	ملططم	<u> </u>		<u></u> _	<u> </u>	<u></u>			+	• MAN	VFACT		nesion	Army NATION	OF DR	unit u,	im	<u>pla</u>					
PROFECT	·1.4	س ال ما			۰. ۱.								+ LOC		_)) -4
S	AIC _									. (%		N!	ACTOR										SEC		****** **2	2
UNITANY NAME																										


HTRW DRILLING LOG	DISTRUCT		······································	HOLL SUNDER
	2 DRALL SURCES	uisville	·······	DA1-034
SAIC	N	A		SHELT SHEETS
Demolition June 1 Demon T DT		+ LOCATION		
Denolition Area I Phase I RI		· MANUFACTURERS	DA ALTER ATTENTITION	Plant.
STEPS AND TYPE OF DRUING 30 dia Stainte	s sterl -	BUCK PT	Auger	
bucket augers.	Stainless	1 Outside	e Barm	
steel bowls and sportes,		+ SITTLE ALLE HE HERETH	1075,000	>
		10 DATE STARTED		TE COMPLETED
1: OVERBURDEN TRICKNESS		IS DEPTH GROUNDW		12 (171
N A		NA_		
NA NA		16. DEPTH TO WATER	AND ELAPSED TIME AFTER DRILLIN	G COMPLETED
H TOTAL DEPTH OF HOLE 3@ 1,01/1@5.0			EL MEASUREMENTS (SPECEY)	
IS GENTECINICAL SAMPLES DISTURBED	UNDISTUR		L NUMBER OF CORE BOXES	
20 SAMPLES FOR CHEMICAL AMALYSIS VOC	NA METALS	OTHER (SPECIFY)	OTHER (SPECIFY) OTH	ER (SPECIFIC) 21. TOTAL CORE
DA10091/DA10092/DA13093	3	-xolosilis6)	4 (vanides Pro	Delant (1) 100
22. DISPUSITION OF HOLE F BACKFOLED	MUNITORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF DISPECTOR	<i>т</i> .
LOCATION SKETCH/COMMENTS	<u>نا</u> م للد م	<u></u> 1	SCALE:	<u>///</u>
<u> </u>	page #2	<u></u>	SCALL.	
	· •			
				-
ρ				
/ Surve	Data	<u> </u>	bration	+ NAL-13-4)
[northing		7509.0		·····
leasting	· 23	71211.	00000	/
				,
ROJECT			HOLI	ENO
Demolition Area 1 Phase I RI			\square	41-034
NG FORM 5056-R, AUG 94				(Proponent CECW/EG)

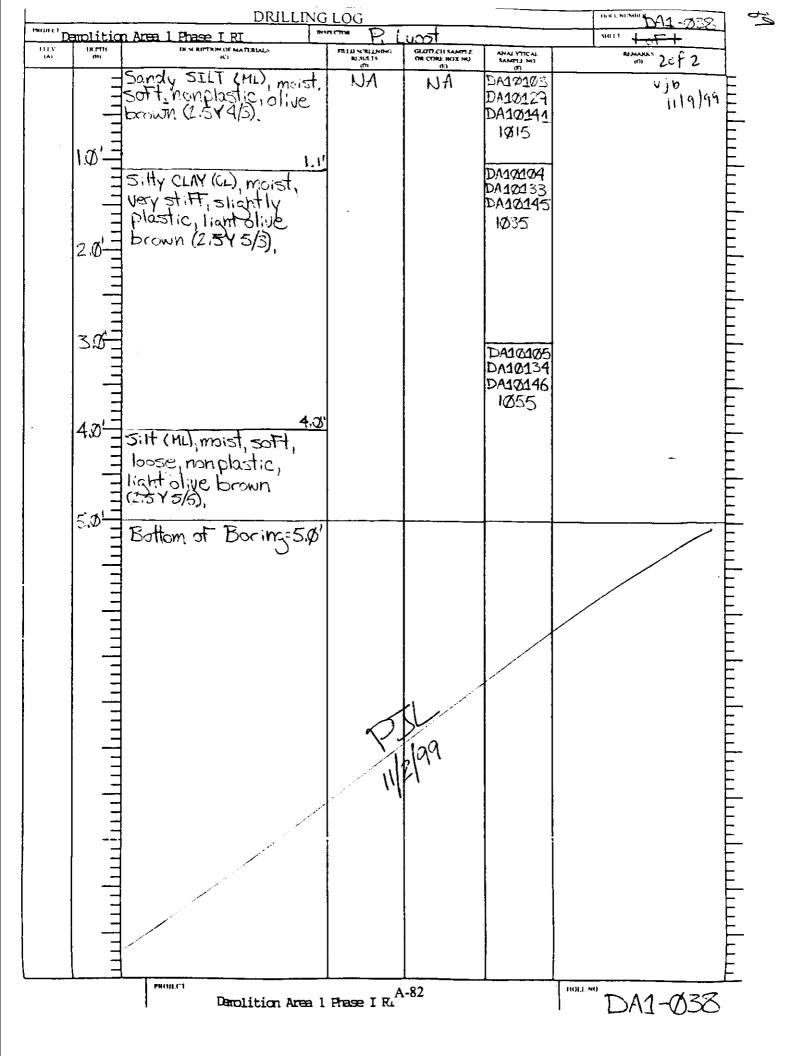
A-73



HTRW DRILLING LOG		uisville	2					Т. Т.	DA1	-035]
SAIC	: DRAL SUBCOS		<u> </u>					SI		NHTET: +2	1
Demolition Area, 1 Phase T RT		+ LOCATION						i		Vjb	
NAME OF DIRELER NA					N OF DRAL	ution	<u>Plant</u>				
STER AND TYPE: OF DRALANS 3" AND STORY PET		BUC HOLELOG	ATION	<u>Aur</u>	5		<u> </u>				-
towls and spoors. Stainles	s steel	SURFACE	<u>Sid</u>	<u>e D</u>	<u>20 m</u>	<u> </u>	~ ~ ^				
	··	10 DATE ST	JAN		107	-				<u> </u>	
OVERDURDEN THICKNESS A	· · · · · · · · · · · · · · · · · · ·		ROUNDW	ATER ENCO	INTERT	11	<u>/\</u> 43				
DEPTH DRILLED INTO ROCK		N/	1								
NA			A		ED TIME AFT		NG COMPLET	ED			
TOTAL DEPTH OF HOLE 3@1,01/1@5.01			ATERLE	VEL MEASU	REMENTS (SP	ECIFYI					
DESTURBED	WA NA	UED	19 TOTA	AUMBER	OF CORE BOX	ES					1
0 SAMPLES FOR CHENOCAL ANALYSIS VOC DAU (3774/DAU (3795/DAU (3796)	METALS	OTHER (SPEC			(SPECETY)		HER (SPECE)		21 TOT		1
DISPOSITION OF HOLE BACKFILLED	MONTTORING WELL	OTHER (SPEC	-> <u>-</u> _} ₽Y)	23. SIGNA	TURE OF INSI	ECTOR	<u>42.1162.1</u>	<u></u>	<u> </u>	<u>0</u>	1
OCATION SKETCH/COMMENTS			_2		s¢ale	<u>11811.</u> :					-
	<u>page #2</u>				- <u>-</u>			<u>.</u>	. <u>.</u>	····	-
6								\geq			-
Survey 2	ata fe				, Di	11-	035	<u> </u>	<u>.</u>		
/ northing		13/7							ļ		
(easturig	- 234	641	٥ ، ٢	000	00						
											-
											-
											•
		•									•
											·
								••••		•••••	•
											••
											1
]
											_
ROJECT Demolition Area 1 Phase I RI						HOL		σ	25		
NG FORM 5056 R ALIG 94								$\nabla \mathcal{V}$	<u></u>)	

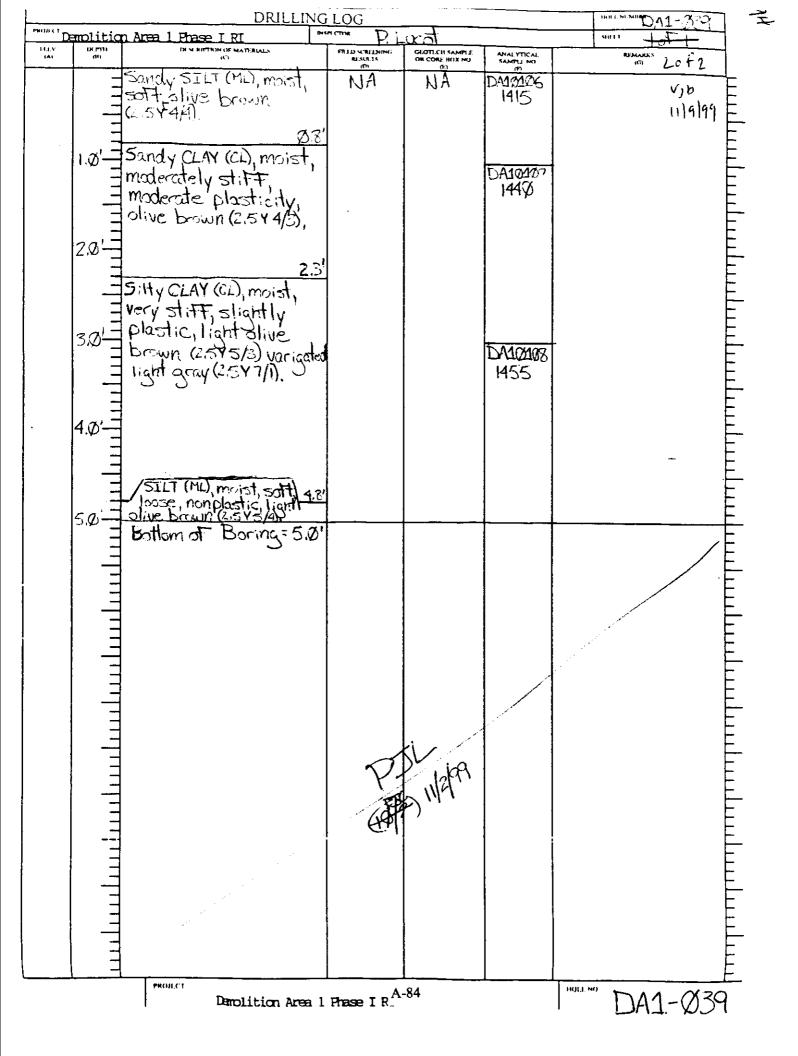

ENG FORM 5056-R, AUG 94

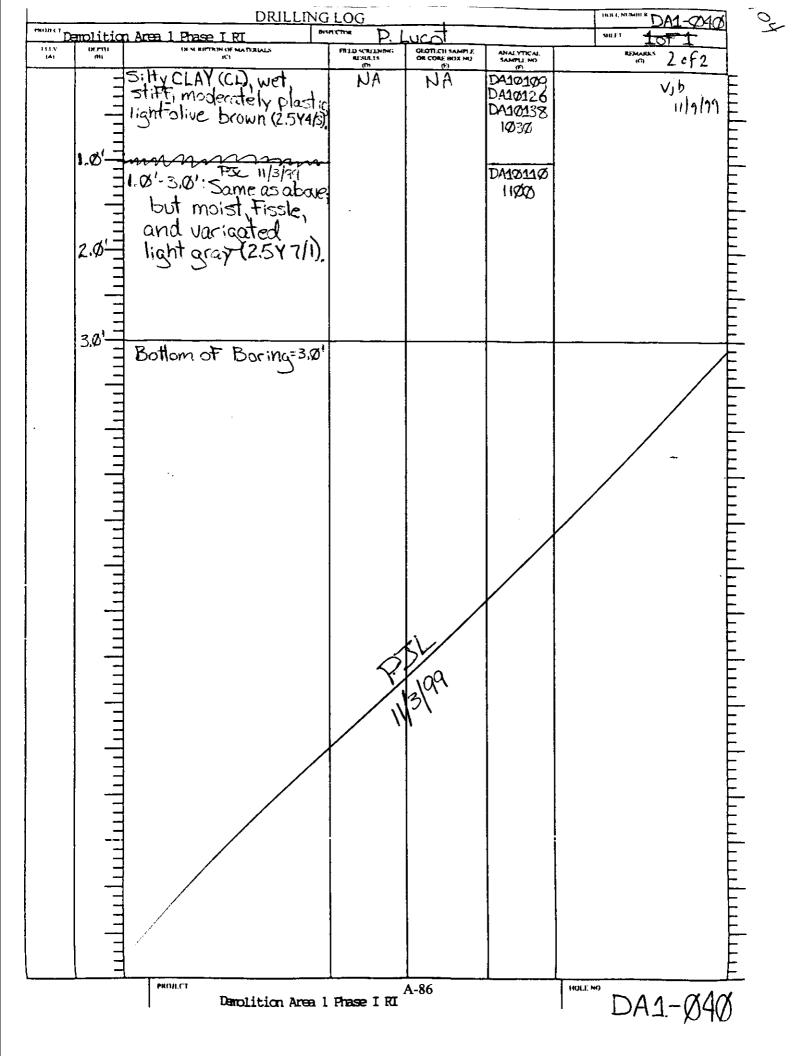
	DISTRICT		<u> </u>				HOU. Y	a Nork	
HTRW DRILLING LOG	2 DRAL SUBCOS	uisville						<u>-Ø</u>	
SAIC	I DREL SURCO	TRACTOR					SHEET	। अन्य	a 1
N PROVECT		4 LOCATION						Vib	
Demolition Area 1 Phase T RT	<u></u>	· MANUFACTURERS	THE ATTEN		tim B	lant		<u>i</u>]	-9.9
NA .		Bucke	1 ()	205					
AND NAMPLING FOUR MENT	<u>s steel</u> Stainless	THOLE LOCATION	0 Rà	Sm.					
steel bowls and sprons		SURFACE ELEVATE	1-00			50	1		
·		10 DATE STARTED	LŠ	19	<u>8¢-</u>				
		11/2/99			117	2/97			
12 OVERDURDEN THICKNESS NA		15. DEPTH GROUNDW	ATER ENCOUN	TERED		,			
13 DEPTH DRILLED INTO ROCK 1 1		16. DEPTH TO WATER	AND ELAPSED	TIME AFTER	DRELING	COMPLETE	,		{
14 TOTAL DEPTH OF HOLE		17. OTHER WATER LET			(FY)				
3@.1.0'/1@5.0'		I NA		den 13 (arec	ar 1 s				
IS GENTECHINICAL SAMPLES DISTURBED	UNDISTU NA	UBED 19 TOTA	L NUMBER OF	CORE BOXES					
20 SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECTFY)	OTHER (SP	ECIFY		SPECIFYI	BECC	OTAL CO	RE
DAL2097/DAL2098/DAL2097	3 MONITORING WELL	OTHER (SPECIFY)	EXCLOS 23. STUNATUR			ide (51 70	Ň.	
Bentonite			Hu	14.	Turr	6			
LOCATION SKETCH/COMMENTS	page #	2		SCALE:					
					<u>.</u>				
		·····				<u> </u>			
/SURU	Ey Dat	a-to-	DAI	- ¢-	¢ ۇ	\mathbf{A}			
Doct	hina é	5513	75-	560	00				
least		23463	91	ാർഗ	100	/			
	0	$\sim 1 \odot \circ$	1.1.1						
		••••							
				••••••					
								•••••••	
	·····				· · · · · · · · · · · · · · · · · · ·				
						·			
						•••••			
				·····					
<u> </u>	<u> </u>			<u> </u>	HOLEI			<u> </u>	<u> </u>
Demolition Area 1 Phase I RI					TA		NSC		
						<u>, v</u>	<u>IDD</u> nent C		



HTRW DRILLING LOG	0657	tai	<u>isville</u>					1	HOU. N	×uय к 1-Ø₹	7
SAIC	2.08	ul subcont N	RACTOR		<u></u>				SHEET	мисту м + 2	,
1 PR(1)FC1		Ī	4 LOCATION						<u> </u>	V; b 1	
NAME OF DRELER NAME	<u>e (. RI</u> .		+ MANUFAC	Cavenna	ATION OF D	mmit: Ral	im Plz	nt.			
SIZES AND TYPE: OF URLING States The	mbess steel by	cket	BUC!		<u>nec</u>	-					\neg
bouls and thomas	ninless steel		V SURFACE E	 LEVATOS	·						_
			Add	3240	ٺ 	10-	79:)0(\geq		
			10 DATE STA	RTED		'	1112/-	9151E) 2.2			
12 OVERBURDEN THICKNESS			. IS. DÉPTÉGR }//		NCOUNTER	ер Г					
13 DEPTH DRELED INTO ROCK			16. DEPTH TO	ATER AND E	LAPSED TIM	E AFTER D	RELING CON	PLETED	_		\neg
14 TOTAL DEPTH OF HOLE	01/105.0	7	17. OTHER W	TER LEVEL ME	LASUREMEN	L2 (25ECIE	'n	·· · .			
	DISTURGED	UNDISTUKE	<u>,),</u> 	9 TOTAL NUM	BER OF COR	E BOXES					
20 SAMPLES FOR CHEMICAL ANALYSIS	NZA METALS	NEL	OTHER (SPECT	<u></u>	THER (SPECT		OTHER (SP	CIFY)	1 11 70	TAL CORE	
DA1 0108 /DA10171/D1017	2 3	÷.	rollart	= (1) EX	oleth	rG	vani) Tô	BY S	
Rest Erito	NFILLED MONITORING	WELL	OTHER (SPECT		CHATURED C	1 9/11				_	
LOCATION SKETCH/COMMENTS	See pa	qe#2	2		sć	ÁLE:	····				
									•••••		
											••••
											••••
											••••
	/SURUE	41	Dote	for 551 234	#	ŊА	1-0	3	7 \		
	north		ç	551	410		000	20		1	
	l east	NO D		234	$({}_{0}4$	()	00	500	5)	
		f			. <u></u>	¥ •			·····	·	
								••••••			
	•••••••••••••••••••••••••••••••••••••••										
PROJECT	<u></u>	· · ·	<u> </u>	<u></u>	<u> </u>		IOLE NO)			
Demolition Area 1 Pha	æ I RI						Df	11-	Ø3	7	
ENG FORM 5056-R, AUG 94				<u></u>	• • •		(1	ropon	ent CI	CW-EC	i)

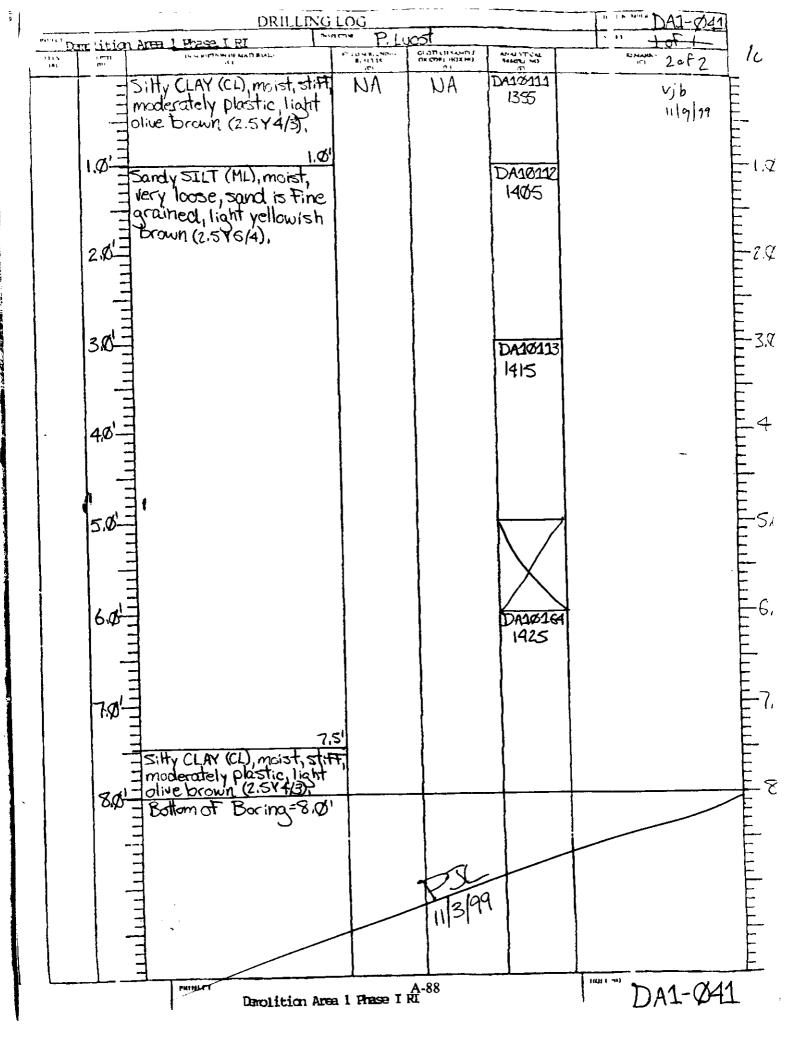
HTRW DRILLING LOG	ONSTRUCT			HOLE SUNDER
COMPANY NAME	DRAL SURCO	UISVILLE		SHELT SHELTS
SAIC	K	JA		1 or #2
Demilition Area 1 Phase I I	ب	4 LOCATION	Anny Amunition Plant	ا مزی
NAME OF DRELER		MANUFACTURERS DESIG	NATION OF DREL	
SIZES AND TYPES OF DRILLING 3" at a. Stand	er steel	EUCKET HO	$\sum_{i=1}^{i}$	
bucket award	Stanler	Outside	Bern;	
stiml bowls and sponter	<u> </u>	* SURFACE ELEVATION	1079,890	
		10 DATE STARTED	11. DATE COMPLETE 11/2/33	D
OVERBURDEN THICKNESS		IS. DEPTH GROUNDWATER		
NA		<u>NA</u>		
DEPTH DRELED INTO ROCK NA		16. DEPTH TO WATER AND I	ELAPSED TIME AFTER DRILLING COMPLETE	
TOTAL DEPTH OF HOLE	1	17. OTHER WATER LEVEL M	EASUREMENTS (SPECIFY)	
GENTECHNICAL SAMPLES DISTUR			BER OF CORE BOXES	
SAMPLES FOR CHENICAL ANALYSIS	NATALS 2	OTHER (SPECTY) O	THER (SPECIFY) OTHER (SPECIFY)	21 TOTAL CORE
M12102/DA1012/DA10241640028+DA10	13 DA1 0145/DA100	ACTOMINE ATTAIN	6 -Charide Exclosives (RECOVERY S
DISPOSITION OF HOLE BACKFILLED	MONITORING WELL		HOWATURE OF DASPECTOR	
		I	SCALE:	
DCATION SKETCH/COMMENTS	ee Dave	# <u>2</u>	SCALE:	
	C I			
				< _
R		De la	0-1AD # Loita	> P
<u> </u>			······································	
f nor	thing	551485,4		·····
$\langle \mathfrak{S} \rangle$	ting	2346400	00000	
	<u> </u>			
			·····	
			·····	
			•••••••••••••••••••••••••••••••••••••••	
ROJECT	<u> </u>		HOLENO	
Demolition Area 1 Phase I	RI		DA1	-037
NG FORM 5056-R, AUG 94			(Prop	ment CECW-EG)


A-81

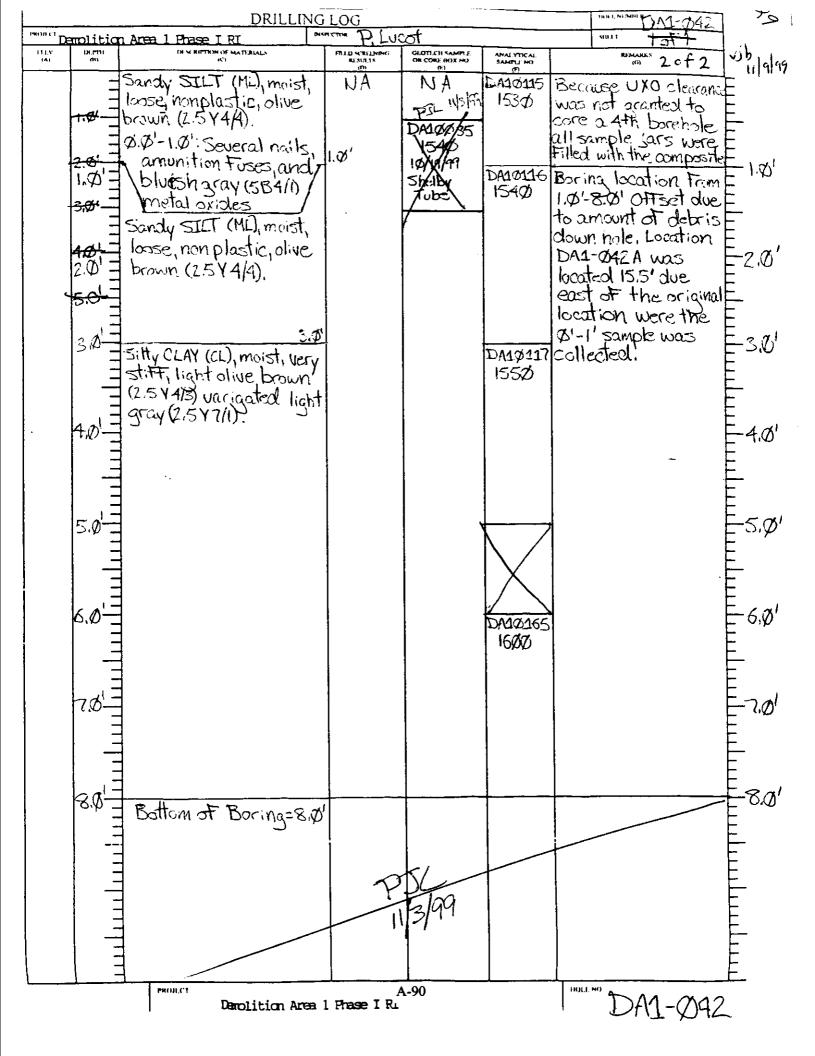

HTRW DRILLING LOG	CISTRUCT LO	uisville			DA1-022
SAIC	2 OREL SUBCON	TRACTOR	<u>, ,, ,, ,, ,</u>		SHEET SHEETS
V PRAVECT		+ LOCATION			V10
Demolition Area 1 Phase I RI		6 MANUFACTURERS	TA Army Armini Designation of dral	tion Plant	1-9-99
NA SEES AND TYPE: NO DAILING B" dia, stainless 5		BUCKET	Auger		
bucket augers, Ste	virless_	Outsid	le Berm		
steel bowls and spools.	· · · · ·	" SURFACE CLEVAT	HLS 21-00	1079.16	,0
		IN DATE STARTED	····· >	11. DATE CONPLETEN 11/2/99	
12 OVERBURDEN THICKNESS		15. DEPTH GROUNDW	ATER ENCOUNTERED	<u> </u>	
13 DEPTH ORBLED INTO ROCK NA		16. DEPTH TO WATER	AND ELAPSED TIME AFTE	R DRELLING COMPLETED	
14 TOTAL DEPTH OF HOLE 30 1,01/105,01		NA	VEL MEASUREMENTS (SPEC	ະ ມ ະກາ	
IS GEOTECHNICAL SAMPLES NA DISTURBED	UNDISTURI NA		L MAMBER OF CORE SOXE		
20 SAMPLES FOR CHENGCAL ANALYSIS VOC	NETALS B	other (spectry)	OTHER (SPECIFY)	OTHER ISPECTED	21 TOTAL CORE RECOVERY
22. DISPOSITION OF HOLE BACKFELED MON	TORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF INTE	CHOR 1	
LOCATION SKETCH/COMMENTS			SCALE:	wat	
LOCATION SKETCH/COMMENTS See pa	qe #2		SYNEE.		
	<u> </u>				
					-
		_			
Survey 7	Data	forlo	cation]	DA1+4	39
Thorthine	5		,00000		
leastine			3.0000		2
·····					
			<u> </u>		
PROJECT Demolition Area 1 Phase I RI				HOLENO	1/39
ENG FORM 5056-R, AUG 94				UNI-	ient CECW-EG
LERGENARTAL TRADER' VALUE AA				(130)01	RUN CEC WARAT

r S

-



HTRW DRILLIN	<u>G LOC</u>	, r 						svi 1	le		-							D	1. SU NOV A1-	-04	ŧØ
SAIC					2	DRALL SUB	CONTR A	ACTOR		_								SHE		HEETS V	,
י אייונים <u>איינגער איינגער איינ</u>								4 LUCA	TION		_							<u> </u>		<u>ء د</u> ارز	
Demolition	<u>1 Arrea 1</u>	Phase	<u>T RI</u>	Γ			-+	. MAN			DA A				ian '	Plar	1t	-			
SIZES AND TYPES OF DRELENG		<u></u>			t ant	<u> </u>		B	<u>ck</u>	<u>et</u>	A	<u>10</u> 7	<								
ANTI SAMPLING EQUIPMENT	3" dia	$\frac{5100}{5.510}$	inh	<u>క క</u> లాూ	ste	<u>but</u> el	٩		7		്	Be	< m	١							
bowls and spe	ion?				_			4 SL/RF.		YATK	Sz.r	فتحشر			78	_	180	5			_
								19 DAT	E STAR	· · · ·	310			4	/0 11.047	E COM	LETEI)				
COVERBURDEN THICKNESS	<u> </u>							15 DEP	<u>1/3</u>	\mathbf{I}					<u> /</u> :	5/9	9				
N	<u>)71</u>								ŊĂ				1000								
DEPTH DRULED INTO ROCK	1A							14. DEP		VATER	AND EL	APSED	TIME A	FTER C	RELINC	COMP	LETED				
H TOTAL DEPTH OF HOLE	/1@3	al						17. OTH			/EL.ME/	SUREN	œn12 (SPECE	۲J						
			ISTURBE	ED)		VND	STURBE	D		TOTA	LNUMB	ER OF	CORE B	OXES		:					
20 SAMPLES FOR CHEMICAL ANALYS	505	<u> </u>	JA	<u></u>	MET	\underline{N}	A.	THER (<u> </u>	JA_	HER (SP			07.0	R ISPE	16.1		TOTAL	0.00	
DA10109/DA101			12	iøl-	4		_	302l						ar	ano.				1200	Y I	
22. DISPOSITION OF HOLE		BACK			MONITOR	NG WELL		OTHER (NATU		PECT	ØR	1	-				
LOCATION SKETCH/COM			<u> </u>			13					 	τu			WIN	<u> </u>					
LOCATION SKETCHEOM	INTENTS	\sum	<u>see</u>	c c	nd	з# <i>"</i>	2					•	SC #1	-E:							
					J.																
						•••••••••													-		
					•••••	•••••															
	$\langle \langle \rangle$		eu		~_			\bigcirc		 ۱					·····	~~~~		4.1	6	$\mathbf{\mathbf{x}}$	
				<u>}</u>	<u>م د</u>	<u>ها ما</u> سر :		77		-16	X¢	27		1	Ŧ	25	7	<u>4 –</u>	9		•••••
	[]	<u>'d'U</u>	1 <u>.</u> :	'nę	5	5	5./	ά	Y <u>J</u>	<u>。 </u>	O_{C}	<u>ם נ</u>								ļ .	
	<u>\</u> 25	ג≲ .t	1.r.	Q		2.	<u>34</u> .	66	264	0	<u> </u>)O	00	0						/	
					•••••																
								•													
														•••••							
							1														
									•••••											•••••	
														•••••						•••••	
																-					
PROJECT															HOL	E N(



TRW DRILLING LOC		1 DEAL SURCON	<u>uisvil</u> MRACTOR	le	<u> </u>		<u> </u>		"	A1.	тк -(1.Л.)
SAIC		<u> </u>	A.						S		
Demolition Area 1		·	- UNCAT							<u> </u>	
NANG OF DRILLER -		<u> </u>			DESIGNATIO	N OF DRAL	<u>nitim</u>	Plant		V	jb _M
SIZES AND TYPES OF DRALING 31 4.0	a	1.61		Ak of	_Aug	(
ALLER C	- Stanles the	- Prefet		NA	•••	7					
and species			* SURFAU	E CLEVATI	ON						
······································			10 DATE	STARTED			11.04	E COMPL			
IVERDUALIEN THICKNESS			15.06211	4/ <i>5/9</i>	ATER ENCO	-	Ξц	13/9	7		
NA			L N	١A			'				
DEPTH DRELED INTO ROCK			14. DEPT	TO WATE	LAND ELAPS	ED TIME AF	TER ORELLIN	C COMPLI	ETED		<u> </u>
TOTAL DEPTH OF HOLE	105.01		17. OTHE	WATER LE	VEL MEASU	LENENTS (S	FECIFY)				
TENTECHNICAL SAMPLES				UA TOT				· ·			
SANGLES FOR CHEMICAL ANALYSIS	NA	L NA	<u> </u>	(VA)	Δ		~E->				
	41A [METALS			<u> </u>	GPECIFY	_ _	ER (SPECT	<u>m</u>	IL TOTAL	CORE
Angent barans 2 mans	MONTELED MONT	TORING WELL	2 melles		E COR	LIRE OF DE		من وار /	(1) -	100	
Benton te		<u>_</u>			└ <u></u> /-{	rull,	Juc	Ē.			
A TION SKETCHOUMMENTS	See Dad	2e#2	-			SCAL	5: V				
		7			-						- 1
				••••							
				••••						, , , , , , , , , , , , , , , , , , ,	
								····-			
. <u></u>	•••••••••••••••••••••••••••••••••••••••										
						1		····			
					•••••						
	····										
* /											
				•••••							
								•	•		
			• • • • • • • • • • • • • • •	•••••							
					· •						
				•••••						1	
COJECT					<u> </u>			NO			
COJECT Demolition Area	1 Phase I RI				<u> </u>		HOLI	NO	~	N	24

•

HTRW DRILL	ING LOG		OISTRICT Tr	uisvi 11						HOU.	11-M	2
	<u> </u>	,·	2 DRGL SUBCO	NTRACTOR	<u> </u>	-			<u> </u>	SHEET	SHELTS	4
SAIC SAIC		<u>#.</u>	<u> </u>	A 1 a lucatio							<u>~72</u>	<u> </u>
	ion Arra 1 P	base T.RT				יים בחר	111 ₁ 7 Arres	unitic	Diant		V1611-	9
* NAME OF DRULER	NA			• MANUFA	CKP	DESIGNAT					- <u> </u>	
* SIZES AND TYPES OF DRALIN AND SAMPLING EQUIPMENT	" <u>3"dia.</u> Ducket	stainless sta			сапон JT< (4	3	ŵ				
steel bouk	s and zoon	15.0		· SUBFACT								
				10 DATES	TARTED		10	82,28		<u>.</u>		
1 OVERBURDEN THICKNESS				<u> /З</u> 13. реэтн	99 GROLINDW		OINTERS		<u> 5 99_</u>			_
	<u>NA</u>				<u>NA</u>							
IT DEPTH DRELED INTO ROCK	NA	_		16. DEPTH	"JA™	LAND ELA	PSED TIME	AFTER DRELL	NG COMPLETE	Ð		
	3@1.01/	108.0'		17. OTHER	JA .	VEL MEAS	UREMENTS	(SPECIFY)				-
IS GEOTECHIMICAL SAMPLES	<u> </u>	DISTURBED	641		19 TOT	L NUMBE	R OF CORE	BOXES	-			
20 SAMPLES FOR CHENICAL AN		(1)	METALS	OTHER (SPE		отна	R (SPECTY	n ot	HER (SPECIFY)		OTAL CORE	-
DADDIA DA BI	17DMarth		4 HONTTORING WELL	OTHER (SPE		13.56	SILLES	(4) Cr	nde (D JE		_
	onite			·		H	h H	Junt				
LOCATION SKETCH/C	COMMENTS						SCA	LE: No	NE			
		SEE	PG	2								
											-	
					•••••••••							
/	Surve	4 Dorte	x for)	ocoth	<u>.</u>	±£_∕/	AI.	041	2/			••••
1	anst	M. •	234									
V	north	avale	5514						1			••••
X		i i i i i i i i i i i i i i i i i i i		/e=/	• •		<u> </u>					
									1			
					••••							
	•											
		ļļ										
									•			
							ļ					
PROJECT				····	•	· · · · · · · · · · · · · · · · · · ·	• • •	HOL	ENO	~ A	\sim	1
	tion Area 1	Phase I RI							<u> 241</u> -	-04	14	
ING FORM 5056-R	, AUG 94								(Prop	ohent (TECW-EC	;}

APPENDIX B

SEDIMENT AND SURFACE WATER SAMPLING LOGS

APPENDIX B SEDIMENT AND SURFACE WATER SAMPLE LOG LOCATOR SHEET

Sample Station	Page
Number	Number
DA1-043	B-3
DA1-044	B-4
DA1-045	B-5
DA1-046	B-6

THIS PAGE INTENTIONALLY LEFT BLANK.

SEDIMENT AND SURFACE WATER SAMPLING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK.

ITRW DRILLING LO)G	OISTRUCT	auisville.				37.47 1000 DAI-94	13
UNIPANY NAME		: DRAL SURC	ONTRACTOR				SHEET SHEET	\sim
SAIC	<u> </u>		1.1-				<u> </u>	
Demition Area				ג ישאיע כרוויבאט	manition 1	⊃1 +		
NAME OF DRELER		<u> </u>	• MANUFACTU	NERS DESIGNATION OF	DREL			
SZEN AND TYPE: OF DRILLING			THOLE LOCATI	0K			<u></u>	
SUSANPLING EQUIPMENT			74	- /				
Decenel Sta	inters Steel be	I and spoor	2 SURFACE ELE	VATION				
			10 DATE START	1. 189	BRA 51			
	· <u></u> .		24 /	1799		COMPLETED	99	
OVERBURDEN THICKNESS		·····	I. DEPTH GROU	UNDWATER ENCOUNTE			<u> </u>	
DEPTH DRELED INTO ROCK			16 DERTH TO W	ATERASTO ELAPSED T		COMPLETE		
NA				A A A A A A A A A A A A A A A A A A A	WE AFTER URBUNG	COMPLETED		
TOTAL DEPTH OF HOLE			17. OTHER WAT	ER LEVEL MEASUREME	ENTS (SPECIFY)			
MH	DISTURBED	איזעען (TOTAL NUMBER OF CO	ORE BOXES	•	. <u>-</u>	
a ang an ng an ining ng anunit latar	United	0.000		NA				
SAMPLES FOR CHEMICAL ANALYSIS	Voc	METALS	OTHER (SPECTY) OTHER (SPE	CT1 0716	RISPECIENT	21 TOTAL COR RECOVERY	E
DISPOSITION OF HOLE	BACKFELLED	MONTORO WELL	TOL SVOLS	21. SIGNATURE	allath KBC	<u>Leplesly</u>	ــــــــــــــــــــــــــــــــــــــ	
					10h		-	
OCATION SKETCH/COMMENTS	s// II	N 11	1.11	/ s	CALE:	· /		
<u>,</u>	Savtare Had	and set	Imred SAN	ple 5	CALE: NI	+		<u> </u>
GLAMAI	us coordine	ites.						
	1651980						-	
	N. D.J. I. O.K.	·U	Å					
	E 2244791	.,0						{
	, VAI-043							.
			N					41
	P ,	10				<u> </u>		T
	Sute	., <i>ć /</i> 14						<u> </u>
······		11.9			<i> </i>			
	\mathbf{N}	Kill			/_/			
3	<u>YL /'</u>							
HINE	ILL	i			1/			
Tr Tr								*
	~ }/							
				/_			by 4 K	
	F.L.]			//	//	V-11-1	-/ ``	+ A
	715				K /	X	~~~x	
		\mathbf{v}			$\sim n$	emilit	104 8 4	14
					U	emilit Area	j X	24
								F
		\mathbb{N}						
						Lur		
					<u>p4</u>	-045	A1 1	
		\sim			x	linnam	Storbuto	114
			han him him i					
				\sim	- Ly	1 2 1 ist	99	/
ROJECT	al Phase I RI				- HTTL	1 2401A	499	

	POSTRUCT	<u> </u>	•	CILITY THE											
HTRW DRILLING LOG		<u>uisville</u>	D41-044												
SAIC	2 ORAL SUBCOM	NA	SHEET SHEETS												
		4 LUCATION													
Demolition Appa 1 Phase I RI			na Anny Annunition Designation of Deal	Plant.											
NA			NA												
T SIZEN AND TYPE: OF URLENG AND SAAPLING EQUIDAGENT		1 WHE LOCATION	S. M. C.	, 7											
Decened Standers steel bent	and	* SURFACE ELEVATE	and the second s	22											
<u></u>		IN DATE STARTED	1065.650												
· · · · · · · · · · · · · · · · · · ·		24 0 19	TE COMPLETED												
12 OVERBURDEN THICKNESS		13. DEPTH GROUNDWATER ENCOUNTERED													
13 DEPTH DRILED INTO ROCK		16. DEPTH TO WATER AND ELAPSED TIME AFTER DRLLING COMPLETED													
NA		1/1	9												
14 TOTAL DEPTH OF HOLE		17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY)													
IS GENTECTIMICAL SAMPLES DISTURBED	UNDISTUR	BED 19 TOT.													
20 SAMPLES FOR CHEMICAL ANALYSIS VOC	METALS	OTHER (SPECIFY)	OTHER (SPECIFY) OTH	ERISPECTEN 21 TOTAL CORE											
Sediment CN14 # DA10/18		07000 /000/000/		RECOVERY											
22. DISPOSITION OF HOLE A A BACKFILLED MON	TTORENG WELL	OTHER (SPECIFY)	23. SIGNATURE OF INSPECTOR												
	<u> </u>	1 1 1 1	SCALE:												
LOCATION SKETCH/COMMENTS See may tu	<u>DAI-</u>	Ø143 (1)	12)												
		,													
				c .											
<u> </u>		0													
/DUK	USU 1	DATIA F	pr DAI-Ø	44											
/ ner	thing	550	0872.00c	00											
િલગ્ર		: 2340	6326.000	000/											
	·)														
			•••••••••••••••••••••••••••••••••••••••												
PROJECT				ENCT STATICA											
Demolition Area 1 Phase I RI			D	A1-044											

ENG FORM 5056-R, AUG 94

5

HTRW DRILLING LOG										Lauisville													DALLOUATION					
T CONFANT NAME 2 (1										2 ()R		CONTR				SHEET SHEETS												
SAIC											+ 100	10 /	M	·							/	or	<u> </u>					
		itic	n A	rea.	L Pł	aæ	I.R	Τ							aver	na A		Anno	mit	im	Pla	nt.			_			
NAME OF DRALE	T		-	1/1	4		_						* MAN	UFACT	UNICRS	DESIGN	ATION	OF DRE	2									
SIZEN ANTI TYPE: OF ORLING ANTI SAMPLING EOLIPHENT													E HOL	ELOCA	пок				1			1	7					
			$\frac{1}{2}$	eren e	1	4.h	Jac 2	4	7 7	5.7			4 SL/RI	ACE EL	EVATIO	2.	10		100	- O	r,	<u>[4</u> _						
••••••••••••••••••••••••••••••••••••••				-71.772				<u>//a</u> /			7									_								
													10 DATE STARTED 24 Oct 99 24 0 J 99															
12 OVERBURDEN THICKNESS												15. DE	PTH GRO				·					-		·				
OF TH DRILED	INTO RO	G.			~	<u></u>							16. DE	от нто	WATER	ANDE		TIME	UFTER (RELIN	G COM	PLETED						
H TOTAL DEPTH	15 WH F			Ň	Δ								17.01		10010	10	///									_		
				Ň	A								17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY)															
IS GENTECHNICAL SAMPLES DISTURBED UNDS										TURBE	URBED 19 TOTAL NUMBER OF CORE BOXES																	
10. SAMPLES FOR C						vo			N	GET ALS				SPECT		01	HER (S	PECTY			ER (SPE	~ ~	- Ri	TOTAL				
DAID123 3 DAIDING							MONT	ORDIG	WELL			VO(ISPECIE				The OF I			ki ju		///							
		/	vr7		1											<u> </u>		1	/	4		1		-	_			
LOCATION S	KETCI	H/CO	MME	ents	4	†_2	May	11 -	Ł.	2	AI	-1	Juz	/	Er)		scat Surf	-E	N	4		el.		13			
						,	1		<u>,</u>					<u> </u>	<u> </u>	/ :		<i>ur</i>		117	/ <u>(</u> 43					2		
				A1	- (μ.	5 4	<u>an</u> i	vu	<u>}.(</u>	200	Yai	a	<u> </u>	2													
										0																••••		
	ļļ													<u>, C</u>														
									E	· ·····	234	62	321	o, ()				<u>.</u>										
					•••••																							
			•••••		•••••																				•••••			
											ļ. .	 				<u>.</u>									•••••			
					•••••																							
												<u>.</u>	<u>.</u>	÷			<u>.</u>									<u>.</u>		
					•••••							;								ļ					· · · · ·			
													<u>.</u>															
																						-						
						;												-		и	h l	TVCd	99					
PROJECT	<u> </u>		-	<u> </u>		•	·	<u> </u>	•	•····•		•	·	· · ·	•	•	•	·	Τ	HOL	ĒŅ	1 5%	ATI	on				
	Demo	lit	ian	Area	11	Phas	eΙ	RI												Dr	41	-\$	4	5				

TENG FORM 5056-R, AUG 94

(Proponent CECW-EG)

0

		_								CIS DU					<u> </u>										410			
HTRW DRILLING LOG										PERING		ai	svi1	10	DAI- OYC						7 17.							
1 COMPANY NAME									\rightarrow	: 080			CTOR						SHEET SHEETS									
	SAIC									NA													\square	/ _{.01}	$__$			
C PROJECT	_		_	-	_			-				1	LOCA			-		-				÷						
NAME OF DRILL	Denrol	itio	n_An	<u>n 1</u>				<u> </u>					MANU	RZ FACTU	RERS D	DA A	TITY TICN C	Arring	<u>mit:</u>	ion.	<u>pia</u>	#				 -		
						N	4			-					_		N	14								-		
SIZEN AND TYPES OF DRILLING AND SAMPLING EQUIPMENT													HOLE	LOCAT	ON		La o	. /	Here	. ,	R.A	m	~					
· · · · · ·			_!	Star.	des		stri	1 d	C. M	nu d		╡	SURF	CE ELE	VATIO	<u> </u>	<u>~~</u>		1	<u></u>						<u> </u>		
bowl and speen																		ંત્ર	م)		>					_		
/												- '	U DATI	2.9 2.9		т сом 24	1 Udf 99											
12 OVERBURDEN THICKNESS													15. DEP1	H GRO	UNDWA													
NA												16. DEPTH TO WATER AND ELAPSED JING AFTER ORILING COMPLETED																
13 DEPTH DRILLED INTO ROCK													16. DEP1	IN TO V	ATER	AND EL	APSED	77 - T	UFTER C	RELIN	G COM	LETED						
14 TOTAL DEPTH	OF HOLE			<u>// ·</u>	,								17. OTH	ER WAT	ER LEV	TEL ME			SPECD	۳ı ۲ı				-				
				NA	7			— (10			T	TOT	LNUMB		(A										
IS GEOTECHNICA	L SAMPLE	3				D	ISTURAI V				UNDES	UNUBEL	,	19	IOTA		ER OF		UNES									
20. SAMPLES FOR	CHEMICA	LANAL	Y \$15			, vq				CET ALS		[THER (ECTEY			ER (SPE			L TOTA	AL COR	Ē		
22. DISPOSITION OF HOLE A BACKFUL						-111ED	-	MONT	ORENG 1	MELL.		C. 50			23.50	INATU	Tiey. RE OF I	//an/	<u>13 / 1</u> :OR	<u>. B.</u>	<u>G de</u>	zále	<u>s .</u>					
*** Haroattion C			N	11								<u> </u>	(·		2	The second	/	Þ	2							
LOCATION	SKETC	н/со	MMEN	JTS						,		1						SCA	LÉ:									
LOCATION	311210		face		00	and	5.	t	Ser	y/c y	i																	
						•••••																		~				
						•••••																			<u> </u>			
																							.	<u>.</u>	.	÷		
					1																							
		į																										
							/					•••••				٦	•••••					$\overline{\mathbf{N}}$						
							7 							r		ر مر	<u> </u>	<u> </u>		57	7	<i>,</i>	<u></u>			÷		
						4	<u>. 10</u>	<u>†K</u>	<u>55</u>	4	<u>D</u> .	97	0	4	<u>رد</u>	Ø	0	<u> </u>		27	\mathcal{L}		<u>i</u>]		÷	<u>.</u>		
							$i \cap \langle$	4 25	h	Ň	\$		54	80	QO	3.	O	Ö	\mathcal{O}	\mathbf{S}	Ś					<u>.</u>		
							DC	3<-	1.		ر ج	2	34	10	89	7.	0	$b_{\mathcal{O}}$	50	0	-					-		
								<u>.</u>		J			<u> </u>						<u> </u>				Ţ	-		1		
							\geq											<u>.</u>			÷	1	<u>.</u>	÷				
							<u>.</u>	ļ								;					<u>.</u>		<u>.</u>					
									<u>.</u>	<u>.</u>						<u>.</u>					<u>.</u>							
								:		•						-		1		-								
					•••••				 }																			
				····			÷	÷					<u>.</u>	.				<u>.</u>	<u>.</u>			 			<u>.</u>			
												<u>.</u>			<u>.</u>				<u>.</u>			<u>.</u>	÷					
						;																						
											:				:			-		-			:	•				
							 	1	÷									1								-		
									·	÷			<u>.</u>		<u>.</u>	<u>.</u>		<u>.</u>						••••••				
																						••••••••						
								:				-				:	-	-	1		iur.	<u>240</u> T-4	1.19	19	: 			
PROJECT															_				ŀ						?~~			
l	Dem	olit	ion A	\rea	11	Phas	æΙ	RI													DAI	<u> </u>	<u>64</u>	6				
										_										DAI-Ø46								

7

APPENDIX C

PROJECT QUALITY ASSURANCE SUMMARY

C.0 PROJECT QUALITY ASSURANCE SUMMARY

This appendix presents the actions and methodologies undertaken to meet the quality assurance/quality control (QA/QC) goals for the project. These goals were established in the Facility-wide Sampling and Analysis Plan (SAP) for the Ravenna Army Ammunition Plant (RVAAP) (USACE 1996b) and the Phase I Remedial Investigation (RI) SAP Addendum No.1 for Demolition Area 1 (USACE 1999a). These were implemented through project-specific procedures and requirements, the Science Applications International Corporation (SAIC) QA Program, and the U.S. Army Corps of Engineers (USACE) – Louisville District QA requirements. A large proportion of project QA was focused on field and analytical laboratory activities and project administration.

C. 1 FIELD QUALITY ASSURANCE

C.1.1 Readiness Review

Field QA was initiated for the Demolition Area 1 (DA1) Phase I RI in the readiness review held at the SAIC Oak Ridge offices on October 11, 1999. The purpose of the readiness review was to ensure that (1) all project documents and procedures were approved, controlled, and properly distributed; (2) all assigned personnel were trained or a schedule was established to conduct training; (3) the mobilization and site logistics were established; (4) the laboratories were ready to accept samples; (5) all other subcontractors were ready to begin work; and (6) the QA system was implemented. All elements of the readiness review were completed prior to initiating field activities and were approved by the SAIC QA/QC Officer. Readiness review and project kickoff checklists provide documentation of this QA element and are maintained in the project file.

C.1.2 Procedures

Standard operating methods for field activities performed during the Phase I RI at DA1 are incorporated into the governing documents for the project. The Facility-wide SAP (USACE 1996b) describes the overall approach and methodologies to be used for projects at RVAAP, and the Phase I RI SAP Addendum for DA1 (USACE 1999a) details project-specific requirements for field implementation. These documents were reviewed and approved by the USACE – Louisville District and by the Ohio Environmental Protection Agency (Ohio EPA) prior to implementation. Clarifications and/or planned deviations from these methods were documented as field change orders (FCOs), and variances were documented as nonconformance reports (NCRs). Copies of the FCOs are attached to this appendix.

C.1.3 Training

Field team personnel were trained in all procedures applicable to their assigned tasks. Training was accomplished by combinations of classroom lectures, reading assignments, and on-the-job training. Surveillance performed by the project SAIC contractor quality control (CQC) representative provided assessments of worker proficiency and training effectiveness.

Training was documented by the completion of training records. Performance documentation was completed in the field by the CQC representative after observing successful implementation of a procedure by a field team member. Copies of training records and surveillance reports were maintained in the project file. Copies of training records required for Occupational Safety and Health Administration and Department of Transportation compliance also were maintained in the field.

C.1.4 Equipment Calibration

Various types of Measuring and Testing Equipment (M&TE) were used during the field investigation. All M&TE was categorized, assigned unique identifiers, and listed in an inventory in the M&TE logbook. Last and next calibration recall dates were also recorded. As appropriate, instruments were calibrated daily according to the manufacturer's instructions. Only equipment and standards having verifiable traceability to nationally recognized standards were used for calibration. Daily calibration activities and results were recorded in the M&TE logbook, as well as source information for all calibration standards and reagents.

C.1.5 Quality Control Samples

Field QC samples collected included trip blanks, equipment rinsate blanks, source water, and field duplicates. Field QA splits were collected as specified in the Phase I RI SAP Addendum for DA1 (USACE 1999a) pertaining to contractor chemical quality control. Implementation of the Contractor Chemical Quality Control program in the field was done by the SAIC CQC representative. Field QC data and analyses of QC samples are presented in Appendix E.

C.1.6 Field Records

Field data, observations, activities, and information were recorded in preformatted, bound field logbooks. The use of structured logbooks ensured that all necessary data were entered consistently. Logbook entries were checked for accuracy and completeness by independent reviewers. Critical and/or contract-required original records (e.g., sampling forms) were recorded in duplicate using carbonless paper. Other field records, which were collected and likewise maintained, included equipment/material certifications, boring logs, and air bill forms.

C.1.7 Surveillance and Audits

Surveillance of operations at RVAAP during the Phase I RI at DA1 was conducted by SAIC. This surveillance assessed technical and quality-related activities including surface and subsurface soil sampling, sediment and surface water sampling, equipment decontamination, training and health and safety practices, and field record review.

C.2 ANALYTICAL LABORATORY QUALITY ASSURANCE

SAIC subcontracted Quanterra, Inc. (now Severn-Trent Laboratories) to perform chemical analysis for the DA1 Phase I RI. The selected laboratory is certified by the USACE Missouri River Division Mandatory Center of Expertise (MCX) in Omaha, Nebraska. In addition, this laboratory was technically audited by SAIC prior to contract award.

C.2.1 Readiness Review

Laboratory QA activities were initiated during the readiness review. The readiness review ensured that (1) governing documents and approved analytical methods were controlled and properly distributed; (2) the laboratory was scheduled and ready to conduct the analysis; (3) logistical coordination was established between the laboratory and the field team; and (4) laboratory QA programs were consistent and compatible with the project requirements.

C.2.2 Procedures

Prior to initiation of analytical support for the DA1 Phase I RI, Quanterra and SAIC reviewed and negotiated a contract based on a comprehensive Statement of Work (laboratory SOW). The laboratory SOW represented and referenced project-specific requirements, including the parameters to be measured, the analytical methods to implement, adherence to Environmental Protection Agency (EPA) SW-846 protocol, project quantitation goals (sensitivity), and data deliverables required. All laboratory comments and questions were resolved before analytical work proceeded.

C.2.3 Laboratory Quality Control

To document laboratory data quality and to measure the quality of the analytical process, laboratory quality control samples and data verification/validation were employed. The results of laboratory QC are discussed in the project data quality assessment (Appendix D). Analytical results of laboratory QC samples are included in the project file and form the basis of the data validation and verification process.

C.2.4 Laboratory Documentation

The laboratory maintains comprehensive information regarding the entire analytical process. The laboratory delivered summary data packages and electronic deliverables consistent with those identified in the EPA SW-846 protocol to SAIC for validation and verification. Laboratory QC sample analyses were cross-referenced to the appropriate environmental field sample analyses in the laboratory deliverables.

C.2.5 Data Verification/Validation

Analytical data generated during this project were subjected to a rigorous process of data validation and verification. Criteria were established against which the analytical results were compared and from which a judgment was rendered regarding the acceptability and qualification of the data (Appendix D). Upon receipt of data packages from each laboratory, the information was subjected to a systematic examination following standardized checklists and procedures to ensure content, presentation, administrative validity, and technical validity. Routine data changes were documented through data change forms. Data deficiencies or formal laboratory-related nonconformances were documented through an NCR process, as required.

C.3 QUALITY ASSURANCE DOCUMENTATION

Primary methods for documenting QA during the DA1 Phase I RI include the completion of FCOs and NCRs. Copies of FCOs completed during the investigation are included in this appendix. Copies of NCRs are on record in the SAIC RVAAP project file.

C.3.1 Field Change Control

FCOs were completed during the RI to document the rationale and to gain approval for any departures from protocols specified in the approved Facility-wide SAP and Phase I RI Addendum for DA1. FCOs provide clarification to scope or refinement in the procedural approach to a specific field activity. All FCOs were reviewed and approved by designated technical representatives of the USACE – Louisville District prior to implementation. None of the FCOs resulted in an adverse impact to project quality, schedule, or scope. Copies of the three approved FCOs are included in this appendix.

The purpose of most of the FCOs was to request and document changes to the approved SAPs or Quality Assurance Project Plans. Two FCOs pertained to changes in planned sampling methodologies or sampling locations. For example, FCO-001 addressed a change in soil sampling method at one station. FCO-002 addressed an error in the SAP Addendum, and FCO-003 addressed the reassignment of samples that could not be collected due to auger refusal.

C.3.2 Nonconformance Reports

To identify and correct conditions adverse to quality, as described in the field and laboratory QA plans, NCRs and corrective action reports were completed, as necessary. Between project initiation and January 2000, one NCR was completed. This NCR was generated as a result of the data verification process. This NCR, which was initiated during the project, has been corrected and closed.

A summary of the actions or items that warranted the initiation of the NCR included:

• Comparison of laboratory data received with the Sample Manager's field records showed a discrepancy in the identification of a trip blank. Further review indicated that the wrong label was applied to a trip blank and that the trip blank identification was not documented on the laboratory chain-of-custody form. Actions taken to prevent recurrence include assignment of labels to trip blank vials prior to assigning the blank vials to the sampling teams. The incorrect identification number was corrected on the Form I received from the laboratory.

FIELD CHANGE ORDERS

THIS PAGE INTENTIONALLY LEFT BLANK

TYPE OF CHANGE	PRIORI		URGENT OROUTINE
			O MINOR O MAJOR O O
	IQN	SAIL	918.625.7
		1212 minie	
BASELINE IDENTIFICATIO		ESTONES METHODO	
BASELINE(S) AFFECTED	U CUSI U SCOPE U MIL		
ORDER NO. DESCRIPTION OF CHANG AT DAI-OZT, the Geoprobe m 1. thelogic sam	E Sec. 4.1.1.) of SAP samples from 1-3' vacro - core device pling	Addendum: PHO and 3-5' intern instead of wi	SIGNATURE NE with were collected using ith hand augers, during
	and the descent	- at wark 1	areting made this a
	him and effort.		-
			Jata to post augus
MPACT OF NOT INPLEMEN	ITING REQUEST Potentin Subsurface soils	e for tot be	-
MPACT OF NOT INPLEMEN			-
MPACT OF NOT INPLEMEN	ITING REQUEST Potentin Subsurface soils	e for tot be	-
MPACT OF NOT INPLEMEN	ITING REQUEST Potentin Subsurface soils	e for tot be	-
MPACT OF NOT IMPLEMEN	TTING REQUEST Potentin Subsurface so its	e for not be at this locale. Fold han s	Jable to push nugar
MPACT OF NOT INPLEMEN	TTING REQUEST Potentin Subsurface so its	e for tot be	Jable to push nugar
MPACT OF NOT INPLEMEN CONNECT	TTING REQUEST Potenting Subsurface so is	e for not be at this locale. Fold han s	Jable to push nugar
MPACT OF NOT INPLEMEN CONSTITUTION OF NOT INPLEMENT COST ESTIMATE \$	TTING REQUEST Potenting Subsurface so its	for pot to al this locale	J Able to push wyors
MPACT OF NOT INPLEMEN Collect	DBY IMPLEMENTING REQUEST	for pot to al this locale	J Able to push wyors
MPACT OF NOT IMPLEMEN CONTENTION OF NOT IMPLEMEN PARTICIPANTS AFFECTE COST ESTIMATE \$ PREVIOUS FC AFFECTED APPROVAL CLIENT	DBY IMPLEMENTING REQUEST	for pot to al this locale	DATE DATE DATE

FCO NO Field Change Order	· (FCO) /
MODIFICATION NO DATE 10.22.99	WORK AUTHORIZATION
	NCY OURGENT OROUTINE
ADS NO CYWP NO CWBS NO	O MINOR O MAJOR O OTHE
REQUESTER IDENTIFICATION NAME <u>KDOWINIC</u> ORGANIZATION <u>SAIC</u>	
TITLE FON SIGNATURE KLAOM	
BASELINE IDENTIFICATION BASELINE(S) AFFECTED O COST O SCOPE O MILESTONES O MET	HOD OF ACCOMPLISHMENT
PROGRAM SERVICE REVISION NO ORDER NO REVISION NO DESCRIPTION OF CHANGE Fyine 4-2 and Table 4-3 incorrectly identify surface water + sectiment loc 5-1 an correct, account of for addition of	CAM SIGNATURE PHONE Bottle betels + Tal- Critic-1. Bottle betels + Tal- f Geoprobe groundwikter simp
MPACT OF NOT IMPLEMENTING REQUEST Incorrect bulled	1059 7 of samples.
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Full tang	
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Fueld tom pointed out to 1400 + stations were re	Change has been -lateled in field.
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Fueld tom pointed out to 1400 + stations were re	Change had been -lateled in field.
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Fueld to many pointed out to dean + stations were re COST ESTIMATE \$ESTIMATOR SIGNATURE PHONE	Charge has been -lateled in field.
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Fueld to many pointed out to 1400 + stations were record out to 1400 + stations were record approval client project manager signature	DATE DATE
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Fue ICI terms pointed out to 1400 + statung were re COST ESTIMATE \$ESTIMATOR SIGNATURE PREVIOUS FC AFFECTED O YES OHNO APPROVAL CLIENT PROJECT MANAGER SIGNATURE	L. Charge had been -luceled in field.
PARTICIPANTS AFFECTED BY IMPLEMENTING REQUEST Full to many pointed out to 1400 + stations were record out to 1400 + stati	DATE DATE

FCO NO		Change Order (F		
MODIFICATION NO.				
TYPE OF CHANGE				
ADS NO	CYWP NO	CWBS NO	O MINOR O MAJOR O O	THER
REQUESTER IDENTIFICATION	ORGANIZ	JRE IL LANNINIC	PHONE 9/18.625.7	164
BASELINE IDENTIFICATION				
BASELINE(S) AFFECTED		O MILESTONES O METHOD		
	REVI	SION NO CAN	I SIGNATURE	
DESCRIPTION OF CHANGE	Sec. 4.1.1.1	- SAP Addend uph	ONE	
Subsurface (1-	3' interval) SA	mples could not	will be added in 6-B	1
return con	packed rubb	r. Invera, sample	NSIGNATURE ONE be collected because of to will be added in 6-8	
INDIAN AS SHO	= 1-3 , MERVA	a NOT COLECTED:		
SANIFUE: WINDOW	1 241-5 24	I MI-A DAL-	9, DAI-11: LOCATIONS	
JUSTIFICATION DATES	1, DAI=5, DA	1 BE CULEITED	: DAI-18, DAI-19, DAI	- 2
UNERE 6-D.	Samires wil	A PA CALEGOO	-10, 200, 100, 100, 100, 100, 100, 100, 1	
	-1 DAI-11			
DA1-20, DA1	-21, DAI-41	DAI-42 depth ch	eracterization in allest	
DAI-20, DAI	-21, DAI-41 Provides aa	ditional depth ch	arachinzaka in anot	
JUSTIFICATION : Where Substitute	-21, DAI-41 Provides an Ace 's proch	nie.		
JUSTIFICATION : Where Substitute	-21, DAI-41 Provides an Ace 's proch	nie.		
JUSTIFICATION : Where Substitute	-21, DAI-41 Provides an Ace 's proch	nie.	- + lost subsurface de	
JUSTIFICATION:	-21, DAI-41 Provides an Ace 's proch	nie.		
JUSTIFICATION:	-21, DAI-41 Provides an Ace 's proch	nie.		
JUSTIFICATION : Where Substitute	-21, DAI-41 Provides an Ace 's proch	nie.		
DAI - 20, DAI JUSTIFICATION : WILL SUBSULG	-21, DAI-41 Provides and acc 'is prime for ING REQUEST UN	rexpended analyses		
JUSTIFICATION : Where Substitute	-21, DAI-41 Provides and acc 'is prime for ING REQUEST UN	EQUEST Field tam	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULG	-21, DAI-41 Provides and acc 'is prime for ING REQUEST UN	rexpended analyses	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULG	-21, DAI-41 Provides and acc 'is prime for ING REQUEST UN	EQUEST Field tam	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULG	-21, DAI-41 Provides and acc 'is prime for ING REQUEST UN	EQUEST Field tam	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WHEN SUBSILIA MPACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED	- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING R	EQUEST Full tam Sample m	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULG	- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING R	EQUEST Field Analysch SAMPLE M	- + lost subsurface de	
DAI - 20, DAI JUSTIFICATION : WHEN SUBSILIA MPACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED	- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING R	EQUEST Full tam Sample m	- + lost subsurface dé	
DAI - 20, DAI JUSTIFICATION : WHEN SUBSILIA MPACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED	- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING RE ESTIMAT	EQUEST Field Analysch SAMPLE M	- + lost subsurface de	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULA MPACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED COST ESTIMATE \$ PREVIOUS FC AFFECTED (- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING RE ESTIMAT	EQUEST Field Analysch SAMPLE M	- + lost subsurface de p. DATE	
DAI - 20, DAI JUSTIFICATION : WILL SUBSULA MPACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED	Provides and ACL 'IS proc for ING REQUEST UN BY IMPLEMENTING RE ESTIMAT	EQUEST Field Analysch SAMPLE M	- + lost subsurface de	
DAI-ZO, DAI JUSTIFICATION : WHACT OF NOT IMPLEMENT PARTICIPANTS AFFECTED COST ESTIMATE S PREVIOUS FC AFFECTED (APPROVAL CLIENT PROJECT MANAGER SIGN/	- 21, DAI - 41 Provides and acc 'is price for ING REQUEST UN BY IMPLEMENTING RE ESTIMAT O YES ONO	EQUEST Field Analysch SAMPLE M	- + lost subsurface de p. _ DATE _ DATE	
DAI - 20, DAI JUSTIFICATION : WEAT OF NOT IMPLEMENT PARTICIPANTS AFFECTED COST ESTIMATE S PREVIOUS FC AFFECTED (APPROVAL CLIENT	Provides and ACL 'IS procho ING REQUEST UN BY IMPLEMENTING RE ESTIMAT	EQUEST Field Analysch SAMPLE OR SIGNATURE PHONE DATE	- + lost subsurface de p. _ DATE _ DATE	

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

QUALITY CONTROL SUMMARY REPORT

D.0 DATA QUALITY CONTROL SUMMARY REPORT

Environmental data must always be interpreted relative to their known limitations and intended use. As can be expected in environmental media of this type, there are areas and data points where the user needs to be cautioned relative to the quality of the project information presented. The data validation process and this data quality assessment are intended to provide current and future data users with assistance throughout the interpretation of this data.

D.1 PURPOSE

The purpose of this Data Quality Control Summary Report (QCSR) is (1) to describe the quality control (QC) procedures followed to ensure data generated by Science Applications International Corporation (SAIC) during CERCLA investigations at the Ravenna Army Ammunition Plant (RVAAP) would meet project requirements; (2) to describe the quality of the data collected; and (3) to describe problems encountered during the course of the study and their solutions. A separate Chemical Quality Assessment Report will be completed by the US Army Corps of Engineers (USACE) Quality Assurance (QA) representative to address data generated from QA split samples remanded to its custody.

This report provides an assessment of the analytical information gathered during the course of the RVAAP Demolition Area 1 (DA1) Phase I Remedial Investigation (RI) performed during 1999. This report documents that the quality of the data employed for the RI report met project objectives. Evaluation of field and laboratory QC measures constitutes the majority of this assessment; however, references are also directed toward those QA procedures that establish data credibility. The primary intent of this assessment is to illustrate that data generated for the RI can withstand scientific scrutiny; are appropriate for their intended purpose; are technically defensible; and are of known and acceptable sensitivity, precision, and accuracy.

Multiple activities must be performed to achieve the desired data quality. As discussed in the RI report, decisions were made during the initial scoping of the RI to define the quality and quantity of data required. Data quality objectives (DQOs) were established to guide the implementation of the field sampling and laboratory analysis (refer to the DA1 Phase I RI SAP Addendum, October 1999). A QA program was established to standardize procedures and to document activities (refer to the RVAAP Facility-wide Quality Assurance Project Plan (QAPP) April 1996 and the DA1 Phase I RI QAPP Addendum October 1999). This program provided a means to detect and correct any deficiencies in the process. Upon receipt by the project team, data was subjected to verification and validation review that identified and qualified problems related to the analysis. These review steps contribute to this final Data Quality Assessment, which defines that data used in the investigation met the criteria and are employed appropriately.

D.2 QUALITY ASSURANCE PROGRAM

A Facility-wide QAPP and a Phase I RI QAPP Addendum for DA1 studies were developed to guide the investigation. These plans are found in Part II of the Facility-wide Sampling and Analysis Plan (SAP) (USACE 1996) and the DA1 Phase I RI SAP Addendum No. 1 (USACE 1999). The purposes of these documents were to enumerate the quantity and type of samples to be taken to inspect the area of concern and to define the quantity and type of QA/QC samples to be used to evaluate the quality of the data obtained.

The QAPP established requirements for both field and laboratory QC procedures. In general, field QC duplicates and QA split samples were required for each environmental sample matrix collected in the area being investigated. Volatile organic compounds (VOCs) trip blanks were to accompany each cooler containing water samples for VOC determinations. Analytical laboratory QC duplicates, matrix spikes, laboratory control samples, and method blanks were required for every 20 samples or less of each matrix and analyte.

A primary goal of the RVAAP QA program is to ensure that the quality of results for all environmental measurements are appropriate for their intended use. To this end, the QAPP and standardized field procedures were compiled to guide the investigation. Through the process of readiness review, training, equipment calibration, QC implementation, and detailed documentation, the project has successfully accomplished the goals set for the QA program. Surveillances were conducted to determine the adequacy of field performance as evaluated against the QA plan and procedures.

D.2.1 Monthly Progress Reports

Monthly Progress Reports (MPRs) were completed by the SAIC Project Manager for each month of the project's duration. The MPRs contained the following information: work completed, problems encountered, corrective actions/solutions, summary of findings, and upcoming work. These reports were issued to the USACE – Louisville District Project Manager with copies forwarded to the Ohio EPA. Access to these reports can be obtained through the USACE Project Manager.

D.2.2 Daily Quality Control Reports

The Field Team Leader produced all Daily Quality Control Reports (DQCRs). These include information such as sub-tier contractors on-site, equipment on-site, work performed summaries, QC activities, health and safety activities, problems encountered, and corrective actions. Other QA-related information is included where appropriate. The DQCRs were submitted to the USACE – Louisville District Project Manager and may be obtained through his office.

D.2.3 Laboratory "Definitive" Level Data Reporting

The QAPP for this project identified requirements for laboratory data reporting and identified Quanterra Laboratories (now Severn-Trent Laboratories) of North Canton, Ohio, as the lab for the project. During the execution of the project, the North Canton, Ohio, facility took the lead and performed the majority of the analyses, while its Knoxville, Tennessee, facility performed explosives by High Pressure Liquid Chromatography (HPLC) and its Sacramento, California, facility performed nitroguanidine and nitrocellulose determinations. EPA "definitive" data have been reported including the following basic information:

- a. laboratory case narratives;
- b. sample results (soil/sediment reported per dry weight);
- c. laboratory method blank results;
- d. laboratory control standard results;
- e. laboratory sample matrix spike recoveries;
- f. laboratory duplicate results;
- g. surrogate recoveries (VOCs, Semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs) and explosives);

- h. sample extraction dates; and
- i. sample analysis dates.

This information from the laboratory, along with field information, provides the basis for subsequent data evaluation relative to sensitivity, precision, accuracy, representativeness, and completeness. These have been presented in Section D.4.

D.3 DATA VALIDATION

The objective when evaluating the project data quality is to determine its usability. The evaluation is based on the interpretation of laboratory QC measures, field QC measures, and the project DQOs. This project implemented data validation checklists to facilitate laboratory data validation. These checklists were completed by the project designated validation staff and were reviewed by the project laboratory coordinator. Data validation checklists for each laboratory sample delivery group have been retained with laboratory data deliverables in the project files.

D.3.1 Field Data Validation

DQCRs were completed by the Field Team Leader. The DQCRs and other field-generated documents, such as sampling logs, boring logs, daily health and safety summaries, daily safety inspections, equipment calibration and maintenance logs, and sample management logs, were peer reviewed on-site. These logs and all associated field information have been delivered to the USACE – Louisville District Project Manager and can be obtained through that office.

D.3.2 Laboratory Data Validation

Analytical data generated for this project have been subjected to a process of data verification, validation, and review. The following describes this systematic process and the evaluation activities performed. Several criteria have been established against which the data were compared and from which a judgment was rendered regarding the acceptance and qualification of the data. Because it is beyond the scope of this report to cite those criteria, the reader is directed to the following documents for specific detail:

- SAIC Technical Support Contractor QA Technical Procedure (TP-DM-300-7) Data Verification and Validation;
- EPA National Functional Guidelines for Inorganic Data Review, EPA 540/R-94/013, February 1994;
- EPA National Functional Guidelines for Organic Data Review, EPA-540/R-94/012, February 1994; and
- Phase 1 Remedial Investigation of Demolition Area #1 at the RVAAP, Ravenna, Ohio, Sampling and Analysis Plan Addendum No. 1, SAIC, October 1999.

Upon receipt of field and analytical data, verification staff performed a systematic examination of the reports, following standardized data package checklists to ensure the content, presentation, and administrative validity of the data. Discrepancies identified during this process were recorded and documented utilizing the checklists. As part of data verification, standardized laboratory electronic data deliverables were subjected to review. This technical evaluation ensured that all contract-specified

requirements had been met and that electronic information conformed to reported hardcopy data. QA program nonconformance report (NCR) and corrective action systems were implemented as required.

During the validation phase of the review and evaluation process, data were subjected to a systematic technical review by examining all field and analytical QC results and laboratory documentation, following appropriate functional guidelines for laboratory data validation. These data validation guidelines define the technical review criteria, methods for evaluation of the criteria, and actions to be taken resulting from the review of these criteria. The primary objective of this phase was to assess and summarize the quality and reliability of the data for the intended use and to document factors that may affect the usability of the data. Data verification/validation included but was not necessarily limited to the following parameters:

- Data completeness;
- Analytical holding times and sample preservation;
- Calibration (initial and continuing);
- Method blanks;
- Sample results verification;
- Surrogate recovery;
- Laboratory control standard analysis;
- Internal standard performance;
- Matrix spike (MS) recovery;
- Duplicate analysis comparison;
- Reported detection limits;
- Compound, element, isotope quantification;
- Reported detection levels; and
- Secondary dilutions.

As an end result of this phase of the review, the data were qualified based on the technical assessment of the validation criteria. Qualifiers were applied to each field and analytical result to indicate the usability of the data for their intended purpose.

D.3.3 Definition of Data Qualifiers (FLAGS)

During the data validation process, all laboratory data were assigned appropriate data validation flags and reason codes. Validation flags are defined as follows:

- "U" Indicates the analyte was analyzed for, but not detected, above the level of the associated value.
- "J" Indicates the analyte was positively identified; however, the associated numerical value is an approximate concentration of the analyte in the sample.
- "UJ" Indicates the analyte was analyzed for, but not detected, above the associated value; however, the reported value is an estimate and demonstrates a decreased knowledge of its accuracy or precision.
- "R" Indicates the analyte value reported is unusable. The integrity of the analyte's identification, accuracy, precision, or sensitivity has raised significant questions as to the reliability of the information presented.

