Final

Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

May 10, 2017

Project No. 118064-RVAAP-80

Prepared for: National Guard Bureau Army National Guard (ARNG-IED Cleanup) 111 South George Mason Drive Arlington, Virginia 22204-1373

Finalized and Updated by: U.S. Army Corps of Engineers Louisville District 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Draft Prepared by: PIKA International, Inc. 12723 Capricorn Drive, Suite 500 Stafford, Texas 77477

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188			
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .							
1. REPORT DA	TE (DD-MM-YY	<i>YY)</i> 2. REP	DRT TYPE	1		3. DATES COVERED (From - To)	
	05-2017		Technica	ıl	52 00	May 2014 to May 2017	
4. IIILE AND S	SOBILLE				Ja. 00	NTACT NOMBER	
Site Inspection	Report:					NA	
CC-RVAAP-80 Group 2 Propellant Can Tops Former Ravenna Army Ammunition Plant				5b. GRANT NUMBER NA			
Portage and Tr	umbull Counti	es, Ohio			5c. PR	OGRAM ELEMENT NUMBER	
						NA	
6. AUTHOR(S)					5d. PR	OJECT NUMBER	
Angela L. Schr	nidt (USACE.	Louisville Dis	strict)			118064-RVAAP-80	
ringelu E. Selli	mat (ODHCL,	Louis vine Di			110004-KVAAP-80		
					De. TA	SK NUMBER	
						NA	
					5f. WO	ORK UNIT NUMBER	
						NA	
7. PERFORMIN	GORGANIZATI	ON NAME(S) A	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION	
U.S. Army Cor	ps of Engineer	rs, Louisville				REPORT NUMBER	
600 Martin Lut	ther King Jr., F	Place				NA	
Louisville, Ken	ntucky 40202-0	0059					
				١			
9. SPONSORIN		J AGENCT NAM	IE(3) AND ADDRE33(E3	1			
Army National	Guard					NGB	
(ARNG-IED Cleanup)					11. SPONSOR/MONITOR'S REPORT		
111 South George Mason Drive					NUMBER(S)		
Arlington, Virginia 22204-1373					NA		
12. DISTRIBUTI	ON/AVAILABIL	ITY STATEMEN	Т				
Reference Distr	ribution Page.						
13. SUPPLEMENTARY NOTES							
None.							
14. ABSTRACT	14. ABSTRACT						
A Site Inspectio	on (SI) was co	nducted at the	Compliance Restoration	on (CR) Site C	C (Arm	y Environmental Compliance-Related A	
Cleanup Progra	um) RV AAP-8	30 at the forme	r Ravenna Army Amm	unition Plant	(RV AA	AP). Soils were evaluated to determine if	
and tons) were	identified in 2	of 1 by visual	and geophysical survey	is where disca	sample	s were assessed to identify whether	
and tops) were identified in 2011 by visual and geophysical surveys. In addition, samples were assessed to identify whether concentrations of propellants and/or other munitions constituents if present, were great enough to be considered contamination. Both							
surface and subsurface soils were evaluated in the SI. Based on the evaluation of data collected from both the 2011 SI and this SI, no							
contamination v	was identified	in soils. Addit	ionally, the soils are no	ot a source to 1	receptors	s or to a groundwater pathway. No other	
media (e.g., sediment or surface water) are present at the Site. Since no contamination was identified at the AOC, a No Further							
Action decision was made for this Site and no additional remedial action is warranted.							
15. SUBJECT TERMS							
Draft Site Investigation Report, CC Site, Compliance Restoration, Surface Soil, Subsurface Soil, No Further Action							
16 SECURITY (N OF	17. LIMITATION OF	18. NUMBER	19a NA		
a REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF		Angela L. Schmidt	
			NΔ	PAGES	19b. TE	LEPHONE NUMBER (Include area code)	
NA	NA	NA	11/1	3,930	1	502 215 6212	

Г

3,930	130. TELEFITONE NOWBER (meldue area code)
	502-315-6313
	Standard Form 298 (Rev. 8/98)

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

May 30, 2017

Mr. Mark Leeper Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22204 Re: US Army Ammunition Plt RVAAP Remediation Response Project Records Remedial Response Portage County 267000859160

Subject: Ravenna Army Ammunition Plant, Portage/Trumbull Counties. Approval of the "Final Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops" at the Former Ravenna Army Ammunition Plant, Ravenna, Ohio, Dated May 10, 2017, Ohio EPA ID # 267-000859-160

Dear Mr. Leeper:

The Ohio Environmental Protection Agency (Ohio EPA) has received the "Final Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops" at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. The document was received at Ohio EPA's Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR) on May 11, 2017. The report was prepared for the US Army National Guard Bureau originally by PIKA International, Inc. under Contract Number W912QR-12-F-0212, but was finalized by the U.S. Army Corps of Engineers, Louisville District.

This document was reviewed by personnel from Ohio EPA's DERR to assure that the response to Ohio EPA comments, as agreed to in correspondence dated March 28 and April 10, 2017, were satisfied. Pursuant to the Director's Findings and Orders paragraph 39 (b), the Final document is approved.

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kevin M. Palombo Environmental Specialist Division of Environmental Response and Revitalization

KP/nvr

cc: Rebecca Shreffler/Gail Harris, VISTA Sciences Corp.

ec: Katie Tait, OHARNG RTLS Bob Princic, Ohio EPA, NEDO, DERR Kevin Sedlak, ARNG Rodney Beals, Ohio EPA, NEDO, DERR Carrie Rasik, Ohio EPA, CO, DERR Thomas Schneider, Ohio EPA, SWDO, DERR

Received -31 MAY 2017 -

Final SI Report for CR Site CC RVAAP-80 Group 2 Propellant Can Tops

Disclaimer Statement

This report is a work originally prepared for the United States Government by PIKA International, Inc. and was revised/finalized by the United States Army Corps of Engineers, Louisville District. In no event shall either the United States Government or the United States Army Corps of Engineers have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Final

Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

May 10, 2017

Project No. 118064-RVAAP-80

Prepared for: National Guard Bureau Army National Guard (ARNG-IED Cleanup) 111 South George Mason Drive Arlington, Virginia 22204-1373

Finalized and Updated by: U.S. Army Corps of Engineers Louisville District 600 Martin Luther King, Jr. Place Louisville, Kentucky 40202

Draft Prepared by: PIKA International, Inc. 12723 Capricorn Drive, Suite 500 Stafford, Texas 77477

Document Distribution:

Final Site Inspection Report CC RVAAP-80 Propellant Can Tops

Name	Organization	Hard Copies	Electronic Copies
Mark Leeper	Army National Guard Cleanup Program Manager	0	1
Kathryn Tait Kevin Sedlak	Camp Ravenna Environmental Office	0	0
Kevin Palumbo	Ohio Environmental Protection Agency Northeast District Office Division of Environmental Response and Revitalization	1	3
Tom SchneiderOhio Environmental Protection Agency Southwest District Office Division of Environmental Response and Revitalization		0	1
Gail Harris VISTA – RVAAP Administrative Records Manager		2	1
Jay Trumble	USACE – United States Army Corps of Engineers – Louisville District - Project Manager	2	2

STATEMENT OF INDEPENDENT TECHNICAL REVIEW

The United States Army Corps of Engineers, Louisville District has completed the Final Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops, at the Ravenna Army Ammunition Plant, Ravenna, Ohio. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy, principles, and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets customer's needs consistent with law and existing Corps policy.

Reviewed/Approved by: //athamil etus Nathaniel Peters, II

SME Engineering, PE

Date: 5/3/2017

Prepared/Approved by:

Angela L. Schmidt SME Risk Assessor **Environmental Biologist**

Date: 5/3

TABLE OF CONTENTS

FIGURES	ii
TABLES	ii
LIST OF ACRONYMSi	ii
EXECUTIVE SUMMARY	v
SECTION 1: INTRODUCTION	1
 1.1 OBJECTIVES 1.2 DESCRIPTION OF RVAAP 1.3 OPERATIONAL HISTORY OF RVAAP 1.4 HISTORY OF CC RVAAP-80 1.5 PRIOR INVESTIGATIONS AT CC RVAAP-80	1 2 3 3 <i>3</i> <i>3</i> <i>3</i>
SECTION 2: SITE INSPECTION ACTIVITIES	5
2.1 MOBILIZATION AND SITE PREPARATION. 2.1.1 Equipment. 2.1.2 Site-Specific Training 2.1.3 Permitting 2.1.4 Site Control. 2.2 ANOMALY REACQUISITION AND COLLECTION OF MPPEH. 2.3 VEGETATION REMOVAL AND SITE SURVEYING 2.4 SURFACE AND SUBSURFACE INCREMENTAL SOIL SAMPLING. 2.5 SUMMARY OF SAMPLE RESULTS. 2.5.1 Data Evaluation Process. 1 2.6 DATA VALIDATION. 1 2.7 DISPOSAL OF IDW.	5 5 6 6 6 7 7 8 9 0 0 2 3
SECTION 3: CONCLUSIONS1	4
SECTION 4: REFERENCES 1	6
APPENDIX A: DAILY REPORTS, SAMPLING LOGS & PHOTO DOCUMENTATION	
APPENDIX B: LABORATORY DATA (FULL LABORATORY PACKAGE ON CD)	
APPENDIX C: ADR AND DATA VALIDATION REPORTS	
APPENDIX D: SURVEY DATA AND INFORMATION	
APPENDIX E: SCRAP METAL MDAS CERTIFICATION AND RECYCLING RECORDS	
APPENDIX F: IDW DRUM DISPOSAL RECORDS	

FIGURES

FIGURE 1. General location and orientation of Camp Ravenna

FIGURE 2. Location of the Compliance Restoration Site CC RVAAP-08, Group 2 Propellant Can Tops AOC

FIGURE 3. Site features and layout of the CC RVAAP-80, Group 2 Propellant Can Tops AOC

FIGURE 4. Locations of previously identified anomalies and anomaly cluster areas on the CC RVAAP-80 AOC

FIGURE 5. Sample locations at the CC RVAAP-80 AOC

TABLES

TABLE 1. Sample information and summary of the analytes assessed in soil samples collected at CC RVAAP-80 Group 2 Propellant Can Tops AOC.

TABLE 2. Propellant and metal results for ISM subsurface soil samples for CC RVAAP-80.

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80.

TABLE 4. Propellant and metal results for the ISM surface soil samples collected at CC RVAAP-80.

LIST OF ACRONYMS

ADR	Automated Data Review
AOC	Area of Concern
APP	Accident Prevention Plan
bgs	below ground surface
Camp Ravenna	Camp Ravenna Joint Military Training Center
CC	Army Environmental Compliance-Related Cleanup Program
CR	Compliance Restoration
COC	Chemical of Concern
COPCs	Chemicals of Potential Concern
DoD	Department of Defense
DoDI	Department of Defense Instructions
ELAP	Environmental Laboratory Accreditation Program
EPC	Exposure Point Concentration
EZ	Exclusion Zone
FWCUGs	Facility-Wide Clean Up Goals
HAZWOPER	Hazardous Waste Operations and Emergency Response
HQ	Hazard Quotient
HTRW	Hazards, Toxic, and Radioactive Waste
IDW	Inspection Derived Waste
IRP	Installation Restoration Program
ISM	Incremental Sampling Methodology
LL	Load Line
MC	Munitions Constituents
MD	Munitions Debris
MDAS	Material Documented as Safe
MDEH	Material Documented as an Explosive Hazard
MEC	Munitions and Explosives of Concern
mm	millimeter
MPPEH	Material Potentially Presenting an Explosive Hazard
MSD	Minimum Separation Distance
NFA	No Further Action
OHARNG	Ohio Army National Guard
OSHA	Occupational Safety and Health Administration
PCBs	Poly Chlorinated Biphenyls
PIKA	PIKA International, Inc
QAPP	Quality Assurance Project Plan
QSM	Quality System Manual
RSLs	Residential Screening Levels
RVAAP	Ravenna Army Ammunition Plant
SAIC	Science Applications International Corporation
SAP	Sampling and Analysis Plan
SI	Site Inspection
SSHP	Site Safety and Health Plan

SUXOS Senior UXO Supervisor	
SVOCs Semi-Volatile Organic C	compounds
TAL Target Analyte List	
TCLP Toxicity Characteristic I	eaching Procedure
USACE U.S. Army Corps of Eng	ineers
USEPA U.S. Environmental Prot	ection Agency
USP&FO United States Property as	nd Fiscal Officer
UXO Unexploded Ordnance	
UXOT II UXO Technician II	
UXOQCS UXO Safety/Quality Con	ntrol Specialist
UXOSO UXO Safety Officer	
UXOT III UXO Technician III	
VOCs Volatile Organic Compo	unds
WOE Weight of Evidence	

EXECUTIVE SUMMARY

This Site Inspection (SI) report describes the activities performed to complete an evaluation of potential soil contamination at the Compliance Restoration (CR) Army Environmental Compliance-Related Cleanup Program CC RVAAP-80 Group 2 Propellant Can Tops Area of Concern (AOC) at the former Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. All work was conducted in accordance with the *Revised* Final Project Work Plan for Site Inspections at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 1 (PIKA, 2016). Work was originally authorized under contract W912QR-12-F-0212 issued to PIKA International, Inc. (PIKA) by U.S. Army Corps of Engineers, Louisville District (USACE). Due to delays in the cleanup program at the former RVAAP that were unrelated to PIKA's performance, PIKA could not complete this document before the Contract ended and the document was left as a Draft in December 2016. Therefore, USACE has revised and finalized this SI.

The *former* Ravenna Army Ammunition Plant (RVAAP), consisting of 21,683 acres, is in northeastern Ohio within Portage and Trumbull counties (Figure 1). The CC RVAAP-80 consists of the Group 2 Propellant Can Tops Site and is located within the boundaries of the former facility (Figure 2). The RVAAP was used as a load, assemble, and packing facility for munitions production.

This SI was conducted to evaluate if soils at the AOC have propellants or other munitions constituents (MC) present at concentrations great enough to be defined as contamination. The evaluation was completed specifically at locations where discarded munitions packaging material (propellant cans and tops) were identified by visual and geophysical surveys. The sample data were assessed to evaluate the presence or absence of contamination, and whether there had been a release at the AOC. Contamination is identified if the detected concentrations of propellants and/or MC constituents were greater than the Facility Wide Cleanup Goals (FWCUGs) established for the Resident Receptor at RVAAP in surface or subsurface soils. Data for this SI included: the collection of all propellant cans, can tops, and related debris at or near the surface (based upon the anomalies identified during the 2011 Geophysical Survey that was conducted as part of the 2011 SI). In addition, all collected debris was inspected, certified, and disposed in accordance with Department of Defense Instructions (DoDI) 4140.62.

The 2011 Geophysical Survey of the AOC covered 12.4 acres and included the collection of three surficial incremental soil samples. Geophysical data showed that tops and cans were not buried in the subsurface at the site (PIKA, 2012). Eight clusters of debris identified during the 2011 SI as having potential contamination were selected as sample locations for this SI. Soil samples were collected using the incremental sampling methodology (ISM).

Most of the pin flags placed during the 2011 SI Geophysical Survey were still in place and visible during this SI. A four-man team of unexploded ordnance (UXO) Technicians reacquired the anomalies previously identified during the 2011 Geophysical Survey. The Team also inspected a 1-meter radius around each pin flag to depth, removing all magnetic anomalies including propellant cans, can tops, and occasional unrelated items such as railroad spikes, banding, and strapping materials.

The UXO Team inspected each individual item encountered to certify them as material documented as safe (MDAS). All items recovered during this effort were certified MDAS and transported to the local recycling facility. No munition-related items were encountered and none of the propellant cans, can tops, or non-packing items were identified as Material Documented with an Explosive Hazard (MDEH). More than 530 propellant cans, can tops, and related packaging debris were collected. Additionally, miscellaneous metal scrap (e.g., rail road spikes, t-posts, wrenches, conduit, nuts bolts and nails) weighing 1,760 pounds was recovered and properly disposed.

The ISM soil samples were analyzed for the target analyte list (TAL) metals and perchlorate and three common propellants that were used by the DoD (nitrocellulose, nitroglycerine, and nitroguanidine). One sample was analyzed also for the RVAAP full suite, (explosives, cyanide, volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]).

Initially, concentrations of detected metals were compared to the established background values. Any metal that was detected at a concertation exceeding the corresponding background level was further evaluated to determine if it should be considered as contamination or could be indicative of a release at the AOC. Since there is no established background level for organic chemicals such as propellants, this initial comparison was not completed for any detected organic chemical. The concentration of all detected organic compounds were assessed and metals whose concentrations exceeded their respective background values were compared to the most stringent Resident Receptor's (adult and child) FWCUGs at the 1 X 10^{-6} target cancer risk level or the 0.1 Hazard Quotient (HQ). This comparison was completed for sample results for both surface and subsurface soils.

No propellants and perchlorates were not detected at concentrations greater than the laboratory detection limits in the subsurface soil samples. There were several metals that had maximum concentrations that exceeded the established background values: antimony, cadmium, selenium, silver, and thallium. None of these metals in the subsurface soil samples had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the subsurface soils at CC RVAAP-80.

No propellants, pesticides, SVOCs, PCBs, or perchlorate were detected at concentrations greater than their respective detection limits and were therefore considered to be non-detected in the surface soil at the AOC. No VOCs were detected in surface soil except acetone at an estimated concentration. Acetone is not considered indicative of contamination since it is a common laboratory contaminant.

There were several metals that had maximum concentrations that exceeded the established background values in the surface soils: antimony, cadmium, chromium, lead, selenium, silver, thallium, and zinc. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the surface soils at CC RVAAP-80.

Based on the results from both the 2011 SI and this SI, no contamination or evidence of a release at the AOC was identified. Propellants and other MCs are not present in the surface and subsurface

soils at concentrations great enough to need additional evaluation. Soils are not a source of contamination to receptors or to a groundwater pathway to receptors. No other media (e.g., sediment or surface water) are present at the Site. Additional investigation is not warranted, and No Further Action (NFA) determination was made for this AOC.