"=" Indicates the analyte has been validated and positively identified, and the associated concentration value is accurate.

SAIC validation reason codes have been provided as Attachment 1, while copies of validation checklists and qualified data forms are maintained with the analytical laboratory deliverable.

D.3.4 Data Acceptability

More than 130 environmental soil, sediment, surface water, groundwater, and field QC samples were collected with approximately 7,300 discrete analyses (i.e., analytes) being obtained, reviewed, and integrated into the assessment (these totals do not include field measurements and field descriptions). The project produced acceptable results for more than 99 percent of the sample analyses performed. Data that were rejected are relegated primarily to results for the metal antimony and the SVOC hexachlorocyclopentadiene.

Table D-1 presents a summary of the collected investigation samples. It tallies the successful collection of all targeted field QC and QA split samples, while Table D-2 identifies a cross-reference for duplicate and QA split sample pair numbers. Table D-3 provides a summary of rejected analyses grouped by media and analyte category.

For the DA1 Phase I RI, a total of 12 field duplicates were analyzed for soil, sediment, and surface water media. Equipment rinsate and site source water blanks were those reported with the concurrent NACA Test Area (NTA) Phase I RI results (USACE 2000). Trip blanks for VOC determinations were analyzed relative to each shipment of water samples, totaling one analysis for the Phase I RI, with one other accompanying the surface water QA split sample.

Undetected results for antimony were rejected in several soil samples due to poor matrix spike recoveries. The SVOCs 3,3'-dichlorobenzidine and 4-chlorobenzenamide required rejection in a few isolated sediment and soil sample analyses due to sample matrix interferences as demonstrated by very poor matrix spike recoveries. Hexachlorocyclopentadiene non-detected results for all surface water samples were also rejected due to extremely poor matrix spike recoveries.

The majority of estimated values were based on values observed between the laboratory method detection levels and the project reporting levels. Values determined in this region have an inherently higher variability and need to be considered estimated, at best.

D.4 DATA EVALUATION

D.4.1 Accuracy

Accuracy provides a gauge or measure of the agreement between an observed result and the true value for an analysis. Analytical accuracy is evaluated by measuring the agreement between an analytical result and its known or true value. This is generally determined through use of laboratory control samples (LCSs), MS analysis, and performance evaluation samples. Accuracy, as measured through the use of LCSs, determines the method implementation accuracy independent of sample matrix. They document the laboratory analytical process control. Accuracy determined by the MS is a function of both matrix and the analytical process. Table D-4 lists the average, maximum, and minimum analytical LCS recovery values for VOC, SVOC, explosive, PCB, metal, and miscellaneous analyses. Average, minimum, and maximum method blank surrogate compound recoveries for organic parameters are compiled in Table D-5. Table D-6 consolidates the sample MS recovery values for metal, VOC, SVOC, explosive, PCB, and miscellaneous parameters.

D.4.1.1 Metals

Average LCS percent recovery values for metals analyses of soil and sediment ranged from 89 percent for selenium to 114 percent for iron. All LCS recoveries were within the reference materials assigned variation and within project accuracy goals of 75-125 percent. None of the soil and sediment data required qualification based on the LCS. LCS percent recovery values for metal analysis in water were all within 92-116 percent, and average recovery values ranged from 97 percent for mercury to 114 percent for zinc.

Sample MS information for metals produced some estimated values (in particular, antimony and magnesium values); however, the overall accuracy for these measurements is considered acceptable. Average soil and sediment percent recoveries ranged from 49 percent for antimony to 112 percent for mercury. Results for water MS data were satisfactory and provide confidence in the accuracy of the measurements. Average water sample MS recoveries were comparable to LCS recoveries, with averages ranging from 82 percent for thallium to 113 percent for iron.

In summary, LCS information demonstrates that the analytical laboratory process was in control and that accurate. MS, post-digestion spike analyses, and serial dilutions also provide confidence in the accuracy of elemental metal results.

D.4.1.2 VOCs

The VOC LCS recovery, method blank surrogate recovery, and MS recovery information provide measures of accuracy. Recoveries determined for the laboratory volatile organic method blank spike analyses (LCS) indicate the analytical process was in control. Summaries in Table D-4 show average soil and sediment LCS values range from 71 percent for chloromethane to 124 percent for acetone, while water LCS values range from 67 percent for chloromethane to 120 percent for both chloroethane and 2-butanone. Method blank surrogate recoveries (Table D-5) were all within 85-110 percent for volatile compounds. These values establish that the analytical process was in control.

The VOC MS recoveries (Table D-6) indicate that analytical accuracy for these compounds was in control and that the data are usable with few exceptions. Average soil and sediment MS recoveries ranged from 71 percent for chloromethane to 120 percent for 1,1,2,2-tetrachloroethane, while average water MS recoveries ranged from 51.5 percent for acetone to 109.5 percent for chloroethane and 1,1,1-trichloroethane.

D.4.1.3 Explosive Compounds

Nitroaromatic compound measures of accuracy are also derived from LCS, surrogate, and MS recovery information. Overall, the laboratory explosives analytical process was demonstrated to be in control by maintaining a general 75-125 LCS percent recovery for both water and soil matrices. HPLC results (compounds other than nitrocellulose) exhibited excellent control with all LCS values being between 73 percent and 116 percent and average results ranging between 87.5 percent and 106.5 percent. Colorimetric processes for nitrocellulose showed less control. Average LCS recoveries were 111 percent for water and 68 percent for soil and sediment analyses.

MS information also demonstrates acceptable accuracy control for both soil/sediment and water for the majority of the analyses. Average soil and sediment MS recoveries ranged from 40 percent for nitrocellulose to 102.5 percent for 2,6-dinitrotoluene. Water MS information was not performed on the few samples collected for HPLC explosives; however, the data collected on nitroquanidine and nitrocellulose are fully acceptable. Project data were qualified as estimated where appropriate relative to these QC results.

D.4.1.4 SVOCs

The LCS percent recovery values for semivolatile analyses of soil and sediment are generally in the 40-100 percent range, with average recoveries ranging from 42 percent for 3,3'-dichlorobenzidine to 87 percent for 2,2'-oxybis(1-chloropropane). Certain compounds exhibit wide variations, such as 2,4-dinitrophenol (44-104 percent) and pentachlorophenol (33-77 percent). Water average LCS values range from 16 percent for hexachlorocyclopentadiene to 83 percent for bis(2-ethylhexyl)phthalate, with all values between 39 percent and 104 percent with the exception of 2,4-dimethylphenol, 4-chloroaniline, hexachlorocyclopentadiene, 3-nitroaniline, and 3,3'-dichlorobenzidine. Most values are within the normally accepted advisory limits tabulated in Table D-7. They are also within project accuracy goals of 30-140 percent for semivolatile compounds. Data that required qualification based on LCS recoveries have been appropriately flagged in the data set.

Method blank surrogate recoveries (Table D-5) were within acceptable ranges for semivolatile compounds, reinforcing that the analytical process was in control.

Sample MS information for SVOCs (Table D-6) paralleled LCS data, with the overall accuracy for these measurements being considered acceptable. Average soil and sediment percent recoveries ranged from 26 percent for hexachlorocyclopentadiene to 90 percent for 2,2'-oxybis(1-chloropropane), with the exception of 3,3'-dichlorobenzidine at 20 percent. Results for the water MS data were also satisfactory, with average values ranging between 25 percent for 4-chloroaniline and 93 percent for 4-nitrophenol, with the exception of hexachlorocyclopentadiene at 19 percent. The MS results are believed to provide confidence in the accuracy of the measurements. Individual data points have been qualified where appropriate in the data set.

D.4.1.5 PCB Compounds

PCB LCS, blank surrogate recoveries, and MS results were within acceptable limits. Only a few values were qualified based on these QC parameters.

D.4.1.6 Miscellaneous Analytes

These analyses included cyanide. LCS data ranged from 71 percent to 99 percent recovery, while MS data ranged from 68 percent to 108 percent recovery. The majority of the data required no qualification.

D.4.2 Precision

D.4.2.1 Laboratory Precision

As a measure of analytical precision, Table D-8 contains the average relative percent difference (RPD) for laboratory duplicate pairs for metal, VOC, SVOC, explosive, PCB, and miscellaneous parameters where both values meet or exceed five times the reported quantitation level for that analyte. As the RPD approaches zero, complete agreement is achieved between the duplicate sample pairs. Sample homogeneity,

analytical method performance, and the quantity of analyte being measured all contribute to this measure of sample analytical precision.

The goal for laboratory soil, sediment, and water precision is set as acceptable when the RPD does not exceed 35. This goal was exceeded for analyte average RPDs in only 5 out of 262 cases (approximately 98 percent within acceptable range). The exceptions included soil SVOC 4-chloroaniline at 47 RPD; soil SVOC 3,3'-dichlorobenzidine at 52 RPD; water VOC 2-butanone at 36 RPD; water VOC 4-methyl-2-pentanone at 36 RPD; and water VOC 2-hexanone at 39 RPD. Maximum RPDs fell within the 35 RPD level for most parameters with the exception of individual RPDs for several SVOC compounds. Analyses were qualified as estimated "J" through the validation process to indicate data impact, when necessary. In general, the RPD values are considered good for these media and reflect great effort on the part of the laboratory team to homogenize and analyze the samples consistently.

Individual data points affected by poor precision measures appear in the data set qualified as estimated, when necessary. The precision for those data is considered acceptable and is usable for project objectives.

D.4.2.2 Field Precision

Field duplicate samples were collected to ascertain the contribution to variability (i.e., precision) due to the combination of environmental media, sampling consistency, and analytical precision. Field duplicate samples were collected from the same spatial and temporal conditions as the primary environmental sample. Soil samples for all analytes except VOCs were collected from the same sampling device after homogenization.

Field duplicate comparison information in Table D-9 presents the absolute difference or RPD for field duplicate measurements by analyte. RPD was calculated only when both samples were >5 times the reporting level. When one or both sample values were between the quantitation level and 5 times the reporting level the absolute difference was evaluated. If both samples were not detected for a given analyte, precision was considered acceptable. In order to review information, this data quality assessment has implemented general criteria for comparison of absolute difference measurements and RPDs. RPD criteria were set at 50, and absolute difference criteria were set at 3 times the reporting level. This slightly broader acceptance criterion was applied to field duplicate samples because they are co-located spacially at the site and do not represent analysis from the same homogenized sample container, as is presented by laboratory duplicate comparisons.

Field duplicate metal and organic RPD comparisons are considered good, with 100 of 107 (93 percent) of the observations being <50 RPD. Absolute differences were all within three times the reporting level criteria, with the exception of one calcium comparison in 541 observations. Field duplicate comparisons are therefore considered acceptable for 99 percent of the observations made (640 out of 648).

D.4.3 Sensitivity

Determination of minimum detectable values allows the investigation to assess the relative confidence that can be placed in a value relative to the magnitude or level of analyte concentration observed. The closer a measured value comes to the minimum detectable concentration, the less confidence and more variation the measurement will have. Project sensitivity goals were expressed as quantitation level goals in the QAPP. When laboratory reporting limits were compared to the project quantitation goals to assure that analyses could be detected at concentrations low enough to meet project objectives, reporting limits were below the project quantitation goals for all analytes but a few. The exceptions included some semivolatile compounds that were reported at approximately 2 times the project goals (i.e., $25 \mu g/L$

versus the goal of $10 \ \mu g/L$) and some propellant analyses in water. Nitroguanidine had a reporting limit of 20 $\mu g/L$ compared with a goal of 10 $\mu g/L$, while nitrocellulose as N had a reporting limit of 500 $\mu g/L$ compared to a goal of 10 $\mu g/L$. After further discussions with the laboratory, it was determined that 25 $\mu g/L$, 20 $\mu g/L$, and 500 $\mu g/L$ represented the limitations of the methodology and that project expectations were overambitious in regard to these parameters. Reporting levels were more variable for soil and sediment because of variability in sample size and moisture content. The lowest reporting levels were generally close to the quantitation limit goals. The best reporting levels for antimony, however, were more than 10 times the goal of 0.5 mg/kg. Reporting levels for explosives and propellants were generally lower than the goals except for nitrocellulose and nitroglycerin. Reporting limits for nitrocellulose and nitroglycerin were 2.5 times the goal of 1 mg/kg. In each of the cases, it has been determined that initial project expectations exceed the capability of the analytical methodology. However, contaminants with reporting levels that exceeded quantitation limits were moved forward into risk characterization. Actual laboratory method detection levels achieved during this investigation are presented in Table D-10 with original practical quantitation level goals.

Method blank determinations were performed with each analytical sample batch for each analyte under investigation. These blanks were evaluated during data validation to determine their potential impact on individual data points, if any. Validation action levels are set at 5 times the reporting level for all analytes, except those designated as common laboratory contaminants (methylene chloride, acetone, 2-butanone, and phthalate compounds), which have action levels set at 10 times reporting levels. During data validation, reported sample concentrations are assessed against method blank action levels, and the following qualifications are made when reportable quantities of an analyte were observed in the associated method blank.

- When the analyte sample concentration is above the 5 times or 10 times action level, the data are not qualified and are considered a positive value. This result will receive a validation reason code of "F01, F08."
- When the analyte sample concentration is determined to be below the 5 times or 10 times action level but above the reporting level, the result is considered to be impacted by the method blank, and the value reported is qualified as a non-detect at the analyte value reported. This result is then qualified as "U" with a reason code of "F01, F07."
- When the analyte sample concentration is determined to be below the 5 times or 10 times action level and below the reporting level, the result is considered to be impacted by the method blank, and the value reported is qualified as a non-detect at the reporting level. This result is then qualified as "U" with a reason code of "F01, F06."

No data were rejected as a result of method blank contamination; however, various analytes are qualified as non-detect "U" according to the above validation reason codes.

Evaluation of overall project sensitivity can be gained through review of field blank information. These actual sample analyses may provide a comprehensive look at the combined sampling and analysis sensitivity attained by the project. Field QC blanks obtained during sampling activities at RVAAP included samples of VOC trip blank waters, an ASTM deionized water source, and a site potable water source. Deionized water and potable water were obtained and reported with data gathered concurrently as part of the NTA investigations.

VOCs were not detected in trip blanks associated with the DA1 projects. In the concurrent NTA investigation, trace levels of methylene chloride (4.8 μ g/L) and styrene (1 μ g/L) (estimated concentrations

less than reporting limits) were observed in two trip blanks. A source cannot be pinpointed for these compounds, and the results are likely anomalies. It therefore is determined that VOC analyses have not been affected through the transportation and storage process and that the procedures and precautions employed were effective in preserving the integrity of the sample analysis.

Field source water blank NTA0165 (11/2/1999) and equipment rinsate NTA0166 (11/2/1999) exhibited few analyte levels above project reporting levels. Those detected included minor levels of methylene chloride, 1,3-dintrobenzene, 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 3-nitrotoluene in the equipment rinsate, along with a 220 μ g/L quantity of di-n-butyl phthalate. The site source water blank exhibited normal levels of calcium, magnesium, potassium, and sodium, with minor concentrations of barium, copper, manganese, and zinc. Acetone was also observed as an estimated value below the reporting limit. There is no indication that the source water or the equipment rinsate impacted associated sample levels.

D.4.4 Representativeness and Comparability

Representativeness expresses the degree to which data accurately reflect the analyte or parameter of interest for the environmental site and is the qualitative term most concerned with the proper design of the sampling program. Factors that affect the representativeness of analytical data include proper preservation, holding times, use of standard sampling and analytical methods, and determination of matrix or analyte interferences. A few organic analyses were conducted outside the holding time because samples were re-extracted and reanalyzed due to low surrogate recoveries. These data were qualified accordingly as outside of the holding time per EPA validation protocols. These instances occurred when initial extraction results required the laboratory to repeat semivolatile extractions for a sample beyond the standard holding time but within the direction and guidance of the analytical methodology. Sample preservation, analytical methodologies, and soil sampling methodologies were documented to be adequate and consistently applied. Estimated values qualified as being outside of the holding time were utilized with the requisite precautions in some of the report data interpretations. Use of these data might result in some additional uncertainty in specific interpretations where the values were incorporated but are not believed to have detracted from achieving the overall project data quality objectives.

Comparability, like representativeness, is a qualitative term relative to an individual project data set. This Phase I RI employed appropriate sampling methodologies, site surveillance, use of standard sampling devices, uniform training, documentation of sampling, standard analytical protocols/procedures, QC checks with standard control limits, and universally accepted data reporting units to ensure comparability to other data sets. Through the proper implementation and documentation of these standard practices, the project has established the confidence that the data will be comparable to other project and programmatic information.

D.4.5 Completeness

Usable data are defined as those data that pass individual scrutiny during the verification and validation process and are accepted for unrestricted application to the human health risk assessment evaluation or equivalent type applications. It has been determined that estimated data are acceptable for RVAAP project objectives.

Analytical DQOs for the DA1 Phase I RI have been achieved. The project produced valid results for 99 percent of the sample analyses performed.

D.5 DATA QUALITY ASSESSMENT SUMMARY

The overall quality of the DA1 Phase I RI data meets or exceeds the established project objectives. Through proper implementation of the project data verification, validation, and assessment process, project data have been determined to be acceptable for use.

Data have been qualified as estimated, but usable, when necessary. Data that have been estimated provide indications that either accuracy, precision, or sensitivity is less than desired but adequate for interpretation. Data that are not acceptable for use have been rejected, and qualifiers have been applied.

Data produced for this project demonstrate that they can withstand scientific scrutiny; are appropriate for their intended purpose; are technically defensible; and are of known and acceptable sensitivity, precision, and accuracy. Data integrity has been documented through proper implementation of QA and QC measures. The environmental information presented has an established confidence that allows utilization for the project objectives and provides data for future needs.

Area	Media	Environmental Samples	Field Duplicates	Trip Blanks	Equipment Rinsate Blanks	Site Source Water Blanks	USACE Split Samples
Demo Area 1							
	Soil	112	10	-	-	-	10
	Sediment	4	1	-	-	-	1
	Surface water	3	1	1	-	-	1
	Groundwater	1	-	-	-	-	-
Totals		120	12	1	-	-	12

Table D-1. Demolition Area I Phase I RI Sampling Summary

USACE = U.S. Army Corps of Engineers.

Media	Primary Sample Number	Field Duplicate Sample Number	USACE Split Sample Number	Sampling Date
Surface soil	DA10109	DA10126	DA10138	11/3/1999
	DA10009	DA10127	DA10139	10/19/1999
	DA10036	DA10128	DA10140	10/21/1999
	DA10103	DA10129	DA10141	11/2/1999
	DA10057	DA10130	DA10142	10/25/1999
Subsurface soil	DA10043	DA10131	DA10143	10/22/1999
	DA10037	DA10132	DA10144	10/21/1999
	DA10104	DA10133	DA10145	11/2/1999
	DA10105	DA10134	DA10146	11/2/1999
	DA10014	DA10135	DA10147	10/20/1999
Sediment	DA10120	DA10136	DA10148	10/24/1999
Surface water	DA10124	DA10137	DA10149	10/24/1999

Table D-2. Demolition Area 1 Phase I RI Sample/Field Duplicate/QA Split Sample Number Reference

USACE = U.S. Army Corps of Engineers.

		D • • 1/	T ()	Percent
Media	Analysis Group	Rejected/	Total	Rejected
Soil	Matala	10/	2.000	0.7
5011	Metals	19/	2,806 396	
	Volatile organics	0/		0.0
	Semivolatile organics	1/	768	0.1
	PCBs	0/	77	0.0
	Explosives	0/	/	0.0
	Cyanide	0/	122	0.0
	Subtotal	20/	5,999	0.3
Sediment	Metals	0/	115	0.0
	Volatile organics	0/	132	0.0
	Semivolatile organics	2/		0.6
	PCBs	0/	28	0.0
	Explosives	0/	75	0.0
	Cyanide	0/	5	0.0
	Total organic carbon	0/	4	0.0
	Subtotal	2/	679	0.3
		0.1	115	0.0
Surface water	Metals	0/	115	0.0
and	Volatile organics	0/	165	0.0
groundwater	Semivolatile organics	4/		1.6
	PCBs	0/	28	0.0
	Explosives	0/	75 -	0.0
	Cyanide	0/	5	0.0
	Subtotal	5/	644	0.6
Project Total		26/	7,322	0.4

Table D-3. Demolition Area 1 Phase I RI Summary of Rejected Analytes (Grouped by Medium and Analysis Group)

PCBs = Polychlorinated biphenyls.

Analysis	Average % Rec	Soil Min. % Rec.	Max. % Rec.	N ^a	Average % Rec.	Water Min. % Rec.	Max. % Rec.	N ^a
111119515		Volatile Orgo			70 Rec.	/o Ree:	70 Rec.	11
Chloromethane	71	59	92	8	67	na	na	1
Bromomethane	76	63	93	8	98	na	na	1
Vinyl chloride	79	64	97	8	86	na	na	1
Chloroethane	107	94	123	8	120	na	na	1
Methylene chloride	91	85	104	8	91	na	na	1
Acetone	124	78	148	8	95	na	na	1
Carbon disulfide	90	78	103	8	105	na	na	1
1,1-Dichloroethene	99	89	110	8	100	na	na	1
1,1-Dichloroethane	100	93	106	8	97	na	na	1
1,2-Dichloroethene (total)	103	96	110	8	91	na	na	1
Chloroform	100	94	106	8	99	na	na	1
1,2-Dichloroethane	110	103	118	8	100	na	na	1
2-Butanone	98	80	120	8	77	na	na	1
1,1,1-Trichloroethane	100	92	108	8	117	na	na	1
Carbon tetrachloride	99	92	105	8	120	na	na	1
Bromodichloromethane	97	93	104	8	104	na	na	1
1,2-Cichloropropane	99	92	105	8	96	na	na	1
Cis-1,3-dichloropropene	94	90	100	8	94	na	na	1
Trichloroethene	98	89	104	8	98	na	na	1
Dibromochloromethane	97	91	103	8	94	na	na	1
1,1,2-Trichloroethane	102	94	110	8	86	na	na	1
Benzene	101	93	108	8	98	na	na	1
Trans-1,3-dichloropropene	95	90	102	8	92	na	na	1
Bromoform	97	92	103	8	92	na	na	1
4-Methyl-2-pentanone	107	94	122	8	71	na	na	1
2-Hexanone	107	91	128	8	104	na	na	1
Tetrachloroethene	102	95	108	8	107	na	na	1
1,1,2,2-Tetrachloroethane	104	98	111	8	90	na	na	1
Toluene	100	92	107	8	105	na	na	1
Chlorobenzene	100	93	107	8	104	na	na	1
Ethylbenzene	101	95	107	8	102	na	na	1
Styrene	92	81	102	8	97	na	na	1
Xylenes (total)	99	87	109	8	104	na	na	1
	Sei	nivolatile O	rganic Com	pound	ls			
Phenol	84	72	90	6	52	47	59	3
Bis(2-chloroethyl)ether	78	71	91	6	71	58	87	3
2-Chlorophenol	78	66	88	6	69	58	82	3
1,3-Dichlorobenzene	75	66	85	6	63	48	72	3
1,4-Dichlorobenzene	74	66	84	6	63	48	73	3
1,2-Dichlorobenzene	76	66	86	6	64	49	71	3
2-Methylphenol	76	71	81	6	61	55	66	3
2,2'-Oxybis(1-chloropropane)	87	72	107	6	72	56	84	3
4-Methylphenol	79	64	87	6	64	58	68	3
N-nitrosodi-n-propylamine	80	67	86	6	69	59	80	3
Hexachloroethane	77	66	86	6	65	49	74	3
Nitrobenzene	76	72	86	6	78	60	104	3

 Table D-4. Demolition Area I Phase I RI Laboratory Control Sample Evaluation – Percent Recovery

Analysis	Average	Soil Min.	Max.	N ^a	Average % Rec.	Water Min.	Max.	N ^a
Analysis	% Rec 74	% Rec. 69	% Rec. 84	-	% Rec. 71	% Rec.	% Rec. 91	N 3
Isophorone 2-Nitrophenol	74	<u> </u>	84	6 6	64	50	76	3
2,4-Dimethylphenol	61	56	66	6	46	29	70	3
Bis(2-chloroethoxy)methane	75	71	86	6	71	54	84	3
2,4-Dichlorophenol	75	71	81	6	68	53	80	3
1,2,4-Trichlorobenzene	70	70	84	6	69	52	80	3
Naphthalene	75	67	85	6	68	53	81	3
4-Chloroaniline	50	40	62	6	23	0	38	3
Hexachlorobutadiene	73	-+0 69	86	6	67	47	84	3
4-Chloro-3-methylphenol	80	69	86	6	68	49	88	3
2-Methylnaphthalene	76	71	83	6	65	46	77	3
Hexachlorocyclopentadiene	48	73	90	6	16	0	48	3
2,4,6-Trichlorophenol	79	73	86	6	75	62	90	3
2,4,5-Trichlorophenol	80	73	88	6	73	59	88	3
2-Chloronaphthalene	76	70	80	6	74	56	84	3
2-Nitroaniline	82	76	86	6	80	66	108	3
Dimethyl phthalate	81	70	91	6	77	65	89	3
Acenaphthylene	73	65	77	6	68	54	80	3
2,6-Dinitrotoluene	84	76	94	6	72	60	82	3
3-Nitroaniline	70	59	77	6	44	19	60	3
Acenaphthene	75	67	79	6	69	56	80	3
2,4-Dinitrophenol	75	44	104	6	60	43	72	3
4-Nitrophenol	78	73	81	6	70	66	78	3
Dibenzofuran	78	72	82	6	70	57	84	3
2,4-Dinitrotoluene	81	74	89	6	73	62	81	3
Diethyl phthalate	80	70	88	6	77	64	94	3
4-Chlorophenyl phenyl ether	79	72	84	6	72	60	83	3
Fluorene	78	70	83	6	71	58	81	3
4-Nitroaniline	76	72	83	6	61	51	68	3
4,6-Dinitro-2-methylphenol	82	59	96	6	69	50	79	3
N-nitrosodiphenylamine	80	70	94	6	64	56	70	3
4-Bromophenyl phenyl ether	82	74	93	6	71	56	81	3
Hexachlorobenzene	82	72	102	6	70	56	78	3
Pentachlorophenol	57	33	77	6	60	39	74	3
Phenanthrene	79	71	90	6	71	55	81	3
Anthracene	78	68	88	6	67	52	78	3
Carbazole	81	77	88	6	63	51	77	3
Di-n-butyl phthalate	80	71	86	6	72	54	92	3
Fluoranthene	79	68	89	6	69	51	80	3
Pyrene	82	64	94	6	72	66	79	3
Butyl benzyl phthalate	81	73	87	6	71	59	81	3
3,3'-Dichlorobenzidine	42	31	49	6	29	20	39	3
Benzo(a)anthracene	76	66	89	6	71	63	75	3
Chrysene	83	75	95	6	76	66	82	3
Bis(2-ethylhexyl)phthalate	86	70	103	6	83	72	92	3
Di-n-octyl phthalate	82	74	96	6	82	69	101	3

Table D-4. Demolition Area I Phase I RI Laboratory Control Sample Evaluation – Percent Recovery (continued)

Anglada	Average	Soil Min.	Max.	N ^a	Average	Water Min.	Max.	\mathbf{N}^{a}
Analysis	% Rec	% Rec.	% Rec.	1 . 1	<u>% Rec.</u>	% Rec.	% Rec.	
Benzo(b)fluoranthene	80	71 72	88	6	72 71	57	83	3
Benzo(k)fluoranthene	<u>81</u> 81	72	89 90	6	69	61 56	85 78	3
Benzo(a)pyrene	81	69	90 95	6 6	<u> </u>	58	78	3
Indeno(1,2,3-cd)pyrene	85	73	93 96		72	61	73	3
Dibenzo(a,h)anthracene	83	73	96 95	6 6	72	57	79	3
Benzo(ghi)perylene	83		95 ve Compour		70	57	/0	3
1,3-Dinitrobenzene	100	93	103	8	109	106	112	2
2,4-Dinitrotoluene	100	95	103	8 8	105.5	100	112	2
2,6-Dinitrotoluene	100	93	104	8	103.5	102	109	2
Nitrobenzene	103	98 97	109	8	97	95	99	2
1,3,5-Trinitrobenzene	101	97	104	8	106	103	109	2
2,4,6-Trinitrotoluene	100	92	103	8 8	106	103	109	2
HMX	99	89	104	8 8	103	102	108	2
RDX	102	97	104	8	107.5	105	110	2
Tetryl	95	75 97	101	8 8	106.5 92	104	109	22
2-Nitotoluene	101	97	104 104	8	92	90	94	2
3-Nitrotoluene	101	99 97				92	98	
4-Nitrotoluene	101	97	106	8	<u>95</u> 87.5	92	98 97	22
4-Amino-2,6-dintrotoluene	93	90 95	100	8 8		84 97		2
2-Amino-4,6-dinitrotoluene	100	95 90	104 99		<u>101</u> 97		105	
Nitroguanidine Nitrocellulose	95 68	90 66	73	6 6	<u> </u>	na	na	1
Nitrocellulose	08		73 Compounds	-	111	na	na	1
Aroclor-1016	78	72	87	5	80	78	82	2
Aroclor-1260	80	72	87	5	77	78	82 79	2
Arocior-1200	80		87 Metals	3	//	75	19	2
Antimony	93	90	96	9	103	96	110	2
Aluminum	93	90	110	9	103	90	108	2
Arsenic	92	90	94	9	101.5	96	108	2
Barium	92	90 91	94 97	9	101.5	90 98	107	2
Beryllium	94	91	101	9	102	103	100	2
Cadmium	93	92	95	9	101.5	96	107	2
Calcium	94	93 91	101	9	101.5	102	107	2
Chromium	93	91	101	9	104.5	102	107	2
Cobalt	92	90 90	94	9	99.5	94	105	2
Copper	92	90	94 98	9	101.5	94 95	103	2
Cyanide	86	71	98 99	25	86	76	90	6
Iron	114	105	120	23 9	112	106	118	2
Lead	94	92	97	9	103	100	118	2
Magnesium	94	92 87	97	9	103	100	108	2
Magnesium	92	95	103	9	102.5	102	103	2
Manganese	110	101	103	9	97	95	99	2
Nickel	96	94	100	9	103.5	102	105	2
Potassium	96	85	100	9	103.5	102	103	2
Selenium	89	85	92	9	99	92	102	2
Selelliulli	09	63	92	9	77	92	100	Z

Table D-4. Demolition Area I Phase I RI Laboratory Control Sample Evaluation – Percent Recovery (continued)

Table D-4. Demolition Area I Phase I RI Laboratory Control Sample Evaluation – Percent Recovery (continued)

Analysis	Average % Rec	Soil Min. % Rec.	Max. % Rec.	\mathbf{N}^{a}	Average % Rec.	Water Min. % Rec.	Max. % Rec.	\mathbf{N}^{a}
Silver	104	101	107	9	112	109	115	2
Sodium	94	89	99	9	102.5	101	104	2
Thallium	96	86	102	9	107	101	113	2
Vanadium	94	93	96	9	101.5	96	107	2
Zinc	101	96	111	9	114	112	116	2

^aN = Number of samples. HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. na = Not analyzed. PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

	Average	Soil Min.	Max.		Average	Water Min.	Max.	
Analysis	% Rec	% Rec.	% Rec.	\mathbf{N}^{a}	% Rec.	% Rec.	% Rec.	\mathbf{N}^{a}
		Volatile C	Drganic Com	pound	ls			
1,2-Dichloroethane-d4	102	96	109	8	99	na	na	1
Toluene-d8	96	95	97	8	102	na	na	1
4-Tromofluorobenzene	91	87	94	8	96	na	na	1
Dibromofluoromethane	99	97	100	8	97	na	na	1
		Semivolatile	e Organic Co	трои	ends			
Nitrobenzene-d5	75	63	85	6	62	54	73	3
Terphenyl-d14	90	85	102	6	102	92	114	3
2-Fluorobiphenyl	74	65	89	6	63	56	73	3
2-Fluorophenol	80	65	85	6	60	56	63	3
Phenol-d5	80	62	92	6	50	50	51	3
2,4,6-Tribromophenol	67	61	75	6	62	51	82	3
		Pesticide	s/PCB Comp	oound	\$			
Tetrachloro-m-xylene	67	41	87	5	90	na	na	1
Decachlorobiphenyl	81	49	102	5	92	na	na	1
		Explos	sive Compou	nds				
1-Chloro-3-nitrobenzene	95	91	98	5	91	na	na	1

 Table D-5. Demolition Area 1 Phase I RI Laboratory Control Sample Evaluation –

 Method Blank Surrogate Recovery

 a N = Number of samples. na = Not analyzed.

PCB = Polychlorinated biphenyl.

	Average	Soil Min.	Max.		Average	Water Min.	Max.	
Analysis	% Rec	% Rec.	% Rec.	N ^a	% Rec.	% Rec.	% Rec.	\mathbf{N}^{a}
Chloromethane	71	olatile Orga 58	92	16	61.5	59	64	2
Bromomethane	71	59	92 94	16	82.5	76	89	2
	82	66	100	16	82.3 76.5	76	77	2
Vinyl chloride Chloroethane	108	93	123	16	109.5	109	110	2
Methylene chloride	87	80	123	16	91	88	94	2
	87	39	142		51.5	43	60	2
Acetone Carbon disulfide	83		93	16	93.5	<u>43</u> 93	94	2
		89		16			-	2
1,1-Dichloroethene	98 99	<u>89</u> 89	107	16	90.5 95	90 91	91 99	2
1,1-Dichloroethane		<u> </u>	107	16		-	99	2
1,2-Dichloroethene(total)	102		110	16	91	89		
Chloroform 1,2-Dichloroethane	99 110	92	106	16	101.5	97 96	106	2
,		<u>98</u>	119	16	105		114	
2-Butanone	93	54	111	16	58.5	48	69	2
1,1,1-Trichloroethane	98	91	107	16	109.5	108	111	2
Carbon tetrachloride	96	90	102	16	103.5	111	116	2
Bromodichloromethane	95	89	103	16	104	97	111	2
1,2-Cichloropropane	98	91	105	16	96.5	91	102	2
Cis-1,3-dichloropropene	87	74	96	16	95	89	101	2
Trichloroethene	97	90	103	16	93.5	93	94	2
Dibromochloromethane	99	90	106	16	96	91	101	2
1,1,2-Trichloroethane	107	96	122	16	90	83	97	2
Benzene	100	93	107	16	95	93	97	2
Trans-1,3-dichloropropene	91	80	101	16	92.5	86	99	2
Bromoform	101	87	112	16	96.5	87	106	2
4-Methyl-2-pentanone	117	72	143	16	67	55	79	2
2-Hexanone	106	61	125	16	63	51	75	2
Tetrachloroethene	103	93	110	16	94	94	100	2
1,1,2,2-Tetrachloroethane	120	93	135	16	103.5	89	118	2
Toluene	103	95	114	16	96.5	96	97	2
Chlorobenzene	100	93	107	16	97	96	98	2
Ethylbenzene	100	86	113	16	92	92	92	2
Styrene	90	83	99	16	83.5	80	87	2
Xylenes (total)	98	91	106	16	92.5	92	93	2
		ivolatile Or	ganic Com	pound	ls			
Phenol	77	62	86	14	57	35	73	6
Bis(2-chloroethyl)ether	76	64	85	14	70	40	105	6
2-Chlorophenol	79	66	87	14	70	40	100	6
1,3-Dichlorobenzene	75	62	88	14	64	33	88	6
1,4-Dichlorobenzene	74	62	86	14	64	34	88	6
1,2-Dichlorobenzene	76	62	90	14	67	33	96	6
2-Methylphenol	75	63	86	14	68	41	92	6
2,2'-Oxybis(1-chloropropane)	90	61	124	14	70	52	80	6
4-Methylphenol	74	61	87	14	69	41	96	6
N-nitrosodi-n-propylamine	75	58	86	14	79	45	103	6

 Table D-6. Demolition Area 1 Phase I RI Laboratory Matrix Spike Evaluation – Percent Recovery

		Soil				Water		
Amplusia	Average	Min.	Max.	N ^a	Average	Min.	Max.	\mathbf{N}^{a}
Analysis	% Rec	% Rec.	% Rec.		% Rec.	% Rec.	% Rec.	
Hexachloroethane	69 72	47	82	14	65	35	88	6
Nitrobenzene	73 71	57	84	14	89	54	123	6
Isophorone		59	83	14	83	48 42	114	6
2-Nitrophenol	78	61	88	14	73		96	6
2,4-Dimethylphenol	72 76	60	99	14	60	29	99	6
Bis(2-chloroethoxy)methane		66	92	14	76	46	104	6
2,4-Dichlorophenol	76	63	85	14	75	45	101	6
1,2,4-Trichlorobenzene	79	65	96	14	74	41	98	6
Naphthalene	76	64	87	14	71	38	99 50	6
4-Chloroaniline	33	0	66	14	25	0	50	6
Hexachlorobutadiene	76	62	95	14	76	37	100	6
4-Chloro-3-methylphenol	78	64	88	14	83	38	115	6
2-Methylnaphthalene	77	62	91	14	71	35	99	6
Hexachlorocyclopentadiene	26	0	55	14	19	0	61	6
2,4,6-Trichlorophenol	75	57	91	14	82	44	109	6
2,4,5-Trichlorophenol	77	62	90	14	82	42	109	6
2-Chloronaphthalene	78	66	86	14	76	42	105	6
2-Nitroaniline	72	49	90	14	92	51	130	6
Dimethyl phthalate	82	67	90	14	85	48	111	6
Acenaphthylene	74	61	82	14	73	40	99	6
2,6-Dinitrotoluene	84	69	92	14	78	45	101	6
3-Nitroaniline	55	32	80	14	51	26	77	6
Acenaphthene	76	63	85	14	75	42	100	6
2,4-Dinitrophenol	73	51	123	14	66	35	92	6
4-Nitrophenol	71	39	101	14	93	56	117	6
Dibenzofuran	79	66	87	14	78	44	102	6
2,4-Dinitrotoluene	80	65	89	14	78	47	97	6
Diethyl phthalate	78	63	88	14	85	50	111	6
4-Chlorophenyl phenyl ether	80	68	93	14	79	45	100	6
Fluorene	77	65	89	14	77	43	99	6
4-Nitroaniline	61	42	79	14	63	39	87	6
4,6-Dinitro-2-methylphenol	77	59	109	14	75	41	103	6
N-nitrosodiphenylamine	80	67	90	14	79	41	104	6
4-Bromophenyl phenyl ether	84	69	102	14	80	42	104	6
Hexachlorobenzene	85	71	104	14	79	40	103	6
Pentachlorophenol	41	6	112	14	73	33	99	6
Phenanthrene	81	73	88	14	78	41	105	6
Anthracene	78	65	87	14	76	38	103	6
Carbazole	83	73	100	14	76	38	100	6
Di-n-butyl phthalate	79	65	92	14	84	40	120	6
Fluoranthene	84	73	103	14	80	40	105	6
Pyrene	82	73	94	14	72	50	82	6
Butyl benzyl phthalate	81	67	90	14	83	53	96	6
Duryi benzyi pitulalate	01	07	20	14	05	55	20	U

Table D-6. Demolition Area 1 Phase I RI Laboratory Matrix Spike Evaluation – Percent Recovery (continued)

Anglusia	Average % Rec	Soil Min.	Max.	N ^a	Average % Rec.	Water Min. % Rec.	Max. % Rec.	\mathbf{N}^{a}
Analysis 3,3'-Dichlorobenzidine		% Rec.	% Rec. 47		% Rec. 42			
	20	0		14		20	59	6
Benzo(a)anthracene	77	66	95	14	77	49	90	6
Chrysene	85	74	103	14	81	50	96	6
Bis(2-ethylhexyl)phthalate	81	69	90	14	82	48	106	6
Di-n-octyl phthalate	85	66	103	14	84	46	122	6
Benzo(b)fluoranthene	81	62	104	14	77	43	100	6
Benzo(k)fluoranthene	82	71	93	14	78	43	106	6
Benzo(a)pyrene	82	68	98	14	76	43	100	6
Indeno(1,2,3-cd)pyrene	80	58	106	14	76	50	99	6
Dibenzo(a,h)anthracene	79	58	93	14	81	53	104	6
Benzo(ghi)perylene	74	54	83	14	78	51	102	6
	-	Explosive	Compound	ls	r			
1,3-Dinitrobenzene	98	97	99	2	na	na	na	na
2,4-Dinitrotoluene	99.5	98	101	2	na	na	na	na
2,6-Dinitrotoluene	102.5	101	104	2	na	na	na	na
Nitrobenzene	99.5	98	101	2	na	na	na	na
1,3,5-Trinitrobenzene	97.5	96	99	2	na	na	na	na
2,4,6-Trinitrotoluene	98.5	97	100	2	na	na	na	na
HMX	97.5	96	99	2	na	na	na	na
RDX	98.5	97	100	2	na	na	na	na
Tetryl	95.5	94	97	2	na	na	na	na
2-Nitotoluene	100.5	99	102	2	na	na	na	na
3-Nitrotoluene	100.5	99	102	2	na	na	na	na
4-Nitrotoluene	100.5	99	102	2	na	na	na	na
4-Amino-2,6-dintrotoluene	95.5	94	97	2	na	na	na	na
2-Amino-4,6-dinitrotoluene	99.5	98	101	2	na	na	na	na
Nitroguanidine	95	85	103	12	99.5	98	101	2
Nitrocellulose	40	27	59	14	112	111	113	2
		PCB Co	ompounds					
Aroclor-1016	75	24	98	10	na	na	na	na
Aroclor-1260	72	23	91	10	na	na	na	na
			etals					
Antimony	49	36	67	20	102	93	116	6
Aluminum	na	na	na	na	105	103	107	4
Arsenic	89	80	99	20	101	94	113	6
Barium	93	73	102	20	101	92	110	6
Beryllium	92	85	102	20	101	98	109	6
Cadmium	82	68	96	16	99	91	110	6
Calcium	102	89	163	12	106	91	125	6
Chromium	102	75	142	16	100	95	111	6
Cobalt	91	76	102	20	97	89	107	6
	91	70	130	14	101	91	107	6
Copper Cyanide	83	68	108	34	90	87	94	4
Cyaillue	00	00	108	34	90	0/	74	4

Table D-6. Demolition Area 1 Phase I RI Laboratory Matrix Spike Evaluation – Percent Recovery (continued)

Analysis	Average % Rec	Soil Min. % Rec.	Max. % Rec.	N ^a	Average % Rec.	Water Min. % Rec.	Max. % Rec.	\mathbf{N}^{a}
Iron	na	na	na	na	113	106	116	4
Lead	105	77	323	16	102	95	110	6
Magnesium	92	51	123	18	103	96	112	6
Manganese	na	na	na	na	104	94	115	6
Mercury	112	84	133	20	101	99	105	6
Nickel	95	80	117	18	103	96	109	6
Potassium	98	82	119	20	107	103	111	6
Selenium	87	78	96	20	98	89	112	6
Silver	98	89	107	20	112	103	123	6
Sodium	92	85	98	20	103	96	111	6
Thallium	82	69	100	20	82	74	94	6
Vanadium	99	76	116	20	99	90	111	6
Zinc	111	94	139	4	108	102	112	6

Table D-6. Demolition Area 1 Phase I RI Laboratory Matrix Spike Evaluation – Percent Recovery (continued)

^{*a*}N = Number of samples. HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

na = Not analyzed.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

	Min.	Soil Max.		Min.	Water Max.	
Analysis	%Rec	%Rec	RPD	%Rec	%Rec	RPD
		tile Organic Co	mpounds			
1,2-Dichloroethane-d4	70	121		76	114	
Bromofluorobenzene	59	113		86	115	
Toluene-d8	84	138		88	110	
1,1-Dichloroethane	59	172	22	61	145	14
Trichloroethene	62	173	24	71	120	14
Benzene	66	142	21	76	127	11
Toluene	59	139	21	76	125	13
Chlorobenzene	60	133	21	75	130	13
	Semivo	latile Organic (Compounds			
1,2-Dichlorobenzene-d4	20	130		16	110	
2,4,6-Tribromophenol	19	122		10	123	
2-Chlorophenol-d4	20	130		33	110	
2-Fluorobiphenyl	30	115		43	116	
2-Fluorophenol	25	121		21	110	
Nitrobenzene-d5	23	120		35	114	
Phenol-d5	24	113		10	110	
Terphenyl-d14	18	137		33	141	
Phenol	26	90	35	12	110	42
2-Chlorophenol	25	102	50	27	123	40
1,4-Dichlorobenzene	28	104	27	36	97	28
N-nitroso-di-n-propylamine	41	126	38	41	116	38
1,2,4-Trichlorobenzene	38	107	23	39	98	28
4-Chloro-3-methylphenol	26	103	33	23	97	42
Acenaphthene	31	137	19	46	118	31
4-Nitrophenol	11	114	50	10	80	50
2,4-Dinitrotoluene	28	89	47	24	96	38
Pentachlorophenol	17	109	47	9	103	50
Pyrene	35	142	36	26	127	31
		Pesticides/PC				01
Decachlorobiphenyl(1)	60	150		60	150	
Decachlorobiphenyl(2)	60	150		60	150	
Tetrachloro-m-xylene(1)	60	150		60	150	
Tetrachloro-m-xylene(2)	60	150		60	150	
Gamma-bhc (lindane)	46	127	15	56	123	50
Heptachlor	35	130	20	40	131	31
Aldrin	34	130	20	40	120	43
Dieldrin	31	132	18	52	120	38
Endrin	42	134	21	56	120	45
4,4´-DDT	23	139	21	38	121	43 50
DDT = Dichlorodiphenyl trichloroethane	23	134	21	30	127	50

Table D-7. Demolition Area 1 Phase I RI EPA Organic Surrogate and LCS Recovery Criteria – Percent Recovery (%Rec) and Relative Percent Difference (RPD)

DDT = Dichlorodiphenyl trichloroethane.

EPA = Environmental Protection Agency. LCS = Laboratory control sample.

PCBs = Polychlorinated biphenyls.

Analysis	Average RPD	Soil Min. RPD	Max. RPD	N ^a RPD	Average RPD	Water Min. RPD	Max. RPD	N ^a	
Volatile Organic Compounds									
Chloromethane	6	2	8	8	8	na	na	1	
Bromomethane	14	1	20	8	16	na	na	1	
Vinyl chloride	5	2	8	8	1	na	na	1	
Chloroethane	5	0	8	8	1	na	na	1	
Methylene chloride	4	2	7	8	7	na	na	1	
Acetone	14	0	38	8	33	na	na	1	
Carbon disulfide	5	0	9	8	0	na	na	1	
1,1-Dichloroethene	4	0	9	8	1	na	na	1	
1,1-Dichloroethane	5	2	8	8	9	na	na	1	
1,2-Dichloroethene (total)	4	1	7	8	5	na	na	1	
Chloroform	4	1	7	8	9	na	na	1	
1,2-Dichloroethane	5	1	8	8	17	na	na	1	
2-Butanone	16	4	44	8	36	na	na	1	
1,1,1-Trichloroethane	4	0	7	8	3	na	na	1	
Carbon tetrachloride Bromodichloromethane	4 4	0	8	8 8	4	na	na	1	
	4	0	8 8	8	14	na	na	1	
1,2-Cichloropropane Cis-1,3-dichloropropene	4	1	0 11	8	11	na	na	1	
Trichloroethene	4	1	6	8	13	na na	na na	1	
Dibromochloromethane	5	1	11	8	10	na	na	1	
1,1,2-Trichloroethane	5	0	9	8	15	na	na	1	
Benzene	4	1	6	8	5	na	na	1	
Trans-1,3-dichloropropene	6	1	13	8	14	na	na	1	
Bromoform	6	1	13	8	19	na	na	1	
4-Methyl-2-pentanone	15	2	41	8	36	na	na	1	
2-Hexanone	16	2	48	8	39	na	na	1	
Tetrachloroethene	4	0	8	8	6	na	na	1	
1,1,2,2-Tetrachloroethane	10	1	22	8	27	na	na	1	
Toluene	4	1	7	8	1	na	na	1	
Chlorobenzene	4	0	6	8	3	na	na	1	
Ethylbenzene	5	0	8	8	0	na	na	1	
Styrene	4	0	8	8	9	na	na	1	
Xylenes (total)	4	0	7	8	1	na	na	1	
	Semivola	tile Org	anic Co	mpound	ls				
Phenol	6	1	19	7	25	7	41	3	
Bis(2-chloroethyl)ether	5	1	14	7	19	9	33	3	
2-Chlorophenol	6	0	19	7	21	8	37	3	
1,3-Dichlorobenzene	6	0	10	7	22	10	42	3	
1,4-Dichlorobenzene	6	1	10	7	21	8	40	3	
1,2-Dichlorobenzene	6	0	11	7	23	9	43	3	
2-Methylphenol	6	0	19	7	21	10	37	3	
2,2'-Oxybis(1-chloropropane)	6	1	15	7	19	8	34	3	
4-Methylphenol	6	0	20	7	21	8	38	3	

Table D-8. Demolition Area 1 Phase I RI Laboratory MS Duplicate and Duplicate Evaluation – Relative Percent Difference (RPD)

	Average	Soil Min.	Max.	\mathbf{N}^{a}	Average	Water Min.	Max.	
Analysis	RPD	RPD	RPD	RPD	RPD	RPD	RPD	\mathbf{N}^{a}
N-nitrosodi-n-propylamine	5	0	20	7	16	5	34	3
Hexachloroethane	7	0	12	7	19	9	39	3
Nitrobenzene	6	1	12	7	16	5	34	3
Isophorone	5	0	15	7	16	3	40	3
2-Nitrophenol	6	1	16	7	14	2	34	3
2,4-Dimethylphenol	7	1	16	7	15	1	34	3
Bis(2-chloroethoxy)methane	5	0	17	7	15	4	35	3
2,4-Dichlorophenol	4	0	11	7	16	6	28	3
1,2,4-Trichlorobenzene	6	0	12	7	20	7	39	3
Naphthalene	5	0	13	7	20	7	39	3
4-Chloroaniline	47	4	200	7	12	0	33	3
Hexachlorobutadiene	6	0	14	7	20	8	39	3
4-Chloro-3-methylphenol	3	0	9	7	21	3	48	3
2-Methylnaphthalene	5	0	16	7	20	5	42	3
Hexachlorocyclopentadiene	24	0	42	7	75	0	200	3
2,4,6-Trichlorophenol	5	1	16	7	18	1	43	3
2,4,5-Trichlorophenol	5	1	12	7	20	1	46	3
2-Chloronaphthalene	5	1	15	11	17	2	38	3
2-Nitroaniline	5	0	18	11	17	2	40	3
Dimethyl phthalate	4	0	12	11	18	0	42	3
Acenaphthylene	5	0	14	11	18	2	40	3
2,6-Dinitrotoluene	5	1	12	11	17	0	42	3
3-Nitroaniline	13	1	39	11	17	1	36	3
Acenaphthene	5	0	13	11	18	2	41	3
2,4-Dinitrophenol	17	13	30	11	25	5	46	3
4-Nitrophenol	9	3	17	11	26	8	40	3
Dibenzofuran	4	1	13	11	18	1	41	3
2,4-Dinitrotoluene	4	1	12	11	19	3	43	3
Diethyl phthalate	4	0	10	11	18	1	41	3
4-Chlorophenyl phenyl ether	5	0	13	11	18	1	43	3
Fluorene	5	2	12	11	19	1	45	3
4-Nitroaniline	13	0	33	11	19	1	38	3
4,6-Dinitro-2-methylphenol	12	0	24	11	21	2	46	3
N-nitrosodiphenylamine	5	0	14	11	19	3	45	3
4-Bromophenyl phenyl ether	4	0	14	11	19	1	44	3
Hexachlorobenzene	4	0	14	11	19	1	45	3
Pentachlorophenol	30	2	105	11	23	8	47	3
Phenanthrene	4	1	13	11	20	1	46	3
Anthracene	4	0	12	11	20	1	47	3
Carbazole	6	2	14	11	21	2	47	3
Di-n-butyl phthalate	5	0	16	11	19	0	45	3
Fluoranthene	7	1	17	11	20	1	45	3
Pyrene	6	1	12	11	18	3	44	3

Table D-8. Demolition Area 1 Phase I RI Laboratory MS Duplicate and Duplicate Evaluation – Relative Percent Difference (RPD) (continued)

Butyl benzyl phthalate 3,3'-Dichlorobenzidine	PD		DDD	N ^a	Average	Min.	Max.	та
3,3'-Dichlorobenzidine		RPD	RPD	RPD	RPD	RPD	RPD	N ^a
	8	1	22	11	18	3	45	3
	52	0	200	11	13	3	30	3
	6	1	16	11	17	0	43	3
	6 5	0	16	11	21	2	49	3
	5	0	14	11	18	2	45	3
	4	0	8	11	19	4	46	3
	9	2	21	11	18	1	43	3
	7	0	17	11	19	0	44	3
	6	0	19	11	17	0	41	3
	18	4	59	11	16	3	32	3
	6	1	17	11	17	3	43	3
Benzo(ghi)perylene	8	2	20	11	15	3	32	3
	-	olosive (Compou	nds				
	3	na	na	1	na	na	na	na
,	3	na	na	1	na	na	na	na
,	3	na	na	1	na	na	na	na
	3	na	na	1	na	na	na	na
1,3,5-Trinitrobenzene	3	na	na	1	na	na	na	na
2,4,6-Trinitrotoluene	2	na	na	1	na	na	na	na
HMX	3	na	na	1	na	na	na	na
RDX	3	na	na	1	na	na	na	na
Tetryl	4	na	na	1	na	na	na	na
2-Nitotoluene	4	na	na	1	na	na	na	na
	3	na	na	1	na	na	na	na
4-Nitrotoluene	3	na	na	1	na	na	na	na
4-Amino-2,6-dinitrotoluene	3	na	na	1	na	na	na	na
2-Amino-4,6-dinitrotoluene	3	na	na	1	na	na	na	na
Nitroguanidine	1	0	3	6	2	na	na	1
Nitrocellulose	12	2	20	7	2	na	na	1
	I	CB Cor	npound.	5				
Aroclor-1016	20	1	79	5	na	na	na	na
Aroclor-1260	22	0	91	5	na	na	na	na
		Me	tals					
Antimony	9	1	30	10	5	4	8	3
	na	na	na	na	3.5	3	4	2
Arsenic	3	0	8	10	5	3	7	3
	4	0	14	10	5	3	8	3
	3	1	6	10	5	2	8	3
	2	0	6	8	5	3	7	3
	6	1	29	7	4	3	4	3
	6	1	16	8	6	2	9	3
	5	1	16	10	6	3	9	3
	6	1	13	7	4	0	8	3

Table D-8. Demolition Area 1 Phase I RI Laboratory MS Duplicate and Duplicate Evaluation – Relative Percent Difference (RPD) (continued)

Analysis	Average RPD	Soil Min. RPD	Max. RPD	N ^a RPD	Average RPD	Water Min. RPD	Max. RPD	\mathbf{N}^{a}
Cyanide	11	1	25	17	4.5	3	6	2
Iron	na	na	na	na	5.5	3	8	2
Lead	18	2	101	8	5	3	8	3
Magnesium	5	0	21	9	5	5	5	3
Manganese	na	na	na	na	5	2	8	3
Mercury	4	0	16	10	3	1	6	3
Nickel	4	0	11	10	6	3	9	3
Potassium	9	1	18	10	5	4	7	3
Selenium	3	1	7	10	6	4	7	3
Silver	3	0	13	10	5	4	7	3
Sodium	3	0	7	10	4	1	6	2
Thallium	4	0	15	10	3	1	6	3
Vanadium	6	1	17	10	6	3	8	3
Zinc	14	9	19	2	4	0	7	3

Table D-8. Demolition Area 1 Phase I RI Laboratory MS Duplicate and Duplicate Evaluation – Relative Percent Difference (RPD) (continued)

^{*a*}N = Number of samples. HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

MS = Matrix spike.

na = Not analyzed.

PCB = Polychlorinated biphenyl.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

Analysis	DA10009/DA10127 Surface Soil RPD	DA10036/DA10128 Surface Soil RPD	DA10057/DA10130 Surface Soil RPD	DA10103/DA10129 Surface Soil RPD
		Metals		
Aluminum	44	3	20	11
Antimony	*	*	*	*
Arsenic	3	2	20	3
Barium	*	*	56	*
Beryllium	*	*	*	*
Cadmium	*	*	61	*
Calcium	41	*	*	*
Chromium	*	5	18	10
Cobalt	*	*	*	*
Copper	*	34	41	*
Cyanide	*	*	*	*
Iron	4	7	24	7
Lead	3	16	27	11
Magnesium	*	*	*	*
Manganese	36	36	24	31
Mercury	*	*	*	*
Nickel	*	*	25	*
Potassium	*	*	*	*
Selenium	*	*	*	*
Silver	*	*	*	*
Sodium	*	*	*	*
Thallium	*	*	*	*
Vanadium	*	*	*	*
Zinc	15	14	9	12
	Vol	atile Organic Compoi	inds	
All compounds	na	na	na	na
	Semiv	olatile Organic Comp	ounds	•
All compounds	na	na	na	na
	•	Explosive Compounds	5	
All compounds	*	*	*	*
	•	PCB Compounds	•	
All compounds	na	na	na	na

Table D-9. Demolition Area 1 Phase I RI Field Duplicate Evaluation – Relative Percent Difference (RPD)

*At least one value is <5 times the reporting level and duplicate comparison is within 3 times the reporting level na = Not analyzed.

PCB = Polychlorinated biphenyl.

	W	ater	See	diment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
Volatile Organic Compounds SW 846-8260B	(µg/L)	(µg/L)	(µg/kg)	(µg/kg)
Chloromethane	10	1.1	10	0.56
Bromomethane	10	0.92	10	0.9
Vinyl chloride	10	0.58	10	0.15
Chloroethane	10	0.67	10	0.45
Methylene chloride	5	0.4	5	0.28
Acetone	10	5.9	10	2.3
Carbon disulfide	5	0.4	5	0.35
1,1-Dichloroethene	5	0.53	5	0.2
1,1-Dichloroethane	5	0.62	5	0.2
1,2-Dichloroethene (total)	5	0.87	5	1.1
Chloroform	5	0.51	5	0.25
1,2-Dichloroethane	5	0.43	5	0.24
2-Butanone	10	9.7	10	1
1,1,1-Trichloroethane	5	0.63	5	0.12
Carbon tetrachloride	5	0.41	5	0.11
Bromodichloromethane	5	0.39	5	0.21
1,2-Dichloropropane	5	0.32	5	0.29
Cis-1,3-dichloropropene	5	0.35	5	0.25
Trichloroethene	5	0.54	5	0.23
Dibromochloromethane	5	0.36	5	0.21
1,1,2-Trichloroethane	5	0.41	5	0.2
Benzene	5	0.45	5	0.25
Trans-1,3-dichloropropene	5	0.64	5	0.11
Tribromomethane	5	0.35	5	0.27
4-Methyl-2-pentanone	10	5.5	10	0.46

Table D-10. Project Quantitation Limit Goals and Achieved Method Detection Levels for the Demolition Area 1 Phase I RI

	W	ater	Soil/S	Sediment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
2-Hexanone	10	8.6	10	0.7
Tetrachloroethene	5	1.3	5	0.2
Toluene	5	0.45	5	0.25
1,1,2,2-Tetrachloroethane	5	0.57	5	0.35
Chlorobenzene	5	0.43	5	0.22
Ethylbenzene	5	0.41	5	0.27
Styrene	5	0.43	5	0.24
Xylenes (total)	5	1.4	5	0.72
Semivolatile Organic Compounds SW 846-8270C	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Phenol	10	2.7	330	25
Bis(2-chloroethyl) ether	10	2.8	330	33
2-Chlorophenol	10	3.0	330	29
1,3-Dichlorobenzene	10	2.6	330	28
1,4-Dichlorobenzene	10	2.6	330	18
1,2-Dichlorobenzene	10	2.5	330	24
2-Methylphenol	10	2.9	330	31
2,2'-Oxybis(1-chloropropane)	10	3.2	330	18
4-Methylphenol	10	3.1	330	31
N-nitroso-di-n-dipropylamine	10	2.7	330	29
Hexachloroethane	10	2.4	330	22
Nitrobenzene	10	2.9	330	40
Isophorone	10	2.8	330	14
2-Nitrophenol	10	2.9	330	26
2,4-Dimethylphenol	10	2.8	330	73
Bis(2-chloroethoxy) methane	10	2.6	330	21
2,4-Dichlorophenol	10	2.9	330	26

	W	ater	Soil/S	Sediment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
1,2,4-Trichlorobenzene	10	2.5	330	17
Naphthalene	10	2.7	330	14
4-Chloroaniline	10	3.8	330	39
Hexachlorobutadiene	10	2.6	330	40
4-Chloro-3-methylphenol	10	2.9	330	26
2-Methylnaphthalene	10	3	330	16
Hexachlorocyclopentadiene	10	1	330	26
2,4,6-Trichlorophenol	10	2.9	330	18
2,4,5-Trichlorophenol	25	3.1	800	25
2-Chloronaphthalene	10	2.5	330	13
2-Nitroaniline	25	3.3	800	26
Dimethylphthalate	10	2.6	330	16
Acenaphthylene	10	2.8	330	22
2,6-Dinitrotoluene	10	2.7	330	32
3-Nitroaniline	25	3	800	31
Acenaphthene	10	2.7	330	18
2,4-Dinitrophenol	25	3.3	800	71
4-Nitrophenol	25	3.4	800	120
Dibenzofuran	10	2.9	330	25
2,4-Dinitrotoluene	10	3.1	330	31
Diethylphthalate	10	2.4	330	20
4-Chlorophenyl-phenyl ether	10	2.8	330	17
Fluorene	10	2.7	330	20
4-Nitroaniline	25	2.8	800	53
4,6-Dinitro-2-methylphenol	25	3.4	800	26
N-nitrosodiphenylamine	10	2.9	330	28
4-Bromophenyl-phenylether	10	2.7	300	23
Hexachlorobenzene	10	2.9	330	34

	W	ater	Soil/S	Sediment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
Pentachlorophenol	25	3.3	800	27
Phenanthrene	10	2.9	330	19
Anthracene	10	2.7	330	22
Carbazole	10	2.8	330	24
Di-n-butylphthalate	10	2.8	330	19
Fluoranthene	10	3.2	330	26
Pyrene	10	2.8	330	30
Butylbenzylphthalate	10	2.3	330	34
3,3'-Dichlorobenzidine	10	2.7	330	29
Benzo(a)anthracene	10	2.7	330	34
Chrysene	10	3.0	330	29
Bis(2-ethylhexyl)phthalate	10	3.0	330	37
Di-n-octylphthalate	10	3.1	330	47
Benzo(b)fluoranthene	10	2.7	330	36
Benzo(k)fluoranthene	10	3.0	330	40
Benzo(a)pyrene	10	2.7	330	41
Indeno(1,2,3-cd)pyrene	10	2.9	330	41
Dibenzo(a,h)anthracene	10	3.2	330	52
Benzo(g,h,i)perylene	10	3.2	330	48
PCBs SW 846-8082	(µg/L)	(µg/L)	(µg/kg)	(µg/kg)
Aroclor-1016	1.0	0.41	33	12
Aroclor-1221	2.0	0.47	67	29
Aroclor-1232	1.0	0.12	33	8
Aroclor-1242	1.0	0.47	33	18
Aroclor-1248	1.0	0.37	33	3.9
Aroclor-1254	1.0	0.21	33	8.1
Aroclor-1260	1.0	0.36	33	7.3

	W	ater	Soil/S	Sediment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
Explosive Compounds SW 846-8330	(µg/L)	(µg/L)	(mg/kg)	(mg/kg)
HMX (octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine)	20	0.06	2	0.05
RDX (cyclonite) hexahydro- 1,3,5-trinitro-1,3,5-triazine	20	0.04	2	0.02
1,3,5-Trinitrobenzene	2	0.03	1	0.02
1,3-Dinitrobenzene	3	0.03	1	0.02
Tetryl	50	0.03	5	0.03
Nitrobenzene	10	0.04	1	0.10
2,4,6-Trinitrotoluene	3	0.06	1	0.02
2,4-Dinitrotoluene	0.1	0.03	1	0.03
2,6-Dinitrotoluene	0.1	0.03	1	0.06
O-nitrotoluene	10	0.05	1	0.02
M-nitrotoluene	10	0.05	1	0.03
P-nitrotoluene	10	0.07	1	0.02
Additional Explosive Compounds:				
Nitroglycerin	2.5	1	2.5	0.2
Nitroquanidine	20	0.96	1	0.23
Nitrocellulose	500	370	2.0	0.28
Metals (Target Analyte List) SW 846-6010B/6020 or 7000	(µg/L)	(µg/L)	(mg/Kg)	(mg/Kg)
Aluminum	200	54	20	4.4
Antimony	5	3	0.5	2.1
Arsenic	5	3	0.5	0.24
Barium	200	3	20	0.22
Beryllium	4	1	0.5	0.067
Cadmium	5	1	0.5	0.49
Calcium	5,000	150	500	14
Chromium	10	3	1	0.54

	Wa	ater	Soil/S	Sediment
Parameters/Methods	Project Quantitation Goal	Achieved Method Detection Level	Project Quantitation Goal	Achieved Method Detection Level
Cobalt	50	2	15	0.59
Copper	25	3	2.5	0.31
Iron	100	50	10	6.1
Lead	3	2	0.3	0.19
Magnesium	5,000	52	500	11
Manganese	15	3	1.5	0.082
Mercury (CVAA) SW 846-7470A/7471A	0.2	0.1	0.1	0.019
Nickel	40	15	4	1.1
Potassium	5,000	120	500	8
Selenium	5	5	0.5	0.49
Silver	10	1	1	0.42
Sodium	5,000	340	500	14
Thallium	2	1.0	0.5	0.65
Vanadium	50	1	5	0.57
Zinc	20	11	2	1.2

PCBs = Polychlorinated biphenyls.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT 1

SAIC DATA VALIDATION FLAGGING CODES

THIS PAGE INTENTIONALLY LEFT BLANK

DATA VALIDATION REASON CODES

Organic, Inorganic, and Radiological Analytical Data

Holding Times

- A01 Extraction holding times were exceeded.
- A02 Extraction holding times were grossly exceeded.
- A03 Analysis holding times were exceeded.
- A04 Analysis holding times were grossly exceeded.
- A05 Samples were not preserved properly.
- A06 Professional judgment was used to qualify the data.

GC/MS Tuning

- B01 Mass calibration was in error, even after applying expanded criteria.
- B02 Mass calibration was not performed every 12 hours.
- B03 Mass calibration did not meet ion abundance criteria.
- B04 Professional judgment was used to qualify the data.

Initial/Continuing Calibration – Organics

- C01 Initial calibration RRF was < 0.05.
- C02 Initial calibration RDS was > 30 percent.
- C03 Initial calibration sequence was not followed as required.
- C04 Continuing calibration RRF was < 0.05.
- C05 Continuing calibration %D was > 25 percent.
- C06 Continuing calibration was not performed at the required frequency.
- C07 Resolution criteria were not met.
- C08 RPD criteria were not met.
- C09 RDS criteria were not met.
- C10 Retention time of compounds was outside windows.
- C11 Compounds were not adequately resolved.
- C12 Breakdown of endrin or DDT was > 30 percent.
- C13 Combined breakdown of endrin/DDT was > 30 percent.
- C14 Professional judgment was used to qualify the data.

Initial/Continuing Calibration – Inorganics

- D01 ICV or CCV were not performed for every analyte.
- D02 ICV recovery was above the upper control limit.
- D03 ICV recovery was below the lower control limit.
- D04 CCV recovery was above the upper control limit.
- D05 CCV recovery was below the lower control limit.
- D06 Standard curve was not established with the minimum number of standards.
- D07 Instrument was not calibrated daily or each time the instrument was set up.
- D08 Correlation coefficient was <0.995.
- D09 Mid-range cyanide standard was not distilled.
- D10 Professional judgment was used to qualify the data.

ICP and Furnace Requirements

- E01 Interference check sample recovery was outside the control limit.
- E02 Duplicate injections were outside the control limit.
- E03 Post-digestion spike recovery was outside the control limit.
- E04 MSA was required but not performed.
- E05 MSA correlation coefficient was <0.995.
- E06 MSA spikes were not at the correct concentration.
- E07 Serial dilution criteria were not met.
- E08 Professional judgment was used to qualify the data.

Blanks

- F01 Sample data were qualified as a result of the method blank.
- F02 Sample data were qualified as a result of the field blank.
- F03 Sample data were qualified as a result of the equipment rinsate.
- F04 Sample data were qualified as a result of the trip blank.
- F05 Gross contamination exists.
- F06 Concentration of the contaminant was detected at a level below the CRQL.
- F07 Concentration of the contaminant was detected at a level less than the action limit but greater than the CRQL.
- F08 Concentration of the contaminant was detected at a level that exceeds the action level.
- F09 No laboratory blanks were analyzed.
- F10 Blank had a negative value >2 times the IDL.
- F11 Blanks were not analyzed at required frequency.
- F12 Professional judgment was used to qualify the data.

Surrogate/Radiological Chemical Recovery

- G01 Surrogate/radiological chemical recovery was above the upper control limit.
- G02 Surrogate/radiological chemical recovery was below the lower control limit.
- G03 Surrogate recovery was <10 percent.
- G04 Surrogate recovery was zero.
- G05 Surrogate/radiological chemical recovery data were not present.
- G06 Professional judgment was used to qualify the data.
- G07 Radiological chemical recovery was <20 percent.
- G08 Radiological chemical recovery was >150 percent.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

- H01 MS/MSD recovery was above the upper control limit.
- H02 MS/MSD recovery was below the lower control limit.
- H03 MD/MSD recovery was <10 percent.
- H04 MS/MSD pairs exceed the RPD limit.
- H05 No action was taken on MS/MSD limit.
- H06 Professional judgment was used to qualify the data.
- H07 Radiological MS/MSD recovery was <20 percent.
- H08 Radiological MS/MSD recovery was >160 percent.
- H09 Radiological MS/MSD samples were not analyzed at the required frequency.

Matrix Spike

- I01 MS recovery was above the upper control limit.
- IO2 MS recovery was below the lower control limit.
- I03 MS recovery was <30 percent.
- IO4 No action was taken on MS data.
- I05 Professional judgment was used to qualify the data.

Laboratory Duplicate

- J01 Duplicate RPD/radiological duplicate error ratio (DER) was outside the control limit.
- J02 Duplicate sample results were >5 times the CRDL.
- J03 Duplicate sample results were <5 times the CRDL.
- J04 Professional judgment was used to qualify the data.
- J05 Duplicate was not analyzed at the required frequency.

Internal Area Summary

- K01 Area counts were outside the control limits.
- K02 Extremely low area counts or performance was exhibited by a major drop off.
- K03 IS retention time varied by more than 30 seconds.
- K04 Professional judgment was used to qualify the data.

Pesticide Cleanup Checks

- L01 Ten percent recovery was obtained during either check.
- L02 Recoveries during either check were >120 percent.
- L03 GPC cleanup recoveries were outside the control limits.
- L04 Florisil cartridge cleanup recoveries were outside the control limits.
- L05 Professional judgment was used to qualify the data.

Target Compound Identification

- M01 Incorrect identifications were made.
- M02 Qualitative criteria were not met.
- M03 Cross contamination occurred.
- M04 Confirmatory analysis was not performed
- M05 No results were provided.
- M06 Analysis occurred outside the 12-hour GC/MS window.
- M07 Professional judgment was used to qualify the data.
- M08 The %D between the two pesticide/PCB column checks was >25 percent.

Compound Quantitation and Reported CRQLs

- N01 Quantitation limits were affected by large off-scale peaks.
- N02 MDLs reported by the laboratory exceeded corresponding CRQLs.
- N03 Professional judgment used to qualify the data.

Tentatively Identified Compounds (TICs)

- O01 Compound was suspected laboratory contaminant and was not detected in the blank.
- O02 TIC result was not above 10 times the level found in the blank.
- O03 Professional judgment was used to qualify analytical data.

Laboratory Control Samples (LCSs)

- P01 LCS recovery was above upper control limit.
- P02 LCS recovery was below lower control limit.
- P03 LCS recovery was <50 percent.
- P04 No action was taken on the LCS data.
- P05 LCS was not analyzed at required frequency.
- P06 Radiological LCS recovery was <50 percent for aqueous samples and <40 percent for solid samples.
- P07 Radiological LCS recovery was >150 percent for aqueous samples and >160 percent for solid samples.
- P08 Professional judgment was used to qualify the data.

Field Duplicate

- Q01 Field duplicate RPDs were >30 percent for waters and/or >50 percent for soil.
- Q02 Radiological field duplicate error ratio (DER) was outside the control limit.
- Q03 Duplicate sample results were >5 times the CRDL.
- Q04 Duplicate sample results were <5 times the CRDL.

Radiological Calibration

- R01 Efficiency calibration criteria were not met.
- R02 Energy calibration criteria were not met.
- R03 Resolution calibration criteria were not met.
- R04 Background determination criteria were not met.
- R05 Quench curve criteria were not met.
- R06 Absorption curve criteria were not met.
- R07 Plateau curve criteria were not met.
- R08 Professional judgment was used to qualify the data.

Radiological Calibration Verification

- S01 Efficiency verification criteria were not met.
- S02 Energy verification criteria were not met.
- S03 Resolution verification criteria were not met.
- S04 Background verification criteria were not met.
- S05 Cross-talk verification criteria were not met.
- S06 Professional judgment was used to qualify the data.