SECTION 1: INTRODUCTION

This Site Inspection (SI) report describes the activities performed to complete an evaluation of potential soil contamination at the Compliance Restoration (CR) Army Environmental Compliance-Related Cleanup Program) (CC) RVAAP-80 Group 2 Propellant Can Tops Area of Concern (AOC) at the former Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. All work was conducted in accordance with the *Revised* Final Project Work Plan for Site Inspections at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 1 (PIKA, 2016). Work was originally authorized under contract W912QR-12-F-0212 issued to PIKA International, Inc. (PIKA) by U.S. Army Corps of Engineers, Louisville District (USACE). Due to delays in the cleanup program at the former RVAAP that were unrelated to PIKA's performance, PIKA could not complete this document before the Contract ended and the document was left as a Draft in December 2016. Therefore, USACE has revised and finalized this SI.

This SI Report describes the procedures, activities, and resources PIKA used to complete the following tasks:

- The geophysical anomalies identified during the 2011 SI of the Group 2 Propellant Can Tops area of concern (AOC) were reacquired and a surface clearance was conducted to remove all munitions packaging material (propellant cans and tops) associated with the anomalies. The recovered propellant cans and tops were inspected and certified as scrap, safe for recycling.
- Surface and subsurface soil samples were collected and analyzed for three common propellants used by the DoD (nitrocellulose, nitroglycerine, and nitroguanidine), target analyte list (TAL) metals, and perchlorate. One of the samples was also analyzed for the RVAAP full suite (explosives, cyanide, volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]).
- Inspection Derived Waste (IDW) was sampled and properly disposed.

1.1 Objectives

This purpose of this SI was to evaluate if soils at the AOC have propellants or other munitions constituents (MC) present at concentrations great enough to be defined as contamination. The evaluation was completed specifically at locations where discarded munitions packaging material (propellant cans and tops) were identified by visual and geophysical surveys. The sample data were assessed to evaluate the presence or absence of contamination, and whether or not there had been a release at the AOC. Contamination is identified if the detected concentrations of propellants and/or MC constituents were greater than the Facility Wide Cleanup Goals (FWCUGs) established for the Resident Receptor at RVAAP in surface or subsurface soils. Data for this SI included the collection of all propellant cans, can tops, and related debris at or near the surface (based upon the anomalies identified during the 2011 Geophysical Survey that was conducted as part of the 2011 SI). In addition, all collected debris was inspected, certified, and disposed in accordance with DoDI 4140.62.

1.2 Description of RVAAP

When the RVAAP Installation Restoration Program (IRP) began in 1989, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two-year period (2002 and 2003), and the actual total acreage of the property was found to be 21,683 acres. The facility is in northeastern Ohio within Portage and Trumbull counties, approximately 4.8 kilometers (3 miles) east/northeast of the City of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the City of Newton Falls. Figure 1 presents a regional map with the location of the former RVAAP/Camp Ravenna. The location of the AOC within the RVAAP/Camp Ravenna is shown in Figure 2. The figures are included at the end of this SI report.

1.3 Operational History of RVAAP

The facility, previously known as the RVAAP, was formerly used as a load, assemble, and pack facility for munitions production. As of September 2013, administrative accountability for the entire acreage of the facility has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio and subsequently licensed to the OHARNG for use as a military training site known as the Camp Ravenna Joint Military Training Center (Camp Ravenna). References in this document to RVAAP relate to previous activities at the facility as related to former munitions production activities or to activities being conducted under the restoration/cleanup program.

Production at the facility began in December 1941, with the primary missions of depot storage and ammunition loading. The installation was divided into two separate units; the Portage Ordnance Depot and the Ravenna Ordnance Plant. The Portage Ordnance Depot's primary mission was storage of munitions and components, while the mission of the Ravenna Ordnance Plant was loading and packing major caliber artillery ammunition and the assembly of munitions initiating components that included fuzes, boosters, and percussion elements. In August 1943, the installation was re-designated the Ravenna Ordnance Center and again in November 1945, as the Ravenna Arsenal. The plant was placed in standby status in 1950; and operations were limited to renovation, demilitarization and normal maintenance of equipment, along with storage of ammunition and components.

The plant was reactivated during the Korean Conflict to load and pack major caliber shells and components. All production ended in August 1957 and in October 1957, the installation was again placed in a standby condition. In October 1960, the ammonium nitrate line was renovated for demilitarization operations that involved melting explosives out of bomb casings for subsequent recycling. These operations commenced in January 1961. In July 1961, the plant was again deactivated. In November 1961, the installation was divided into the Ravenna Ordnance Plant and an industrial section, with the entire installation then being designated as the RVAAP.

In May 1968, RVAAP began loading, assembling, and packing munitions on three load lines (LLs) and two component lines in support of the Southeast Asia Conflict. These facilities were deactivated in August 1972. The demilitarization of the M71A1 90-millimeter (mm) projectile extended from June 1973 until March 1974. Demilitarization of various munitions was conducted from October 1982 through 1992.

Until 1993, RVAAP maintained the capability to load, assemble, and pack military ammunition. As part of the RVAAP mission, the inactive facilities were maintained in a standby status by keeping equipment in a condition to permit resumption of production within prescribed limitations. In September 1993, the RVAAP was placed in inactive caretaker status, subsequently changed to modified caretaker status. The LLs and associated real estate were determined to be excess by the Army. As of September 2013, all 21,683 acres of the former RVAAP have been transferred to the USP&FO for Ohio for use by OHARNG as a military training site, now called Camp Ravenna.

1.4 History of CC RVAAP-80

The CC RVAAP-80 AOC is located at the southern end of the former Group 2 Ammunition Storage Area. The propellant cans and tops were initially identified on the ground surface and near surface (9-inch depth maximum) by OHARNG in the winter of 2008. The propellant cans and tops were observed in the vegetated area located immediately south of the ammunition storage magazines near the southern railroad spur lines (Figure 3). This area consists of approximately 539,572 square feet (12.4 acres).

The propellant cans and tops are not munitions. These materials are components of the shipping containers that were used to transport the propellant to the appropriate firing point. Currently, shipping containers and packing materials are classified as material potentially presenting an explosive hazard (MPPEH) until inspection and verification that propellant has been removed. On completion of this inspection process, the items are immediately reclassified as material documented as safe (MDAS) and can be released to the public for disposal or recycling.

1.5 Prior Investigations at CC RVAAP-80

1.5.1 Emergency Survey

The USACE, Louisville District conducted an emergency survey of a portion of the southern area ground surface using a metal detector. Results of the initial inspection revealed multiple magnetic anomalies in surface and near surface soils. The anomalies did not extend below a depth of nine inches below ground surface (bgs). Personnel visually identified the surface anomalies as propellants cans and tops. During the emergency survey, it was noted that the ground surface had been disturbed and contained hummocks (mounds) ranging in height from one to two feet throughout the survey area. The historic aerial photos showed storage materiel on pallets in this area. The aerial photos did not show the area covered in gravel. Therefore, the hummocks were likely caused by the vehicles used to place or retrieve the pallets.

1.5.2 Geophysical Survey and Phase I Site Inspection

In April and May of 2011, a Geophysical Survey of the Group 2 Propellant Can Tops Site (12.4 acres) was conducted and three surficial incremental soil samples were collected. An EM-61MK2 was used to conduct the geophysical survey that identified five clusters of ferrous (magnetic) items at or near the surface, as well as other scattered ferrous items (see Figure 4). The Geophysical Survey confirmed that tops and cans were not buried at CC RVAAP-80. See Appendix D of the *Final Inspection Report for Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services* (PIKA, 2012) for detailed results of the inspection. Three

of the clusters of ferrous items (Clusters 1, 3 and 5) identified in the geophysical inspection were selected as incremental sampling methodology (ISM) sample locations.

The ISM soil samples were analyzed for the target analyte list (TAL) metals and perchlorate and three common propellants that were used by the DoD (nitrocellulose, nitroglycerine, and nitroguanidine). One sample was analyzed also for the RVAAP full suite, (explosives, cyanide, volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]). The three samples did not contain any chemicals with concentrations that exceeded their respective FWCUGs. However, additional soil investigation was considered necessary to further evaluate the potential for contamination in the surface and subsurface soils in the areas at and surrounding where the propellant cans and tops were most dense.

The geophysics work was preceded by wetland delineation and vegetation clearance. The field team was led by an unexploded ordnance (UXO) technician, and no munitions and explosives of concern (MEC) or munitions debris (MD) were encountered on the surface during any aspect of the work.

SECTION 2: SITE INSPECTION ACTIVITIES

All site inspection activities were completed in accordance with the Revised Final Project Work Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 1 (PIKA, 2016). The field work was completed in three phases: anomaly reacquisition and collection of MPPEH; vegetation clearance and site survey; and ISM surface and subsurface soil sampling.

The following operations were completed as part of this SI in three phases:

Phase 1

• March 28 through 30, 2016 - Mobilization and reacquisition of anomalies, MPPEH recovery, MDAS certification and recycling.

Phase 2

• April 4 through 9, 2016 – Mobilization, brush clearance, and survey of ISM surface and subsurface clusters.

Phase 3

- April 11 through 13, 2016 Mobilization and collection of surface and subsurface ISM soil samples in eight anomaly clusters; and
- May 9 and 10, 2016 Transportation and disposal of IDW.

The details of each of the operations listed above are provided in the following subsections. Photographic documentation is provided with the Daily Reports provided in **Appendix A**.

2.1 Mobilization and Site Preparation

During each mobilization, site management personnel coordinated with the Camp Ravenna Environmental Office and Range Control to ensure access and communications requirements. All project personnel and subcontractors mobilized to the site met requirements for Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) training and medical surveillance requirements as specified in the Accident Prevention Plan (APP)/Site Safety and Health Plan (SSHP). All personnel were trained to perform the specific tasks to which they were assigned.

2.1.1 Equipment

All equipment was inspected as it arrived to ensure proper working order. Instruments and equipment that required routine maintenance and/or calibration were checked initially upon arrival and then checked again prior to use each day.

As part of the initial equipment set-up and testing, the following communication equipment was installed and tested:

- Cellular Phone Service to maintain communication with RVAAP security personnel.
- Hand-held portable radios used to maintain communications between the Project Manager and the UXO Technician III (UXOT III)/Team Leader.

2.1.2 Site-Specific Training

As part of the mobilization process, site-specific training was conducted for all on-site personnel assigned to this project. The purpose of this training was to ensure that all on-site personnel fully understood the operational procedures and methods to be used at the facility and the AOC. Individual assigned responsibilities and safety and environmental concerns associated with site operations were also covered in the training. The Senior UXO Supervisor (SUXOS)/UXO Safety Officer (UXOSO) conducted the training sessions which included the topics identified below.

- Field equipment operation, including the safety and health precautions, inspection, and maintenance procedures;
- Review of relevant sections of the Final Work Plan (PIKA, 2016) and APP/SSHP as they related to the tasks that were performed;
- Discussion of potential site and operational hazards associated with site-specific tasks and operations;
- Discussion of environmental concerns including the location of wetlands; and
- OSHA or USACE required training per the approved APP.

2.1.3 Permitting

No permits were required for the execution of project tasks.

2.1.4 Site Control

The Group 2 Propellant Can Tops AOC was identified as low probability site in regards to encountering MEC. However, the propellant tops and cans are considered MPPEH until inspected and certified as MDAS. In accordance with Engineering Pamphlet 75-1-2, *Munitions and Explosives of Concern (MEC) Support During Hazardous, Toxic, and Radioactive Waste (HTRW) and Construction Activities, a* Minimum Separation Distance (MSD) was not required. However, as a precaution, a 200-foot diameter exclusion zone (EZ) was implemented during the inspection operations for site control and security purposes. The EZ included areas used for military training and a portion of Paris-Windam Road. Vehicular traffic was temporarily halted on Paris-Windam Road during the field efforts. The temporary road closures did not impact facility or training operations.

2.2 Anomaly Reacquisition and Collection of MPPEH

A four-man team of UXO technicians reacquired the anomalies identified during the 2011 geophysical survey. The team included a SUXOS, a UXO Safety/Quality Control Specialist (UXOQCS), a UXOT III and a UXO Technician II (UXOT II). The anomaly reacquisition, recovery and MDAS certification tasks were completed between March 28 and March 30, 2016. The UXO team marked each reacquired anomaly with a pin flag. Using a magnetometer, the team inspected a 1-meter radius around each pin flag to depth, removing all (100%) of the target magnetic anomalies (propellant cans and tops) and occasional unrelated materials such as railroad spikes and packing debris (banding/strapping) during this effort. The unrelated materials were removed to limit potential magnetic interferences. The items were accumulated at onsite collection points to facilitate the follow-on MDAS inspection.

Once the anomaly reacquisition and propellant cans and tops recovery task was complete, the UXO team inspected each individual item to determine and certify them as MDAS. Each item received two 100% inspections by the UXOT III and UXOT II. Then the SUXOS and UXOSOQC verified and certified the items as MDAS. All items recovered during this effort were certified MDAS and transported to the local recycling facility. No propellant can, can top, non-packing item, or munition related item encountered was determined to present a potential explosive hazard or identified as Material Documented with an Explosive Hazard (MDEH).

The MDAS remained in the custody of the SUXOS and UXOQC until possession was transferred to the recycling facility, Falls Recycling, LLC. The SUXOS and UXOSOQC prepared and signed the DD Form 1348-1A. Daily Reports and photos of the MPPEH Propellant Cans and Tops collection and inspection are provided in **Appendix A**. More than 530 propellant can tops, propellant cans, and a collection of miscellaneous metal scrap (e.g. rail road spikes, t-posts, wrenches, conduit, nuts bolts and nails) were recovered and recycled. A total of 1,760 pounds of propellant cans, can tops, and scrap metal certified as MDAS were delivered to Falls Recycling, LLC on March 30, 2016. A summary of the items collected from each anomaly, DD Form 1348-1A scrap metal MDAS Certification, and the recycling records are provided in **Appendix E**.

2.3 Vegetation Removal and Site Surveying

Vista Sciences Corporation conducted manual and mechanical brush removal at the Site before completing the surface and subsurface ISM tasks. Brush removal operations were conducted between April 4 and April 9, 2016. The crew cut and removed ground-level vegetation in each of the eight ISM sampling grids to provide clear access for sampling. This was accomplished primarily with the use of a Bush Hog and hand-held weed eaters. All vegetation removal was coordinated with the Camp Ravenna Environmental Office.

Once the brush clearance activities were complete, Vista Sciences Corporation personnel surveyed in the corners of the eight ISM sampling grids. Five of the sampling grids were placed in grid clusters identified in 2011 (Figure 4) and three grids were placed in additional clusters added for this effort. The eight grid locations are shown on Figure 5 and the survey data is included in **Appendix D**.

2.4 Surface and Subsurface Incremental Soil Sampling

The ISM surface and subsurface soil samples were collected in accordance with the approved Work Plan and associated Sampling and Analysis Plan Addendum (SAP) included Appendix D of the Work Plan (PIKA, 2016). No deviations from the Work Plan or SAP were encountered. The ISM sampling event was completed between April 11 and April 13, 2016.

As indicated in Figure 5, the eight clusters that were selected to be assessed in this SI were geographically- separated areas within the AOC boundaries. The sample locations were selected to ensure that areas where the greatest occurrences of magnetic anomalies were clustered would be sampled. It is assumed that these areas would be most likely to contain contamination, if present. As described in Section 2.3, the clusters (sample locations) were cleared of brush ground-level vegetation in each of the eight ISM sampling grids to provide clear access for sampling.

Once the brush clearance activities were complete, Vista Sciences Corporation personnel surveyed in the corners of the eight ISM sampling grids. Five of the sampling grids were placed in grid clusters identified during the 2011 SI (Figure 4 and Figure 5) where the number of anomalies were the densest, and three grids were placed in additional clusters added for this effort. It was determined that the three additional clusters (clusters 6, 7, and 8) were needed to fully assess areas on the periphery of the AOC such as Anomaly Cluster 6. The other two Cluster Areas (7 and 8) were outside of the five Clusters identified in the 2011 SI. The selection of the location of the three subsurface ISM samples (one to four feet bgs), and five surficial ISM samples (zero to one foot bgs) were completed specifically at locations where discarded munitions packaging material (propellant cans and tops) were identified by visual and geophysical surveys. The numbers of anomalies, survey data, and locations of both the 2011 clusters and the 2016 clusters are presented on Figure 5.

A stratified random approach was used in each of the eight gridded ISM locations and 30 aliquots were collected from each. As described in the SAP, a Geoprobe® Direct Push rig with a dedicated sampling probe was used in each of the subsurface grids to collect the sample aliquots from one to four feet bgs. The soils were logged and described using the Unified Soil Classification System. The surface ISM aliquots were similarly collected from the designated grids using a ³/₄ inch diameter dedicated stainless steel step probe from zero to one foot bgs.

The aliquots from each sampling grid were collected in a dedicated stainless steel bowl, homogenized, and placed in a sample container labeled for that grid location. Sample PCTss-006M-001-SO, collected in ISM sample Area 2, was selected for the RVAAP full suite of analyses because of the high density of propellant can tops and propellant cans removed during the MPPEH/MDAS certification task. For the VOC component of the RVAAP full suite sample, one discrete aliquot was collected from Anomaly Grid 4 (Sample PCTss-006M-001-SO). Since no soil staining or signs of potential VOC contamination was observed within this grid, the discrete VOC sample was biased toward the location where the most propellant can tops were located. The VOC sample was placed directly in the sample container and was not composited or further processed in the field or laboratory. Additional details pertaining to the collection of these surface and subsurface ISM are provided in the SAP Addendum and Quality Assurance Project Plan (QAPP) Addendum (Appendices D and E of the Work Plan, [PIKA, 2016]).

The ISM samples were shipped overnight to the laboratory following the custody procedures described in the SAP. At the laboratory, the ISM samples were processed as required by U.S. Environmental Protection Agency (USEPA) Method SW8330B (i.e., dried, sieved, and finely ground) for specific constituent analysis. All samples were analyzed for the three common propellants (nitrocellulose, nitroglycerine, and nitroguanidine), TAL metals, and perchlorate. One of the samples was analyzed also for the RVAAP full suite of analytes (explosives, cyanide, VOCs, SVOCs, and PCBs). The sample numbers, quality control samples and analyses per ISM grid location are listed in Table 1 (included at the end of this SI Report. The following USEPA Analytical Methods were used:

- Nitrocellulose by Method 353.2
- Nitroglycerine and explosives by Method 8330B
- Nitroguanidine by Modified Method 8330
- Perchlorate by Method 6850
- TAL Metals by Method 6010C
- Mercury by Methods 7470A (aqueous) and 7471A (solid)
- Cyanide by Method 9012
- Pesticides by Methods 8081A (aqueous) and 8081B (solid)
- PCBs by Method 8082A
- SVOCs by Method 8270D
- VOCs by Method 8260C

Analytical results are provided in **Appendix B** and the Automated Data Review (ADR) and Third Party Data Validation Reports are provided in **Appendix C**. All samples were delivered to TestAmerica in Canton, Ohio and forwarded to Environmental Laboratory Accreditation Program (ELAP) certified TestAmerica West Sacramento, California for analysis.

2.5 Summary of Sample Results

This section summarizes the results of the 2011 and 2016 sampling events. The concentrations of the chemicals detected in the surface and subsurface soil samples were evaluated using a screening and comparative process established in the Facility Wide Human Health Risk Assessor's Manual (USACE, 2005) and the Position Paper on the Use and Applicability of FWCUGs (USACE, 2012). The process is modified from what is used in risk assessments so that the decision criteria is the determination of whether or not there is contamination present and or is there any indication there has been a release.

The sampling locations are shown on Figure 5. Analytical results, background criteria, and screening criteria are presented in Table 2 for propellants, metals, and perchlorate in the subsurface ISM samples; Table 3 for the explosives, cyanide, VOCs, SVOCs, pesticides, and PCBs in the surface ISM samples; and Table 4 for the propellants, metals, and perchlorate ISM surface soil samples. Electronic copies of the 2016 laboratory data packages are included in **Appendix B** on compact disk. Analytical data for the 2011 sampling event is found in the "*Final Inspection Report for Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services* (PIKA, 2012).

2.5.1 Data Evaluation Process

The data were evaluated using a screening process. The process generally follows the procedures described in the Revised United States Army Corps of Engineers Ravenna Army Ammunition Plant (RVAAP) Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals (USACE, 2012). However, the screening process in this SI was completed to identify if contamination was present or if there was an indication that a release occurred on the AOC. The background concentrations and the FWCUGs can be found in the Facility-wide Human Health Remediation Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio, March 2010 (FWCUG Report).

The data evaluation process used in this SI is as follows:

1.) Compare the maximum value of inorganics detected in surface soil and subsurface soil samples to those of their respective for the established for RVAAP-background concentrations. Eliminate inorganic chemicals from further evaluation if the maximum is less than the established background concentration.

2.) Compare the maximum concertation of any detected organic chemical and the maximum concentration of any inorganic chemicals that exceeded the background value to the most stringent of the Resident Receptor's FWCUGs at the 1 X 10⁻⁶ target cancer risk and the non-carcinogenic Hazard Quotient (HQ) using the 0.1 risk value. Use USEPA's Residential Regional Screening Levels (RSLs) for chemicals that do not have a FWCUG developed.

3.) Eliminate chemicals from further evaluation if the maximum is less than the most stringent Resident Receptor's FWCUG for that chemical. If all chemicals are eliminated, then consider the AOC as an NFA determination.

4.) Complete a Weight of Evidence (WOE) Evaluation of chemicals with maximum concentration(s) that exceeded the most stringent FWCUG for the Resident Receptor.

5.) If results of the WOE Evaluation indicate the presence of contamination or indicate that there has been a release at the AOC, then consider additional investigation is warranted.

2.5.2 Analytical Results

Three ISM surface soil samples were collected on May 26, 2011 and analyzed for TAL metals, common propellants used by DoD nitrocellulose, nitroglycerine, nitroguanidine and perchlorate.

Additionally, one of the samples was analyzed for the full suite of analytes as prescribed in the Facility Wide SAP (USACE, 2011). The three sampling locations are shown on Figure 5. As stated previously, these three sample locations were biased since the locations were not selected randomly.

A narrative summary of the 2011 analytical results and results of the screening process are summarized as follows.

- Cadmium, lead, mercury, and zinc were detected in sample PCTss-001M-0001-SO at concentrations greater than their respective background concentrations but less than their respective FWCUGs.
- Perchlorate and propellants were detected in samples PCTss-001M-0001-SO and PCTss-003M-0001-SO at concentrations less than the reporting limit but greater than the detection limit and the results were flagged as estimated.
- Acetone was detected in sample PCTss-001M-0001-SO at a concentration less than the reporting limit but greater than the detection limit and the result was flagged as estimated.

Three subsurface ISM samples (1-4' bgs), and five surficial ISM samples (0-1' bgs) were collected April 11 and April 13, 2016. The sampling locations are shown on Figure 5. The results are summarized as follows:

Subsurface Soils (Table 2):

- Propellants were not detected at concentrations greater than the laboratory detection limits for these samples.
- Perchlorate concentrations were less than the detection limit or were reported at estimated concentrations.
- There were several metals that had maximum concentrations that exceeded the established background values: antimony, cadmium, selenium, silver, and thallium. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor.

Surface Soil (Tables 3 and 4):

- No SVOCs, PCBs, or perchlorate were detected at concentrations greater than their respective detection limits and were therefore considered to be non-detected.
- The only VOC that was detected was acetone and it was reported as an estimated value. No other VOCs were detected at concentrations greater than their respective detection limits. Acetone was not assessed further since it is a common laboratory contaminant and was not detected in other samples or in concentrations greater than the detection limit. Acetone is not indicative of contamination.

- Reported concentrations of all pesticides, except for alpha-chlordane and delta-BHC, were less than the method detection limits. Alpha-chlordane and delta-BHC were reported at estimated concentrations.
- Propellants were reported at concentrations less than the method detection limit, except for nitrocellulose, which was reported at estimated concentration from two of the six samples collected.
- There were several metals that had maximum concentrations that exceeded the established background values in the surface soils: antimony, cadmium, chromium, lead, selenium, silver, thallium, and zinc. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor.

2.6 Data Validation

The analytical methods used for analysis of the Group 2 Propellant Can Tops Site samples are defined in the Facility-Wide SAP and QAPP and listed in Section 2.5. The full analytical results are provided in **Appendix B** and the ADR and third party data validation reports are provided in **Appendix C**. All the samples were delivered to TestAmerica in Canton, Ohio and forwarded to ELAP certified TestAmerica Sacramento for analysis. Laboratory results include documentation verifying compliance with sample log-in procedures, analytical holding times, and quality control procedures for analyses. The laboratory also provided information about the percent of recovery attained in laboratory spike samples, calibration curves (initial and continuing) dilutions, and detection limits. The laboratory applied data qualifiers or "flags" to the reported data based on a comparison of the parameters described above to their respective quality assurance requirements.

All sample results were systematically verified using the ADR software (Level II Validation) following which the data received a Level IV validation by Purves Environmental in Hudson, Ohio in accordance with the project specified QAAP, DoD Quality System Manual (QSM), and the National Functional Guidelines for Data Validation and USEPA SW-846 Test Methods for Evaluating Solid Waste. The validation process was conducted to ensure that the precision and accuracy of the analytical data were adequate for their intended use. The validation process minimizes the potential of using false results in the decision-making process and ensures that detected and non-detected compounds were accurately identified.

The third-party data validation effort determined that all samples were properly analyzed, diluted as needed, quantitated and that no problems were encountered with the system performance of any of the instruments. The mercury analysis for the subsurface soils samples (except for samples PCTss-002M-001-SO and PCTss-006M-001-SO) and the associated Equipment Rinsate were analyzed beyond the 28-day holding time.

The mercury data were qualified as estimated, and biased low. The antimony result for sample PCTsb-003M-001-SO was rejected because of low matrix spike recovery. All other data are complete and usable. The findings of the third-party data validation effort are provided in **Appendix C**.

2.7 Disposal of IDW

The ISM surface and subsurface soil samples were collected using pre-decontaminated, dedicated, ³/₄-inch stainless steel step probes and Geoprobe® sampling devices with single use acetate liners. The IDW generated during the implementation of this field effort included the soil cuttings and acetate liners from the subsurface ISM sampling, and the sampling personal protective equipment (i.e., surgical gloves). All IDW was containerized in two 55-gallon, open top drums, labeled, stored, managed and disposed of in accordance with the Camp Ravenna Waste Management Guidelines dated 30 March 2015 and the Facility Wide SAP.

The IDW was generated between April 11, 2016 and April 13, 2016. On April 13, 2016, one composite waste sample was collected from the drums and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) VOCs, SVOCs, metals, pesticides, herbicides, total sulfide, total cyanide, corrosivity (pH) and flashpoint to characterize the waste stream for disposal. Based on the analytical results, the IDW stream was classified as nonhazardous, non-contaminated.

The drums were picked up from Camp Ravenna by Republic Services on May, 9, 2016 and disposed of at the Carbon Limestone Landfill, in Lowellville, Ohio on May 10, 2016. The Inspection Derived Waste Letter Report for the Propellant Can and Tops IDW, Weekly Inspection Forms, and the signed manifest for disposal are provided in **Appendix F**.

SECTION 3: CONCLUSIONS

The purpose of the Group 2 Propellant Can Tops SI was to achieve the following objectives:

- Collect munitions packaging material (propellant cans and tops) at or near the geophysical anomalies identified during the 2011 SI of the AOC and inspect, certify, and dispose in accordance with DoDI 4140.62.
- Confirm the presence or absence of propellants and/or other MC in surface and subsurface soils at the AOC.

The defined objectives were achieved as summarized below:

- All anomalies identified during the 2011 Propellant Cans and Tops SI were successfully reacquired. The associated propellant cans and tops were collected, inspected confirmed and certified as MDAS. All MDAS was recycled.
- The ISM surface soil samples were collected in areas where high densities of propellant can tops, propellant cans, or other ferrous metals were identified by the Ohio Environmental Protection Agency based on the data collected during the 2011 SI geophysical inspection. Subsurface soil samples were collected to determine whether propellants migrated to subsurface soil with the infiltration of rain/snowmelt.

No propellants and perchlorates were detected at concentrations greater than the laboratory detection limits in the subsurface soil samples. There were several metals that had maximum concentrations that exceeded the established background values: antimony, cadmium, selenium, silver, and thallium. None of these metals in the subsurface soil samples had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the subsurface soils at CC RVAAP-80.

No propellants, pesticides, SVOCs, PCBs, or perchlorate were detected at concentrations greater than their respective detection limits and were therefore considered to be non-detected in the surface soil at the AOC. The only VOC that was detected was acetone and it was reported as an estimated value. No other VOCs were detected at concentrations greater than their respective detection limits. Acetone was not assessed further since it is a common laboratory contaminant and was not detected in other samples or in concentrations greater than the detection limit. Acetone is not indicative of contamination.

There were several metals that had maximum concentrations that exceeded the established background values in the surface soils: antimony, cadmium, chromium, lead, selenium, silver, thallium, and zinc. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the surface soils at CC RVAAP-80.

Based on the results from both the 2011 SI and this SI, no contamination or evidence of a release at the AOC was identified. Propellants and other MCs are not present in the surface and subsurface soils at concentrations great enough to need additional evaluation. Soils are not a source of

contamination to receptors or to a groundwater pathway to receptors. No other media (e.g., sediment or surface water) are present at the Site. Additional investigation is not warranted, and NFA determination was made for this AOC.

SECTION 4: REFERENCES

- Department of Defense Instruction (DoDI) 4140.62. Management and Disposition of Material Potentially Presenting an Explosive Hazard (MPPEH)
- Engineering Pamphlet 75-1-2, Munitions and Explosives of Concern (MEC) Support During Hazards, Toxic, and Radioactive Waste (HTRW) and Construction Activities
- OHARNG, 2015. Camp Ravenna Waste Management Guidelines, March.
- PIKA, 2012. Final Inspection Report for the Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services, RVAAP, Ravenna, Ohio. January.
- PIKA, 2016. Revised Final Project Work Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 0, January.
- PIKA, 2016. Revised Final Accident Prevention Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 0, January.
- USACE, 2010. Facility-wide Human Health Remediation Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio. March.
- USACE, 2011. Facility-Wide Sampling and Analysis Plan for Environmental Inspections, Revision 0, Ravenna Army Ammunition Plant, Ravenna, OH, W912QR-08-D-0008, Delivery Order No. 0016, Science Applications International Corporation. February.
- USACE, 2012. Revised United States Army Corps of Engineers Ravenna Army Ammunition Plant (RVAAP) Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals. Science Applications International Corporation. February.

Figures

OC	Flag Northing Easting Station Offset Flag Northing Easting Station Offset 60005 566362.4 2367508.6 -0+4.2 344.3 60088 566133.8 2367935.9 4+19.5 579.4
$\stackrel{\frown}{+}$	60006 566445.7 2367494.6 -0+17.0 260.8 60102 566309.2 2367935.9 4+22.1 404.0
	60007 566483.7 2367543.7 0+32.7 223.6 60095 566294.9 2367938.7 4+24.8 418.3 60004 566414.2 2367549.5 0+37.5 293.1 60107 566416.2 2367936.9 4+24.8 297.0
	60003 566434.2 2367556.7 0+44.9 273.2 60094 566291.9 2367940.2 4+26.2 421.4
	60008 566488.6 2367560.1 0+49.2 218.9 60101 566310.5 2367943.7 4+30.0 402.8 60002 566436.0 2367569.8 0+58.1 271.7 60096 566291.5 2367947.8 4+33.8 421.9
	60009 566496.2 2367579.5 0+68.7 211.6 60093 566282.5 2367948.6 4+34.5 430.9
	60013 566547.6 2367581.6 0+71.5 160.3 60035 566102.4 2367951.5 4+34.6 611.0 60012 566528.7 2367582.1 0+71.8 179.1 60099 566303.3 2367953.2 4+39.4 410.2
, , ,	60015 566559.9 2367583.8 0+73.9 147.9 60032 566145.3 2367955.8 4+39.6 568.2 conto
	60010 566497.1 2367585.3 0+74.5 210.8 60100 566311.1 2367953.3 4+40.9 402.4 60020 566712.3 2367582.1 0+74.6 -4.44 60106 566419.6 2367953.3 4+41.2 293.9
	60016 566585.1 2367588.6 0+79.1 122.9 60097 566295.7 2367956.5 4+42.5 417.9 60014 566552.2 2367562.5 0+82.5 155.7 60098 566294.4 2367960.7 4+46.7 419.2
	60001 566430.3 2367595.6 0+83.7 277.7 60105 566418.7 2367962.8 4+50.8 294.9
	60019 566708.3 2367592.6 0+85.0 -0.29 60036 566075.1 2367969.7 4+52.4 638.6 60000 566262 5 2367606 2 0+91.8 445.7 60034 566111.7 2367973.8 4+57.1 602.0
	60011 566518.2 2367614.9 1+04.4 190.2 60103 566326.0 2367971.2 4+57.7 387.8
100'	60017 566555.9 2367622.1 1+12.1 152.5 60059 566507.5 2367973.4 4+62.7 206.3 60022 566505.4 2367645.7 1+35.0 203.4 60033 566112.4 2367984.8 4+68.0 601.5
100	60018 566592.1 2367651.3 1+41.9 116.8 60116 566193.5 2367984.8 4+69.3 520.4 60020 566592.1 2367651.3 1+41.9 116.8 60116 566193.5 2367984.8 4+69.3 520.4
	60023 566503.1 2367658.6 1+47.9 205.9 60044 566310.1 2367985.0 4+71.3 403.9 60155 566597.7 2367707.1 1+97.8 112.0 60104 566310.1 2367985.0 4+71.3 403.9
	60021 566707.4 2367708.1 2+00.5 2.4 60041 566049.4 2367989.1 4+71.4 664.6 60028 566213 2 2367781 0 2+68 2 207 5 60043 566060.5 2367990.5 4+73.0 653.5
	60028 566513.3 2367795.1 2+86.0 100.0 60042 566056.5 2367994.7 4+77.1 657.6
	60157 566628.0 2367797.0 2+88.1 83.2 60040 566046.5 2367995.4 4+77.7 667.6 60162 566508.1 2367797.0 2+88.1 83.2 60040 566046.5 2367995.4 4+77.7 667.6
	60162 566599.9 2367805.8 2+96.5 111.4 60039 566051.2 2368006.5 4+88.8 663.0
200′	60161 566599.4 2367811.0 3+01.8 111.9 60037 566081.3 2368007.4 4+90.2 633.0 60160 566605 8 2367813 2 3+04 0 105 5 60045 566027.0 2368010.5 4+92.4 687.3
	60159 566614.2 2367814.5 3+05.4 97.2 60113 566213.3 2368012.5 4+97.3 501.1
	60158 566626.1 2367815.4 3+06.5 85.3 60112 566216.4 2368013.7 4+98.6 498.0 60027 566352.0 2367832.5 3+19.4 359.6 60038 566067.0 2368017.3 4+99.9 647.4
	60024 566388.6 2367835.6 3+23.1 323.1 60111 566216.8 2368016.7 5+01.6 497.7 60114 566204 5 323.1 60114 566204 5 3268019 5+03.6 510.0
	60165 566566.7 2367839.4 3+29.6 145.1 60114 505204.3 2368014.0 5+09.4 493.4 60166 566570.8 2367846.3 3+36.5 141.1 60110 566221.2 2368024.5 5+09.4 493.4
	60025 566386.8 2367852.7 3+40.1 325.1 60109 566274.9 2368033.6 5+19.3 439.8 connect conne conne conne
	60026 566356.1 2367857.1 3+44.1 355.9 60127 566127 2368068.7 5+50.7 686.1 60029 566253.8 2367859.0 3+44.4 458.2 60046 566029.1 2368068.7 5+50.7 686.1
	60030 566259.6 2367884.2 3+69.7 452.8 60118 566131.3 2368068.6 5+52.1 583.9 60000 566160 1 2367004 2188 1 542.6 60047 566019.2 2368072.5 5+54.4 696.0
	60090 566109.1 2367904.0 5488.1 545.0 60119 566110.0 2368076.3 5+59.5 605.3 60056 566505.7 2367899.4 3+88.6 207.0 60119 566110.0 2368076.3 5+59.5 605.3
	60031 566227.9 2367909.1 3+94.2 484.9 60048 565997.0 2368100.4 5+81.9 718.7 60089 566155.1 2367910.8 3+94.2 484.9 60120 566169.3 2368107.8 5+91.9 546.5
	60057 566501.1 2367924.0 4+13.2 212.0 60121 566192.7 2368111.6 5+96.1 523.1
	60108 566411.8 2367926.4 4+14.3 301.3 60122 506131.4 2308172.8 6+30.8 503.3 60058 566497.5 2367927.8 4+16.9 215.6 60123 566127.4 2368201.3 6+84.7 589.8
400'	60091 566177.8 2367934.5 4+18.7 535.4 60124 566067.1 2368231.1 7+13.7 650.6 60126 566024 9 2368334 8+16 2 694 4
	LEGEND 60125 566052.1 2368335.6 8+18.0 667.1
500'	E ELECTRIC PEDESTAL
600'	Figure 4 - Previously Identified Anomalies and Anomaly Cluster Areas (Red)
700'	I HEREBY STATE THAT THIS MAP IS BASED ON AN ACTUAL FIELD SURVEY PREPARED BY ME. THE SURVEY IS CORRECT TO THE BEST OF MY KNOWLEDGE, INFORMATION AND BELIEF. ALL DIMENSIONS GIVEN ARE EXPRESSED IN FEET AND DECIMAL PARTS THEREOF. BEARINGS ARE BASED ON GRID NORTH OF THE OHIO STATE PLANE COORDINATE SYSTEM, NORTH ZONE NAD 83 DATUM.
800'	CHRISTOPHER J. DEMPSEY PROFESSIONAL SURVEYOR NO. 6914 DATE OF SURVEY: MAY 11, 2011 DATE SIGNED:
	LOCATION SURVEY
+ $+$	
	THE RAVENNA ARSENAL
	JOB NO. 8002 HORZ. SCALE 1" = 50' VERT. SCALE NONF DRAWN BY MS FIELD CREW MS_SP
	LAST PLOT DATE May 16, 2011 DATE OF SURVEY MAY 11, 2011 CHECKED BY CJD
50 100 150	SHEET 1
LE: 1" = 50'	www.dempseysurvey.com 85 DEMPSEY/SURVEYING/COMPANY P 216/226/1130 12815 DETROIT AVENUE F 216/226/1131 CLEVELAND, OH 44107-2835 OF