ATTACHMENT 2

CHAIN-OF-CUSTODY RECORDS

THIS PAGE INTENTIONALLY LEFT BLANK

COC NO.: DATQES - 1

page ____ of ____

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

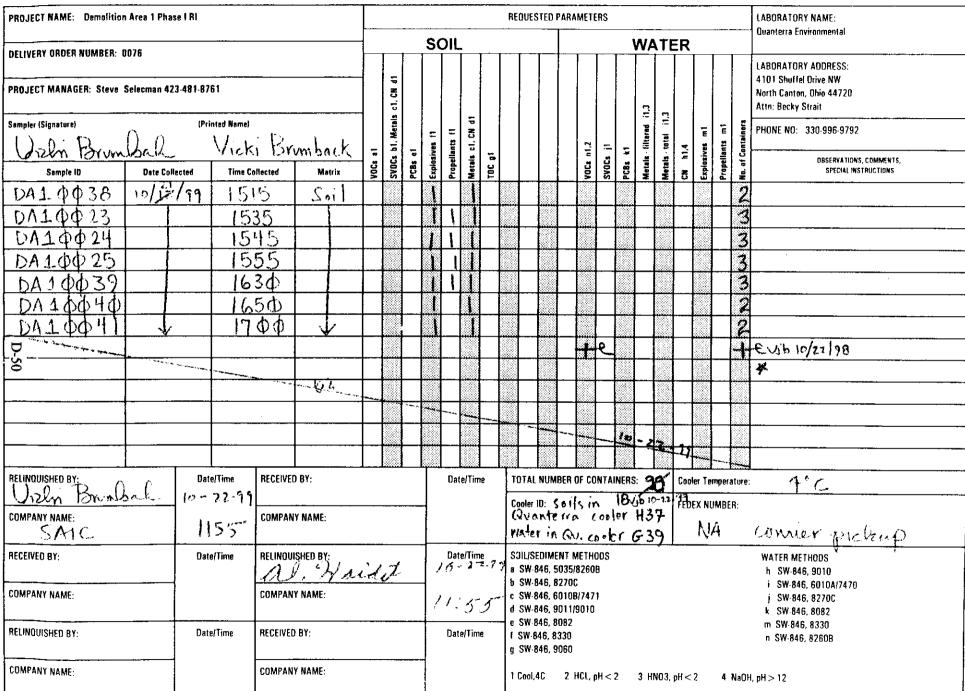
PROJECT NAME: Demolition A	rea 1 Phase I F	RI				REQUESTED PARAMETERS											LABDRATORY NAME:								
								S	OII	_									W/	۱T	ER				Quanterra Environmental
DELIVERY ORDER NUMBER: 007 Project Manager: Steve Sei		1-8761				c1. CN d1													1.3						LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sampler (Signature)		(Printed Name)				Metals		Ŧ	=													Ē	Ē	ners	PHONE NO: 330-996-9792
Dubri Brunalbe	a_()	Vick	i Bi	wmb.ck	-	b1.A	-	ives f	Propellants f1	t et. CN		_			ł	n1,2		=		Metals - tatal	61,4		lants	Contai	
Sample ID	Date Collected		ollected	Matrix	VOC3	SVOCs b1.	PCBs	Explosives	Prope	Metals	101	ן ה				VOCs	SVOCs	PCBs	Metals	Metal	CN	Explosives	Propellants	No. of Contai	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
1444240	10-19-1	19 10:	35	Soil					1	1											-			3	
DAIDODI		6	25					ļ		1														3	
DALOODO		14	비라																					2	
DA10127		16	25																					3	
DA1 0007			24						1	1														3	
DA10004		2	中心					1																2	
Pit 1 005			26						1															3	
211 0002	···		5	ļļ				1	!															3	
DA:14:443		7-1+4	15	L.																				3	
		4		1											<u> </u>										
ignore lip			WI K	10-20-9	<u> </u>		· · · • • • ,	*~	<u> </u>		<u></u>														
Carbon was no	+ cente	red									<u> </u>	-	<u>_</u>	<u>~</u>											
properly]	·····																Ļ						
RELINQUISHED BY: Vielon Brumbs		Date/Time	RECEIVE	D 8Y:					0a	ite/Ti	ime		TO	TAL NU	MBER	OF C	ONTA	INER	S.	<u>25</u>	Coo	ler Te	mper	ature:	4°C
COMPANY MALIE		relast	COMPAN					-					Coc	oler ID:	QE	S	Lab	b (còl	er	FED		UMBE		
COMPANY NAME: SAIC.		12.0	COMPAN	A MAME.						_				<u>₹</u>	5#	120)					N	1,4		Courses prefera
RECEIVED BY:		Date/Time		ISHED BY:					Da	te/Ti	me			L/SEDI						_					WATER METHODS
1	/	6-2019											SW-846, SW-846,			18								h SW-846, 9010 i SW-846, 6010A/7470	
COMPANY NAME:		11:27	COMPAN	Y NAME:							d S	SW-846, SW-846,	9011	/9010									j SW-846, 8270C k SW-846, 8082		
RELINQUISHED BY:		Date/Time	RECEIVED) BY:	Date/Time f							fS	SW-846, W-846, SW-846,	8330										m SW-846, 8330 n SW-846, 8260B	
COMPANY NAME:			COMPAN	Y NAME:					_				•		2		рН <	2	3 H	INO 3,	pH <	2	4	NaOl	I. pH > 12

COC	NO.:	DA10ES -	2

page _____ of _____

\$00 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

PROJECT NAME: Demolition Area 1 Pha			-0	- A I					R	EQUE	STED PAP	RAME	TERS	3								LABORATORY NAME:		
DELIVERY ORDER NUMBER: 0076					2	Ċ,	S	oll									W	ΆΊ	E	R				Quanterra Environmental
PROJECT MANAGER: Steve Selecman 42	3-481-8761																	3	,					LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sempler (Signature) Uizhi Brunbal	(Printed Name)		umbaik		1, Motel		11 22	13 11								_	13	2 7	5.11 1810	-		E	ntainers	PHONE NO: 330-996-9792
Sample 1D Date Coli		l DY collected	Matrix	VOCs a1	SVOCs b1,	PCBs e1	Explosives	Propellants	Metals c1,	TOC g1	•			V0Cs n1.2	- JUA	PCRs k1			Metals - (018)	L. N.	Explorives	Propellants	No. of Contai	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA10125 14-24	- 79 144	рф	Water												32	2	f			1	2 2	2	2	* NOC vials are in with NACA Test Area, samples in order to
DA 1-0135		4	Soil				Ī		1														2	mining ze, this lobality,
DA 1 9017	14	35	Soil				1	Ι	1											0000			3	
DA1 0019	151	+0	Soil					1	1													0.000	3	
DA10069	12	ΦΦ	Soil					1	1											1000			3	
DA1 0020	16	$\phi\phi$	Soil				l		1														2	
M10015	<u> </u>	50	Soil					1												10,000			3	· · · · · · · · · · · · · · · · · · ·
<u>LA10021</u>	6	2.\$	Snil					1															3	
UA10011	Φ9	45	Soil					1														1000	3	
DA19071		5	Soil				1		1													80000	2	
DA1.0070		5	Seil																			0.00000	2	
DA 10014		0	Soil			1																1.000 C	56	
DA10013		· · · · · · · · ·	Sm															No.					6	
RELINQUISHED BY:	Date/Time 1:0 - 2:7 - 513	RECEIVED	BY:					Da	te/Tir	пе			NUMBER						- 1-					14°C
COMPANY NAME:		COMPANY	NAME:				1					Cooler	10: Soil er H	15 ir 37	۹. ۱۹	(14.M	त्रम् er	/[A]]h	• F		NUM			,
SAIC.	1155										6	A . N	terre.	Co i	Her	74	39			N	A			Conner pridaup
RECEIVED BY:	Date/Time	RELINQUIS	SHED BY:		,				te/Tin				EDIMENT			5			- 1					WATER METHODS
		<u>eel</u>	SHED BY:	17	1		1	(7 ~	77	• 7;			846, 503! 846, 827(0B									h SW-846,9010 i SW-846,6010A/7470
COMPANY NAME:		COMPANY	NAME:				/	1.	5	5	d	S₩-	846, 6010 846, 901	1/901										j SW-846, 8270C k SW-846, 8082
RELINDUISHED BY:	Date/Time	RECEIVED	BY:					Dat	e/Tin	ne	1	SW-8	846, 8082 846, 8330 846, 9060)										m SW-846, 8330 n SW-846, 82608
COMPANY NAME:		COMPANY	NAME:		_							Cool,			рН <	< 2	3	HNO	3, pH	i < 2		4 N	aOH,	.pH > 12


PROJECT NAME: Demolition	Area 1 Pha	ise I RI													RE	OUES	STED P	PARA	METE	ERS								LABORATORY NAME:
					<u> </u>		-			S	0	IL.							_			WA	AT	EF	2			Quanterra Environmental
DELIVERY ORDER NUMBER: CO PROJECT MANAGER: Steve St		23-481-87	61			<u> </u>		, CN d1	1		T	T																LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohie 44720
		(D-;				<u></u>	- '	els c1,					Ŧ	,								C.F.		<u>.</u>				Atin: Becky Strait
Sampler (Signature) Vizly Byun	mbal		inted Name)	: D.				b1. Metals		/es 11	; = ; =	표 :	E. CN						12	=		filtered	5 I		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. 1	PHONE NO: 330-996-9792
Sample ID	Date Coll		Time Co		Mati		VOCs a1	SVOCs b1.1	PCBs el	Explosives	Terrett.	Propellants f1	.≝ İ	TOC g1					VOCs n1,2	SVDCs j1	PCBs k		Metais - total	CN h1.4	12	Propellants	No of Con	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA10427	14-21	1-27	141	5	Sei	i]				1			Ì			K (press)								ſ		Ľ	2	
DA1-0028		!	102	<u>10</u>			<u> </u>						Ì									L					2	
DA10032		!	114	15									l					\Box									22	5
DA10031		[]		5		i												\Box									2	
DA1.0030		[]	110	ÞФ			\Box			Ī								\Box						Ì		T	2	
DA 1.0034			120	25_									Ī	ר				\Box	Ö			T				t	1	
FA10033			•	5						Ī			Ì			Γ		\square		Γ				1		1	2	
\$A10026		·!	09:	50			\Box			Ī	٦,		Ī					\square		Γ				1		1	N	
DA 10029		1	+	45							Đ		Ì					\Box				T		T			3	
DA10036			141	+0			\Box				1	\square	T					Γ				T		Î		T	N	
DA10128			144									1	Ī	\Box				Π								1	3	
DA10037		[]	150	$\psi \phi$						Ī			Ì					Γ				T		Î		1	2	
DA10132			154		Ţ					T			Π			F		\square				t		1			2	
RELINOUISHED BY:		Dat	te/Time	RECEIVED	D BY:			4111111		T		Date/	Time	e.	TT	IATO'	L NUM	IBER (OF CC	ONT/	AINER	(S: 7	<u>גוו</u>		ooler 1	Femp:	eratu	
Upln Brund	ball	10-1	22-25					<u></u>								Cooler	10: Sr	init	in G	Q v/	ante	2110		+	EDEX		· · · · ·	
COMPANY NAME:		1 11	55	COMPAN	NY NAME:										- Cr	Pe e l	(113	37,	WA!	ter	rin					VA		Konning and a
SAIC				 		<u> </u>			╀	<u>-</u>						17114	_								<u></u>	. <u> </u>	Connier prelimp	
RECEIVED BY:	Date/Time RELINOUISHED BY:						S.	el					/Time .7. 9	ie 7.2	: a	SW-8	SEDIME -846, 5	5035/8	8260									WATER METHODS ት SW-846, 9010
COMPANY NAME:			<u> </u>	<u> </u>]	1)	:	5	5	- c d	SW-8 SW-8	846, 8 846, 6 846, 9	6010B 9011/9	B/747									i SW-846, 6010A/7470 j SW-846, 8270C k SW-846, 8082				
RELINQUISHED BY:		Date	e/Time	RECEIVED					T	D	Jate/	/Time	;	1	SW-8	846, 8 846, 8 846, 9	8330										т SW 846, 8330 л SW 846, 8260B	
COMPANY NAME:]		COMPAN	Y NAME:										1	Cool,	,4C	21	HCL, †	pH <	:2	31	HNO3	3, pH	< 2	l	1 Na	OH, pH > 12

CHAIN OF CUSTODY RECORD

COC NO.: DATOES ~ 2

page 3 of 3

CHAIN OF CUSTODY RECORD

COC NO.: DA1QES 3 page 1 of 3

PRDJECT NAME: Demolition	Area 1 Pha	ise i Ri											RE	QUEST	ED PA	RAME	TERS								LABORATORY NAME:
						-		ę	so	IL									W/	AT	ER				Quanterra Environmental
DELIVERY ORDER NUMBER: 0	· .	23-481-871	61			-	ħ																		LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Dhio 44720
Sampler (Signature)		(Prin	nted Name)			+	2				Ê								E.H. P				_	2	Attn: Becky Strait
Vichi Brut	2.0		-	Bru	mback	-			ves fl	ants 11	c1, CN	_				5	: I =	= =	Matels filtered			ves m1	Propellants m1	No. of Container	PHONE NO: 330-996-9792
Sample ID	Date Col		Time Co		Matrix	VOC.	SVDCs HAS	PCBs e1	Explosives	Propellants	Metals c1,	TOC 91				VDC+ of 3	-JUAS	PCBs	Matals	Metels - total	E S	Explasives	Propel	No. of (OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA14042	14/22	191	49	34	Soil			00000			1													3	
DA10043			φ <u></u>]	55				00000		No.	I													2	· · · · · · · · · · · · · · · · · · ·
DA10131			ф 1 .	<u>55</u>				00000		1000	1	-	<u>.</u>											2	
DAJOOHH			10	15				000000																2	· · · · · · · · · · · · · · · · · · ·
DA10160			$ \psi $	<u>чф</u>					l		1													2	
DA10045			112	2Φ						1														3	
DA10046			114	φ																				2	
VA1016			12.(<u>þф</u>							1													2	
			12	15							1													2	
DA10048			143	55		i				1	I											20		5	6 vjh 10-25-99
DA10049				ф			1				1														5 vjb 10-25-99
DA10050			15	30																				2	
DA1.0162	/	<u>, </u>	6	<u>¢ </u>																				2	
RELINQUISHED BY:	λ		:/Time	RECEIVED	D 194:					Date/	Time	•	T)TAL N	UMBEI	R OF C	ONT	AINER	s:	35	Coo	ler Te	mpera	iture?	3 ALC
Usen Brund	ball	10-2	s 1i					\neg					Co	oler 1D	: 37	530	>) .	3 5 3	38,			EX NI			
COMPANY NAME:		11 ;	v	COMPAN	Y NAME:									56	. 7,	J:	15_)				N	Λ _τ	Ĺ	miller prickup
	ut_		/Time 2	RELINQUI	ISHED BY:				I	Date/	Time		а)IL/SEO SW-84 SW-84	6, 503	5/826		;							WATER METHODS h SW-846, 9010
COMPANY NAME:		13.	3.2	COMPAN	Y NAME:								c	SW-84 SW-84 SW-84	6, 601	OB/74									i SW-846, 6010A/7470 j SW-846, 8270C k SW-846, 8082
RELINQUISHED BY:		Date	/Time	RECEIVED	BY:				[Date/1	Time		1	SW-84 SW-84(SW-84	5, 8330	0									m SW-846,8330 n SW-846,82608
COMPANY NAME:				COMPAN	Y NAME:								11	Cool,4C	2	t HCL,	pH <	< 2	3 H	(NO3,	рH <	2	4	NaOH,	pH > 12

CHAIN OF CUSTODY RECORD

PROJECT NAME: Demolition	ı Area 1 Pha	ase i Ri											R	REQUES	TED PA	RAM	ETER	(S								LABORATORY NAME:
						-			S	OIL	L								v	VA	TE	ER				Ouanterra Environmental
Ó DELIVERY ORDER NUMBER: 0	1076				!					Ī	T	T	Τ					T	Ť	Ţ	<u> </u>			Γ		LABORATORY ADDRESS:
PROJECT MANAGER: Steve	Selecman 4	23-481-87(61			1	CN 91																			4101 Shuffel Drive NW North Canton, Ohio 44720
							5													i.,3	~					Attn: Becky Strail
Sampler (Signature)	O c	(Prir	inted Name)		ľ		Metals		=	=	CN di									-	ial i1.3		Ť	Ē	ainers	PHONE NO: 330-996-9792
Uzen Brun	Ibald	<u> </u>	hek.	1 JY	umback.	5		1 a 1	Explosives	Propellents f1	ds c1.	-					5 n1.2		5	Metals - filtered	Metals - total	h1,4	Explosives	Propeliants	No. of Container:	OBSERVATIONS, COMMENTS,
Sample 1D	Date Col	llected	Time Co	llected	Metrix	VOCs	SVOC	PCB\$	Expl	Prop	Metals	ğ					X OC.	SVOC	PCBs	Meta	Meta	S	Explo	Prope	No. 0	SPECIAL INSTRUCTIONS
DA1 \$117	14-2	14-79	194	- ¢2	Sed.	1	1	1										1000							6	
DA 1 10121			094	17	Water												3	2	2	1	1	1	2	2	14	
DA10119			1115	55	Sed.	Ш		Ш	1	4		1						100 C							6	
DA10123			114	15	Water			Ľ									<u>s</u>	2	2	1	1	1	2	2	14	
DA 10120			140	55	Sed.	\square		Ш	ľ			1													6	
DA 1. 0124			135	55	Water			Ù									3	2	2		1		2	2		
DA10136			14	ϕ 5	Sed:													0.00							3	
ZA1 0137			13	55	Water																1	1	2	2	7	+ check - oix
NA 10118]	15	35	Sed.					4								1000							6	
DA 1 0 051			16	26	Seil	Ľ				Ĺ								200 M							2	
DA1 0052	j		16	36														1000							2	
DA10053			L IE	45							l														2	
PA10163			17	00					1																2	
RELINQUISHED BY:	$\sim h$		te/Time	RECEIVED	D BY:					Da	ate/Ti	me	-	TOTAL	NUMBE	ER OF	CON	ITAIN	ERS:	8:	5	Coo	ler Te	emper	ature	# 4°C
John Pivin	ball	-14-2	2.5-57						-				_	Cooler I	D: J	53	0,	$\overline{\mathfrak{J}}$	53	8	<u> </u>	FED	EX N	UMBE	ER:	
COMPANY NAME:			30	COMPAN	Y NAME:								·	5	67	ۍ ر	, [3	,59)	ر ``		٨	J.A	t.		Coursier picking
RECEIVED BY:		4	e/Time		IISHED BY:				Γ	Da	ate/Ti	me		SOIL/SE							•					WATER METHODS
al. Maid	<u>1</u>	10-2	5-89	<u> </u>										a SW-8 5 SW-8			608				<i>7</i> ,					h SW-846, 9010 i SW-846, 6010A/7470
COMPANY NAME:		11	136	COMPAN	Y NAME:								6	c SW-8	46, 601	10B/7					1					j SW-846, 82700
				 					╞				F	d SW-8 e SW-8			TU									k SW-846, 8082 m SW-846, 8330
RELINQUISHED BY:		Date	e/Time	RECEIVED	J BY:					Da	ate/Tir	me		f SW-84 g S₩-84												л SW-846, 8260B
COMPANY NAME:		-		COMPAN					$\frac{1}{2}$					-												
COMPANT NAME:		1		LUMPAN	1 NAME:								1	1 Cool,4	C	2 HC	L, pH	1 < 2	3	3 HN	103, 1	pH <	2	4	NaOl	H, pH > 12

COC NO.: DATOES $\frac{3}{2}$ page <u>2</u> of <u>3</u>

٠,

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

COC NO.: DATOES -

page	3	of	্ট

PROJECT NAME: Demolition Area 1 Ph									RE	OUEST	ED PA	RAM	ETER	RS				·				LABORATORY NAME:			
		1			SC	JIL	-				ſ				۷	NA	TE	R				, Quanterra Environmental			
DELIVERY ORDER NUMBER: 0076 PROJECT MANAGER: Steve Selecman	23-481-876	1				c1. CN d1														-					LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sampler (Signature)		ted Name)				SVOCs b1, Metals		_	н	IP N									ad 11.3	Ē		-	Ē	ters	,
White Brumbach	\sim	icki	Byu	mback		6 b1, N	e 1	ives fl	Propellants 11	Metels c1, CN	10					2	-	₅∣	- filter	tota	4.1	L 80A	ants	Contaír	
	ollected	Time Co	ollected	Matrix VIALET	VOCs	SV0C:	PCBs el	Explosives	Propel	Matai	TOC 0				h	VOCs a1,2	SVOCa j1	PCB:	Metals - filtered	Metals - total	CN h1.4	Explos	Propel	No. of	PHONE NO: 330.996.9792 Trip B Lepical Mustructions
WI WCINE AS	णापभ	NF	ł.	४ पहल एन																				1	
the first the grant and an and an																									
11 10/25/20	·····	×																							· · · · · · · · · · · · · · · · · · ·
																					- Alexandra				
							· • •	~	-																
											-	1									1000				
D-53														<u></u>	-	<u>,</u>					00000				
ω		<u> </u>																	<u> </u>	-					
																					10000		<u>`-</u>	-	
																							_		
			r								_	Ţ							_						
RELINQUISHED BY: Urean Brun Carl	Date/	Time .5-99	RECEIVED	I BY:					Dati	e/Tim	9		DTAL N						-		Coole	r Ten	pera	ture:	20 ° C
COMPANY NAME:	$\frac{11}{11:3}$		COMPAN	Y NAME:				{				6	ooler ID:	55	30	ر (5'	53	۶,		FEDE			ł:	
SAIC	HAME.									<u>J</u> 5							Í	N	ļΑ			Consider problemp			
RECEIVED BY:	SHED BY:					Date	e/Tim	e	a	DIL/SED SW-84	6, 503	35/82		DS						-		WATER METHODS V h SW-846, 9010			
COMPANY NAME:	Y NAME:								c d	SW-840 SW-840 SW-841	6, 601 6, 901	108/7 11/90										i SW-846, 6010A/7470 j SW-846, 8270C k SW-846, 8082			
RELINQUISHED BY:	BY:					Date	e/Time	3	10	SW-841 SW-846 SW-841	6, 833	0										m SW 846, 8330 n SW 846, 82608			
COMPANY NAME:	MPANY NAME: COMPANY NAME:											11	Cool,4C	2	2 HCI	L, pH	< 2	3	3 HNI)3, p	H < 2		4 N	laOH,	pH > 12

COC NO.: D	A1QES -	Lf	-
р	age 🔟	of	<u> </u>

5

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

PROJECT NAME: Demotition	Area 1 Pha										F	REQUE	STED	PARAI	METE	ERS								LABDRATORY NAME: Quanterra Environmental			
DELIVERY ORDER NUMBER: (1076							. —		S	OII	_								1	WA	TE	ER				Tranteria Chanonineria
PROJECT MANAGER: Steve		23-481-87	61					SVOCs b1, Metals c1, CN b1						`							i1,3	_					LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sampler (Signature)	^	(Pri	nted Name)					Metals		٤	=	l E									72	1 :1,3		Ē	Ē	ners	PHONE NO: 330-996-9792
Uslin Brund	oal.	- \	licki	Bru	mba	dr.	-	1 p1, 1	e1	20A	Propellants	-		_				n1,2	Ξ	k1	i - filter	Matais - total	h1,4		lents	Contai	
Semple ID	Date Coli			ollected		atrix	VOCs	SVDC	PCBs el	Explosives	Prope	Metals	TOC					VOCs	SVOCs 1	PCBs	Metals	Matai	CN	Explosives	Propellants	No. of Can	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA 100 54	10-25	- 97	49	55	Se	pi 📘				1	1	1														3	
DA140 55			iα	<u>ad</u>							1															3	
DA10056			10	15						1		1														3	
DA10057	$1 \phi \phi 57$ $1 \phi \phi$									1																6	· · · · · · · · · · · · · · · · · · ·
DA10130	10130 100								_	1															_	3	
DA 10058									1			1														6	
DA10059				5																						6	
<u>7710060</u>	ļ		14	<u> </u>		ļ																				3	
4)A 1.0061			14			ļ			_	1		4														2	
DA 1 4062				35		[2	
DA10063				<u>þф</u>	_	ļ				1																3	
DA10064			15	<u>2</u> ф_	<u> </u>	ļ				I.															ļ	2	
DA1 0065	$ \downarrow $, T	154	/-₩ ∕─		V																				2_	
RELINQUISHED BY:	(L)		elTime 1.7、97			ille	ļ,	Ż	~r)		/Da	te/Ti	me		TOTA	LNUM	BER O	F CO	NTA	NERS	<u>.</u>	Ł	Cool	er Te	mper	ature:	4°C
COMPANY NAME:	Salv K	10~1	67.IÌ	CÓMPAN	<u>%</u>	$\frac{(r_{1})}{r_{2}}$	<u>, (</u> , .	U	M		F. 4.	vit)		Cooler							'	FEDE		JMBE		- SAIC. delivary
SAIC		15	20	K ($\frac{1}{2}$;1	T		[3	γ) / 's}e		•	J3	78	,							Ŋ	4	Converpiction
RECEIVED BY:		Date	e/Time	RELINOU		Y:		i		Γ	Dal	te/Ti		1		EDIME											WATER METHODS
																846, 51 846, 81		2608	B								h SW-846,9010 i SW-846,6010A/7470
COMPANY NAME: COMPANY NAME:																846, 61 846, 91			1								j SW 846, 8270C
RELINQUISHED BY: Date/Time RECEIVED BY:										┣—					sw.	846, 8	082	UIU									k SW-846, 8082 m SW-846, 8330
I TELINGOISHED BY:						Uat	le/Ti	me			846, 83 846, 91											n SW-846, 8260B					
COMPANY NAME:	MPANY NAME: COMPANY NAME:														l Coal		2 H	Cl ==	H ~ '	,	2 HM	10.3	- H	,	A	AL-OU	-U \ 17
	APANY NAME: COMPANY NAME:														5000		2 10	ос, р		-	5 10	103,	pri < .	L	4	NaUM,	pH > 12

CHAIN OF CUSTODY RECORD

COC NO.: DATOES 4 page 2 of 3

PROJECT NAME: Demolition	ROJECT NAME: Demolition Area 1 Phase I RI													F	REQUE	STED	PARA	METE	RS								LABORATORY NAME:
	ELIVERY ORDER NUMBER: 0076											L								١	WA	١T	ER				Quanterra Environmental
	PROJECT MANAGER: Steve Selecman 423-481-8761 Sampler (Signature) (Printed Name)																				E.1i						LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
	a /	(Prin	nted Name)	• • •				Metals		ħ	=											E.I. In		Ē			PHONE NO: 330-996-9792
Usen Brun			licki		mbe		VOCs a1	SVOCs b1, Metals	PC8s el	Explosives	Propellants	Metals c1	TDC at					VOCs n1,2	SV0Cs 11	PCBs k1	Metals - filtered	Metals - total	h1.4	Explosives	Propellants	No. of Container	OBSERVATIONS, COMMENTS, Special Instructions
Sample ID	Date Coll		Time Co		<u> </u>	atrix • f	2	SV	PC	ŭ	<u> </u>	ž		- 	8	20230		2	2	L L L	ž	ž	3	Ĕ	Ē	1	
0A1 0066	10-2	5-91	62		Sc					1	μ												<u> </u>			3	
DA10067				<u>36</u> 45		┣──							I								_					2	
DA10068		/ 0.0		-			-	- _		3 1				—									2	· · · · · · · · · · · · · · · · · · ·			
STAR & L TH	10-2	.6-]]		-				11		# #						<u> </u>						-	34				
DA10014			-19	<u>25</u>			-			4			3 2		23 23				<u> </u>				-		-	2	
0^{1}			10	<u>23</u> 15			:		1		1								_				-			1	
VA10077				5									* *		35 								-			65	
NA1.00 79			<u> L</u> L]						-		T															3	
DA10080			141							Ì																5	
DA10082			151	15						ł	1															3	
DA1 0083			15	55																						2	
DA1 0084		,	6	<u>\$5</u>		V.				Ĭ																2	
	01		e/Time	RECEIVE	D BY:		٥ĺ	·	~		0.	rfe/Ti	ime		TOTA	L NUM	BER (IF CO	NTA	INERS	:3	7	Coo	ler Te	emper	ature	4°C
ham Eru	nbah	10.2	7.19	<u> </u>	<u>1(Al</u>	$\frac{1}{p}$	$\overline{\mathcal{U}_{L1}}$	4	11	13	21	710	57	,	Coole	r 10:							FED	EX N	UMBE	ER:	
COMPANY NAME: SAIC		151	1-4	COMPAN	іч name: [_ <i>]сл</i> _	- 60 Z -	2	12		1	<u>15</u>)			J	3	72						N	IĄ	SAIC
RECEIVED BY: Date/Time RELINQUIS						<i>l</i> :					Da	te/Ti	me		a SW	SEDIME - 846, 5	6035/8	3260									WATER METHODS h SW-846, 9010
COMPANY NAME:									1	c SW	-846, 8 -846, 6 -846, 9	010B	[747]	1								i SW-846, 6010A/7470 j SW-846, 8270C					
	RELINOUISHED BY: Date/Time RECEIVED BY:									┝		te/Ti		1	e SW	846, 8	082										k S₩-846, 8082 m S₩-846, 8330
TECHNOLONED BT:						108	UGI I I	1195			846, 8 846, 9											n SW-846, 8260B					
COMPANY NAME:	OMPANY NAME:									1					1 Ceo	I,4C	2 H	ICL, p	0 H <	2	3 HI	NO3,	рH <	2	4	NaOi	4, pH > 12

800 Osk Ridge	Turnpike,	Oak Ridge,	TN.	37831	(423) 481-4600
---------------	-----------	------------	-----	-------	----------------

CHAIN OF CUSTODY RECORD

COC NO.: DATOES - 4 page <u>3</u> of <u>3</u>

PRO LECT NAME - Demolition A	Ires 1 Pha		· -	-																						
rnogeorianie: Demonition A	ROJECT NAME: Demolition Area 1 Phase I RI 												ŀ	REQU	ESTED	PARA	MET	ERS				_				
DELIVERY ORDER NUMBER: 00													- -						_	W	AT	EF	2			Quanterra Environmental
PROJECT MANAGER: Steve Se	PROJECT MANAGER: Steve Selecman 423-481-8761 Sampler (Signature) (Printed Name)											Ì		1						-						LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Dhio 44720 Attn: Becky Strait
Sampler (Signature)		(Pri	nted Name)				Metais		_	=	1ª											-		Ē		, <u> </u>
Undri Brumbe	ah	$-\dot{V}$	chi	Bru	mback	-	6 b1, M	el	ives f1								n1.2	=	-	Metals - filtered	Metals - totai	14		E E	ontaine	PHONE NO: 330-996-9792
Sample ID	Date Coll	lected	Time C	Collected	Matrix	VOCs	SVOCs b1,	PCBs	Explosives	Topel	Metals	100					VOCE	SVOCS	PCB*		letals			Proceilants	No. of Conta	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA1-0085	16-2	7.99	19	40	Soil					Īī	Ī							<u>م</u>		12					N	
DA10086				155														-		\mathbf{T}						
DA10087						1																5				
DA 1 0088	4 0 0 88 1 0 30								1	1												-			2	
DA 16589	110089 045								Ĩ									-							2	
DA 10090																		_				1			2	
DA10091	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	_						-	3	
DA 1 0092			-12	tri					ł		1											-			5	
P)A 10093	/		<u> </u>						1		1							·							2	
6				*	÷											Î										
				······································				KI.	b			10	1,			_		· .				-				
												-		4 .7	2	7.										
																0.0015		-				,				
) ()		/Time	RECEIVED	1	1			<u> </u>	Dat	e/Tin	18	ŢŢ	OTAI	. NUME	BER DF	F COI	NTAI	NERS	2	3	Coo	ler Te	mper	sture.	4'C
COMPANY NAME:	rah	10.3	17.99	6.9		4		4	1.3	ξ_{ni}	`r>']	6	ooler	ID:			_			-	FED	EX NI	JMBE	R:	
SAIC.		15-	1-0		- U. I	17						0†	기		~	J 3	37	12)				N	4		SAIC delivery
RECEIVED BY:		 Date/	1	RELINOUIS		11.	<u>l. i</u>				e/Tim			00115	EDIMEI	_								•		
													a	S₩	846, 5()35/82										WATER METHODS h SW-846, 9010
COMPANY NAME:	NAME:								C	SW-	846, 82 846, 60 846, 90	108/7										i SW-846, 6010A/7470 j SW-846, 8270C				
RELINQUISHED BY:	ELINQUISHED BY: Date/Time RECEIVED BY:									Date	e/Tim	e	- e	S₩-8	346, 80 146, 83	82										k SW-846, 8082 m SW-846, 8330
													- 1		46, 83 346, 90											n SW-846, 8260B
COMPANY NAME:	IPANY NAME: COMPANY NAME:												1	Cool,	4C	2 HC	il, pH	1 < 2	!	3 HI	103, p	oH<	2	4	VaOH	, pH > 12

.

B 17			

COC NO.: DATOES - 5

page 1 of <u>2</u>

۰.

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

CHAIN OF CUSTODY RECORD

.

PROJECT NAME: Demolition Area 1 Phase I RI						REQU	JESTED PARA	METER	RS			_				LABORATORY NAME:
DELIVERY ORDER NUMBER: 0076			SOI	L						V	VA [.]	ΤE	R			Owanterra Environmental
PROJECT MANAGER: Steve Selecman 423-481-8761		cl. CN d1									it.3					LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sampter (Signature) (Printed Name)		Metals	= =									Bil 11.3			Ē	PHONE NO: 330-996-9792
Vicki Brungback Uplant	Porumbel =	SVOCs b1, I PCBs e1	Explosives Procellants	Metals c1, (-			n1,2	<u>ار</u> ۲	=	Metals - filtered	Metais - total	ΞÌ.	txplosives	Propellants	DBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
	collected Matrix S	PCBs PCBs	Explo	Meta	Ë			VOCs n1.2	SV0Cs	PCB ₃	Mete	Meta	8	txplo	a l	SPECIAL INSTRUCTIONS
DA10094 11/199 15	Ad Soil			1					00000		1000					3
DA16095 1 15	15															2
DA10096 1 15	25			1					50 C C C C C C C C C C C C C C C C C C C		1000					2
DA10097 11/2/19 01	235		11						0.000		200000				ļ	3
DA10098 61	355			4					00000							2
0410099 00 00 00 00 00 00 00 00 00 00 00 00	115								100 M							2
DA10103) *t		11						10000							3
ΥΑΙΦ129 Ι	215 (11								1000					3
SA10104 10	35		1						000000							2
DA 1 0 133)35								22223							2
DA 10105 10	55			j.					2023							2
DA10134 10	55		i	j											_	2
			2	2												4 4 20Z. jana
RELINQUISHED BY: Date/Time	RECEIVED BY:			ate/Tim		TOT	AL NUMBER (IF CON	VTAIN	ERS:	32		Cooler	Temp	erati	H 4 202. jana
U. 2n Brunda 4 11-3-99	COMPANY NAME		11-	3	99	Cool	ler ID: QV	ard	teri	ra		ſ	EDEX	NUM	BER	
COMPANY NAME:	CUMPANY NAME:		9	21	2	ľ		54	4					N/	4	Convier picking
RECEIVED BY: Date/Time	RELINQUISHED BY:		1	ate/Tim			/SEDIMENT M						/		<u>_</u>	WATER METHODS
			Į				N-846, 5035/8 N-846, 8270C		l							h SW-846, 9010 i SW-846, 6010A/7470
COMPANY NAME:	COMPANY NAME:					c SI d SI	N-846, 6010B N-846, 9011/9	7471								j SW-846, 8270C k SW-846, 8082
RELINQUISHED BY: Date/Time	RECEIVED BY:	,	Da	ite/Tim	e	I SV	N-846, 8082 N-846, 8330 N-846, 9060									m S₩-846, 8330 n SW-846, 82608
COMPANY NAME:	COMPANY NAME:		1			1 Co	ol,4C 2 H	ICL, pH	H < 2	:	3 HNO	13, pt	1<2		4 N:	10H, pH > 12

ADD Oak Ridge	Turnoike,	Oak Ridge.	TN	37831	(423) 481-4600

CHAIN OF CUSTODY RECORD

COC NO.: DA10ES 5 page <u>2</u> of <u>2</u>

PRDJECT NAME: Demolition	DJECT NAME: Demolition Area 1 Phase (Rf												88	EQUES	TED P	ARAM	ETER	RS				-				LABORATORY NAME:
	ELIVERY ORDER NUMBER: 0076																		١	NA	TE	ER				Quanterra Environmental
	PROJECT MANAGER: Steve Selecman 423-481-8761 Sampler (Signature) (Printed Name)																									LABORATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720 Attn: Becky Strait
Sampler (Signature)		(Prir	nted Name)	• .			Metals c1,		ŧ	E	CN d1									ered 11.3	L.1.		Ē	Ē	iners	PHONE NO: 330 996 9792
Jish Bry			lick.		mback	, 91 24	SVOCs b1.	ls el	Explosives	Propeliants	Metals c1. CN	5					VOCs n1.2	SVOCs 1	18 KI	Metals - filter	Metals - total	h1,4	Explosives	Propellants	No. of Conteiner	OBSERVATIONS, COMMENTS,
Sample ID	Date Coll		Time Co	illected	Matrix	VOC.	S	PCBs	Exp	Pro	Ň	5	100000	<u> </u>			Š	No.	PCBs	Ň	Met	5	Exp	Prof	1.1.1.1.1.1	SPECIAL INSTRUCTIONS
A10106	11-2	-99	141	5	Soil					1															3	
DA1 pip7			141	trþ_					Ľ.																2	
DAIDIOS											1														3	Metal1= 202 (N= 202
DA10100	110100 1545									2	1														6	6- 202 jans
DA10101	$A1 \phi 1 \phi 1$ V $16 \phi \phi$ \sim										2					000000									4	Metals= 202 (N=202 6-202 jans 4-202 jans
																0.000										
																0000										
D-58			····	**************************************	-416			,																		
58						•••••••		1:	3	- 0	9															
													ţ	1												
																000000										
					.											10000								-	****	Mark was the second
																0.00000		1.000								
	0	Date	e/Time	RECEIVED							te/Tin			OTAL	NUMB	BER OF	CON	NTAIN	VERS	1	ን	Cool	er Ter	mpera	ature:	4- ⁰ C
	nbah	1-	3.99	5. C	· Ir ai	<u>-l i</u>	1		1/	1-	3-	19	7 c	ooler l	10: 7	Qu	A 15	-1-			-	FEDE	XNU	MBE	n:	
COMPANY NAME:			νη -2.4	COMPAN	Y NAME:					ÿ :		20	,,		ť_,		4 ¹		-01	18 V.			1	N,	Ą	Convior pictury
RECEIVED BY: Date/Time RELINQUISHED BY:										Dat	te/Tin	10			DIMEN 146, 50											WATER METHODS h SW-846, 9010
COMPANY NAME:	Y NAME:								C	S₩-8	146, 82 146, 60 146, 90)10 8 /1										i SW-846,6010A/7470 j SW-846,8270C k SW-846,8082				
RELINQUISHED BY:	BY:					Dat	e/Tin	18	e I	SW-8 SW-8	46, 80 46, 83 46, 90)82 30										m SW-846, 8330 n SW-846, 8260B				
COMPANY NAME:															IC .		:L, pH	1<2		3 HN	103, ₁	pH < 2	2	4 :	NaOH	, pH > 12

COC NO.:	DA1QES -	6
----------	----------	---

page of

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

CHAIN OF CUSTODY RECORD

.

PROJECT NAME: Demolition	Area 1 Pha	ise I RI									R	EQUES	STED P	ARAM	ETER	RS								LABORATORY NAME:		
	ELIVERY ORDER NUMBER: 0076																		V	VA	TE	R				Ovanterra Environmental
PROJECT MANAGER: Steve		23-481-87	61				cl. Chi dì																			LABDRATORY ADDRESS: 4101 Shuffel Drive NW North Canton, Ohio 44720
Sampler (Signature)		(Pri	nted Name)			1	Metals c				=									E.H. 1	Ξ			_	5	Attn: Becky Strait
Urzhi Brund		Ň	in Vi	12	~ hark	-	b1. Me	-	11 20	Propellants 11	c1.CN						n1,2	=	-	Metals - filtered	total	4	E	nts ml	ontainers	PHONE NO: 330-996-9792
Sample ID	Date Col			ollected	Matrix	VDCs a	SVOCs b1. A	PCBs el	Explosives	ropeila	Metals	100 01					VOCs n		PCBs k	letal	Metals - total	CN h1,4	Exploratives	Propellants	No. of Cont	DBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA101.07	11 - 3	17	10	34	Soil	1	-	1	Ĩ	1							>	<u>0</u>		2	2				5	
DA10126	Ī			зф		1		1		1															5	
UA1.0110			110	ΦΦ		<u> </u>			Ī											ľ					2	
DA10111							1	1														3				
DA10112	Α1Φ112 14Φ5									1	1							1000							3	
DA 1 \$ 113			14	15						1	1															3 vj b 11-4-99
0A10164			14	25							1											0.000			2	
PA10114 SA10115			15	3φ							1											0.000			3	
SA10115			15	40					1	1	1							1000				100 W			3	
DA1 \$116			15	50		11			1		1														4	
0120165	, ,		16	\$ \$	*					1	1									100					3	
	· • • • • • • • • • • • • • • • • • • •				n alertatu is 16. Anna reale avai	-																				
		- -											Ĵ	1 min -						-					-	11.4-79
RELINQUISHED BY:	0 0	Date	e/Time	RECEIVED		· .	,				te/Ti				NUMBI					3(μ	Coole	r Ten	npera	ture:	
	Who su	111-1	1-99		- Ade	21	1			(- / .	/~	11	/ [Cooler	10: (G	lua.	nt.	TAN	a.			FEDE	X NU	MBE	R:	
COMPANY NAME: SAIC	Y NAME:					11					F J								N,	A		County pickup				
RECEIVED BY:	SHED BY:					Da	te/Tii	me	a	S₩-8	EDIMEN 346, 50	35/82		05								WATER METHODS h SW-846, 9010				
COMPANY NAME:													c d	SW-8 SW-8	346, 82 146, 60 146, 90	108/7 11/90										i SW-846, 6010A/7470 j SW-846, 8270C k SW-846, 8082
RELINQUISHED BY:										Dat	te/Tir	ne –	1	SW-8	146, 80 146, 83 146, 90	30										m SW-846,8330 n SW-846,82608
COMPANY NAME:	MPANY NAME: COMPANY NAME:												1	Cool,4	4C	2 HC	L, pH	< 2	3	HNC	13, p	H<2		4 1	VaOH	, pH > 12

COC NO.: DA1GPE -)

page / of /

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600

CHAIN OF CUSTODY RECORD

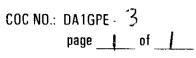
٠

PROJECT NAME: Demolition	Area 1 Phas	se i Ri				L.								RE	OVES	TED F	PARA	METE	RS								LABORATORY NAME:
									S	oı	L									۱	WA		ER				G P Environmental (Core QA Spit Samples)
DELIVERY ORDER NUMBER: 00 Project Manager: Steve Si		3-481-87(61				ct. CN d1														i1,3						LABORATORY ADDRESS: 202 Perty Parkway Gaithersburg, MD 20877 Attn: Amy Friedlander
Sampler (Signature)			nted Name}	£`>	· .		, Metals		=		: ;	E E						2				tal i1.3		Ē	Ē		PHONE NO: 301-926-6802
Uplin Brund					mback	1		la s	Explosives	Pronellants		Metals c1.	5					3 n1,2	SVOCa j1	is kl	Metals - filtered	Metals - total	H.A	Explosives	Propeilants	No. of Container	OBSERVATIONS, COMMENTS,
Sample ID	Date Colli		Time Co		Matrix	VOC.	SVI	PCB\$	3	1		Ŷ	20	2009-0				VOCs	SVC	PCB\$	Mel	Mei	5	Exp	Pro		SPECIAL INSTRUCTIONS
DA101.39	14/10	1/99	161		Soil					\square		L														3	
DA 1047	10/21	_	112		Soi	 		L																		2	
DALOMO	10/21	39	144	ψ	Soil																					3	
DA 10144	10/21/97 1500 Soil								1																	2	
The second second second																											
													10000														
						·	, I	/																			
8												-			_												
																	~~•										······································
																			-				;	ţ			10.
																											10-22-99
RELINQUISHED BY:	Δ	ļ	e/Time	RECEIVED	I BY:	k	E COLOGIC			D	ate/1	Time		To	DTAL	NUME	BER O	IF CO	NTAN	VERS		Ь	Coo	er Te	mpera	ature:	A°C
Chilm Brund	sal.	10-7	7. 94												oler II							۲ ــــ			IMBE		
COMPANY NAME:		120	1) pm	COMPAN	Y NAME:															A				21	h	2	541711an
SAIC									╀					1	Uni			_						5 1	Ψ	4	54671199
RECEIVED BY:		Date	e/Time	RELINGUI	SHED BY:					Ua	ete/ I	Time)IL/SE SW-8												WATER METHODS h SW-846, 9010
COMPANY NAME: COMPANY NAME:									1						SW-84			1747	1								i SW-846, 6010A/7470
GUMEARE MAME:														c SW-846, 60108/7471 d SW-846, 9011/9010													j SW-846, 8270C k SW-846, 8082
RELINQUISHED BY: Date/Time RECEIVED BY:								Date/Time						e SW-846, 8082 m SW-846, 8330													
													1 SW-846, 8330 n SW-846, 8260B g SW-846, 9060														
COMPANY NAME: COMPANY NAME:														10	Ceol,4	C	2 H	CL, p	IH < 2	!	3 HI	103,	pH <	2	4	NaOH	, pH > 12

CHAIN OF CUSTODY RECORD

.

000	NO.:	DA1GPE -	É
000		DITION C	


page į of

PROJECT NAME: Demolition	ROJECT NAME: Demolition Area 1 Phase I RI									REQUESTED PARAMETERS															LABORATORY NAME:			
				.	<u>.</u>				S	OIL	-								1	WA		ER				G P Environmental (Core QA Split Samples)		
DELIVERY ORDER NUMBER: O Project Manager: Steve S		3-481-876	51				ct. CN dt													i1.3	_					LABORATORY ADDRESS: 202 Perry Parkway Gaithersburg, MD 20877 Attn: Amy Friedlander		
Sampler (Signature)		(Prir	nted Name)				Metals		=	=	G S										el i1,3		Ē	Ē	iners	PHONE NO: 301-926-6802		
Uishi Brund	ball_	$-\sum_{i}$	<u>cki</u> [Brum	back	18 2	SVOCs b1,	5 G T	Explosives	Propellants	Metals c1, CN						s n1,2	SVDCs 1	3	Metais - filtered	Metels - total	H. 4	Explosives	Propellants	No. of Containers	OBSERVATIONS, COMMENTS,		
Sample ID	Date Colli	ected	Time Co	flected	Matrix	VOCS	SVO	PCBs	Expl	Prop	Met	Ē				<u> </u>	VOCs	NS N	PCBs	Ň	Met	5	Expl			SPECIAL INSTRUCTIONS		
DA10143	10-22	-99	Φ 99	55	Soil	 																			2			
DA10142	10-2		Soil							<u> </u>	_												3					
DA10148	10-2	4-99	140	5		1		1																3				
DA1 0149	10-2	4-79	13 5	55	Water															1		L	2	2	7			
																										1		
						 																						
								·																				
.e													-															
D-61																	ţ											
																						/	ł					
RELINQUISHED BY:	ì Λ		e/Time	RECEIVE	D BY:					Da	te/Ti	ime		TOTA	AL NUN	ABER I	OF CI	ONTA	INERS	s: 1	5	Coo	ler Te	empe	rature	4°C		
Unith Brun	bah	10-	26-77						-					Coole	er iD:			L .		_		FED	EX N	UMB	ER:			
COMPANY NAME: SA1C	COMPANY NAME: SAIC 12:30 pt													Qv	and	le vi	4 1	F +	{ }	35	5	•	81	ф	2.	5467/225		
RECEIVED BY:										Da	te/Ti	ime					METHODS /82608								WATER METHODS h SW-846, 9010			
COMPANY NAME:	IY NAME:								b SW-846, 8270C c SW-846, 6010B/7471 d SW-846, 9011/9010													i SW-846, 9010 i SW-846, 6010A/7470 i SW-846, 8270C k SW-846, 8082						
RELINQUISHED BY: Date/Time RECEIVED BY:										Da	te/Ti	me	e SW-846, 8082 m SW-846, 8330 f SW-846, 8330 n SW-846, 8260B g SW-846, 9060															
COMPANY NAME: COMPANY NAME:										- t			1 Cool,4C 2 HCL, pH < 2 3 HNO3, pH < 2 4 NaOH, pH > 12															

CHAIN OF CUSTODY RECORD

•

PROJECT NAME: Demolition	Area 1 Phas	se i Ri												R	EQUES	TED P	ARAN	AETE	RS								LABORATORY NAME:
										S	DIL	-								V	NA	ΤE	R				G P Environmental (Core QA Split Samples)
DELIVERY ORDER NUMBER: DO		3-481-87	61	Image: Second											202 Perry Parkway Gaithersburg, MD 20877												
Sampler (Signature) $1 \circ 1 $	$\gamma 0$	(Pris	nted Name)	Ð	t	T		1. Metals		4 U	1: 11	3						7	_			- 1	_	s ml	(3 m]	ntainers	PHONE NO: 301-926-6802
Sample 10	Date Colli	ected	/ic.kj		n <u>bac</u> Mati		VOCs a1	SVOCs b1.	PCBs el	Explosives	Propeliants	Metals c1, CN	T0C g1					VBCs n1,2	SVOCs j1	PCBs k1	Matais - filtered	Mateis - totai	CN h1,4	Explasives	Propellants	No. of Cantainer	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
DA10141	101	15	11-2	1-97	Se	سا ۱					1	Ī									-		_			3	
DA1 (145)	11=2	-99	10	35'								1														2	
DA101410	11-2	2-91		1055																						2	
DA10138	-3	- 99	10	30					1	Ĺ																5	17-
The strength of the state of th				·																							
																			00000								
								12	4		Ļ																
D-62								Ø	4	ł	1	1	4								1						
															44	.			00000								
					 						 																
																									*****		****
		r																									
RELINQUISHED BY:) 0		e/Time 4-99	RECEIVED	D BY:						Da	te/Tir	ne	- H-		NUMB						2	Cool	er Tei	mpera	ture:	4°C
COMPANY NAME:	04-2			COMPAN	Y NAME-					1				1	Cooler	^{D:} C	<u>2</u> <i>U</i>	an".	ter	na.					IMBE		
SAIC		Ιφ	$\phi\phi$												‡	ل ور ال	29	3					8	31	Ф	2	54671258
RECEIVED BY: Date/Time RELINQUISHED BY:											0a	te/Tin	ne	SOIL/SEDIMENT METHODS a SW-846, 5035/8260B										-			WATER METHODS h SW-846, 9010
COMPANY NAME:														b SW-846, 8270C i SW-846, 6010A/7470 c SW-846, 6010B/7471 j SW-846, 8270C d SW-846, 9011/9010 k SW-846, 8082 e SW-846, 8082 m SW-846, 8330									j SW-846, 8270C k SW-846, 8082				
RELINQUISHED BY: Date/Time RECEIVED BY:											Dat	te/Tin	18	1	SW-8	46, 80 46, 83 46, 90	30										m SW-846, 8330 n SW-846, 8260B
COMPANY NAME: COMPANY NAME:													1	1 Cool,4C 2 HCL, pH < 2 3 HN03, pH < 2 4 Na0H, pH > 12									pH > 12				

CHAIN OF CUSTODY RECORD

COC NO.: DA1CE- I

page _ _ _ of _ _

PROJECT NAME: Demolition	Area 1 Phase	R						-					RE	QUES	TED P	ARAN	AETERS	5						LABORATORY NAME:
PHOJECT NAME. Demontion	RICE IT HOJE	}	T	Τ	T		Τ					Τ								Catlin Engineers				
DELIVERY ORDER NO: 0076																								LABORATORY ADDRESS: 1051 Johnnie Dadds Blvd.
PROJECT MANAGER: Steve S	Selecman 423	-481-8/0							Į															Suite C Mt. Pleasent, SC 29464
Sampler (Signature) Uzbin Bri	mosal	.	ted Name) Vick	d B	ruml	Daik	Size	ure 1	Alternerg Laura USES Classification		Redox Potential	Organic Cerbon	l t	Bulk Density	Specific Gravity	Soil Permenbility							of Containers	PHONE NO: 803-881-6000
Sample ID	Date Collec	T	Time Col		Mat		Grain Size	Moisture	ISCS	Ha	Redo	Orgar	Content	Bulk	Speci	Soil							2	OBSERVATIONS, COMMENTS.
DA10161	10-22-	99	121	')	So	<u>, </u>	V	/ /	/ /	1														
DA10039	10-21-		163				\checkmark	ζ,	/ •	1								2005 2005 2005						
DA1.0021	10-20		1620	d			Y.	<u>/</u>	14										_				1	
DA1.0041	10-21	-91	170	φ			\checkmark	<u> </u>	/ 🗸	4													_1	L
DA10040	10-21	-99	165	<u>d</u>			<u> </u>	⁄ √	1	1		_							<u></u>				- +	
DA 10119	DA 10119 10-24-99 1155									<u> </u>											_			
DA14118	10-24	.99	153	5			\checkmark			_														
5)A1 4120	10-24		140	5			~																\parallel	
DA10117	10-24	1.99	144	<u>όφ</u>	<u> </u>	/	\checkmark					2 2 2									-	-	┛	I
and an ingeneral chartening and the second				** 'm 'm F-h Ø et types og	 							8 8												
	ļ								~		цį,	h	-	4		9								
				·· -·· ··	ļ						T	ii ii		8 8 8					<u>.</u>	-	-	<u> </u>		and a second of the second of
	<u> </u>	-	<u> </u>	1						<u>.</u>	<u> </u>	<u>.</u>					OF CON	TAIN						Cooler Temperature: N/A
RELINGUISHED BY: Uizly Bry	an (h. c)	Dati }} {	e/Time L. G. G	RECEIVE	U BY:					ı	Date/T	FUG	-			- ocn				9				FEDEX NUMBER:
COMPANY NAME:	TNDOM.		• • •	COMPAN	IY NAME:		<u> </u>							Cooler		> \	IC :	4	20	ł				
SAIC		$ \phi $	$\phi \phi$												2	S/H	<u>ال ·</u>	<u>+</u> -1	10	 				810254671269
RECEIVED BY:										(Date/T	ime												
ļ									_															
COMPANY NAME:				COMPAN	IY NAME:																			
RELINQUISHED BY:		Dati	e/Time	RECEIVE	D BY:						Date/T	ime												
COMPANY NAME:				COMPA	NY NAME:	1																		

CHAIN OF CUSTODY RECORD

COC NO.: DAICE- 1

7

page ____ of ____

PROJECT NAME: Demolition									RE	DUES	red P/	ARAN	AETER	S T	-1-	Т		—	- <u>T</u>	T	LABORATORY NAME: Catlin Engineers				
DELIVERY ORDER NO: 0076			<u></u>																						LABORATORY ADDRESS: 1051 Johnnie Dodds Blvd.
PROJECT MANAGER: Steve S	elecman 423-4	81-876	1						5																Suite C Mt. Pleasent, SC 29464
Sampler (Signature)	<u></u>	•	led Name)					Limits	sificati		tential	arbon		uity .	iravity	eability									PHONE NO: 803-881-6000
Vielin Bamb					vmback	Grein Size	Moisture	Atterberg [USCS Classificatio		Redax Potential	Organic Carbon	Content	Bulk Density	Specific Gravity	Soil Perm								13	B OBSERVATIONS, COMMENTS,
Sample ID	Date Collect		Time Colle		Matrix				1838	<u> </u>	···· 7				100000	~		-			1-		: -	┦	2
DA1. 0035	10-19	-90	154	ϕ	Sail		X	V		1		1	! '''''		<u> </u>	<u> </u>				- 10				+	1
DA1 0072	1		160	ϕ	<u></u>		14	\vee		 ∡	1	<u> </u> ⊻		⊻	2	<u> </u>				- 10	-		3 8	┢	1
			<u></u>			ļ		-		-											888 - 888		8	- -	
			-																-	100 C					
		····						-										-		1000 AV				+-	
	- Vh											<u> </u>								- 10				╀	
																				0.00				╉	
D												<u> </u>		-										╀	
2					ļ	-		L		_		_												╶┼╴	
						<u> </u>		_		_		_									-		2 *	+	
						<u> </u> _		_						-										1	10-20-99
																						-		_	
RELINOUISHED BY:		Dat	e/Time	RECEIVE	D BY:					D	ate/Ti	me	ŀ	ATOT	L NUN	IBER	OF CO	NTAI	NERS:			2			Cooler Temperature: NHA
Uzen Brun	Isah	10-	20-91										Γ	Coole	ID:	N	Ą								FEDEX NUMBER:
COMPANY NAME: SA1C		17	200	COMPA	NY NAME:									F	ed.	٤x	2	hij	n pi	'nq		<u>[</u>]	e.		8142546 71453 (2 totes)
RECEIVED BY: Date/Time RELINOUISHED BY:										Date/Time					Fed Ex Shipping Tube 8142546 grain size Asta D422) (sp grain hulk densibility (sp grain)										(5p grov. ASTA 0554)
													(Dute de sin) - INSPIRAT (Ab HETH)											seth)	
COMPANY NAME:																				· ·	• \				(maisture Asian DODA)
RELINQUISHED BY:		Dat	te/Time	RECEIV	ED BY:					0	late/T	ime	(redex pot. 012580) (organic carbon contert 9164) (AL ASTAL 101318)												
COMPANY NAME: COMPANY NAME:														(5r	il f) e 1	(110)	D	5 ():	દેમ)			-	(AL ASTAN 114318)

APPENDIX E

ANALYTICAL RESULTS

TABLE OF CONTENTS

Subsection	Page
EXPLANATION OF DATA QUALIFIERS	E-1
SURFACE SOIL	
Explosives and Propellants	E-5
Inorganics	E-19
Semivolatile Organic Constituents	E-33
Volatile Organic Constituents	
PCBs	
SUBSURFACE SOIL	
Explosives and Propellants	E-53
Inorganics	
Semivolatile Organic Constituents	
Volatile Organic Constituents	E-101
PCBs	E-105
SEDIMENT	
Explosives and Propellants	E-109
Inorganics	E-113
Semivolatile Organic Constituents	
Volatile Organic Constituents and Total Organic Carbon	E-123
PCBs	E-129
SURFACE WATER	
Explosives and Propellants	E-133
Inorganics	E-137
Semivolatile Organic Constituents	E-141
Volatile Organic Constituents	E-145
PCBs	E-149
GROUNDWATER SAMPLE RESULTS	E-153
QUALITY ASSURANCE SAMPLING RESULTS	E-159

THIS PAGE INTENTIONALLY LEFT BLANK

EXPLANATION OF DATA QUALIFIERS

THIS PAGE INTENTIONALLY LEFT BLANK

Explanation of Data Qualifiers for Appendix E

- U-Result not detected at indicated laboratory reporting limit.
- J-Estimated result less than laboratory reporting limit.
- = Analyte present and concentration accurate.
- R Result rejected through laboratory quality control or validation process.
- * Inorganic result exceeds its applicable RVAAP facility-wide background criterion.

THIS PAGE INTENTIONALLY LEFT BLANK

SURFACE SOIL – EXPLOSIVES AND PROPELLANTS

THIS PAGE INTENTIONALLY LEFT BLANK

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte Units		Inside Bermed Area DA1-041 DA10111 DA1ss-041-0111-SO 11/03/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-042 DA10114 DA1ss-042-0114-SO 11/03/1999 0 - 1 Composite	Inside Bermed Area DA1-012 DA10023 DA1ss-012-0023-SO 10/21/1999 0 - 1 Composite	Inside Bermed Area DA1-013 DA10026 DA1ss-013-0026-SO 10/21/1999 0 - 1 Composite
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.15 J	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2.6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2 U	2 U	2.4 U	2.3 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.083 J	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte Units		Inside Bermed Area DA1-014 DA10029 DA1ss-014-0029-SO 10/21/1999 0 - 1 Composite	Inside Bermed Area DA1-015 DA10032 DA1ss-015-0032-SO 10/21/1999 0 - 1 Composite	Inside Bermed Area DA1-016 DA10036 DA1ss-016-0036-SO 10/21/1999 0 - 1 Composite	Inside Bermed Area DA1-016 DA10128 DA1ss-016-0128-SO 10/21/1999 0 - 1 Field Duplicate
Analyte				<u> </u>	0.05.11
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.13 J	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.092 J
НМХ	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U	2.4 U	2.4 U	2.4 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area Inside Bermed Area DA1-017 DA1-018 DA10039 DA10042 DA1ss-017-0039-SO DA1ss-018-0042-S 10/21/1999 10/22/1999 0 - 1 0 - 1 Composite Composite		Inside Bermed Area DA1-019 DA10045 DA1ss-019-0045-SO 10/22/1999 0 - 1 Composite	Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Composite
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U	2.4 U	2.5 U	2.4 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-021 DA10051 DA1ss-021-0051-SO 10/24/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-022 DA10054 DA1ss-022-0054-SO 10/25/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-023 DA10130 DA1ss-023-0130-SO 10/25/1999 0 - 1 Field Duplicate
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.2 J	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.095 J
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U	3.8 =	2.6 U	2.6 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-024 DA10060 DA1ss-024-0060-SO 10/25/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-025 DA10063 DA1ss-025-0063-SO 10/25/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-026 DA10066 DA1ss-026-0066-SO 10/25/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-027 DA10069 DA1ss-027-0069-SO 10/20/1999 0 - 1 Composite
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.5 U	2.5 U	2.6 U	2.5 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-028 DA10073 DA1ss-028-0073-SO 10/26/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-030 DA10079 DA1ss-030-0079-SO 10/26/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-031 DA10082 DA1ss-031-0082-SO 10/26/1999 0 - 1 Composite
	++	0.25 U	0.46 =	0.25 U	0.25 U
1,3,5-Trinitrobenzene	mg/kg				
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.82 =	6.6 =	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U	2.7 U	2.6 =	2.5 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type	Unite	NACA Plane Storage Area - Outside Berm DA1-032 DA10085 DA1ss-032-0085-SO 10/27/1999 0 - 1 Composite	- Outside Berm Area - Outside Berm DA1-032 DA1-033 DA10085 DA10088 sss-032-0085-SO DA1ss-033-0088-SO 10/27/1999 10/27/1999 0 - 1 0 - 1		NACA Plane Storage Area - Outside Berm DA1-035 DA10094 DA1ss-035-0094-SO 11/01/1999 0 - 1 Compostie	
Analyte	Units					
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U	
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
Nitrocellulose	mg/kg	2.4 U	2.5 U	2.4 U	<u>2 U</u>	
Nitroglycerin	mg/kg	2 .5 U	2.5 U	2.5 U	2.5 U	
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U	
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U	

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-036 DA10097 DA1ss-036-0097-SO 11/02/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-037 DA10100 DA1ss-037-0100-SO 11/02/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-038 DA10103 DA1ss-038-0103-SO 11/02/1999 0 - 1 Composite	NACA Plane Storage Area - Outside Berm DA1-038 DA10129 DA1ss-038-0129-SO 11/02/1999 0 - 1 Field Duplicate
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2 U	2 U	2 U	2 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.15 J
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-039 DA10106 DA1ss-039-0106-SO 11/02/1999 0 - 1 Composite	On Berm DA1-001 DA10001 DA1ss-001-0001-SO 10/19/1999 0 - 1 Composite	On Berm DA1-002 DA10003 DA1ss-002-0003-SO 10/19/1999 0 - 1 Composite	On Berm DA1-003 DA10005 DA1ss-003-0005-SO 10/19/1999 0 - 1 Composite
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	1.8 =	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.2 J
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2 U	2.4 U	2.2 U	2.2 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-004 DA10007 DA1ss-004-0007-SO 10/19/1999 0 - 1 Composite	On Berm DA1-005 DA10009 DA1ss-005-0009-SO 10/19/1999 0 - 1 Composite	On Berm DA1-005 DA10127 DA1ss-005-0127-SO 10/19/1999 0 - 1 Field Duplicate	On Berm DA1-006 DA10011 DA1ss-006-0011-SO 10/20/1999 0 - 1 Composite
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.2 U	2.2 U	2.2 U	2.2 =
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.12 J	0.19 J	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Composite	On Berm DA1-008 DA10015 DA1ss-008-0015-SO 10/20/1999 0 - 1 Composite	On Berm DA1-009 DA10017 DA1ss-009-0017-SO 10/20/1999 0 - 1 Composite	On Berm DA1-010 DA10019 DA1ss-010-0019-SO 10/20/1999 0 - 1 Composite
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	2.9 =
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.13 J
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.2 U	2.2 U	2.2 U	2.4 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	<u>0.5</u> U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID		On Berm DA1-011 DA10021 DA1ss-011-0021-SO 10/20/1999	South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999
Date Depth (ft)		0 - 1	0 - 1	0 - 1
Field Type		Composite	Composite	Field Duplicate
Analyte	Units			
1,3,5-Trinitrobenzene	mg/kg	0.25 U	62 U	50 U
1,3-Dinitrobenzene	mg/kg	0.25 U	62 U	50 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	2000 =	1400 =
2,4-Dinitrotoluene	mg/kg	0.25 U	62 U	50 U
2,6-Dinitrotoluene	mg/kg	0.25 U	62 U	50 U
2-Nitrotoluene	mg/kg	0.25 U	<u>62</u> U	50 U
3-Nitrotoluene	mg/kg	0.25 U	62 U	50 U
4-Nitrotoluene	mg/kg	0.25 U	62 U	20 J
HMX	mg/kg	0.5 U	120 U	100 U
Nitrobenzene	mg/kg	0.25 U	62 U	50 U
Nitrocellulose	mg/kg	2.2 U	175 =	109 =
Nitroglycerin	mg/kg	2.5 U	620 U	500 U
Nitroguanidine	mg/kg	0.25 U	0.035 J	0.25 U
RDX	mg/kg	0.5 U	120 U	100 U
Tetryl	mg/kg	0.65 U	160 U	130 U

SURFACE SOIL – INORGANICS

THIS PAGE INTENTIONALLY LEFT BLANK

Table E-2. Demolition Area 1 Surface Soil Inorganics

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-041 DA10111 DA1ss-041-0111-SO 11/03/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-042 DA10114 DA1ss-042-0114-SO 11/03/1999 0 - 1 Grab	Inside Bermed Area DA1-012 DA10023 DA1ss-012-0023-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-013 DA10026 DA1ss-013-0026-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-014 DA10029 DA1ss-014-0029-SO 10/21/1999 0 - 1 Grab
Cvanide	mg/kg	0.59 U	0.67 U	0.61 U	0.58 U	0.61 U
Aluminum	mg/kg	7740 =	61300 = *	12600 =	9580 =	9520 =
Antimony	mg/kg	1.2 UJ	2.6 J *	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	8 =	11.1 =	11.9 =	9.3 =	9.3 =
Barium	mg/kg	53.8 =	1840 = *	343 = *	78.2 =	58.1 =
Beryllium	mg/kg	0.59 U	0.25 U	0.56 J	0.3 J	0.24 =
Cadmium	mg/kg	0.59 U	65.5 = *	0.61 U	0.58 U	0.61 U
Calcium	mg/kg	1080 =	1950 =	1360 =	12500 J	522 J
Chromium	mg/kg	9.7 =	43.8 = *	12.6 =	12.3 =	12.4 =
Cobalt	mg/kg	6.2 =	5.9 J	26.5 = *	7.6 =	7.6 =
Соррег	mg/kg	11.3 J	6500 J *	11.1 J	27.3 = *	10.8 J
Iron	mg/kg	16400 =	25800 = *	22900 =	17700 =	18300 =
Lead	mg/kg	11.5 =	149 = *	26.9 = *	15.3 =	18.3 =
Magnesium	mg/kg	1600 =	2900 =	1760 =	1840 =	1500 =
Manganese	mg/kg	345 =	466 =	14600 = *	575 =	820 =
Mercury	mg/kg	0.033 U	0.23 U	0.041 J *	0.069 J *	0.034 U
Nickel	mg/kg	10.9 =	46 = *	23.4 = *	14 =	10 =
Potassium	mg/kg	485 J	1340 = *	869 =	642 =	681 =
Selenium	mg/kg	0.74 =	0.87 =	<u>3J*</u>	0.8 =	0.61 U
Silver	mg/kg	1.2 U	0.4 <u>1</u> J *	0.31 J *	1.2 U	1.2 U
Sodium	mg/kg	79.1 U	293_J*	66.1 U	<u>97.7 U</u>	50.6 U
Thallium	mg/kg	0.25 J *	0.28 J *	0.31 J *	0.36 J *	0.35 J *
Vanadium	mg/kg	13.8 =	18.2 =	23.9 =	16.5 =	21.3 =
Zinc	mg/kg	93.8 J *	4680 J *	78.7 J *	119 = *	52.9 J

Table E-2. Demolition Area 1 Surface Soil Inorganics

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-015 DA10032 DA1ss-015-0032-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-016 DA10036 DA1ss-016-0036-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-016 DA10128 DA1ss-016-0128-SO 10/21/1999 0 - 1 Field Duplicate	Inside Bermed Area DA1-017 DA10039 DA1ss-017-0039-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-018 DA10042 DA1ss-018-0042-SO 10/22/1999 0 - 1 Grab
Cyanide	mg/kg	0.6 U	0.6 U	0.6 U	0.61 U	0.61 U
Aluminum	mg/kg	14100 =	11400 =	11800 =	11800 =	16200 J
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	10.9 =	12.4 =	12.1 =	10.6 =	15.1 =
Barium	mg/kg	66.2 =	91.2 = *	81.2 =	35.8 =	58.3 J
Beryllium	mg/kg	0.28 J	0.36 J	0.28 J	0.23 J	0.7 U
Cadmium	mg/kg	0.6 U	0.6 U	0.6 U	0.61 U	0.61 UJ
Calcium	mg/kg	1200 J	1780 =	2370 =	323 J	661 =
Chromium	mg/kg	17 =	14.6 =	15.3 =	15.3 =	22.6 = *
Cobalt	mg/kg	9.4 =	9.5 =	8.9 =	5.9 J	14 = *
Copper	mg/kg	12.1 =	40.8 J *	28.8 J *	11.9 J	23.5 J *
Iron	mg/kg	18600 =	25900 = *	24100 = *	22100 =	33400 J *
Lead	mg/kg	16.9 =	18.7 =	16 =	11.6 =	16.3 =
Magnesium	mg/kg	2230 =	2190 =	2270 =	2320 =	4070 J *
Manganese	mg/kg	543 =	608 =	421 =	176 =	242 J
Mercury	mg/kg	0.05 J *	0.0072 U	0.038 J *	0.028 U	0.03 J
Nickel	mg/kg	14.7 =	13.7 =	14 =	14.3 =	31.9 = *
Potassium	mg/kg	914 =	859 =	878 =	1010 = *	1870 = *
Selenium	mg/kg	0.88 =	0.6 U	0.6 U	0.61 U	0.61 U
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	80.3 U	55.8 U	7 <u>2.7</u> U	58 U	80.2 U
Thallium	mg/kg	0.48 J *	0.31 J *	0.32 J *	0.33 J *	0.31 J *
Vanadium	mg/kg	25 =	22.3 =	21.8 =	20.1 =	23 =
Zinc	mg/kg	57.7 =	78.8 J *	68.5 J *	41.4 J	74.2 = *

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-015 DA10032 DA1ss-015-0032-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-016 DA10036 DA1ss-016-0036-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-016 DA10128 DA1ss-016-0128-SO 10/21/1999 0 - 1 Field Duplicate	Inside Bermed Area DA1-017 DA10039 DA1ss-017-0039-SO 10/21/1999 0 - 1 Grab	Inside Bermed Area DA1-018 DA10042 DA1ss-018-0042-SO 10/22/1999 0 - 1 Grab
Cyanide	mg/kg	0.6 U	0.6 U	0.6 U	0.61 U	0.61 U
Aluminum	mg/kg	14100 =	11400 =	11800 =	11800 =	16200 J
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	10.9 =	12.4 =	12.1 =	10.6 =	15.1 =
Barium	mg/kg	66.2 =	91.2 = *	81.2 =	35.8 =	58.3 J
Beryllium	mg/kg	0.28 J	0.36 J	0.28 J	0.23 J	0.7 U
Cadmium	mg/kg	0.6 U	0.6 U	0.6 U	0.61 U	0.61 UJ
Calcium	mg/kg	1200 J	1780 =	2370 =	323 J	661 =
Chromium	mg/kg	17 =	14.6 =	15.3 =	15.3 =	22.6 = *
Cobalt	mg/kg	9.4 =	9.5 =	8.9 =	5.9 J	14 = *
Copper	mg/kg	12.1 =	40.8 J *	28.8 J *	11.9 J	23.5 J *
Iron	mg/kg	18600 =	25900 = *	24100 = *	22100 =	33400 J *
Lead	mg/kg	16.9 =	18.7 =	16 =	11.6 =	16.3 =
Magnesium	mg/kg	2230 =	2190 =	2270 =	2320 =	4070 J *
Manganese	mg/kg	543 =	608 =	421 =	176 =	242 J
Mercury	mg/kg	0.05 J *	0.0072 U	0.038 J *	0.028 U	0.03 J
Nickel	mg/kg	14.7 =	13.7 =	14 =	14.3 =	31.9 = *
Potassium	mg/kg	914 =	859 =	878 =	1010 = *	1870 = *
Selenium	mg/kg	0.88 =	0.6 U	0.6 U	0.61 U	0.61 U
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1. 2 U	1.2 U
Sodium	mg/kg	80.3 U	55.8 U	72.7 U	58 U	80.2 U
Thallium	mg/kg	0.48 J *	0.31 J *	0.32 J *	0.33 J *	0.31 J *
Vanadium	mg/kg	25 =	22.3 =	21.8 =	20.1 =	23 =
Zinc	mg/kg	57.7 =	78.8 J *	68.5 J *	41.4 J	74.2 = *

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-019 DA10045 DA1ss-019-0045-SO 10/22/1999 0 - 1 Grab	Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	Inside Bermed Area DA1-021 DA10051 DA1ss-021-0051-SO 10/24/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-022 DA10054 DA1ss-022-0054-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab
Cyanide	mg/kg	0.61 U	0.61 U	0.59 U	0.62 U	0.66 U
Aluminum	mg/kg	15000 J	13900 J	11100 =	13400 =	85700 = *
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.3 UJ
Arsenic	mg/kg	11.3 =	13.2 =	10.3 =	14.6 =	10.4 =
Barium	mg/kg	53.8 J	100 J *	34.7 =	98.5 = *	367 = *
Beryllium	mg/kg	0.28 U	0.47 U	0.32 U	0.61 U	0.48 U
Cadmium	mg/kg	0.61 UJ	0.61 UJ	0.59 UJ	0.62 UJ	48.7 J *
Calcium	mg/kg	1130 =	1190 =	632 =	826 J	577 J
Chromium	mg/kg	18.8 = *	20.7 = *	14.6 J	16.5 =	52 = *
Cobalt	mg/kg	6.4 =	9.6 =	5.2 J	20.1 = *	6.4 J
Copper	mg/kg	20.1 J *	27.4 J *	13.2 J	11.8 J	7250 J *
Iron	mg/kg	24300 J *	29300 J *	21000 =	27300 = *	23400 = *
Lead	mg/kg	15.7 =	16.4 =	12.3 J	22.7 =	163 = *
Magnesium	mg/kg	2540 J	3430 J *	2310 J	2580 =	2410 =
Manganese	mg/kg	205 J	262 J	139 =	3920 J *	456 J
Mercury	mg/kg	0.03 J	0.045 J *	0.032 J	0.049 J *	0.12 J *
Nickel	mg/kg	15 =	27.4 = *	14.9 =	19 J	73.8 J *
Potassium	mg/kg	1370 = *	1910 = *	978 = *	1330 = *	1220 = *
Selenium	mg/kg	0.61 U	0.61 U	0.59 U	0.62 U	1.8 = *
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	0.38 J *
Sodium	mg/kg	131 U	108 U	85.9 U	31.9 U	324 U
Thallium	mg/kg	0.32 J *	0.33 J *	0.24 J *	0.53 UJ	0.56 UJ
Vanadium	mg/kg	26.6 =	22.4 =	17.6 =	24.9 =	19.1 =
Zinc	mg/kg	69.2 = *	86.2 = *	45.6 J	68.6 J *	6320 J *