SCA

00		Flag Northing Easting Station Offset Flag Northing Easting Station Offset 60005 566362 4 2367508 6 -0+4 2 344 60088 566133 8 2367035 0 4+10 5 570 4
\smile +		60006 566445.7 2367494.6 -0+17.0 260.8 60102 566309.2 2367935.9 4+22.1 404.0
		60007 566483.7 2367543.7 0+32.7 223.6 60095 566294.9 2367938.7 4+24.8 418.3
		60004 566414.2 2367549.5 0+37.5 293.1 60107 566416.2 2367936.9 4+24.8 297.0
		60008 566488.6 2367560.1 0+49.2 218.9 60101 566310.5 2367943.7 4+30.0 402.8
		60002 566436.0 2367569.8 0+58.1 271.7 60096 566291.5 2367947.8 4+33.8 421.9
		60013 566547.6 2367581.6 0+71.5 160.3 60035 566102.4 2367951.5 4+34.6 611.0
		60012 566528.7 2367582.1 0+71.8 179.1 60099 566303.3 2367953.2 4+39.4 410.2
	\cap '	60015 566559.9 2367583.8 0+73.9 147.9 60032 566145.3 2367955.8 4+39.6 568.2 60010 566497 1 2367585 3 0+74 5 210 8 60100 566311 1 2367954 6 4+40 9 402 4
	0	60010 560437.1 2307383.3 0+74.3 210.8 60100 566419.6 2367953.3 4+41.2 293.9
		60016 566585.1 2367588.6 0+79.1 122.9 60097 566295.7 2367956.5 4+42.5 417.9
		60014 566552.3 2367593.6 0+83.6 155.7 60098 566294.4 2367960.7 4+46.7 419.2 60001 566430 3 2367595.6 0+83.7 277.7 60105 566418.7 2367962.8 4+50.8 294.9
		60019 566708.3 2367592.6 0+85.0 -0.29 60036 566075.1 2367969.7 4+52.4 638.6
		60000 566262.5 2367606.2 0+91.8 445.7 60034 566111.7 2367973.8 4+57.1 602.0 50000 566262.5 2367606.2 0+91.8 445.7 60034 566111.7 2367973.8 4+57.1 602.0
		60011 566518.2 2367614.9 1+04.4 190.2 60103 566526.0 2367971.2 4+57.7 387.8 60017 566555.9 2367622.1 1+12.1 152.5 60059 566507.5 2367973.4 4+62.7 206.3
	100'	60022 566505.4 2367645.7 1+35.0 203.4 60033 566112.4 2367984.8 4+68.0 601.5
	100	60018 566592.1 2367651.3 1+41.9 116.8 60116 566193.5 2367984.8 4+69.3 520.4
		60023 566503.1 2367658.6 1+47.9 205.9 566511 2367985.0 4+71.3 403.9 60155 566597.7 2367707.1 1+97.8 112.0 60104 566310.1 2367985.0 4+71.3 403.9
		60021 566707.4 2367708.1 2+00.5 2.4 60041 566049.4 2367989.1 4+71.4 664.6 60021 566707.4 2367708.1 2+00.5 2.4 60041 566049.4 2367989.1 4+71.4 664.6
		60028 566313.3 2367781.9 2+68.2 397.5 60043 566060.5 2367990.5 4+73.0 653.5 60164 566611 1 2367795 1 2+86.0 100.0 60042 566056.5 2367994.7 4+77.1 657.6
		60104 5000111 2307793.1 2480.0 100.0
		60163 566598.1 2367797.8 2+88.5 113.0 60115 566200.3 2367997.4 4+82.0 513.8 60163 566598.1 2367797.8 2+88.5 113.0 60115 566200.3 2367997.4 4+82.0 513.8
	- 200'	60162 566599.9 2367805.8 2+96.5 111.4 00039 566051.2 2368006.5 4+88.8 663.0 60161 566599.4 2367811 0 3+01 8 111 9 60037 566081.3 2368007.4 4+90.2 633.0
	$\angle \cup \cup$	60160 566605.8 2367813.2 3+04.0 105.5 60045 566027.0 2368010.5 4+92.4 687.3
		60159 566614.2 2367814.5 3+05.4 97.2 60113 566213.3 2368012.5 4+97.3 501.1 co159 566614.2 2367814.5 3+05.4 97.2 60113 566213.3 2368012.5 4+97.3 501.1
		60158 566626.1 2367815.4 3+06.5 85.3 60112 56626.1 2368015.7 4+98.6 498.0 60027 566352.0 2367832.5 3+19.4 359.6 60038 566067.0 2368017.3 4+99.9 647.4
		60024 566388.6 2367835.6 3+23.1 323.1 60111 566216.8 2368016.7 5+01.6 497.7
		60165 566566.7 2367839.4 3+29.6 145.1 60114 566204.5 2368019.0 5+03.6 510.0
		60166 566570.8 2367846.3 3+36.5 141.1
	300'	60026 566356.1 2367857.1 3+44.1 355.9 60117 566184.0 2368057.9 5+42.2 531.0
	- 500	60029 566253.8 2367859.0 3+44.4 458.2 60046 500025.1 230808.7 5+50.7 680.1 60030 566259.6 2367884.2 3+69.7 452.8 60118 566131.3 2368068.6 5+52.1 583.9
		60090 566169.1 2367904.0 3+88.1 543.6 60047 566019.2 2368072.5 5+54.4 696.0
		60056 566505.7 2367899.4 3+88.6 207.0 60119 566110.0 2368076.3 5+59.5 605.3 cooped cooped
		60031 566227.9 2367909.1 3+94.2 484.9 60031 5005000 20050000000 200500000000
		60057 566501.1 2367924.0 4+13.2 212.0 60121 566192.7 2368111.6 5+96.1 523.1 60057 566501.1 2367924.0 4+13.2 212.0 60123 566151 4 2368173 8 6156 6 565 3
		60108 566411.8 2367926.4 4+14.3 301.3 60122 566151.4 2368172.8 6+56.6 565.3
	- 100'	60038 566497.5 2367927.8 4+16.9 215.6 60124 566067.1 2368231.1 7+13.7 650.6 60091 566177.8 2367934.5 4+18.7 535.4 60124 566067.1 2368231.1 7+13.7 650.6
	400	LEGEND 60125 566024.9 2368334.3 8+16.2 694.4
		GEOSEARCHES FLAG 60127 566017.8 2368338.1 8+19.8 701.5
		E ELECTRIC PEDESTAL
		SS = Surficial Soil Sample
		SB = Subsurface Soil Sample
	-500'	
	•	
	-600´	
		Figure 5 - CC RVAAP-80 Sample Locations
		I HEREBY STATE THAT THIS MAP IS BASED ON AN ACTUAL FIELD SURVEY
	•	PREPARED BY ME. THE SURVEY IS CORRECT TO THE BEST OF MY
	—700´	EXPRESSED IN FEET AND DECIMAL PARTS THEREOF. BEARINGS ARE BASED
		ON GRID NORTH OF THE OHIO STATE PLANE COORDINATE SYSTEM, NORTH ZONE NAD 83 DATUM.
		WINTE OF
		ALL OF THE
		CHRISTOPHER J. DEMPSEY PROFESSIONAL SURVEYOR NO. 6914
	\sim \sim $^{\prime}$	DATE OF SURVEY: MAY 11, 2011
	-800	DATE SIGNED:
	I	
Ŏ.		LOCATION SURVEY
+ $+$		
	Γ	GEUSEARCHES
		THE DATIENTA ADDENTAT
		LAST PLOT DATE A CHECKED BY
		May 10, 2011 MAY 11, 2011 SHEET
50 100 150	D .	DEMOSEY / SUDVEYING / COMPANY 1
		www.dempseysurvey.com
		d 🗠 📕 F 216/226/1131 🕻 CLEVELAND, OH 44107-2835
Tables

	TABLE 1.5	Sample infor	mation and	d summar	y of ana	lytes ass	sessed i	n soil sa	mples co	llected a	t CC RV	/AAP-	80 Prop	ellant Ca	n Tops AC	DC.			
	SAMPLE ID														de, È		QA/QC	SAMPLES ¹	
Map Cluster	CC RVAAP-80 Group 2 - Propellant Can Tops Area	Sample Date	VOCs 8260B	SVOCs 8270C	Pesticides 8081A	PCBs 8082	Explosives 8330	Nitrocellulose 353.2	Nitroguanidine 8330 Modified	Nitroglycerine 8330	Perchlorate 6860	TAL Metals 6010B	Mercury 7471A	Solids 160.3	Full TCLP, total Sulfi Total Cyanide, pH & Flash Point	Duplicate Sample ²	Trip Blank	Equipment Rinse	MS/MSD
	PROPELLANT CAN TOPS AREA - W	ASTE CHAR	ACTERIZA	TION SAN	MPLES														
	PCTss-WC001-SO	2011/2016													1				
	PROPELLANT CAN TOPS AREA ISN	A SUBSURFA	CE SOIL SA	AMPLES															
Cluster 1	PCTsb-001M-0001-SO	2016						1	1	1	1	1							
Cluster 3	PCTsb-002M-0001-SO	2016						1	1	1	1	1							
Cluster 5	PCTsb-003M-0001-SO	2016						1	1	1	1	1							1
	PROPELLANT CAN TOPS AREA ISN	A SURFACE S	OIL SAMP	LES					-	-							-	-	-
Cluster 3	PCTss-001M-0001-SO	2011						1	1	1	1					1			
Cluster 5	PCTss-002M-0001-SO ³	2011	1	1	1	1	1	1	1	1	1	1	1	1					1
Cluster 1	PCTss-003M-0001-SO	2011						1	1	1	1								
Cluster 8	PCTss-004M-0001-SO	2016						1	1	1	1	1							
Cluster 7	PCTss-005M-0001-SO	2016						1	1	1	1	1				1			
Cluster 4	PCTss-006M-0001-SO ³	2016	1	1	1	1	1	1	1	1	1	1	1	1			1	1	
Cluster 2	PCTss-007M-0001-SO	2016						1	1	1	1	1							
Cluster 6	PCTss-008M-0001-SO	2016						1	1	1	1	1							
			2	2	2	2	2	11	11	11	11	9	2	2	1	2	1	1	1

Notes:

¹ Field QC Samples - Duplicate samples were analyzed for the same parameters as the associated primary

² Duplicate Samples were numbered PCTss-001M-0001-DUP and PCTss-005M-0001-DUP

³ Full Suite Samples were collected in clusters with the highest concentration of propellant cans and tops.

Analysis Name	Analysis Method	Preparation Method
Volatile Organic	EPA 8260B	EPA5035A
Semi-Volatile Organic	EPA 8270C	EPA 3540C
Pesticides	EPA 8081A	EPA 3540C
PCB	EPA 8082	EPA 3540C
Explosives	EPA 8330B	EPA 8330B_Sonc_10g
Nitrocellulose	EPA 353.2	NCEL_HYD & NCEL_Prep
Nitroguanidine	EPA 8330	EPA 8330_P_2g
Perchlorate	EPA 6860	EPA 6860_Prep
TAL Metals	EPA 6010B	EPA 3050B
Mercury	EPA 7471A	EPA7471A_Prep

TABLE 2. Propellant and metal results for ISM subsurface soil samples for CC RVAAP-80.

								Anomaly Cl	uster 1	Anomaly Clu	uster 3	Anomaly Clus	ster 5	ts	u	ter la	ter R
SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	Subsurface Soil Background Criteria mg/kg	FWCUGs for Resident Farmer Adult HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	Subsurface Soil Background Criteria mg/kg	PCTsb-001M-0001-SO		PCTsb-002M-0001-SO		PCTsb-003M-0001-SO		Detection Range Values/Lim	<i>for Non-detects</i> (min-max) i mg/kg	Maximum Concentration gree than Site Background Criter	Maximum Concentration gree than Residential Criteria (TC at 10-6 and HQ = 0.1
Sample Date				-				4/11/20	6	4/12/201	6	4/12/2016	<u>5</u>	Min	Max		
Propellants 353.2, 8330B mg/kg																	
Nitrocellulose						19000000		1.8	U	1.8	U	1.8	U	1.80	1.80	NA	NA
Nitroglycerine			81.6		52.5			0.25	U	0.25	U	0.25	U	0.25	0.25	NA	NA
Nitroguanidine						6300		0.04	U	0.041	U	0.04	U	0.04	0.041	NA	NA
METALS 6010C mg/kg			•														
Aluminum	19500	52923		7380			19500	6300		11000		8100	J	6300	11000	No	
Antimony	0.96	13.6		2.82			0.96	2	U	2	U	2	R	2	2	Yes	No
Arsenic	19.8	8.21	4.25	2.02	0.54		19.8	2.7	J	15		11		2.7	15.0	No	NA
Barium	124.0	8966		1412.9			124.0	15		47		57		15	57	No	NA
Beryllium	0.88					160	0.88	0.22	J	0.5		0.37		0.22	0.50	No	NA
Cadmium	0	22.3	1249.1	6.41	2676.7		0	0.043	J	0.099	U	0.081	J	0.043	0.099	Yes	No
Calcium (essential nutrient)	35500					(n)	35500	390		610		660		390	660	No	NA
Chromium	27.2	90.4	187	19.9	4015		27.2	6.9		14		10		6.9	14.0	No	NA
Cobalt	23.2	8198	8030	131	1721		23.2	3.5		8.9		6.6		3.5	8.9	No	NA
Copper	32.3	2714		311			32.3	9.4		19		13		9.4	19.0	No	NA
Iron	35200	19010		2313			35200	8100		22000		17000	J	8100	22000	No	NA
Lead	19.1	400		400			19.1	7.8		15		12		7.8	15.0	No	NA
Magnesium (essential nutrient)	8790					(n)	8790	1300		2300		1800		1300.0	2300.0	No	NA
Manganese	3030	1482		293			3030	56		330		490	J	56.0	490.0	No	NA
Nickel	60.7	1346		155			60.7	9.5		18		15		9.5	18.0	No	NA
Potassium (essential nutrient)						(n)		480		910		630		480.0	910.0	No	NA
Selenium	1.5					390	1.5	3	U	3	U	3	UJ	3	3	Yes	No
Silver	0	324		38.6			0	0.13	J	0.15	J	0.18	J	0.13	0.18	Yes	No
Sodium (essential nutrient)						(n)		21	J	36	J	30	J	21	36	No	NA
Thallium	0.91	47.6		6.12			0.91	1	U	0.99	U	1	U	0.99	1.00	Yes	No
Vanadium	37.6	156		45			37.6	8.9		18		14		8.9	18.0	No	NA
Zinc	93.3	19659		2321		23000	93.3	36		55		49		36	55	No	NA
Mercury 7471B mg/kg																	
Mercury	0.044	16.5		2.27			0.044	0.015	R	0.02	R	0.023	R	0.015	0.023	No	NA
Perchlorate 6860 ug/kg																	
Perchlorate								0.00041	J	0.39	U	0.39	U	0.00041	0.390	NA	NA