Location Station Sample ID Customer ID Date Depth (ft) Field Type Anałyte	Units	NACA Plane Storage Area - Outside Berm DA1-023 DA10130 DA1ss-023-0130-SO 10/25/1999 0 - 1 Field Duplicate	NACA Plane Storage Area - Outside Berm DA1-024 DA10060 DA1ss-024-0060-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-025 DA10063 DA1ss-025-0063-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-026 DA10066 DA1ss-026-0066-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10069 DA1ss-027-0069-SO 10/20/1999 0 - 1 Grab
Cyanide	mg/kg	0.66 U	0.83 = *	0.63 U	0.64 U	0.62 U
Aluminum	mg/kg	105000 = *	15700 =	8730 =	14400 J	22800 = *
Antimony	mg/kg	1.9 UJ	1.2 UJ	1.3 UJ	1.3 R	3.1 J *
Arsenic	mg/kg	8.5 =	11.7 =	8.7 =	11.4 J	15.2 =
Barium	mg/kg	654 = *	1670 = *	229 = *	74.1 =	70.6 =
Beryllium	mg/kg	0.31 U	0.43 U	0.38 U	0.34 U	0.25 J
Cadmium	mg/kg	92.2 J *	3.7 J *	0.93 UJ	0.7 J *	107 = *
Calcium	mg/kg	850 J	536 J	1010 J	816 J	1330 J
Chromium	mg/kg	62.6 = *	16.4 =	11.1 =	17.8 J *	26.2 = *
Cobalt	mg/kg	6.8 =	6.3 =	8.7 =	10 J	8.4 =
Copper	mg/kg	11100 J *	853 J *	108 J *	70.4 J *	747 = *
Iron	mg/kg	18400 =	23000 =	17500 =	23900 J *	33400 = *
Lead	mg/kg	213 = *	41.7 = *	24.9 =	19.5 =	128 = *
Magnesium	mg/kg	1900 =	2940 =	1780 =	2780 J	3100 = *
Manganese	mg/kg	580 J	301 J	793 J	483 J	349 =
Mercury	mg/kg	0.11 J *	0.082 J *	0.095 J *	0.048 J *	0.14 J *
Nickel	mg/kg	95.4 J *	18 J	11.2 J	16.7 J	26.7 = *
Potassium	mg/kg	824 =	1300 = *	630 =	1490 J *	1370 = *
Selenium	mg/kg	1.8 = *	0.62 U	0.63 U	1.3 =	1.4 =
Silver	mg/kg	0.67 J *	1.2 U	1.3 U	1.3 UJ	1.2 U
Sodium	mg/kg	343 U	62.2 U	38.8 U	639 UJ	85.1 U
Thallium	mg/kg	0.64 UJ	0.55 UJ	0.3 UJ	0.51 UJ	0.36 J *
Vanadium	mg/kg	14.5 =	20.6 =	17.2 =	24.7 J	23.1 =
Zinc	mg/kg	6890 J *	668 J *	184 J *	186 J *	1420 = *

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-028 DA10073 DA1ss-028-0073-SO 10/26/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-030 DA10079 DA1ss-030-0079-SO 10/26/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-031 DA10082 DA1ss-031-0082-SO 10/26/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-032 DA10085 DA1ss-032-0085-SO 10/27/1999 0 - 1 Grab
		0.6 U	0.67 U	0.61 U	0.62 U	0.6 U
Cyanide Aluminum	mg/kg mg/kg	13000 J	17700 J	12400 =	12100 =	6940 =
	mg/kg	1.2 R	19.8 J *	1.2 R	0.63 J	1.2 R
Antimony Arsenic	mg/kg	12.4 J	31.4 J *	13.5 J	14.4 J	7.9 J
Barium	mg/kg	72 =	131 = *	78.4 J	55.7 J	54.9 J
Beryllium	mg/kg	0.6 U	0.67 U	0.42 U	0.2 U	0.28 U
Cadmium	mg/kg	0.6 UJ	4910 J *	0.61 UJ	0.62 UJ	0.6 UJ
Calcium	mg/kg	721 J	1300 J	1930 =	718 =	250 J
Chromium	mg/kg	16.8 J	174 J *	18.1 J *	15.8 J	7.9 J
Cobalt	mg/kg	6.1 J	16.4 J *	12.5 J *	5.4 J	6.9 J
Copper	mg/kg	37.7 J *	1860 J *	45.6 J *	69.8 J *	5.8 J
Iron	mg/kg	24600 J *	231000 J *	26900 J *	27200 J *	16400 J
Lead	mg/kg	15.6 =	772 = *	17.6 =	19 =	17 =
Magnesium	mg/kg	2360 J	1470 J	3350 J *	1920 J	1230 J
Manganese	mg/kg	138 J	834 J	471 J	230 J	667 J
Mercury	mg/kg	0.063 J *	0.077 J *	0.038 J *	0.023 J	0.052 J *
Nickel	mg/kg	13.4 J	82.7 J *	27.2 J *	13 J	7.9 J
Potassium	mg/kg	1030 J *	1760 J *	1680 = *	1440 J *	350 J
Selenium	mg/kg	1.2 =	6.1 = *	0.61 U	0.62 U	0.6 U
Silver	mg/kg	1.2 UJ	1.3 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Sodium	mg/kg	603 UJ	668 UJ	612 UJ	617 UJ	604 UJ
Thallium	mg/kg	0.43 UJ	0.4 UJ	0.4 J *	0.41 J *	0.3 J *
Vanadium	mg/kg	26.1 J	13.8 J	21.8 =	22 =	16 =
Zinc	mg/kg	89.9 J *	4970 J *	90.2 = *	317 = *	36.4 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-033 DA10088 DA1ss-033-0088-SO 10/27/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-034 DA10091 DA1ss-034-0091-SO 10/27/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-035 DA10094 DA1ss-035-0094-SO 11/01/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-036 DA10097 DA1ss-036-0097-SO 11/02/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-037 DA10100 DA1ss-037-0100-SO 11/02/1999 0 - 1 Grab
Cyanide	mg/kg	0.63 U	0.61 U	0.57 U	0.62 U	0.62 U
Aluminum	mg/kg	5550 =	16100 =	6580 =	11600 =	8980 =
Antimony	mg/kg	1.3 R	1.2 R	1.1 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	7.9 J	15.6 J *	8.8 =	9.6 =	9.9 =
Barium	mg/kg	45.7 J	114 J *	23.4 =	70.9 =	60.6 =
Beryllium	mg/kg	0.28 U	0.83 U	0.21 U	0.28 U	0.19 U
Cadmium	mg/kg	0.63 UJ	0.61 UJ	0.57 U	0.62 U	0.62 U
Calcium	mg/kg	388 J	1390 =	520 J	1400 =	2240 =
Chromium	mg/kg	7.3 J	22.7 J *	8.6 =	14.5 =	12.5 =
Cobalt	mg/kg	7.7 J	15.4 J *	6.9 =	8.3 =	9.7 =
Copper	mg/kg	10.8 J	22.6 J *	13.2 =	18.6 = *	11.5 =
Iron	mg/kg	17000 J	31500 J *	15100 =	20900 =	20500 =
Lead	mg/kg	22.2 =	15.3 =	8 J	20.2 J	16.2 J
Magnesium	mg/kg	905 J	4480 J *	1420 =	2200 =	1980 =
Manganese	mg/kg	550 J	467 J	227 =	447 =	656 =
Mercury	mg/kg	0.13 U	0.022 J	0.025 U	0.051 U	0.043 U
Nickel	mg/kg	8.6 J	35.9 J *	11.9 J	15.5 J	15.5 J
Potassium	mg/kg	302 J	2950 J *	902 =	1000 = *	609 J
Selenium	mg/kg	<u>0.63 U</u>	0.61 U	0.73 U	0.8 U	0.88 U
Silver	mg/kg	1.3 UJ	1.2 UJ	1.1 U	1.2 U	1.2 U
Sodium	mg/kg	625 UJ	607 UJ	63.5 U	93.7 U	53.8 U
Thallium	mg/kg	0.36 J *	0.47 J *	0.26 J *	0.41 J *	0.31 J *
Vanadium	mg/kg	14.9 =	25.8 =	12.2 =	21 =	17.1 =
Zinc	mg/kg	38 =	72.5 = *	33.8 =	86.8 = *	47.9 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-038 DA10103 DA1ss-038-0103-SO 11/02/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10129 DA1ss-038-0129-SO 11/02/1999 0 - 1 Field Duplicate	NACA Plane Storage Area - Outside Berm DA1-039 DA10106 DA1ss-039-0106-SO 11/02/1999 0 - 1 Grab	On Berm DA1-001 DA10001 DA1ss-001-0001-SO 10/19/1999 0 - 1 Grab	On Berm DA1-002 DA10003 DA1ss-002-0003-SO 10/19/1999 0 - 1 Grab
Cyanide	mg/kg	0.63 U	0.64 U	0.61 U	0.61 U	0.54 U
Aluminum	mg/kg	12300 =	11000 =	8850 =	15000 J	1940 J
Antimony	mg/kg	1.3 UJ	1.3 UJ	1.2 UJ	1.2 UJ	1.1 UJ
Arsenic	mg/kg	10.5 =	10.2 =	8 =	14.5 =	6.2 =
Barium	mg/kg	109 = *	91.9 = *	53.3 =	86.9 =	58.6 =
Beryllium	mg/kg	0.42 J	0.47 J	0.23 U	0.53 U	0.22 U
Cadmium	mg/kg	0.63 U	0.64 U	0.61 U	0.61 U	0.54 U
Calcium	mg/kg	2400 =	2080 =	412 J	8250 J	58400 J *
Chromium	mg/kg	15 =	13.5 =	10.8 =	19.5 = *	4.3 =
Cobalt	mg/kg	10.9 = *	10.2 =	9.4 =	10.7 = *	3.6 J
Copper	mg/kg	12.4 =	11.6 =	6.9 =	24.3 J *	7.1 J
Iron	mg/kg	21600 =	20200 =	15700 =	28400 = *	10500 =
Lead	mg/kg	20 J	18 J	16.1 J	18.4 =	10.5 =
Magnesium	mg/kg	2420 =	2230 =	1430 =	4070 = *	797 =
Manganese	mg/kg	2300 = *	1690 = *	644 =	739 J	376 J
Mercury	mg/kg	0.046 U	0.068 U	0.05 U	0.041 J *	0.0078 J
Nickel	mg/kg	19.4 J	16.4 J	10.3 J	22 J *	11.5 J
Potassium	mg/kg	1060 = *	897 =	573 J	1560 = *	540 =
Selenium	mg/kg	1.5 U	0.94 U	0.97 U	0.57 J	0.54 U
Silver	mg/kg	1.3 U	1.3 U	1.2 U	1.2 U	1.1 U
Sodium	mg/kg	<u>67.8 U</u>	53.1 U	82.4 U	612 UJ	540 UJ
Thallium	mg/kg	0.38 J *	0.42 J *	0.37 J *	0.42 J *	0.21 J *
Vanadium	mg/kg	22.6 =	19.8 =	17.2 =	24.3 =	4 J
Zinc	mg/kg	60.6 =	53.6 =	41.4 =	103 J *	31.9 J

Location Station Sample ID Customer ID Date		On Berm DA1-003 DA10005 DA1ss-003-0005-SO 10/19/1999	On Berm DA1-004 DA10007 DA1ss-004-0007-SO 10/19/1999	On Berm DA1-005 DA10009 DA1ss-005-0009-SO 10/19/1999	On Berm DA1-005 DA10127 DA1ss-005-0127-SO 10/19/1999	On Berm DA1-006 DA10011 DA1ss-006-0011-SO 10/20/1999
Depth (ft) Field Type		0 - 1 Grab	0 - 1 Grab	0 - 1 Grab	0 - 1 Field Duplicate	0 - 1 Grab
rieid Type		Grad	0	0140		
Analyte	Units			····		
Cyanide	mg/kg	0.54 U	0.54 U	0.55 U	0.56 U	0.54 U
Aluminum	mg/kg	3000 J	3610 J	4300 J	2760 J	3610 =
Antimony	mg/kg	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	0.61 J
Arsenic	mg/kg	5.3 =	11 =	7.9 =	7.7 =	8.6 =
Barium	mg/kg	177 = *	96.5 = *	93.9 = *	71.1 =	124 = *
Beryllium	mg/kg	0.35 U	0.39 U	0.49 U	0.32 U	0.34 J
Cadmium	mg/kg	0.54 U	0.27 J *	1 = *	0.81 = *	0.91 = *
Calcium	mg/kg	182000 J *	150000 J *	111000 J *	73300 J *	150000 J *
Chromium	mg/kg	4.4 =	7.2 =	4.1 =	4.3 =	6.2 =
Cobalt	mg/kg	2.7 J	3.1 J	3.2 J	2.4 J	5.3 J
Copper	mg/kg	8.9 J	13.6 J	10.9 J	10.6 J	35.4 = *
Iron	mg/kg	7900 =	9560 =	9410 =	9040 =	13000 J
Lead	mg/kg	11.2 =	13.9 =	14.6 =	15.1 =	17 =
Magnesium	mg/kg	2140 =	2130 =	3330 = *	1540 =	1880 =
Manganese	mg/kg	531 J	523 J	463 J	320 J	502 =
Mercury	mg/kg	0.02 J	0.024 J	0.013 J	0.011 J	0.013 J
Nickel	mg/kg	9.9 J	12.5 J	10.6 J	8 J	20 =
Potassium	mg/kg	547 =	688 =	521 J	461 J	426 J
Selenium	mg/kg	0.54 U	0.54 U	0.55 U	0.56 U	0.54 U
Silver	mg/kg	1.1 U				
Sodium	mg/kg	543 UJ	543 UJ	555 UJ	556 UJ	121 U
Thallium	mg/kg	0.15 J *	0.14 J *	0.29 J *	0.19 J *	0.23 J *
Vanadium	mg/kg	4.6 J	5.7 =	4.3 J	4.3 J	6 =
Zinc	mg/kg	31.9 J	43.4 J	45.4 J	38.9 J	107 = *

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab	On Berm DA1-008 DA10015 DA1ss-008-0015-SO 10/20/1999 0 - 1 Grab	On Berm DA1-009 DA10017 DA1ss-009-0017-SO 10/20/1999 0 - 1 Grab	On Berm DA1-010 DA10019 DA1ss-010-0019-SO 10/20/1999 0 - 1 Grab	On Berm DA1-011 DA10021 DA1ss-011-0021-SO 10/20/1999 0 - 1 Grab
		0.55 U	0.55 U	0.55 U	0.61 U	0.56 U
Cyanide Aluminum	mg/kg mg/kg	10700 =	7240 =	1730 =	5650 =	2670 =
	mg/kg	1.4 J *	0.54 J	1.1 UJ	0.93 J	1.1 UJ
Antimony Arsenic	mg/kg	6.4 =	5 =	5.1 =	11 =	9.2 =
Barium	mg/kg	310 = *	252 = *	92.1 = *	83.8 =	43.7 =
Beryllium	mg/kg	0.81 =	0.94 = *	0.15 J	0.15 J	0.16 J
Cadmium	mg/kg	14 = *	1.1 = *	0.5 J *	0.33 J *	0.56 U
Calcium	mg/kg	206000 J *	195000 J *	248000 J *	1960 J	50900 J *
Chromium	mg/kg	10.4 =	4.1 =	3,4 =	8.6 =	5.3 =
Cobalt	mg/kg	4.6 J	3.8 J	2.8 J	4.9 J	3.2 J
Copper	mg/kg	152 = *	55.2 = *	25.2 = *	70.3 = *	12.1 =
Iron	mg/kg	11800 J	7530 J	7150 =	18500 =	5820 J
Lead	mg/kg	196 = *	12.4 =	8.2 =	36.4 = *	12.4 =
Magnesium	mg/kg	5300 = *	5280 = *	1890 =	959 =	983 =
Manganese	mg/kg	1070 =	947 =	519 =	367 =	314 =
Mercury	mg/kg	0.16 J *	0.076 J *	0.023 J	0.035 J	0.012 J
Nickel	mg/kg	19.8 =	15.4 =	11.8 =	11.7 =	9.2 =
Potassium	mg/kg	1060 = *	555 =	332 J	539 J	458 J
Selenium	mg/kg	0.55 U	0.55 U	0.55 U	0.93 =	0.56 U
Silver	mg/kg	1.1 U	<u>1.1 U</u>	1.1 U	1. <u>2 U</u>	1.1 U
Sodium	mg/kg	262 U	254 U	97.1 U	51.2 U	75.5 U
Thallium	mg/kg	0.14 J *	0.22 J *	0.2 J *	0.21 J *	0.26 J *
Vanadium	mg/kg	9 =	3.8 J	4.8 J	10.2 =	5.3 J
Zinc	mg/kg	191 = *	63.9 = *	33.9 =	107 = *	36.2 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999 0 - 1 Grab	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999 0 - 1 Field Duplicate
Analyte	Units		
Cyanide	mg/kg	0.65 U	0.66 U
Aluminum	mg/kg	14900 =	14200 =
Antimony	mg/kg	1.3 UJ	1.3 UJ
Arsenic	mg/kg	15.5 = *	17.5 = *
Barium	mg/kg	124 = *	73.6 =
Beryllium	mg/kg	0.52 J	0.36 J
Cadmium	mg/kg	0.65 U	0.66 U
Calcium	mg/kg	2410 =	1970 =
Chromium	mg/kg	21.5 = *	19.6 = *
Cobalt	mg/kg	13.1 = *	9 =
Copper	mg/kg	33.5 J *	92.1 J *
Iron	mg/kg	32900 = *	34000 = *
Lead	mg/kg	18.5 =	22.5 =
Magnesium	mg/kg	4220 = *	2600 =
Manganese	mg/kg	380 =	456 =
Mercury	mg/kg	0.041 U	0.058 U
Nickel	mg/kg	34.4 = *	17.6 =
Potassium	mg/kg	2050 = *	1220 = *
Selenium	mg/kg	1 =	1.2 =
Silver	mg/kg	1.3 U	1.3 U
Sodium	mg/kg	113 U	81.3 U
Thallium	mg/kg	0.34 J *	0.26 J *
Vanadium	mg/kg	25.3 =	29 =
Zinc	mg/kg	190 J *	99.6 J *

THIS PAGE INTENTIONALLY LEFT BLANK

SURFACE SOIL – SEMIVOLATILE ORGANIC CONSTITUENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Table E-3. Demolition Area 1 Surface Soil Semivolatile Organic Compounds

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
1,2,4-Trichlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U
1,2-Dichlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U
1,3-Dichlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U
1,4-Dichlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U
2,4,5-Trichlorophenol	µg/kg	400 UJ	430 U	440 U	370 U
2,4,6-Trichlorophenol	µg/kg	400 UJ	430 U	440 U	370 U
2,4-Dichlorophenol	µg/kg	400 UJ	430 U	440 U	370 U
2,4-Dimethylphenol	µg/kg	400 UJ	430 U	440 U	370 U
2,4-Dinitrophenol	µg/kg	980 UJ	1000 UJ	1100 UJ	890 U
2,4-Dinitrotoluene	µg/kg	400 UJ	430 U	440 U	370 U
2,6-Dinitrotoluene	µg/kg	400 UJ	430 U	440 U	370 U
2-Chloronaphthalene	µg/kg	400 UJ	430 U	440 U	370 U
2-Chlorophenol	µg/kg	400 UJ	430 U	440 U	370 U
2-Methyl-4,6-dinitrophenol	µg/kg	980 UJ	1000 U	1100 U	890 U
2-Methylnaphthalene	µg/kg	400 UJ	430 U	440 U	43 J
2-Methylphenol	µg/kg	400 UJ	430 U	440 U	370 U
2-Nitrobenzenamine	µg/kg	980 UJ	1000 U	1100 U	890 U
2-Nitrophenol	µg/kg	400 UJ	430 U	440 U	370 U
3,3'-Dichlorobenzidine	µg/kg	400 UJ	430 U	440 U	370 U
3-Nitrobenzenamine	µg/kg	980 UJ	1000 U	1100 U	890 U
4-Bromophenyl phenyl ether	µg/kg	400 UJ	430 U	440 U	370 U
4-Chloro-3-methylphenol	µg/kg	400 UJ	430 U	440 U	370 U
4-Chlorobenzenamine	µg/kg	400 UJ	430 U	440 U	370 U
4-Chlorophenyl phenyl ether	µg/kg	400 UJ	430 U	440 U	370 U

Table E-3. Demolition Area 1Surface SoilSemivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
4-Methylphenol	µg/kg	400 UJ	430 U	440 U	370 U
4-Nitrobenzenamine	μg/kg	980 UJ	1000 U	1100 U	890 U
4-Nitrophenol	μg/kg	980 UJ	1000 U	1100 U	890 U
Acenaphthene	μg/kg	400 UJ	430 U	440 U	370 U
Acenaphthylene	μg/kg	400 UJ	430 U	440 U	370 U
Anthracene	μg/kg	400 UJ	430 U	440 U	370 U
Benz(a)anthracene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(a)pyrene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(b)fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo (g, h, i) perylene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(k)fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Chloroisopropyl) ether	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Ethylhexyl)phthalate	µg/kg	400 UJ	51 J	440 U	370 U
Butyl benzyl phthalate	μg/kg	400 UJ	430 U	440 U	370 U
Carbazole	μg/kg	400 UJ	430 U	440 U	370 U
Chrysene	µg/kg	400 UJ	430 U	440 U	370 U
Di-n-butyl phthalate	µg/kg	400 UJ	430 U	440 U	<u>370</u> U
Di-n-octylphthalate	µg/kg	400 UJ	430 U	440 U	370 U
Dibenz(a, h) anthracene	µg/kg	400 UJ	430 U	440 U	370 U
Dibenzofuran	µg/kg	400 UJ	430 U	440 U	370 U
Diethyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Dimethyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
Fluorene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U

Table E-3. Demolition Area 1Surface SoilSemivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
Hexachlorobutadiene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachlorocyclopentadiene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachloroethane	µg/kg	400 UJ	430 U	440 U	370 U
Indeno(1,2,3-cd)pyrene	µg/kg	400 UJ	430 U	440 U	370 U
Isophorone	µg/kg	400 UJ	430 U	440 U	370 U
N-Nitroso-di-n-propylamine	µg/kg	400 UJ	430 U	440 U	370 U
N-Nitrosodiphenylamine	µg/kg	400 UJ	430 U	440 U	370 U
Naphthalene	µg/kg	400 UJ	430 U	440 U	370 U
Nitrobenzene	µg/kg	400 UJ	430 U	440 U	370 U
Pentachlorophenol	µg/kg	980 UJ	1000 U	1100 U	890 U
Phenanthrene	µg/kg	400 UJ	430 U	440 U	370 U
Phenol	µg/kg	400 UJ	430 U	440 U	370 U
Pyrene	µg/kg	400 UJ	430 U	440 U	49 J
bis(2-Chloroethoxy)methane	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Chloroethyl) ether	µg/kg	400 UJ	430 U	440 U	370 U

Table E-3. Demolition Area 1Surface SoilSemivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
1,2,4-Trichlorobenzene	µg/kg				
1,2-Dichlorobenzene	µg/kg				
1,3-Dichlorobenzene	µg/kg				
1,4-Dichlorobenzene	µg/kg				
2,4,5-Trichlorophenol	µg/kg				
2,4,6-Trichlorophenol	µg/kg				
2,4-Dichlorophenol	µg/kg				
2,4-Dimethylphenol	µg/kg				
2,4-Dinitrophenol	μg/kg				
2,4-Dinitrotoluene	µg/kg	· · · · · · · · · · · · · · · · · · ·			
2,6-Dinitrotoluene	µg/kg				
2-Chloronaphthalene	µg/kg				
2-Chlorophenol	µg/kg				
2-Methyl-4,6-dinitrophenol	µg/kg			- · ·	
2-Methylnaphthalene	µg/kg				
2-Methylphenol	µg/kg				
2-Nitrobenzenamine	µg/kg				· · · · · · · · · · · · · · · · · · ·
2-Nitrophenol	µg/kg				
3,3'-Dichlorobenzidine	µg/kg				
3-Nitrobenzenamine	µg/kg				
4-Bromophenyl phenyl ether	µg/kg				
4-Chloro-3-methylphenol	µg/kg				
4-Chlorobenzenamine	µg/kg				
4-Chlorophenyl phenyl ether	µg/kg				

Table E-3. Demolition Area 1 Surface Soil Semivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
4-Methylphenol	µg/kg	400 UJ	430 U	440 U	370 U
4-Nitrobenzenamine	µg/kg	980 UJ	1000 U	1100 U	890 U
4-Nitrophenol	µg/kg	980 UJ	1000 U	1100 U	890 U
Acenaphthene	µg/kg	400 UJ	430 U	440 U	370 U
Acenaphthylene	µg/kg	400 UJ	430 U	440 U	370 U
Anthracene	μg/kg	400 UJ	430 U	440 U	370 U
Benz(a)anthracene	μg/kg	400 UJ	430 U	440 U	370 U
Benzo(a)pyrene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(b)fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(g,h,i)perylene	µg/kg	400 UJ	430 U	440 U	370 U
Benzo(k)fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Chloroisopropyl) ether	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Ethylhexyl)phthalate	µg/kg	400 UJ	51 J	440 U	370 U
Butyl benzyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Carbazole	µg/kg	400 UJ	430 U	440 U	370 U
Chrysene	µg/kg	400 UJ	430 U	440 U	370 U
Di-n-butyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Di-n-octylphthalate	µg/kg	400 UJ	430 U	440 U	370 U
Dibenz(a, h) anthracene	µg/kg	400 UJ	430 U	440 U	370 U
Dibenzofuran	µg/kg	400 UJ	430 U	440 U	370 U
Diethyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Dimethyl phthalate	µg/kg	400 UJ	430 U	440 U	370 U
Fluoranthene	µg/kg	400 UJ	430 U	440 U	370 U
Fluorene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachlorobenzene	µg/kg	400 UJ	430 U	440 U	370 U

Table E-3. Demolition Area 1 Surface Soil Semivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
Analyte	Units				
Hexachlorobutadiene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachlorocyclopentadiene	µg/kg	400 UJ	430 U	440 U	370 U
Hexachloroethane	µg/kg	400 UJ	430 U	440 U	370 U
Indeno(1,2,3-cd)pyrene	µg/kg	400 UJ	430 U	440 U	370 U
Isophorone	µg/kg	400 UJ	430 U	440 U	370 U
N-Nitroso-di-n-propylamine	μg/kg	400 UJ	430 U	440 U	370 U
N-Nitrosodiphenylamine	µg/kg	400 UJ	430 U	440 U	370 U
Naphthalene	µg/kg	400 UJ	430 U	440 U	370 U
Nitrobenzene	µg/kg	400 UJ	430 U	440 U	370 U
Pentachlorophenol	µg/kg	980 UJ	1000 U	1100 U	890 U
Phenanthrene	µg/kg	400 UJ	430 U	440 U	370 U
Phenol	µg/kg	400 UJ	430 U	440 U	370 U
Pyrene	µg/kg	400 UJ	430 U	440 U	49 J
bis(2-Chloroethoxy)methane	µg/kg	400 UJ	430 U	440 U	370 U
bis(2-Chloroethyl) ether	µg/kg	400 UJ	430 U	440 U	370 U

Table E-3. Demolition Area 1Surface SoilSemivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999 0 - 1 Grab	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999 0 - 1 Field Duplicate
Analyte	Units		
1,2,4-Trichlorobenzene	µg/kg	430 U	1700 U
1,2-Dichlorobenzene	µg/kg	430 U	1700 U
1,3-Dichlorobenzene	µg/kg	430 U	1700 U
1,4-Dichlorobenzene	µg/kg	430 U	1700 U
2,4,5-Trichlorophenol	µg/kg	430 U	1700 U
2,4,6-Trichlorophenol	µg/kg	430 U	1700 U
2,4-Dichlorophenol	µg/kg	430 U	1700 U
2,4-Dimethylphenol	µg/kg	430 U	1700 U
2,4-Dinitrophenol	µg/kg	1000 U	4200 U
2,4-Dinitrotoluene	µg/kg	430 U	1700 U
2,6-Dinitrotoluene	µg/kg	430 U	1700 U
2-Chloronaphthalene	µg/kg	430 U	1700 U
2-Chlorophenol	µg/kg	430 U	1700 U
2-Methyl-4,6-dinitrophenol	µg/kg	1000 U	4200 U
2-Methylnaphthalene	µg/kg	430 U	1700 U
2-Methylphenol	µg/kg	430 U	1700 U
2-Nitrobenzenamine	µg/kg	1000 U	4200 U
2-Nitrophenol	µg/kg	430 U	1700 U
3,3'-Dichlorobenzidine	µg/kg	430 U	1700 U
3-Nitrobenzenamine	μg/kg	1000 U	4200 U
4-Bromophenyl phenyl ether	μg/kg	430 U	1700 U
4-Chloro-3-methylphenol	µg/kg	430 U	1700 U
4-Chlorobenzenamine	µg/kg	430 U	1700 U
4-Chlorophenyl phenyl ether	µg/kg	430 U	1700 U

Table E-3. Demolition Area 1Surface SoilSemivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999 0 - 1 Grab	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999 0 - 1 Field Duplicate
Analyte	Units		
4-Methylphenol	µg/kg	430 U	1700 U
4-Nitrobenzenamine	µg/kg	1000 U	4200 U
4-Nitrophenol	µg/kg	1000 U	4200 U
Acenaphthene	µg/kg	430 U	1700 U
Acenaphthylene	µg/kg	430 U	1700 U
Anthracene	µg/kg	430 U	1700 U
Benz(a)anthracene	µg/kg	430 U	1700 U
Benzo(a)pyrene	µg/kg	430 U	1700 U
Benzo(b)fluoranthene	µg/kg	430 U	1700 U
Benzo(g,h,i)perylene	µg/kg	430 U	1700 U
Benzo(k)fluoranthene	µg/kg	430 U	1700 U
bis(2-Chloroisopropyl) ether	µg/kg	430 U	1700 U
bis(2-Ethylhexyl)phthalate	µg/kg	430 U	1700 U
Butyl benzyl phthalate	µg/kg	430 U	1700 U
Carbazole	µg/kg	430 U	1700 U
Chrysene	µg/kg	430 U	1700 U
Di- <i>n</i> -butyl phthalate	µg/kg	430 U	1700 U
Di-n-octylphthalate	µg/kg	430 U	1700 U
Dibenz(a, h)anthracene	µg/kg	430 U	1700 U
Dibenzofuran	µg/kg	430 U	1700 U
Diethyl phthalate	µg/kg	430 U	1700 U
Dimethyl phthalate	µg/kg	430 U	1700 U
Fluoranthene	µg/kg	430 U	1700 U
Fluorene	µg/kg	430 U	1700 U
Hexachlorobenzene	µg/kg	430 U	1700 U

Table E-3. Demolition Area 1
Surface Soil
Semivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999 0 - 1 Grab	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999 0 - 1 Field Duplicate
Analyte	Units		
Hexachlorobutadiene	µg/kg	430 U	1700 U
Hexachlorocyclopentadiene	µg/kg	430 U	1700 U
Hexachloroethane	µg/kg	430 U	1700 U
Indeno(1,2,3-cd)pyrene	µg/kg	430 U	1700 U
Isophorone	µg/kg	430 U	1700 U
N-Nitroso-di-n-propylamine	µg/kg	430 U	1700 U
N-Nitrosodiphenylamine	µg/kg	430 U	1700 U
Naphthalene	µg/kg	430 U	1700 U
Nitrobenzene	µg/kg	430 U	1700 U
Pentachlorophenol	µg/kg	1000 U	4200 U
Phenanthrene	µg/kg	430 U	1700 U
Phenol	µg/kg	430 U	1700 U
Рутепе	µg/kg	430 U	1700 U
bis(2-Chloroethoxy)methane	µg/kg	430 U	1700 U
bis(2-Chloroethyl) ether	µg/kg	430 U	1700 U

THIS PAGE INTENTIONALLY LEFT BLANK

SURFACE SOIL – VOLATILE ORGANIC CONSTITUENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Table E-4. Demolition Area 1Surface SoilVolatile Organic Compounds

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab
Analyte	Units			
1,1,1-Trichloroethane	µg/kg	6.1 U	6.6 U	6.7 U
1,1,2,2-Tetrachloroethane	µg/kg	6.1 U	6.6 UJ	6.7 UJ
1,1,2-Trichloroethane	µg/kg	6.1 U	6.6 U	6.7 U
1,1-Dichloroethane	µg/kg	6.1 U	6.6 U	6.7 U
1,1-Dichloroethene	µg/kg	6.1 U	6.6 U	6.7 U
1,2-Dibromoethane	µg/kg	6.1 U	6.6 U	6.7 U
1,2-Dichloroethane	µg/kg	6.1 U	6.6 U	6.7 U
1,2-Dichloroethene	µg/kg	6.1 U	6.6 U	6.7 U
1,2-Dichloropropane	µg/kg	6.1 U	6.6 U	6.7 U
2-Butanone	µg/kg	12 UJ	13 UJ	13 U
2-Hexanone	µg/kg	12 U	13 UJ	13 U
4-Methyl-2-pentanone	µg/kg	12 U	13 U	13 U
Acetone	μg/kg	12 UJ	13 UJ	13 UJ
Benzene	µg/kg	6.1 U	6.6 U	6.7 U
Bromochloromethane	µg/kg	6.1 U	6.6 U	6.7 U
Bromodichloromethane	µg/kg	6.1 U	6.6 U	6.7 U
Bromoform	µg/kg	6.1 U	6.6 UJ	6.7 U
Bromomethane	µg/kg	12 U	13 U	13 U
Carbon disulfide	µg/kg	6.1 U	6.6 U	6.7 U
Carbon tetrachloride	μg/kg	6.1 U	6.6 U	6.7 U
Chlorobenzene	µg/kg	6.1 U	6.6 UJ	6.7 U
Chloroethane	µg/kg	12 UJ	13 U	13 U
Chloroform	µg/kg	6.1 U	6.6 U	6.7 U
Chloromethane	µg/kg	12 U	13 U	13 U
Dibromochloromethane	µg/kg	6.1 U	6.6 UJ	6.7 U
Dimethylbenzene	μg/kg	6.1 U	6.6 UJ	1.8 J
Ethylbenzene	μg/kg	6.1 U	6.6 UJ	6.7 U
Methylene chloride	μg/kg	6.1 U	6.6 U	6.7 U
Styrene	µg/kg	6.1 UJ	6.6 UJ	6.7 U
Tetrachloroethene	µg/kg	6.1 U	6.6 UJ	6.7 U
Toluene	µg/kg	6.1 U	2.5 J	4.6 J
Trichloroethene	µg/kg	6.1 U	6.6 U	6.7 U
Vinyl chloride	μg/kg	12 U	13 U	13 U
cis -1,3-Dichloropropene	μg/kg	6.1 U	6.6 U	6.7 U
trans -1,3-Dichloropropene	μg/kg	6.1 U	6.6 U	6.7 U

Table E-4. Demolition Area 1 Surface Soil Volatile Organic Compounds (continued)

Location	TT	On Berm	South Ditch Line	South Ditch Line
Station		DA1-007	DA1-040	DA1-040
Sample ID		DA10013	DA10109	DA10126
Customer ID		DA1ss-007-0013-SO	DA1ss-040-0109-SO	DA1ss-040-0126-SO
Date		10/20/1999	11/03/1999	11/03/1999
Depth (ft)		0 - 1	0-1	0 - 1
Field Type		Grab	Grab	Field Duplicate
ricia i jpo		0140		
Analyte	Units			
1,1,1-Trichloroethane	µg/kg	5.5 U	6.5 U	6.6 U
1,1,2,2-Tetrachloroethane	µg/kg	5.5 UJ	6.5 U	6.6 U
1,1,2-Trichloroethane	µg/kg	5.5 U	6.5 U	6.6 U
1,1-Dichloroethane	µg/kg	5.5 U	6.5 U	6.6 U
1,1-Dichloroethene	µg/kg	5.5 U	6.5 U	6.6 U
1,2-Dibromoethane	µg/kg	5.5 U	6.5 U	6.6 U
1,2-Dichloroethane	µg/kg	5.5 U	6.5 U	6.6 U
1,2-Dichloroethene	μg/kg	5.5 U	6.5 U	6.6 U
1,2-Dichloropropane	µg/kg	5.5 U	6.5 U	6.6 U
2-Butanone	µg/kg	11 UJ	13 U	13 U
2-Hexanone	μg/kg	11 U	13 U	13 U
4-Methyl-2-pentanone	μg/kg	11 U	13 U	13 U
Acetone	μg/kg	11 UJ	6.8 J	13 U
Benzene	µg/kg	5.5 U	6.5 U	6.6 U
Bromochloromethane	µg/kg	5.5 U	6.5 U	6.6 U
Bromodichloromethane	µg/kg	5.5 U	6.5 U	6.6 U
Bromoform	μg/kg	5.5 U	6.5 U	6.6 U
Bromomethane	µg/kg	11 U	13 U	13 U
Carbon disulfide	μg/kg	5.5 UJ	6.5 U	6.6 U
Carbon tetrachloride	µg/kg	5.5 U	6.5 U	6.6 U
Chlorobenzene	µg/kg	5.5 U	6.5 U	6.6 U
Chloroethane	µg/kg	11 U	13 U	13 U
Chloroform	µg/kg	5.5 U	6.5 U	6.6 U
Chloromethane	µg/kg	11 U	13 U	13 U
Dibromochloromethane	µg/kg	5.5 U	6.5 U	6.6 U
Dimethylbenzene	µg/kg	5.5 U	6.5 U	6.6 U
Ethylbenzene	μg/kg	5.5 U	6.5 U	6.6 U
Methylene chloride	μg/kg	5.5 U	6.5 U	6.6 U
Styrene	μg/kg	5.5 U	6.5 U	6.6 U
Tetrachloroethene	μg/kg	5.5 U	6.5 U	6.6 U
Toluene	μg/kg	5.5 U	6.5 U	6.6 U
Trichloroethene	μg/kg	5.5 U	6.5 U	6.6 U
Vinyl chloride	μg/kg	11 U	13 U	13 U
cis -1,3-Dichloropropene	μg/kg	5.5 U	6.5 U	6.6 U
trans -1,3-Dichloropropene	μg/kg	5.5 U	6.5 U	6.6 U

SURFACE SOIL – PCBS

THIS PAGE INTENTIONALLY LEFT BLANK

Table E-5. Demolition Area 1 Surface Soil PCBs

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-020 DA10048 DA1ss-020-0048-SO 10/22/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10057 DA1ss-023-0057-SO 10/25/1999 0 - 1 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10076 DA1ss-029-0076-SO 10/26/1999 0 - 1 Grab	On Berm DA1-007 DA10013 DA1ss-007-0013-SO 10/20/1999 0 - 1 Grab
PCB-1016	+ +	40 U	43 U	44 U	
PCB-1010	μg/kg μg/kg	40 U	43 U	44 U	37 U
PCB-1221	$\mu g/kg$	40 U	43 U	44 U	37 U
PCB-1242	μg/kg	40 U	43 U	44 U	37 U
PCB-1248	μg/kg	40 U	43 U	44 U	37 U
PCB-1254	µg/kg	40 U	43 U	44 U	37 U
PCB-1260	µg/kg	40 U	43 U	44 U	37 U

Table E-5. Demolition Area 1Surface SoilPCBs (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		South Ditch Line DA1-040 DA10109 DA1ss-040-0109-SO 11/03/1999 0 - 1 Grab	South Ditch Line DA1-040 DA10126 DA1ss-040-0126-SO 11/03/1999 0 - 1 Field Duplicate	
Analyte	Units			
PCB-1016	µg/kg	43 U	44 U	
PCB-1221	µg/kg	43 U	44 U	
PCB-1232	µg/kg	43 U	44 U	
PCB-1242	µg/kg	43 U	44 U	
PCB-1248	µg/kg	43 U	44 U	
PCB-1254	µg/kg	43 U	44 U	
PCB-1260	µg/kg	43 U	44 U	

SUBSURFACE SOIL – EXPLOSIVES AND PROPELLANTS

THIS PAGE INTENTIONALLY LEFT BLANK

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-041 DA10112 DA1so-041-0112-SO 11/03/1999 1 - 3 Grab	Inside Bermed Area DA1-041 DA10113 DA1so-041-0113-SO 11/03/1999 3 - 5 Grab	Inside Bermed Area DA1-041 DA10164 DA1so-041-0164-SO 11/03/1999 6 - 8 Grab	NACA Plane Storage Area - Outside Berm DA1-042 DA10115 DA1so-042-0115-SO 11/03/1999 1 - 3 Grab
	1	0.25 U	0.25 U	0.25 U	0.25 U
1,3,5-Trinitrobenzene	mg/kg				0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2 U	2 U		2 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U		0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-042 DA10116 DA1so-042-0116-SO 11/03/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-042 DA10165 DA1so-042-0165-SO 11/03/1999 6 - 8 Grab	Inside Bermed Area DA1-012 DA10024 DA1so-012-0024-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-012 DA10025 DA1so-012-0025-SO 10/21/1999 3 - 5 Grab
······			0.05 11	0.25 1	0.25 11
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 <u>U</u>
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2 U	2 U	2.4 U	2.4 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-013 DA10027 DA1so-013-0027-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-013 DA10028 DA1so-013-0028-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-014 DA10030 DA1so-014-0030-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-014 DA10031 DA1so-014-0031-SO 10/21/1999 3 - 5 Grab
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft)		Inside Bermed Area DA1-015 DA10033 DA1so-015-0033-SO 10/21/1999 1 - 3	Inside Bermed Area DA1-015 DA10034 DA1so-015-0034-SO 10/21/1999 3 - 5	Inside Bermed Area DA1-016 DA10037 DA1so-016-0037-SO 10/21/1999 1 - 3	Inside Bermed Area DA1-016 DA10132 DA1ss-016-0132-SO 10/21/1999 1 - 3
Field Type Analyte	Units	Grab	Grab	Grab	Field Duplicate
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	2.5 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	2.5 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	2.5 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-016 DA10038 DA1so-016-0038-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-017 DA10040 DA1so-017-0040-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-017 DA10041 DA1so-017-0041-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-018 DA10043 DA1so-018-0043-SO 10/22/1999 1 - 3 Grab
			0.05 U	0.25 U	0.25 U
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	<u>0.25 U</u>	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	· · · · · · · · · · · · · · · · · · ·			
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

•

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-018 DA10131 DA1ss-018-0131-SO 10/22/1999 1 - 3 Field Duplicate	Inside Bermed Area DA1-018 DA10044 DA1so-018-0044-SO 10/22/1999 3 - 5 Grab	Inside Bermed Area DA1-018 DA10160 DA1so-018-0160-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-019 DA10046 DA1so-019-0046-SO 10/22/1999 1 - 3 Grab
Analyte	Units				0.05 11
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 Ü
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type	Units	Inside Bermed Area DA1-019 DA10047 DA1so-019-0047-SO 10/22/1999 3 - 5 Grab	Inside Bermed Area DA1-019 DA10161 DA1so-019-0161-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	Inside Bermed Area DA1-020 DA10050 DA1so-020-0050-SO 10/22/1999 3 - 5 Grab
Analyte		······································			0.25 11
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	<u>0.25 U</u>	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 Ŭ	2.5 Ŭ	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10162 DA1so-020-0162-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-021 DA10052 DA1so-021-0052-SO 10/24/1999 1 - 3 Grab	Inside Bermed Area DA1-021 DA10053 DA1so-021-0053-SO 10/24/1999 3 - 5 Grab	Inside Bermed Area DA1-021 DA10163 DA1so-021-0163-SO 10/24/1999 6 - 8 Grab
Analyte	Units			<u> </u>	
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	<u>2.5 U</u>	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-022 DA10055 DA1so-022-0055-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-022 DA10056 DA1so-022-0056-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab
	1				0.05 1
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U	2.4 U	2.4 U	2.4 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-024 DA10061 DA1so-024-0061-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-024 DA10062 DA1so-024-0062-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-025 DA10064 DA1so-025-0064-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-025 DA10065 DA1so-025-0065-SO 10/25/1999 3 - 5 Grab
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	_mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

-

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-026 DA10067 DA1so-026-0067-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-026 DA10068 DA1so-026-0068-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10070 DA1so-027-0070-SO 10/20/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10071 DA1so-027-0071-SO 10/20/1999 3 - 5 Grab
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2.6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-028 DA10074 DA1so-028-0074-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-028 DA10075 DA1so-028-0075-SO 10/26/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-030 DA10080 DA1so-030-0080-SO 10/26/1999 1 - 3 Grab
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1.3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	<u>2.5 U</u>
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-031 DA10083 DA1so-031-0083-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-031 DA10084 DA1so-031-0084-SO 10/26/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-032 DA10086 DA1so-032-0086-SO 10/27/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-032 DA10087 DA1so-032-0087-SO 10/27/1999 3 - 5 Grab
Analyte	Units	·····			
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type	Units	NACA Plane Storage Area - Outside Berm DA1-033 DA10089 DA1so-033-0089-SO 10/27/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-033 DA10090 DA1so-033-0090-SO 10/27/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-034 DA10092 DA1so-034-0092-SO 10/27/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-034 DA10093 DA1so-034-0093-SO 10/27/1999 3 - 5 Grab
Analyte		<u> </u>			0.05.11
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-035 DA10095 DA1so-035-0095-SO 11/01/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-035 DA10096 DA1so-035-0096-SO 11/01/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-036 DA10098 DA1so-036-0098-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-036 DA10099 DA1so-036-0099-SO 11/02/1999 3 - 5 Grab
Analyte	Units	· · · · · · · · · · · · · · · · · · ·			
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-037 DA10101 DA1so-037-0101-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-037 DA10102 DA1so-037-0102-SO 11/02/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10104 DA1so-038-0104-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10133 DA1ss-038-0133-SO 11/02/1999 1 - 3 Field Duplicate
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg				
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0. <u>65</u> U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-038 DA10105 DA1so-038-0105-SO 11/02/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10134 DA1ss-038-0134-SO 11/02/1999 3 - 5 Field Duplicate	NACA Plane Storage Area - Outside Berm DA1-039 DA10107 DA1so-039-0107-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-039 DA10108 DA1so-039-0108-SO 11/02/1999 3 - 5 Grab
Analyte	Units				
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg				
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	8: X			
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	On Berm DA1-001 DA10002 DA1so-001-0002-SO 10/19/1999 1 - 3 Grab	On Berm DA1-002 DA10004 DA1so-002-0004-SO 10/19/1999 1 - 3 Grab	On Berm DA1-003 DA10006 DA1so-003-0006-SO 10/19/1999 1 - 3 Grab	On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab
		0.05 II	0.05 11	0.05.11	0.25 U
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2.6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.4 U			
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U			
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-007 DA10135 DA1ss-007-0135-SO 10/20/1999 1 - 3 Field Duplicate	On Berm DA1-010 DA10020 DA1so-010-0020-SO 10/20/1999 1 - 3 Grab	South Ditch Line DA1-040 DA10110 DA1so-040-0110-SO 11/03/1999 1 - 3 Grab
Analyte	Units			
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.12 J
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg			
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg			
RDX	mg/kg	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U

SUBSURFACE SOIL – INORGANICS

Table E-7. Demolition Area 1 Subsurface Soil Inorganics

Location Station Sample ID Customer ID		Inside Bermed Area DA1-041 DA10112 DA1so-041-0112-SO	Inside Bermed Area DA1-041 DA10113 DA1so-041-0113-SO	Inside Bermed Area DA1-041 DA10164 DA1so-041-0164-SO	NACA Plane Storage Area - Outside Berm DA1-042 DA10115 DA1so-042-0115-SO	NACA Plane Storage Area - Outside Berm DA1-042 DA10116 DA1so-042-0116-SO
Date		11/03/1999	11/03/1999	11/03/1999	11/03/1999	11/03/1999
Depth (ft)		1 - 3	3 - 5	6 - 8	1-3	3 - 5
Field Type		Grab	Grab	Grab	Grab	Grab
Analyte	Units					
Cyanide	mg/kg	0.6 U	0.61 U	0.64 U	0.6 U	0.59 U
Aluminum	mg/kg	15700 =	11600 =	10500 =	15100 =	12600 =
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.3 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	15.8 =	17.7 =	14.1 =	15 =	15.7 =
Barium	mg/kg	54.6 =	57.4 =	61.2 =	65.1 =	118 =
Beryllium	mg/kg	0.4 J	0.51 J	0.34 U	0.4 J	0.53 J
Cadmium	mg/kg	0.6 U	0.61 U	0.64 U	0.6 U	0.59 U
Calcium	mg/kg	532 U	734 U	2170 =	1220 =	2010 =
Chromium	mg/kg	20 =	17.1 =	16.6 =	19.3 =	19.6 =
Cobalt	mg/kg	9.9 =	9.8 =	9.3 =	15.4 =	15.3 =
Copper	mg/kg	19 J	23.5 J	20.6 J	19.7 J	23.1 J
Iron	mg/kg	30700 =	30000 =	26900 =	30800 =	32100 U
Lead	mg/kg	14.5 =	13.3 =	12.1 =	14.3 =	14.1 =
Magnesium	mg/kg	3280 =	3100 =	3610 =	3400 =	4440 =
Manganese	mg/kg	209 =	228 =	256 =	274 =	414 =
Mercury	mg/kg	0.042 U	0.04 U	0.037 U	0.041 U	0.03 U
Nickel	mg/kg	22.4 =	22.6 =	24.9 =	23.7 =	39.2 =
Potassium	mg/kg	1480 =	1260 =	1530 =	1430 =	1490 =
Selenium	mg/kg	0.9 =	0.51 J	0.64 U	0.75 =	0.47 J
Silver	mg/kg	1.2 U	1.2 U	<u>1.3 U</u>	1.2 U	1.2 U
Sodium	mg/kg	79.9 U	88.3 U	92.1 U	66.2 U	62.7 U
Thallium	mg/kg	0.31 J	0.27 J	0.24 J	0.38 J	0.33 J
Vanadium	mg/kg	26 =	19.9 =	17.5 =	25.7 =	20.9 =
Zinc	mg/kg	52.8 J	60.4 J	64.4 J	76.6 J	79.6 J

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-042 DA10165 DA1so-042-0165-SO 11/03/1999 6 - 8 Grab	Inside Bermed Area DA1-012 DA10024 DA1so-012-0024-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-012 DA10025 DA1so-012-0025-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-013 DA10027 DA1so-013-0027-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-013 DA10028 DA1so-013-0028-SO 10/21/1999 3 - 5 Grab
Analyte	Units				······································	0. 50 XX
Cyanide	mg/kg	0.62 U	0.59 U	0.61 U	0.6 U	0.59 U
Aluminum	mg/kg	14800 =	12800 =	11600 =	18700 =	19700 = *
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	0.77 J	0.54 J
Arsenic	mg/kg	14.5 =	17.7 =	14.1 =	15.7 =	13.4 =
Barium	mg/kg	73.7 =	64 =	80.7 =	75.3 =	179 = *
Beryllium	mg/kg	0.53 J	0.49 J	0.52 J	0.38 J	0.76 =
Cadmium	mg/kg	0.62 U	0.59 U	0.61 U	0.6 U	0.59 U
Calcium	mg/kg	15200 =	732 =	1460 =	1680 J	2000 J
Chromium	mg/kg	21.7 =	18.7 =		22 =	24.9 =
Cobalt	mg/kg	12.5 =	9.1 =	14 =	7.9 =	13.5 =
Copper	mg/kg	22.4 J	21.8 J	21.7 J	17.3 =	20.9 =
Iron	mg/kg	31500 =	34500 =	27600 =	27800 J	34300 =
Lead	mg/kg	13.5 =	15.7 =	12.4 =	15.6 =	11.9 =
Magnesium	mg/kg	5420 =	3000 =	3580 =	2860 =	4270 =
Manganese	mg/kg	329 =	509 =	380 =	295 =	283 =
Mercury	mg/kg_	0.043 U	0.031 U	0.03 U	0.041 J	0.036 J
Nickel	mg/kg	30.9 =	23.3 =	31.4 =	18.4 =	33 =
Potassium	mg/kg	2980 =	1300 =	1610 =	1210 =	2210 =
Selenium	mg/kg	0.62 U	0.59 U	0.61 U	1 =	0.48 J
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	114 U	59.4 U	53.7 U	111 U	154 U
Thallium	mg/kg	0.37 J	0.38 J	0.36 J	0.35 J	0.48 J
Vanadium	mg/kg	24.5 =	22.2 =	18.6 =	32 =	26.4 =
Zinc	mg/kg	74.3 J	59.2 J	64.3 J	54.4 =	70.2 =

00-090P(xls)041000

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-014 DA10030 DA1so-014-0030-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-014 DA10031 DA1so-014-0031-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-015 DA10033 DA1so-015-0033-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-015 DA10034 DA1so-015-0034-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-016 DA10037 DA1so-016-0037-SO 10/21/1999 1 - 3 Grab
Cyanide	mg/kg	0.59 U	0.6 U	0.58 U	0.59 U	0.59 U
Aluminum	mg/kg	14600 =	15300 =	14000 =	17000 =	12700 =
Antimony	mg/kg	0.78 J	0.96 J	0.79 J	1.2 UJ	1.2 UJ
Arsenic	mg/kg	15.9 =	15.3 =	17 =	18 =	17 =
Barium	mg/kg	85.8 =	90.9 =	42.3 =	78.3 =	74.4 =
Beryllium	mg/kg	0.38 J	0.5 J	0.36 J	0.62 =	0.57 J
Cadmium	mg/kg	0.59 U	0.6 U	0.58 U	0.59 U	0.59 U
Calcium	mg/kg	1350 J	2470 J	569 J	1640 J	877 =
Chromium	mg/kg	19.5 =	22 =	19.1 =	22.2 =	19.4 =
Cobalt	mg/kg	11.1 =	13.5 =	10.4 =	14.1 =	11 =
Copper	mg/kg	23.5 =	22.8 =	24 =	26.3 =	20.9 J
Iron	mg/kg	28400 =	31100 =	32400 =	28100 =	31200 =
Lead	mg/kg	15.2 =	13.9 =	14.5 =	15.1 =	13.4 =
Magnesium	mg/kg	3240 =	4360 =	3200 =	4020 =	3850 =
Manganese	mg/kg	363 =	450 =	199 =	416 =	226 =
Mercury	mg/kg	0.035 J	0.015 J	0.034 J	0.021 J	0.021 U
Nickel	mg/kg	26.4 =	34.3 =	24.1 =	30.8 =	28.3 =
Potassium	mg/kg	1540 =	2220 =	936 =	2390 =	1290 =
Selenium	mg/kg	0.71 =	0.66 =	0.86 =	0.46 =	0.59 U
Silver	mg/kg_	1.2 U				
Sodium	mg/kg	137 U	126 U	83.3 U	134 U	70.8 U
Thallium	mg/kg	0.4 J	0.38 J	0.37 J	0.41 J	0.34 J
Vanadium	mg/kg	23.6 =	24 =	21 =	25.9 =	21.1 =
Zinc	mg/kg	58.9 =	70.5 =	59.4 =	70.4 =	65.4 J

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-016 DA10132 DA1ss-016-0132-SO 10/21/1999 1 - 3 Field Duplicate	Inside Bermed Area DA1-016 DA10038 DA1so-016-0038-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-017 DA10040 DA1so-017-0040-SO 10/21/1999 1 - 3 Grab	Inside Bermed Area DA1-017 DA10041 DA1so-017-0041-SO 10/21/1999 3 - 5 Grab	Inside Bermed Area DA1-018 DA10043 DA1so-018-0043-SO 10/22/1999 1 - 3 Grab
Cyanide	mg/kg	0.25 U	0.6 U	0.6 U	0.63 U	0.61 U
Aluminum	mg/kg	12300 =	8430 =	10700 =	11300 =	12600 J
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.3 UJ	1.2 UJ
Arsenic	mg/kg	15.2 =	14.3 =	15.1 =	15.1 =	17.5 =
Barium	mg/kg	71.7 =	64.5 =	43.5 =	69.7 =	77.5 J
Beryllium	mg/kg	0.56 J	0.34 J	0.34 J	0.46 J	0.66 U
Cadmium	mg/kg	0.59 U	0.6 U	0.6 U	0.63 U	0.61 UJ
Calcium	mg/kg	619 =	1040 =	784 =	1970 =	1040 =
Chromium	mg/kg	18.1 =	13.2 =	15.7 =	17.2 =	18.8 =
Cobalt	mg/kg	14.2 =	9.4 =	12.9 =	8.8 =	11.8 =
Copper	mg/kg	21.5 J	20.1 J	20.3 J	20.6 J	22.1 J
Iron	mg/kg	29400 =	24000 =	27100 =	27300 =	32400 J
Lead	mg/kg	13.9 =	11.9 =	13.6 =	11.8 =	15.4 =
Magnesium	mg/kg	3790 =	2790 =	3070 =	3530 =	3660 J
Manganese	mg/kg	262 =	334 =	293 =	282 =	307 J
Mercury	mg/kg	0.026 U	0.0078 U	0.054 J *	0.018 U	0.014 J
Nickel	mg/kg	29.1 =	24.6 =	22.1 =	25.3 =	27.1 =
Potassium	mg/kg	1410 =	1010 =	871 =	1460 =	1270 =
Selenium	mg/kg	0.59 U	0.6 U	0.6 U	0.63 U	0.61 U
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U
Sodium	mg/kg	54.5 U	63.1 U	57 U	55.8 U	87.2 U
Thallium	mg/kg	0.43 J	0.31 J	0.36 J	0.34 J	0.34 J
Vanadium	mg/kg	19.8 =	13.9 =	16.5 =	18.7 =	19.1 =
Zinc	mg/kg	68.2 J	56.8 J	53.8 J	60.8 J	66.2 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Inside Bermed Area DA1-018 DA10131 DA1ss-018-0131-SO 10/22/1999 1 - 3 Field Duplicate	Inside Bermed Area DA1-018 DA10044 DA1so-018-0044-SO 10/22/1999 3 - 5 Grab	Inside Bermed Area DA1-018 DA10160 DA1so-018-0160-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-019 DA10046 DA1so-019-0046-SO 10/22/1999 1 - 3 Grab	Inside Bermed Area DA1-019 DA10047 DA1so-019-0047-SO 10/22/1999 3 - 5 Grab
Cyanide	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U
Aluminum	mg/kg	12500 J	10700 J	7850 J	16300 J	9130 J
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	13.1 =	16.3 =	16.6 =	21.1 = *	16 =
Barium	mg/kg	79.9 J	52.9 J	55.9 J	59.7 J	52.2 J
Beryllium	mg/kg	0.6 U	0.42 U	0.35 U	0.62 U	0.39 U
Cadmium	mg/kg	0.62 UJ	0.62 UJ	0.62 UJ	0.62 UJ	0.62 UJ
Calcium	mg/kg	1000 =	1450 =	7450 =	595 J	1180 =
Chromium	mg/kg	18.3 =	17 =	13.4 =	22.4 =	14.1 =
Cobalt	mg/kg	10.4 =	10.5 =	10.9 =	10.9 =	9.6 =
Соррег	mg/kg	20.4 J	21.2 J	22 J	28 J	19.6 J
Iron	mg/kg	27700 J	28900 J	26200 J	38600 J *	26000 J
Lead	mg/kg	11.5 =	13.9 =	14.1 =	17.5 =	13.4 =
Magnesium	mg/kg	3680 J	3330 J	4760 J	3890 J	2810 J
Manganese	mg/kg	226 J	390 J	463 J	265 J	396 J
Mercury	mg/kg	0.0085 J	0.0066 J	0.12 U	0.038 J	0.12 U
Nickel	mg/kg	27.1 =	26.1 =	25.6 =	27.7 =	22.7 =
Potassium	mg/kg	1400 =	1400 =	1090 =	1180 =	1120 =
Selenium	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U
Silver	mg/kg	1.2 U	<u>1.2 U</u>	1.2 U	1.2 Ŭ	1.2 U
Sodium	mg/kg	60.2 U	48.9 U	87.8 U	50.5 U	40.5 U
Thallium	mg/kg	0.35 J	0.3 J	0.44 J	0.36 J	0.3 J
Vanadium	mg/kg	17.9 =	17.7 =	13.6 =	23.9 =	15.3 =
Zinc	mg/kg	63.9 =	63.7 =	66.4 =	72.3 =	56.6 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-019 DA10161 DA1so-019-0161-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	Inside Bermed Area DA1-020 DA10050 DA1so-020-0050-SO 10/22/1999 3 - 5 Grab	Inside Bermed Area DA1-020 DA10162 DA1so-020-0162-SO 10/22/1999 6 - 8 Grab	Inside Bermed Area DA1-021 DA10052 DA1so-021-0052-SO 10/24/1999 1 - 3 Grab
Analyte	Units					
Cyanide	mg/kg	0.61 U				
Aluminum	mg/kg	13800 J	18300 J	13300 J	16900 J	13800 =
Antimony	mg/kg	1.2 UJ				
Arsenic	mg/kg	17.8 =	20.2 = *	14.8 =	13.1 =	14.3 =
Barium	mg/kg	65.2 J	108 J	69.7 J	104 J	70.1 =
Beryllium	mg/kg	0.59 U	0.79 U	0.51 U	0.63 U	0.56 U
Cadmium	mg/kg	0.61 UJ				
Calcium	mg/kg	21600 =	3570 =	22400 =	33600 =	1050 =
Chromium	mg/kg	20.7 =	27.8 = *	20.5 =	25.2 =	17.5 J
Cobalt	mg/kg	12.5 =	16.4 =	11.4 =	13.2 =	9.7 =
Copper	mg/kg	18.7 J	27.9 J	19.7 J	22.7 J	20.6 J
Iron	mg/kg	32600 J	41000 J *	29600 J	32500 J	28200 =
Lead	mg/kg	13.1 =	17.9 =	12.6 =	13.9 =	12.8 J
Magnesium	mg/kg	5920 J	6260 J	7290 J	9170 J *	3240 J
Manganese	mg/kg	370 J	517 J	307 J	431 J	239 =
Mercury	mg/kg	0.025 J	0.029 J	0.015 J	0.014 J	0.031 J
Nickel	mg/kg	31 =	43 =	29.9 =	35 =	25 =
Potassium	mg/kg	2930 =	2800 =	2780 =	3820 = *	1160 =
Selenium	mg/kg	0.61 U				
Silver	mg/kg	1.2 U				
Sodium	mg/kg	121 U	58.6 U	98.4 U	169 U	72.1 U
Thallium	mg/kg	0.3 J	0.34 J	0.33 J	0.34 J	0.27 J
Vanadium	mg/kg	21.7 =	27.2 =	20.7 =	25.8 =	18.7 =
Zinc	mg/kg	66.1 =	93.2 =	68.9 =	80.1 =	61 J

Location Station Sample ID		Inside Bermed Area DA1-021 DA10053 DA1so-021-0053-SO	Inside Bermed Area DA1-021 DA10163 DA1so-021-0163-SO	NACA Plane Storage Area - Outside Berm DA1-022 DA10055 DA1so-022-0055-SO	NACA Plane Storage Area - Outside Berm DA1-022 DA10056 DA1so-022-0056-SO	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO
Customer ID Date		DA160-021-0053-50 10/24/1999	10/24/1999	10/25/1999	10/25/1999	10/25/1999
Depth (ft)		3-5	6 - 8	1 - 3	3 - 5	1-3
Field Type		Grab	Grab	Grab	Grab	Grab
Analyte	Units					
Cyanide	mg/kg	0.62 U	0.63 U	0.59 U	0.59 U	0.6 U
Aluminum	mg/kg	12900 =	13500 =	14500 =	13500 =	17600 =
Antimony	mg/kg	1.2 UJ	1.3 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	15.4 =	18.8 =	13.7 =	12.8 =	14.3 =
Barium	mg/kg	68.4 =	79.7 =	86.2 =	70.5 =	77.6 =
Beryllium	mg/kg	0.55 U	0.57 U	0.59 U	0.58 U	0.73 U
Cadmium	mg/kg	0.62 UJ	0.63 UJ	0.59 UJ	0.59 UJ	0.6 UJ
Calcium	mg/kg	1950 =	19000 =	1630 J	6160 J	826 J
Chromium	mg/kg	17.1 J	18.8 J	20.6 =	19.5 =	22.7 =
Cobalt	mg/kg	11 =	17.5 =	7.8 =	10.5 =	11.9 =
Copper	mg/kg	20.8 J	20.4 J	19.6 J	18.1 J	87.3 J *
Iron	mg/kg	28400 =	30700 =	29100 =	26600 =	31500 =
Lead	mg/kg	13.7 J	14.1 J	11.3 =	11.4 =	16.6 =
Magnesium	mg/kg	3700 J	6310 J	3890 =	4470 =	4170 =
Manganese	mg/kg	424 =	532 =	199 J	340 J	251 J
Mercury	mg/kg	0.017 J	0.13 U	0.038 J	0.014 J	0.029 J
Nickel	mg/kg	28.2 =	31.2 =	28.1 J	29 J	28.3 J
Potassium	mg/kg	1680 =	2770 =	1820 =	2880 =	2620 =
Selenium	mg/kg	0.62 U	0.63 U	0.59 U	0.59 U	0.6 U
Silver	mg/kg	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	100 U	114 U	36.3 U	51.5 U	47 U
Thallium	mg/kg	0.3 J	0.29 J	0.54 UJ	0.46 UJ	0.54 UJ
Vanadium	mg/kg	18.9 =	20.5 =	22.6 =	21.9 =	26.9 =
Zinc	mg/kg	65.7 J	71.1 J	61.1 J	61.2 J	167 J *

Location Station Sample ID Customer ID Date Depth (ft) Field Type	Units	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-024 DA10061 DA1so-024-0061-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-024 DA10062 DA1so-024-0062-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-025 DA10064 DA1so-025-0064-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-025 DA10065 DA1so-025-0065-SO 10/25/1999 3 - 5 Grab
Analyte			0 (1 Y)	0 (1 M	0.59.11	0.61 U
Cyanide	mg/kg	0.61 U	0.64 U	0.61 U	0.58 U 12100 =	13700 =
Aluminum	mg/kg	14100 =	15500 =	9840 =		1.2 UJ
Antimony	mg/kg	1.2 UJ	1.3 UJ	1.2 UJ 13.9 =	1.2 UJ 13 =	1.2 05
Arsenic	mg/kg	15.1 =	14.7 =	59.1 =	<u>13 =</u> 60 =	108 =
Barium	mg/kg	89.4 =	<u>91.7</u> =		0.55 U	0.76 U
Beryllium	mg/kg	0.64 U	0.66 U	0.45 U 0.61 UJ	0.55 U 0.58 UJ	0.76 U 0.61 UJ
Cadmium	mg/kg	0.61 UJ	0.64 UJ 569 J	1710 J	0.38 UJ 773 J	1890 J
Calcium	mg/kg	2340 J		1710 J	17.1 =	20.7 =
Chromium	mg/kg	20.8 =	<u>19.8 =</u> 8.8 =	10.1 =	17.1 - 10.6 =	14.3 =
Cobalt	mg/kg	11.2 =	<u>8.8 –</u> 30.2 J	20.9 J	10.0 – 18 J	21.2 J
Copper	mg/kg	33.8 J * 30300 =	27300 =	26700 =	26300 =	30800 =
Iron	mg/kg		13.3 =	12.4 =	12.4 =	13.4 =
Lead	mg/kg	<u>14.3 =</u> 4470 =	<u> </u>	3440 =	3160 =	4420 =
Magnesium	mg/kg	4470 = 315 J	<u> </u>	<u> </u>	272 J	4420 – 414 J
Manganese	mg/kg	0.018 J	0.038 J	0.019 J	0.29 = *	0.012 J
Mercury Nickel	mg/kg	31.1 J	22.5 J	27.6 J	22.8 J	36.6 J
Potassium	mg/kg mg/kg	2630 =	2430 =	1380 =	1380 =	2080 =
Selenium		0.61 U	0.64 U	0.61 U	0.58 U	0.61 U
Silver	mg/kg mg/kg	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	44.8 U	642 U	62.8 U	34 U	46 U
Thallium	mg/kg	0.45 UJ	0.62 UJ	0.4 UJ	0.57 UJ	0.49 UJ
Vanadium	mg/kg	23.4 =	24.9 =	16.6 =	20.2 =	22.4 =
Zinc	mg/kg	88.2 J	66,3 J	79.6 J	55.7 J	71.3 J
	I mg/ kg	00.23	00.5 1	12.03	55.18	11.00

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-026 DA10067 DA1so-026-0067-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-026 DA10068 DA1so-026-0068-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10070 DA1so-027-0070-SO 10/20/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10071 DA1so-027-0071-SO 10/20/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-028 DA10074 DA1so-028-0074-SO 10/26/1999 1 - 3 Grab
Analyte	Units		······································			
Cyanide	mg/kg	0.61 U	0.62 U	0.59 U	0.59 U	0.6 U
Aluminum	mg/kg	<u>13900 J</u>	15000 J	14600 =	28600 = *	14100 J
Antimony	mg/kg	1.2 R	1.2 R	0.75 J	1.3 J *	1.2 R
Arsenic	mg/kg	15.8 J	16.7 J	16.2 =	20.9 = *	16.6 J
Barium	mg/kg	67.4 =	89.4 =	75 =	107 =	99.5 =
Beryllium	mg/kg	0.43 U	0.55 U	0.49 J	0.79 =	0.65 U
Cadmium	mg/kg	0.61 UJ	0.62 UJ	0.59 U	0.59 U	0.6 UJ
Calcium	mg/kg	965 J	2660 J	1310 J	28200 J	1510 J
Chromium	mg/kg	20 J	22.6 J	19.2 =	34.7 = *	20 J
Cobalt	mg/kg	10.1 J	13.4 J	20.5 =	17.6 =	13.2 J
Copper	mg/kg	23.9 J	24.1 J	39.2 = *	35.3 = *	23 J
Iron	mg/kg	31400 J	35200 J	44300 J *	31900 J	31600 J
Lead	mg/kg	15 =	14.5 =	16.5 =	19.4 = *	12.5 =
Magnesium	mg/kg	3780 J	5460 J	3770 =	9120 = *	3840 J
Manganese	mg/kg	188 J	359 J	416 =	472 =	284 J
Mercury	mg/kg	0.0076 J	0.022 J	0.015 J	0.0096 J	0.024 J
Nickel	mg/kg	26.3 J	36.3 J	31.3 =	44.2 =	29.4 J
Potassium	mg/kg	1250 J	2230 J	1240 =	4430 = *	1740 J
Selenium	mg/kg	1 =	0.85 =	0.54 J	0.59 U	1.2 =
Silver	mg/kg	1.2 UJ	1.2 UJ	1.2 U	1.2 U	1.2 UJ
Sodium	mg/kg	608 UJ	616 UJ	93 U	182 U	602 UJ
Thallium	mg/kg	0.52 UJ	0.44 UJ	0.45 J	0.45 J	0.4 UJ
Vanadium	mg/kg	22.8 J	24.4 J	19.9 =	39.9 = *	23.5 J
Zinc	mg/kg	68.8 J	74 J	82.4 =	97 = *	67.2 J

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-028 DA10075 DA1so-028-0075-SO 10/26/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-030 DA10080 DA1so-030-0080-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-031 DA10083 DA1so-031-0083-SO 10/26/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-031 DA10084 DA1so-031-0084-SO 10/26/1999 3 - 5 Grab
	1	0.61 U	0.67 U	0.6 U	0.59 U	0.61 U
Cyanide Aluminum	mg/kg	12500 J	17900 =	14400 =	13300 =	11600 =
Antimony	mg/kg mg/kg	1.2 R	1/300 – 1.2 J *	1.2 R	1.2 R	1.2 R
Arsenic	mg/kg	17.3 J	12.7 J	14.7 J	15.8 J	13.5 J
Barium	mg/kg	79 =	12.7 J	78 J	71.8 J	90.4 J
Beryllium	mg/kg	0.39 U	0.92 U	0.55 U	0.56 U	0.43 U
Cadmium	mg/kg	0.61 UJ	110 J *	0.6 UJ	0.59 UJ	0.61 UJ
Calcium	mg/kg	11200 J	18300 =	15000 =	1000 =	17200 =
Chromium	mg/kg	19.9 J	22 J	22.2 J	18.7 J	19.5 J
Cobalt	mg/kg	12.9 J	9.3 J	12.5 J	12.4 J	12 J
Copper	mg/kg	24.2 J	597 J *	21.3 J	47.3 J *	25 J
Iron	mg/kg	32300 J	49200 J *	31300 J	29900 J	28200 J
Lead	mg/kg	13.8 =	401 = *	13.1 =	16.1 =	12.8 =
Magnesium	mg/kg	5200 J	5430 J	5740 J	3040 J	4710 J
Manganese	mg/kg	428 J	842 J	337 J	324 J	441 J
Mercury	mg/kg	0.018 J	0.052 J *	0.016 J	0.032 J	0.015 J
Nickel	mg/kg	34 J	36.1 J	31.6 J	25.7 J	34.8 J
Potassium	mg/kg	1810 J	2160 J	2860 J	1490 J	1560 J
Selenium	mg/kg	0.87 =	0.67 U	0.6 U	0.59 U	0.61 U
Silver	mg/kg	1.2 UJ	0.48 J *	1.2 UJ	1.2 UJ	1.2 UJ
Sodium	mg/kg	609 UJ	669 J *	603 UJ	593 UJ	610 UJ
Thallium	mg/kg	0.41 UJ	0.41 J	0.42 J	0.4 J	0.42 J
Vanadium	mg/kg	20.7 J	17.4 =	24.3 =	22.1 =	19.6 =
Zinc	mg/kg	74.8 J	2830 = *	67.7 =	125 = *	82.9 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-032 DA10086 DA1so-032-0086-SO 10/27/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-032 DA10087 DA1so-032-0087-SO 10/27/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-033 DA10089 DA1so-033-0089-SO 10/27/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-033 DA10090 DA1so-033-0090-SO 10/27/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-034 DA10092 DA1so-034-0092-SO 10/27/1999 1 - 3 Grab
Analyte	Units					ann tae
Cyanide	mg/kg	0.56 U	0.59 U	0.59 U	0.64 U	0.6 U
Aluminum	mg/kg	10400 =	14200 =	10500 =	9530 =	9730 =
Antimony	mg/kg	1.1 U	1.2 R	1.2 R	1.3 R	1.2 R
Arsenic	mg/kg	11.6 J	15.2 R	12.7 J	12.2 J	17.9 J
Barium	mg/kg	35.8 J	107 J	68.9 J	56.9 J	62.1 J
Beryllium	mg/kg	0.28 U	0.72 U	0.44 U	0.41 U	0.41 U
Cadmium	mg/kg	0.56 UJ	0.59 UJ	0.59 UJ	0.64 UJ	0.6 UJ
Calcium	mg/kg	689 =	3290 =	1380 =	3780 =	1490 =
Chromium	mg/kg	13.2 J	21.6 J	15.3 J	14.9 J	15.6 J
Cobalt	mg/kg	7.6 J	14 J	10.5 J	9.6 J	8.8 J
Copper	mg/kg	17.3 J	22.5 J	18.9 J	<u>1</u> 8.7 J	22.8 J
Iron	mg/kg	21200 J	31900 J	24200 J	23400 J	27700 J
Lead	mg/kg	11.5 =	13.5 =	11.6 =	11.4 =	13.4 =
Magnesium	mg/kg	1980 J	4640 J	2860 J	3110 J	3050 J
Manganese	mg/kg	237 J	435 J	320 J	469 J	302 J
Mercury	mg/kg	0.11 U	0.12 U	0.028 J	0.014 J	0.037 J
Nickel	mg/kg	14.1 J	39.2 J	23.5 J	23.1 J	25.4 J
Potassium	mg/kg	927 J	1890 J	1440 J	1720 J	1280 J
Selenium	mg/kg	0.56 U	0.59 U	0.59 U	0.64 U	0.6 U
Silver	mg/kg	1.1 UJ	1.2 UJ	1.2 UJ	1.3 UJ	1.2 UJ
Sodium	mg/kg	559 UJ	594 UJ	591 UJ	644 UJ	596 UJ
Thallium	mg/kg	0.39 J	0.49 J	0.34 J	0.37 J	0.38 J
Vanadium	mg/kg	18.8 =	22.7 =	17.7 =	17.1 =	17.2 =
Zinc	mg/kg	48.5 =	74.6 =	58.1 =	57.7 =	59.4 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-034 DA10093 DA1so-034-0093-SO 10/27/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-035 DA10095 DA1so-035-0095-SO 11/01/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-035 DA10096 DA1so-035-0096-SO 11/01/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-036 DA10098 DA1so-036-0098-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-036 DA10099 DA1so-036-0099-SO 11/02/1999 3 - 5 Grab
Analyte	Units					·····
Cyanide	mg/kg	0.62 U	0.58 U	0.62 U	0.61 U	0.59 U
Aluminum	mg/kg	6370 =	7140 =	12400 =	14000 =	8720 =
Antimony	mg/kg	1.2 R	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	13.7 J	12.2 =	12.5 =	15.1 =	9.1 =
Barium	mg/kg	35.1 J	38.7 =	74.9 =	103 =	54.2 =
Beryllium	mg/kg	0.27 U	0.29 J	0.36 J	0.8 =	0.33 J
Cadmium	mg/kg	0.62 UJ	0.58 U	0.62 U	0.61 U	0.59 U
Calcium	mg/kg	1670 =	1120 =	9830 =	4120 =	2180 =
Chromium	mg/kg	10.8 J	10.2 =	19.2 =	20.8 =	14 =
Cobalt	mg/kg	7.1 J	7.5 =	11.2 =	16.5 =	8.1 =
Copper	mg/kg	_18.9 J	16.7 =	19.4 =	22.5 =	14.7 =
Iron	mg/kg	21800 J	20000 =	27200 =	31700 =	19800 =
Lead	mg/kg	11.2 =	9.5 J	12.8 J	13.9 J	8.7 J
Magnesium	mg/kg	2340 J	1870 =	4530 =	4360 =	2660 =
Manganese	mg/kg	247 J	282 =	320 =	422 =	277 =
Mercury	mg/kg	0.12 U	0.024 U	0.026 U	0.033 U	0.023 U
Nickel	mg/kg	19.8 J	16 J	28.6 J	37.7 J	19.1 J
Potassium	mg/kg	871 J	1060 =	2090 =	1450 =	1230 =
Selenium	mg/kg	0.62 U	0.63 U	0.62 U	0.61 U	0.45 U
Silver	mg/kg	1.2 UJ	1.2 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	625 UJ	70.8 U	109 U	66.1 U	67.8 U
Thallium	mg/kg	0.37 J	0.27 J	0.39 J	0.39 J	0.34 J
Vanadium	mg/kg	11.6 =	13.4 =	19.3 =	22.5 =	14.3 =
Zinc	mg/kg	51.2 =	45.8 =	69.6 =	74.9 =	47.1 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-037 DA10101 DA1so-037-0101-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-037 DA10102 DA1so-037-0102-SO 11/02/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10104 DA1so-038-0104-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-038 DA10133 DA1ss-038-0133-SO 11/02/1999 1 - 3 Field Duplicate	NACA Plane Storage Area - Outside Berm DA1-038 DA10105 DA1so-038-0105-SO 11/02/1999 3 - 5 Grab
Analyte	Units					
Cyanide	mg/kg	0.55 U	0.54 U	0.57 U	0.58 U	0.59 U
Aluminum	mg/kg	8740 =	8070 =	10400 =	8870 =	6280 =
Antimony	mg/kg	1.1 UJ	1.1 UJ	1.1 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg_	9.5 =	12.7 =	13.6 =	10.8 =	14.7 =
Barium	mg/kg	43.3 =	172 = *	81 =	60.9 =	42.2 =
Beryllium	mg/kg	0.3 J	0.38 J	0.36 J	0.28 J	0.2 U
Cadmium	mg/kg	0.55 U	0.27 J *	0.57 U	0.58 U	0.59 U
Calcium	mg/kg	741 =	1290 =	2130 =	1490 =	1960 =
Chromium	mg/kg	10.2 =	11 =	17.5 =	12.8 =	10.4 =
Cobalt	mg/kg	7.3 =	16 =	12.1 =	8.6 =	8.7 =
Copper	mg/kg	11 =	22 =	20.2 =	14.7 =	21.7 =
Iron	mg/kg	19900 =	23400 =	26900 =	20900 =	22000 =
Lead	mg/kg	11.6 J	14 J	13.1 J	10.2 J	12.1 J
Magnesium	mg/kg	1450 =	1910 =	3510 =	2520 =	2330 =
Manganese	mg/kg	341 =	2180 =	519 =	483 =	349 =
Mercury	mg/kg	0.028 U	0.02 U	0.03 U	0.036 U	0.01 U
Nickel	mg/kg	14.1 J	55.9 J	31.6 J	19.2 J	19.6 J
Potassium	mg/kg	506 J	958 =	1040 =	928 =	893 =
Selenium	mg/kg	0.49 U	0.46 U	0.57 U	0.63 U	0.59 U
Silver	mg/kg	1.1 U	1.1 U	1.1 U	1.2 U	1.2 U
Sodium	mg/kg	49.7 U	63.3 U	51.6 U	49.7 U	67.2 U
Thallium	mg/kg	0.36 J	0.35 J	0.32 J	0.36 J	0.33 J
Vanadium	mg/kg	16.5 =	17.1 =	19.1 =	16.5 =	11.8 =
Zinc	mg/kg	41.9 =	56.1 =	57 =	43.3 =	56.7 =

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-038 DA10134 DA1ss-038-0134-SO 11/02/1999 3 - 5 Field Duplicate	NACA Plane Storage Area - Outside Berm DA1-039 DA10107 DA1so-039-0107-SO 11/02/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-039 DA10108 DA1so-039-0108-SO 11/02/1999 3 - 5 Grab	On Berm DA1-001 DA10002 DA1so-001-0002-SO 10/19/1999 1 - 3 Grab	On Berm DA1-002 DA10004 DA1so-002-0004-SO 10/19/1999 1 - 3 Grab
Analyte	Units					
Cyanide	mg/kg	0.6 U	0.59 U	0.58 U	0.59 U	0.58 U
Aluminum	mg/kg	6370 =	12300 =	10300 =	15500 J	8520 J
Antimony	mg/kg	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Arsenic	mg/kg	14.2 =	11.7 =	11.3 =	17 =	8.3 =
Barium	mg/kg	38.7 =	59.3 =	65 =	91 =	43.9 =
Beryllium	mg/kg	0.2 U	0.35 J	0.42 J	0.74 U	0.58 U
Cadmium	mg/kg	0.6 U	0.59 U	0.58 U	0.59 U	0.58 U
Calcium	mg/kg	1930 =	989 =	11200 =	1230 J	1590 J
Chromium	mg/kg	10.7 =	16.8 =	15.8 =	21.9 =	11.7 =
Cobalt	mg/kg	7.6 =	7.8 =	9.4 =	12.5 =	4.5 J
Copper	mg/kg	21 =	14.4 =	18.6 =	23.2 J	9.2 J
Iron	mg/kg	21700 =	25100 =	24800 =	33100 =	18000 =
Lead	mg/kg	11.6 J	11.5 J	10.8 J	14.2 =	10.6 =
Magnesium	mg/kg	2220 =	2690 =	3700 =	4280 =	1520 =
Manganese	mg/kg	327 =	213 =	336 =	255 J	103 J
Mercury	mg/kg	0.012 U	0.02 U	0.019 U	0.023 J	0.037 J
Nickel	mg/kg	18.1 J	20.2 J	24.7 J	29.8 J	12.1 J
Potassium	mg/kg	984 =	1250 =	1620 =	2030 =	661 =
Selenium	mg/kg	0.6 U	0.59 U	0.58 U	0.59 U	0.58 U
Silver	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Sodium	mg/kg	73.6 U	56.9 U	80.2 U	592 UJ	582 UJ
Thallium	mg/kg_	0.36 J	0.35 J	0.38 J	0.36 J	0.44 J
Vanadium	mg/kg	12.8 =	22.1 =	17.8 =	24.3 =	15.6 =
Zinc	mg/kg	57.1 =	47.1 =	57.9 =	70.7 J	36.3 J

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	On Berm DA1-003 DA10006 DA1so-003-0006-SO 10/19/1999 1 - 3 Grab	On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab	On Berm DA1-007 DA10135 DA1ss-007-0135-SO 10/20/1999 1 - 3 Field Duplicate	On Berm DA1-010 DA10020 DA1so-010-0020-SO 10/20/1999 1 - 3 Grab	South Ditch Line DA1-040 DA10110 DA1so-040-0110-SO 11/03/1999 1 - 3 Grab
Cyanide	mg/kg	0.56 U	0.6 U	0.6 U	0.62 U	0.65 U
Aluminum	mg/kg	7150 J	20100 = *	17800 =	13700 =	13300 =
Antimony	mg/kg	1.1 UJ	0.95 J	0.64 J	1J *	1.3 UJ
Arsenic	mg/kg	10.6 =	16.3 =	17.2 =	21.9 = *	15 =
Barium	mg/kg	26.1 =	67.9 =	68.1 =	66 =	85.3 =
Beryllium	mg/kg	0.18 U	0.64 =	0.55 J	0.41 J	0.53 J
Cadmium	mg/kg	0.56 U	0.6 U	0.6 U	0.62 U	0.65 U
Calcium	mg/kg	1170 J	1910 J	11300 J	738 J	35700 = *
Chromium	mg/kg	10.1 =	26 =	22.8 =	18.9 =	19.7 =
Cobalt	mg/kg	6.4 =	17.1 =	11.2 =	6.7 =	12.2 =
Copper	mg/kg	13.3 J	25.7 =	24.3 =	23.2 =	<u>21.8 J</u>
Iron	mg/kg	19700 =	32200 J	36400 = *	26000 =	29700 =
Lead	mg/kg	10.5 =	17.1 =	15.4 =	15.2 =	13.1 =
Magnesium	mg/kg	1590 =	4220 =	3780 =	2190 =	5540 =
Manganese	mg/kg	278 J	331 =	269 =	191 =	397 =
Mercury	mg/kg	0.024 J	0.023 J	0.04 J	0.035 J	0.031 U
Nickel	mg/kg	11.4 J	33.1 =	29.6 =	18.4 =	29.9 =
Potassium	mg/kg	629 =	1810 =	1550 =	877 =	1920 =
Selenium	mg/kg	0.56 U	0.73 =	0.8 =	1 =	0.65 U
Silver	mg/kg		1.2 U	1.2 U	1.2 U	1.3 U
Sodium	mg/kg	563 UJ	105 U	83.3 U	53.8 U	118 U
Thallium	mg/kg	0.27 J	0.37 J	0.4 J	0.43 J	0.36 J
Vanadium	mg/kg	13.9 =	28.9 =	26.3 =	25.1 =	21.9 =
Zinc	mg/kg	35.6 J	77.5 =	71.2 =	45.6 =	68.5 J

.