J = Estimated concentration

mg/kg = milligrams per kilogram (parts per million) (n) = essential nutrient

NA = Not applicableR = Rejected result

U = Undetected at the limit of detection

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	ubsurface Soil Background Criteria mg/kg	FWCUGs for Resident Farmer Adult HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	ubsurface Soil Background Criteria mg/kg	PCTsb-001M-0001-SO	PCTsb-002M-0001-SO	PCTsb-003M-0001-SO	Detection Range Values/Lim for Non-detects (min-max) mg/kg	Aaximum Concentration gre than Site Background Criter	4aximum Concentration gre than Residential Criteria (TC at 10-6 and HQ = 0.1
---	---	---	--	---	--	--	---	--------------------	--------------------	--------------------	--	--	--

ug/kg = micrograms per kilogram (parts per billion)

ug/L = micrograms per liter (parts per billion)

-- = Not Analyzed for this parameter

Green Shading indicates the maximum concetration detected exceeds the established backgoround value

Italics = Non detected concentrations

Yellow Shading indicates the maximum concetration detected > background but < risk-based screening critersi

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80.EXPLOSIVES, CYANIDE, VOCs, SVOCs, PESTICIDES, PCBs

SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO	PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Sample Date						5/26/2011	5/26/2011	4/13/2016	
EXPLOSIVES 8330B mg/kg									
1 3 5-Trinitrobenzene	1528		225			024 II		0.05	IJ
1 3-Dinitrobenzene	5 94		0.76			0.24 U		0.05	U
2.4.6-Trinitrotoluene	21.1	32.8	3.65	28.4		0.24 U		0.05	U
2,4-Dinitrotoluene	43.9	7.53	12.8	1.1		0.24 U		0.05	U
2.6-Dinitrotoluene	22.4	0.769	6.42	1.1		0.24 U		0.05	U
2-Amino-4.6-Dinitrotoluene	12.8		1.54			0.24 U		0.05	U
2-Nitrotoluene	594	6.03	76.5	3.88		0.24 U		0.05	U
3-Nitrotoluene					6.1	0.24 U		0.05	U
4-Amino-2.6-Dinitrotoluene	12.8		1.54			0.24 U		0.05	U
4-Nitrotoluene	594	81.6	76.5	52.5		0.24 U		0.05	U
HMX	1909		359			0.24 U		0.05	U
Nitrobenzene					51	0.24 U		0.05	U
PETN					130	0.48 U		0.25	U
RDX	163.2	11.5	22.7	8.03		0.24 U		0.05	U
Tetryl					160	0.24 U		0.05	U
Cyanide 9012 mg/kg									
Cyanide						0.19 J			
VOCS 8260B mg/kg								MG/KG	
1,1,1-Trichloroethane					8700			0.0014	U
1,1,2,2-Tetrachloroethane					0.56			0.0028	U
1,1,2-Trichloroethane					1.1			0.0014	U
1,1-Dichloroethane					240		0.005 U	0.0014	U
1,1-Dichloroethene					3.3		0.005 U	0.0014	U
1,2-Dichloroethane					0.43			0.0028	U
1,2-Dichloroethene (total)					150		0.005 U	0.0028	U
1,2-Dichloropropane					0.89		0.005 U	0.0028	U
2-Butanone					28000		0.01 U	0.007	U
2-Hexanone					210		0.01 U	0.0028	U
4-Methyl-2-pentanone					5300		0.01 U	0.0028	U
Acetone					61000		0.0053 J	0.0083	J

						26,1 025					
SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO		PCTss-006M-0001-SO	
Benzene					1.1			0.005	U	0.0014	U
Bromodichloromethane					0.27			0.005	U	0.0028	U
Bromoform					61			0.005	U	0.0014	U
Bromomethane					6.8			0.005	U	0.0028	U
Carbon disulfide					820			0.005	U	0.0014	U
Carbon tetrachloride					0.61			0.005	U	0.0028	U
Chlorobenzene					290			0.005	U	0.0014	U
Chloroethane					15000			0.005	U	0.0014	U
Chloroform					0.29			0.005	U	0.0014	U
Chloromethane					110			0.01	U	0.0014	U
cis-1,3-Dichloropropene					1.7			0.005	U	0.0028	U
Dibromochloromethane					0.68			0.005	U	0.0014	U
Ethylbenzene					5.4			0.005	U	0.0014	U
Methylene Chloride					11			0.005	U	0.0028	U
Styrene					6300			0.005	U	0.0014	U
Tetrachloroethene					0.55			0.005	U	0.0028	U
Toluene					5000			0.005	U	0.0028	U
trans-1,3-Dichloropropene					1.7			0.005	U	0.0028	U
Trichloroethene					2.8			0.005	U	0.0028	U
Vinyl chloride					0.06			0.005	U	0.0014	U
Xylenes (Total)					630			0.005	U	0.0014	U
1,2,4-Trichlorobenzene					22	2	U			0.16	U
1,2-Dichlorobenzene					1900	3.3	U			0.16	U
1,3-Dichlorobenzene						3.3	U			0.16	U
1,4-Dichlorobenzene					2.4	3.3	U			0.16	U
2,2-oxybis (1-chloropropane)						2	U				
2,4,5-Trichlorophenol					6100	2	U			0.16	U
2,4,6-Trichlorophenol					44	0.99	U			0.16	U
2,4-Dichlorophenol					180	3.3	U			0.16	U
2,4-Dimethylphenol					1200	0.99	U			0.33	U
2,4-Dinitrophenol					120	16	U			0.33	U
2.4-Dinitrotoluene	43.9	0.753	12.8	1.1		0.99	U			0.16	U

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80. EXPLOSIVES, CYANIDE, VOCs, SVOCs, PESTICIDES, PCBs

	-			, + 0 00, 0 + 0 +						
SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
2,6-Dinitrotoluene					61	3.3	U		0.16	U
2-Chloronaphthalene					6300	0.99	U		0.16	U
2-Chlorophenol					390	0.99	U		0.16	U
2-Methylnaphthalene					310	2	U		0.16	U
2-Methylphenol					3100	2	U		0.16	U
2-Nitroaniline					610	16	U		0.33	U
2-Nitrophenol						0.99	U		0.16	U
3,3'-Dichlorobenzidine					1.1	5	U		0.16	U
3-Nitroaniline						16	U		0.1	U
4,6-Dinitro-2-methylphenol						0.14	J		0.33	U
4-Bromophenyl phenyl ether						0.99	U		0.16	U
4-Chloro-3-methylphenol						0.99	U		0.16	U
4-Chloroaniline					2.4	3.3	U		0.16	U
4-Chlorophenyl phenyl ether						0.99	U		0.16	U
4-Methylphenol					310	0.99	U		0.65	U
4-Nitroaniline					24	16	U		0.16	U
4-Nitrophenol						0.99	U		0.33	U
Acenaphthene					3400	0.99	U		0.16	U
Acenaphthylene						0.99	U		0.16	U
Anthracene					17000	0.99	U		0.16	U
Benzo(a)anthracene		0.221		0.65		0.99	U		0.16	U
Benzo(a)pyrene		0.221		0.65		0.99	U		0.16	U
Benzo(b)fluoranthene		0.221		0.65		0.99	U		0.16	U
Benzo(g,h,i)perylene						0.99	U		0.16	U
Benzo(k)fluoranthene		2.21		6.5	0.15	0.99	U		0.16	U
Bis(2-chloroethoxy)methane	178		23			0.99	U		0.16	U
Bis(2-chloroethyl) ether					0.21	0.99	U		0.16	U
Bis(2-ethylhexyl) phthalate					35	5	U		0.16	U
Butyl benzyl phthalate					260	0.99	U		0.16	\overline{U}
Carbazole		69.4		44.6		0.99	U		0.16	\overline{U}
Chrysene		22.1		65		0.99	U		0.16	\overline{U}
Dibenz(a,h)anthracene		0.221		0.065		0.99	\overline{U}		0.16	U
Dibenzofuran	0.596		15.3			0.99	U		0.16	U

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80. EXPLOSIVES, CYANIDE, VOCs, SVOCs, PESTICIDES, PCBs

	-									
SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Diethyl phthalate					49000	0.99	U		0.16	U
Dimethyl phthalate						0.99	U		0.16	U
Di-n-butyl phthalate					6100	5	U		0.16	U
Di-n-octyl phthalate						0.99	U		0.16	U
Fluoranthene	276		163			0.99	U		0.16	U
Fluorene	737		243			0.99	U		0.16	U
Hexachlorobenzene					0.3	0.99	U		0.16	U
Hexachlorobutadiene					6.2	5	U		0.16	U
Hexachlorocyclopentadiene					370	16	U		0.32	U
Hexachloroethane					35	3.3	U		0.16	U
Indeno(1,2,3-cd)pyrene		0.221		0.65		0.99	U		0.16	U
Isophorone					510	5	U		0.16	U
Naphthalene	4.93		121.5			0.99	U		0.16	U
Nitrobenzene					4.8	0.99	U		0.16	U
N-Nitroso-di-n-propylamine		0.127		0.12		0.99	U		0.16	U
n-Nitrosodiphenylamine					99	3.3	U		0.16	U
Pentachlorophenol	3269	21.2	151	4.91		16	U		0.16	U
Phenanthrene						0.99	U		0.16	U
Phenol					18000	0.99	U		0.16	U
Pyrene	207.4		122			0.99	U		0.16	U
PESTICIDES 8081B mg/kg										
4,4'-DDD					2.0	0.0034	U		0.00049	U
4,4'-DDE		4.08		2.63		0.00073	J		0.00049	U
4,4'-DDT					1.7	0.0034	U		0.00099	U
Aldrin	1.78	81.6	0.23	0.0525		0.0017	U		0.00049	U
alpha-BHC					0.077	0.0017	U		0.00049	U
alpha-Chlordane						0.0017	U		0.00047	J
beta-BHC		0.77		0.496		0.0017	U		0.00099	U
delta-BHC						0.0017	U		0.00024	J
Dieldrin	2.97	0.867	0.383	0.0558		0.0034	U		0.00027	U
Endosulfan I					370	0.0017	U		0.00027	UJ
Endosulfan II						0.0034	U		0.00027	U
Endosulfan sulfate						0.0034	U		0.00027	U

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80. EXPLOSIVES, CYANIDE, VOCs, SVOCs, PESTICIDES, PCBs

				DE , 10C3, 5105	cs, i Ebiicid					
SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁻⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Endrin	1.77		1.12			0.0034	U		0.00027	U
Endrin aldehyde						0.0034	U		0.00027	U
Endrin ketone						0.0034	U		0.00099	U
gamma-BHC					0.52	0.0017	U		0.00049	U
gamma-Chlordane					1.6	0.0017	U		0.00027	U
Heptachlor	29.7	0.308	3.83	0.0198		0.0017	U		0.00049	U
Heptachlor epoxide	0.773	0.152	0.0995	0.981		0.0017	U		0.00027	U
Methoxychlor					310	0.0017	U		0.003	U
Toxaphene					0.44	0.066	U		0.049	U
PCBs 8082A mg/kg										
Aroclor-1016	1.22	0.203	0.419	0.349		0.033	U		0.0099	U
Aroclor-1221					0.14	0.033	U		0.015	U
Aroclor-1232					0.14	0.033	U		0.02	U
Aroclor-1242					0.22	0.033	U		0.02	U
Aroclor-1248		0.203		0.349		0.033	U		0.015	U
Aroclor-1254	0.348	0.203		0.349		0.033	U		0.0099	U
Aroclor-1260		0.203		0.349		0.033	U		0.0099	U

TABLE 3. Explosives, cyanide, VOCs, SVOCs, pesticides, and PCB results for the ISM surface soil samples collected at CC RVAAP-80. EXPLOSIVES, CYANIDE, VOCs, SVOCs, PESTICIDES, PCBs

FWCUGs- Facility-wide Clean Up Goals, SAIC, March 2010

HI - Hazard Index

J = Estimated concentration

mg/kg = milligrams per kilogram (parts per million)

SVOCs - Semivolatile organic compounds

U = Undetected at the limit of detection

VOCs - Volatile organic compounds

-- = Not Analyzed for this parameter

Italics = Non detected concentrations

TABLE 4. Propellant and metal results for the ISM surface soil samples collected at CC RVAAP-80.

SUMMARY OF ISM SURFACE ungspecified ung	
Sample Date Starple Date	5 <u>U</u> <u>U</u> U
Propellants mg/kg <td>U U U</td>	U U U
Nitrocellulose 19000000 5 U 5 U 1.1 J 0.82 J 0.96 J 1.8 U 1.8 Nitroglycerine 81.6 52.5 0.5 U 0.48 U 0.49 U 0.25 U 0.26 U 0.25 Nitroglycerine 0.630 0.17 J 0.25 U 0.063 J 0.12 J 0.03 U 0.04 U 0.25 Nitrogunidine 6300 0.17 J 0.25 U 0.03 J 0.12 J 0.03 U 0.04 U 0.25 METALS 6010B mg/su 6300 1700 10600 11000 7800 7.4 7.6 Animony 13.6 2.82 0.96 8.4 8.4 9.3	U U U
Nitroglycerine 81.6 52.5 0.5 U 0.48 U 0.48 U 0.49 U 0.25 U 0.26 U 0.25 U 0.25 U 0.25 U 0.48 U 0.48 U 0.49 U 0.25 U 0.26 U 0.25 U 0.48 U 0.48 U 0.49 U 0.25 U 0.26 U 0.25 U 0.48 U 0.48 U 0.49 U 0.25 U 0.25 U 0.48 U 0.49 U 0.25 U 0.25<	U U
Nitroguandine 6300 0.17 J 0.25 U 0.063 J 0.12 J 0.039 U 0.04 U 0.4 METALS 6010B mg/kg	U
METALS 6010B mg/kgMETALS 6010B mg/kg 52923 $$ 7380 $$ 17700 $$ 10600 $$ $$ 11000 7800 D 7900 Antimony 13.6 $$ 2.82 $$ 0.96 $$ 1.6 U $$ $$ 2 U U 2 U 2 <td></td>	
Aluminum 52923 $$ 7380 $$ 17700 $$ 10600 $$ $$ $$ 11000 7800 D 7900 Antimony 13.6 $$ 2.82 $$ 0.96 $$ 1.6 U $$ $$ 2 U U U U U U U U U <td></td>	
Antimony 13.6 $$ 2.82 $$ 0.96 $$ 1.6 U $$ $$ 2 U 2 U 2 U 2 Arsenic 8.21 4.25 2.02 0.54 15.4 $$ 8.4 $$ $$ 9.3 7.4 7.6 Barium 8966 $$ 1412.9 $$ 88.4 $$ 81.7 $$ 59 49 49 Berylium $$ $$ $$ 0.45 $$ $$ 0.51 0.31 0.3 Cadmium 22.3 1249.1 6.41 2676.7 0.0 $$ 0.13 J $$ $$ 0.21 J 0.11 0.1 Calcim (essential nutrient) $$ $$ $$ $$ 954 $$ $$ 18 11 10 Chromium 90.4 187 19.9 4015 17.4 $$ 2.42 $$ $$ $$ 18 11 10	
Arsenic 8.21 4.25 2.02 0.54 15.4 $$ 8.4 $$ $$ 9.3 7.4 7.6 Barium 8966 $$ 1412.9 $$ 88.4 $$ 81.7 $$ $$ 59 49 49 Berylium $$ $$ $$ $$ $$ 0.51 0.31 0.3 Cadmium 22.3 1249.1 6.41 2676.7 0.0 $$ 0.13 J $$ $$ 0.21 J 0.11 0.1 Calcium (essential nutrient) $$ $$ $$ 0.54 $$ $$ 2700 280 340 Chromium 90.4 187 19.9 4015 17.4 $$ 2.42 $$ $$ 18 11 10	U
Barium 8966 1412.9 88.4 81.7 59 49 49 Beryllium 160 0.88 0.45 0.51 0.31 0.3 Cadmium 22.3 1249.1 6.41 2676.7 0.0 0.13 J 0.21 J 0.11 0.1 Calcium (essential nutrient) 15800 954 2700 280 340 Chromium 90.4 187 19.9 4015 17.4 2.42 18 11 10	
Beryllium160 0.88 0.45 0.51 0.31 0.3 Cadmium22.31249.1 6.41 2676.70.0 0.13 J 0.21 J 0.11 0.1 Calcium (essential nutrient)9542700280340Chromium90.418719.9401517.42.42181110	
Cadmium 22.3 1249.1 6.41 2676.7 0.0 $$ 0.13 J $$ $$ 0.21 J 0.11 0.1 Calcium (essential nutrient) $$ $$ $$ $$ 954 $$ $$ 2700 280 340 Chromium 90.4 187 19.9 4015 17.4 $$ 2.42 $$ $$ 18 11 10	
Calcium (essential nutrient) 954 2700 280 340 Chromium 90.4 187 19.9 4015 17.4 2.42 18 11 10	J
Chromium 90.4 187 19.9 4015 17.4 2.42 18 11 10	
Cobalt 8198 8030 131 1721 10.4 7.7 9.2 6 5.9	
Copper 2714 311 12.1 17 9.8 9.4	
Iron 19010 2313 23100 17600 21000 13000 13000	
Lead 400 400 26.1 34.1 62 27 27	
Magnesium (essential nutrient) 1770 2800 1300 1300	
Manganese 1482 293 1450 833 420 460 440	
Nickel 1346 155 21.1 18.5 21 11 11	
Potassium (essential nutrient) 654 1100 470 470	
Selenium 390 1.4 2.1 U 3 U 3 U 3	\boldsymbol{U}
Silver 324 38.6 0 0.53 U 0.19 J 0.25 J 0.31	0
Sodium (essential nutrient) 35.6 J 36 J 21 J 21	J
Thallium 47.6 6.12 0 2.1 U 1 U 0.99 U 0.99	<u>J</u>
Vanadium 156 45 31.1 24.4 17 13 13	J J U
Zinc 19659 2321 23000 61.8 62.4 78 50 50	J J U

						Anomaly Cluster 1	Anomaly Cluster 3	Anomaly	Cluster 5						
SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-003M-0001-SO	PCTss-002M-0001-SO	PCTss-001M-001-SO	PCTss-001M-001-SO DUP	PCTss-004M-0001-SO		PCTss-005M-0001-SO	PCTss-005M-0001-DS DUPLICATE	
Sample Date							5/26/2011	5/26/2011	5/26/2011	5/26/2011	4/13/2016	2	/13/2016	4/13/201	16
Mercury 7471A mg/kg															
Mercury	16.5		2.27			0.036		0.049			0.038 J	- 0.0	35 J-	0.038	J-
Perchlorate 6860 ug/kg															
Perchlorate	lorate 0.00		0.00	0.000093 J	0.5 U	0.000093 J	0.00011 J	0.4	<i>U</i> 0.4	1 U	0.41	U			

J = Estimated concentration

J- = Estimated concentration, biased low

mg/kg = milligrams per kilogram (parts per million)

U = Undetected at the limit of detection

-- = Not Analyzed for this parameter

Grey highlights indicate the applicable screening level. *Italics = Non detected concentrations* Blue Highlight = > the applicable screening level.