SUBSURFACE SOIL – SEMIVOLATILE ORGANIC CONSTITUENTS

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab
Analyte	Units				
1,2,4-Trichlorobenzene	μg/kg	400 UJ	400 U	400 U	440 U
1,2-Dichlorobenzene	µg/kg	400 U	400 U	400 U	440 U
1,3-Dichlorobenzene	µg/kg	400 U	400 U	400 U	440 U
1,4-Dichlorobenzene	µg/kg	400 U	400 U	400 U	440 U
2,4,5-Trichlorophenol	µg/kg	400 UJ	400 U	400 U	440 U
2,4,6-Trichlorophenol	µg/kg	400 UJ	400 U	400 U	440 U
2,4-Dichlorophenol	µg/kg	400 UJ	400 U	400 U	440 U
2,4-Dimethylphenol	μg/kg	400 UJ	400 U	400 U	440 U
2,4-Dinitrophenol	µg/kg	970 UJ	960 UJ	970 UJ	1100 UJ
2,4-Dinitrotoluene	µg/kg	400 UJ	400 U	400 U	440 U
2,6-Dinitrotoluene	μg/kg	400 UJ	400 U	400 U	440 U
2-Chloronaphthalene	µg/kg	400 UJ	400 U	400 U	440 U
2-Chlorophenol	µg/kg	400 U	400 U	400 U	440 U
2-Methyl-4,6-dinitrophenol	µg/kg	970 UJ	960 U	970 U	1100 U
2-Methylnaphthalene	µg/kg	400 UJ	400 U	400 U	440 U
2-Methylphenol	µg/kg	400 U	400 U	400 U	440 U
2-Nitrobenzenamine	µg/kg	970 UJ	960 U	970 U	1100 U
2-Nitrophenol	µg/kg	400 UJ	400 U	400 U	440 U
3,3'-Dichlorobenzidine	µg/kg	400 UJ	400 U	400 U	440 U
3-Nitrobenzenamine	μg/kg	970 UJ	960 U	970 U	1100 U
4-Bromophenyl phenyl ether	µg/kg	400 UJ	400 U	400 U	440 U
4-Chloro-3-methylphenol	µg/kg	400 UJ	400 U	400 U	440 U
4-Chlorobenzenamine	µg/kg	400 UJ	400 U	400 U	440 U
4-Chlorophenyl phenyl ether	µg/kg	400 UJ	400 U	400 U	440 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab
Analyte	Units				
4-Methylphenol	µg/kg	400 UJ	400 U	400 U	440 U
4-Nitrobenzenamine	µg/kg	970 UJ	960 U	970 U	1100 U
4-Nitrophenol	µg/kg	970 UJ	960 U	970 U	1100 U
Acenaphthene	µg/kg	400 UJ	400 U	400 U	440 U
Acenaphthylene	μg/kg	400 UJ	400 U	400 U	440 U
Anthracene	µg/kg	400 UJ	400 U	400 U	440 U
Benz(a)anthracene	µg/kg	400 UJ	400 U	400 U	440 U
Benzo(a)pyrene	µg/kg	400 U	400 U	400 U	440 U
Benzo(b)fluoranthene	µg/kg	400 U	400 U	400 U	440 U
Benzo (g, h, i) perylene	µg/kg	400 U	400 U	400 U	440 U
Benzo(k)fluoranthene	µg/kg	400 U	400 U	400 U	440 U
Bis(2-chloroisopropyl) ether	µg/kg	400 U	400 U	400 U	440 U
Bis(2-ethylhexyl)phthalate	µg/kg	44 J	400 U	400 U	440 U
Butyl benzyl phthalate	µg/kg	400 UJ	400 U	400 U	440 U
Carbazole	μg/kg	400 UJ	400 U	400 U	440 U
Chrysene	µg/kg	400 UJ	400 U	400 U	440 U
Di-n-butyl phthalate	µg/kg	400 UJ	400 U	400 U	440 U
Di-n-octylphthalate	μg/kg	400 U	400 U	400 U	440 U
Dibenz(a,h)anthracene	µg/kg	400 U	400 U	400 U	440 U
Dibenzofuran	µg/kg	400 UJ	400 U	400 U	440 U
Diethyl phthalate	μg/kg	400 UJ	400 U	400 U	440 U
Dimethyl phthalate	µg/kg	400 UJ	400 U	400 U	440 U
Fluoranthene	µg/kg	400 UJ	400 U	400 U	440 U
Fluorene	µg/kg	400 UJ	400.U	400 U	440 U
Hexachlorobenzene	µg/kg	400 UJ	400 U	400 U	440 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab
Analyte	Units				
Hexachlorobutadiene	μg/kg	400 UJ	400 U	400 U	440 U
Hexachlorocyclopentadiene	µg/kg	400 UJ	400 U	400 U	440 U
Hexachloroethane	µg/kg	400 U	400 U	400 U	440 U
Indeno(1,2,3-cd)pyrene	µg/kg	400 U	400 U	400 U	440 U
Isophorone	µg/kg	400 UJ	400 U	400 U	440 U
N-Nitroso-di-n-propylamine	µg/kg	400 U	400 U	400 U	440 U
N-Nitrosodiphenylamine	µg/kg	400 UJ	400 U	400 U	440 U
Naphthalene	µg/kg	400 UJ	400 U	400 U	440 U
Nitrobenzene	µg/kg	400 UJ	400 U	400 U	440 U
Pentachlorophenol	µg/kg	970 UJ	960 U	970 U	1100 U
Phenanthrene	µg/kg	400 UJ	400 U	400 U	440 U
Phenol	µg/kg	400 U	400 U	400 U	440 U
Pyrene	µg/kg	400 UJ	400 U	400 U	440 U
bis(2-Chloroethoxy)methane	μg/kg	400 UJ	400 U	400 U	440 U
bis(2-Chloroethyl) ether	µg/kg	400 U	400 U	400 U	440 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab	South Ditch Line DA1-040 DA10110 DA1so-040-0110-SO 11/03/1999 1 - 3 Grab
Analyte	Units		
1,2,4-Trichlorobenzene	µg∕kg	400 U	430 U
1,2-Dichlorobenzene	µg/kg	400 U	430 U
1,3-Dichlorobenzene	µg/kg	400 U	430 U
1,4-Dichlorobenzene	μg/kg	400 U	430 U
2,4,5-Trichlorophenol	µg/kg	400 U	430 U
2,4,6-Trichlorophenol	μg/kg	400 U	430 U
2,4-Dichlorophenol	μg/kg	400 U	430 U
2,4-Dimethylphenol	µg/kg	400 U	430 U
2,4-Dinitrophenol	μg/kg	960 U	1000 U
2,4-Dinitrotoluene	µg/kg	400 U	430 U
2,6-Dinitrotoluene	µg/kg	400 U	430 U
2-Chloronaphthalene	µg/kg	400 U	430 U
2-Chlorophenol	µg/kg	400 U	430 U
2-Methyl-4,6-dinitrophenol	µg/kg	960 U	1000 U
2-Methylnaphthalene	µg/kg	400 U	430 U
2-Methylphenol	µg/kg	400 U	430 U
2-Nitrobenzenamine	µg/kg	960 U	1000 U
2-Nitrophenol	µg/kg	400 U	430 U
3,3'-Dichlorobenzidine	µg/kg	400 R	430 U
3-Nitrobenzenamine	µg/kg	960 U	1000 U
4-Bromophenyl phenyl ether	µg/kg	400 U	430 U
4-Chloro-3-methylphenol	µg/kg	400 U	430 U
4-Chlorobenzenamine	µg/kg	400 U	430 U
4-Chlorophenyl phenyl ether	µg/kg	400 U	430 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab	South Ditch Line DA1-040 DA10110 DA1so-040-0110-SO 11/03/1999 1 - 3 Grab
Analyte	Units		
4-Methylphenol	µg/kg	400 U	430 U
4-Nitrobenzenamine	µg/kg	960 U	1000 U
4-Nitrophenol	µg/kg	960 U	1000 U
Acenaphthene	µg/kg	400 U	430 U
Acenaphthylene	µg/kg	400 U	430 U
Anthracene	µg/kg	400 U	430 U
Benz(a)anthracene	µg/kg	400 U	430 U
Benzo(a)pyrene	μg/kg	400 U	430 U
Benzo(b)fluoranthene	µg/kg	400 U	430 U
Benzo(g,h,i)perylene	µg/kg	400 U	430 U
Benzo(k)fluoranthene	µg/kg	400 U	430 U
Bis(2-chloroisopropyl) ether	µg/kg	400 U	430 U
Bis(2-ethylhexyl)phthalate	µg/kg	400 U	430 U
Butyl benzyl phthalate	µg/kg	400 U	430 U
Carbazole	μg/kg	400 U	430 U
Chrysene	μg/kg	400 U	430 U
Di-n-butyl phthalate	µg/kg	400 U	430 U
Di-n-octylphthalate	µg/kg	400 U	430 U
Dibenz(a, h)anthracene	µg/kg	400 U	430 U
Dibenzofuran	µg/kg	400 U	430 U
Diethyl phthalate	µg/kg	400 U	430 U
Dimethyl phthalate	µg/kg	400 U	430 U
Fluoranthene	µg/kg	400 U	430 U
Fluorene	µg/kg	400 U	430 U
Hexachlorobenzene	µg/kg	400 U	430 U

Table E-8. Demolition Area 1
Subsurface Soil
Semivolatile Organic Compounds (continued)

Location Station Sample ID Customer ID Date Depth (ft) Field Type		On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab	South Ditch Line DA1-040 DA10110 DA1so-040-0110-SO 11/03/1999 1 - 3 Grab
Analyte	Units		
Hexachlorobutadiene	µg/kg	400 U	430 U
Hexachlorocyclopentadiene	µg/kg	400 U	430 U
Hexachloroethane	µg/kg	400 U	430 U
Indeno(1,2,3-cd)pyrene	µg/kg	400 U	430 U
Isophorone	µg/kg	400 U	430 U
N-Nitroso-di-n-propylamine	µg/kg	400 U	430 U
N-Nitrosodiphenylamine	µg/kg	400 U	430 U
Naphthalene	µg/kg	400 U	430 U
Nitrobenzene	µg/kg	400 U	430 U
Pentachlorophenol	µg/kg	960 U	1000 U
Phenanthrene	µg/kg	400 U	430 U
Phenol	µg/kg	400 U	430 U
Pyrene	µg/kg	400 U	430 U
bis(2-Chloroethoxy)methane	µg/kg	400 U	430 U
bis(2-Chloroethyl) ether	μg/kg	400 U	430 U

SUBSURFACE SOIL – VOLATILE ORGANIC CONSTITUENTS

Table E-9. Demolition Area 1 Subsurface Soil Volatile Organic Compounds

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-042 DA10116 DA1so-042-0116-SO 11/03/1999 3 - 5 Grab	Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab
Analyte	Units			
1,1,1-Trichloroethane	µg/kg	5.9 U	6.1 U	6 U
1,1,2,2-Tetrachloroethane	µg/kg	5.9 U	6.1 U	6 U
1,1,2-Trichloroethane	µg/kg	5.9 U	6.1 U	6U
1,1-Dichloroethane	µg/kg	5.9 U	6.1 U	6 U
1,1-Dichloroethene	µg/kg	5.9 U	6.1 U	6 U
1,2-Dibromoethane	µg/kg	5.9 U	6.1 U	6 U
1,2-Dichloroethane	µg/kg	5.9 U	6.1 U	6 U
1,2-Dichloroethene	µg/kg	5.9 U	6.1 U	6 U
1,2-Dichloropropane	µg/kg	5.9 U	6.1 U	6 U
2-Butanone	µg/kg	12 U	12 U	12 U
2-Hexanone	µg/kg	12 U	12 U	12 U
4-Methyl-2-pentanone	µg/kg	12 U	12 U	12 U
Acetone	µg/kg	4.2 J	15 J	12 UJ
Benzene	µg∕kg	5.9 U	6.1 U	6 U
Bromochloromethane	µg/kg	5.9 U	6.1 U	6 U
Bromodichloromethane	µg/kg	5.9 U	6.1 U	6 U
Bromoform	μg/kg	5.9 U	6.1 U	6 U
Bromomethane	µg/kg	12 U	12 U	12 U
Carbon disulfide	µg/kg	5.9 U	6.1 U	6 U
Carbon tetrachloride	µg/kg	5.9 U	6.1 U	6 U
Chlorobenzene	µg/kg	5.9 U	6.1 U	6 U
Chloroethane	µg/kg	12 U	12 UJ	12 U
Chloroform	µg/kg	5.9 U	6.1 U	6 U
Chloromethane	µg/kg	12 U	12 U	12 U
Dibromochloromethane	µg/kg	5.9 U	6.1 U	6 U
Dimethylbenzene	µg/kg	5.9 U	6.1 U	6 U
Ethylbenzene	µg/kg	5.9 U	6.1 U	6U
Methylene chloride	µg/kg	5.9 U	7.1 U	6 U
Styrene	µg/kg	0.7 J	6.1 U	<u>6</u> U
Tetrachloroethene	µg/kg	5.9 U	6.1 U	6 U
Toluene	µg/kg	4.5 J	8.1 =	6 U
Trichloroethene	µg/kg	5.9 U	6.1 U	<u>6</u> U
Vinyl chloride	µg/kg	12 U	12 U	12 U
cis -1,3-Dichloropropene	µg/kg	5.9 U	6.1 U	6 U
trans -1,3-Dichloropropene	µg/kg	5.9 U	6.1 U	6 U

Location Station Sample ID Customer ID Date Depth (ft) Field Type		NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab	On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab
Analyte	Units			
1,1,1-Trichloroethane	µg/kg	6.1 U	6.7 U	6 U
1,1,2,2-Tetrachloroethane	µg/kg	6.1 U	6.7 U	6 U
1,1,2-Trichloroethane	μg/kg	6.1 U	6.7 U	6 U
1,1-Dichloroethane	µg/kg	6.1 U	6.7 U	6 U
1,1-Dichloroethene	µg/kg	6.1 U	6.7 U	6 U
1,2-Dibromoethane	µg/kg	6.1 U	6.7 U	6 U
1,2-Dichloroethane	µg/kg	6.1 U	6.7 U	6 U
1,2-Dichloroethene	µg/kg	<u>6.1 U</u>	6.7 U	6 U
1,2-Dichloropropane	µg/kg	6.1 U	6.7 U	<u>6U</u>
2-Butanone	µg/kg	12 UJ	13 U	12 UJ
2-Hexanone	µg/kg	12 U	13 U	12 U
4-Methyl-2-pentanone	µg/kg	12 U	13 U	12 U
Acetone	µg/kg	12 UJ	13 UJ	12 UJ
Benzene	µg/kg	6.1 U	6.7 U	6 U
Bromochloromethane	µg/kg	6.1 U	6.7 U	6U
Bromodichloromethane	µg/kg	6.1 U	6.7 U	6 U
Bromoform	µg/kg	6.1 U	6.7 U	6 U
Bromomethane	µg/kg	12 U	13 U	12 U
Carbon disulfide	µg/kg	6.1 U	6.7 U	6 U
Carbon tetrachloride	µg/kg	6.1 U	6.7 U	6 U
Chlorobenzene	µg/kg	6.1 U	6.7 U	6 U
Chloroethane	µg/kg	12 U	13 U	12 U
Chloroform	µg/kg	6.1 U	6.7 U	6 U
Chloromethane	µg/kg	12 U	13 U	12 U
Dibromochloromethane	µg/kg	6.1 U	6.7 U	6 U
Dimethylbenzene	µg/kg	1.3 J	6.7 U	6 U
Ethylbenzene	µg/kg	6.1 U	6.7 U	6 U
Methylene chloride	µg/kg	6.1 U	6.7 U	1 J
Styrene	µg/kg	6.1 U	6.7 U	6 U
Tetrachloroethene	µg/kg	6.1 U	6.7 U	6 U
Toluene	µg/kg	5.3 J	6.7 U	1.6 J
Trichloroethene	µg/kg	6.1 U	6.7 U	6 U
Vinyl chloride	µg/kg	12 U	13 U	12 U
cis-1,3-Dichloropropene	µg/kg	6.1 U	6.7 U	6 U
trans -1,3-Dichloropropene	µg/kg	6.1 U	6.7 U	6 U

SUBSURFACE SOIL – PCBS

Table E-10. Demolition Area 1Subsurface Soil PCBs

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Inside Bermed Area DA1-020 DA10049 DA1so-020-0049-SO 10/22/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10058 DA1so-023-0058-SO 10/25/1999 1 - 3 Grab	NACA Plane Storage Area - Outside Berm DA1-023 DA10059 DA1so-023-0059-SO 10/25/1999 3 - 5 Grab	NACA Plane Storage Area - Outside Berm DA1-029 DA10077 DA1so-029-0077-SO 10/26/1999 1 - 3 Grab	On Berm DA1-007 DA10014 DA1so-007-0014-SO 10/20/1999 1 - 3 Grab
Analyte	Units					
PCB-1016	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1221	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1232	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1242	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1248	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1254	µg/kg	40 U	40 U	40 U	44 U	40 U
PCB-1260	µg/kg	40 U	40 U	40 U	44 U	40 U

SEDIMENT – EXPLOSIVES AND PROPELLANTS

Table E-11. Demolition Area 1SedimentExplosives and Propellants

Location Station Sample ID Customer ID Date Depth (ft) Field Type		Hinkley Cr. Station HC-2 DA1-046 DA10120 DA1sd-046-0120-SD 10/24/1999 0 - 0.5 Grab	Hinkley Cr. Station HC-2 DA1-046 DA10136 DA1sd-046-0136-SO 10/24/1999 0 - 0.5 Field Duplicate	Hinkley Cr. South of AOC DA1-045 DA10119 DA1sd-045-0119-SD 10/24/1999 0 - 0.5 Grab	Hinkley Cr. Upstream DA1-043 DA10117 DA1sd-043-0117-SD 10/24/1999 0 - 0.5 Grab	Wet Area East of AOC DA1-044 DA10118 DA1sd-044-0118-SD 10/24/1999 0 - 0.5 Grab
Analyte	Units					
1,3,5-Trinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dinitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2,4,6-Trinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2,4-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2,6-Dinitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
3-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
4-Nitrotoluene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
HMX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Nitrocellulose	mg/kg	2.6 U	2.6 U	2.4 U	2.5 U	2.8 U
Nitroglycerin	mg/kg	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	mg/kg	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
RDX	mg/kg	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetryl	mg/kg	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U

SEDIMENT – INORGANICS

Table E-12. Demolition Area 1 Sediment

-

Inorganics

Location Station Sample ID Customer ID Date Depth (ft) Field Type Analyte	Units	Hinkley Cr. Station HC-2 DA1-046 DA10120 DA1sd-046-0120-SD 10/24/1999 0 - 0.5 Grab	Hinkley Cr. Station HC-2 DA1-046 DA10136 DA1sd-046-0136-SO 10/24/1999 0 - 0.5 Field Duplicate	Hinkley Cr. South of AOC DA1-045 DA10119 DA1sd-045-0119-SD 10/24/1999 0 - 0.5 Grab	Hinkley Cr. Upstream DA1-043 DA10117 DA1sd-043-0117-SD 10/24/1999 0 - 0.5 Grab	Wet Area East of AOC DA1-044 DA10118 DA1sd-044-0118-SD 10/24/1999 0 - 0.5 Grab
Cyanide	mg/kg	0.65 U	0.65 U	0.59 U	0.63 U	
Aluminum	mg/kg	12800 J	11600 J	0.39.0	3300 J	<u> </u>
Antimony	mg/kg	1.3 UJ	1.3 UJ		1.3 UJ	14400 = + 1.4 UJ
Arsenic	mg/kg	7.6 =	4.8 =	5.2 =	5.4 =	<u> </u>
Barium	mg/kg	64 J	75.8 J	26.9 J	<u> </u>	85.4 =
Beryllium	mg/kg	0.47 U	0.62 U	0.28 U	0.25 U	0.69 U
Cadmium	mg/kg	0.65 UJ	0.65 UJ	0.59 UJ	0.63 UJ	0.7 UJ
Calcium	mg/kg	1960 =	2560 =	563 J	1190 =	1460 =
Chromium	mg/kg	18.8 = *	16.9 =	4.1 =	5.5 =	14.8 J
Cobalt	mg/kg	9.4 = *	9.7 = *	3.5 J	3.5 J	4.7 J
Copper	mg/kg	15.3 J	16 J	3.4 J	4.3 J	15.9 J
Iron	mg/kg	25200 J	22600 J	9360 J	10400 J	12200 =
Lead	mg/kg	11.6 =	13.5 =	5 =	6 =	31.1 J *
Magnesium	mg/kg	3690 J *	3410 J *	852 J	1460 J	1490 J
Manganese	mg/kg	350 J	389 J	305 J	148 J	91.9 =
Mercury	mg/kg	0.056 J	0.015 J	0.043 J	0.017 J	0.013 J
Nickel	mg/kg	25.4 = *	23.2 = *	8.1 =	9.1 =	11.9 =
Potassium	mg/kg	1460 =	1270 =	292 J	319 J	1120 =
Selenium	mg/kg	0.65 U	0.65 U	0.59 U	0.63 U	0.7 U
Silver	mg/kg	1.3 U	1.3 U	1.2 U	1.3 U	1.4 U
Sodium	mg/kg	126 U	149 U	117 U	140 U	165 U
Thallium	mg/kg	0.3 J	0.39 J	0.59 UJ	0.63 UJ	0.33 J
Vanadium	mg/kg	19.7 =	18.5 =	3.7 J	5.6 J	21.6 =
Zinc	mg/kg	55.7 =	49.9 =	34 =	36.6 =	73.6 J

SEDIMENT – SEMIVOLATILE ORGANIC CONSTITUENTS

Table E-13. Demolition Area 1 Sediment Semivolatile Organic Compounds

Location Station Sample ID Customer ID Date Depth (ft)		Hinkley Cr. Station HC-2 DA1-046 DA10120 DA1sd-046-0120-SD 10/24/1999 0 - 0.5	Hinkley Cr. Station HC-2 DA1-046 DA10136 DA1sd-046-0136-SO 10/24/1999 0 - 0.5	Hinkley Cr. South of DA1-045 DA10119 DA1sd-045-0119-SD 10/24/1999 0 - 0.5	Hinkley Cr. Upstream DA1-043 DA10117 DA1sd-043-0117-SD 10/24/1999 0 - 0.5	Wet Area East of AOC DA1-044 DA10118 DA1sd-044-0118-SD 10/24/1999 0 - 0.5
Field Type		Grab	Field Duplicate	Grab	Grab	Grab
Analyte	Units					
1,2,4-Trichlorobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U
1,2-Dichlorobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U
1,3-Dichlorobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U
1,4-Dichlorobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U
2,4,5-Trichlorophenol	µg/kg	430 U	430 U	390 U	420 U	460 U
2,4,6-Trichlorophenol	µg/kg	430 U	430 U	390 U	420 U	460 U
2,4-Dichlorophenol	µg/kg	430 U	430 U	390 U	420 U	460 U
2,4-Dimethylphenol	µg/kg	430 U	430 U	390 U	420 U	460 U
2,4-Dinitrophenol	µg∕kg	1000 U	1000 U	950 U	1000 U	1100 U
2,4-Dinitrotoluene	µg/kg	430 U	430 U	390 U	420 U	460 U
2,6-Dinitrotoluene	µg/kg	430 U	430 U	390 U	420 U	460 U
2-Chloronaphthalene	µg/kg	430 U	430 U	390 U	420 U	460 U
2-Chlorophenol	µg∕kg	430 U	430 U	390 U	420 U	460 U
2-Methyl-4,6-dinitrophenol	µg/kg	1000 U	1000 U	950 U	1000 U	1100 U
2-Methylnaphthalene	μg/kg	430 U	430 U	390 U	420 U	460 U
2-Methylphenol	µg/kg	430 U	430 U	390 U	420 U	460 U
2-Nitrobenzenamine	µg/kg	1000 U	1000 U	950 U	1000 Ŭ	1100 U
2-Nitrophenol	µg/kg	430 U	430 U	390 U	420 U	460 U
3,3'-Dichlorobenzidine	µg/kg	430 U	430 U	390 U	420 U	460 R
3-Nitrobenzenamine	µg/kg	1000 U	1000 U	950 U	1000 U	1100 U
4-Bromophenyl phenyl ether		430 U	430 U	390 U	420 U	460 U
4-Chloro-3-methylphenol	µg/kg	430 U	430 U	390 U	420 U	460 U
4-Chlorobenzenamine	μg/kg	430 U	430 U	390 U	420 U	460 R
4-Chlorophenyl phenyl ether		430 Ŭ	430 U	390 U	420 U	460 U
4-Methylphenol	µg/kg	430 U	430 U	390 U	420 U	460 U
4-Nitrobenzenamine	µg∕kg	1000 U	1000 U	950 U	1000 U	1100 U
4-Nitrophenol	µg/kg	1000 U	1000 U	950 U	1000 U	1100 U
Acenaphthene	µg/kg	430 U	430 U	390 U	420 U	460 U
Acenaphthylene	µg/kg	430 U	430 U	390 U	420 U	460 U

Location	1	Hinkley Cr. Station HC-2	Hinkley Cr. Station HC-2	Hinkley Cr. South of	Hinkley Cr. Upstream	Wet Area East of AOC
Station		DA1-046	DA1-046	DA1-045	DA1-043	DA1-044
Sample ID		DA10120	DA10136	DA10119	DA10117	DA10118
Customer ID		DA1sd-046-0120-SD	DA1sd-046-0136-SO	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999	10/24/1999
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Field Type		Grab	Field Duplicate	Grab	Grab	Grab
			-			
Analyte	Units			1		
Anthracene	µg/kg	430 U	430 U	390 U	420 U	460 U
Benz(a)anthracene	µg/kg	430 U	430 U	390 U	420 U	460 U
Benzo(a)pyrene	µg∕kg	430 U	430 U	390 U	420 U	460 U
Benzo(b)fluoranthene	µg/kg	430 U	430 U	390 U	420 U	460 U
Benzo(g, h, i)perylene	µg/kg	430 U	430 U	390 U	420 U	460 U
Benzo(k)fluoranthene	_µg∕kg	430 U	430 U	390 U	420 U	460 U
bis(2-Chloroisopropyl) ether		430 U	430 U	390 U	420 U	460 U
bis(2-Ethylhexyl)phthalate	µg/kg	430 U	430 U	390 U	420 U	460 U
Butyl benzyl phthalate	µg/kg	430 U	430 U	390 U	420 U	460 U
Carbazole	µg/kg	430 U	430 U	390 U	420 U	460 U
Chrysene	µg/kg	430 U	430 U	390 U	420 U	460 U
Di-n-butyl phthalate	µg/kg	430 U	430 Ü	390 U	420 U	460 U
Di-n-octylphthalate	µg∕kg	430 U	430 U	390 U	420 U	
Dibenz(a, h)anthracene	µg/kg	430 U	430 U	390 U	420 U	460 U
Dibenzofuran	µg∕kg	430 U	430 U	390 U	420 U	460 U
Diethyl phthalate	µg/kg	430 U	430 U	390 U	420 U	460 U
Dimethyl phthalate	µg/kg	430 U	430 U	390 U	420 U	460 U
Fluoranthene	µg/kg	430 U	430 U	390 U	420 U	460 U
Fluorene	µg/kg	430 U	430 U	390 U	420 U	460 U
Hexachlorobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U
Hexachlorobutadiene	µg/kg	430 Ü	430 U	390 U	420 U	460 U
Hexachlorocyclopentadiene	µg/kg	430 U	430 Ü	390 U	420 U	460 U
Hexachloroethane	μg/kg	430 U	430 U	390 U	420 U	460 U
Indeno(1,2,3-cd)pyrene	μg/kg	430 U	430 U	390 U	420 U	460 U
Isophorone	µg/kg	430 U	430 U	390 U	420 U	460 U
N-Nitroso-di-n-propylamine	µg/kg	430 U	430 U	390 U	420 U	460 U
N-Nitrosodiphenylamine	µg/kg	430 U	430 U	390 U	420 U	460 U
Naphthalene	µg∕kg	430 U	430 U	390 U	420 U	460 U
Nitrobenzene	µg/kg	430 U	430 U	390 U	420 U	460 U

Table E-13. Demolition Area 1 Sediment Semivolatile Organic Compounds (continued)

			Sentitonatile Ofganie Compo			
Location		Hinkley Cr. Station HC-2	Hinkley Cr. Station HC-2	Hinkley Cr. South of	Hinkley Cr. Upstream	Wet Area East of AOC
Station		DA1-046	DA1-046	DA1-045	DA1-043	DA1-044
Sample ID		DA10120	DA10136	DA10119	DA10117	DA10118
Customer ID		DA1sd-046-0120-SD	DA1sd-046-0136-SO	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999	10/24/1999
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Field Type		Grab	Field Duplicate	Grab	Grab	Grab
Analyte	Units					
Pentachlorophenol	μg/kg	1000 U	1000 U	950 U	1000 U	1100 U
Phenanthrene	μg/kg	430 U	430 U	390 U	420 U	460 U
Phenol	µg/kg	430 U	430 U	390 U	420 U	460 U
Pyrene	µg/kg	430 U	430 U	390 U	420 U	460 U
bis(2-Chloroethoxy)methane	µg/kg	430 U	430 U	390 U	420 U	460 U
bis(2-Chloroethyl) ether	µg/kg	430 U	430 U	390 U	420 U	460 U

Table E-13. Demolition Area 1 Sediment Semivolatile Organic Compounds (continued)

SEDIMENT – VOLATILE ORGANIC CONSTITUENTS AND TOTAL ORGANIC CARBON

Volatile Organic Constituents								
Location Station		Hinkley Cr. Station HC-2 DA1-046	Hinkley Cr. South of AOC DA1-045	Hinkley Cr. Upstream DA1-043	Wet Area East of AOC DA1-044			
Sample ID	1	DA10120	DA10119	DA10117	DA10118			
Customer ID		DA1sd-046-0120-SD	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD			
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999			
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5			
Field Type		Grab	Grab	Grab	Grab			
Analyte	Units							
1,1,1-Trichloroethane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,1,2,2-Tetrachloroethane	µg/kg	6.5 U	5.9 U	6.3 U	7 UJ			
1,1,2-Trichloroethane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,1-Dichloroethane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,1-Dichloroethene	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,2-Dibromoethane	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,2-Dichloroethane	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,2-Dichloroethene	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
1,2-Dichloropropane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
2-Butanone	µg/kg	13 UJ	12 U	13 U	14 U			
2-Hexanone	µg/kg	13 U	12 U	13 U	14 U			
4-Methyl-2-pentanone	µg/kg	13 U	12 U	13 U	14 U			
Acetone	µg/kg	12 J	12 UJ	13 UJ	14 UJ			
Benzene	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
Bromochloromethane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
Bromodichloromethane	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
Bromoform	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
Bromomethane	μg/kg	13 U	12 U	13 U	14 U			
Carbon disulfide	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
Carbon tetrachloride	µg/kg	6.5 U	5.9 U	6.3 U	7 U			
Chlorobenzene	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
Chloroethane	µg/kg	13 UJ	12 UJ	13 UJ	14 U			
Chloroform	μg/kg	6.5 U	5.9 U	6.3 U	7 U			
Chloromethane	µg/kg	13 U	12 U	13 U	14 U			
Dibromochloromethane	µg/kg	6.5 U	5.9 U	6.3 U	7 U			

Table E-14. Demolition Area 1SedimentVolatile Organic Constituents

00-090P(xls)041000

Table E-14. Demolition Area 1 Sediment Volatile Organic Constituents (continued)

Location		Hinkley Cr. Station HC-2	Hinkley Cr. South of AOC	Hinkley Cr. Upstream	Wet Area East of AOC
Station		DA1-046	DA1-045	DA1-043	DA1-044
Sample ID		DA10120	DA10119	DA10117	DA10118
Customer ID		DA1sd-046-0120-SD	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Field Type		Grab	Grab	Grab	Grab
Analyte	Units				
Dimethylbenzene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Ethylbenzene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Methylene chloride	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Styrene	µg/kg	6.5 UJ	5.9 U	6.3 U	7 U
Tetrachloroethene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Toluene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Trichloroethene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
Vinyl chloride	µg/kg	13 U	12 U	13 U	14 U
cis -1,3-Dichloropropene	µg/kg	6.5 U	5.9 U	6.3 U	7 U
trans -1,3-Dichloropropene	µg/kg	6.5 U	5.9 U	6.3 U	7 U

Table E-15. Demolition Area 1 Sediment Total Organic Carbon

Location		Hinkley Cr. Station HC-2	Hinkley Cr. South of AOC	Hinkley Cr. Upstream	Wet Area East of AOC
Station		DA1-046	DA1-045	DA1-043	DA1-044
Sample ID		DA10120	DA10119	DA10117	DA10118
Customer ID		DA1sd-046-0120-SD	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Field Type		Grab	Grab	Grab	Grab
Analyte	Units				
Total Organic Carbon	µg/kg	3300000 =	140000 =	1400000 =	34000000 =

SEDIMENT – PCBS

Table E-16. Demolition Area 1 Sediment PCBs

Location		Hinkley Cr. Station HC-2	Hinkley Cr. South of AOC	Hinkley Cr. Upstream	Wet Area East of AOC
Station		DA1-046	DA1-045	DA1-043	DA1-044
Sample ID		DA10120	DA10119	DA10117	DA10118
Customer ID		DA1sd-046-0120-SD	DA1sd-045-0119-SD	DA1sd-043-0117-SD	DA1sd-044-0118-SD
Date		10/24/1999	10/24/1999	10/24/1999	10/24/1999
Depth (ft)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Field Type		Grab	Grab	Grab	Grab
Analyte	Units				
PCB-1016	μg/kg	43 U	39 U	42 U	46 U
PCB-1221	μg/kg	43 U	39 U	42 U	46 U
PCB-1232	μg/kg	43 U	39 U	42 U	46 U
PCB-1242	µg/kg	43 U	39 U	42 U	46 U
PCB-1248	µg/kg	43 U	39 U	42 U	46 U
PCB-1254	µg/kg	43 U	39 U	42 U	46 U
PCB-1260	µg/kg	43 U	39 U	42 U	11 J

SURFACE WATER – EXPLOSIVES AND PROPELLANTS

Table E-17. Demolition Area 1Surface WaterExplosives

Location Station Sample ID Customer ID Date Filtered Field Type		Hinkley Cr. Station HC-2 DA1-046 DA10124 DA1sw-046-0124-SW 10/24/1999 Total Grab	Hinkley Cr. Station HC-2 DA1-046 DA10137 DA1sw-046-0137-SW 10/24/1999 Total Field Duplicate	Hinkley Cr. South of AOC DA1-045 DA10123 DA1sw-045-0123-SW 10/24/1999 Total Grab	Hinkley Cr. Upstream DA1-043 DA10121 DA1sw-043-0121-SW 10/24/1999 Total Grab
Analyte	Units				
1,3,5-Trinitrobenzene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
1,3-Dinitrobenzene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
2,4,6-Trinitrotoluene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
2,4-Dinitrotoluene	μg/L	0.13 U	0.13 U	0.13 U	0.13 U
2,6-Dinitrotoluene	μg/L	0.13 U	0.13 U	0.13 U	0.13 U
2-Nitrotoluene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
3-Nitrotoluene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
4-Nitrotoluene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
HMX	μg/L	0.5 U	0.5 U	0.5 U	0.5 U
Nitrobenzene	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
Nitrocellulose	μg/L	500 U	500 U	500 U	500 U
Nitroglycerin	μg/L	2.5 U	2.5 U	2.5 U	2.5 U
Nitroguanidine	μg/L	20 U	20 U	20 U	20 U
RDX	μg/L	0.24 J	0.5 U	0.5 U	0.5 U
Tetryl	μg/L	0.2 U	0.2 U	0.2 U	0.2 U

SURFACE WATER – INORGANICS

Table E-18. Demolition Area 1 Surface Water Inorganics

Location Station Sample ID Customer ID Date Filtered Field Type Analyte	Units	Hinkley Cr. Station HC-2 DA1-046 DA10124 DA1sw-046-0124-SW 10/24/1999 Total Grab	Hinkley Cr. Station HC-2 DA1-046 DA10137 DA1sw-046-0137-SW 10/24/1999 Total Field Duplicate	Hinkley Cr. Station HC-2 DA1-046 DA10124 DA1sw-046-0124-SW 10/24/1999 Filtered Grab	Hinkley Cr. Station HC-2 DA1-046 DA10137 DA1sw-046-0137-SW 10/24/1999 Filtered Field Duplicate
Cyanide	μg/L	10 U	10 U		
Aluminum	μg/L	210 U	300 U	200 U	200 U
Antimony	μg/L	5 U	2 J *	5 U	<u>5 U</u>
Arsenic	μg/L	<u>5 U</u>	<u>5 U</u>	5 U	<u>5 U</u>
Barium	μg/L	38 J	<u>37</u> J	38 J	40 J
Beryllium	µg/L	<u>4 U</u>	<u>4 U</u>	4 U	4 U
Cadmium	μg/L	5 U	5 U	5 U	5 U
Calcium	μg/L	50200 = *	47800 = *	51200 = *	54100 = *
Chromium	μg/L	10 U	10 U	10 U	10 U
Cobalt	μg/L	50 U	50 U	50 U	50 U
Copper	μg/L	25 UJ	25 UJ	25 UJ	25 UJ
Iron	μg/L	390 U	450 U	150 U	130 U
Lead	μg/L	3 U	3 U	3 U	<u>3 U</u>
Magnesium	μg/L	126 <u>0</u> 0 U	13400 U	12800 U	11900 U
Manganese	μg/L	56 U	60 U	62 U	31 U
Mercury	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	μg/L	40 U	40 U	40 U	40 U
Potassium	μg/L	4300 U	4300 U	4300 U	4200 U
Selenium	μg/L	5 U	5 U	5 U	5 U
Silver	μg/L	10 U	10 U	10 U	10 U
Sodium	μg/L	20700 U	20000 U	21300 U	18400 U
Thallium	μg/L	2 UJ	2 UJ	<u>2 U</u>	2 UJ
Vanadium	μg/L	50 U	50 U	50 U	50 U
Zinc	μg/L	20 U	16 J	19 J	20 U

Table E-18. Demolition Area 1 Surface Water Inorganics (continued)

Location Station Sample ID Customer ID Date Filtered Filtered Field Type Analyte	Units	Hinkley Cr. South of AOC DA1-045 DA10123 DA1sw-045-0123-SW 10/24/1999 Total Grab	Hinkley Cr. South of AOC DA1-045 DA10123 DA1sw-045-0123-SW 10/24/1999 Filtered Grab	Hinkley Cr. Upstream DA1-043 DA10121 DA1sw-043-0121-SW 10/24/1999 Total Grab	Hinkley Cr. Upstream DA1-043 DA10121 DA1sw-043-0121-SW 10/24/1999 Filtered Grab
Cyanide	μg/L	10 U		10 U	
Aluminum	μg/L	140 U	200 U	170 U	200 U
Antimony	µg/L	5 U	5 U	5 U	5 U
Arsenic	μg/L	5 U	5 U	5 U	5 U
Barium	μg/L	39 J	40 J	44 J	39 J
Beryllium	μg/L	4 U	4 U	4 U	4 U
Cadmium	μg/L	5 U	5 U	5 U	5 U
Calcium	μg/L	49100 = *	49400 = *	47900 = *	45500 = *
Chromium	μg/L	10 U	10 U	10 U	10 U
Cobalt	μg/L	50 U	50 U	50 U	50 U
Copper	μg/L	25 UJ	25 UJ	25 UJ	25 UJ
Iron	μg/L	510 U	230 U	530 U	180 U
Lead	μg/L	3 U	3 U	3 U	3 U
Magnesium	μg/L	11900 U	12300 U	11900 U	11200 U
Manganese	μg/L	53 U	49 U	86 U	67 U
Mercury	μg/L	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	μg/L	4 <u>0 U</u>	40 U	40 U	40 U
Potassium	μg/L	3600 U	3700 U	3800 U	3600 U
Selenium	μg/L	5 U	5 U	5 U	5 U
Silver	μg/L	10 U	10 U	10 U	10 U
Sodium	μg/L	15800 U	16200 U	15800 U	15300 U
Thallium	μg/L	2 UJ	2 U	2 UJ	2 UJ
Vanadium	μg/L	50 U	50 U	50 U	50 U
Zinc	μg/L	180 = *	20 U	20 U	20 U

SURFACE WATER – SEMIVOLATILE ORGANIC CONSTITUENTS

Table E-19. Demolition Area 1Surface WaterSemivolatile Organic Compounds

Location Hinkley Cr. Station HC-2 Hinkley Cr. South of AOC Hinkley Cr. Upstream						
Station		DA1-046	DA1-045	Hinkley Cr. Upstream		
Sample ID		DA1-046 DA10124		DA1-043		
Customer ID		DA10124 DA1sw-046-0124-SW	DA10123 DA1sw-045-0123-SW	DA10121		
Date		10/24/1999		DA1sw-043-0121-SW 10/24/1999		
Filtered		10/24/1999 Total	10/24/1999 Total	ľ		
Field Type		Grab	Grab	Total Grab		
rieiu Type		Grau	Grad	Grad		
Analyte	Units					
1,2,4-Trichlorobenzene	µg/L	10 U	10 U	10 U		
1,2-Dichlorobenzene	μg/L	10 U	10 U	10 U		
1,3-Dichlorobenzene	μg/L	10 U	10 U	10 U		
1,4-Dichlorobenzene	μg/L	10 U	10 U	10 U		
2,4,5-Trichlorophenol	µg/L	10 U	10 U	10 U		
2,4,6-Trichlorophenol	µg/L	10 U	10 U	10 U		
2,4-Dichlorophenol	µg/L	10 U	10 U	10 U		
2,4-Dimethylphenol	µg/L	10 U	10 U	10 U		
2,4-Dinitrophenol	μg/L	25 U	25 U	25 U		
2,4-Dinitrotoluene	µg/L	10 U	10 U	10 U		
2,6-Dinitrotoluene	µg/L	10 UJ	10 UJ	10 UJ		
2-Chloronaphthalene	μg/L	10 U	10 U	10 U		
2-Chlorophenol	μg/L	10 U	10 U	10 U		
2-Methyl-4,6-dinitrophenol	μg/L	25 U	25 U	25 U		
2-Methylnaphthalene	μg/L	10 UJ	10 UJ	10 UJ		
2-Methylphenol	μg/L	10 U	10 U	10 U		
2-Nitrobenzenamine	μg/L	25 U	25 U	25 U		
2-Nitrophenol	μg/L	10 U	10 U	10 U		
3,3'-Dichlorobenzidine	μg/L	10 U	10 U	10 UJ		
3-Nitrobenzenamine	μg/L	25 U	25 U	25 U		
4-Bromophenyl phenyl ether	µg/L	10 UJ	10 UJ	10 UJ		
4-Chloro-3-methylphenol	μg/L	10 U	10 U	10 U		
4-Chlorobenzenamine	µg/L	10 U	10 U	10 U		
4-Chlorophenyl phenyl ether	μg/L	10 U	10 U	10 U		
4-Methylphenol	μg/L	10 U	10 U	10 U		
4-Nitrobenzenamine	μg/L	25 U	25 U	25 U		
4-Nitrophenol	μg/L	25 U	25 U	25 U		
Acenaphthene	μg/L	10 U	10 U	10 U		
Acenaphthylene	µg/L	10 U	10 U	10 U		
Anthracene	µg/L	10 UJ	10 UJ	10 UJ		
Benz(a)anthracene	μg/L	10 U	10 U	10 UJ		
Benzo(a)pyrene	μg/L	10 U	10 U	10 UJ		
Benzo(b)fluoranthene	μg/L	10 U	10 U	10 UJ		
Benzo(g,h,i)perylene	µg/L	10 U	10 U	10 UJ		
Benzo(k)fluoranthene	μg/L	10 U	10 U	10 UJ		
bis(2-Chloroisopropyl) ether	μg/L	10 U	10 U	10 U		
bis(2-Ethylhexyl)phthalate	µg/L	4.5 J	3.9 J	5.1 J		
Butyl benzyl phthalate	μg/L	10 U	10 U	10 UJ		
Carbazole	μg/L	10 U	10 U	10 U		

Table E-19. Demolition Area 1 Surface Water Semivolatile Organic Compounds (continued)

Location		Hinkley Cr. Station HC-2	Hinkley Cr. South of AOC	Hinkley Cr. Upstream
Station		DA1-046	DA1-045	DA1-043
Sample ID		DA10124	DA10123	DA10121
Customer ID		DA1sw-046-0124-SW	DA1sw-045-0123-SW	DA1sw-043-0121-SW
Date		10/24/1999	10/24/1999	10/24/1999
Filtered		Total	Total	Total
Field Type		Grab	Grab	Grab
Analyte	Units			
Chrysene	µg/L	10 U	10 U	10 UJ
Di-n-butyl phthalate	μg/L	10 UJ	10 UJ	10 UJ
Di- <u>n</u> -octylphthalate	µg/L	10 U	10 U	10 U
Dibenz(a,h)anthracene	μg/L	10 U	10 U	10 UJ
Dibenzofuran	μg/L	10 U	10 U	10 U
Diethyl phthalate	μg/L	10 U	10 U	10 U
Dimethyl phthalate	μg/L	10 U	10 U	10 U
Fluoranthene	µg/L	10 UJ	10 UJ	10 UJ
Fluorene	μg/L	10 U	10 U	10 U
Hexachlorobenzene	µg/L	10 UJ	10 UJ	10 UJ
Hexachlorobutadiene	μg/L	10 U	10 U	10 U
Hexachlorocyclopentadiene	µg/L	10 R	10 R	10 R
Hexachloroethane	μg/L	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	µg/L	10 U	10 U	10 UJ
Isophorone	µg/L	10 U	10 U	10 U
N-Nitroso-di-n -propylamine	µg/L	10 U	10 U	10 U
N-Nitrosodiphenylamine	μg/L	10 U	10 U	10 U
Naphthalene	µg/L	10 U	10 U	10 U
Nitrobenzene	µg/L	10 U	10 U	10 U
Pentachlorophenol	µg/L	25 U	25 U	25 Ü
Phenanthrene	µg/L	10 UJ	10 UJ	10 UJ
Phenol	μg/L	10 U	10 U	10 U
Pyrene	µg/L	10 U	10 U	10 UJ
bis(2-Chloroethoxy)methane	μg/L	10 U	10 U	10 U
bis(2-Chloroethyl)ether	μg/L	10 U	10 U	10 U

SURFACE WATER – VOLATILE ORGANIC CONSTITUENTS

Table E-20. Demolition Area 1Surface WaterVolatile Organic Compounds

Location		Hinkley Cr. Station HC-2	Hinkley Cr. South of AOC	Hinkley Cr. Upstream	
Station		DA1-046	DA1-045	DA1-043	
Sample ID		DA10124	DA10123	DA10121	
Customer ID		DA1sw-046-0124-SW	DA1sw-045-0123-SW	DA1sw-043-0121-SW	
Date		10/24/1999	10/24/1999	10/24/1999	
Filtered		Total	Total	Total	
Field Type		Grab	Grab	Grab	
				GILD	
Analyte	Units				
1,1,1-Trichloroethane	μg/L	5 UJ	5 UJ	5 UJ	
1,1,2,2-Tetrachloroethane	μg/L	5 U	5 U	5 U	
1,1,2-Trichloroethane	μg/L	5 U	5 U	5 U	
1,1-Dichloroethane	μg/L	5 U	5 U	5 U	
1,1-Dichloroethene	μg/L	5 U	5 U	5 U	
1,2-Dibromoethane	µg/L	5 U	5 U	5 U	
1,2-Dichloroethane	μg/L	5 U	5 U	5 U	
1,2-Dichloroethene	μg/L	5 U	5 U	5 U	
1,2-Dichloropropane	μg/L	5 U	5 U	5 U	
2-Butanone	μg/L	10 U	10 U	10 U	
2-Hexanone	μg/L	10 U	10 U	10 U	
4-Methyl-2-pentanone	µg/L	10 U	10 U	10 U	
Acetone	μg/L	5.1 J	5 J	7.5 J	
Benzene	µg/L	5 U	5 U	5 U	
Bromochloromethane	µg/L	5 U	5 U	5 U	
Bromodichloromethane	μg/L	5 U	5 U	5 U	
Bromoform	μg/L	5 U	5 U	5 U	
Bromomethane	μg/L	10 U	10 U	10 U	
Carbon disulfide	μg/L	5 U	5 U	5 U	
Carbon tetrachloride	μg/L	5 UJ	5 UJ	5 UJ	
Chlorobenzene	μg/L	5 U	5 U	5 U	
Chloroethane	μg/L	10 UJ	10 UJ	10 UJ	
Chloroform	µg/L	5 U	5 U	1.2 J	
Chloromethane	µg/L	10 U	10 U	10 U	
Dibromochloromethane	μg/L	5 U	5 U	5 U	
Dimethylbenzene	μg/L	5 U	5 U	5 U	
Ethylbenzene	μg/L	5 U	5 U	5 U	
Methylene chloride	µg/L	5 U	5 U	5 U	
Styrene	μg/L	5 U	5 U	5 U	
Tetrachloroethene	μg/L	5 U	5 U	5 U	
Toluene	μg/L	5 U	0.79 J	1 J	
Trichloroethene	μg/L	5 U	5 U	5 U	
Vinyl chloride	µg/L	10 U	10 U	10 U	
cis -1,3-Dichloropropene	μg/L	5 U	5 U	5 U	
trans -1,3-Dichloropropen		5 U	5 U	5 U	

SURFACE WATER – PCBS

Table E-21. Demolition Area 1 Surface Water PCBs

Location Station Sample ID Customer ID Date Filtered Field Type		Hinkley Cr. Station HC-2 DA1-046 DA10124 DA1sw-046-0124-SW 10/24/1999 Total Grab	Hinkley Cr. South of AOC DA1-045 DA10123 DA1sw-045-0123-SW 10/24/1999 Total Grab	Hinkley Cr. Upstream DA1-043 DA10121 DA1sw-043-0121-SW 10/24/1999 Total Grab
Analyte	Units			
PCB-1016	μg/L	1 U	1 U	1 U
PCB-1221	µg/L	1 U	1 U	1 U
PCB-1232	μg/L	1 U	1 U	1 U
PCB-1242	μg/L	1 U	1 U	1 U
PCB-1248	μg/L	1 U	1 U	1 U
PCB-1254	μg/L	1 U	1 U	1 U
PCB-1260	μg/L	1 U	1 U	1 U

GROUNDWATER SAMPLE RESULTS

		NACA Plane Storage Area	NACA Plane Storage Area
Location		- Outside Berm	- Outside Berm
Station		DA1-027	DA1-027
Sample ID		DA10125	DA10125
Customer ID		DA1gw-027-0125-GW	DA1gw-027-0125-GW
Date		10/20/1999	10/20/1999
Filtered		Total	Filtered
Field Type		Grab	Grab
Analyte	Units	Grab	Grab
		losives and Propellants	
1,3,5-Trinitrobenzene	μg/L	0.2 U	
1,3-Dinitrobenzene	μ <u>g</u> /L μg/L	0.045 J	
2,4,6-Trinitrotoluene	μ <u>g</u> /L μg/L	0.2 U	
2,4-Dinitrotoluene			
	$\mu g/L$	0.13 U	
2,6-Dinitrotoluene	µg/L	0.13 U	
2-Nitrotoluene	μg/L	0.2 U	·····
3-Nitrotoluene	μg/L	0.2 U	
4-Nitrotoluene	μg/L	0.2 U	· · · · · · · · · · · · · · · · · · ·
HMX	µg/L	0.5 U	
Nitrobenzene	μg/L	0.2 U	
Nitrocellulose	µg/L	500 U	
Nitroglycerin	μg/L	2.5 U	
Nitroguanidine	μg/L	20 UJ	
RDX	μg/L	0.5 U	
Tetryl	μg/L	0.2 U	
		Inorganics	
Cyanide	μg/L	10 U	
Aluminum	μg/L	370 U	200 U
Antimony	μg/L	5 U	2.1 J *
Arsenic	μg/L	5 U	10 U
Barium	μg/L	32 J *	32 J
Beryllium	μg/L	4 U	5 U
Cadmium	μg/L	5 U	5 U
Calcium	μg/L	40800 J *	39000 J
Chromium	μg/L	10 U	10 U
Cobalt	μg/L	50 U	50 U
Copper	μg/L μg/L	290 J *	25 U
Iron	μg/L μg/L	550 = *	100 U [•]
Lead		3 U	3 U
Magnesium	μg/L	10700 = *	10100 =
	$\mu g/L$	10700 = + 7.7 U	7.8 U
Manganese	μg/L		
Mercury	μg/L	0.2 U	0.2 U
Nickel	μg/L	40 U 940 I *	40 U
Potassium	µg/L	2103	1000 J
Selenium	μg/L	5 U	5 U
Silver	μg/L	10 U	10 U
Sodium	μg/L	2800 U	449000 = *
Thallium	μg/L	2 U	2 U

Table E-22. Demolition Area 1Groundwater Results

	1	NACA DI GUILI	
Location		NACA Plane Storage Area	0
		- Outside Berm	- Outside Berm
Station		DA1-027	DA1-027
Sample ID		DA10125	DA10125
Customer ID		DA1gw-027-0125-GW	DA1gw-027-0125-GW
Date		10/20/1999	10/20/1999
Filtered		Total	Filtered
Field Type	T T T	Grab	Grab
Analyte	Units		
Vanadium	μg/L	50 U	50 U
Zinc	μg/L	20 U	24 =
	1	latile Organic Compounds	
1,2,4-Trichlorobenzene	μg/L	10 U	
1,2-Dichlorobenzene	μg/L	10 U	
1,3-Dichlorobenzene	μg/L	10 U	
1,4-Dichlorobenzene	μg/L	10 U	
2,4,5-Trichlorophenol	μg/L	10 U	
2,4,6-Trichlorophenol	μg/L	10 U	
2,4-Dichlorophenol	μg/L	10 U	
2,4-Dimethylphenol	μg/L	10 U	
2,4-Dinitrophenol	μg/L	25 U	
2,4-Dinitrotoluene	μg/L	10 U	
2,6-Dinitrotoluene	μg/L	10 U	
2-Chloronaphthalene	μg/L	10 U	
2-Chlorophenol	μg/L	10 U	
2-Methyl-4,6-dinitrophenol	μg/L	25 U	
2-Methylnaphthalene	μg/L	10 U	
2-Methylphenol	μg/L	10 U	
2-Nitrobenzenamine	μg/L	25 U	
2-Nitrophenol	μg/L	10 U	
3,3'-Dichlorobenzidine	μg/L	10 U	
3-Nitrobenzenamine	μg/L	25 U	
4-Bromophenyl phenyl ether	μg/L	10 U	
4-Chloro-3-methylphenol	μg/L	10 U	
4-Chlorobenzenamine	μg/L	10 U	
4-Chlorophenyl phenyl ether	μg/L	10 U	
4-Methylphenol	μg/L	10 U	
4-Nitrobenzenamine	μg/L	25 U	
4-Nitrophenol	μg/L	25 U	· · · · · · · · · · · · · · · · · · ·
Acenaphthene	μg/L	10 U	
Acenaphthylene	μg/L	10 U	
Anthracene	µg/L	10 U	
Benz(a)anthracene	μg/L	10 U	· · · · · · · · · · · · · · · · · · ·
Benzo(a)pyrene	μg/L	10 U	
Benzo(b)fluoranthene	μg/L	10 U	
Benzo(g,h,i)perylene	μg/L	10 U	
Benzo(k)fluoranthene	μg/L	10 U	
bis(2-Chloroisopropyl) ether	μg/L	10 U	
bis(2-Ethylhexyl)phthalate	μg/L	10 U	

Table E-22. Demolition Area 1 Groundwater Results (continued)

······	1	NACA Plane Storage Area	NACA Plane Storage Area
Location		- Outside Berm	- Outside Berm
Station		DA1-027	DA1-027
Sample ID		DA10125	DA10125
Customer ID		DA1gw-027-0125-GW	DA1gw-027-0125-GW
Date		10/20/1999	10/20/1999
Filtered		Total	Filtered
Field Type		Grab	Grab
Analyte	Units	OT US	Grab
Butyl benzyl phthalate	μg/L	10 U	······
Carbazole	μg/L	10 U	
Chrysene	<u>μ</u> g/L	10 U	······································
Di-n-butyl phthalate	μg/L	10 U	
Di-n-octylphthalate	μg/L	10 U	
Dibenz (a,h) anthracene	μg/L	10 U	
Dibenzofuran	μg/L	10 U	
Diethyl phthalate	μg/L μg/L	10 U	
Dimethyl phthalate	μg/L μg/L	10 U	
Fluoranthene	μg/L μg/L	10 U	
Fluorene	μg/L	10 U	
Hexachlorobenzene	μg/L μg/L	10 U	
Hexachlorobutadiene	μg/L μg/L	10 U	
Hexachlorocyclopentadiene	μg/L μg/L	10 C	
Hexachloroethane	μg/L μg/L	10 K 10 U	
Indeno(1,2,3-cd)pyrene	μg/L μg/L	10 U	
Isophorone	μg/L μg/L	10 U	
N-Nitroso-di-n -propylamine	μg/L μg/L	10 U	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine	μg/L μg/L	10 U	
Naphthalene		10 U	
Nitrobenzene	μg/L	10 U	
Pentachlorophenol	μg/L wa/I	25 U	
Phenanthrene	µg/L		
Phenol	μg/L	10 U	
	µg/L	10 U	
Pyrene	μg/L	<u>10 U</u>	
bis(2-Chloroethoxy)methane	μg/L ″	10 U	
bis(2-Chloroethyl) ether	μg/L	10 U	
1 1 1 7-2-1-1		tile Organic Compounds	. <u></u>
1,1,1-Trichloroethane	μg/L	5 UJ	
1,1,2,2-Tetrachloroethane	μg/L	<u>5 U</u>	
1,1,2-Trichloroethane	μg/L	5 U	
1,1-Dichloroethane	μg/L	<u>5 U</u>	
1,1-Dichloroethene	μg/L	<u>5 U</u>	
1,2-Dibromoethane	μg/L	<u>5 U</u>	
1,2-Dichloroethane	μg/L	5 U	
1,2-Dichloroethene	μg/L	5 U	
1,2-Dichloropropane	μg/L	5 U	
2-Butanone	µg/L	10 U	
2-Hexanone	μg/L	10 U	
4-Methyl-2-pentanone	μg/L	10 U	

Table E-22. Demolition Area 1 Groundwater Results (continued)

Location Station Sample ID Customer ID Date Filtered Field Type Analyte	Units	NACA Plane Storage Area - Outside Berm DA1-027 DA10125 DA1gw-027-0125-GW 10/20/1999 Total Grab	NACA Plane Storage Area - Outside Berm DA1-027 DA10125 DA1gw-027-0125-GW 10/20/1999 Filtered Grab
Acetone	μg/L	4.4 J	
Benzene	μg/L	5 U	
Bromochloromethane	μg/L	5 U	
Bromodichloromethane	μg/L	5 U	
Bromoform	μg/L	5 U	
Bromomethane	μg/L	10 U	
Carbon disulfide	μg/L	1.2 J	
Carbon tetrachloride	μg/L	5 UJ	
Chlorobenzene	μg/L	5 U	
Chloroethane	μg/L	10 UJ	
Chloroform	µg/L	5 U	
Chloromethane	µg/L	10 U	
Dibromochloromethane	μg/L	5 U	
Dimethylbenzene	μg/L	5 U	
Ethylbenzene	μg/L	5 U	
Methylene chloride	μg/L	5 U	, <u> </u>
Styrene	μg/L	5 U	
Tetrachloroethene	μg/L	5 U	· · · · · · · · · · · · · · · · · · ·
Toluene	µg/L	5 U	
Trichloroethene	μg/L	5 U	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	μg/L	10 U	
cis-1,3-Dichloropropene	μg/L	5 U	
trans -1,3-Dichloropropene	μg/L	5 U	

Table E-22. Demolition Area 1 Groundwater Results (continued)

QUALITY ASSURANCE SAMPLING RESULTS

Station		DA1-TB
Sample ID		DA10150
Customer ID		DA1qc-TB-0150-QC
Date		10/24/1999
Filtered		Total
Field Type		Trip Blank
Analyte	Units	
1,1,1-Trichloroethane	μg/L	5 UJ
1,1,2,2-Tetrachloroethane	μg/L	<u>5</u> U
1,1,2-Trichloroethane	μg/L	5 U
1,1-Dichloroethane	µg/L	5 U
1,1-Dichloroethene	µg/L	5 U
1,2-Dibromoethane	μg/L	5 U
1,2-Dichloroethane	μg/L	5 U
1,2-Dichloroethene	μg/L	5 U
1,2-Dichloropropane	μg/L	5 U
2-Butanone	μg/L	10 U
2-Hexanone	μg/L	10 U
4-Methyl-2-pentanone	μg/L	10 U
Acetone	μg/L	10 U
Benzene	μg/L	5 U
Bromochloromethane	µg/L	5 U
Bromodichloromethane	μg/L	5 U
Bromoform	μg/L	5 U
Bromomethane	μg/L	10 U
Carbon disulfide	μg/L	5 U
Carbon tetrachloride	μg/L	5 UJ
Chlorobenzene	μg/L	5 U
Chloroethane	μg/L	10 UJ
Chloroform	μg/L	5 U
Chloromethane	μg/L	10 U
Dibromochloromethane	µg/L	5 U
Dimethylbenzene	μg/L	5 U
Ethylbenzene	μg/L	5 U
Methylene chloride	μg/L	5 U
Styrene	μg/L	5 U
Tetrachloroethene	µg/L	5 U
Toluene	μg/L	5 U
Trichloroethene	μg/L	5 U
Vinyl chloride	μg/L	10 U
cis -1,3-Dichloropropene	μg/L	5 U
trans -1,3-Dichloropropene	μg/L	5 U

Table E-23. Demolition Area 1Quality Control Trip Blank Results

APPENDIX F

TOPOGRAPHIC SURVEY REPORT

TOPOGRAPHIC SURVEYING SERVICES

۱<u>ـ</u>

for

A PHASE I REMEDIAL INVESTIGATION OF DEMOLITION AREA 1

at

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

Prepared For:

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

November, 1999

Prepared By:

ADAMS CRAFT HERZ WALKER, INC.

ARCHITECTS-ENGINEERS-PLANNERS-SURVEYORS

OAK RIDGE, TENNESSEE

ACHW PROJECT NO. 99726

F-3

TABLE OF CONTENTS

NARRATIVE

POINT LIST (NAD 83 STATE PLANE COORDINATE SYSTEM, OHIO NORTH ZONE)

RAW-DATA FILES

• .

ł.,

GPS CONTROL DATA

NARRATIVE

-

is cause agend

· · · · · ·

.

. .

.

•••

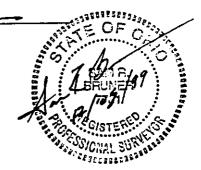
:

5

· · - · ·

NARRATIVE

Adams Craft Herz Walker, Inc. began the survey on November 1, 1999 in support of **Science Applications International Corporation** (SAIC) in a Phase II Remedial Investigation of Load Line 1, a Phase I Remedial Investigation of Demolition Area 1, and a Phase I Remedial Investigation of NACA Test Area at Ravenna Army Ammunition Plant, Ravenna, Ohio. ACHW'S crew worked 12 hour days in order to expedite the survey's progress. Work on the project was completed November 5, 1999. Temperatures during the survey were in the low thirties with snow throughout most of the week.


During the survey, 16 surface soil samples at Load Line 1, 46 points at Demolition Area, and 106 points at NACA Test Area were located primarily with traditional survey methods. Global Positioning Systems (GPS) technology was used to establish two control monuments at Load Line 1 (ACHW 003 & 004) and two control monuments at NACA Test Area (ACHW 001 & 002). Three sediment stations (DA1-46, DA1-43 & NTA-106) were located directly with GPS.

Horizontal and vertical control for Load Line 1 is based on the existing monuments RAV 10 and RAV 13. Horizontal and vertical control for NACA Test Area is based on the existing monuments RAV 4 and RAV 5. The coordinates and elevation of RAV 4, RAV 5, RAV 10, and RAV 13 were provided by the US Army Corps of Engineers. Horizontal data is based on the North American Datum of 1983 (NAD83) State Plane Coordinate System, Ohio North Zone. Vertical datum for the survey is relative to National American Vertical Datum of 1988 (NAVD88).

The field location of data was obtained using three Trimble 4600LS GPS receivers and a Topcon 303DPG total station.

A copy of the GPS data, points list, raw data, and drawings TS-3, TS-4, and TS-5 are attached.

Sam Bruner, RLS Ohio Reg. No. 7781

POINTS LIST

2

•

r

:

.

:

•

CHW PROJECT # 99726.0 JOB: 7260TS4.CR5 LOAD LINE 1 at RAAP

·········

.

-

TIME: 14:30 DATE: 11-15-1999

LOAD LINE 1	. at RAAP			
Point	Northing	Easting	Elevation	Note
1 2 3 4 5 51 52 53 54 55 57 58 59 60 61 62 63 64 65 66	5000.000000 5798.317459 5756.650389 6220.704058 7129.784674 4988.618811 4993.237527 4985.395987 4922.451499 5810.055114 5796.127604 5920.316236 5863.452810 5925.876910 6236.597938 6231.737414 6217.136329 7129.520092 7138.061470 7125.248601 7197.148050	5000.00000 5000.00000 4811.922543 4992.125343 5031.198473 4586.076296 4882.120734 4959.702647 4902.677772 4887.826718 4915.905416 4946.442754 4889.610060 4560.810754 4861.025214 4918.894560 4560.524127 4641.383965 4906.126864 4899.285371 4963.491306	105.839 102.856 105.738 111.682 86.185 88.979 89.487 89.612 88.710 88.9962 88.9962 88.858 89.3651 88.858 89.3651 88.858 89.874 87.520 86.181 89.590 89.075	PK 2 NCH 3 PK 4 ACHW00 3 CB 12 4 CB 12 1

•

. . .

ACHW PROJECT # 99726.0 JOB: 7260ALL3.CR5 Ravenna, Ohio

and the second
- 25 .

.