Bold = > Background

SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-006M-0001-SO		PCTss-007M-0001-SO		PCTss-008M-0001-SO	
Sample Date							4/13/20	16	4/13/201	16	4/13/201	16
Propellants mg/kg												
Nitrocellulose					19000000		0.84	J	1.8	U	1.8	U
Nitroglycerine		81.6		52.5			0.25	U	0.25	U	0.25	U
Nitroguanidine					6300		0.041	U	0.039	U	0.041	U
METALS 6010B mg/kg				-								
Aluminum	52923		7380			17700	9700	J	9100		7900	
Antimony	13.6		2.82			0.96	2	U	2	U	2	U
Arsenic	8.21	4.25	2.02	0.54		15.4	8.4		7		6.9	
Barium	8966		1412.9			88.4	70		65		57	
Beryllium					160	0.88	0.43		0.37		0.31	
Cadmium	22.3	1249.1	6.41	2676.7		0.0	0.23	J	0.13	J	0.15	J
Calcium (essential nutrient)					(n)	15800	900		630		480	
Chromium	90.4	187	19.9	4015		17.4	12		13		9.1	
Cobalt	8198	8030	131	1721		10.4	6.7		6.9		5.3	
Copper	2714		311			17.7	10		11		8.6	
Iron	19010		2313			23100	15000	J	15000		13000	
Lead	400		400			26.1	28		41		14	
Magnesium (essential nutrient)					(n)	3030	1600		1600		1300	
Manganese	1482		293			1450	730	J	570		500	
Nickel	1346		155			21.1	13		15		12	
Potassium (essential nutrient)					(n)		600		570		510	
Selenium					390	1.4	2.9	U	3.1	U	3	U
Silver	324		38.6			0	0.2	U	0.29	J	0.2	J
Sodium (essential nutrient)					(n)		41	J	22	J	22	J
Thallium	47.6		6.12			0	0.98	U	1	U	1	U
Vanadium	156		45			31.1			15		14	
Zinc	19659		2321		23000	61.8	64		60		51	

SUMMARY OF ISM SURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁻⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-006M-0001-SO		PCTss-007M-0001-SO		
Sample Date							4/13/201	6	4/13/201	6	
Mercury 7471A mg/kg											
Mercury	16.5		2.27			0.036	0.045		0.039	J-	
Perchlorate 6860 ug/kg											
Perchlorate						0.00	0.41	U	0.39	U	

J = Estimated concentration

J- = Estimated concentration, biased low

mg/kg = milligrams per kilogram (parts per million)

U = Undetected at the limit of detection

-- = Not Analyzed for this parameter

Grey highlights indicate the applicable screening level.

Italics = Non detected concentrations

Blue Highlight = > the applicable screening level.

Bold = > Background

PCTss-008M-0001-SO	
4/13/20	16
0.04	J-
0.41	U

APPENDIX A: DAILY REPORTS, SAMPLING LOGS & PHOTO DOCUMENTATION

CONTRACT/TO NUMBERS			TITLE AND LOCATIO	ON		T	DAY/DATE	REPORT	NUMBER	
W912-OR-12-E-0212	Anomaly Re-	Acquire/P	Propellant Can and Lid p	ickup and	d Certificatio	on as	Monday, March 28, 2016	1		
			MDAS			-	Page		1 1	
PIKA Inter	national Inc., 12	723 Capri	orn Dr. Stafford TX 77	477	_	-	NAME OF SUXOS			
	Tel: (281) 340-5	5525 Fax:	(281) 340-5533				Cameron Wenzel			
WEATHER: 15 mph wind	s and occaisiona	al rain					TEMPERATURE	Low: 42	High: 49	
VEATHER EFFECTS: Period	lic work breaks r	required to	o warm up	_						
			PRIME CONTR	ACTOR/S	SUBCONT	RACTOR	WORKFORCE			
NAME	POSITI	ON	EMPLOYER	0%	HOURS 4%	8%	SUMMARY OF	WORK PERFORME	D	
Cameron Wenzel	SUX0:	S	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	Certification as MDAS	
Grady Bendel	UXOSO	QC	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MDAS	
Kyle Toporek	UXO Tec	ch 3	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MDAS	
Josh Starkey	UXO Tec	ch 2	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MDAS	
Rick Callahan	Proj Mana	ager	РІКА	10.0	0.0	0.0	Field Support			
		-								
				2						
	-			_	_					
		-								
		_							_	
				_		-			_	
	-									
					_					
Total				14.0	0.0	36.0				
				Wo	rk Exposu	re	1			
TOTAL WORK HOURS ON JOB SIT DATE	TE THIS	50.0	Break down of hours	14.0	0.0	36.0	TOTAL EXPOSURE HOURS ON JOB	SITE THIS DATE	36.0	
TOTAL WORK HOURS FROM STAR	T OF	50.0				-	TOTAL EXPOSURE WORK HOURS F	ROM START OF	36.0	

CONTRACT/TO NUMBERS		TITLE AND LOCATION	D	AY/DATE	REPOR	T NUMBER	
W912-QR-12-F-0212	Anomaly Re-Acquire/P	ropellant Can and Lid pickup and Certificati MDAS	on as Monday,	Monday, March 28, 2016		1 Page 2	
AFETY TOPICS COVERED	4						
Slips, Trips, and Falls							
Recovery and Inspection							
Hand Injuries and Protection							
ETAILED DESCRIPTION OF P	ROJECT ACTIVITIES:						
44 Anomalies Reacquired, Prope	ellant can and Lids recover	red.					
* All of the items were determined	d to be propellant can pac	kaging or scrap metal and not MPPEH. All I	tems confirmed MDAS	and consolidated fo	r recycling.		
 Limited non-propellant can scrap 	p metal was co-located an	d collected. It will be recycled along with t	he propellant can items	5.			
*							
1			_		_		
*							
PROJECT PERFORMANCE MET	RICS:						
DESCRIPT	TION	Total Anomalies to Reacquire	TODAYS	TOTAL	CUMULA	TIVE TOTAL	
* Number of And	onamlies	103.00	44	•		44	
* Number of Items	s Recovered		205	5		205	
* Number of Items detern	nined to be MPPEH		0			0	
* Number of Items Co	onfirmed MDAS		20!	5		205	
DAILY SAFETY INSPECTION R	FSUITS:				-		
* Lost Workday Accidents:	Today:	0 This Week:	0 This Month:	0	To Date:	0	
Lost fromday / losidentor	Teday	0 This Week:	0 This Month:	0	To Date:	0	
* Lost Workdays:	TOUDY:				i o bacci		
 * Lost Workdays: * Property Damage Accidents Exc 	ceeding \$2,000.00:		This Week:	0	To Date:	0	
 * Lost Workdays: * Property Damage Accidents Exc 	ceeding \$2,000.00:		This Week:	0	To Date:	0	
* Lost Workdays: * Property Damage Accidents Exc	ceeding \$2,000.00:		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc Property Damage Accidents Exc	meeding \$2,000.00:		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a	EMAINDER OF WEEK anticipated.		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a	EMAINDER OF WEEK anticipated.		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a	Emeding \$2,000.00:		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a	Exeding \$2,000.00:		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a	Execting \$2,000.00:		This Week:	0	To Date:	0	
 Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS 	EXAMPLE CONTRACTOR CON		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am	EMAINDER OF WEEK anticipated.		This Week:	0	To Date:	0	
 Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am 	EMAINDER OF WEEK anticipated.		This Week:	0	To Date:	0	
 Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am 	Emaing \$2,000.00: EmainDer of week anticipated.		This Week:	0	To Date:	0	
 Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am 	Emaind \$2,000.00:		This Week:	0	To Date:	0	
	Exeding \$2,000.00: EMAINDER OF WEEK anticipated.		This Week:	0	To Date:	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am REMARKS (Include directions	Today: T	representative, visitors, compliance n	otices received; pert	0)	0	
Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am REMARKS (Include directions	Today: T	representative, visitors, compliance n	otices received; pert	0 inent information)	0	
 Lost Workdays: Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am REMARKS (Include directions	Today: Today: Tod	representative, visitors, compliance n	otices received; pert	0	To Date:	0	
 * Lost Workdays: * Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am REMARKS (Include directions 	Today: Today:	representative, visitors, compliance n	otices received; pert	0)	0	
 * Lost Workdays: * Property Damage Accidents Exc PLANNED ACTIVITIES FOR RE Continue scope - no deviations a VISITORS Kevin Sedlak OHARNG 1045 am REMARKS (Include directions 	Today: Today: Teceding \$2,000.00:	representative, visitors, compliance n	otices received; pert	0 inent information)	0	
	Today: creeding \$2,000.00:	representative, visitors, compliance n	otices received; pert	0)	0	

CONTRACT/TO NUMBERS		TITLE AND LOCATI	ON			DAY/DATE	REPORT	NUMBER
W912-QR-12-F-0212	Anomaly Re-Acquire	Propellant Can and Lid	pickup and	d Certificatio	in as	Tuesday, March 29, 2016	2	
	CONTRAC	MDAS	_	-	-	ΝΔΜΕ	Page OF SUXOS	1 1
PIKA Intern	ational Inc., 12723 Cap	pricorn Dr, Stafford TX 7	7477			Camer	on Wenzel	
The ATHER	Tel: (281) 340-5525 Fax	<: (281) 340-5533					1 aug 22	High:
WEATHER: Sunny and de	ar					TEMPERATURE	Low: 32	High: 44
WEATHER EFFECTS: None		PRIME CONTR	ACTOR/	SUBCONTE	ACTOR	VORKEORCE		
NAME	POSITION	EMPLOYER	Actory	HOURS	ACTOR			D
	rosition	LINEOTER	0%	4%	8%			
Cameron Wenzel	SUXOS	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MD/
Grady Bendel	UXOSOQC	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MD/
Kyle Toporek	UXO Tech 3	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MD/
Josh Starkey	UXO Tech 2	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Can	and Lid pickup and C	ertification as MDA
Rick Callahan	Proj Manager	РІКА	10.0	0.0	0.0	Field Support		
	-				-			
						-		
					-			
					_			
			_					
		· · · · · · · · · · · · · · · · · · ·						
	-			-				
						·		
					_			_
-	6		-		-			
		-	-		-			
		-	-					
					-			
					-			_
					-			
Tabal			14.0	0.0	36.0			
10(3)			14.0	U.U	0.00			
TOTAL WORK HOURS ON JOB SITE DATE	THIS 50.0	Break down of hours	14.0	0.0	36.0	TOTAL EXPOSURE HOURS ON JOB	SITE THIS DATE	36.0
TOTAL WORK HOURS FROM START	T OF 100.0					TOTAL EXPOSURE WORK HOURS F	ROM START OF	72.0

INTERNATIONAL, INC.					D	ALLY REPO
CONTRACT/TO NUMBERS		TITLE AND LOCATION		DAY/DATE	REPORT	NUMBER
W912-QR-12-F-0212	Anomaly Re-Acquire/Pr	opellant Can and Lid pickup and Certificat MDAS	ion as Tuesda	y, March 29, 2016	Page	2
SAFETY TOPICS COVERED					Tuge	2
* Slips, Trips, and Falls						
* Recovery and Inspection						
* Hand Injuries and Protection						
*						
DETAILED DESCRIPTION OF P	ROJECT ACTIVITIES:					
* 56 Anomalies Reacquired, Prope	ellant can and Lids recover	ed.				
* All of the items were determined	d to be propellant can pack	aging or scrap metal and not MPPEH. All	Items confirmed MDAS	and consolidated for	recycling.	
* Limited non-propellant can scrap	p metal was co-located and	d collected. It will be recycled along with	the propellant can iter	15.		
*						
*						
*						
*						
*						
PROJECT PERFORMANCE MET	RICS:					
DESCRIPT	TION	Total Anomalies to Reacquire	TODAY	5 TOTAL	CUMULAT	IVE TOTAL
* N. J. (A.		102.00				
* Number of And	onamlies	103.00	5	6	1	00
* Number of Items	Recovered		3	57	5	72
* Number of Items detern	nined to be MPPEH)		0
* Number of Items Co	onfirmed MDAS		3	57	5	72
DATLY SAFETY INSPECTION R	FSUITS:					
* Lost Workday Accidents:	Today:	0 This Week:	0 This Month:	0	To Date:	0
* Lost Workdays:	Today:	0 This Week:	0 This Month:	0	To Date:	0
* Property Damage Accidents Exc	ceeding \$2,000.00:		This Week:	0	To Date:	0
1						
PLANNED ACTIVITIES FOR RE	MAINDER OF WEEK					
Continue scope - no deviations a	anticipated.					
3						
						_
VISITORS						
VISITORS Kevin Sedlak and Katie Tait - OF	HARNG 1030					
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530	HARNG 1030					
VISITORS Kevin Sedlak and Katie Tait - OH Gary Brunswick - Vista 1530	HARNG 1030					
VISITORS Kevin Sedlak and Katie Tait - OH Gary Brunswick - Vista 1530	HARNG 1030					
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance	otices received: ne	tinent information		
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; pe	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - Ol- Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; pe	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; pe	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; pe	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; pe	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance r	otices received; per	tinent information))	
VISITORS Kevin Sedlak and Katie Tait - OF Gary Brunswick - Vista 1530 REMARKS (Include directions	received from client's r	epresentative, visitors, compliance n	otices received; per	tinent information)	3/29/16	

CONTRACT/TO NUMBERS		TITLE AND LOCATI	ON			DAY/DATE	REPORT	NUMBER
W912-QR-12-F-0212	Anomaly Re-Acquire,	Propellant Can and Lid MDAS	pickup and	d Certificatio	on as	Wednesday, March 30, 2016	3 Page	
	CONTRAC	FOR:				NAME	OF SUXOS	
PIKA Internat	tional Inc., 12723 Cap 1: (281) 340-5525 Fax	ricorn Dr, Stafford TX 77	7477			Cameron Wenzel		
WEATHER: Sunny and clear	r					TEMPERATURE	Low: 23	High: 58
WEATHER EFFECTS: None								
		PRIME CONTR	ACTOR/S	SUBCONTR	ACTOR V	VORKFORCE		
NAME	POSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY OF	WORK PERFORME	D
Cameron Wenzel	SUXOS	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	and Lid pickup and C	ertification as MDAS
Grady Bendel	UXOSOQC	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	and Lid pickup and C	ertification as MDAS
Kyle Toporek	UXO Tech 3	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	and Lid pickup and C	ertification as MDAS
Josh Starkey	UXO Tech 2	РІКА	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	and Lid pickup and C	ertification as MDAS
Rick Callahan	Proj Manager	РІКА	10.0	0.0	0.0	Field Support		
	_							
					-			
								_
Total			14.0	0.0	36.0			
i vui		-	Wo	rk Exposu	re	1		
TOTAL WORK HOURS ON JOB SITE T DATE	THIS 50.0	Break down of hours	14.0	0.0	36.0	TOTAL EXPOSURE HOURS ON JOB	SITE THIS DATE	36.0
TOTAL WORK HOURS FROM START	OF 150.0					TOTAL EXPOSURE WORK HOURS P	ROM START OF	108.0

CONTRACT/TO NUMBERS		TITLE AND LOCATION	DAY/DATE	REPORT NUM	4BER
W912-QR-12-F-0212	Anomaly Re-Acquire/F	Propellant Can and Lid pickup and Certification	wednesday, March 3	0, 2016 <u>Bage I</u>	2
AFETY TOPICS COVERED	1	HDAS		ruge	
Slips, Trips, and Falls					
Recovery and Inspection					
Hand Injuries and Protection					
4					
DETAILED DESCRIPTION OF P	ROJECT ACTIVITIES:				
3 Anomalies Reacquired, Propel	lant can and Lids recover	ed.			
All of the items were determined	d to be propellant can par	ckaging or scrap metal and not MPPEH. All Ite	ems confirmed MDAS and consoli	dated for recycling.	
* Limited non-propellant can scra	p metal was co-located a	nd collected. It will be recycled along with th	e propellant can items.		
* 1348 Forms prepared and Scrap	(MDAS) transported to t	he following:			
* Falls Recycling LLC, 1536A 1st S	St., Newton Falls, OH 444	44 for recycling.			
¢					
t					
¢					
1					
ROJECT PERFORMANCE MET	RICS:				
DESCRIPT	TION	Total Anomalies to Reacquire	TODAYS TOTAL	CUMULATIVE	TOTAL
DESCRIPT		Total Allohance to Reacquire	TODATS TOTAL	CONDENTITE	
Number of An	onamlies	103.00	3	103	
Number of Items	Recovered		8	580	
Number of Items determ	nined to be MPPEH		0	0	
Number of Itoms Co			0	E90	
			0	500	
DAILY SAFETY INSPECTION R	ESULIS:		0 This Months 0	To Data:	0
* Lost Workday Accidents:	Today:	0 This Week:	0 This Month: 0	To Date:	0
* LOSI WORKUdys.		0 This week:	This Work: 0	To Date:	0
Froperty Damage Accidents Exc	eeding \$2,000.00.		THIS WEEK. U	to bate.	0
PLANNED ACTIVITIES FOR RE	MAINDER OF WEEK				
Task complete					
Task complete					
Task complete					
Task complete					
Task complete					
Task complete					
Task complete VISITORS Greg Moore - OHARNG 1015					
Task complete /ISITORS Greg Moore - OHARNG 1015					
Task complete //SITORS Greg Moore - OHARNG 1015					
Task complete /ISITORS Greg Moore - OHARNG 1015					
Task complete VISITORS Greg Moore - OHARNG 1015					
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete VISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	
Task complete /ISITORS Greg Moore - OHARNG 1015 REMARKS (Include directions	received from client's	representative, visitors, compliance no	tices received; pertinent info	rmation)	