:

TIME: 16:11 DATE: 11-19-1999

•

	Mantherne	Racting	RIEVALION NOLE	
Point 2 51 52 53 54 55 56 57 58	Northing ====================================	Racting	Elevation Note 1090.310 START 1083.830 ACHW00 2 1091.110 NTA 071 1088.860 NTA 024 1086.760 NTA 023 1086.940 NTA 023 1086.940 NTA 022 1085.050 NTA 021 1079.440 NTA 020 1076.390 NTA 019 1074.040 NTA 018 1072.550 NTA 017 1074.160 NTA 025 1073.870 NTA 025 1073.870 NTA 026 1075.460 NTA 027 1080.510 NTA 028 1084.370 NTA 029 1085.920 NTA 031 1088.030 NTA 032	
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97	551509.000000 551510.000000 551510.000000 551514.000000 551503.000000 551508.000000 551509.000000 551509.000000 551509.000000 551803.000000 551814.000000 551815.000000 551815.000000 551815.000000 551514.000000 551576.000000 551376.000000 551328.000000 551328.000000 551328.000000 551328.000000 551328.000000 551328.000000 551328.000000 551328.000000 5513516.000000 551516.000000 551551.000000	2347808.00000 2347731.00000 2347710.00000 2347508.00000 2347508.00000 2347508.00000 2347248.00000 2347248.00000 2347211.00000 2347098.00000 2347292.00000 2347292.00000 2347390.00000 2347493.00000 2347585.00000 2347677.00000 2347585.00000 2347908.00000 2346299.00000 2346319.00000 2346319.00000 2346319.00000 234629.00000 2346154.00000 2346120.00000 2346132.00000 2346132.00000 2346132.00000 2346237.00000	1085.860 NTA 040 1082.670 NTA 039 1083.130 NTA 038 1083.240 NTA 037 1080.080 NTA 036 1076.870 NTA 035 1072.710 NTA 102 1075.000 HIA 034 1072.520 NTA 033 1072.010 NTA 096 1076.020 NTA 011 1077.300 NTA 011 1077.300 NTA 012 1085.680 NT 1086.930 NTA 014 1087.090 NTA 015 1090.540 NTA 016 1089.090 NTA 016 1089.090 NTA 074 1091.160 NTA 072 1082.460 NAI 1 1083.700 NAI 2 1083.910 NAI 3 1083.530 NAI 4 1083.080 NAI 5 1082.890 NAI 6 1083.220 NAI 7 1083.950 NAI 8 1084.030 NAI 9 1083.510 NAI 10 1084.040 NAI 11 1084.230 NAI-13	

F-14

ACHW PROJECT # 99726.0 JOB: 7260ALL3.CR5 Ravenna, Ohio

•

. **k**.

.

.

.

:

:

.

1 -

TIME: 16:11 DATE: 11-19-1999

•

Rave	nna, C)n10		
Po	int	Northing	Easting	Elevation Note
	98	551496.000000	2346249.000000	1083.850 NAI 14
	99	551512.000000	2346275.000000	1083.790 NAI-12
-	100	551476.000000	2346287.000000	1083.070 NAI-14
	101	551475.000000	2346241.000000	1083.560 NAI-15
	102	551415.000000	2346236.000000	1083.060 DAI-17
• •	103	551408.000000	2346283.000000	1082.060 DAI-18
	104	551408.000000 551378.000000	2346238.000000	1082.020 DAI-16
	105	551408.000000	2346181.000000	1083.110 DAI-19
	106	551477.000000	2346188.000000	1083.420 DAI-16
÷	107	551353.000000	2346217.000000	1080.000 DAI-20
	1 ^ 9	551606.000000	2346211.000000	1083.860 NTA-90
	109	551604.000000	2345912.000000	1080.010 NTA-89
	110	551604.000000 551405.000000 551429.000000 551533.000000	2345924.000000	1076.290 NTA-94
· .	111	551429.000000	2345998,000000	1081.410 DAI-23
•	112	551533.000000	2346003.000000	1080.410 DAI-22
	113	551458.000000	2346066.000000	1082.100 DAI-24
	114	551429.000000	2346059.000000	1082.860 DAI-42
	115	551399.000000	2346058.000000	1082.490 DAI-25
	116	551326.000000	2345996.000000	1077.990 DAI-26
	117	551333.000000 551238.000000 551292.000000	2346101.000000	1081.590 DAI-27
	118	551238.000000	2346093.000000	1076.710 DAI-29
				1080.480 DAI-28
	120	551277.000000	2346206.000000	1080.380 DAI-31
	121	551283.000000		1078.780 DAI-40
	122	551209.000000	2346217.000000	1077.230 DAI-30
	123	551209.000000 551280.000000 551238.000000 551535.000000	2346282.000000	1081.420 DAI-32
	124	551238.000000	2346331.000000	1079.640 DAI-33
		551535.000000	2346433.000000	1079.160 DAI-39
	126	551485.000000	2346400.000000	1079.890 DAI-38 1080.500 DAI-37
	127	551375.000000	2346391.000000	1080.500 DAI-37 1079.200 DAI-35
	128	551317.000000	2346413.000000	1079.200 DAI-35 1080.390 DAI-34
	129	551300.000000	2346340.000000	1079.700 DAI-37
	130	551410.000000		1075.480 DAI-43
	131	551432.000000	2346498.000000	1077.640 IPS
	132	551432.000000 551171.000000	2346202.000000	1077.840 115 1078.890 NTA 091
	133	551606.000000	2340313.000000	1078.250 NTA 086
**		551805.000000	2346500.000000	1085.620 NTA 085
	135	551806.000000	2346205.000000	1079.700 NTA 084
÷,	136	551802.000000	2345896.000000	1080.600 NTA 083
	137	551801.000000	2345603.000000	1078.610 NTA 088
	138	551603.000000	2345609.000000	1076.550 NTA 093
	139	551402.000000	2345612.000000 2347068.000000	1074.430 1IN STEEL PIN
:	140	551606.000000	2347068.000000	1076.730 NTA 092
	141	551607.000000	2346820.000000	1076.720 IP 92
	142	551607.000000	2346819.000000	1065.650 DAI 44
1	143	550872.000000	2346326.000000	1074.100 NTA-87
	144	551811.000000	2346805.000000	1077.600 NTA-95
L.	145	551401.000000	2347003.000000	1068.350 NTA-103
	146	551526.000000	2321003.000000	

CHW PROJECT # 99726.0 JOB: 7260ALL3.CR5 kavenna, Ohio

. -|.

į.

14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2347083.00000 2346780.00000 2347294.00000 2347217.00000 2347100.00000 2347191.00000 2347198.00000 2347198.00000 2347308.00000 2347308.00000 2347517.00000 2347517.00000 2347631.00000 2347758.00000 2347758.00000 2347852.00000 2347667.00000	1071.840	NTA-41 NTA-104 NTA-101 NTA-42 NTA-09 NTA-01 NTA-02 NTA-10 NTA-43 NTA-44 NTA-45 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
14 155 155 155 155 155 155 155 155 156 166 16	9 551506.000000 0 551407.000000 1 551811.000000 2 551905.000000 3 551914.000000 4 551814.000000 5 551410.000000 5 551410.000000 5 551412.000000 7 551412.000000 9 551418.000000 0 551904.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347294.000000 2347217.000000 2347100.000000 2347091.000000 2347198.000000 2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347756.000000 2347758.000000 2347758.000000 2347852.000000 2347667.000000	1076.190 1074.370 1072.710 1074.590 1075.410 1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-101 NTA-42 NTA-09 NTA-01 NTA-02 NTA-10 NTA-43 NTA-43 NTA-44 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16	9 551506.000000 0 551407.000000 1 551811.000000 2 551905.000000 3 551914.000000 4 551814.000000 5 551410.000000 5 551410.000000 5 551412.000000 7 551412.000000 9 551418.000000 0 551904.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347294.000000 2347217.000000 2347100.000000 2347091.000000 2347198.000000 2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347756.000000 2347758.000000 2347758.000000 2347852.000000 2347667.000000	1076.190 1074.370 1072.710 1074.590 1075.410 1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-42 NTA-09 NTA-01 NTA-02 NTA-10 NTA-43 NTA-44 NTA-45 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 15 15 15 15 15 16 16 16 16 16	1 551811.000000 2 551905.000000 3 551914.000000 4 551814.000000 5 551410.000000 6 551402.000000 7 551414.000000 9 551418.000000 9 551418.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347100.00000 2347091.000000 2347198.000000 2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347756.000000 2347756.000000 2347758.000000 2347758.000000 2347852.000000 2347667.000000	1072.710 1074.590 1075.410 1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-09 NTA-01 NTA-02 NTA-10 NTA-43 NTA-44 NTA-45 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 15 15 15 15 15 16 16 16 16	2 551905.000000 3 551914.000000 4 551814.000000 5 551410.000000 5 551410.000000 6 551402.000000 7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347091.000000 2347198.000000 2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347812.000000 2347756.000000 2347758.000000 2347758.000000 2347852.000000 2347667.000000	1074.590 1075.410 1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-01 NTA-02 NTA-10 NTA-43 NTA-44 NTA-45 NTA-48 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 15 15 15 15 16 16 16 16 16	2 551905.000000 3 551914.000000 4 551814.000000 5 551410.000000 5 551410.000000 6 551402.000000 7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347198.000000 2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347812.000000 2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1075.410 1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-02 NTA-10 NTA-43 NTA-44 NTA-45 NTA-48 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 15 15 15 16 16 16 16	4 551814.000000 5 551410.000000 6 551402.000000 7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347193.000000 2347308.000000 2347416.000000 2347517.000000 2347812.000000 2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1071.970 1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-10 NTA-43 NTA-44 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 15 16 16 16 16	5 551410.000000 6 551402.000000 7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551914.000000 4 551914.000000	2347308.00000 2347416.00000 2347517.00000 2347812.00000 2347756.00000 2347631.00000 2347758.00000 2347852.00000 2347667.000000	1077.110 1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-43 NTA-44 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 15 16 16 16 16	6 551402.000000 7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347416.00000 2347517.000000 2347812.000000 2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1078.890 1079.450 1083.470 1080.160 1080.300 1088.370	NTA-44 NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 16 16 16 16 16	7 551414.000000 8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347517.000000 2347812.000000 2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1079.450 1083.470 1080.160 1080.300 1088.370	NTA-45 NTA-48 NTA-47 NTA-46 NTA-08	
15 15 16 16 16 16	<pre>8 551412.000000 9 551418.000000 0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000</pre>	2347812.000000 2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1083.470 1080.160 1080.300 1088.370	NTA-48 NTA-47 NTA-46 NTA-08	
15 16 16 16 16	9551418.0000000551408.0000001551904.0000002551886.0000003551916.0000004551914.000000	2347756.000000 2347631.000000 2347758.000000 2347852.000000 2347667.000000	1080.160 1080.300 1088.370	NTA-47 NTA-46 NTA-08	
16 16 16 16	0 551408.000000 1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347631.000000 2347758.000000 2347852.000000 2347667.000000	1080.300 1088.370	NTA-46 NTA-08	
16 16 16 16	1 551904.000000 2 551886.000000 3 551916.000000 4 551914.000000	2347758.000000 2347852.000000 2347667.000000	1088.370	NTA-08	
16 16 16	2 551886.000000 3 551916.000000 4 551914.000000	2347852.000000 2347667.000000			
16 16	3 551916.000000 4 551914.000000	2347667.000000		NTA-68	
16	4 551914.000000		1086.620		
		2347575.000000	1084.820		
	5 551917.000000	2347488.000000	1078.810		
16		2348051.000000	1085.870		
16			1087.260		
16	8 551684.000000		1095.080		
ĩe		2348292.000000	1091.580	NTA 076	
1 7	0 551519.000000		1091.430	NTA 075	
17	1 551312.000000	2347903.000000	1085.950		
17		2347872.000000	1085.410		
17		2347303.000000	1076.000		
17		2347278.000000	1073.540		
17	5 551907.000000	2347383.000000	1075.450		
17		2347386.000000	1072.680		INV60IN
17		2347211.000000	1075.780	IP 177	
17		2347205.000000	1075.390		
17		2347192.000000	1074.790		
18	0 551073.000000	2347116.000000	1067.080		
18		2347066.000000	1067.600 1072.460		
18			1072.460		
18	3 551301.000000	2347085.000000	1074.050	NTA 049	
18		2347308.00000	1076.520		
18		2347308.000000 2347562.000000	1078.520		
18	6 551282.000000 551282.000000	2347562.000000	1077.200		
18		2347424.000000	1074.620		
18		2347423.000000	1077.850		
18		2347544.000000	1077.810		
19		2347615.000000	1078.470		
		2347780.000000	1078.130		
19	551223.000000	2347791.000000	1078.220		
1 1		2347727.000000	1077.770		
	551202.000000	2347662.000000	1075.630	NTA 062	

. · · ·

CHW PROJECT # 99726.0 JOB: 7260ALL3.CR5 Ravenna, Ohio

:

.

1

4

1...

-	Point	Northing	Easting	Elevation	Note
	196 199 200 201 202 203 204 205 206 207 208	551168.000000 551327.000000 551361.000000 551195.000000 551134.000000 551112.000000 551850.000000 551886.000000 552087.000000 552104.000000 551994.000000	2347551.000000 2348103.000000 2348296.000000 2348301.000000 2348301.000000 2348097.000000	1075.630	NTA 061 NTA-78 NTA-79 NTA-82 NTA-81 NTA-80 NCH NCH NCH NCH NTA 65 NTA 66 NTA 067
и 2	503 504 505 506	551431.000000 551429.000000 551855.000000 551667.000000 551610.000000 551982.000000 548603.000000 550616.000000 554038.000000 553955.000000	2346074.000000 2346058.000000 2348280.000000 2347837.000000 2346207.000000 2346015.000000 2346015.000000 2346897.000000 2348868.000000 2344083.000000	1082.900 - 1086.820 1090.310	NTA 042 2 NTA 100 ACHW00 1 ACHW00 2 DAI 43 DAI 46 NTA 106 RAV 4

. · ·

RAW DATA

 $\sim \sim$

•

-

.

.

. . . -

|

•

. .

Page 1

CHW PROJECT # 99726.0 TIME: 14:31 DATE: 11-15-1999 JOB: 7260TS4 LOAD LINE 1 at RAAP JOB: Name 7260TS4, Date 11-4-1999, Time 12:41:02.47 ode Setup: North Azimuth, Dist feet, Scale 1.0000, Earth crv OFF tore: Pt 1,N 5000.0000,E 5000.0000,Elv 100.0000,START Occupy: Occ 1,N 5000.0000,E 5000.0000,Elv 100.0000,START Racksight: Occ 1, BS Pt 1, BS azm 0.0000, Back circle 0.0000 I / HR : Inst H 5.2900, Rod H 5.4500 _ide Shot: 1-2, Ang-Rt 0.0000, Zenith 89.3410, Slp Dst 798.3400, PK 2 HI / HR : Inst H 5.2900, Rod H 15.0500 ide Shot: 1-51, Ang-Rt 268.2530, Zenith 90.3340, Slp Dst 414.1000, CB 12 4 I / HR : Inst H 5.2900, Rod H 6.5000 side Shot: 1-52, Ang-Rt 266.4300, Zenith 94.4500, Slp Dst 118.4800, CB 12 1 Side Shot: 1-53, Ang-Rt 250.0445, Zenith 102.1445, Slp Dst 43.8600, CB 12 3 I / HR : Inst H 5.2900, Rod H 28.1500 ide Shot: 1-54, Ang-Rt 231.2705, Zenith 84.1210, Slp Dst 125.0800, CB 12 2 Occupy: Occ 2,N 5798.3175,E 5000.0000,Elv 105.8390,PK 2 Backsight: Occ 2,BS Pt 1,BS azm 180.0000,Back circle 0.0000 (I / HR : Inst H 5.4000, Rod H 5.4500 Lide Shot: 2-55, Ang-Rt 95.5825, Zenith 98.0945, Slp Dst 113.9400, CB-23-3 Side Shot: 2-56, Ang-Rt 88.3030, Zenith 99.1210, Slp Dst 85.2200, CB-23-1 TI / HR : Inst H 5.4000, Rod H 8.9000 ide Shot: 2-56, Ang-Rt 88.3030, Zenith 99.1210, Slp Dst 85.2200, CB-23-1 HI / HR : Inst H 5.4000, Rod H 12.4000 Side Shot: 2-57, Ang-Rt 156.1755, Zenith 94.1330, Slp Dst 133.6000, CB-23-5 ide Shot: 2-3, Ang-Rt 77.3030, Zenith 90.5220, Slp Dst 192.6600, NCH 3 Traverse: 2-4, Ang-Rt 178.5555, Zenith 90.0025, Slp Dst 422.4600, PK 4 Occupy: Occ 3,N 5756.6504,E 4811.9225,Elv 102.8560,NCH 3 Backsight: Occ 3, BS Pt 2, BS azm 77.3030, Back circle 0.0000 II / HR : Inst H 5.2900, Rod H 5.2200 Note: BS point check: 3-2 'HI / HR : Inst H 5.2900, Rod H 5.4500 lide Shot: 3-58, Ang-Rt 318.3125, Zenith 95.4555, Slp Dst 132.7400, CB 23 2 HI / HR : Inst H 5.2900, Rod H 15.0500 Side Shot: 3-59, Ang-Rt 226.2805, Zenith 91.1310, Slp Dst 302.8800, CB 23 4 Occupy: Occ 4,N 6220.7041,E 4992.1253,Elv 105.7380,PK 4 Backsight: Occ 4,BS Pt 2,BS azm 178.5555,Back circle 0.0000 HI / HR : Inst H 5.3500, Rod H 5.2000 BS point check: 4-2 Note: II / HR : Inst H 5.3500, Rod H 5.1500 lide Shot: 4-60, Ang-Rt 97.5850, Zenith 97.2210, Slp Dst 133.1600, CB 8 1 HI / HR : Inst H 5.3500, Rod H 12.4000 Side Shot: 4-61, Ang-Rt 99.3810, Zenith 96.4715, Slp Dst 74.5800, CB 8 2 MI / HR : Inst H 5.3500, Rod H 15.0500 side Shot: 4-62, Ang-Rt 90.3540, Zenith 91.0750, Slp Dst 431.7000, CB 8 3
HI / HR : Inst H 5.3500, Rod H 5.4500 Jide Shot: 4-5, Ang-Rt 183.3145, Zenith 89.3710, Slp Dst 909.9400, ACHW00 3)ccupy: Occ 5, N 7129.7847, E 5031.1985, Elv 111.6820, ACHW00 3 Backsight: Occ 5, BS Pt 4, BS azm 182.2740, Back circle 0.0000 HI / HP - Tost H 5 4800 Bod H 15 0500 HI / HR : Inst H 5.4800, Rod H 15.0500 ide Shot: 5-63, Ang-Rt 87.3000, Zenith 92.2025, Slp Dst 390.1400, CB 22 4 [II / HR : Inst H 5.4800, Rod H 12.4000 Side Shot: 5-64, Ang-Rt 91.1930, Zenith 96.5405, Slp Dst 126.2600, CB 22 2

. Ir

.. ·:-

F-21

CHW PROJECT # 99726.0 JOB: 7260TS4

42 }

···-

÷

Ĩ

TIME: 14:31 DATE: 11-15-1999 LOAD LINE 1 at RAAP Side Shot: 5-65, Ang-Rt 85.3410, Zenith 96.4640, Slp Dst 132.9200, CB 22 3 I / HR : Inst H 5.4800, Rod H 18.0500 ide Shot: 5-66, Ang-Rt 132.2335, Zenith 95.2545, Slp Dst 95.9400, CB 22 1

•

.

CHW PROJECT # 99726.0 TIME: 14:32 DATE: 11-15-1999 JOB: 7260TS3 NACA TEST AREA at RAAP JOB: Name 7260TS3, Date 11-2-1999, Time 16:40:36.34 ode Setup: North Azimuth, Dist feet, Scale 1.0000, Earth crv OFF tore: Pt 1,N 5000.0000,E 5000.0000,Elv 100.0000,START Occupy: Occ 1,N 5000.0000,E 5000.0000,Elv 100.0000,START Backsight: Occ 1,BS Pt 1,BS azm 0.0000,Back circle 0.0000 I / HR : Inst H 5.1200,Rod H 5.3500 Jide Shot: 1-2, Ang-Rt 0.0000, Zenith 90.1310, Slp Dst 1631.2600, ACHW00 2 Backsight: Occ 1, BS Pt 2, BS azm 0.0000, Back circle 0.0000 "I / HR : Inst H 5.1200, Rod H 5.4500 ide Shot: 1-51, Ang-Rt 150.1515, Zenith 89.0530, Slp Dst 70.9400, NTA 071 side Shot: 1-52, Ang-Rt 46.3645, Zenith 91.0235, Slp Dst 61.3800, NTA 024 Side Shot: 1-53, Ang-Rt 20.5225, Zenith 91.1330, Slp Dst 150.8200, NTA 023 Side Snot: 1-53, Ang-Rt 20.5225, Zenith 91.1330, Stp Dst 150.8200, NTA 023 ;ide Shot: 1-54, Ang-Rt 12.1950, Zenith 90.4235, Slp Dst 245.7600, NTA 022 ;ide Shot: 1-55, Ang-Rt 9.4120, Zenith 90.4935, Slp Dst 341.7400, NTA 021 Side Shot: 1-56, Ang-Rt 7.3130, Zenith 91.2155, Slp Dst 442.4800, NTA 020 Side Shot: 1-57, Ang-Rt 5.4120, Zenith 91.2620, Slp Dst 541.1400, NTA 019 Side Shot: 1-58, Ang-Rt 5.2340, Zenith 91.2545, Slp Dst 639.1000, NTA 018 Side Shot: 1-59, Ang-Rt 5.1055, Zenith 91.2140, Slp Dst 733.8400, NTA 017 Side Shot: 1-60, Ang-Rt 357.3125, Zenith 91.1345, Slp Dst 737.6200, NTA 025 Side Shot: 1-61, Ang-Rt 356.3815, Zenith 91.2650, Slp Dst 637.8400, NTA 026 Side Shot: 1-61, Ang-Rt 356.3815, Zenith 91.2650, Slp Dst 737.6200, NTA 026 Side Shot: 1-61, Ang-Rt 356.3815, Zenith 91.2650, Slp Dst 637.8400, NTA 026 Side Shot: 1-62, Ang-Rt 355.4020, Zenith 91.3240, Slp Dst 538.8600, NTA 027 Side Shot: 1-63, Ang-Rt 353.4315, Zenith 91.1420, Slp Dst 437.9600, NTA 028 Side Shot: 1-64, Ang-Rt 353.0550, Zenith 90.5710, Slp Dst 337.6800, NTA 029 Side Shot: 1-65, Ang-Rt 346.0135, Zenith 90.5825, Slp Dst 239.2400, NTA 030 ide Shot: 1-65,Ang-Rt 346.0135,Zenith 90.5825,S1p Dst 239.2400,NTA 030
ide Shot: 1-66,Ang-Rt 340.0730,Zenith 91.3415,S1p Dst 135.1800,NTA 031
Side Shot: 1-67,Ang-Rt 301.4510,Zenith 91.4225,S1p Dst 65.3800,NTA 032
Side Shot: 1-68,Ang-Rt 282.1155,Zenith 91.2845,S1p Dst 159.5000,NTA 040
ide Shot: 1-69,Ang-Rt 306.0105,Zenith 92.1240,S1p Dst 189.5800,NTA 039
ide Shot: 1-70,Ang-Rt 326.3450,Zenith 91.2645,S1p Dst 271.3200,NTA 038
Side Shot: 1-71,Ang-Rt 337.0450,Zenith 91.0355,S1p Dst 362.7000,NTA 037
Side Shot: 1-72,Ang-Rt 341.0130,Zenith 91.1425,S1p Dst 457.3200,NTA 036
ide Shot: 1-73,Ang-Rt 345.1840,Zenith 91.2120,S1p Dst 631.1000,NTA 035
Side Shot: 1-74,Ang-Rt 340.5735,Zenith 91.3405,S1p Dst 631.1000,NTA 102
Side Shot: 1-75,Ang-Rt 347.4845,Zenith 91.1950,S1p Dst 755.7600,NTA 033 3ide Shot: 1-76, Ang-Rt 349.5605, Zenith 91.1925, Slp Dst 755.7600, NTA 033 3ide Shot: 1-77, Ang-Rt 353.2825, Zenith 91.2255, Slp Dst 745.2800, NTA 096 HI / HR : Inst H 5.1200, Rod H 8.9000 Side Shot: 1-78, Ang-Rt 15.5835, Zenith 91.0420, Slp Dst 561.8000, NTA 011 Side Shot: 1-79, Ang-Rt 19.4940, Zenith 91.0740, Slp Dst 468.9200, NTA 012 II / HR : Inst H 5.1200, Rod H 5.4500 Side Shot: 1-80, Ang-Rt 25.0655, Zenith 90.3935, Slp Dst 373.6800, NT BS point check:1-2 Note: Bide Shot: 1-81, Ang-Rt 32.2800, Zenith 90.3555, Slp Dst 291.9400, NTA 014 Side Shot: 1-82, Ang-Rt 45.0000, Zenith 90.4535, Slp Dst 218.2400, NTA 015 Side Shot: 1-83, Ang-Rt 68.3645, Zenith 89.4730, Slp Dst 152.8800, NTA 016 Side Shot: 1-84, Ang-Rt 246.5925, Zenith 90.1805, Slp Dst 168.5400, NTA 074 Side Shot: 1-85, Ang-Rt 174.3735, Zenith 89.4435, Slp Dst 262.7200, NTA 072 Store: Pt 80, N 5338.3282, E 5158.5946, Elv 95.3674, NTA 013 Occupy: Occ 2,N 6631.2480,E 5000.0000,Elv 93.5220,ACHW00 2 Backsight: Occ 2, BS Pt 1, BS azm 180.0000, Back circle 0.0000 HI / HR : Inst H 5.3700, Rod H 5.2100 Note: BS point check:2-1

٦. ر

CHW PROJECT # 99726.0 TIME: 14:32 DATE: 11-15-1999 JOB: 7260TS3 NACA TEST AREA at RAAP Backsight: Occ 2,BS Pt 1,BS azm 180.0000,Back circle 0.0000 BS point check:2-1 ote: 1 / HR : Inst H 5.3700, Rod H 5.4500 Side Shot: 2-86, Ang-Rt 22.0000, Zenith 90.4505, Slp Dst 98.3800, NAI 1 Side Shot: 2-87, Ang-Rt 46.5820, Zenith 90.0110, Slp Dst 158.4600, NAI 2 Side Shot: 2-87, Ang-Rt 46.5820, Zenith 90.0110, Slp Dst 158.4600, NAI 2 ide Shot: 2-88, Ang-Rt 60.0940, Zenith 89.5725, Slp Dst 213.3600, NAI 3 ide Shot: 2-89, Ang-Rt 69.3155, Zenith 90.0300, Slp Dst 253.3200, NAI 4 Side Shot: 2-90, Ang-Rt 79.0030, Zenith 90.0820, Slp Dst 278.5600, NAI 5 Side Shot: 2-91, Ang-Rt 91.1350, Zenith 90.1035, Slp Dst 280.7000, NAI 6 ide Shot: 2-92, Ang-Rt 103.3625, Zenith 90.0655, Slp Dst 264.2000, NAI 7 side Shot: 2-93, Ang-Rt 115.1520, Zenith 89.5650, Slp Dst 219.4000, NAI 8 Side Shot: 2-94, Ang-Rt 120.3145, Zenith 89.5650, Slp Dst 157.8200, NAI 9 ide Shot: 2-95, Ang-Rt 108.2820, Zenith 90.0845, Slp Dst 96.8200, NAI 10 ide Shot: 2-96, Ang-Rt 64.5915, Zenith 89.4520, Slp Dst 96.8200, NAI 11 Side Shot: 2-97, Ang-Rt 79.4415, Zenith 89.4430, Slp Dst 107.1000, NAI-13 Side Shot: 2-98, Ang-Rt 71.3310, Zenith 89.5715, Slp Dst 121.0400, NAI 14 ide Shot: 2-98, Ang-Rt 57.0055, Zenith 89.5855, Slp Dst 119.5000, NAI-12 Bide Shot: 2-99, Ang-Rt 57.0055, Zenith 89.5855, Slp Dst 119.5000, NAI-12 lide Shot: 2-100, Ang-Rt 60.4420, Zenith 90.1500, Sip Dst 156.2600, NAI-14 Side Snot: 2-100, Ang-Rt 60.4420, Zenith 90.1500, Sip Dst 156.2600, NAI-14 Store: Pt 98, N 6592.9472, E 4885.1796, Elv 93.5391, DAI-41 Side Shot: 2-101, Ang-Rt 77.5315, Zenith 90.0440, Slp Dst 139.3600, NAI-15 Side Shot: 2-102, Ang-Rt 83.3405, Zenith 90.1205, Slp Dst 195.7800, DAI-17 Side Shot: 2-103, Ang-Rt 71.1430, Zenith 90.2700, Slp Dst 215.4000, DAI-18 Side Shot: 2-104, Ang-Rt 84.1400, Zenith 90.2535, Slp Dst 232.9600, DAI-16 Side Shot: 2-105, Ang-Rt 99.1545, Zenith 90.1055, Slp Dst 202.3000, DAI-19 Side Shot: 2-106, Ang-Rt 99.5735, Zenith 90.0835, Slp Dst 133.9200, DAI-16 Side Shot: 2-107, Ang-Rt 89.3925, Zenith 90.5005, Slp Dst 257.5000, DAI-20 Store: Pt 104, N 6607, 8414, E 4768, 2254, Elv 91.7086, DAI-21 Store: Pt 104,N 6607.8414,E 4768.2254,Elv 91.7086,DAI-21 ide Shot: 2-108, Ang-Rt 41.4750, Zenith 89.0120, Slp Dst 6.1600, NTA-90 ide Shot: 2-109, Ang-Rt 180.5530, Zenith 90.4340, Slp Dst 294.8600, NTA-89 ide Shot: 2-109,Ang-Rt 180.5530,Zenith 90.4340,Slp Dst 294.8600,NTA-89 Side Shot: 2-110,Ang-Rt 146.0915,Zenith 91.1330,Slp Dst 349.0600,NTA-94 Side Shot: 2-111,Ang-Rt 141.1425,Zenith 90.2915,Slp Dst 275.6600,DAI-23 ide Shot: 2-112,Ang-Rt 161.3110,Zenith 90.5255,Slp Dst 216.9400,DAI-22 Side Shot: 2-113,Ang-Rt 134.5820,Zenith 90.2740,Slp Dst 205.8600,DAI-24 Side Shot: 2-114,Ang-Rt 131.2450,Zenith 90.1310,Slp Dst 232.7600,DAI-24 Side Shot: 2-115,Ang-Rt 127.1625,Zenith 90.1650,Slp Dst 257.2200,DAI-25 ide Shot: 2-116,Ang-Rt 128.3920,Zenith 90.5605,Slp Dst 353.2600,DAI-26 Side Shot: 2-117,Ang-Rt 112.4130,Zenith 90.5605,Slp Dst 353.2600,DAI-27 Side Shot: 2-118,Ang-Rt 109.0105,Zenith 91.0225,Slp Dst 387.7600,DAI-29 Side Shot: 2-119,Ang-Rt 100.4535,Zenith 90.3455,Slp Dst 321.7800,DAI-28 ide Shot: 2-120,Ang-Rt 92.0105,Zenith 90.3450,Slp Dst 332.6400,DAI-31 Side Shot: 2-121,Ang-Rt 89.4010,Zenith 90.5210,Slp Dst 327.4200,DAI-40 Side Shot: 2-121, Ang-Rt 89.4010, Zenith 90.5210, Slp Dst 327.4200, DAI-40 Side Shot: 2-121, Ang-Rt 89.4010, Zenith 90.5210, Sip Dst 327.4200, DAI-40 Side Shot: 2-122, Ang-Rt 90.3625, Zenith 90.5555, Sip Dst 401.1400, DAI-30 Side Shot: 2-123, Ang-Rt 79.0320, Zenith 90.2345, Sip Dst 338.3000, DAI-32 HI / HR : Inst H 5.3700, Rod H 12.0000 Side Shot: 2-124, Ang-Rt 73.2810, Zenith 89.3835, Sip Dst 391.8200, DAI-33 Side Shot: 2-125, Ang-Rt 20.0640, Zenith 89.3140, Sip Dst 237.4400, DAI-39 HI / HR : Inst H 5.3700, Rod H 5.4500 Side Shot: 2-126, Ang-Rt 34.4545, Zenith 90.5740, Sip Dst 229.9400, DAI-38 Side Shot: 2-127, Ang-Rt 53, 4715, Zenith 90.3725, Sip Dst 298.8400, DAI-37 Side Shot: 2-127, Ang-Rt 53.4715, Zenith 90.3725, Slp Dst 298.8400, DAI-37 Store: Pt 127, N 6454.7093, E 4758.9008, Elv 90.1897, DAI-36 ide Shot: 2-128, Ang-Rt 56.4640, Zenith 90.4340, Slp Dst 358.5000, DAI-35 Side Shot: 2-129, Ang-Rt 68.4140, Zenith 90.3415, Slp Dst 337.3000, DAI-34

1. 1

F-24

CHW PROJECT # 99726.0 TIME: 14:32 DATE: 11-15-1999 JOB: 7260TS3 NACA TEST AREA at RAAP HI / HR : Inst H 5.3700, Rod H 6.0000 lide Shot: 2-130, Ang-Rt 39.3330, Zenith 90.3650, Slp Dst 326.5600, DAI-37 II / HR : Inst H 5.3700, Rod H 11.5000 Side Shot: 2-131, Ang-Rt 33.2515, Zenith 90.1220, Slp Dst 341.7000, DAI-43 HI / HR : Inst H 5.3700, Rod H 5.4500 ide Shot: 2-132, Ang-Rt 92.3650, Zenith 90.4755, Slp Dst 438.1400, IPS Jide Shot: 2-133, Ang-Rt 2.3935, Zenith 90.5425, Slp Dst 306.9200, NTA 091 Side Shot: 2-134, Ang-Rt 328.2005, Zenith 90.5345, Slp Dst 352.2400, NTA 086 Side Shot: 2-135, Ang-Rt 271.3245, Zenith 89.2710, Slp Dst 195.7000, NTA 085 Side Shot: 2-136, Ang-Rt 213.4640, Zenith 90.3805, Slp Dst 365.4800, NTA 084 Side Shot: 2-137, Ang-Rt 199.3840, Zenith 90.1705, Slp Dst 633.6800, NTA 083 Side Shot: 2-138, Ang-Rt 181.1950, Zenith 90.2935, Slp Dst 597.9400, NTA 088 lide Shot: 2-139, Ang-Rt 162.4350, Zenith 90.3920, Slp Dst 629.8400, NTA 093 Jide Shot: 2-140, Ang-Rt 2.1420, Zenith 90.3710, Slp Dst 862.1450, 1IN STEEL PIN Side Shot: 2-141, Ang-Rt 2.1540, Zenith 90.3920, Slp Dst 613.5500, NTA 092 Side Shot: 2-142, Ang-Rt 2.1545, Zenith 90.3925, Slp Dst 613.2350, IP 92 II / HR : Inst H 4.8800, Rod H 5.2000 BS point check:132-2 lote: Occupy: Occ 132,N 6651.2275,E 4562.3584,Elv 87.3350,IPS Backsight: Occ 132, BS Pt 2, BS azm 92.3650, Back circle 0.0000 HI / HR : Inst H 4.8800, Rod H 5.4500 Side Shot: 132-143, Ang-Rt 156.5330, Zenith 92.0125, Slp Dst 323.5800, DAI 44 Occupy: Occ 142,N 6018.5314,E 4975.7924,Elv 86.4110,IP 92 Backsight: Occ 142, BS Pt 2, BS azm 2.1545, Back circle 0.0000 HI / HR : Inst H 5.1900, Rod H 5.2000 Note: BS point check:142-2 HI / HR : Inst H 5.1900, Rod H 5.0000 Side Shot: 142-144, Ang-Rt 85.3350, Zenith 90.4710, Slp Dst 204.8400, NTA-87 Side Shot: 142-145, Ang-Rt 268.0230, Zenith 89.4830, Slp Dst 206.0800, NTA-95 Occupy: Occ 140,N 5769.8115,E 4966.3214,Elv 84.1210, IIN STEEL PIN Backsight: Occ 140, BS Pt 2, BS azm 2.1420, Back circle 0.0000 HI / HR : Inst H 5.3300, Rod H 5.2000 BS point check:140-2 Note: HI / HR : Inst H 5.3300, Rod H 5.0000 3ide Shot: 140-146, Ang-Rt 309.1005, Zenith 93.3345, Slp Dst 103.1800, NTA-103 HI / HR : Inst H 5.3300, Rod H 5.1000 Side Shot: 140-147, Ang-Rt 265.3905, Zenith 90.4815, Slp Dst 201.2800, NTA-41 Bide Shot: 140-148, Ang-Rt 64.1610, Zenith 89.4205, Slp Dst 670.6000, NTA-104 HI / HR : Inst H 5.3300, Rod H 6.0000 HI / HR : Inst H 5.3300, Rod H 5.4500 Side Shot: 140-149, Ang-Rt 203.3505, Zenith 89.3350, Slp Dst 246.4400, NTA-101 Side Shot: 140-150, Ang-Rt 233.0620, Zenith 89.5910, Slp Dst 248.6000, NTA-42 Side Shot: 140-151, Ang-Rt 98.3010, Zenith 90.2640, Slp Dst 206.8200, NTA-09 Side Shot: 140-152, Ang-Rt 94.0030, Zenith 89.5645, Slp Dst 299.0000, NTA-01 HI / HR : Inst H 5.3300, Rod H 7.2000 Side Shot: 140-153, Ang-Rt 112.3010, Zenith 89.3045, Slp Dst 334.3200, NTA-02 HI / HR : Inst H 5.3300, Rod H 5.4500 Side Shot: 140-154, Ang-Rt 120.4315, Zenith 90.3310, Slp Dst 242.3000, NTA-10 HI / HR : Inst H 5.3300, Rod H 5.0000 Side Shot: 140-155, Ang-Rt 219.0340, Zenith 89.3355, Slp Dst 309.4800, NTA-43 Side Shot: 140-156, Ang-Rt 210.1035, Zenith 89.2445, Slp Dst 403.0200, NTA-44 Side Shot: 140-157, Ang-Rt 202.5400, Zenith 89.2700, Slp Dst 487.9400, NTA-45

1. /~ _____

F-25

. · ·

Page 3

CHW PROJECT # 99726.0 DATE: 11-15-1999 JOB: 7260TS3 TIME: 14:32 NACA TEST AREA at RAAP Occupy: Occ 1,N 5000.0000,E 5000.0000,Elv 100.0000,START Backsight: Occ 1, BS Pt 2, BS azm 0.0000, Back circle 0.0000 II / HR : Inst H 5.2900, Rod H 5.2000 BS point check:1-2 Note: HI / HR : Inst H 5.2900, Rod H 5.0000 lide Shot: 1-158, Ang-Rt 277.3935, Zenith 91.3530, Slp Dst 256.8200, NTA-48 Jide Shot: 1-159, Ang-Rt 289.4900, Zenith 92.1700, Slp Dst 262.1200, NTA-47 HI / HR : Inst H 5.2900, Rod H 7.0000 Gide Shot: 1-160, Ang-Rt 310.3620, Zenith 91.2615, Slp Dst 330.7400, NTA-46 HI / HR : Inst H 5.2900, Rod H 5.0000 Side Shot: 1-161, Ang-Rt 73.3805, Zenith 90.3035, Slp Dst 250.1200, NTA-08 Side Shot: 1-162, Ang-Rt 96.0230, Zenith 89.1625, Slp Dst 219.8000, NTA-68 lide Shot: 1-163, Ang-Rt 57.4200, Zenith 90.4520, Slp Dst 301.5200, NTA-07 Bide Shot: 1-164, Ang-Rt 45.1950, Zenith 90.5515, Slp Dst 359.3800, NTA-06 HI / HR : Inst H 5.2900, Rod H 12.0000 Side Shot: 1-165, Ang-Rt 37.4330, Zenith 90.3820, Slp Dst 429.6200, NTA-05 HI / MR : Inst H 5.2900, Rod H 15.0500 Side Shot: 1-166, Ang-Rt 131.3830, Zenith 89.0525, Slp Dst 335.2200, NTA 069 HI / HR : Inst H 5.2900, Rod H 5.4500 Side Shot: 1-167, Ang-Rt 157.1030, Zenith 90.2305, Slp Dst 430.7600, NTA 070 Side Shot: 1-168, Ang-Rt 179.4905, Zenith 89.2335, Slp Dst 465.4000, NTA 073 HI / HR : Inst H 5.2900, Rod H 14.5000 Side Shot: 1-169, Ang-Rt 195.0855, Zenith 88.4255, Slp Dst 467.3800, NTA 076 CHI / HR : Inst H 5.2900, Rod H 18.0500 Side Shot: 1-170, Ang-Rt 210.3645, Zenith 87.2455, Slp Dst 307.7400, NTA 075 HI / HR : Inst H 5.2900, Rod H 10.8000 _Side Shot: 1-171, Ang-Rt 261.2430, Zenith 89.4905, Slp Dst 360.9400, NTA 077 HI / HR : Inst H 5.2900, Rod H 5.4500 Side Shot: 1-172, Ang-Rt 266.1430, Zenith 90.4700, Slp Dst 346.7150, IP 172 Side Shot: 1-173, Ang-Rt 14.5855, Zenith 91.2740, Slp Dst 548.3150, IP 173 HI / HR : Inst H 5.1200, Rod H 5.4500 BS point check:173-1 Note: Occupy: Occ 173,N 5529.5041,E 5141.7014,Elv 85.8590,IP 173 Backsight: Occ 173, BS Pt 1, BS azm 194.5855, Back circle 0.0000 HA offset Note: Off Center Shot: Ang-Rt 238.4525, Zenith 89.1805, Slp Dst 109.0400 HI / HR : Inst H 5.1200, Rod H 8.9000 Side Shot: 173-174, Ang-Rt 243.4035, Zenith 89.1805, Slp Dst 108.6380, NTA 003 HI / HR : Inst H 5.1200, Rod H 5.4500 Side Shot: 173-175, Ang-Rt 291.1820, Zenith 90.0515, Slp Dst 142.2200, NTA 004 Side Shot: 173-176, Ang-Rt 267.3945, Zenith 90.2250, Slp Dst 449.3400, NTA 105 INV HI / HR : Inst H 5.1200, Rod H 4.9500 Traverse: 173-177, Ang-Rt 87.1740, Zenith 90.0235, Slp Dst 516.3200, IP 177 Jccupy: Occ 177,N 5639.2880,E 4637.1881,Elv 85.6410, IP 177 Backsight: Occ 177, BS Pt 173, BS azm 102.1635, Back circle 0.0000 Backsight: Occ 177, BS Pt 173, BS azm 102.1635, Back circle 0.0000 BS point check:177-173 Note: BS point check:177-173 Note: HI / HR : Inst H 5.1200, Rod H 5.4500 Side Shot: 177-178, Ang-Rt 338.1040, Zenith 90.0825, Slp Dst 26.4000, NTA 050 Side Shot: 177-179, Ang-Rt 183.4350, Zenith 90.3000, Slp Dst 75.5000, NTA 058 HI / HR : Inst H 5.1200, Rod H 12.4000

Page 4

_____≹.+ €

Page 5 CHW PROJECT # 99726.0 TIME: 14:32 DATE: 11-15-1999 JOB: 7260TS3 NACA TEST AREA at RAAP Side Shot: 177-180, Ang-Rt 194.0655, Zenith 90.2125, Slp Dst 228.7200, NTA 098 I / HR : Inst H 5.1200, Rod H 14.5500 ide Shot: 177-181, Ang-Rt 223.2010, Zenith 89.3600, Slp Dst 179.5800, NTA 97 HI / HR : Inst H 5.1200, Rod H 12.8000 Side Shot: 177-182, Ang-Rt 219.3050, Zenith 88.2320, Slp Dst 154.9600, NTA 057 I / HR : Inst H 5.1200, Rod H 5.4500 _ide Shot: 177-183, Ang-Rt 268.3820, Zenith 90.3755, Slp Dst 126.7000, NTA 049 HI / HR : Inst H 5.1200, Rod H 7.7000 ide Shot: 177-184, Ang-Rt 61.2935, Zenith 88.1635, Slp Dst 102.2000, NTA 051 I / HR : Inst H 5.1200, Rod H 7.0000 side Shot: 177-185, Ang-Rt 114.4610, Zenith 88.4420, Slp Dst 118.9800, NTA 059 HI / HR : Inst H 5.1200, Rod H 5.2400 'raverse: 177-186, Ang-Rt 79.3900, Zenith 89.4140, Slp Dst 351.3600, IP 186 (I / HR : Inst H 5.3100, Rod H 4.9500 BS point check:186-177 Note: Occupy: Occ 186, N 5288.1316, E 4625.3771, Elv 87.3950, IP 186 Jacksight: Occ 186, BS Pt 177, BS azm 1.5535, Back circle 0.0000 II / HR : Inst H 5.3100, Rod H 5.4500 Side Shot: 186-187, Ang-Rt 8.0340, Zenith 90.0440, Slp Dst 139.7500, NTA 052 Side Shot: 186-188, Ang-Rt 330.2440, Zenith 90.5930, Slp Dst 160.3600, NTA 060 Side Shot: 186-189, Ang-Rt 57.2155, Zenith 89.1140, Slp Dst 32.3400, NTA 053 Side Shot: 186-190, Ang-Rt 159.0650, Zenith 89.3505, Slp Dst 57.0200, NTA 054 Side Shot: 186-191, Ang-Rt 171.0005, Zenith 89.3600, Slp Dst 154.3600, NTA 055 lide Shot: 186-192, Ang-Rt 170.5830, Zenith 89.4835, Slp Dst 220.7800, NTA 056 lide Shot: 186-193, Ang-Rt 194.3315, Zenith 89.4755, Slp Dst 236.2400, NTA 064 Side Shot: 186-194, Ang-Rt 205.4720, Zenith 89.5300, Slp Dst 183.7400, NTA 063 Side Shot: 186-195, Ang-Rt 218.1215, Zenith 90.4735, Slp Dst 127.3200, NTA 062 ;ide Shot: 186-196, Ang-Rt 275.3940, Zenith 90.5300, Slp Dst 114.3200, NTA 061 BS point check:186-177 lote: HI / HR : Inst H 5.3100, Rod H 5.1300 Traverse: 186-197, Ang-Rt 172.4745, Zenith 88.3635, Slp Dst 312.2350, IP II / HR : Inst H 5.1700, Rod H 5.1400 BS point check:197-186 Note: Occupy: Occ 197,N 4977.3118,E 4654.0894,Elv 95.1500,IP II / HR : Inst H 5.1700, Rod H 5.0800 ide Shot: 197-198, Ang-Rt 157.1030, Zenith 89.1210, Slp Dst 346.6950, OLD ACHW00 Side Shot: 197-198, Ang-Rt 91.3100, Zenith 89.1215, Slp Dst 346.6950, OLD ACHW00 1 HI / HR : Inst H 5.1700, Rod H 5.4500 ide Shot: 197-199, Ang-Rt 185.5730, Zenith 89.1815, Slp Dst 231.6000, NTA-78 lote: HA offset Off Center Shot: Ang-Rt 182.1150,Zenith 88.2525,Slp Dst 426.4700 HI / HR : Inst H 5.1700,Rod H 10.6000 ide Shot: 197-200, Ang-Rt 181.5905, Zenith 88.2525, Slp Dst 426.4670, NTA-79 HA offset Note: Off Center Shot: Ang-Rt 203.4955, Zenith 88.2920, Slp Dst 447.6650 TI / HR : Inst H 5.1700, Rod H 16.0000 ide Shot: 197-201, Ang-Rt 203.3850, Zenith 88.2920, Slp Dst 447.6630, NTA-82 HA offset Note: Off Center Shot: Ang-Rt 226.5130, Zenith 90.3320, Slp Dst 293.0600 HI / HR : Inst H 5.1700, Rod H 5.4500 lide Shot: 197-202, Ang-Rt 226.5745, Zenith 90.3320, Slp Dst 293.0600, NTA-81 HI / HR : Inst H 5.1700, Rod H 5.8000

. H

1.

F-27

Page 6

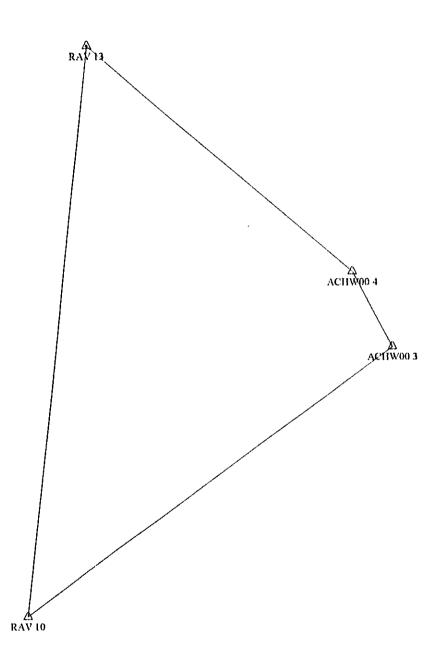
CHW PROJECT # 99726.0 TIME: 14:32 DATE: 11-15-1999 JOB: 7260TS3 NACA TEST AREA at RAAP Side Shot: 197-203, Ang-Rt 267.5755, Zenith 91.1435, Slp Dst 212.9500, NTA-80 CCupy: Occ 1,N 5000.0000,E 5000.0000,Elv 100.0000,START acksight: Occ 1, BS Pt 2, BS azm 0.0000, Back circle 0.0000 HI / HR : Inst H 5.1600, Rod H 5.4500 Side Shot: 1-204, Ang-Rt 156.4645, Zenith 90.2240, Slp Dst 430.0950, NCH raverse: 1-205, Ang-Rt 95.0930, Zenith 89.1050, Slp Dst 220.1000, NCH _II / HR : Inst H 5.1000, Rod H 5.0100 Note: BS point check:205-1 Occupy: Occ 205,N 4980.2132,E 5219.1862,Elv 102.8580,NCH HI / HR : Inst H 5.1000, Rod H 5.4500 Side Shot: 205-206, Ang-Rt 169.3720, Zenith 93.0730, Slp Dst 202.5150, NTA 065 Side Shot: 205-207, Ang-Rt 225.1535, Zenith 92.1035, Slp Dst 328.9600, NTA 066 HI / HR : Inst H 5.3400, Rod H 5.0100 lote: BS point check:204-1 Occupy: Occ 204, N 4604.7547, E 5169.5725, Elv 96.8740, NCH Backsight: Occ 204, BS Pt 1, BS azm 336.4645, Back circle 0.0000 HI / HR : Inst H 5.3400, Rod H 5.1000 Gide Shot: 204-208, Ang-Rt 154.0225, Zenith 91.1055, Slp Dst 185.1200, NTA 067 Occupy: Occ 2,N 6631.2480,E 5000.0000,Elv 93.5220,ACHW00 2 Backsight: Occ 2, BS Pt 1, BS azm 180.0000, Back circle 0.0000 II / HR : Inst H 5.3500, Rod H 5.4500 Side Shot: 2-209, Ang-Rt 128.3035, Zenith 90.1220, Slp Dst 222.9200, NTA 42A Side Shot: 2-210, Ang-Rt 131.3055, Zenith 90.1220, Slp Dst 233.0800, NTA 042 2 THI / HR : Inst H 5.4800, Rod H 5.4500 Jote: BS point check:205-1 Occupy: Occ 205,N 4980.2132,E 5219.1862,Elv 102.8580,NCH Backsight: Occ 205, BS Pt 1, BS azm 275.0930, Back circle 0.0000)ccupy: Occ 204, N 4604.7547, E 5169.5725, Elv 96.8740, NCH Backsight: Occ 204, BS Pt 1, BS azm 336.4645, Back circle 0.0000 HI / HR : Inst H 5.0000, Rod H 5.4500 Note: BS point check:204-1 BS point check:204-1 lote: Jide Shot: 204-211, Ang-Rt 200.0530, Zenith 89.5445, Slp Dst 55.1800, NTA 100

÷.,

GPS DATA

- ...

.


· · .

. . . .

THIS PAGE INTENTIONALLY LEFT BLANK

Network Map: GPS7262

. (*

......

1. A. A.

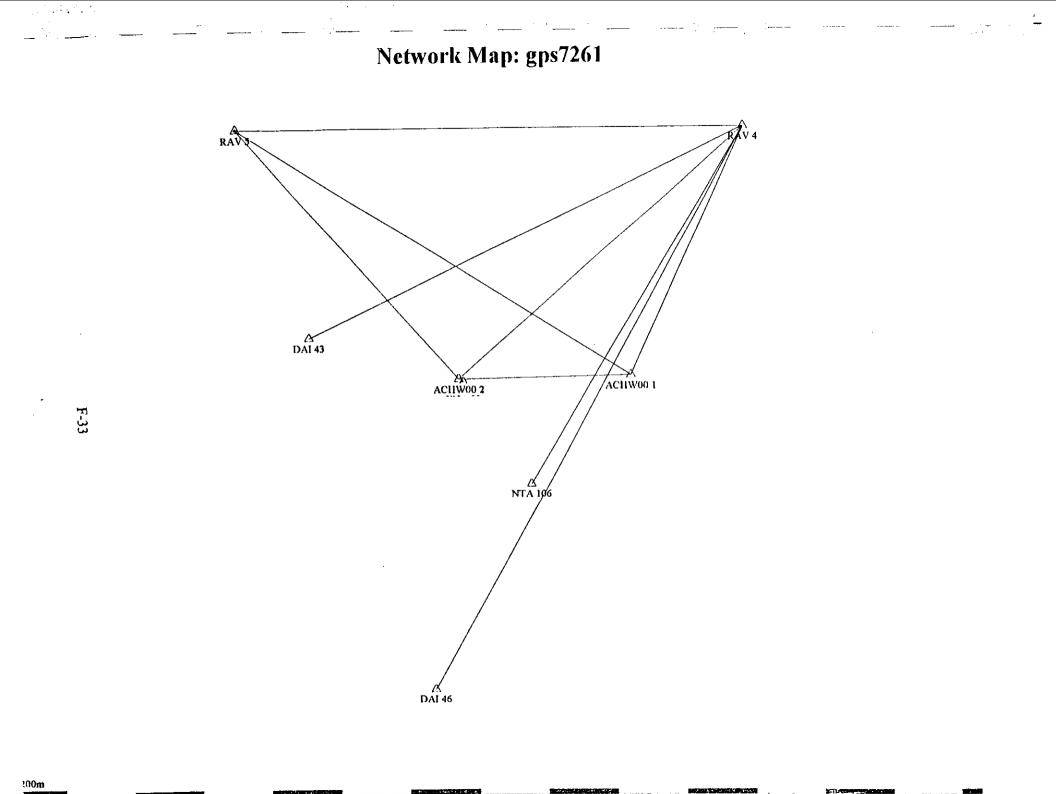
****************** ***** New Closure From: RAV 10 L1 fixed To: ACHW00 3 00003496.SSF 11/4/99 17:16:30 3514.265 Slope (m): 38713080.DAT 41°11'59.93085" N 3514.265 Total (m): 081°01' 1.95376" W 38743080.DAT 280.7209 m Ll fixed To: ACHW00 4 00003492.SSF 11/4/99 17:34:30 649.223 Slope (m): 41°12'18.48488" N 38743081.DAT 4163.488 Total (m): 081°01'15.10027" W 38713080.DAT 277.1577 m L1 fixed To: RAV 13 11/4/99 18:30:45 00003488.SSF 2676.689 Slope (m): 38713081.DAT 41°13'15.30832" N 6840.178 Total (m): 38743081.DAT 081°02'41.92492" W 264.9882 m L1 fixed To: RAV 10 00003484.SSF 9/10/99 18:26:30 4460.262 Slope (m): 38742530.DAT 41°10'51.57712" N Total (m): 11300.440 38712530.DAT 081°03' 2.58413" W 270.5835 m Closed 1.5074 Precision (ppm): 0.0093 E: 0.0098 U: -0.0103 Errors (m) N:

- +--

4 4 .

•••

2


-

•

· . . .

ι.

1: -

************ ***** New Closure From: RAV 5 Ll fixed To: ACHW00 2 00003452.SSF 11/2/99 15:37:45 964.601 Slope (m): 41°10'21.56278" N 38743060.DAT Total (m): 964.601 38713062.DAT 081°07'41.10264" W 300.6240 m L1 fixed To: ACHW00 1 11/2/99 14:22:30 00003448.SSF 497.192 Slope (m): 41°10'21.87247" N 38713060.DAT 1461.793 Total (m): 38743060.DAT 081°07'19.77797" W 302.5387 m Ll fixed To: RAV 4 00003464.SSF 11/2/99 16:50:30 788.238 Slope (m): 38743061.DAT 41°10'45.13715" N 2250.032 Total (m): 081°07' 5.80014" W 38713063.DAT 307.1665 m L1 fixed To: RAV 5 11/2/99 17:31:15 00003468.SSF 1458.969 Slope (m): 41°10'45.06476" N 38713063.DAT 3709.001 Total (m): 081°08' 8.39367" W 38743062.DAT 308.2182 m Closed Precision (ppm): 2.7792 -0.0100 E: -0.0015 U: -0.0022 Errors (m) N:

_1

~

; • •

:_*

ļ

F-34

_}-

ц**і** .

.

•

:

.

Ravenna Anny Anno Flaic, Ravenna Ono										
**** Reference Coordinates ****										
Station	Station	Latitude	Longitude	Height	Station					
Short Name	Ð				Quality					
ACHW00 2	ACHW00 2	41°10'21.56308" N	081°07'41.10291" W	300.61559	Point Positioning					
NTA 106	NTA 106	41°10'11.64430" N	081°07'32.27578" W	295.30363	Point Positioning					
DAI 43	DAI 43	41°10'25.46190" N	081°07'59.54279" W	296.90418	Point Positioning					
DAI 46	DAI 46	41°09'51.89047" N	081°07'44.22620" W	294.11070	Point Positioning					
RAV 10	RAV 10	41°10'21.28234" N	081°07'40.53957" W	283.92993	Point Positioning					
RAV 5	RAV 5	41°10'45.06508" N	081°08'08.39360" W	308.22036	Point Positioning					
RAV 4	RAV 4	41°10'45.13747" N	081°07'05.80007" W	307.16865	Point Positioning					
ACHW001	ACHW00 1	41°10'21.87279" N	081°07'19.77791" W	302.54089	Point Positioning					

**** Adjusted Coordinates ****

Projection Group: Zone Name:	NAD-83 SP Lamb Ohio North	ert			
Linear Units:	meter				
Angular Units:	degrees				
Datum Name:	NAD-83				
Station	Station	North	East	Ortho.	Ellip.
Short Name	ID			Height	Height
ACHW001	ACHW001	168148.30057	715622.08406	332.32711	298.625 33
ACHW00 2	ACHW00 2	168130.91260	715125.25127	330.40453	296.70723
DAI 43	DAI 43	168244.41562	714693.60503	326.68206	292.98786
DAI 46	DAI 46	167214.55429	715066.84433	323.88596	290.19438
NTA 106	NTA 106	167828.21939	715335.78653	325.08478	291.38732
RAV 4	RAV 4	168871.02322	715936.47230	336.96317	303.25308
RAV 5	RAV 5	168845.82720	714477.87250	337.99340	304.29948

F-35

_ H.-

÷

: . ..

. • . .

• •

-

. **.** .

i I

From Station	To Station	Solution	Slope	Ratio	Reference	Entered	Entered
Short Name	Short Name	Type			Variance	Ant. Ht.	Ant. Ht.
						(From)	(To)
ACHW00 1	ACHW00 2	L1 fixed	497.192	54.1	0.560	1.597	1.692
ACHW001	RAV 4	L1 fixed	788.238	17.9	2.233	1.598	1.648
ACHW002	RAV 4	L1 fixed	1098.241	12.6	2.107	1.692	1.610
ACHW002	RAV 5	L1 fixed	964.601	6.8	6.217	1.692	1.565
RAV 4	DAI 43	L1 fixed	1392.072	1.5	40.467	1.504	0.750
RAV 4	DAI 46	L1 fixed	1871.106	4.3	7.275	1.504	0.000
RAV 4	NTA 106	L1 fixed	1203.622	5.1	2.952	1.504	0.750
RAV 4	RAV 5	L1 fixed	1458.969	3.5	8.533	1.648	1.593
RAV 5	ACHW00 1	L1 fixed	1340.218	3.0	8.250	1.565	1.598

F-36

•••

, . , `

..

- - -. t

÷ .

•

ļ,

Ravenna Army An	Ravenna Army Ammo Plant, Ravenna Ohio							
**** Reference Coordinates ****								
Station	Station	Latitude	Longitude	Height	Station			
Short Name	ID				Quality			
ACHW004	ACHW004	41°12'18.48488" N	081°01'15.10027" W	277.15768	Point Positioning			
RAV 10	RAV 10	41°10'51.57682" N	081°03'02.58455" W	270.59388	Point Positioning			
ACHW00 3	ACHW00 3	41°11'59.93085" N	081°01'01.95376" W	280.72089	Point Positioning			
RAV 13	RAV 13	41°13'15.30832" N	081°02'41.92492" W	264.98815	Point Positioning			

**** Adjusted Coordinates ****

Projection Group:	NAD-83 SP Lam	bert			
Zone Name:	Ohio North				
Linear Units:	meter				
Angular Units:	degrees				
Datum Name:	NAD-83				
Station	Station	North	East	Ortho.	Ellip.
Short Name	Ð			Height	Height
ACHW00 3	ACHW00 3	171321.15833	724365.49682	310.04836	276.25446
ACHW004	ACHW004	171888.21838	724049.53684	306.48367	272.68994
RAV 10	RAV 10	169165.66820	721590.39870	299.87500	266.11849
RAV 13	RAV 13	173606.81210	721997.83910	294.31600	260.5241 0

<u>_ l</u>

. . .

••• ξ.

i · t

....

1

ļ

From Station	To Station	Solution	Slope	Ratio	Reference	Entered	Entered
Short Name	Short Name	Туре			Variance	Ant. Ht.	Ant. Ht.
		~ •				(From)	(To)
ACHW003	RAV 10	L1 fixed	3514.265	5.6	8.050	1.592	1.600
ACHW004	ACHW00 3	L1 fixed	649.223	13.6	5.151	1.639	1.592
RAV 10	RAV 13	L1 fixed	4460.262	27.5	3.279	1.625	1.543
RAV 13	ACHW004	L1 fixed	2676.689	8.6	8.245	1.528	1.639

F-38

			- (s que -			
	G	PS Fast	Static Si	urvey Fiel		<u>El Trimble</u>
E	Sate	Julian Day	Fllename	Epoch Rate	Operator(s)	Project Name
	22.2 X X X X X X X X X X X X X X X X X X	306 307	3874	15 sec	Hershel & James	NACA Test Areg Ravenne 99726.D
		80.6.77.00.02.020.000.000.000.000.00			Antenna Type:	
		celver Type; Mark ID	Start Time	Stop Time		Point Description & Notes
22	08.1	Mark ID			(m) / (fl)	
		ACHW	1 7.77	11:07	1.692 (m) / 5.55	IRON PIN W/ Aluminum Cap
	1	00-2	9:22		(m) /	
		ACHW	[· · · · · · · · · · · · · · · · · · ·	(m) / (ft)	
	2		11:13	12:20	1.598 (m)1 5.74	IRON PIN W/Alumunum Cap
	4	00-1	11.12		(m) /	,
				· · · · · · · · · · · · · · · · · · ·	(m) / (ft)	
ł	3	RaU 5	12:31	13:01	1.593 (m) 1 5.23	Brass Cap in Conc.
1	ント	i '	16.71	1501	(m) /	· · · · · · · · · · · · · · · · · · ·
					(m) / (ft)	
ト	F-39	t			(m)+	
	ہ 				(m) /	
,	1.3/	DAI			(m) / (ft)	2
· []	17		12:25	13:05	\mathcal{O} (m) / \mathcal{O}	
	<u> </u>	46	-		(m) /	
1		PAI			(m) / (fl)	2
1	2	-	13:25	13:55	<u>, 75 (m) /</u> (m) /	
┝		<u> 43 :</u>			(m) / (m) / (ft)	<u></u>
	-7	NTA		مرا رما	(m) / (l)	2
	3	106	14:42	15:15	(m) /	
-	<u></u>	100	-	-	(m) / (ft)	5
					(m) /	<u></u>
					(m) /	
_ -		-{			(m) / (fl	
					(m) /	• [
,)					(m) /	
<u> </u>	R	Receiver S/N		Anter	na S/N	Page / of Z

hata	Julian Day	Filonamo	Irvey Fiel	Operator(s)	Project Name		
2/3	306 307	387.1	/5 sec	Hershel + James	NACA Test Areq Rawennel 99726		
100000000000000000000000000000000000000	elvor Typo:	RZ		Antenna Type	1600 LS JNT		
Doc.#		Start Time	Stop Time	Antenna Height Measurements			
	ACHW			(m) / (fi	1) TRON PIN W/Aluminum Cap		
)		9:05	9:5Z	1.597 (m) $1.5.24$	PPOP 2.4 50'S 7		
1	00-1			(m) /			
	14		. 76		1) Brass Cap in Conc.		
Z	Raw 4	10:00	10:30	<u>/.610 (m)/ 5.28</u> (m)/	PUOP 3.5 SU 7		
	P.			(m) / (f			
~	.5	10:37	11:43	1.565 (m)1 5.13	Brass Cap in Conc.		
3	Rav 5	Kav -	Ka	10.57		(m) /	
- 7			<u>,</u> ,	. (m) / (f			
8 //	2,4	11:50	13:05	1.648 (m)1 5.40	Brass Cap in Conc.		
4	Rav 4	11:00		(m) /			
				(m) /			
			-	(m) /	α\		
113/	I , н				(I) <u>·</u>		
1/1	Ray H	12:15	16:33	<u>1.504 (m) / 4,94</u> (m) /	Brass Cap in Lonc.		
					ft)		
				(m) /			
	ļ			(m) /			
				(m) / (<u>()</u>		
				(m) /			
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	(m) /			
					<u>f()</u>		
	4			(m) /			
<u></u>	eceiver S/N _		Anten	(m) /	Page <u>2</u> of <u>2</u>		

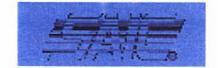
			irvey Fiel	<u> </u>		see r		CARL CONTRACTOR OF THE OWNER OWNE	Trimb	
Date	Julian Day	Filename	Epoch Rate	Operator	(5)			oject Nam		<u> </u>
11-4	308	3874	15 sec	Hershel +	James		Load line 1	Kauenic, OHIO	997	26,0
	celvor Type:	RI		,	Antenna Tyr)0;	4600 LS 11	<u>Г.</u>		
Dec.#	Mark ID	Start Time	Stop Time	Antenna Height Me	easurements	8	Point Description	& Notes		
				(m) /		<u>(ft)</u>				
	Rav	12:15	13:20	1.600 (m)/	5.25		Brass Cap	_/\/	Con(•
1	U O	10.10		(m) /						
	ACHW			(m) /		<u>(ft)</u>				-
7		13:30	15:42	1.639 (m)/	5.375		IRON PIN 1	N/Alum	inum (-ap_
L	00-4	10.0	101.0	(m) /						
				(m) /		<u>(ft)</u>				
				(m) /						<u> </u>
			-	(m) /		(ft)				
	1			(m) / (m) /	···	(11)	_ <u>, _, _, </u>			
F-41				(m) /						,
	· · · · · · · · · · · · · · · · · · ·		-	(m) /		(ft)	· · · · · · · · · · · · · · · · · · ·		······	
				(m) /		(11)				
				(m) /				<u>-</u>		
<u></u>				(m) /		(ft)	- [
				(m) /		<u></u>				
	•			(m) /						
			***	(m) /		(ft)				
				(m) /						
				(m) /						
				(m) /		(ft)				
			ł	(m) /	· · · · · · · · · · · · · · · · · · ·		-			
				(m) /				·····		
				(m) /		(ft)		<u> </u>		
	1			(m) /						
	eceiver S/N			(m) / na S/N			<u> </u>		_/_of_	· .

Allen og Monsen Hannafor i St		1	Br vir	· · · · · · · · · · · · · · · · · · ·	an a
G	PS Fast	Static Su	irvey Fiel	d Log	E Trimble
Date	Jullan Day	Filename	Epoch Rate	Operator(s)	Project Name
11-4	308	3871	/5 sec	Hershel + Jaines	Local line 1 Ravenna, 99726.6
B 101110 101000000000000000000000000000	elver Type:	KZ		Antenna Type	4600LS INT.
1 . OX OX OX OX OX OX OX OX OX	Mark ID	Start Time	Stop Time	Antenna Height Measurements	Point Description & Notes
				(m) / (ft)	
	ACHW	12:35	H1.25	1.592 (m) 1 5.22	IRON PIN W/Alumium Cap
/	00-3			(m) /	
				$\frac{(m)}{(m)} \frac{1}{\sqrt{(m)}} \frac{(fl)}{(m)}$	
2	Rav	14:47	15:52	<u>1,528 (m) / 5,0)</u>	Brass Cap in Conc.
	13			(m) / (m) / (ft)	
				(m) /	
				(m) /	
 				(m) / (ft	Survey Nata From
Ŧ				(m) /	Rav 13 to Rav 10 Was
42	Ì			(m) /	Used from previous
				(m) / (ft) survey.
1				(m) /	
			.	(m) /	
				(m) / (ft (m) /	1
1	1	1		(m) /	· · · · · · · · · · · · · · · · · ·
		-		(m) / (ft	<u>, </u>
l			I	(m) /	£
				(m) /	
	1	-		(m) / (fi)
				(m) /	
	<u> </u>	_		(m) /	
l ·				(m) / (fi	······································
				(m) / (m) /	
	 eceiver S/N		_]Anten	na S/N	Page 2 of Z

APPENDIX G

ORDNANCE AND EXPLOSIVES AVOIDANCE SURVEY REPORT

FINAL REPORT FOR UNEXPLODED ORDNANCE AVOIDANCE AT DEMOLITION AREA 1


RAVENNA ARMY AMMUNITION PLANT RAVENNA, OH 44266

Prepared For

Science Applications International Corporation 800 Oak Ridge Turnpike, P.O. Box 2502 Oak Ridge, TN 37831

Prepared By

MKM Engineers, Inc. 4153 Bluebonnet Drive Stafford, TX 77477

November 1999

THIS PAGE INTENTIONALLY LEFT BLANK

UNEXPLODED ORDNANCE AVOIDANCE AT DEMOLITION AREA 1

RAVENNA ARMY AMMUNITION DEPOT RAVENNA, OHIO 44266

Prepared for

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 800 OAK RIDGE TURNPIKE, P.O. BOX 2502 OAK RIDGE, TN 37831

Prepared by

MKM ENGINEERS, INC 4153 BLUEBONNET DRIVE STAFFORD, TEXAS 77477

November 1999

THIS PAGE INTENTIONALLY LEFT BLANK

UXO AVOIDANCE AT DEMOLITION AREA 1

FINAL REPORT

UNEXPLODED ORDNANCE AVOIDANCE

FOR

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

AT

DEMOLITION AREA 1 Ravenna Army Ammunition Plant RAVENNA, OH 44266

SAIC CONTRACT NO. DAC 462-94-0-0029 DELIVERY ORDER NO. 0076

Prepared By

MKM Engineers, Inc. 4153 Bluebonnet Drive Stafford, TX 77477

G-7

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

1	Introduction
	Project Authorization Purpose and Scope
2	UXO Team Composition and Qualifications
	Responsibilities and Authority Access Routes to Sampling Locations Soil Sampling Sites
3	Ordnance/Explosives
	Recovered Ordnance/Explosives
4	Daily Log
5	Daily Reports
6	Photodocumentation

.

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

1.1 Project Authorization:

MKM Engineers, Inc. provided on-site UXO support during all soil sampling activities by Science Applications International Corporation (SAIC) at the Demolition Area 1. This project was executed during the period of October 18, 1999 to November 3, 1999. Ordnance Avoidance was provided in accordance with the USACE ETL 385-1-2-Ordnance Avoidance during Geo-Technical Operations.

1.2 Purpose and Scope:

The purpose of this project was to provide Unexploded Ordnance (UXO) detection services so that safe soil remediation and sampling efforts could be conducted. Specifically, the major tasks involved in completing this contract were:

- 1. Provide all necessary materials and labor to safely locate and identify all ordnance and explosive hazards.
- 2. Provide daily explosive/ordnance safety briefings to SAIC personnel prior to entering the site.
- 3. Provide final report describing results of all work completed.

2.0 UXO TEAM COMPOSITION AND QUALIFICATIONS

a. Senior UXO Supervisor for this project was Mr. Max Owens. Mr. Owens is qualified for this project by virtue of training and experience. He has 30 years of military and civilian UXO experience. Mr. Owens has served as Senior UXO Supervisor, UXO Supervisor, Safety Officer, and Quality Control Specialist. Duties and assignments include Range Clearances as EOD Range Supervisor of multiple team operations and civilian UXO experience including performance as a Senior UXO Supervisor for OE removal actions

b. UXO Supervisor for this project was Mr. Dewey Thedford. Mr. Thedford has 30 years military and civilian UXO experience. Mr. Thedford has served as EOD Range Officer, and as a Senior UXO Supervisor for OE removal actions.

MKM/RVAAP/SAIC-UXO

2.1 Responsibilities and Authority:

The Senior UXO Supervisor was the technical lead for all ordnance/explosives operations and was assigned the following safety and health related responsibilities:

- 1. Reports to the SAIC supervisor, coordinating schedule and support requirements through that individual;
- 2. Overall coordination between operations and safety and health personnel;
- 3. Reviewing and becoming familiar with the site Work Plan and Site Safety and Health Plan;
- 4. Conduct UXO safety briefings for all site personnel and visitors.

2.2 Safety Briefs:

All SAIC personnel were briefed on precautions for ordnance and explosives on a daily basis.

2.3 Access Routes to Sampling Locations

a. Prior to sampling crews entering the site, the UXO team conducted a through survey of the sampling area. This included locating a clear path for the sampling crews, vehicles, and equipment to the approach site. A Schonstedt GA-52Cx Magnetometer and White's Spectrum XLT were used in locating the path. Boundaries were marked along the cleared approach path to prevent personnel from straying into areas that were not cleared.

b. Prior to sampling, an area twice the length of the vehicle used was cleared.

2.4 Soil Sampling Sites

a. For the Geo Probe Operation, Schonstedt GA-52Cx Magnetometer and GAU 30 were used to monitor down-hole in 2 feet increments. Prior to drilling equipment being used, the UXO team located anomalies near surface with the Schonstedt 52Cx, and in 2-feet increments down to depth with the GAU 30.

3.0 ORDNANCE/EXPLOSIVES

3.1 Recovered Ordnance/Explosives:

The types of ordnance/explosive related material encountered on the site were Artillery Fuzes and Primers, Flash tubes, and various parts of Fuzes. All ordnance parts encountered were burned out and rendered inert.

The Ordnance Avoidance task was completed with no delay to the SAIC Sampling Personnel.

4.0 UXO DAILY LOG:

Please see Attachment A.

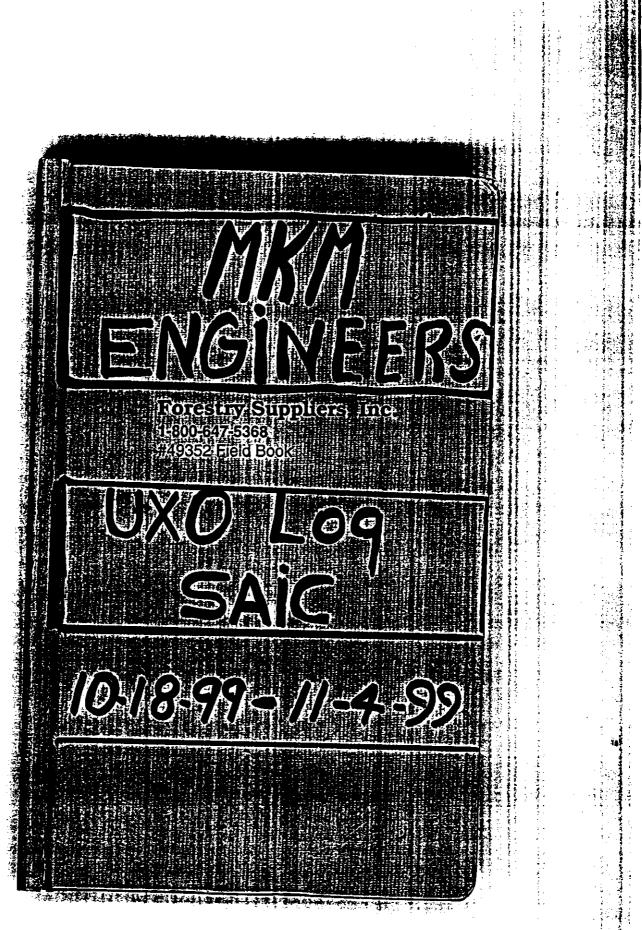
5.0 DAILY REPORTS:

Please see Attachment B.

6.0 PHOTODOCUMENTATION

Please see Attachment C.

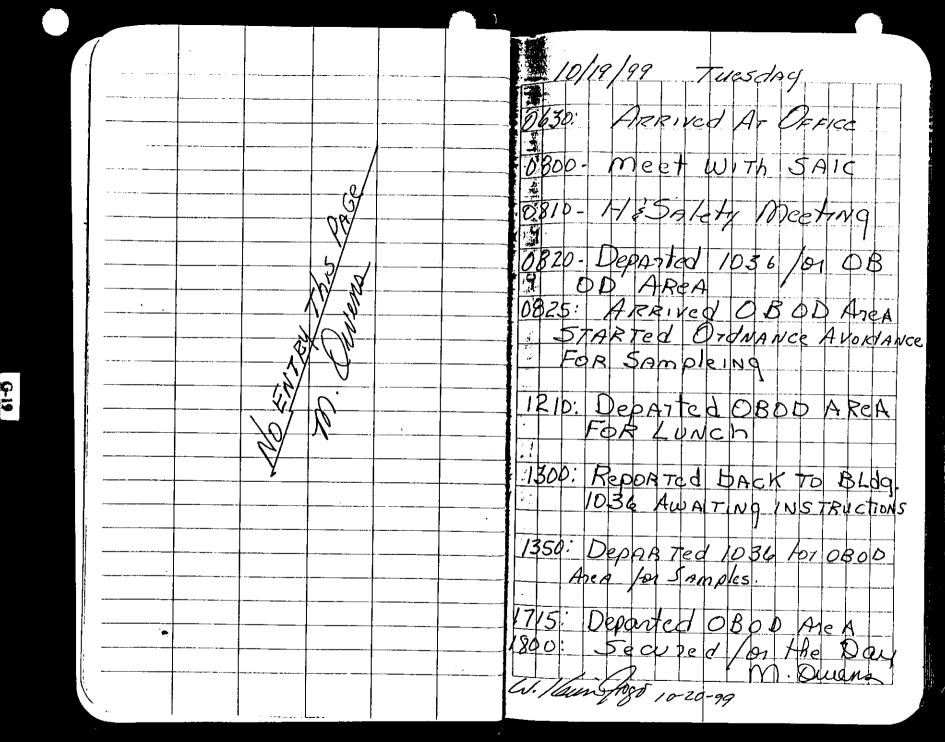
THIS PAGE INTENTIONALLY LEFT BLANK


UXO AVOIDANCE AT DEMOLITION AREA 1

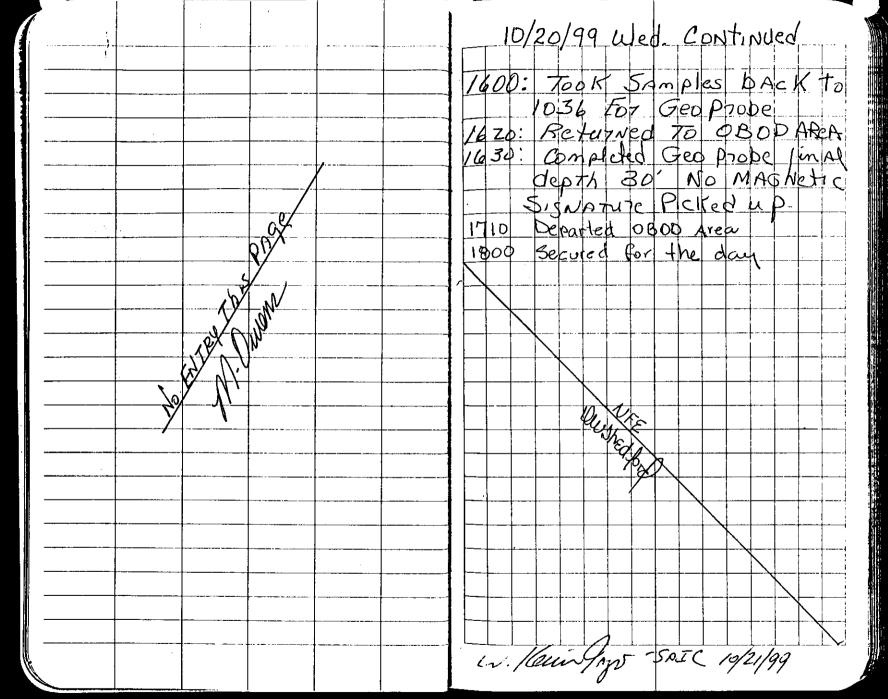
ATTACHMENT A

UXO DAILY LOG

THIS PAGE INTENTIONALLY LEFT BLANK


ł

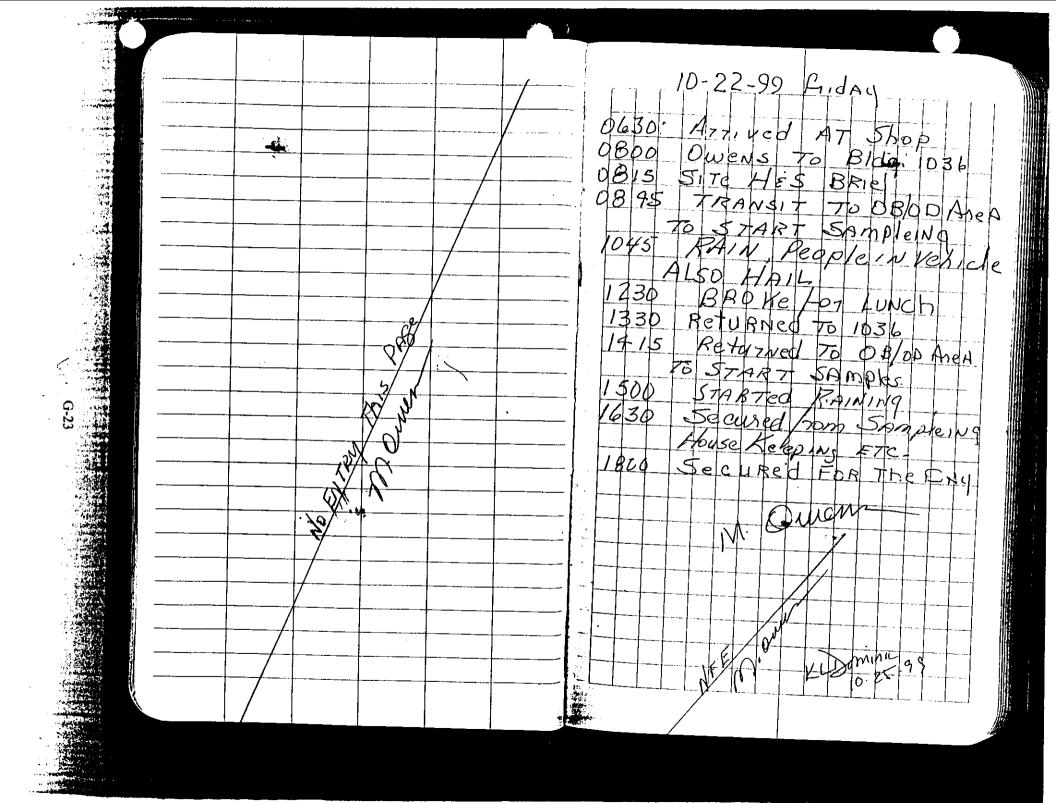
G-17


10/18/99 **CONTENTS** PAGE NO. 0630: AT WORK REFERENCE ARRIVED DATE Quens & Thed lost Salety Briel, WAITING 0700: Working with AOT SAIC-STARTEd Meeting with 10: SAIC INTRE 0/18/99 TE S Υ. Centilidates Alety D 1315: Secured 1415 70 6 NO Tosether The BRAVET eparted by OBOD SAMP to/as Pai DEPAR Roloz Office red for the day. x W. 16un Jogo 10/18/99 suc

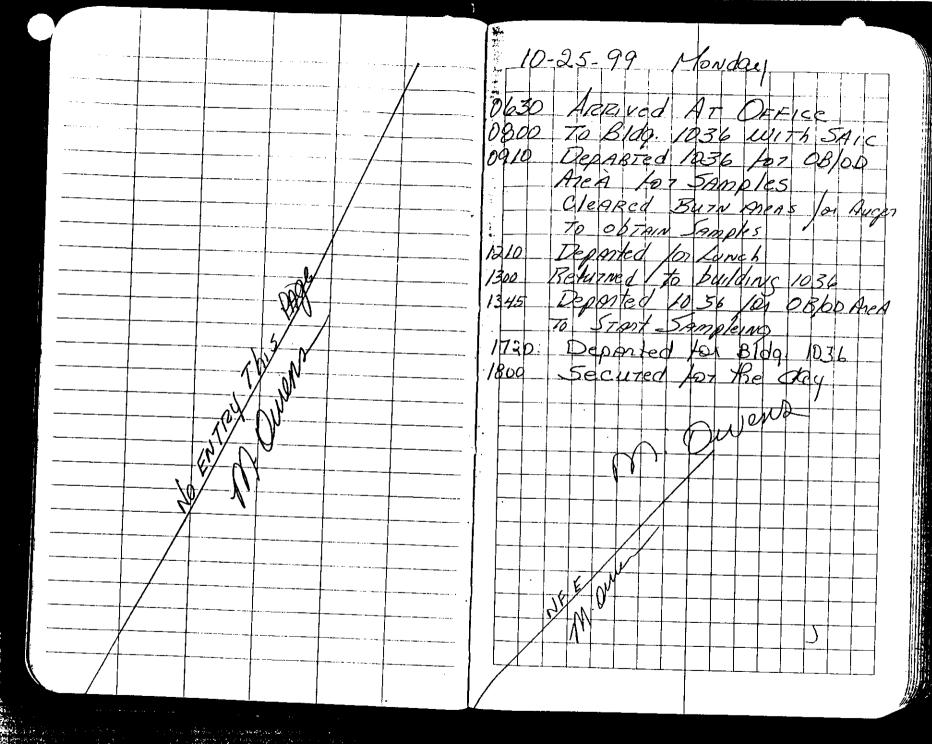
Q-10

G-19

			75 Blog. 1035 for 1500: Bithing to	y Pominic Back Herkehale OBOD AREA PUMPING WATER PODE UP AGRIN
			1210: BREAK FOT 235: Return to 1330: DepArted E Journ Hole SA	Blog 1036 BBOD AREA for
		P.		102 4' NO AGNETIC I TEMS 9-8', 8-12, Mit Myd EWATGT
	<u>``</u>		6910 Departed OBOD Anen 0930: STARTE DOWN Note	DB6 FOR TO DO SAMPles DRILING SAMPles 200 ODaw Hole
· · · · · · · · · · · · · · · · · · ·			1015: JACety	È Thed/OID DITH SAIC Meeting
			10/20/99 10/20/99 10/20/99	Wednesday V AT O/Ace



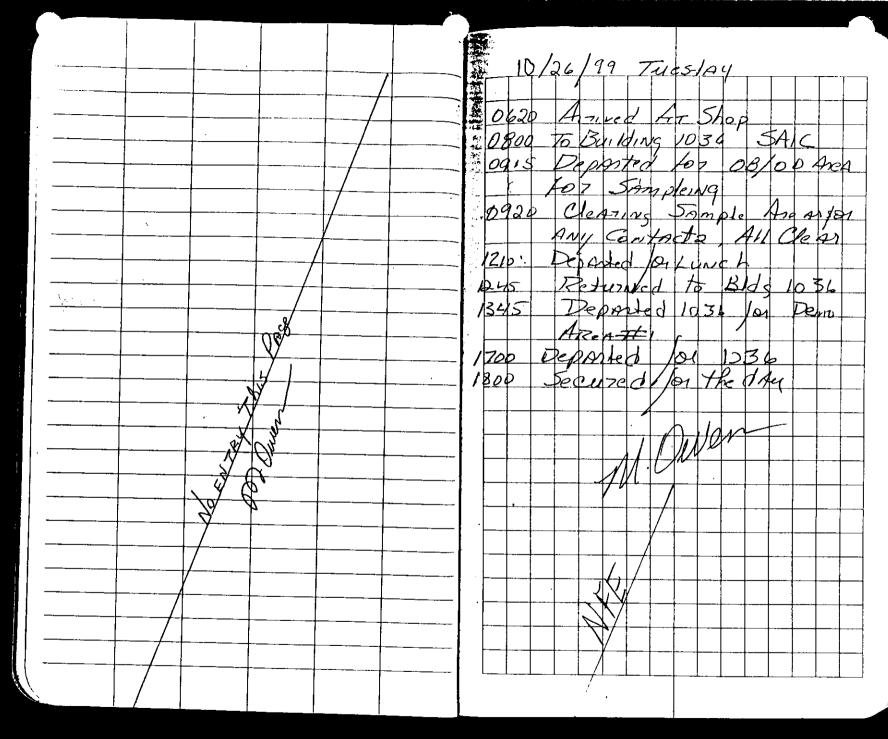
G-21


,

	10/21/99
063	O Arrived at Office
() () () () () () () () () ()	prounde UXO Support
2084	5 Load gear equipment for Sampling operations. Loaded
6920	Bequer in MXM vehicle and transported to field.
 0980 1.	
1015	Assisting SAIC personnél with
1220	Sample collection Break for unch Return to bldg 036.
1415	Resurred sampling operations
	Departed OBOD MeA Secured for the Duty
	10. Owen
ω.,	Kaun 9080 10/21/99 80IC

G-22

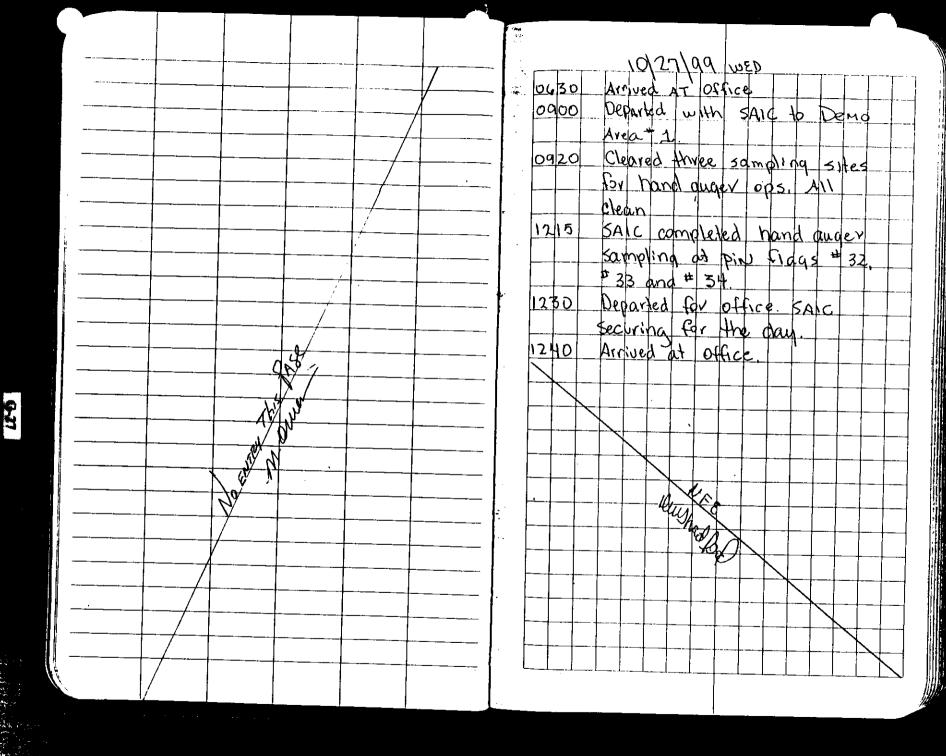
10-24-99 SUNDAY 0700 Arrie ved AT Office 0,500 SAIC ARRIVED 1036 Safety Brach 0830 Departed las OB/DD AREA 6415 for SAmples (WATER) 1210 Departed OB-OD AneA toi touch Returned 12.45 to 1036 1315 Departed Jos OBOD Anca Departed OBOD 1705 ARe los the day 1730 Secured Outer A KLDominic 10.25.99

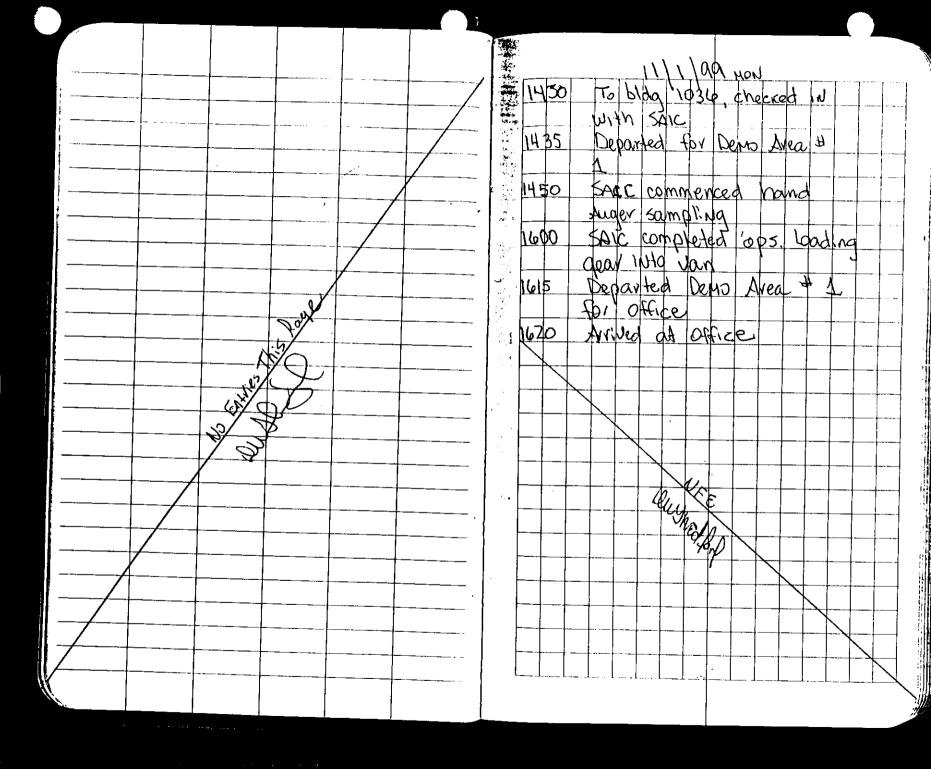


nadiat dan dari bertan dari An dari bertan d A NEW YORK AND A NEW YORK

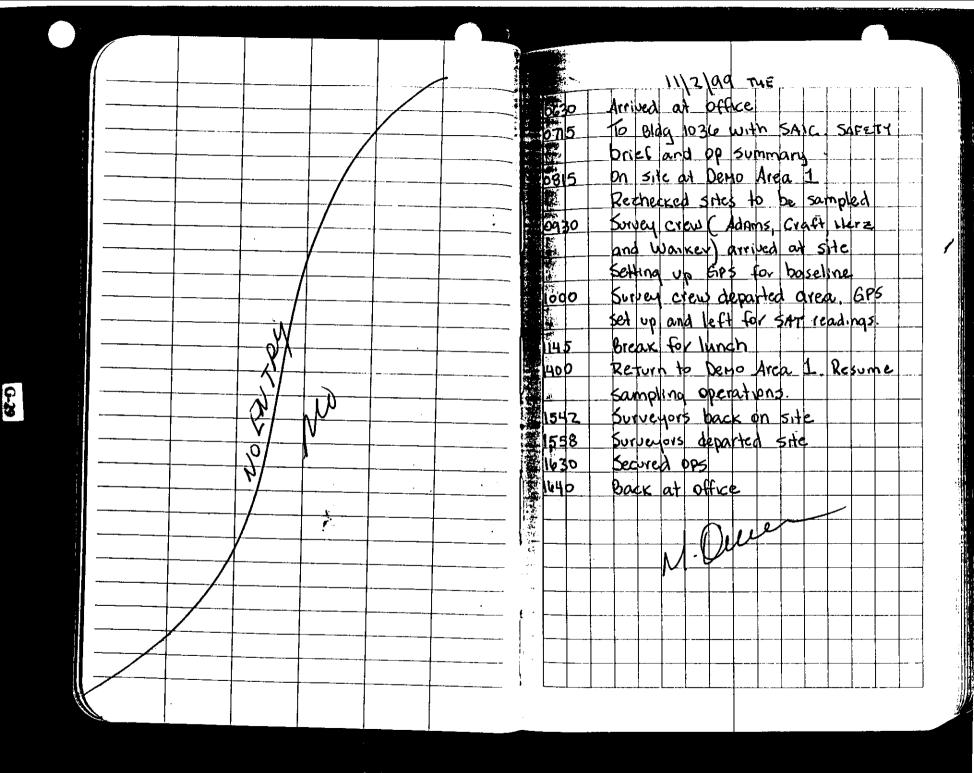
on a star

وليروف المريا المرواني


Service and a service of the service


اند بر بالاند بر بال بالاند بر بر بر بر بر

0.X


and a second sec

のためになっていた。

0-28

ار از بر آسام به به بری مدینان از بر این مربو در این این وزار این دهها رواند این این معنی اینمان این مربو

1000 Surkey Crew on site. 1100 Surkey on site. 11100 Surkey on site. <th></th> <th></th> <th></th> <th></th> <th>0620 0940</th> <th>Drie On Red</th> <th>Blag site</th> <th>21 (3 10 2 nd 2 nd 6 dt 5 ced</th> <th>36 36 OP Der Sit</th> <th>e W1+ 15 15</th> <th>mm Arca to t</th> <th>AIC. ary 1</th> <th></th> <th></th> <th></th>					0620 0940	Drie On Red	Blag site	21 (3 10 2 nd 2 nd 6 dt 5 ced	36 36 OP Der Sit	e W1+ 15 15	mm Arca to t	AIC. ary 1			
10/N NACONTRACTOR NDA-1.					1140 142 1300 1520	Surv Surv Den Brec Bac Sur Sur Sur Sur	ley 10 10 10 10 10 10 10 10 10 10 10 10 10	creu creu Alea for o D rs u rea hou Zan	or 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ndu ndu h. Are ng d uge	rte. ctini ia 1 areas Y op Imini			ertsi le o Al-1	da F 42 N
		Nº N	1		<u>}</u>	ana	a ca	empl ted	Aug		pere ops	ition	<u>ا</u>	 	

G-38

ALASSA BALANCE

ATTACHMENT B

DAILY REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK

MKM		gineers, I			TRACTOR'S	DAILY REPORT
CONTRA 44000142			AND LOC	CATION n Demo Area 1	DATE 10/18/99 Monday	REPORT NO. 99-01
CONTRA	CTOR (Prin	ne or Subco	ontractor)	• · · · · · · · · · · · · · · · · · · ·	NAME OF SUPERI	INTENDENT
			ionnet Dr., Sta	afford, TX 77477	Robert J. Snow,	Jr.
	. (281) 277-510		1) 277-5205			
WEATHE	R EFFECT	y Cloudy, C	2001		TEMPERATURE	high 50s °F
		-			T	
(If space pr	ovided below is	inadequate, u	se additional s	-		F WORK PERFORMED
NUMBER			HOURS	EMPLOYER	·	
Owens	Senior UXC		10,5	МКМ	UXO Avoidance	for SAIC
Thedford	UXO Super	visor	10,5	МКМ	UXO Avoidance	for SAIC
	1					
						·····
				, <u>,,,,</u>		
	ļ				l	
	ORK HOURS	ON	21	WERE THERE	ANY LOST TIME ACC	IDENTS THIS DATE?
	IVE TOTAL (ROM PREV.		0		S	NO
	ORK HOURS		21	IF "YES", ATTA	CH SUMMARY OF INC	CIDENT OR OSHA REPORT
		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE	
EQUIPM	MENT	MODEL	NO.		DESCRIPTION OF E	QUIPMENT
Schons	stedt	52 C	x		Magnetome	ter
GA	U	30			Magnetome	ter
Vehi	cle	Ford 2	250		Pickup True	ck
				• ***		
					-*	
					FROM THE JOB SIT	E PERMANENTLY transportation to & from the job)
					HOURS WORKED	HOURS IDLED
				<u> </u>		×
				······································		
				G-33		

LOCATION AND DESCRIPTION OF WORK/TASKS PERFOR		
Conducted Health & Safety meeting.		
Brief SAIC on ordnance identification, safety issues, and pr	ecautions.	
Provided ordnance avoidance for SAIC during mapping and	placement of sampl	e locations.
All ordnance avoidance was performed using a Schonstedt	52 CX and a GAU 30	magnetometer.
Various projectile fuses, primers, etc. were found of the sur	ace of the ground. T	hese items were
determined to not be a hazard.		······································
		······
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
		- · · · · · · · · · · · · · · · · · · ·
LOCATION AND DESCRIPTION OF DEFICIENCIES		······
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO B	F TAKEN	
No Deficiencies		
		ERENCE
DEFICIENCIES CORRECTED THIS DATE	REPORT NO.	COMPLIANCE
	1	NOTICE NO.
8 		
INSPECTION AND/OR TESTING LOCATION AND/OR		REMARKS
PERFORMED TODAY (PID, EXPRAY) ELEMENT OF WORK	RESULTS OF	INSPECTION/TESTING
MKM UXO personnel were present during field activities.		

· · ·		
	1	
		······································
REMARKS (Include directions received from client's representative, visito		vert: nartinant information)
REIMARRO (Include directions received inom client's representative, visito	s, compliance nouces recei	ved, perunenciniormation)
		· · · · · · · · · · · · · · · · · · ·
$\infty \rho$.	00 /	K
11. Quera 10/18/99	Al Inon	10/18/99
UXO SUPERVISOR ĎATE G-34	E SUTERINI ENDE	UAIE
Bada 2 of 2		
MK/Contractor's Daily Report, Ravenna, OH Faye 2 OI 2		•.

(Jurie)						
		ngineers, I			TRACTOR'S	DAILY REPORT
CONTRA 44000142			AND LOO		DATE	REPORT NO.
44000142	.07		Avoidance i	10/19/99 Tuesday	99-02	
		ime or Subco			NAME OF SUPERIN	
I				afford, TX 77477	Robert J. Snow,	
	. (281) 277-51		1) 277-5205			· · · · · · · · · · · · · · · · · · ·
WEATHE	R EFFEC	tly Cloudy			TEMPERATURE	high 50s °F
		-				
		UR/SUBCU is inadequate, u				WORK PERFORMED
NUMBER		ADE	HOURS	EMPLOYER		
Owens	Senior UX		10,5	MKM	UXO Avoidance f	
Thedford	UXO Supe		10,5	MKM		
Thedioid			10,5		UXO Avoidance f	or SAIC
			+	·		
			 	·····		
			 			
						····
TOTAL W	ORK HOUR	S ON		·	L	
JOB SITE	THIS DATE		21	WERE THERE	ANY LOST TIME ACCIE	DENTS THIS DATE?
CUMULAT	IVE TOTAL	OF WORK		YE	ES 🛛	NO
HOURS FI	ROM PREV.	REPORT	21		_	
TOTAL W	ORK HOUR	S FROM		IF "YES", ATTA	CH SUMMARY OF INCI	DENT OR OSHA REPORT
START OF	CONSTRU	CTION	42			
·····		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE	
EQUIPN	IENT	MODEL	NO.		DESCRIPTION OF EQ	UIPMENT
Schons	stedt	<u>52 C</u>	x		Magnetomete	
GA	U I	30]		Magnetomete	er
Vehi	cle	Ford 2	250		Pickup Truck	(
					ROM THE JOB SITE	
(This will		crucks and mol	owe mounted i	ems, such as compres	sor, that are also used for tr HOURS WORKED	ansportation to & from the job) HOURS IDLED
						······
				······································		
				G-35	├	
						-

.

LOCATION AND DESCRIPTION OF WORK/TASKS PERF	ORMED	
Attended SAIC Health & Safety meeting.		
Brief SAIC on ordnance identification, safety issues, and	precautions.	
Provided ordnance avoidance for SAIC during subsurface	sampling activities.	
All ordnance avoidance was performed using a Schonste	tt 52 CX and a GAU 30	D magnetometer.
Various projectile fuses and primers were found of the su	face of the ground. The	nese items were
determined not to be a hazard.		
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
		·····
LOCATION AND DESCRIPTION OF DEFICIENCIES		
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR T(
No Deficiencies		
		· · · · · · · · · · · · · · · · · · ·
	055	ERENCE
DEFICIENCIES CORRECTED THIS DATE	REPORT NO.	
DEFICIENCIES CORRECTED THIS DATE	REPORT NO.	
		NOTICE NO.
······································		
INSPECTION AND/OR TESTING LOCATION AND/O	<u></u>	DEMARKS
PERFORMED TODAY (PID, EXPRAY) ELEMENT OF WOR	K RESULTS OF	INSPECTION/TESTING
MKM UXO personnel were present during field activities.		
	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·
	<u>+</u>	
		had mating the factor and the factor
REMARKS (Include directions received from client's representative, vis	nors, compliance notices rece	ived; pertinent information)
mtl .	\sim \sim	0
10/1.1/ men 10/19/55	Ky Snow	. Je 10/19/99
UXO SUPERVISOR DATE	TE SUPERINTENDE	DATE
G-36		
MK/Contractor's Daily Report, Ravenna, OH Page 2 of	2	

MKM	MKM En	gineers, I	nc.	CONT	FRACTOR'S	DAILY REPORT
CONTRA 44000142			AND LOC	CATION Demo Area 1	DATE 10/20/99 Wednesda	REPORT NO. 99-03
CONTRA	CTOR (Prin	ne or Subco	ontractor)	NAME OF SUPERIN		
Sub: MK	M Engineers, Ir	ic., 4153 Blueb	onnet Dr., Sta	afford, TX 77477	Robert J. Snow,	Jr.
	. (281) 277-510		1) 277-5205			
WEATHE					TEMPERATURE	mid 50s °F
	R EFFECT	-				
	ONTRACT(R WORKFORCE		WORK PERFORMED
NUMBER	TRA	DE	HOURS	EMPLOYER	·	······································
Owens	Senior UXC) Super	10,5	MKM	UXO Avoidance	for SAIC
Thedford	UXO Super	visor	10,5	МКМ	UXO Avoidance f	for SAIC
						····
						······································
	ORK HOURS	ON	21	WERE THERE	L ANY LOST TIME ACCII	DENTS THIS DATE?
	IVE TOTAL		42	T YE	S	NO
	ORK HOURS		63	IF "YES", ATTA	CH SUMMARY OF INC	IDENT OR OSHA REPORT
		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE	
EQUIP	MENT I	MODEL			DESCRIPTION OF EC	
Schon	i	52 0			Magnetomet	
GA		30		· · · ·	Magnetomet	
Vehi		Ford			Pickup Truc	
4 CIN		10101	200			<u> </u>
		· · · · · · ·				
·····						
CONC					ROM THE JOB SITE	
(This will	l include pickup	trucks and mo	bile mounted	items, such as compres	isor, that are also used for t	ransportation to & from the job)
	DES	CRIPTION			HOURS WORKED	HOURS IDLED
t				. <u></u>		
				G-37		

LOCATION AND DESCRIPTION OF V	VORK/TASKS PERFORM	MED	<u></u>
· · · · · · · · · · · · · · · · · · ·			
Attended SAIC Health & Safety mee			
Provided ordnance avoidance for SA	AIC during Geoprobe sub	surface sampling acti	vities.
All ordnance avoidance was perform	ned using a Schonstedt 52	2 CX and a GAU 30 n	nagnetometer.
GAU 30 checks every 4 feet down to	o a total depth of 30 feet.		
Various projectile fuses and primers	were found of the surface	e of the ground. Thes	e items were
determined not to be a hazard ar	nd were moved away from	the work zone.	
		·	
· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	
			······································
LOCATION AND DESCRIPTION OF D	EFICIENCIES		<u></u>
(Materials, Equipment, Safety, and/or Workmansh	ip) ACTION TAKEN OR TO BE	TAKÉN	
No Deficiencies			
		REFE	RENCE
DEFICIENCIES CORRECTEI	THIS DATE	REPORT NO.	COMPLIANCE
		REFORTING.	NOTICE NO.
			· ····································
INSPECTION AND/OR TESTING	LOCATION AND/OR		REMARKS
	ELEMENT OF WORK		NSPECTION/TESTING
	A	REGOLIGON	
MKM UXO personnel were present of	Junny field activities.		
	<u> </u>		
	1		
REMARKS (Include directions received fro	m client's representative, visitors,	compliance notices receive	d; pertinent information)
			<u> </u>
	,	^	
mp	1. La las	$\mathcal{N}_{1} \subset \mathcal{L}$	1 Interior
111. Ullena	10/20/99	ryomy	10/20/99
UXO SUPERVISOR		SUPERINTENDENT	DATE
	G-38		

MK/Contractor's Daily Report, Ravenna, OH

(MKM)	MKM F	ngineers, I		CON		
						DAILY REPORT
CONTRA 44000142			AND LOC	CATION Demo Area 1	DATE 10/21/99	REPORT NO. 99-04
CONTRA				Thursday	/	
		me or Subco		ifford, TX 77477	NAME OF SUPER	
	. (281) 277-51		i1) 277-5205	unora, 1X //4//	Robert J. Snow	, Jr.
WEATHE			17211-0200		TEMPERATURE	mid 50s °F
WEATHE	R EFFEC	rs		······································	· · · · · · · · · · · · · · · · · · ·	
		OR/SUBCO s inadequate, us				
NUMBER			HOURS	EMPLOYER		
Owens	Senior UX		0	MKM	UXO Avoidance	for SAIC
Thedford	UXO Supe		10,5	MKM	1	
Theorem	UNC Supe	111301	10,5		UXO Avoidance	TOF SAIC
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		
						· · · · · · · · · · · · · · · · · · ·
···-		·····				
			ļ			· · · · · · · · · · · · · · · · · · ·
	_					
	_					
						·····
			<u> </u>			
<u>-</u>						
TOTAL W	I ORK HOUR	S ON		i		
	THIS DATE		10,5	WERE THERE	ANY LOST TIME ACC	IDENTS THIS DATE?
CUMULAT		OF WORK		T YE	s	NO
	ROM PREV.		63			
TOTAL W	ORK HOUR	S FROM		IF "YES", ATTA	CH SUMMARY OF INC	CIDENT OR OSHA REPORT
	CONSTRU		73,5			
· ·		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DAT	
EQUIPM	AENT	MODEL			DESCRIPTION OF E	
Schon	stedt	52 C	X		Magnetome	ter
Vehi	cle	Ford 2			Pickup Tru	
					A	
		<u> </u>				· · · · · · · · · · · · · · · · · · ·
					ROM THE JOB SIT	
(This will		the second s	bile mounted i	tems, such as compres		transportation to & from the job)
	DES	CRIPTION			HOURS WORKED	HOURS IDLED
			<u></u>			
				G-39		,

LOCATION AND DESCRIPTION OF V	VORK/TASKS PERFORM	/ED	
Attended SAIC Health & Safety mee	eting.		
Provided ordnance avoidance for SA	AIC during subsurface sar	mpling activities and t	o allow vehicle movement.
All ordnance avoidance was perform	ned using a Schonstedt 52	2 CX magnetometer.	
Various projectile fuses and primers	were found of the surface	e of the ground. Thes	se items were
determined not to be a hazard ar	nd were moved away fron	n the work zone.	
	<u> </u>	<u>,</u>	
L			
<u></u>	· · · · · · · · · · · · · · · · · · ·	,,,,_,_,_,_,_,_,_,_	<u> </u>
		<u></u>	· · · · · · · · · · · · · · · · · · ·
	····		
LOCATION AND DESCRIPTION OF D		TAKEN	
(Materials, Equipment, Safety, and/or Workmansh No Deficiencies	IP ACTION TAKEN OR TO BE	IANEN	
			• • • • • • • • • • • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·			
		DEEE	RENCE
DEFICIENCIES CORRECTED	2 THIS DATE	REPORT NO.	COMPLIANCE
			NOTICE NO.
INSPECTION AND/OR TESTING	LOCATION AND/OR		REMARKS
PERFORMED TODAY (PID, EXPRAY)		RESULTS OF I	NSPECTION/TESTING
MKM UXO personnel were present of	during field activities.		
L	T	·	
	 	ļ	
		· · · ·	
			<u> </u>
	1		<u></u>
REMARKS (Include directions received fro	m client's representative, visitors	compliance notices received	d; pertinent information)
		F	.,
	*:		
			<u> </u>
·			
		~	
Th. Klim	1. 1.7.100	RACIA	10/21/99
	<u>10/2/99</u>	SUPERINTENDENT	- <u>i v j «// 77</u>
UXO SUPERVISOR	DATE CITE	= JUPEKIN I ENDEN	DATE
	Page 2 of 2		

	MKM Eng				FRACTOR'S	DAILY REPOR
CONTRA 440001420			AND LOC	ATION Demo Area 1	DATE 10/22/99 Friday	REPORT NO. 99-05
CONTRA	CTOR (Prim	e or Subco	ntractor)		NAME OF SUPERI	NTENDENT
Sub: MK	M Engineers, Inc	., 4153 Blueb	onnet Dr., Sta	Ifford, TX 77477	Robert J. Snow,	Jr.
	(281) 277-5100	Fax (28	1) 277-5205			
WEATHE		y, Rain, H	ail		TEMPERATURE	mid 40s °F
	REFFECTS					
	ONTRACTO			R WORKFORCE		F WORK PERFORMED
NUMBER	TRAD	E	HOURS	EMPLOYER		
Owens	Senior UXO	Super	10,5	МКМ	UXO Avoidance	for SAIC
Thedford	UXO Superv	visor	0	MKM	UXO Avoidance	for SAIC
<u> </u>						
.=						
	ORK HOURS	ON	10,5	WERE THERE	ANY LOST TIME ACC	IDENTS THIS DATE?
	IVE TOTAL O ROM PREV. R		73,5	T YE	S	NO
	ORK HOURS		84	IF "YES", ATTA		CIDENT OR OSHA REPOR
		*		ED ON THE JOB	SITE ON THIS DATE	
EQUIPM		MODEL			DESCRIPTION OF E	
Schonstedt 52 CX				Magnetometer		
Vehi	cle	Ford 2	250		Pickup Tru	ck
						··· -·
CONST (This will	RUCTION A	ND PLAN ucks and mo	T EQUIPM	ENT REMOVED F	ROM THE JOB SIT	E PERMANENTLY transportation to & from the job)
· · · · · · · · · · · · · · · · · · ·		RIPTION		· · · · ·	HOURS WORKED	HOURS IDLED
				G-41		

 \mathbf{i}

LOCATION AND DESCRIPTION OF V	NORK/TASKS PERFOR	MED	
Attended SAIC Health & Safety mee	eting.		· · · · · · · · · · · · · · · · · · ·
Provided ordnance avoidance for S		mpling activities and	to allow vehicle movement.
All ordnance avoidance was perform	ned using a Schonstedt 5	2 CX magnetometer	· ·
Various projectile fuses and primers	were found of the surfac	e of the ground. The	ese items were
determined not to be a hazard an	nd were moved away from	n the work zone.	
	<u> </u>	···· · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · ·
	<u> </u>		
· · · · · · · · · · · · · · · · · · ·			
			······································
			<u> </u>
LOCATION AND DESCRIPTION OF D	EFICIENCIES		
(Materials, Equipment, Safety, and/or Workmansh		TAKEN	
No Deficiencies			······
		REF	ERENCE
DEFICIENCIES CORRECTE	D THIS DATE	REPORT NO.	COMPLIANCE
			NOTICE NO.
	- ····		
· · · · · · · · · · · · · · · · · · ·			
INSPECTION AND/OR TESTING	LOCATION AND/OR		REMARKS
PERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK	RESULTS OF	INSPECTION/TESTING
MKM UXO personnel were present of	during field activities.		
			<u> </u>
REMARKS (Include directions received fro	om client's representative, visitors	, compliance notices receiv	/ed; pertinent information)
<u></u>	<u></u>		
	······································		<u> </u>
		<u>.</u>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	0	1 ,
7/1-1/11100 10	172/00	K& Som	10/22/99
UXO SUPERVISOR			NT DATE
UAU SUPERVISUR /	G-42		
	0.12		

MKM	MKM Eng	gineers, In	ic.	CONT	<b>FRACTOR'S</b>	DAILY REPORT	
CONTRA 440001420			AND LOC	ATION Demo Area 1	DATE 10/24/99 Sunday	REPORT NO. 99-06	
CONTRA	CTOR (Prim	e or Subco	ntractor)	<u></u> .	NAME OF SUPERIN	TENDENT	
Sub: MKI	VI Engineers, Inc	., 4153 Blueb	onnet Dr., Sta	fford, TX 77477	Robert J. Snow,	Jr.	
Tel.	Tel. (281) 277-5100 Fax (281) 277-5205						
WEATHER Cloudy, Rain, Sleet, Cold					TEMPERATURE	mid 40s °F	
WEATHER EFFECTS							
PRIME CONTRACTOR/SUBCONTRACTOR WORKFORCE (If space provided below is inadequate, use additional sheets)						WORK PERFORMED	
NUMBER	TRAD	E	HOURS	EMPLOYER			
Owens	Senior UXO	Super	9,5	MKM	UXO Avoidance	for SAIC	
Thedford	UXO Super	visor	0	MKM	UXO Avoidance	for SAIC	
	ļ						
				· · · · · · · · · · · · · · · · · · ·			
			-				
				·			
				·	ļ		
	ORK HOURS	ON	9,5		ANY LOST TIME ACCI	DENTS THIS DATE?	
			9,5		-		
	ROM PREV.		84		ES	NO	
	ORK HOURS		93,5	IF "YES", ATTA	CH SUMMARY OF INC	DENT OR OSHA REPORT	
		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE		
EQUIPI	MENT	MODEL			DESCRIPTION OF EC		
Schon		52 0	x		Magnetometer		
Vehi		Ford			Pickup Truck		
Veni		1010	200				
L		<del>_</del>			<u></u>		
			-				
CONS	TRUCTION	AND PLAN	TEQUIPN	ENT REMOVED	FROM THE JOB SIT		
(This wi			obile mounted	items, such as compre	HOURS WORKED	transportation to & from the job) HOURS IDLED	
	DES				HOURS WURKED	ACONG IDLED	
L					<u> </u>		
			<u></u>				
				G-43 [_]			

LOCATION AND DESCRIPTION OF V	NORK/TASKS PERFORM	/ED	
Attended SAIC Health & Safety mee			
Provided ordnance avoidance for SA	AIC during subsurface sar	mpling activities and	to allow vehicle movement.
All ordnance avoidance was perform	ned using a Schonstedt 52	2 CX magnetometer.	
Various projectile fuses and primers			se items were
determined not to be a hazard ar	nd were moved away from	n the work zone.	
	· · · · · · · · · · · · · · · · · · ·		
		•	
	· · · · · · · · · · · · · · · · · · ·		
			· ···· • • · · ·
LOCATION AND DESCRIPTION OF D			
(Materials, Equipment, Safety, and/or Workmansh	nip) ACTION TAKEN OR TO BE	TAKEN	
No Deficiencies			
		REFE	RENCE
DEFICIENCIES CORRECTE	D THIS DATE	REPORT NO.	COMPLIANCE
			NOTICE NO.
		·····	
		· · · ·	
INSPECTION AND/OR TESTING	LOCATION AND/OR		REMARKS
PERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK	RESULTS OF	INSPECTION/TESTING
MKM UXO personnel were present (	during field activities.		
······			
······································			
. <u></u>			
		acmoliance actives access	ad: particent information)
REMARKS (Include directions received fro	om client's representative, visitors	, compliance nouces receiv	eu, perunent intormation)
mo	_	<b>1</b>	L L
7/1/1/	In las	RJ Snor	A ID/JU/49
111. Vallan 19	<u> 47/77</u>		10/24/99 IT DATE
UXO SUPERVISOR		E SUPERINTENDEN	II DATE
4	G-44		

MK/Contractor's Daily Report, Ravenna, OH

8

MKM	MKM En	gineers, Iı	nc.	CONT	<b>FRACTOR'S</b>	DAILY REPORT	
CONTRA 440001420		TITLE AND LOCATION UXO Avoidance in Demo Area 1			DATE 10/25/99 Monday	REPORT NO. 99-07	
CONTRA	CONTRACTOR (Prime or Subcontractor)					ITENDENT	
Sub: MK	M Engineers, Ir			fford, TX 77477	Robert J. Snow,	Jr.	
Tel. (281) 277-5100 Fax (281) 277-5205						11.50	
WEATHER Cloudy, Cool WEATHER EFFECTS					TEMPERATURE	mid 50s °F	
					·		
PRIME CONTRACTOR/SUBCONTRACTOR WORKFORCE (If space provided below is inadequate, use additional sheets)							
NUMBER	TRA	-	HOURS	EMPLOYER			
Owens	Senior UX	) Super	10,5	МКМ	UXO Avoidance	for SAIC	
Thedford	UXO Supe		0	МКМ	UXO Avoidance		
Incarora							
						un <u>.</u> <u>.</u>	
<u> </u>				· · · ·			
						<u></u> .	
· · · · ·				n			
			ļ				
	Ī						
	ORK HOURS	SON	10,5	WERE THERE	ANY LOST TIME ACCI	DENTS THIS DATE?	
	TIVE TOTAL ROM PREV.		93,5		ES	NO	
	ORK HOUR		104	IF "YES", ATTA	ACH SUMMARY OF INCIDENT OR OSHA REPORT		
		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE		
EQUIPI	MENT	MODEL	NO.		DESCRIPTION OF EC		
Schon	stedt	52 0	X		Magnetometer		
Vehi	icle	Ford	250		Pickup Truc	<u></u>	
			· · · · ·				
CONS	TRUCTION	AND PLAN	T EQUIPN	NENT REMOVED	FROM THE JOB SIT		
(This wi		crucks and me	oblie mounted	kems, such as compre	HOURS WORKED	transportation to & from the job) HOURS IDLED	
<u> </u>	Det						
<b> </b>	_						
<u> </u>				1			

OUATION AND DESCRIPTION OF V	VORK/TASKS PERFORM	ED	- ···
Attended SAIC Health & Safety mes			
Attended SAIC Health & Safety mee			
Provided ordnance avoidance for SA	AIC during subsurface san	npling activities and to	allow venicle movement.
All ordnance avoidance was perform	ted using a Schonstedt 52	CX magnetometer.	itomo woro
Various projectile fuses and primers determined not to be a hazard ar	were round of the surface	the work rone	e itemis were
determined not to be a hazard ar	iu were moved away non	The work zone.	
<u></u>			
	· · · · · · · · · · · · · · · · · · ·		
			······································
		· · · · · · · · · · · · · · · · ·	
	······		
		·····-	
DCATION AND DESCRIPTION OF E			
aterials, Equipment, Safety, and/or Workmansh	nip) ACTION TAKEN OR TO BE	TAKEN	
No Deficiencies			
			······
		REFER	
DEFICIENCIES CORRECTE	D THIS DATE	REPORT NO.	COMPLIANCE
			NOTICE NO.
	<u> </u>		
INSPECTION AND/OR TESTING	LOCATION AND/OR	R	EMARKS
			EMARKS ISPECTION/TESTING
	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
ERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
PERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
PERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK		
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY)	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present o	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
PERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present of	ELEMENT OF WORK during field activities.		ISPECTION/TESTING
ERFORMED TODAY (PID, EXPRAY) MKM UXO personnel were present o	ELEMENT OF WORK during field activities.		ISPECTION/TESTING

(MKM)	MKM E	ngineers, I	nc.	CON	FRACTOR'S	DAILY REPORT	
					DATE		
	CONTRACT NO.         TITLE AND LOCATION           4400014207         UXO Avoidance in Demo Area 1					REPORT NO. 99-08	
CONTRACTOR (Prime or Subcontractor)					Tuesday	NTENDENT	
	-		•	afford, TX 77477	Robert J. Snow,		
Tel	. (281) 277-51	00 Fax (28	1) 277-5205				
					TEMPERATURE	mid 50s °F	
WEATHE	R EFFEC	S					
PRIME CONTRACTOR/SUBCONTRACTOR WORKFORCE (If space provided below is inadequate, use additional sheets)							
NUMBER	TR/	DE	HOURS	EMPLOYER	· ·		
Owens	Senior UX	O Super	10,5	МКМ	UXO Avoidance	for SAIC	
Thedford	UXO Supe	rvisor	0	мкм	UXO Avoidance		
					erte riteliganoe		
			1				
<u>_</u>							
			-		1		
	ORK HOUR THIS DATE	SON	10,5	WERE THERE	ANY LOST TIME ACC	IDENTS THIS DATE?	
	IVE TOTAL		104	YE	ES	NO	
	ORK HOUR		114,5	IF "YES", ATTA	CH SUMMARY OF INCIDENT OR OSHA REPORT		
	20.000		· · ·		SITE ON THIS DAT		
EQUIP		MODEL					
		52 C					
Schon					Magnetometer Pickup Truck		
Vehi		Ford	250	·····	Ріскир і ги	<u>CK</u>	
	· · · · · ·						
		- • • • •					
				<u> </u>			
					FROM THE JOB SIT		
(ihiswi		CRIPTION	one mounted	warns, such as compres	HOURS WORKED	transportation to & from the job) HOURS IDLED	
	000				HOURD HORRED		
	<u> </u>						
ļ							
1				G-47			

LOCATION AND DESCRIPTION OF V	VORK/TASKS PERFORM	/ED	
Attended SAIC Health & Safety mee Provided ordnance avoidance for SA All ordnance avoidance was perform	AIC during subsurface sar	npling activities and	to allow vehicle movement.
Various projectile fuses and primers determined not to be a hazard an	were found of the surfact	e of the ground. The	
	·····		
-			
	· · · · · · · · · · · · · · · · · · ·		
LOCATION AND DESCRIPTION OF D	EFICIENCIES		
(Materials, Equipment, Safety, and/or Workmansh No Deficiencies	ip) ACTION TAKEN OR TO BE	TAKEN	
	· · · · · · · · · · · · · · · · · · ·		
		REFI	ERENCE
	D THIS DATE	REPORT NO.	COMPLIANCE NOTICE NO.
INSPECTION AND/OR TESTING PERFORMED TODAY (PID, EXPRAY)	LOCATION AND/OR ELEMENT OF WORK	RESULTS OF	REMARKS INSPECTION/TESTING
MKM UXO personnel were present o	during field activities.		
REMARKS (Include directions received fro	m client's representative, visitors.	, compliance notices receiv	ved; pertinent information)
mD	r 1	0. 1	
UXO SUPERVISOR	26/99 DATE SITE	KY Smf	~ 10/26/99 NT DATE
MK/Contractor's Daily Report, Ravenna, OH	G-48 Page 2 of 2		

MKM	MKM Eng	gineers, In	IC.	CONT	<b>FRACTOR'S I</b>	DAILY REPORT
CONTRA 440001420		TITLE AND LOCATION UXO Avoidance in Demo Area 1			DATE 10/27/99 Wednesda	REPORT NO. 99-09
CONTRA	CTOR (Prim	e or Subco	ntractor)		NAME OF SUPERIN	
Sub: MKI	M Engineers, Inc	. 4153 Bluebo	onnet Dr., Sta	fford, TX 77477	Robert J. Snow, J	ir.
Tel.	(281) 277-5100		) 277-5205		TEMPERATURE	
	WEATHER Cloudy, Cool					mid 50s °F
	R EFFECTS				r	
	PRIME CONTRACTOR/SUBCONTRACTOR WORKFORCE (If space provided below is inadequate, use additional sheets)				SUMMARY OF	WORK PERFORMED
NUMBER	TRAD	E	HOURS	EMPLOYER	· · · · · · · · · · · · · · · · · · ·	
Owens	Senior UXO	Super	0	MKM	UXO Avoidance f	or SAIC
Thedford	UXO Superv	visor	4	MKM	UXO Avoidance f	or SAIC
Incurora						
				· · · ·		
					<u> </u>	
				· · · · · · · · · · · · · · · · · · ·		
	<u>                                       </u>				· · · · · · · · · · · · · · · · · · ·	
					<u> </u>	
	· · · · · · · · · · · · · · · · · · ·		ļ			
	ORK HOURS	ON	4	WERE THERE	ANY LOST TIME ACCI	DENTS THIS DATE?
	TIVE TOTAL C		114,5		ES	NO
	ORK HOURS		118,5	IF "YES", ATTA	ACH SUMMARY OF INC	IDENT OR OSHA REPORT
				ED ON THE JOB	SITE ON THIS DATE	
EQUIP		MODEL			DESCRIPTION OF EC	
Schon		52 (			Magnetometer	
Vehi		Ford			Pickup Truck	
ven		Tolu	230			
				· · · · · · · · · · · · · · · · · · ·		
	<u> </u>					
CONS	TRUCTION			IENT REMOVED	FROM THE JOB SIT	E PERMANEN I LY transportation to & from the job)
(1 nis w		CRIPTION		nono, ocor ao compre	HOURS WORKED	HOURS IDLED
<b>├</b>	<u> </u>					
<u> </u>						
<b> </b>					+	
•				U-47		

Attended SAIC Health & Safety meeting. Provided ordnance avoidance for SAIC during subsurface sampling activities and to allow vehicle movement. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer.  LOCATION AND DESCRIPTION OF DEFICIENCIES Meteries, Explorent, Safety, andor Workmanship ACTION TAKEN OR TO BE TAKEN No Deficiencies  DEFICIENCIES CORRECTED THIS DATE  DEFICIENCIES CORRECTED THIS DATE  DEFICIENCIES CORRECTED THIS DATE  REPORT NO.  COMPLIANCE NOTICE NO.  INSPECTION AND/OR TESTING LOCATION AND/OR REMARKS PERFORMENT NO DAY (PIO.SXPRAY) ELEMENT OF WORK RESULTS OF INSPECTION/TESTING MKM UXO personnel were present during field activities.  REMARKS (Include directors received from client's representative, visitors, compliance notices received, perliment information)  REMARKS (Include directors received from client's representative, visitors, compliance notices received, perliment information)  MMM UXO personnel were present during field activities.	LOCATION AND DESCRIPTION OF W	ORK/TASKS PERFORM	1ED	
Provided ordnance avoidance for SAIC during subsurface sampling adivities and to allow vehicle movement. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer.  LOCATION AND DESCRIPTION OF DEFICIENCIES LOCATION AND DESCRIPTION OF DEFICIENCIES Materia: Explanent. Safety, ander Workmanship, ACTION TAKEN OR TO BE TAKEN No Deficiencies  DEFICIENCIES CORRECTED THIS DATE  REPORT NO. COMPLIANCE NOTICE NO.  INSPECTION AND/OR TESTING LOCATION AND/OR PERFORMED TODAY (PID, EXPRAY) ELEMENT OF WORK RESULTS OF INSPECTION/TESTING MKM UXO personnel were present during field activities.  REMARKS (include directors received from client's representative, visitors, compliance notices received, perfinent information)  REMARKS (include directors received from client's representative, visitors, compliance notices received, perfinent information)  REMARKS (include directors received from client's representative, visitors, compliance notices received, perfinent information)	······			
All ordnance avoidance was performed using a Schonstedt S2 CX magnetometer.         All ordnance avoidance was performed using a Schonstedt S2 CX magnetometer.         LOCATION AND DESCRIPTION OF DEFICIENCIES         Materials. Equipment. Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies         DEFICIENCIES CORRECTED THIS DATE         REPERENCE         REPORT NO.         COMPLIANCE         NO TICE NO.         NO Deficiencies         INSPECTION AND/OR TESTING         LOCATION AND/OR PERFORMED TODAY (PID.EXPRAY)         LINSPECTION AND/OR TESTING         LOCATION AND/OR         RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.         REMARKS         REMARKS         REMARKS         INSPECTION AND/OR TESTING         LOCATION AND/OR         RESULTS OF INSPECTION/TESTING         REMARKS         INSPECTION received from client's representative, viators, compliance notices received; perfinent information)         INSPECTION         INSPECTION         INSPECTION         INSPECTION         INSPECTION PERFORMED         INSPECTION INFORMATION INFORMATION INFORMATION         INSPECTION INFORMED				
LOCATION AND DESCRIPTION OF DEFICIENCIES    Materials. Equipment, Safety, and/or Workmannship) ACTION TAKEN OR TO BE TAKEN  No Deficiencies				
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93	All ordnance avoidance was perform	ed using a Schonstedt 52	2 CX magnetometer.	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93			······	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93			······	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93			• • • • • • • • • • • • • • • • • • •	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93		·		
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				n <b></b>
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93			•	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93	',			
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93			<u></u>	
(Materials, Equipment, Safety, and/or Workmanship) ACTION TAKEN OR TO BE TAKEN         No Deficiencies       REFERENCE         REFERENCE         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REFERENCE         NO DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE         NO DEFICIENCIES CORRECTED THIS DATE       NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       Image: Colored activities.       Image: Colored activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)       Image: Colored activities.         Mth Mux       10 / 22 / 59       Mth Mux       10 / 22 / 93				
No Deficiencies         DEFICIENCIES CORRECTED THIS DATE       REFERENCE         REPORT NO.       COMPLIANCE         NOTICE NO.       NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK         MKM UXO personnel were present during field activities.       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.       RESULTS OF INSPECTION/TESTING         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)         MT. Quum       10/27/99         MT. Quum       10/27/99				
REFERENCE         REFERENCE         REFORT NO.         COMPLIANCE NOTICE NO.         INSPECTION AND/OR TESTING         INSPECTION AND/OR TESTING         DEFICIENCIES CORRECTED THIS DATE       REMARKS         INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK         MKM UXO personnel were present during field activities.         MKM UXO personnel were present during field activities.         MKM UXO personnel were present during field activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)         MT. Quark       10/27/99         MT. Quark       10/27/99		ip) ACTION TAKEN OR TO BE	TAKEN	
DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR ELEMENT OF WORK       REMARKS RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.	No Deficiencies			
DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR ELEMENT OF WORK       REMARKS RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR ELEMENT OF WORK       REMARKS RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
DEFICIENCIES CORRECTED THIS DATE       REPORT NO.       COMPLIANCE NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR ELEMENT OF WORK       REMARKS RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.			DEE	
NOTICE NO.         INSPECTION AND/OR TESTING       LOCATION AND/OR         PERFORMED TODAY ( <i>PID, EXPRAY</i> )       ELEMENT OF WORK         MKM UXO personnel were present during field activities.         Image: Complex of the second seco				
INSPECTION AND/OR TESTING       LOCATION AND/OR       REMARKS         PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.	DEFICIENCIES CORRECTED		REFORTINO.	
PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
PERFORMED TODAY (PID, EXPRAY)       ELEMENT OF WORK       RESULTS OF INSPECTION/TESTING         MKM UXO personnel were present during field activities.				
MKM UXO personnel were present during field activities.         MKM UXO personnel were present during field activities.         REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)         MKM 10/27/99         MKM 10/27/99         MKM 10/27/99				
REMARKS (Include directions received from client's representative, visitors, compliance notices received; pertinent information)			RESULTS OF	INSPECTION/TESTING
M. Cum 10/27/99 Rd Smf 10/27/99	MKM UXO personnel were present of	during field activities.		
M. Cum 10/27/99 Rd Smf 10/27/99		r	r	······································
M. Cum 10/27/99 Rd Smf 10/27/99				
M. Cum 10/27/99 Rd Smf 10/27/99				
M. Cum 10/27/99 Rd Smf 10/27/99			· · · · · · · · · · · · · · · · · · ·	
M. Cum 10/27/99 Rd Smf 10/27/99				
M. Cum 10/27/99 Rd Smf 10/27/99				
M. Cum 10/27/99 Rd Smf 10/27/99				
	REMARKS (Include directions received fro	om client's representative, visitors	, compliance notices recei	ved; pertinent information)
				····
	ma	1 1	DAC	le setere
LIVO SUPERVISOR DATE DATE DATE DATE	111. Kulma 10,	127/99	KION	
UXO SUPERVISOR DATE G-50	UXO SUPERVISOR		E SUPERINTENDE	NT DATE
MK/Contractor's Daily Report, Ravenna, OH Page 2 of 2				

MKM	MKM En	gineers, In	с.	CONT	<b>FRACTOR'S</b>	DAILY REPORT	
CONTRA 440001420			AND LOC voidance in	DATE 11/01/99 Monday	REPORT NO. 99-10		
CONTRA	CTOR (Prim	e or Subcol	ntractor)		NAME OF SUPERIN	TENDENT	
Sub: MKI	VI Engineers, Ind	., 4153 Bluebo	onnet Dr., Sta	fford, TX 77477	Robert J. Snow, J	r.	
	(281) 277-5100	Fax (281	) 277-5205		TEMPERATURE		
	WEATHER Sunny					mid 60s °F	
	REFFECTS						
	PRIME CONTRACTOR/SUBCONTRACTOR WORKFORCE (If space provided below is inadequate, use additional sheets)					WORK PERFORMED	
NUMBER	TRAD	)E	HOURS	EMPLOYER	l		
Owens	Senior UXC	Super	0	MKM	UXO Avoidance f	or SAIC	
Thedford	UXO Super	visor	2	MKM	UXO Avoidance f	or SAIC	
				*****			
<u></u>					· · · · · · · · · · · · · · · · · · ·		
	· <u> </u>	<u></u>					
	ļ						
					<u></u>	· · · · · · · · · · · · · · · · · · ·	
			1			·	
-	ORK HOURS		2		ANY LOST TIME ACCI	DENTS THIS DATE?	
	TIVE TOTAL ( ROM PREV.		118.5		ES	NO	
	ORK HOURS		120.5	IF "YES", ATTA	CH SUMMARY OF INC	IDENT OR OSHA REPORT	
		EQUIP	MENT US	ED ON THE JOB	SITE ON THIS DATE	· · · · · · · · · · · · · · · · · · ·	
EQUIP	MENT	MODEL	NO.		DESCRIPTION OF EC	QUIPMENT	
Schon	stedt	52 0	X	Magnetometer			
Vehi	icle	Ford	250		Pickup Truck		
						·····	
CONS (This w		AND PLAN	T EQUIPN	NENT REMOVED	FROM THE JOB SIT	E PERMANENTLY transportation to & from the job)	
		CRIPTION	<u> </u>		HOURS WORKED	HOURS IDLED	
						H <u></u>	
				G-51 -			

•

REMARKS (Include directions received from	n client's representative, visitors	, compliance notices recei	ved; pertinent information)			
	ante de la companya d					
MKM UXO personnel were present d	uring field activities.					
INSPECTION AND/OR TESTING PERFORMED TODAY (PID, EXPRAY)		REMARKS RESULTS OF INSPECTION/TESTING				
······································						
DEFICIENCIES CORRECTED	THIS DATE	REPORT NO.	COMPLIANCE NOTICE NO.			
		REFERENCE				
No Deficiencies		<u>.                                    </u>				
OCATION AND DESCRIPTION OF DI Materials, Equipment, Safety, and/or Workmanship		TAKEN				
		······································				
	·····					
Air ordinance avoidance was performe						
Provided ordnance avoidance for SAIC during subsurface sampling activities and to allow vehicle movement. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer.						
Attended SAIC Health & Safety meeti	ing.					

(MKM) MKM Engineers, Inc. CONT				RACTOR'S	DAILY REPORT		
CONTRA 44000142		TITLE AND LOCATION UXO Avoidance in Demo Area 1			DATE 11/02/99 Tuesday	REPORT NO. 99-11	
CONTRA	CONTRACTOR (Prime or Subcontractor)						
	•		•	ifford, TX 77477	Robert J. Snow,		
	(281) 277-510		1) 277-5205			•••	
WEATHE		dy, Rain			TEMPERATURE	mid 50s °F	
WEATHE	REFFECT	<u>S</u>			<b></b>		
	ONTRACTO			R WORKFORCE	SUMMARY OI	WORK PERFORMED	
NUMBER	TRAI	DE	HOURS	EMPLOYER			
Owens	Senior UXC	) Super	0	МКМ	UXO Avoidance	for SAIC	
Thedford	UXO Super		9.5	МКМ	UXO Avoidance		
					···· ···		
······································							
			<b>.</b>				
						and the second	
	ORK HOURS	ON	9.5	WERE THERE	ANY LOST TIME ACC	DENTS THIS DATE?	
	TIVE TOTAL		120.5	YES NO			
TOTAL W	ORK HOURS	FROM	130	IF "YES", ATTACH SUMMARY OF INCIDENT OR OSHA REPORT			
JIARIO					SITE ON THIS DATE	<b>-</b>	
EQUIP		MODEL			DESCRIPTION OF E		
Schor		52 C			Magnetometer		
Veh		Ford		Pickup Truck			
¥CII						<u></u>	
					<u></u>		
					· <u></u>		
				<u> </u>	<u></u>		
CONS	TRUCTION	AND PLAN			FROM THE JOB SIT		
(This wi		CRIPTION		nems, such as compre	HOURS WORKED	transportation to & from the job) HOURS IDLED	
						<u> </u>	
	<u> </u>						
<u> </u>					1		

.

OCATION AND DESCRIPTION OF WO	ORK/TASKS PERFORM	ED				
Attended SAIC Health & Safety meetin	ng.	-line estivition and	te ellew vehicle movement			
Provided ordnance avoidance for SAIC during subsurface sampling activities and to allow vehicle movement. All ordnance avoidance was performed using a Schonstedt 52 CX magnetometer.						
All ordinance avoidance was performe	u using a Schonstedt 52	OX magnetometer.				
		·······	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·	· ·				
		<u> </u>				
· · · · · · · · · · · · · · · · · · ·						
OCATION AND DESCRIPTION OF DE	FICIENCIES					
Materials, Equipment, Safety, and/or Workmanship	) ACTION TAKEN OR TO BE	TAKEN				
No Deficiencies						
	<u></u>					
DEFICIENCIES CORRECTED		REPORT NO.	ERENCE COMPLIANCE			
DEFICIENCIES CORRECTED			NOTICE NO.			
			·····			
			REMARKS			
INSPECTION AND/OR TESTING PERFORMED TODAY (PID, EXPRAY)	LOCATION AND/OR	RESULTS OF	INSPECTION/TESTING			
MKM UXO personnel were present d	uring field activities.	1 11200210 01				
	2		······································			
		<u> </u>				
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
		h				
REMARKS (Include directions received from	n client's representative, visitors	, compliance notices recei	ved; pertinent information)			
			······································			
	/ 1		<u>^</u>			
18/1/110000	1/2/99	RO Smin	1 1/2/49			
1 ONWER		RJ SMA				
UXO SUPERVISOR	DATE G-54 II	E SUPERINTENDE				
NK#Contractoria Daily Paport, Bayanne, OH						

(MKM) MKM Engineers, Inc. CONT					RACTOR'S I	DAILY REPORT
CONTRA 440001420		TITLE AND LOCATION UXO Avoidance in Demo Area 1			DATE 11/03/99 Wednesday	REPORT NO. 99-12
CONTRA	CTOR (Prime	or Subco	ntractor)		NAME OF SUPERIN	
Sub: MKI	VI Engineers, Inc.	, 4153 Bluebo	nnet Dr., Sta	fford, TX 77477	Robert J. Snow, J	r.
Tei.	(281) 277-5100	Fax (281	) 277-5205			
WEATHE		ast, snow	flurries		TEMPERATURE	high 30s °F
	R EFFECTS					
	ONTRACTO			R WORKFORCE	SUMMARY OF	WORK PERFORMED
NUMBER	TRAD	Ξ	HOURS	EMPLOYER		
Owens	Senior UXO	Super	0	MKM	UXO Avoidance f	or SAIC
Thedford	UXO Superv	isor	7	МКМ	UXO Avoidance f	or SAIC
					·	
		·				
		_				
				· · · · ·		
			<u> </u>			
	ļ		<b></b>			<u></u>
			ļ			
	ORK HOURS	ON	7	WERE THERE	ANY LOST TIME ACCI	DENTS THIS DATE?
	TIVE TOTAL C		130	🗆 Y	ES	NO
	ORK HOURS		137	IF "YES", ATT/	ACH SUMMARY OF INC	IDENT OR OSHA REPORT
					SITE ON THIS DATE	
EQUIP		MODE			DESCRIPTION OF EC	
Schor		52 (			Magnetometer	
					Pickup Truc	
Veh		Ford	250	·		
		ite ne				
					<u></u>	<u>.                                    </u>
CONS	TRUCTION	AND PLAN		MENT REMOVED	FROM THE JOB SIT	E PERMANEN   LY transportation to & from the job)
(This w		CRIPTION		a konne, auton de Curiffit	HOURS WORKED	HOURS IDLED
<b> </b>						
		<u></u>			1	
ļ						, 00 m 00
		<u> </u>				
}						

•

OCATION AND DESCRIPTION OF W	ORK/TASKS PERFORM	IED	
Attended CALC Linetik & Colety man	Vinc		
Attended SAIC Health & Safety mee Provided ordnance avoidance for SA	ung. IC during subsurface san	npling activities and	to allow vehicle movement.
All ordnance avoidance was perform	ed using a Schonstedt 52	CX magnetometer.	
• • • • • • • • • • • • • • • • •			
	. <u>.</u>		
			<del>_</del>
OCATION AND DESCRIPTION OF D	EFICIENCIES		
Naterials, Equipment, Safety, and/or Workmansh		TAKEN	
No Deficiencies			
			<u> </u>
			······································
		REFERENCE	
DEFICIENCIES CORRECTEI	D THIS DATE	REPORT NO.	COMPLIANCE NOTICE NO.
······································	····		
INSPECTION AND/OR TESTING PERFORMED TODAY (PID, EXPRAY)	LOCATION AND/OR		REMARKS INSPECTION/TESTING
MKM UXO personnel were present of			
		· · · · · · · · · · · · · · · · · · ·	
,			
			. <u></u>
REMARKS (Include directions received fro	m client's representative, visitors	, compliance notices recei	ved; pertinent information)
	<u></u>		
	<u> </u>		
M. Duren	1/3/99	R& Sm	11/3/99
UXO SUPERVISOR	DATE G-56 SIT	E SUPERINTENDE	NT DATE
K/Contractor's Delig Report, Reverses, OK	Page 2 of 2	i i i i i i i i i i i i i i i i i i i	

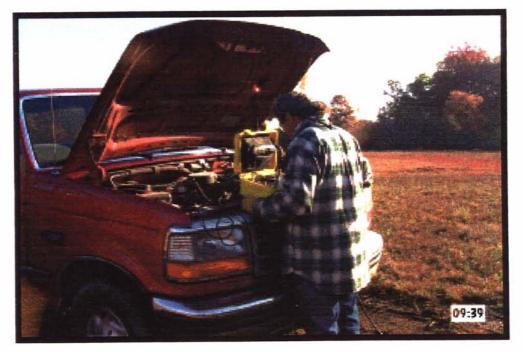


UXO AVOIDANCE AT DEMOLITION AREA 1

### ATTACHMENT C

### PHOTODOCUMENTATION

THIS PAGE INTENTIONALLY LEFT BLANK


1



MKM Engineers, Inc. Ravenna Army Ammunition Plant Ravenna, OH 44266



**UXO Technician Clearing Area to be Sampled** 



**UXO Technician Preparing to Use GAU 30 Probe** 



MKM Engineers, Inc. Ravenna Army Ammunition Plant Ravenna, OH 44266



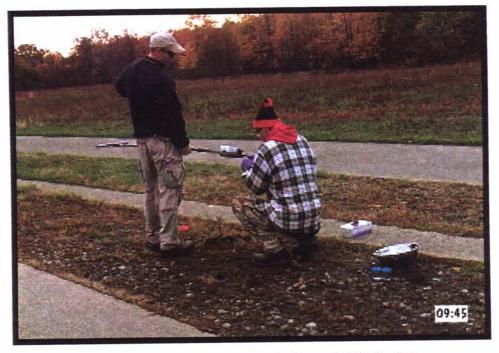
**UXO Technician Checking Hole with GAU 30** 



**UXO Technician Checking Hole with GAU 30** 






Fuzes found at Demolition Area 1



Fuze Parts Found at Demolition Area 1



MKM Engineers, Inc. Ravenna Army Ammunition Plant Ravenna, OH 44266



SAIC Using Hand Auger After UXO Clearance



SAIC Using Geo Probe After UXO Clearance

### **APPENDIX H**

# INVESTIGATION-DERIVED WASTE MANAGEMENT REPORT



Science Applications International Corporation An Employee-Owned Company

December 9, 1999

Mr. John Jent U.S. Army Corps of Engineers Louisville District ATTN: CEORL-ED-GE 600 Martin Luther King, Jr. Place Louisville, KY 40201-0059

### SUBJECT: Contract No. DACA62-94-D-0029, Delivery Order No. 76, Phase I Remedial Investigation at Demolition Area #1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio

### RE: Deliverable -- Investigation-Derived Waste Characterization and Disposal Report

Dear Mr. Jent:

Investigative activities conducted during the Phase I Remedial Investigation (RI) of Demolition Area #1 (October and November 1999) at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio, resulted in the generation of investigation-derived waste (IDW) consisting of soil and water. The IDW was generated in the course of sampling of soils and decontamination of sampling equipment. The purpose of this letter report is to characterize and classify two drums of liquid IDW for future disposal. The characterization and classification of the three soil containers will be completed in a separate letter report to be submitted at a later date because the environmental soil samples needed for characterization are still pending analysis.

This report includes a summary of all IDW generated and its origin (Table 1), comparisons of characterization sampling results to regulatory criteria (Table 2), and classification of the liquid IDW and recommendations for disposal (Table 3). This document follows guidance established by the Facility-Wide Sampling and Analysis Plan (USACE 1996), the Phase I RI Work Plan Addendum for Demolition Area #1 (USACE 1999), and the Ohio EPA (November 1997) regarding IDW disposition at RVAAP.

DRUM NUMBER	CONTAINER TYPE AND SIZE	CONTENTS AND VOLUME	GENERATION DATE(S)
NACA-001	open-top 55-gal	unsaturated soil cuttings; full	10/19 to 10/25/99
NACA-002	open-top 55-gal	unsaturated soil cuttings; full	10/25 to 11/4/99
DECON-01	closed-top 55-gal	potable wash/rinse water; full	10/21/ to 11/3/99
DECON-02	closed-top 55-gal	potable wash/rinse water; ½ full	11/4 to 11/6/99

For the characterization of liquid IDW as hazardous or non-hazardous, a composite waste characterization sample was collected from the two drums of decontamination liquids generated during the Demolition Area #1 Phase I RI. The sample was analyzed for TCLP metals, volatile organic compounds (VOCs), and ignitability. The analytical results above detection limits for the sample are compared directly to the regulatory limits to determine a waste characterization, as shown in Table 2.

# Table 2. Comparison of TCLP Waste Characterization Results for Demolition Area #1to TCLP Criteria

Drum I.D.	Chemical	TCLP Result (mg/L)	TCLP Criterion (mg/L)	TCLP Pass/Fail
DECON -1 and	Barium	0.39	100	P
2	Cadmium	0.045	1	Р
	Chromium	0.037	5	Р

Based upon TCLP, VOC, and ignitability analyses of the liquid, the drums are classified as non-hazardous contaminated waste, as shown in Table 3. These results are identical to those reported for the NACA Test Area Phase 1 RI (under separate cover), because the investigations of the two sites ran concurrently, and drums were used for both projects. Both containers consist of potable wash and rinse water and suspended solids. The liquid IDW contains trace amounts of barium, cadmium, and chromium. These containers are recommended for off-site disposal at a licensed disposal facility.