Anomaly Reacquisition, MPPEH Recovery and Inspection

Magnetometer Assisted Anomaly Reacquisition

Anomaly Recovery

Propellant cans recovered at a single anomaly in Cluster 1

Propellant tops recovered from a single anomaly in Cluster 1

Photo Log

Anomaly Reacquisition, MPPEH Recovery and Inspection

Photo Log (continued)

Example of comingled propellant tops and metallic debris

Propellant can top and rail road spike

Typical Propellant Can and Top

A cache of nails at relocated anomaly

ĢEN	IERAL PROJECT AI	ND SITE INFO	RMATION	
Date: 03/28/2016 Instructor(s)	: Grady Bendel		Time: 0700	Log No.:RAV-001
Site Name & Location: Compliance Restoration	n Site CC RVAAP-80, Ferm	er Ravenna Anny A	mmunition Plant, Pertan	e & Trumble Counties Ohio
Centract Ne.		Centract Ne.: \	/V912@R-12-F-82	12
Site Manager or SUXOS Camer	on Wenzel	SSH●: Grady	(Bill) Bendel	
II. S	SAFETY AND HEAL	TH TOPICS C	OVERE D	
Tasks Being Conducted: Samulir	ng and Removal			
Applicable CTHA/AHA's Review	ed for Today's Task:	Site Specific S	Safety Training, Sli	p Trips and Fall
Anticipated Weather Conditions 1 mph. Chance of rain 50%.	for the Day: Windy v	vith rain shewe	rs. High 51F. Win	ds VV at 20 to 30
Safety Concerns: Slip, trips and t	falls. PPE and everh	ead Hazards,		
Permits Required:	🖸 Safe Work	k Permit		Excavation Permit
Heavy Equipment to be Used To	dav: N/A			
Site Control and Buddy Procedur	res: Visiter Centrel L	eg and Buddy	Svstem	
Subcontractors Working On-site	Teday and Their Tas	sks:		
Emergency Procedures: Non-Es	ssential personnel on	Site, Site com	munications	
Assembly Locations: Work Trail	er			
Scheduled Deliveries for Today	None			
	DAILY SAFETY BR	RIEFING A TTE	NDEES	
Name (printed)	Signa	ature	Org	anization
Cameron Wenzel	- XX		PIKA	
Grady (Bill) Bendel	Jacky Re	-li-X	PIKA	
Richard (Top) Toporek	TEZOK	.To-	PIKA	
Jeshua Starkey	1 At=	2	PIKA	
Rick Callahan	mar 1	h.l.	PIKA	
	_			
			-	
	-			
	_		_	
I certify that the Bergennel lin	ted on this rester have re	ceived the sofety	and health training de	cribed obeye
		LEIVEN LITE Salety		JUINTE ANEVE.
Mank, Ba	sh'		C-25	ン

Site Safety and Health Officer

GENER	RAL PROJECT AND SITE		
Date: 03/29/2016 Instructor(s): 0	Grady Bendel	Time: 0700	Log No.:RAV-002
Site Name & Location: Compliance Restoration S	Site CC RVAAP-80, Former Ravenn	a Army Ammunition Plant, Portage	& Trumble Counties Ohio
Contract No.:	Contrac	t No.: W912QR-12-F-021	2
Site Manager or SUXOS: Cameron	Wenzel SSHO:	Grady (Bill) Bendel	
II. SA	FETY AND HEALTH TOP	PICS COVERED	
Tasks Being Conducted: Sampling	and Removal		
Applicable CTHA/AHA's Reviewed	for Today's Task: Slip Tri	os and Fall, Awareness of	thorn and thistle
bushes for cuts and punctures, Ove	erhead fall hazards.		
Anticipated Weather Conditions for	the Day: Some clouds thi	s morning will give way to	generally sunny
, skies for the afternoon. High 48F. V	Vinds NNW at 10 to 15 mp	oh.	• • •
Safety Concerns: Slip, trips and fal	s. PPE and Overhead Ha	zards,	
Permits Required:	Safe Work Permit		Excavation Permit
Heavy Equipment to be Used Toda	v: N/A		
Site Control and Buddy Procedures	: Visitor Control Log and	Buddy System	
Subcontractors Working On-site To	day and Their Tasks:		
Emergency Procedures: Non-Esse	ential personnel on Site. S	ite communications	
Assembly Locations: Work Trailer			
Scheduled Deliveries for Today: No	one		
III. C	AILY SAFETY BRIEFING	ATTENDEES	
Name (printed)	Signature	Orga	anization
Cameron Wenzel		PIKA	
Grady (Bill) Bendel	(And Rod		
Richard (Top) Toporek	MAKT-	- PIKA	
Joshua Starkey	In that	, PIKA	
Rick Callahan	Rev C CMA	PIKA	
L certify that the personnel lister	I on this roster have received th	e safety and health training desi	cribed above
Citedy Ben	del	$C-\mathcal{L}$	

Site Safety and Health Officer

GE	NERAL PROJECT AND SITE INF	FORMATION
Date: 03/30/2016 Instructor(s): Grady Bendel	Time: 0700 Log No.:RAV-003
Site Name & Location: Compliance Restora	ation Site CC RVAAP-80, Former Ravenna Arm	y Ammunition Plant, Portage & Trumble Counties Ohio
Contract No.:	Contract No	.: W912QR-12-F-0212
Site Manager or SUXOS: Came	eron Wenzel SSHO: Grad	dy (Bill) Bendel
Ш.	SAFETY AND HEALTH TOPICS	COVERED
Tasks Being Conducted: Samp	ling and Removal	
Applicable CTHA/AHA's Review	wed for Today's Task: Slip Trips ar	nd Fall, Tick awareness, Poison Ivy
Anticipated Weather Condition: 10 to 20 mph.	s for the Day: Sunshine and clouds	s mixed. High 67F, Low 53. Winds S at
Safety Concerns: Slip, trips and	d falls. PPE and Overhead Hazard	S,
Permits Required:	Safe Work Permit	Excavation Permit
Heavy Equipment to be Used T	oday: N/A	
Site Control and Buddy Proced	ures: Visitor Control Log and Bud	dy System
Subcontractors Working On-sit	e Today and Their Tasks:	
Emergency Procedures: Non-I	Essential personnel on Site, Site co	ommunications
Assembly Locations: Work Tra	iller	
Scheduled Deliveries for Today	/: None	
	II. DAILY SAFETY BRIEFING AT	TENDEES
Name (printed)	Signature	Organization
Cameron Wenzel	(- Sl	PIKA
Grady (Bill) Bendel	(rely Rendel	PIKA
Richard (Top) Toporek	TRuth K. To	PIKA
Joshua Starkey	1 An	PIKA
Rick Callahan	that the	_ PIKA
I certify that the personnel	listed on this roster have received the safe	ety and health training described above.
Grady /	endel	(

Site Safety and Health Officer

GENER	RAL PROJECT AND SITE INFO	RMATION
Date: 03/31/2016 Instructor(s): 0	Grady Bendel	Time: 0700 Log No.:RAV-004
Site Name & Location: Compliance Restoration S	Site CC RVAAP-80, Former Ravenna Army A	Ammunition Plant, Portage & Trumble Counties Ohio
Contract No.:	Contract No.:	W912QR-12-F-0212
Site Manager or SUXOS: Cameron	Wenzel SSHO: Grady	(Bill) Bendel
II. SA	FETY AND HEALTH TOPICS C	OVERED
Tasks Being Conducted: Sampling	and Removal	
Applicable CTHA/AHA's Reviewed	for Today's Task: Slip Trips and	Fall, Machete Safety, Personnel
Hydration		
Anticipated Weather Conditions for	the Day: Cloudy with periods of	rain. Becoming windy late. Thunder
possible. High 63F. Winds SSW at	20 to 30 mph. Chance of rain 10	00%.
Safety Concerns: Slip, trips and fall	s. PPE and Overhead Hazards,	
Permits Required:	🛛 Safe Work Permit	Excavation Permit
Heavy Equipment to be Used Toda	iy: N/A	
Site Control and Buddy Procedures	s: Visitor Control Log and Buddy	/ System
Subcontractors Working On-site To	oday and Their Tasks:	
Emergency Procedures: Non-Esse	ential personnel on Site, Site con	nmunications
Assembly Locations: Work Trailer		
Scheduled Deliveries for Today: No	one	
III. D	AILY SAFETY BRIEFING ATT	ENDEES
Name (printed)	Signature	Organization
Cameron Wenzel	- Sl	PIKA
Grady (Bill) Bendel	Cray Berdel	PIKA
Richard (Top) Toporek	TRAND R. Ta	PIKA
Joshua Starkey	An	PIKA
Rick Callahan	that the	PIKA
-		
· · · · · · · · · · · · · · · · · · ·		
		_
I certify that the personnel listed	I on this roster have received the safety	and health training described above.
Grady Ben	del (

/ Site Safety and Health Officer

CONTRACT/TO NUMBERS			TITLE AND LOCATIO	ON		-	DAY/DATE	REPORT	NUMBER	
W912-QR-12-F-0212		Surfa	ce and Subsurface ISM	Sampling			Monday, April 11, 2016	Page	1	
	C	ONTRACT	OR:				NAME OF	Feam Leader	1 4	
PIKA Intern	ational Inc., 1 Tel: (281) 340	2723 Capr)-5525 Fax:	icorn Dr, Stafford TX 77 : (281) 340-5533	477			Richard	l Callahan		
VEATHER: Rainy			()				TEMPERATURE	_ow: 32	High: 45	
VEATHER EFFECTS: Limited										
		_	PRIME CONTR	ACTOR/S	SUBCONTR	ACTOR V	VORKFORCE			
NAME	POSIT	TION	EMPLOYER	0%	4%	8%	SUMMARY OF	WORK PERFORM	ED	
Rick Callahan	Proj Ma	inager	РІКА	8.0	0.0	0.0	Team Leader/Field Support for Sam	pling		
1el Lau	UXO Te	ech 2	РІКА	1.0	7.0	0.0	Ordnance Avoidance for sampling			
Christine McNeill	Geolo	ogist	ТРМС	8.0	0.0	0.0	Logging and Sample Collection			
loseph Henley	Drill	ler	Fronz	1.0	0.0	0.0	Geoprobe Drilling			
Rickie Shanks	Drillers	helper	Fronz	10.0	0.0	0.0	Geoprobe Drilling			
	h			-					_	
	1					1	1			
		_				1				
	-		-	-						
				_						
		-			_					
				-						
		-				-				
		-								
			1							
	2									
	2									
					-	-				
		1								
						-				
			-	-		-				
		_		-	-			Common Common		
	-	-			_	-				
			1		-					
	-		-	-						
	-	-								
Total				28.0	7.0	0.0				
				Wo	rk Exposu	re				
TOTAL WORK HOURS ON JOB SITE DATE	THIS	35.0	Break down of hours	28.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB	SITE THIS DATE	7.0	
TOTAL WORK HOURS FROM STAR PROJECT	r of	35.0					TOTAL EXPOSURE WORK HOURS F PROJECT	ROM START OF	7.0	

CONTRACT/TO NUMBERS	TITLE A	ND LOCATION	DAY/DATE	REPOR		
W912-QR-12-F-0212	Surface and Sub	osurface ISM Sampling	Monday, April 11, 2016	6 Page	1	
FETY TOPICS COVERED				- Tuge	-	
Slips, Trips, and Falls						
Ordnance avoidance						
Hand Injuries and Protection from dr	illing and sampling					
TAILED DESCRIPTION OF PROJ	ECT ACTIVITIES:					
Completed PCTsb-001M-0001-SO						
			_			
ROJECT PERFORMANCE METRICS	5:					
		1				
DESCRIPTION	Tot	al Number to Sample	TODAYS TOTAL	CUMULA	ATIVE TOTAL	
Number of Geoprob	e ISM	3	1		1	
Number of Surface S	oil ISM	5	0		0	
AILY SAFETY INSPECTION RESU	LTS:					
Lost Workday Accidents:	Today: 0	This Week:	0 This Month: 0	To Date:	0	
Lost Workdays:	Today: 0	This Week:	0 This Month: 0	To Date:	0	
Property Damage Accidents Exceeding	ng \$2,000.00:		This Week: 0	To Date:	0	
Property Damage Accidents Exceeding						
Property Damage Accidents Exceeding						
Property Damage Accidents Exceeding						
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK					
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK					
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK					
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK tions					
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK tions					
LANNED ACTIVITIES FOR REMAI	NDER OF WEEK tions					
LANNED ACTIVITIES FOR REMAI emainder of ISM SB and surface loca	NDER OF WEEK tions					
ISITORS	NDER OF WEEK tions					
ISITORS	NDER OF WEEK tions					
ISITORS	NDER OF WEEK					
ISITORS	NDER OF WEEK tions					
ISITORS	NDER OF WEEK tions					
EMARKS (Include directions rece	NDER OF WEEK tions	tative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	itative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	itative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	itative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	Itative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	Itative, visitors, compliance	notices received; pertinent informa	ntion)		
ISITORS EMARKS (Include directions rece	NDER OF WEEK tions	stative, visitors, compliance	notices received; pertinent informa	ntion)		
EMARKS (Include directions rece	NDER OF WEEK tions	ntative, visitors, compliance	notices received; pertinent informa	ntion)		

CONTRACT/TO NUMBERS		TITLE AND LOCATI	ON			DAY/DATE	REPORT	NUMBER
W912-QR-12-F-0212	Surfa	ce and Subsurface ISM	Sampling)		Tuesday, April 12, 2016	Page	2
	CONTRACT	OR:				NAME OF Tear	n Leader	1 1
PIKA Internatio	onal Inc., 12723 Capr	icorn Dr, Stafford TX 7	7477			Richard Cal	lahan	
WEATHER: Sunny and Clear	(201) 540-5525 184	. (201) 540-5555			_	TEMPERATURE Low:	28	High: 47
WEATHER EFFECTS: NA								
		PRIME CONTR	ACTOR/	SUBCONTR	ACTOR V	VORKFORCE		
NAME	POSITION	EMPLOYER	0%	HOURS	80%	SUMMARY OF WO		ED
Rick Callahan	Proj Manager	РІКА	8.0	0.0	0.0	Team Leader/Field Support for Sampling	,	
Mel Lau	UXO Tech 2	PIKA	1.0	7.0	0.0	Ordnance Avoidance for sampling		
Christine McNeill	Geologist	ТРМС	8.0	0.0	0.0	Logging and Sample Collection		
loseph Henley	Driller	Fronz	1.0	0.0	0.0	Geoprobe Drilling		
Rickie Shanks	Drillers helper	Fronz	10.0	0.0	0.0	Geoprobe Drilling		
			_		-			
			-					_
				-	_			
1								
							_	
Total			28.0	7.0 ork Exposur	0.0 e			
TOTAL WORK HOURS ON JOB SITE T DATE	HIS 35.0	Break down of hours	28.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB SITE	THIS DATE	7.0
TOTAL WORK HOURS FROM START C PROJECT	F 70.0					TOTAL EXPOSURE WORK HOURS FROM PROJECT	START OF	14.0

CONTRACT/TO NUMBERS		TITLE AND LOCATION					
CONTRACT/TO NOMBERS	-				2		
W912-QR-12-F-0212	Surf	face and Subsurface ISM Sampling	Tuesday, April 12, 20	016	Page 2		
SAFETY TOPICS COVERED							
* Slips, Trips, and Falls							
* Ordnance avoidance							
 * Hand Injuries and Protection from 	n drilling and sampling	1					
*							
DETAILED DESCRIPTION OF PR	OJECT ACTIVITIES	:					
* Completed PCTsb-002M-0001-SO							
* Completed PCTsb-003M-0001-SO	and MS/MSD						
*							
*							
*							
*							
*							
*							
PROJECT PERFORMANCE METR	ICS:						
DESCRIPTI	ON	Total Number to Sample	TODAYS TOTAL		CUMULATIVE TOTAL		
* Number of Geop	robe ISM	3	2	3			
* Number of Surfac	e Soil ISM	5	0		0		
DAILY SAFETY INSPECTION RE	SULTS:						
* Lost Workday Accidents:	Today:	0 This Week:	0 This Month: 0	То	Date: 0		
* Lost Workdays:	Today:	0 This Week:	0 This Month: 0	То	Date: 0		
* Property Damage Accidents Exce	eding \$2,000.00:		This Week: 0	То	Date: 0		
PLANNED ACTIVITIES FOR REM	AINDER OF WEEK						
Surface ISM Sample collection							
				_			
VISITORS							
Jay Trumble -Louisville COE							
Kevin Sedlak and Katie Tait - OHA	ARNG						
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			
REMARKS (Include directions r	eceived from client	's representative, visitors, compliand	ce notices received; pertinent inform	nation)			