Non-Hazardous Contaminated Waste				
Container Number	Medium	Waste Criterion	Disposal Recommendation	
DECON-01	Water	Metals	Permitted Facility	
DECON-02	Water	Metals	Permitted Facility	

### Table 3. Summary of Final Waste Classification and Recommended Disposal Options

Please provide your concurrence or direction concerning the enclosed waste characterization and disposal recommendations. Following your direction and immediate approval, we will proceed with the appropriate waste disposal before the onset of severe winter temperatures. Disposal is currently scheduled for the week of December 27, 1999.

If you have any questions or require additional information, please do not hesitate to contact me at 423-481-8761 or Kathy Dominic at 918-625-7614.

Sincerely,

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

Kaly - L Dominic For

Stephen B. Selecman Project Manager

CC: Eileen Mohr, Ohio EPA Mark Patterson, RVAAP Kevin Jago, SAIC Kathy Dominic, SAIC THIS PAGE INTENTIONALLY LEFT BLANK

4411-1000S SAMPLE CHAIN OF CUSTODY *`*9 CUSTOMER: 12480B DEBARTOLO DRIVE CUSTOMER #: +8 NORTH JACKSON, OH 44451 (330) 538-0600 LAB NAME: AT LABS (330) 758-0830 FAX (330) 538-0606 FOR PICK-UP CALL KEN AT 758-5788 ATTN: STEPHEN JAMES 17 OTAL PETROLEUM HYDROCARBONS (TPH) - A711-30 ORGANIC HALOGENS (TOX) - A711-63 IOTAL ORGANIC CARBON (TOC) - A711-62 CLP - SEMIVOLATILES BNA - A711-19 ICLP NON-VOLATILE - A711-16 CLP VOLATILE, VOA - A711-18 REACTIVE CYANIDE - A 711-65 CLP VOLATILE, ZHE - A711-17 REACTIVE SULFIDE - A711-66 CB, SOILWATER - A711-25 CLP PESTICIDES - A711-20 CLP HERBICIDES - A711-21 Explosives Deleted PER John Sabaska "/10/99 PCB, OILWIPES - A711-26 ICLP METALS - A 711-22 FLASH POINT - A 711-64 ULL TCLP - A711-15 /OC - A711-1 C10:00Am **FOTAL** SAMPLE LOCATION DATE SAMPLE NUMBER 11/4/99 EBG-50-003 11/4/99 EBG-Decaul-2pa 11/4/97 NACA/DAI RECOVER RELINQUISHED BY: DATE RECEIVED BY: DATE RELINQUISHED BY: DATE RECEIVED BY: IN LATS DATE 11-01 11/ 499 10,0 RELINQUISHED BY: DATE RECEIVED BY: DATE RELINQUISHED BY: DATE RECEIVED BY: DATE

. . .



21337 Drake Road Strongsville, Ohio 44136 (440) 238-6100 FAX: (440) 238-6294

ANALYTICAL REPORT

Mr. Stephen James	E	. C. Lab #:	9911-10005
Onyx Environmental	Re	ceived Date:	11/09/99
12480B Debartolo Drive		Report Date:	11/18/99
North Jackson, OH 44451			

Purchase Order #:

Subject: Decon

Laboratory	#	Client I.D.	Matrix	Sample Date
9911-10005	001	EBG-SO-003	Solid	11/04/1999
9911-10005	002	EBG Decon 1-2	Liquid	11/04/1999
9911-10005	003	NACA/DA1 Decon 1-2	Liquid	11/04/1999

******

Signed: 12-{ 太 Patrick Dunn

General Manager

NYLAP# 11222

,

# E.C. LABORATORIES Sample Log-in Data Sheet

Chain of Custody: Present Absent	Client: 071/X
Sample Tags: Present / Absent	Date received:
	Carrier: <u>ECC</u>
Sample Transplant: Cooler / Cardboard box Ice / Ambient	EC Lab #
No. of samples submitted:	
Total No. of containers:	
1,2,3	Temp / pH Checked by:
Sample Containers O&G / /	· · · · · · · · · · · · · · · · ·
Plastic Qrts	HI2SO4
Amber Qrts	HNO3
H Squat	NaOH
VOC	· ·
Plastic BAG Other 1	Temp
Matrix $52$ LIO $4q$	
Sample Tags match Chain of Custody yes no	
Receiving/Phone Log	INITIALS/DATE
Receired SAmples Lig in D4G, JAS NO UDC UIAIS	Logged-In by
	Reviewed by
	Work Order Completed
	Work Order Reported
	Work Order Mailed

Mr. Stephen Onyx Enviror 12480B Debar North Jackso	E. Rece Re	11/09/99			
Subject: De	con		Purchas	e Order #:	
Sample No: Client I.D. Sample Date: Matrix:	003 NACA/DAl Decon 1-2 11/04/1999 Liquid		TCLP Ex	tract*:	11/17/1999
Analyte	Method	Detection Limit	Results	Units	Analysis Date
TCLP METALS* Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	6010B 6010B 6010B 6010B 7470A 6010B 6010B	0.20 0.020 0.020 0.010 0.050 0.0002 0.20 0.010	BDL 0.39 0.045 0.037 BDL BDL BDL BDL BDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	11/18/99 11/18/99 11/18/99 11/18/99 11/18/99 11/18/99 11/18/99 11/18/99 11/18/99

Note: BDL (Below Detection Limit)

Mr. Stephen Onyx Enviror 12480B Debar North Jackso		E. C. Lab #: 9911- Received Date: 11/09 Report Date: 11/18 Purchase Order #:			
Subject: De	con		1 di cinas	e oldel #.	
Sample No: Client I.D. Sample Date: Matrix:	003 NACA/DA1 Decon 1-2 11/04/1999 Liquid				
Analyte	Method	Detection Limit	Results	Units	Analysis Date
Flash Point	1010		> 200	DEG F	11/16/99

Note: BDL (Below Detection Limit)

THIS PAGE INTENTIONALLY LEFT BLANK



Science Applications International Corporation An Employee-Owned Company

May 1, 2000

Mr. John Jent U.S. Army Corps of Engineers Louisville District ATTN: CEORL-ED-GE 600 Martin Luther King, Jr. Place Louisville, KY 40201-0059

### SUBJECT: Contract No. DACA64-94-D-0029, Delivery Order No. 76, Phase I Remedial Investigation at Demolition Area #1 at the Ravenna Army Ammunition Plant, Ravenna, Ohio

RE: Deliverable – Investigation-Derived Waste Characterization and Disposal Report

Dear Mr. Jent:

Investigative activities conducted in October and November 1999 during the Phase I Remedial Investigation (RI) of Demolition Area #1 at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio, resulted in the generation of investigation-derived waste (IDW) consisting of soil and water. The IDW was generated in the course of sampling of soils and decontamination of sampling equipment. The purpose of this letter report is to characterize and classify the soil IDW for future disposal. Liquid IDW characterization and disposal was the subject of a December 9,1999 letter report.

This report includes a summary of the IDW generated and its origin (Table 1), a comparison of characterization sampling results to regulatory criteria (Table 2), and classification of the IDW and recommendations for its disposal (Table 3). A summary of the analytical results used for waste characterization is provided in Attachment 1. This document follows guidance established by *the Facility-Wide Sampling and Analysis Plan for Ravenna Army Ammunition Plant* (USACE 1996) and the *Phase I RI Sampling and Analysis Plan Addendum No. I for Demolition Area* #1 (USACE 1999), as well as Ohio EPA guidance (November 1997) regarding IDW disposition at RVAAP.

DRUM NUMBER	CONTAINER TYPE AND SIZE	CONTENTS AND VOLUME	GENERATION DATE(S)		
*DA1-01	open-top 55-gal	unsaturated soil cuttings; full	10/19/99		
*DA1-02	"DA1-02 open-top 55-gal		10/20 to 10/21/99		
^a DA1-03 open-top 55-gal		unsaturated soil cuttings; full	10/22 to 10/25/99		
DA1-04	Open-top 55-gal	unsaturated soil cuttings; full	10/25 to1/27/99		
*DA1-05	DA1-05 Open-top 55-gal		11/1 to 11/4/99		
DECON-01	closed-top 55-gal	cuttings; 2/3 full potable wash/rinse water; full	10/21 to 11/3/99		
^b DECON-02 closed-top 55-gal		potable wash/rinse water; 1/2full	11/4 to 1/6/99		

Table 1. Summary of Phase I RI Demolition Area #1 IDW

Disposed March, 2000

Disposed December, 1999

Per Section 7 of the Facility-Wide SAP (USACE 1996), the analytical results from environmental samples collected during the Phase I RI are used, where possible, to characterize IDW for each sampling medium. For example, analytical results from the sampling of shallow soil borings are used to characterize the drums containing correlative soil IDW for waste characterization. Only environmental samples with analytical results above method detection limits are used to characterize waste containers. These results are shown in Attachment 1.

Attachment 1 presents the frequency of detects, minimum and maximum detected concentrations, and average concentrations for each analyte. Note that the average value is calculated from all reported values, using either the detected concentration or, if the analyte was not detected, the quantitation limit for that sample. For analyses that include non-detects, the average represents an upper bound on the true average. Because quantitation limits vary between samples, the calculated average may exceed the maximum detect in cases where non-detects are included. Because surface soil drum contain IDW from several sampling locations within Demolition Area #1, minimum, maximum, and mean concentrations from all samples contained in each drum are presented for the characterization of wastes in each container.

For the characterization of solid wastes as hazardous or non-hazardous, the Resource Conservation and Recovery Act (RCRA) regulatory limits are compared to the mean and maximum concentrations of contaminants for the toxicity characteristic for hazardous wastes per 40 CFR 261.24. Analytical results for the correlative soil IDW are compared with these criteria to determine whether any wastes are potentially hazardous. In order to compare the analytical results to the TCLP criteria, a 20-fold

Five drums of soil were generated during the Phase I RI at Demolition Area #1 (Table 1). The results of correlative environmental samples indicate that four of the drums did not require further characterization. However, soil sample (DA1so-029-0076) exceeds TCLP criteria for cadmium, chromium, and lead. This sample was collected on 26 October 1999. Consequently, the drum containing soils from this sample (DA1-04) was additionally sampled for TCLP waste characterization on March 7, 2000. Comparison of the results above detection limits to TCLP criteria are shown in Table 2.

Drum/Sample I.D.	Chemical	TCLP Result (mg/L)	TCLP Criterion (mg/L)	TCLP Pass/Fail
DA1-04	Cadmium	BDL	100	Р
·	Chromium	0.018	5	P
	Lead	BDL	5	Р

Table 2.	Comparison	of TCLP	Characterization	<b>Results</b> to	TCLP Criteria
----------	------------	---------	------------------	-------------------	---------------

BDL below detection limit

Non-hazardous wastes are further characterized as contaminated or noncontaminated, based on detected contamination. Containers with detected levels of organic and/or explosive contamination or elevated concentrations of inorganic constituents are classified as non-hazardous contaminated wastes. Containers with no detected levels of organic and/or explosive contamination and no elevated levels of inorganic constituents are classified as non-hazardous, non-contaminated wastes.

None of the five soil IDW containers exceed the criteria for classification as hazardous waste. TCLP metals, VOCs, and explosives were detected, but were present at concentrations below hazardous levels. The drums are classified as non-hazardous contaminated waste, as shown in Table 3. These drums are recommended for off-site disposal at a permitted facility.

Table 3. Summary (	f Final Waste Classification and Recommended Disposal Opti	ions
--------------------	------------------------------------------------------------	------

Non-Hazardous Contaminated Waste						
Container Number	Medium	Waste Criterion	Disposal Recommendation			
DA1-01	Surface and subsurface soils	Metals and explosives	Permitted facility			
DA1-02	Surface and subsurface soils	Metals and explosives	Permitted facility			

Non-Hazardous Contaminated Waste							
Container Number	Medium	Waste Criterion	Disposal Recommendation				
DA1-03	Surface and subsurface soils	Metals and explosives	Permitted facility				
DA1-04	Surface and subsurface soils	Metals and explosives	Permitted facility				
DA1-05	Surface and subsurface soils	Metals and explosives	Permitted facility				

Please provide your concurrence or direction concerning the enclosed waste characterization and disposal recommendations. Following your direction and immediate approval, we will proceed with the appropriate waste disposal for the remaining drum, DA1-04. Waste pickup is currently scheduled for the week of May 8, 2000.

If you have any questions or require additional information, please do not hesitate to call me at 918-625-7614.

Sincerely,

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

1013- L Dominic

Kathryn L. Dominic Environmental Projects Manager

Cc: Eileen Mohr, Ohio EPA Mark Patterson, RVAAP Kevin Jago, SAIC Steve Selecman, SAIC

#### Summary of All DA#1 Solis for IDW

dax > fCLP	Analysia Tura	Chemicai	Units	Proportion Detected	Mean	Max Detect	ID of Max Concentration	TCLP Criteria	Propertion	Mean Adj. fu	
	Analysis Type	Cyanide	MG/KG	1/ 122	0.602		DA1se-024-0060-SO	Img/LI	>TCLP	TCLP [mg/L]*	(mg/L)*
	Cyanide	Aluminum	MG/KG	122/ 122	13700		DA1ss-023-0130-SO	f	· ·		
	inorganics inorganics	Antimony	MG/KG	19/ 104	1.36		DA1ss-029-0076-SO		<u> </u>	-t	
		·····		121/121	13.4		DA188-029-0076-SO	+•··•	AL 191		
N	Inerganica	Areesic Bailum	MG/KG	122/ 122	117	1840			0/ 121	0.671	+
·	Inorganics	Beryllium	MG/KG	·	0.450		DA1ss-008-0015-SO	100	Q/ 122	5.86	i 9
	inorganica	· · · · · · · · · · · · · · · · · · ·		52/ 122						+	
	Inorganica		MG/KG	17/122	15300	4910 248000		· · · · · ·	6/ 122	2.22	24
	Inorganics	Calcium Chromium	MG/KG	120/122	18,7						
	Inorganics						DA1s=029-0076-SO	2	1/ 122	0.933	
	Inorganics	Cobalt	MG/KG	122/ 122	10,1	26.5					
	Inorganics	Серрег	MG/KG	122/122	261		DA18=023-0139-SO				
	Inorganica	Iron	MG/KG	121/122	27300		DA1==-029-0076-SO			· · · · · · · · · · · · · · · · · · ·	
<u> </u>	Inergenics	Lead	MG/KG	122/ 122	30.6		DA1ss-029-0076-SO	<u> </u>	1/ 122	1.53	38.
	Inorganica	Magnesium	MG/KG	122/122	3308		DA168-020-0162-SO				
	inorganics	Manganese	MG/KG	122/ 122	576		DA168-012-0023-SO				
l	Inorganics	Mercury	MG/KG	77/ 122	0.0434		DA188-025-0064-SO	<u>0.2</u>	0/ 122	0.00217	0.014
	inorganics	Nickel	MG/KG	122/ 122	25.1		DA1##-023-0130-SO				
	Inorganica	Potassium	MG/KG	122/ 122	1410		DA1#0-027-0071-SO				
<u> </u>	Inorganics	Selenium	MG/KG	33/ 122	0.759	6.1		<u> </u>	0/122	0.038	0.30
l	Inorganica	Silver	MG/KG	5/ 122	1.17	0.67		5	0/ 122	0.0584	0.033
	Inorganics	Sedium	MG/KG	2/ 122	224		DA188-029-0077-SO				
	Inorganics	Thallium	MG/KG	102/122	0.364		DA1se-023-0138-SO				
	Inorganics	Venadium	MG/KG	122/ 122	19.4		DA1so-027-0071-SO	·			
	Inorganics	Zinc	MG/KG	122/122	295		DA1			1	
	Explusives	1,3.5-Frinkobenzene	MG/KG	1/ 122	1.17		DA1== 040 0109-SO				
	Explosives	2,4,6-Trinitrototuene	MG/KG	8/ 122	28.2		DA198-048-0109-SO				
l	Explosives	Z.4 Dinitrotolucae	MG/KG	3/ 122	1.16		DA1##-040-0103-SO	0.13	9/ 122	0.8501	0.0
	Explosives	4 Nitrotoluenc	MG/KG	3/ 122	0.934		DA1ss-040-0105-SO	L			
	Explosives	HMX	MG/KG	1/ 122	2.29		DA1ss-040-0105-SO				
	Explosives	Nitracellulase	MG/KG	54 59	7.06		DA1ss-040-0109-SO	L			
	Explosives	Nitroguenidine	MG/KG	5/ 59	0.239	0.19	DA1se-041-0112-SO	L			
	Semi-Velatile Organics	2 Methylnaphthalone	MG/KG	1/ 12	0.493	0.043					
	Semi-Volatile Organics	Bis(2-citythexyf)phthalate	MG/KG	2/ 12	0.459	8.051	DA1s=-040-0126-SO				
	Semi-Velatile Organica	Рутсяс	MG/KG	<u>V 12</u>	0.493	8.049	DA1s=-040-0126-SO				
	Velatic Organics	Acetone	MG/KG	3/ 12	8.0114	0.015	DA100-020-0049-SO				
	Volatile Organics	Dimethylbenzene	MG/KG	2/ 12	0.09543	0.0018	DA1so-029-0077-SO	L		L	
	Volatile Organics	Methylene chloride	MG/KG	<u>¥ 12</u>	0.0055	0.001	DA160-020-0049-SO			l	
	Votatile Organics	Styrene	MG/KG	17 12	0.0958	0.0007	DA1##-029-0076-SO	L			[
	Volatile Organics	Toluene	MG/KG	6/ 12	0.00533	0.0081	DA1==-020-0049-SO				[
										T i	
	· ···	Imparison to TCLP criteria. Total s			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		<b>†</b> · · · · · · · · · · · · · · · ·	}··•

-

1



Environmental Control Laboratories inc.

- -

ANALYTICAL REPORT

21337 Drake Road Strongsville, Ohio 44136 (440) 238-6100 FAX: (440) 238-6294

Mr. Stephen James	E. C. Lab #. 0003-09002
Onyx Environmental	Received Date: 3/09/00
124803 Debartolo Drive	Report Date: 3/23/00
North Jackson, OH 44451	Purchase Order #:
Subject: Ravenna	:

Laboratory #		Client I.D.	Matrix	Sample Date	
000 <b>3-09002</b>	001	438154-001	solid	3/07/2000	
000 <b>3-09002</b>	002	438154-002	Solid	3/07/2000	

**********************

Signed al Fatrick Dunn 4

ł

ł

General Manager

NYLAP# 11222

-

Mr. Stephen James Onyx Environmental 124808 Debartolo Drive North Jackson, OH 44451

E. C. Leb #. 0001+09002 Received Date: 3/09/00 Report Date: 3/23/00

Purchase Order =:

Subject: Ravenna

Sample No: Client I.D. Sample Date: Matrix:	031 438154-001 3/07/2000 Solid		••••	TELP Ex	tract*:	3/10/2000
Analyte		Method	Detection Limit	Results	Units	Analysis Date

				UN144a	LALE
TCLF METALS* Arsenic Barium Cadmium Chronium Lead Mercury Selenium Silver	60103 50103 60103 60108 74708 50103 60103	C.20 C.020 C.020 C.010 O.050 C.0002 C.20 O.010	501 1.9 301 0.018 301 301 301 301 101	ng/L tg/L tg/L ng/L ng/L ng/L	3/13/00 3/13/00 3/13/00 3/13/00 3/13/00 3/13/00 3/13/00 3/13/00

1

ļ

:

*Extraction Method: SW 846 1311

Nate:BDL(Selow Detection Limit)

21337 Drake Road Strongsville, Ohio 44136 (440) 238-6100 FAX: (440) 238-6294 H-19 25298823121 E1:31 8882/82/88 E0 1 9090 BES OEE I NOSXDAC HIZON SIJA 482:20 00-1E-JEW

Mr. Stephen James E. C. Lab #: 0003-09002 Onyx Environmental Received Date: 3/09/00 124808 Debartolo Drive Report Date: 2/23/00 North Jackson, OH 44451 Purchase Crder +. Subject: Ravenna ******** ----- 
 Sample Nc:
 001

 Client I.D.
 438154-001

 Sample Date:
 3/37/2000

 Matrix:
 Solid
 TCLP Extract: 3/10/2000 Detection Analysis Analyte Method Results Units Limit Date TCLP VOLATILES* 3/13/00 Vinyl Chloride 5260 0.01 BOL mg 💄 3/13/00 1 1-Dichloroethene 8260 6.005 **RDL** 55 L 3/13/00 2-Butanone (MEK) 9260 0.05 SDL mg/l 3/13/00 C.03 BDL C.02 BDL C.035 BDL C.035 BDL C.005 BDL C.005 BDL O.005 BDL D.005 BDL Chloroform 8260 ಮತ್/೭ 3/13/00 Carbon Tetrachloride 8260 ang/1 3/13/00 8260 Senzene 3/13/00 ng / L 1.2-Dichloroethane 8260 ag/l 3/13/00 Trichloroethene 826C mg/L 3/13/00 8260 Tetrachlorostheme 3/13/00 mg/l Chlorobanzene 8250 ng 1 3/13/00 Dibremofluoremethane 76 - 124% 3/13/00 OC SURR 119 1,2-Dichloroethane-d4 QC SURR 118 E8 - 1254 3/13/00 Toluene-de QC SURR 56 74 - 1259 3/13/00 4-Bromofluorobenzene 84 QC SURR 73 - 1274 3/13/00

*Extraction Method: SW 846 1311

Note: BDL (Below Detection Limit)

i

Mr. Stephen James Cnyx Environmental 124808 Debartolo Drive North Jackson, ON 44451

E. C. Lac #: 0003-09002 Received Date: 3/09/00 Report Date: 3/23/00

Purchase Order #:

1

Subject: Raverna

	***********					
Sample No: Client I.D. Sample Date: Matrix:	001 438154-CO1 3/07/2000 Solia			TCLP EX BNA Ext	· · · · ·	3/10/2000 3/15/2000
Analyte		Method	Betection Limit	Results	Unite	Analyzis Date
				:		

TCLP SEMIVOLATILES"					
Cresol	8270	<u>^</u>			3/16/00
1,4-Dichlerobenzene	8270	0.2	BDL	ਸ਼ੁਰੂ / ਪ	3/16/00
Hexachierobenzene		0.1	BDL	mg/L	3/16/05
Hexachlorobutadiene	8270	0.1	\$DL	mg L	3/16/00
	\$270	6.1	BDL	mg/L	3/16/00
Hexachloroethane	8270	0.1	BDL	mg/L	3/16/00
2.4-Dimitrotoluene	8270	0.1	BDL		
Nitrobenzene	8270	0.1	BDL	mg/L	3/16/00
Pentachlorophenol	8270	0.5	1	設備とし	3/15/00
Pyridine	8270		BDL.	ma/	3/15/00
2,4,5-Tricklorophenol	-	0.2	HDL.	ng/L	3/16/00
2.4.6-Trichlorophenol	8270	0.1	3DL	<b>59</b> /2	3/16/00
2-Pluorophenci	8270	0.1	SOL	mg/_	3/16/00
	QC SURR		39	22 - 1133	3/15/00
Phenol-d6	QC SURR		35	9 - 1048	3/16/00
Nitrobenzene-d5	OC SURR		79	27 - 1354	3/16/00
2-Fluorobiphenyl (SURR)	OC SURR		46	11 - 1178	-
2,4,6-Tribromophenol	OC SURR		34		3/16/00
p-Terphenyl-d14	CC SURR			10 - 1239	3/16/00
	Ar Source		5:8	18 - 1348	3/15/00

"Extraction Method: SW 846 1311

Note:SDL(Selew Detection Limit)

21337 Drake Road Strongsville, Ohio 44136 (440) 238-6100 FAX: (440) 238-6294

Mar-31-00 02:29P AETS NORTH JACKSON 1 330 538 0606 PACE 84 H-51 - 1 1 330 538 0606 P.05 H-754 P.05

# PRELIMINARY

Onyx Enviror 12480B Debar	Mr. Stephen James Onyx Environmental 12480B Debartolo Drive North Jackson, OR 44451 Subject: Ravenna		Rece Rej	C. Lab H: 1Ved Date. port Date: e Order %	3/03/00	
Subject: Ra	Venna					
Sample No:	001					
Client I.D.	438154-001			tclp ex		3/23/2000
	3/07/2000			Post Ex	tract:	3/16/2000
Matrix:	Solid					
			Detection			Analyzis
Analyte		Method	Limi :	Results	Units	Date
TCL? PESTICI	DES*			1		
Chlordane		8031A	0.0002	BDL	······································	3/23/00
Endrin		8081A	0.0005	201	mg/L	3/23/00
Heptachior.	Total	80914	0.0005		ng/L ng/L	3/23/00
Lindane		8081A	0.0002	BCL	•	• · = = · • •
Methoxychlor	,	5081A	0.0005	SDL	지않기요.	3/23/00
Toxaphene		80814	0.0002	BOL	ng/L ng/L	
2.4.5-TP (S1	lVex)	6150		+	mg/L	3/23/00
2,4-D		8150		<b>↓</b>	ng/l ng/l	
T CMCK		SURS		99		1/21/00 ry 3/23/00

*Extraction Method: SW 646 1311

Note:BDL(Selow Detection Limit)

#### MAR-31-00 OS:30P AETS NORTH JACKSON 1 330 538 0606 P.06 BUILT 1 11 PRIME TO CKSON 1 330 538 0606 P.06

	onyx environmental		> A MPLE	CHA	um (	DF (	CUS	10				OM		R	que	z.k.)		C	Ø	5	0	10	οć
	12480B DEHARTOLO ( NORTH JACKSON, OH (330) 538-0609 FAX (330) 534-060 ATTN: STEPHEN JA	41151 16							ſ			NAN	<b>he</b> :	FOR				-	n)75 i∧r∶				
Η				08, 201.W12R - A714-38	PCB, CR. MPEB - A711-36	AAR POWT-A TISA	DLP LETALS-A711-M	Inches crutol - A 71-44	teacing sturbes - Atmas	11-112 - W1-15	נויזער אטאמעעור יעוויוז	CUP VOLATILE DIE - AUTUIT	101 VOLATLE VOA . A711-15	TELP : BRUNDLATLES ENAL AUST-IS	TAJP RESTOCES - ATTI-20	CAP HERSICORE - MILLEI	DE-LICENSIN INDROCOMBCHIELE - ATTICA	OTAL DRAMHS CARBON (TOC) - A71 1-53	DTAL DRAMID HALDBENG (TON - AT1141	00-2311-1			
н-23	An venna army appt	37100	436154-001	2	<b>K</b>	3	2	-	2		8	5	- 12	<u></u>	<u> </u>	5	Ē	2	2	3		$\left  - \right $	┝╌╊
			43845H-002-	1						-													
				╞						<b> </b>	<b> </b>		<b> </b>	<b> </b>	<b> </b>	<b> </b>		<b>_</b>	ļ	<u> </u>			
	•						<b> </b>				_		<b> </b>		ļ		<u> </u>	<b> </b>	┣_	<b> </b>	<b> </b>	<b> </b>	$\square$
-		- <b> </b>		╉─	╀─	<u> </u>			<u> </u>	-	+					┞─	┝	┢─		┝	┢╌		┝┥
	RELENCIURSHED BY: X Bean Cill	DATE 31700 DATE 3/8/00	RECEIVED BY:	s the					×			E PERCENED BY: Durne Delicoza E DECEMED BY:			L_		017 3/ 1/ 1/1						

4

10. •

۱

9090

538

930

THIS PAGE INTENTIONALLY LEFT BLANK

,

### **APPENDIX I**

## **GEOTECHNICAL ANALYSIS REPORT**



1051 Johnnie Dodds Boulevard, Suite C Mt. Pleasant, South Carolina 29464 Telephone: (803) 881-6000 Fax: (803) 881-2619

Dec 2,1999

Mr. Steve Selectman Science Applications International Corporation P.O. BOX 2502 800 Oak Ridge Turnpike Oak Ridge, TN. 37831

Re: Geotechnical Test Results Demolition Area 1 Phase I RI CATLIN Project No. 99217

Dear Mr. Selecman:

Included herewith please find the completed data package for the geotechnical tests performed on soil samples submitted from the referenced site. CATLIN Engineers and Scientists appreciate the opportunity to provide geotechnical testing services to SAIC. If you should have any questions regarding these results, please contact us at (843) 881-6000 at your convenience.

Very truly yours

Jern Jone John Jones, P.E. **Project Engineer** 

Fouad Bouani Engineer 1 THIS PAGE INTENTIONALLY LEFT BLANK

Sample	DA10035	DA10072
Moisture Content, %	19.87	24.53
Bulk Density, pcf	106.71	102.73
Porosity	0.36	0.38
Permeability, cm/sec	3.38E-07	3.06E-06
Specific Gravity	2.66	2.64
pH in H2 O	3.76	5.00
pH IN 0.01 Calcium Chloride	4.11	4.94
Total Organic Carbon, %	4.80	4.31
Redox Potential	494	456
Atterberg Limits		
ц	47.50	49.4
PL	31.30	24.6
PI	16.82	24.8
Classification	ML	CL

Summary Table of Results for Demolition Area I Phase I RI

### **GRAIN SIZE ANALYSIS % PASSING**

3" to 3/4"	100	100
3/8*	100	100
#4	99.95	94.63
#10	99.67	92.09
#20	99.20	88.46
#40	98.44	84.87
#60	97.57	81.92
#140	96.85	79.06
#200	96.04	76.21

T mes Vit

John T. Jones, P.E.

# PERMEABILITY TEST ANALYSIS (ASTM D5084)

	Project	: Demolition Area   Phase   R	u	Job # :	99217		
			Da	ite of Testing:	11/2/99		
Location of	f Project	: STA. DAI -015		Tested by:	111		
<b>–</b> • • •				Boring # :			
Descriptio	Description of Soil : Brown Gray Clayey Silt			Sample # :	DA10035		
			Sa	imple Depth :	1' - 3'		
Sample Type (u		g or Remolded)	% Sampi	e Compaction:			
tandard Proctor:			le Dry Density:	0.0			
Maximim	Maximim Dry Denaity: pcf Sample Moisture Conten		isture Content:	······			
Optimum Moist	Optimum Moisture Content: %		Sampl	Sample Wet Density:			
Sample Permei	ition:		Sample	Dimensions			
۵	e-Aired W	ater		Before	After		
% Saturation:	100	_*	Length (cm)	11.56	11.55		
Cell Pressure:	68	pei	Diemeter (cm)	4.82	4.86		
Lower Pressure:	65	_ pei	Water Content (%)	17.38	23.74		
Upper Pressure:	63	_ pei	Weight (g)	423.3	433.1		
Gradient	18.26	—					

**Constant Head Calculation:** 

# $K = [V(t_1, t_2) LR_T]/[P_BAt] (cm/sec)$

ţ	t,	(t ₂ - t ₁ )*60	V	[LRT]/[PBA]	K
(min)	(min)	(sec)	(cm3)	(cm-')	(cm/sec)
30	0	1800	0.05	2.86E-03	7.94E-08
60	30	1800	0.05	2.86E-03	7.94E-08
90	60	1800	0.05	2.86E-03	7.94E-08
120	90	1800	0.7	2.86E-03	1.11E-06

Kevg = 3.38E-07 cm/sec

# SPECIFIC GRAVITY (ASTM D-854)

Project: Demolition Area I Phase I RI	Job No.: 99217
Project Location: STA. DA1-015	Sample No.: DA10035
Sample Description: Brown Gray Clayey Silt	Sample Depth: 1'- 3'
	Boring No.:
Tested By: FB	Date of Testing: 11/3/99

Test No.:	4			
Wt. of Flask, Mf	158.80			
Mass Flask + H2O @ Ta = Ma @ T a	657.40			
Temperature, Ta, oC	23.0			a naga ing sa
Method of air removal	Vacuum	Vacuum	Vacuum	Vacuum
Wt. Flask + H2O+ Soil = Mb (g)	717.20			
Temperature, Tb, oC	22.0			
Wt. Flask + H2Ob = Ma	657.40			
evap dish no.	P52			
wt of evap. dish +dry soil	347.31			
Wt. evap dish	251.50			1
Wt. of dry soil = Mo (g)	95.81			
Ww = Mo + Ma - Mb	36.01			
G 😰 Tb = Mo/Ww	2.66			
К 🕲 ТЬ	0.9993			<u> </u>
Gs = K * G	2.66			

Project: Demolition Area 1 Phase 1 RI	Job No.: 99217		
Project Location: STA. DA1-015	Sample No.: DA10035		
Sample Description: Brown Gray Clayey Silt	Sample Depth: 1'- 3'		
	Boring No.:		
Tested By: FB	Date of Testing: 11/11/99		

Mows	Mcds	Mc : A52	Mw	Ms	w%	Mws	Ms
19.30	19.15	15.10	0.15	4.05	3.70	200.00	192.86

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	0.10	0.05	0.05	99.95
10	2.00	0.53	0.27	0.33	99.67
20	0.841	0.91	0.47	0.80	99.20
40	0.42	1.47	0.76	1.56	98.44
60	0.25	1.67	0.87	2.43	97.57
140	0.106	1.39	0.72	3.15	96.85
200	0.074	1.56	0.81	3.96	96.04
pan	_	0.00	0.00	3.96	96.04

Project: Demolition Area | Phase | Ri Location of project: STA. DAI - 015 Description Of Soil: Brown Gray Clayey Silt Tested By: FB

Job No.: 99217 Sample No.: DA10035 Depth of Sample: 1'- 3' Date of Testing: 11/11/99

.

#### **Liquid Limit Dermination**

Can No.	A47	A48	A55	A21	A35	
Wt of Soil + can, Mcws	19.87	18.63	13.78	19.53	17.51	<u> </u>
Wt. of dry soil + can,Mcds	18.35	17.53	12.90	18.15	15.45	1
WL of can, Mc	15.10	15.32	10.91	15.36	11.27	
Wt. of dry soil, Ms	3.25	2.21	1.99	2.79	4.18	0.00
WL of moisture	1.52	1.10	0.88	1.38	2.06	0.00
Water content, w%	46.77	49.77	44.22	49.46	49.28	#DIV/0!
No. of blows, N	10	19	38	15	27	

Can no.	C19	C63	C22			
Wt. of wet soil + can, Mcws	4.51	5.15	5.46	1		
Wt. of dry soil +can, Mcds	3.88	4.49	5.18	[		· · · ·
Wt. of can, Mc	1.87	2.39	4.28	1		
Wt. of dry soil, Ms	2.01	2.10	0.90	0	0	0
Wt. of moisture, Mw	0.63	0.66	0.28	0	o	Ō
Water content, W% = Wp	31.34	31.43	31.11	#DIV/01	#DIV/0!	#DIV/0!

LIQUID LIMIT =	47.5
PLASTIC LIMIT =	31.3
PLASTICITY INDEX =	16.2
CLASSIFICATION	ML



SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

## ANALYTICAL REPORT

-----

CATLIN ENGINEERS 2404	Lab Number: 99-A167755
JOHN JONES	Sample ID: DA10035
1031 JONNIE DODDS BLVD.	Sample Type: Soil
MT PLEASANT, SC 29464	Site ID:
Project: 99217 Project Name: CATLIN Sampler: DS	Date Collected: 11/ 2/99 Time Collected: Date Received: 11/ 3/99 Time Received: 9:00

-----

Roaligte	Result	Ualts	Report Linit	Quax Linit	D11 Factor	Date	Tine	Analyst	fiethod	Ratch
AGENERAL CHEMISTRY PARAMET	<u>77</u>									
Fractional Organic Natter	4. RD	X			1	11/ 6/99	16:15	A Haréison	ASTR 2974	2976
Redax Potential	494.	AV VS AHE		20.	1	11/ 9/99		fief ap1 and	\$(72580	6383

FBC/TBC = 2.8%

ND = Hot detected at the report limit.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Approved By:

Report Date: 11/ 9/99

Theodore J. Duello, Ph.D., Lab Director Michael H. Dunn, M.S., Technical Director Johnny A. Mitchell, Dir. Technical Services Eric Smith, Assistant Technical Director Ball A Lage, Technical Services

.

# PERMEABILITY TEST ANALYSIS (ASTM D5084)

.

	Project	: Demolition	Area I Phase I RI		Job # :	99217
		_		– D	ate of Testing:	11/3/99
Location of Project : NACA Plane Storage Area			ne Storage Area		Tested by:	11
		<b>.</b> .			Boring # :	
Description of Soil : Brown Gray Clay With Sand				_	Sample # :	DA10072
				S	ample Depth :	1' - 3'
Sample Type (	Undisturbe	<u>d</u> or Remolded)		% Samp	e Compaction:	
Standard Proct	or:			Sam	ple Dry Density:	0.0
Meximim	n Dry Deneit	y	_pcf		pisture Content:	
Optimum Mois	<b>ture Conten</b>	t	_x	Samp	le Wet Density:	0.0
Sample Perme	ation:			Sampk	Dimensions	
I	De Aired W:	ater			Before	After
% Saturation:	100	_%		Length (cm)	10.20	10.18
Cer Pressure:	68	_ pel		Diameter (cm)	4.80	4.86
Lower Pressure:	63	_ pei		Water Content (%)	18.2	22.8
Upper Pressure:	60	pui		Weight (g)	359.0	369.1
Gradient	20.70	_				

**Constant Head Calculation:** 

$$K = [V(t_1, t_2) LR_T]/[P_BAt] (cm/sec)$$

$$V(t_1,t_2) = Volume of flow from t_1 to t_2 (cm3)$$

L = Length of Sample	=	10.20 cm		
	±	<b>18.1</b> cm ²		
$\mathbf{t} = \mathbf{t}_2 - \mathbf{t}_1 \text{ (sec)}$				
Po = Bias Pressure =	3	_psi x 70.37 cm/psi (cm - H2O)	211.11	cm
R _T = Temperature correction	_≖ חכ	0.953		-

tz	l <u>a</u> t _i (t ₂ -		t ₁ (t ₂ - t ₁ )*60 V [LR _T ]/[				K
(min)	(min)	(90C)	(cm3)	(cm-/)	(cm/sec)		
180	175	300	0.35	2.54E-03	3.0E-06		
185	180	300	0.35	2.54E-03	3.0E-06		
190	185	300	0.35	2.54E-03	3.0E-06		
195	190	300	0.35	2.54E-03	3.0E-06		

Kavg = 3.0E-06 cm/sec

# SPECIFIC GRAVITY (ASTM D-854)

Project: Demolition Area I Phase I RI	Job No.: 99217
Project Location: NACA Plane Storage Area	Sample No.: DA10072
Sample Description: Brown Gray Clay With Sand	Sample Depth: 1'- 3'
	Boring No.:
Tested By: FB	Date of Testing: 11/3/99

Test No.:	3			
Wt. of Flask, Mf	158.20	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -		
Mass Flask + H2O @ Ta = Ma @ T a	653.55			
Temperature, Ta, oC	23.0	the straight		
Method of air removal	Vacuum	Vacuum	Vacuum	Vacuum
Wt. Flask + H2O+ Soil = Mb (g)	712.70			
Temperature, Tb, oC	23.0			
Wt. Flask + H2Ob = Ma	653.55			1
evap dish no.	P53			
wt of evap. dish +dry soil	345.20			
Wt. evap dish	250.10			
Wt. of dry soil = Mo (g)	95.10			
Ww = Mo + Ma - Mb	35.95			
G @ Tb = Mo/Ww	2.65			
К 🕲 ТЪ	0.9993			
Gs = K * G	2.64			Í

Project: Demolition Area 1 Phase 1 RI	Job No.: 99217			
Project Location: NACA Plane Storage Area	Sample No.: DA10072			
Sample Description: Brown Gray Clay With Sand	Sample Depth: 1'- 3'			
	Boring No.:			
Tested By: FB	Date of Testing: 10/26/99			

Mows	Mods	Mc: A18	Mw	Ms	w%	Mws	Ms
21.40	19.43	11.40	1.97	8.03	24.53	200.00	160.60

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	8.62	5.37	5.37	94.63
10	2.00	4.08	2.54	7.91	92.09
20	0.841	5.83	3.63	11.54	88.46
40	0.42	5.77	3.59	15.13	84.87
60	0.25	4.73	2.95	18.08	81.92
140	0.106	4.60	2.86	20.94	79.06
200	0.074	4.57	2.85	23.79	76.21
pan	-	0.00	0.00	23.79	76.21

#### Project: Demolition Area I Phase I Ri Location of project: NACA Plane Storage Area Description Of Soil: Brown Gray Clay With Sand Tested By: FB

Job No.: 99217 Sample No.: DA10072 Depth of Sample: 1'- 3' Date of Testing: 11/11/99

#### Liquid Limit Dermination

Can No.	A43	A51	A6	A25	A40	1
Wt of Soil + can, Mcws	17.18	14.34	15.10	16.13	17.15	
Wt. of dry soil + can,Mcds	16.56	13.26	13.81	14.50	16.46	
Wt. of can, Mc	15.32	11.26	11.30	11.20	15.00	
Wt. of dry soil, Ms	1.24	2.00	2.51	3.30	1.46	0.00
Wt. of moisture	0.62	1.08	1.29	1.63	0.69	0.00
Water content, w%	50.00	54.00	51.39	49.39	47.26	#DIV/01
No. of blows, N	41	12	18	25	38	

Can no.	C17	C7	C24		1	
Wt. of wet soil + can, Mcws	3.54	4.10	4.41			
WL of dry soil +can, Mcds	3.22	3.76	4.01			
Wt. of can, Mc	1.92	2.39	2.37			
WL of dry soil, Ms	1.30	1.37	1.64	0	0	0
Wt. of moisture, Mw	0.32	0.34	0.40		0	0
Water content, W% = Wp	24.62	24.82	24.39	#DIV/0!	#DIV/0!	#DIV/0!

LIQUID LIMIT =	49.4
PLASTIC LIMIT =	24.6
PLASTICITY INDEX =	24.8
CLASSIFICATION	CL



## SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204 0566 Phone 1-615 726-0177

## ANALYTICAL REPORT

CATLIN ENGINEERS 2404 JOHN JONES 1051 JUNNIE DODDS BLVD. MT PLEASANT, SC 25464

Lab Number: 99-A167736 Sample ID: DA10072 Sample Type: Soll Site ID:

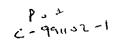
Project: 99217 Project Name: CATLIN Sampler: DS Date Collected: 11/ 2/99 Time Collected: Date Received: 11/ 3/99 Time Received: 9:00

Analyte	Result	Units	Report Linit	Ruan Linit	Dil Factor	Pate	Tine	Aaalyst	Rethod	Batch
REENERAL CHEMISTRY POROMET	RZM									
Fractional Organic Natter Redox Potential		% HV vs <b>NHE</b>		20.	I I	11/ 6/99 11/ 9/99		A Hardison NcFarland	ASTA 2974 SA2580	2976 6383

TUC/FOC = 2.5%

HD = Not detected at the report limit.

Report Approved Bu:


These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Date: 11/ 9/99

Theodore J. Duello, Ph.D., Lab Director Michael H. Dunn, M.S., Technical Director Johnny A. Nitchell, Dir. Technical Services Eric Smith, Assistant Technical Director Gail A Lage, Technical Services

Chain of Custody Recor	d				TE	ST	'An	<b>IEF</b>	<b>?i(</b>	CA	INC	ר יי	#	24	0	4					Pa	18e_)	of
	(630) 289-3	100 (	319) 277-24	101	(704) 392-1	164	(93	17) 294-68	156	(910)	berton, N ) 738-619	0	(6	ashville, 15) 726-	0177			(248	l) 33	2-1940	א 🗖 0	ockford. 1 315) 874-2	L(Q) 2171
☐ Atlanta, GA (B) ☐ (770) 368-0636	Brighton, C (303) 659-0	0 (D)LJ ( 497 (	Charleston, 1 843) 849-65	SC (F) LJ 550	Columbia, S (803) 796-89	SC (H) 989	D Da (3	venport. I. 19) 323-79	A (J) 944	□ India (317)	mapolis, 1 ) 842-426	IN (L) I		acon, G/ 12) 757-			Ο			FL (P) 1-2560		atertown, 20) 261-1	
Client: CAF//A		Project	^{No.:} 97	217				F	REQ	UEST	'ED P/	ARA	MET	ERS					-				
Report Address: 1051 Joh	nnie	Invoice	Address:			16	6941	17	7			7		1		Γ		7	/	≠ Tarbian		g conduct	- J (
Alla Black MTK	leasan	Aitn:	29	464		240			/			/			/	/	/	/	/	regulate	лу		es <u>No</u>
Phone No.: 843 881 6	000	Sample	d By: D				Į.	$\frac{1}{20}$	3							/		/		Is this wregulate	vork bein ory enfor	g conduct cement act	ed for tion?
Fax No.: 843 881 26	19		C-99				18	5/ 0	7			/					/			Yes	No		
TURNAROUND TIME	· /	Quote r	lo. mples Collect				2 ; 3 50		, /	/ /	/ /	' /	/ /	/ /	/	/	/				NP		ewater g Water
Standard	n		d:{L_			A Star	5/0								/	/				Other			None
· · · · · · · · · · · · · · · · · · ·	1	1			<u> </u>	Y		{{	/		( (	/		(		_	_	of cor	1	-			
Sample ID	Date	Time	Comp (C) Grab (G)	ļ	<u> </u>		<u> </u>	<u> </u>			<u> </u>				E	NaOH	- NH	H,SO	G ter O	2016		REMAR	KS7
DRI0035	11/2/99	AM	6	403	16758	×	*	ļ			<b> </b>		ļ	 					<b>,</b>	<u> </u>	lcct	#2	<u>404</u>
DA10072	<u>↓</u>	+	<u> </u>	1	16775	ÞΧ_	*						<b> </b>	ļ					'	۲ <u>ا</u>			
								ļ		ļ										_			
1-16	-		ļ				<u> </u>									$\downarrow$							<u></u>
							<u> </u>	ļļ									_	$\perp$					
												<u></u>					_		_				
			ļ																	_			
							ļ	$ \downarrow                                   $															
					and the second								ļ			_			_				
QC Deliverables:		evel 2 - Ba		· · ·						į						Ā	X		L1	141	N 1	F <b>O</b>	yol
			Other	( 1		<u> </u>												協	) fier 	npr# \$	<del>70n</del>	Rec La	ib Temp
COMMENTS: Rhase	ፕዳኦ ግ	1254719	・ う	nipp	e Fe	200	X	te;	b fi c	$\subset \mathcal{H}$	lssa 1	Y =	# 0	1590 1	65	5/	60	27	8	4	, - , ,		
Relinquished By:	Sect	<b>→</b>	Mar /c	5112:15	Pro Ro	eceived	BX 1	X	3	à	He	力	Date	199	12/	ጠፈ	e l	LAB	USE	ONLY			<del>.</del>
Relinquished By	rul	the	Biez/	14/7	<b>Time</b> Re	ceived	By:				/		Date			Tim							
Relinquished By:		V	Date	1	Time Ro	ceived	By:	Q,	Ā	7_	~>		Date			Tim	e	Cust	iodv	Seal:	<b>T</b> Yes		
Relimpushed By			Date	1	.   Tune   Ri	ceived	Ku-	-; C	- 1	E			11399 Date	,90	w	Tim			-	motion			





# COC NO.: DAICE- 1

page <u>1</u> of <u>1</u>

### CHAIN OF CUSTODY RECORD

		23) 481-4890					L			F 61	1911	וחו	nE	LUN	<u> </u>							
	PROJECT NAME: Demolition Area 1	Phase I RI	ATUN+								R	EQUE	STED (	PARAN	AETERS	<u>s</u>	<u>.</u>	<del></del>				LABOHATORY NAME:
			217																			Catlin Engineers
	DELIVERY ORDER NC: 0076																					LABORATORY ADORESS: 1051 Johnnie Dodds Blvd.
	PROJECT MANAGER: Steve Selecma							tien						E	1						H	Suite C Mt. Pleasent, SC 29464
	Sampler (Signature) $1 - 12 = 0 = 0$	(Printed No	inel L'IR.2	harle	a.		a Limit	lessific.		Redax Petential	Carban	Rult Desciry	Specific Gravity	Seil Parmesbility							Centaine	PHONE NO: 803-881-6000
	Vielin Brunbach	- VIC	na California	Matrix	Site S	<b>K</b> a ista	Atterbe	USCS (	Ŧ	ž	Organic (	0	Specifi	Seil P								OBSERVATIONS, COMMENTS,
			54Φ	Soil		Ī	$\overline{\checkmark}$		$\overline{\mathbf{v}}$	7	7		17	$\overline{}$			Γ				1	
۲	DA1 0035 10		640		_	Ż	Ż			7	7		17	$\overline{\mathbf{A}}$			$\mathbf{T}$				Ī	
	DA1 0072		¢ΨΨ	¥	Ť				•		-	** **										
					┢		Η															
										-												
T				Xib			$\square$					Ĩ										
17			<u>+</u>		5																	
				· · · · · · · · · · · · · · · · · · ·					1													
														$\square$			_				L	······································
																			<b>_</b>			
									00000								_				$\vdash$	10-20-00
																					1	
	RELINQUISHED BY:	A Date/Time	RECEIVE	D 8Y:						/Time						ITAINE	RS:		2			Cooler Temperature: N/A
	Urely Brunha	10-20		Je man				-	10/	i.	'n	Coole	er ID:	Ņ	4							FEDEX NUMBER:
	COMPANY NAME: SA1C	1201	D COMPAN	LATLINI	-							F	ed	Ēx	Sh	<u>v</u> `p	<u>,</u>	_ ع	<u>TJb</u>	e		81\$2546 71453 (2 tubes) (sp. grav. ASTM 0854)
	RECEIVED BY:	Date/Time	RELINQU	ISHED BY:					Date	/Time		gra	uin s ur	i Ze	- A	15 TA	^ (	542	2)	â		(sp. grav. ASTM 0854)
	COMPANY NAME:		COMPAN	IY NAME:			_	1			ľ		. ~	-1 -		<b>~</b> ] - (	1.	e i ni	भा	ولله	1741	
												cpr (	1 A.	5 (M	יים - נ	t97	L)					(moisture ASTM 02216)
	RELINQUISHED BY:	Oate/Time	RECEIVE	D BY:					Date	s/Time	•	(re (or	dex Gar	po vic	t : Car	SM 2 (be)	58 V 4	SØ) cont	ent	94	6	(AL ASTM D4318)
	COMPANY NAME:		COMPAN	IY NAME:								(se	··I Y	Per	m	D5 (	98	4)				

THIS PAGE INTENTIONALLY LEFT BLANK



1051 Johnnie Dodds Boulevard, Suite C Mt. Pleasant, South Carolina 29464 Telephone: (803) 881-6000 Fax: (803) 881-2619

Dec 20,1999

Mr. Steve Selecman Science Applications International Corporation P.O. BOX 2502 800 Oak Ridge Turnpike Oak Ridge, TN. 37831

Re: Geotechnical Test Results Demolition Area 1 Phase I RI CATLIN Project No. 99229y

Dear Mr. Selecman :

Included herewith please find the completed data package for the geotechnical tests performed on soil samples submitted from the referenced site. CATLIN Engineers and Scientists appreciate the opportunity to provide geotechnical testing services to SAIC. If you should have any questions regarding these results, please contact us at (843) 881-6000 at your convenience.

Very truly yours

John Jones, P.E Project Engineer

Fouad Bouani Engineer 1

THIS PAGE INTENTIONALLY LEFT BLANK

SAMPLE NO.	

<b>DA10161</b>	
DA10039	] [
DA10021	]
DA10041	
DA10040	
DA10119	
DA10118	
DA10120	
DA10117	].

CONTENT (%)	CLASS	
21.70	CL	
20.40	CL	
11.20	SC	
22.30	CL	
18.90	CL	

MOISTURE USCS

A	ATTERBERG LIMITS FINES CLASSIFICATION											
LL	PL	PĨ										
49.1	25.9	23.2	CL									
43.3	22.7	20.6	CL									
	NonPlas	tic										
41.3	21	20.3	CL									
31.7	9.6	22.1	CL									

	SIEVE ANALYSIS (% PASSING)												
.3"	2"	1 1/2"	3/4"	3/8"	#4	#10	#20	#40	#60	#140	#200		
100	100	100	100	100	99.90	99.72	99.58	99.52	99.46	99.35	99.34		
100	100	100	100	100	98.21	96.71	95.59	93.93	92.48	90.93	90.76		
100	100	100	100	100	79.54	66.06	59.87	56.97	52.85	24.31	22.85		
100	100	100	100	100	99.67	99.49	99.16	98.92	98.73	98.04	97.82		
100	100	100	100	100	99.90	99.65	99.44	99.25	99.13	98.59	98.47		
100	100	100	100	100	83.73	50.83	24.85	12.42	7.86	6.55	6.51		
100	100	100	100	100	96.02	87.24	75.80	62.35	45.83	34.46	33.12		
100	100	100	100	100	95.44	89.88	86.49	83.19	77.54	68.46	66.63		
100	100	100	100	100	90.46	81.85	72.57	53.32	34.27	16.14	14.74		

I-21

John Jones, P.E. Vin

John Jones, P.E. Laboratory Manager

> CATLIN Engineers and Scientists Geotechnical Laboratories

Project: Demolition Area I Phase I RI	Job No.: 99229
Project Location: On Berm	Sample No.: DA10021
Sample Description: Brown Clayey Sand	Sample Depth: 0'- 1'
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc : A45	Mw	Ms	<b>w%</b>	Mws	Ms
23.35	22.59	15.46	0.76	7.13	10.7	200.00	180.74

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	15.75	8.71	0.00	100.00
4	4.76	36.97	20.46	20.46	79.54
10	2.00	24.38	13.49	33.94	66.06
20	0.841	11.18	6.19	40.13	59.87
40	0.42	5.24	2.90	43.03	56.97
60	0.25	7.44	4.12	47.15	52.85
140	0.106	51.59	28.54	75.69	24.31
200	0.074	2.64	1.46	77.15	22.85
pan		0	0.00	77.15	22.85

Project: Demolition Area I Phase I RI	Job No.: 99229		
Project Location: Inside Bermed Area	Sample No.: DA10039		
Sample Description: Brown Lean Clay	Sample Depth: 0'- 1'		
	Boring No.:		
Tested By: FB	Date of Test.: 12/5/99		

Mcws	Mcds	Mc : A12	Mw	Ms	w%	Mws	Ms
24.00	22.70	14.94	1.30	7.76	16.8	200.00	171.30

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	3.06	1.79	1.79	98.21
10	2.00	2.58	1.51	3.29	96.71
20	0.841	1.92	1.12	4.41	95.59
40	0.42	2.84	1.66	6.07	93.93
60	0.25	2.49	1.45	7.52	92.48
140	0.106	2.64	1.54	9.07	90.93
200	0.074	0.30	0.18	9.24	90.76
pan			0.00	9.24	90.76

Project: Demolition Area I Phase I RI	Job No.: 99229
Project Location: Inside Bermed Area	Sample No.: DA10041
Sample Description: Brown Lean Clay	Sample Depth: 3'- 5'
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc	Mw	Ms	<b>w%</b>	Mws	Ms
24.28	22.85	15.26	1.43	7.59	18.8	200.0	168.29

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	0.56	0.33	0.33	99.67
10	2.00	0.30	0.18	0.51	99.49
20	0.841	0.55	0.33	0.84	99.16
40	0.42	0.40	0.24	1.08	98.92
60	0.25	0.32	0.19	1.27	98.73
140	0.106	1.17	0.70	1.96	98.04
200	0.074	0.37	0.22	2.18	97.82
pan		0	0.00	2.18	97.82

Project: Demolition Area 1 Phase I RI	Job No.: 99229
Project Location: Inside Bermed Area	Sample No.: DA10161
Sample Description: Brown Lean Clay	Sample Depth: 6'- 8'
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc:A56	Mw	Ms	<b>w</b> %	Mws	Ms
24.82	23.10	14.92	1.72	8.18	21.0	200.0	165.25

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	0.17	0.10	0.10	99.90
10	2.00	0.30	0.18	0.28	<del>9</del> 9.72
20	0.841	0.23	0.14	0.42	99.58
40	0.42	0.10	0.06	0.48	99.52
60	0.25	0.10	0.06	0.54	99.46
140	0.106	0.17	0.10	0.65	99.35
200	0.074	0.02	0.01	0.66	99.34
pan		0	0.00	0.66	99.34

Project: Demolition Area   Phase   RI	Job No.: 99229
Project Location: Hinkle Cr. South of AOC	Sample No.: DA10119
Sample Description: Brown Sand With Hash	Sample Depth: NA
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc:A31	Mw	Ms	w%	Mws	Ms
23.59	22.12	11.13	1.47	10.99	13.4	201.93	178.11

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	3.90	2.19	0.00	100.00
4	4.76	28.97	16.27	16.27	83.73
10	2.00	58.60	32.90	49.17	50.83
20	0.841	46.27	25.98	75.15	24.85
40	0.42	22.14	12.43	87.58	12.42
60	0.25	8.13	4.56	92.14	7.86
140	0.106	2.33	1.31	93.45	6.55
200	0.074	0.08	0.04	93.49	6.51
pan		0	0.00	93.49	6.51

Project: Demolition Area   Phase   RI	Job No.: 99229		
Project Location: West Area East of AOC	Sample No.: DA10118		
Sample Description: Black Silty Sand	Sample Depth: NA		
	Boring No.:		
Tested By: FB	Date of Test.: 12/5/99		

Mcws	Mcds	Mc:A11	Mw	Ms	w%	Mws	Ms
16.99	15.35	10.88	1.64	4.47	36.7	201.10	147.12

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	5.86	3.98	3.98	96.02
10	2.00	12.91	8.78	12.76	87.24
20	0.841	16.83	11.44	24.20	75,80
40	0.42	19.79	13.45	37.65	62.35
60	0.25	24.30	16.52	54.17	45.83
140	0.106	16.73	11.37	65.54	34.46
200	0.074	1.97	1.34	66.88	33.12
pan		0	0.00	66.88	33.12

Project: Demolition Area I Phase I RI	Job No.: 99229		
Project Location: HC- 2"	Sample No.: DA10120		
Sample Description: Brown Sand With Clay	Sample Depth: NA		
	Boring No.:		
Tested By: FB	Date of Test.: 12/5/99	~~~ <u>~</u>	

Mcws	Mcds	Mc:A2	Mw	Ms	w%	Mws	Ms
23.62	21.84	15.30	1.78	6.54	27.2	201.58	158.45

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	4.98	3.14	0.00	100.00
4	4.76	7.22	4.56	4.56	95.44
10	2.00	8.82	5.57	10.12	89.88
20	0.841	5.36	3.38	13.51	86.49
40	0.42	5.23	3.30	16.81	83.19
60	0.25	8.96	5.65	22.46	77.54
140	0.106	14.38	9.08	31.54	68.46
200	0.074	2.90	1.83	33.37	66.63
pan		0	0.00	33.37	66.63

Project: Demolition Area   Phase   RI	Job No.: 99229
Project Location: Hinkley Cr. Upstream	Sample No.: DA10117
Sample Description: Brown Silty Sand	Sample Depth: NA
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc:A9	Mw	Ms	<b>w%</b>	Mws	Ms
26.27	24.30	15.40	1.97	8.90	22.1	200.53	164.19

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	5.13	3.12	0.00	100.00
4	4.76	15.67	9.54	9.54	90.46
10	2.00	14.13	8.61	18.15	81.85
20	0.841	15.23	9.28	27.43	72.57
40	0.42	31.62	19.26	46.68	53.32
60	0.25	31.27	19.05	65.73	34.27
140	0.106	29.76	18.13	83.86	16.14
200	0.074	2.31	1.41	85.26	14.74
pan		0	0.00	85.26	14,74

Project: Demolition Area I Phase I RI	Job No.: 99229
Project Location: Inside Bermed Area	Sample No.: DA10040
Sample Description: Brown Lean Clay	Sample Depth: 1'- 3'
	Boring No.:
Tested By: FB	Date of Test.: 12/5/99

Mcws	Mcds	Mc:A25	Mw	Ms	w%	Mws	Ms
20.69	19.10	11.20	1.59	7.90	20.1	200.0	166.49

Sieve No.	Diam. (mm)	Wt. retained	% retained	E % retained	% passing
3	76.2	0	0.00	0.00	100.00
2	50.8	0	0.00	0.00	100.00
1 1/2	25.4	0	0.00	0.00	100.00
3/4	19.05	0	0.00	0.00	100.00
3/8	9.51	0	0.00	0.00	100.00
4	4.76	0.17	0.10	0.10	99.90
10	2.00	0.42	0.25	0.35	99.65
20	0.841	0.35	0.21	0.56	99,44
40	0.42	0.31	0.19	0.75	99.25
60	0.25	0.20	0.12	0.87	99.13
140	0.106	0.90	0.54	1.41	98.59
200	0.074	0.20	0.12	1.53	98.47
pan		0	0.00	1.53	98.47

Job No.: 99229 Sample No.: DA10161 Depth of Sample: 6'- 8' Date of Testing: 12/9/99

## Liquid Limit Dermination

Can No.	A57	A55	A31	A56	A44
Wt of Soil + can, Mcws	17.04	12.65	14.77	18.33	16.12
Wt. of dry soil + can,Mcds	15.10	12.07	13.58	17.21	14.48
Wt. of can, Mc	11.19	10.90	11.14	14.94	11.24
Wt. of dry soil, Ms	3.91	1.17	2.44	2.27	3.24
Wt. of moisture	1.94	0.58	1.19	1.12	1.64
Water content, w%	49.62	49.57	48.77	49.34	50.62
No. of blows, N	15	28	39	21	10

Can no.	C55	A20	A59
Wt. of wet soil + can, Mcws	5.54	5.34	5.41
Wt. of dry soil +can, Mcds	5.25	5.14	5.13
Wt. of can, Mc	4.12	4.32	4.12
Wt. of dry soil, Ms	1.13	0.82	1.01
Wt. of moisture, Mw	0.29	0.20	0.28
Water content, W% = Wp	25.66	24.39	27.72

LIQUID LIMIT =	49.1
PLASTIC LIMIT =	25.9
PLASTICITY INDEX =	23.2
CLASSIFICATION	CL

Job No.: 99229 Sample No.: DA10039 Depth of Sample: 0'-1' Date of Testing: 12/9/99

## Liquid Limit Dermination

Can No.	A30	A52	A50	A36	A1
Wt of Soil + can, Mcws	19.07	20.50	17.01	17.77	21.34
Wt. of dry soil + can,Mcds	17.90	18.89	15.16	15.65	19.56
Wt. of can, Mc	15.22	15.06	10.91	10.88	15.30
Wt. of dry soil, Ms	2.68	3.83	4.25	4.77	4.26
Wt. of moisture	1.17	1.61	1.85	2.12	1.78
Water content, w%	43.66	42.04	43.53	44.44	41.78
No. of blows, N	19	39	29	10	46

Can no.	A54	A15	A39
Wt. of wet soil + can, Mcws	5.17	5.28	5.14
Wt. of dry soil +can, Mcds	4.97	5.06	4.95
Wt. of can, Mc	4.10	4.11	4.09
Wt. of dry soil, Ms	0.87	0.95	0.86
Wt. of moisture, Mw	0.20	0.22	0.19
Water content, W% = Wp	22.99	23.16	22.09

LIQUID LIMIT =	43.3
PLASTIC LIMIT =	22.7
PLASTICITY INDEX =	20.6
CLASSIFICATION	CL

Job No.: 99229 Sample No.: DA10041 Depth of Sample: 3'- 5' Date of Testing: 12/9/99

## Liquid Limit Dermination

Can No.	A48	A21	A19	A23	A38
Wt of Soil + can, Mcws	20.32	17.93	19.31	17.22	19.64
Wt. of dry soil + can,Mcds	18.88	17.17	18.07	15.50	18.26
Wt. of can, Mc	15.32	15.37	15.03	11.35	14.95
Wt. of dry soil, Ms	3.56	1.80	3.04	4.15	3.31
Wt. of moisture	1.44	0.76	1.24	1.72	1.38
Water content, w%	40.45	42.22	40.79	41.45	41.69
No. of blows, N	38	10	32	26	19

Can no.	A58	A22	C7
Wt. of wet soil + can, Mcws	5.28	4.84	3.18
Wt. of dry soil +can, Mcds	5.08	4.71	2.96
Wt. of can, Mc	4.11	4.10	1.91
Wt. of dry soil, Ms	0.97	0.61	1.05
Wt. of moisture, Mw	0.20	0.13	0.22
Water content, W% = Wp	20.62	21.31	20.95

LIQUID LIMIT =	41.3
PLASTIC LIMIT =	21.0
PLASTICITY INDEX =	20.3
CLASSIFICATION	CL

Job No.: 99229 Sample No.: DA10040 Depth of Sample: 1'- 3' Date of Testing: 12/9/99

## Liquid Limit Dermination

Can No.	A5	A8	A12	A43	A4
Wt of Soil + can, Mcws	15.82	17.11	20.54	16.11	18.24
Wt. of dry soil + can,Mcds	14.61	15.71	19.28	15.92	17.59
Wt. of can, Mc	10.95	11.31	15.28	15.33	15.56
Wt. of dry soil, Ms	3.66	4.40	4.00	0.59	2.03
Wt. of moisture	1.21	1.40	1.26	0.19	0.65
Water content, w%	33.06	31.82	31.50	32.20	32.02
No. of blows, N	10	26	35	15	21

Can no.	C1	C11	C63
Wt. of wet soil + can, Mcws	5.23	4.14	4.71
Wt. of dry soil +can, Mcds	4.95	3.97	4.51
Wt. of can, Mc	2.38	1.92	2.41
Wt. of dry soil, Ms	2.57	2.05	2.10
Wt. of moisture, Mw	0.28	0.17	0.20
Water content, W% = Wp	10.89	8.29	9.52

LIQUID LIMIT =	31.7
PLASTIC LIMIT =	9.6
PLASTICITY INDEX =	22.1
CLASSIFICATION	CL

ATTERBERG LIMITS DETER						
Project Demolition						
Location of Project	de Be	mes A	Lez_ Boring	No	Sample No. ]	<u>&gt;AL</u> 0161
Description of Soil Brow	~ clay	en So				
Depth of Sample $6' - 8'$	O Test	ed By		_ D:	ate of Testing	
Liquid Limit Determination		,				
Can no.	A57	A 55	A3	A56	A44	
Wt. of soil + can, M _{em}	17.04	12.65	14.77	12.22		
Wt. of dry soil + can, Mode	15.10	12.07		17.2	-1	
Wi. of can, M.	11.12	(0.4	11.4	914.92	F 11.24	
Wt. of dry soil, M,			<u> </u>			
Wt. of moisture			<u> </u>	<u> </u>		
Water content, w%		9 A	20	01		
No. of blows, N		28	39	21	10	
52 50 48	×	×			PLASTI	D LIMIT = <u>49.1</u> C LIMIT = Y INDEX =
46		40 50	60	80	100	·
10 15 20	25 30	40 50 N				
Plastic Limit Determination		<u></u>	A20	A	<u> </u>	
Can no.		55		5.		
Wt. of wet soil + can, M _{eve}		<u>54</u> 25	<u>5.34</u> 5. 14	5.		
Wt. of dry soil + can, M _{et}	4.1		4.32	4.		
Wt. of can, M _c		<u> </u>	<u> </u>	·		
Wt. of dry soil, M, Wt. of moisture, M,		<u> </u>				
Water content, $w\% = w_{\phi}$		†			-	
	<u></u>	فبالعيدين معجور بمدن				•

Ŕ

Ξ,

CATLIN Engineers and Scientists Geolechnical Laboratories

.

٦.,

roject				•		
ocation of Project	<u> </u>	<u>.</u>	Boring	No	Sample No. DALOOA	4
escription of Soil	Nn Sam	<u>_ w/ c</u>	laz			
epth of Sample $1^{\prime}-3^{\prime}$	Tes	sted By	0	_ Date	of Testing	
Liquid Limit Determination						_
Can no.	A5	A8	A12	A43	<u>A4</u>	
Wi. of soil + can, Mon	15.82	7.11	20.54		18.24	
Wt. of dry soil + can, M_	14.61	15.71	19.28			-
Wt. of can, M.	10.95	11.31	15-28	[5.22	15.56	_
Wt. of dry soil, M.		ļ				_
Wt. of moisture						
Water content, w%			0.5	1.0		_
No. of blows, N	10	26	35	15	21	
33         32         31         10       15       20         Plastic Limit Determination	25 30	40 50 N	60		PLASTIC LIMIT = PLASTICITY INDEX = 100	•
Can no.	С	1	CI	6.6	3	_
Wt. of wet soil + can, M _{ere}	5.	23	4.14	4.	+1	
Wt. of dry soil + can, M _{eta}	4	95	3.97	$\frac{4}{2}$	<u> </u>	
Wt. of can, M _c	2.3	16	1.92	2.4		-
Wt. of dry soil, M,				<u>:</u>		-
Wt. of moisture, M.						
Water content, $w\% = w_{p}$						-

.

CATLIN Engineers and Scientists Geolechnical Laboratories

٠.,

roject	Job No													
ocation of Project			Boring	No	_ Sample No. DA1004									
escription of Soil <u>Brown</u>	, cla	es son		it.										
epth of Sample $3^{-5}$	( 	ted By <u></u>	- Ri	Date	of Testing									
Liquid Limit Determination	163													
Can no.	A48	A21	AIR	A23	A38									
Wt. of soil + can, M _{con}	20.32	1793	19.21	1722	19.54									
Wt. of dry soil + can, M _{ca}	18.88	17.17	18.07		18.26									
Wi. of can, M.	15.32	15.27	15.03	11.35	4.95									
Wt. of dry soil, M,	*) <u></u>			£ ,										
W1. of moisture	<u> </u>			н. Н										
Water content, w%														
No. of blows, N	38	10	32	76 . **	19									
44 41 10 15 20 ₇	25 30	40 50 N	60	80	PLASTICITY INDEX =_ 100									
Plastic Limit Determination														
Can no.	A.	58	ALL	C	7									
Wt. of wet soil + can, M _{eve}		28	4.84	3.18										
Wt. of dry soil + can, M _{eth}	5.0	8	4.71	2.9										
Wt. of can, M _c	4.1		410	. 9	<u> </u>									
Wt. of dry soil, M.				·										
Wt. of moisture, M.														
Water content, $w\% = w_a$	1			l										

CATLIN Engineers and Scientists Geolechnical Laboratories

. . .

÷

Project			Job No	)								
Location of Project Inst	jele T	Sime	Area Boring	No	_ Sample No.	DA10039						
Description of Soil	uh So		chan_									
Depth of Sample $0^{\prime} 1^{\prime}$	Depth of Sample Date of Testing Date of Testing											
Liquid Limit Determination												
Can no.	A30	A52	450	A36	A)							
Wt. of soil + can, Mon	19.07	20.50	17.01	17.77	21.24							
Wt. of dry soil + can, M _{eta}	17.90	18.84	15.16	15-65	14.56							
Wt. of can, M.	15.22	15.06	10,91	10.88	15.30							
Wt. of dry soil, M.												
Wt. of moisture					<u> </u>							
Water content, w%												
No. of blows, N	19.	39	29	0	46							
44 44 41 41 10 15 20 Plastic Limit Determination	25 30	40 50 N	<b>6</b> 0	B0	PLAST	ID LIMIT = IC LIMIT = Y INDEX =						
Can no.	A5	4	A15	<u> </u>	39							
Wt. of wet soil + can, M _{me}	51	7	5.28	5.	4							
Wt. of dry soil + can, Mat		17	506	4.~	15							
Wt. of can, M _e	4.1	$\circ$	4.11	40	>9							
Wt. of dry soil, M,	<u> </u>			·								
Wt. of moisture, M.												
Water content, w% = w,												

CATLIN Engineers and Scientists Geotechnical Laboratories

Description of So	oil Brown			
Depth of Sample	0'_'	Tested By	•	Date of Testing
Liquid Limit D	the second s			<u> </u>
Can no.				
Wt. of soil +	can, M _{em}			
	l + can, M _{ede}	<u> </u>		
Wt. of can, M	en en de la servicio de la tra			
Wt. of dry soi	characterization of the second			
Wt. of moistu	na da da da ser de la composición de la			<u>_</u>
Water content, No. of blows,		and the second sec		
*				LIQUID LIMI PLASTIC LIMI PLASTICITY INDE
10	15 20 25	30 40 50 N	60 80	100
Plastic Limit D	etermination			· · · · · · · · · · · · · · · · · · ·
Ска во.				
Wt. of wet so	oil + can, M _{ene}			
<b>H</b>	oil + can, M _{ede}			
Wt. of dry so				
Wt. of dry so Wt. of can, 1	M			

CATLIN Engineers and Scientists Geolechnical Laboratories

.



-----

99229 YCOC NO.: DA1CE-page 1 of 1

CHAIN OF CUSTODY RECORD

200 Q	888 Ook Ridge Turnpike, Ook Ridge, TH 37831 (423) 481-4888								NETHERSTELL FARAMETERS 1														LABORATORY NAME:		
PRO	PROJECT NAME: Demolition Area 1 Phase   Ri							Ţ	T				<del>"</del>			PAHA	METE		Ť	T					atlin Engineers
1	IVERY ORDER NO: 0078 DJECT MANAGER: Steve Se	lecman 423-4	\$1-\$761																		i i			1	ABORATORY ADDRESS: 1051 Johnnie Dodds Blvd. Suite C Mt. Pleasent, SC 29464
Sam	ipler (Signature)		(Printe		· R	rumback Mauria Soil	ž		دانسا و	asification		Redex Petertial	Organic Carbon		Bulk Density Smecific Gravity	Soil Permeshility							af Cratainett:		PHONE NO: 803-881-6000
 		Date Cellect	<u>کہ</u> م			Matrix	Grein Si	Moister	Atterbei	USCS C	Ŧ	Redex 7	Organic Janic	Centert	Bulk Density Snacific Grav	Seil Po									DRSERVATIONS, COMMENTS,
	Sample ID			1210		Cil			1	1															
		10-22-		1415	2	1	V	7	1																
		10-21-		163			Ī			17													1	Ī	
1		10-20		1620			7	7	7	1											1000			1	
1	DA10041	10-21		170			V	1	Ż	J	-							_							
11	A10040	10-21		165			V		-							8							Τ	ī	
ĮĮ	A 1 0 1 1 9	10-24					V	- 2000	8		-													1	
°∐	DA10118	10-24		153		┝╼╌┠╼╌	t		8															1	
-1	DA10120	10-24	-44	149		┝	V	- 000	8		┢													Ì	
-	DA10117.	10-24	1-44	İφ¢	<u>p</u> q	<u> </u> ¥∕   −	ľ		8 8																
							╆╌		3 3		-			11									-†-		
				<u> </u>			Ŧ		** **				P-+		4		1	80 88 88					-†-		•
Γ						<b> </b>			8 8		8						-						╶┾		
		<u> </u>		L							<u>ີ</u> ຄ	 ate/Tin	i i ne	T	)TAL N	UMBE	<u>1000</u> R OF (	CONT/	AINERS:	9	1 <u> </u>	<u></u>	Ļ		Cooler Temperature: NA
R	Vizen Bri	.0.0		e/Time	RECEIVE	инт: Пит:									oler ID					₽					FEDEX NUMBER:
		MOUL		1-99	COMPA	NY NAME:				-	14	:[-	۲ ^۰			ંદ	416	۰±	+90	DI					814254671269
1	COMPANY NAME: SAL		14	φφ		CATURE								_		<u>к</u>	<u> </u>				<u> </u>	-			
				 le/Time	RELINO	JISHED BY:					D	ate/Tir	ne												
1	RECEIVED BY:								_																
	COMPANY NAME:				COMPA	NY NAME:																			
	RELINQUISHED BY:	<u>.                                    </u>	Da	te/Time	RECEIV	ED BY:					0	)ate/Ti	me												
ł	COMPANY NAME:				COMPA	INY NAME:															- <u></u>				