	-	TITLE AND LOCAT	ION			DAY/DATE REPORT I	NUMBER
W912-QR-12-F-0212		Surface and Subsurface ISN	1 Samplin	g		Wednesday, April 13, 2016	1
	CONT	RACTOR:	7477			NAME OF Team Leader	
PIKA INU	Tel: (281) 340-552	25 Fax: (281) 340-5533	/4//			Richard Callahan	
WEATHER: Sunny				_	-	TEMPERATURE Low: 35	High:
WEATHER EFFECTS: NA		DRIME CONT	ACTOR	SURCONTR	ACTOR	NORVEORCE	
NAME	POSITION		CACTOR/	HOURS	ACTOR		
HAPLE	FOSTIO	LMPLOTER	0%	4%	8%	SUMMART OF WORK PERFORMEN	
Rick Callahan	Proj Manage	er PIKA	8.0	0.0	0.0	Team Leader/Field Support for Sampling	_
Mel Lau	UXO Tech 2	2 РІКА	1.0	7.0	0.0	Ordnance Avoidance for sampling	
Christine McNeill	Geologist	ТРМС	8.0	0.0	0.0	Logging and Sample Collection	
	-			1	-		
	-		1				
			2		-		
							_
			2				
Total			17.0	7.0 ork Exposur	0.0 re		
TOTAL WORK HOURS ON JOB S DATE	ITE THIS 24.	0 Break down of hours	17.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB SITE THIS DATE	7.0
TOTAL WORK HOURS FROM ST	ART OF 94.	0				TO TAL EXPOSURE WORK HOURS FROM START OF PROJECT	21.0

TERNATIONAL, INC.							DAILI	LFUR
CONTRACT/TO NUMBERS		TITLE AND LOCATION		D/	AY/DATE		REPORT NUMBE	R
W912-QR-12-F-0212	Surf	ace and Subsurface ISM Sampling		Wednesda	ay, April 13, 2016	Pa	ge ge	2
AFETY TOPICS COVERED								
Slips, Trips, and Falls								
Ordnance avoidance								
Hand Injuries and Protection from	drilling and sampling							_
ETAILED DESCRIPTION OF PRO	OJECT ACTIVITIES:							
Collected all 5 Surface ISM sample	es							
* Collected IDW sample								_
* Shipped samples for Analysis								
k								
k								
k							-	
k								
*								
*								
PROJECT PERFORMANCE METRI	ICS:	0						
DESCRIPTIO	ON	Total Number to Sample		TODAYS	TOTAL	C	UMULATIVE TO	TAL
* Number of Geopr	obe ISM	3		0			3	
* Number of Surface	Surface Soil ISM 5			5			5	
DAILY SAFETY INSPECTION RES	SULTS:							
* Lost Workday Accidents:	Today:	0 This We	eek: 0	This Month:	0	To Date:		0
* Lost Workdays:	Today:	0 This W	eek: 0	This Month:	0	To Date:		0
* Property Damage Accidents Excee	eding \$2,000.00:			This Week:	0	To Date:		0
	AINDER OF WEEK							
PLANNED ACTIVITIES FOR REM								
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	5							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	s							_
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None	s							
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None	s	s representative, visitors, compl		eceived: nerti	nent information			
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s	s representative, visitors, compl	ance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s	s representative, visitors, compl	ance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s	s representative, visitors, compl	iance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s	s representative, visitors, compl	iance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s	s representative, visitors, compl	iance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re	s ceived from client	s representative, visitors, compl	iance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re Distul C Cllb	s ceived from client'	s representative, visitors, compl	iance notices r	eceived; perti	nent information)		
PLANNED ACTIVITIES FOR REM Demob of personnel and Port-o-Jons VISITORS None REMARKS (Include directions re District C. Clibba	s ceived from client	s representative, visitors, compl 4/13/16	iance notices r	eceived; perti	nent information)		

HTRW DRILLI	NG LOG	DISTRICT				HOLE NUMBER
1. COMPANY NAME		2. SUBCONTRACTO	R			SHEET SHEETS
3. PROJECT		4. LOCATION				OF
5. NAME OF DRILLER		6. MANUFACTURER	S DESIGNATION OF DRI			
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT		8. HOLE LOCATION				
		9. SURFACE ELEVA	TION N/A			
		10. DATE STARTED		11. DATE	COMPLETED	
12. OVERBURDEN THICKNESS N/A		15. DEPTH GROUND	WATER ENCOUNTERED			
13. DEPTH DRILLED INTO ROCK		16. DEPTH TO WATE	ER AND ELAPSED TIME A	AFTER DRILLING COMPI	LETED	
14. TOTAL DEPTH OF HOLE		17. OTHER WATER	LEVEL MEASUREMENTS	(SPECIFY)		
18. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTUR	BED 19. TOTAL N	NUMBER OF CORE BOX	ES	
N/A	N/A	N/A			N/A	
20. SAMPLES FOR CHEMICAL ANALYSIS	VOC	METALS	OTHER (SPECIFY)	OTHER(SPECIFY)	OTHER(SPECIFY)	21. TOTAL CORE RECOVERY
	N/A BACKEILLED	See below	See below	See below	See below	N/A %
N/A	BACKFILLED		N/A	23. SIGNATURE OF IN	N/A	
LOCATION SKETCH/COMMENTS				SCAL	E:	
	5 a a	8 8 8	1 9 8	1월 1월	0	
		5 P				
					·	
		Cluster 1		N		
				A		
1.00	2 E T 14		100 A	ና ት		
				U I		
••••••••••••••••••••••••••••••••••••••	1 - 1- 1-	to be mit			····•	
		-1.00	1.11			
••••••••••••••••••••••••••••••••••	71 77	10		and the second	. Î Î Î	
10 ⁰¹	+					
	1 -11 -1		(Photos)			
			Choin 2	in a set of the set of		
400' -						
······································	1 //-:	11	Cluster 3			
			H			
	The second	Causter 4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9		
	1 1	1 2		B. I.	CT TT	
100	A area - to		for second and the second seco	- Stand	1 1	
			· · · /	0		
		Causter 5		c.)		
80						
	1 A A A A A A A A A A A A A A A A A A A		(and present the ?)		t	
Weather: Cool temperatur	a in the low 50	's rainy Groups	t was vorv wot	etanding wat	tor in somo l	ocations
weather. Cool, temperatur		s, rainy. Ground	i was very wer	, standing wa		
within the Cluster 1 bound	ary.					
	•					
Thirty (30) borings were pu	ished lising a s	systematic rando	om location an	nroach within	the Cluster	1 houndary
		systematic ranat	, in location up			r boundary.
I he boring log summarizes	s all borings tal	ken within Cluse	er 1.			
						1
			9.1			
increments from one (1) to	o iour (4) feet b	gs from each so	in boring was c	collected using	ine increme	entai
sampling methodology (IS	M) The subsur	face sample wa	is a composite	of all 30 borir	ngs taken at	this
leastion	,			2. 6 50 6011	.go tanton at	
liocation.						
ł						
			te e el			D.D
All subsurface soil sample	s will be analyz	zed for TAL meta	ais and commo	on propellants	used by the	
including nitrocellulose nit	roalvcerine nit	roquanidine an	d perchlorate		-	
					1 1 1	1 1 1
PROJECT				HOLE N	UMBER	
Site Inspection at Compliance Res	toration Site CC R	VAAP-80 Group 2 Pr	opellant Can Tops		N/A	1

-	CCI	RNAAP-80 Group 2 Pronellent Can Tops		NA		_	a of a
TION	DEPTH	DESCRIPTION OF MATERIALS (c)	FIELD SCREENING RESULTS (d)	GEOTECH SAMPLE OR CORE BOX NO. (e)	ANALYTICAL SAMPLE NO. (1)	BLOW COUNT (g)	REMARKS (h)
		0-1 Ft considered Surfore soil, not inclued in sol 210 Eification					
	IFt. I	IFT-3FT: CL/ML-> ICON Cloy / Silt					
	J.	Slow transition to larger aroun 512C as you approach 3 Ft. Light orangey brown • by to medium platicity in upper Port of core • nonplastic to own toward 3Ft. • Somewhat moist • Trace roots • Consistency = upper portion of					
		 core is firm + slowly trins ons to soft tow ind 3 Ft interva Structure = mostly homogeneous w/ lensing of weathered material toward 3 Ft. (mottling) Toughness = medium to low toward 					2.75 ' to approx
	3ft. Internetional and the second sec	3Ft. 3Ft - 4.Ft: (Distinct strath chinge) SW → Well graded Sord, max. sord particle size & medium • Light greijish briwn • moist • Subangular/subrounded sond • Consistency = soft to some what firm Thum bindent 2 0.5"					3.25'-> some occasions of a Flat elongated Neather atrack above the sorrol aver
		Thumbindent 2 0.5" Cementation = weak					1

,

HTRW DRILL	ING LOG	DISTRICT				HOLE NUMBER
1. COMPANY NAME		2. SUBCONTRACT	OR			SHEET SHEETS
3. PROJECT		4. LOCATION				UF
5. NAME OF DRILLER		6. MANUFACTURE	R'S DESIGNATION OF DI	RILL		
7. SIZES AND TYPES OF DRILLING		8. HOLE LOCATION	N			
AND SAMPLING EQUIPMENT		9. SURFACE ELEV	ATION			
-				11 DATE		
		April 12, 2016	D	April 12	2, 2016	
12. OVERBURDEN THICKNESS		15. DEPTH GROUN	NDWATER ENCOUNTERE	D		
13. DEPTH DRILLED INTO ROCK		16. DEPTH TO WA	TER AND ELAPSED TIME	AFTER DRILLING COMPI	LETED	
14. TOTAL DEPTH OF HOLE		17. OTHER WATER	R LEVEL MEASUREMENT	S (SPECIFY)		
18. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTU	RBED 19. TOTAL	NUMBER OF CORE BOX	ES	
20. SAMPLES FOR CHEMICAL ANALYSIS	VOC	METALS	OTHER (SPECIFY)	OTHER(SPECIFY)	OTHER(SPEC	FY) 21. TOTAL CORE
See comments below			See below	See below 23. SIGNATURE OF IN	See below	RECOVERY N/A %
N/A	Bentonite	N/A	N/A	-	Ν	J/A
Weather: Partly cloudy t		Custer 4				this area. Drill
Thirty (30) borings were p The boring log summariz Increments from one (1) methodology (ISM). The All subsurface soil sampl including nitrocellulose, r	ot sink too low a pushed using a es all borings ta to four (4) feet b subsurface sam es will be analyz hitroglycerine, ni	nd get stuck. systematic rando ken within Cluste ogs from each so ople was a compo zed for TAL meta troguanidine, and	om location app er 3. il boring was co osite of all 30 b als and commo d Perchlorate.	oroach within th ollected using th orings taken at n propellants us	e Cluster ne increm this locat sed by the	3 boundary. ental sampling ion. e DoD

ENG FORM 5056-R, NOV 1998

ECTSI	te Inspe	ection at compliance Restoration site cc	INSPECTOR	IA I			SHEET	SHEETS
ATION	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING	GEOTECH SAMPLE	ANALYTICAL	BLOWCOUNT	OF OF	2
•)	665 	Average recovery approximately 67.3% over the 30 borings & 6" average surface material removed from core	(d)		0	(g)	(h)	
		<u>CL</u> → Lean clay w/ sond · Light brown · Moist > this horizon seemed to mode more r · Very soft to Soft Consistency · Toughness > Low to mechan at times · Some gravel throughout interval · Rock Flour present = white powder · Plasticity = mechan · Some gravel > suborgular * 21/2 Ft - 4 Ft ML/CL → sitt/leon Clay	hoisture t	an the bel	sco interi		* On Occasin 2- Well sor- to moderate well sorted fine-med. sond layer Separated	
	۲. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵.	 Light Brown > mottling throughout all borings; grey, orangey-, ad in color Some what moist, almost dry Consistency > Hord, hand tool used to collect somple was difficult to scrape. Plasticity > nonplastic to low Crumbles when rolled between fingers, minor ribboning 					the two interials lenses of division we sondstone separating 11 strata. At times, the was no vis lifterence the two sti the consister changed fize coff to ba	ne ne ne ne ne ne ne ne ne ne ne ne ne n

(Proponent: CECW-EG) W thins,
HTRW DRILL	ING LOG	DISTRICT				HOLE NUMBER					
. COMPANY NAME		2. SUBCONTRACT	OR			SHEET SHEETS					
. PROJECT		4. LOCATION				OF					
NAME OF DRILLER		6. MANUFACTURE	R'S DESIGNATION OF DRI	LL							
SIZES AND TYPES OF DRILLING		8. HOLE LOCATIO	8. HOLE LOCATION Cluster 5 (See location sketch below, circled in light areen)								
		9. SURFACE ELEV	ATION	.,	3						
		10. DATE STARTE	10. DATE STARTED 11. DATE COMPLETED								
		April 12, 2016		April	12, 2016						
2. OVERBURDEN THICKNESS 1/A		15. DEPTH GROU	NDWATER ENCOUNTERED)							
DEPTH DRILLED INTO ROCK		16. DEPTH TO WA	ATER AND ELAPSED TIME	AFTER DRILLING COM	PLETED						
. TOTAL DEPTH OF HOLE		17. OTHER WATE	R LEVEL MEASUREMENTS	(SPECIFY)							
					YES						
I/A	N/A	N/A	N/A	NUMBER OF CORE BU	~L3						
SAMPLES FOR CHEMICAL ANALYSIS	VOC	METALS	OTHER (SPECIFY)	OTHER(SPECIFY)	OTHER(SPEC	RECOVERY N/A					
DISPOSITION OF HOLE	BACKFILLED	MONITORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF I	NSPECTOR						
/Α	Bentonite	N/A	N/A	1	N	I/A					
		Canter of									
This cluster was border Thirty (30) borings were The boring log summari Increments from one (1 sampling methodology location. All subsurface soil samp including nitrocellulose,	ed by drainage d e pushed using a izes all borings ta) to four (4) feet l (ISM). The subsu ples will be analy nitroglycerine, n	litches to the so systematic rand aken within Clus bgs from each s urface sample w vzed for TAL me itroguanidine, a	outh and east. dom location ap ster 5. soil boring was o vas a composite etals and commo	proach withir collected usin of all 30 bori	g the incro ngs taken s used by	ter 5 boundary. emental at this the DoD					
ROJECT Site Inspection at Compliance I	Restoration Site CC F	RVAAP-80 Group 2 I	Propellant Can Tops	HOLE N/A	NUMBER						

AAG	te inspe	action at Compliance Restoration site CC	ISPECTOR	VA			SHEET	SHE
	DEPTH	DESCRIPTION OF MATERIALS	IELD SCREENING	GEOTECH SAMPLE	ANALYTICAL SAMPLE NO.	BLOW COUNT	OZ OF REMARKS	a
	Ff	(6)	(d)	(0)	(1)	(g)	(h)	_
	- 50	Based avo, recovery from all						
	-	barings & (ala % recovery						
	-	To public the und						
1	-	· Top portion of recovering				-		
	-	considered surface moterial.						
- 1	-	Surface = $0 - 1$ Ft bas						
	-							
	E I			[]				
	-							-
	TT					_		
	11							
	5-							
	1.5 =	CL > Sondy Lean Clay						
	-	·light brown, moist		-				
	E	· Consistency > soft	1.00		-	1	Langing of	
	-	· medium to high plasticity	10.11				very firm	
1	~ -	· Toughness = low to medium	-				non plastic	
	a _	F					approx.	
1	-						3"-12" incl	ne
1	-						appearing a	t \
	E	occasional suborgular sondstone					of core 4	
a	2.5-	pancake shape seperating horizons & 2 3	inches	nich		1	interminten	14
	-	SW-SM -> Well graded sond w/ silt +gravel					interval 9	
1	-	· Subangular grains					the 1.5 to	va
	-	· Light brown, moist -> top 1" of			-		Listing	
	271	nter 101 hod noticeably more water saturation						
	2-	· Cementation > weak to moderate				-		-
	-	· grain size runge → medium to coarse						
	-							
	-							
3.	5-1							
	-							
	E							
14	± -1							_

Project Name: <u>Group 2 Pr</u>	o <u>pellant Can</u> ´	Tops	Field	I Sampling R	eport			AL, INC.
Location ID: <u>PCTsb-001M-</u> Date: <u>4/////6</u>	0001-SO	Weather	4	5° Rigin	7	RaveTempera	enna Army Ammuniti ture <u> </u>	on Plant
			Sa	mpling Informa	tion			
Source	Grou	ndwater / Product		Surface Wat	ter /	Soil	s / Sediments / Sludge	
Method	Bailer	X	Sam	ple Bottle	1	Scoop	Trowel	
	Pump		Baco	on Bomb		Bowl	Hand Au	ger
	Micro-purg	e X		X		Push Probe	Plastic Li	ner
Type/Construction	/				$\overline{}$	Mattocks	Direct-Pu	ush X
Miscellaneous	Well Purg	ng Form		/			1 1	
Sample Collection: $\frac{1900}{1900}$ h Sample Depth: $\frac{1-9'}{1900}$ FT	rs 1675	Sample Type: Con If ISM, e) Decon: Ded	nposite # of in licated	e - ISM - Grab crements <u>taken</u> : - Each Day - Each	Location	Location: Estir	Plotted on Map - Stake nated - Measured -	d in Field Surveyed
Field Parameters (at time of sample)		Anal	ytical	Parameters		0	ther Parameters	
PID / FID Readings:	PID / FID Readings: V			TPH GRO		Corrosivity		
Background:	ppm	SVOC		TPH DRO		Reactivity Sulfide/Cy	ania	
		Explosives		Chromium +6	-	Ignitability		
Sample:	ρρπ	Propellants	x	Nitrate	1	/		
Water Level	FT	TAL Metals	x	Sulfate			QA Samples	
Temperature	°C	Pesticides/PCBs		Asbestos		MS/MSD	Yes / No	NA
Sp. Conductance:	uMiHOs	Cyanides		pН		Duplicate ID	\times	NA
pH	units	Perchlorate	x	TOC		Equipment RissertO		NA
Tarbidity	me	Grain Size				Tur Blank ID		NA
	Sampl	e Description				Split	Sample	/
<u></u>	HIRL	tay			Split Supp	le ID:		
Soil sample description should	include:				Agency/Co Address:	mpany:		
Munsell Color Odor Sta Water sample description shou Color Odor Sheen Tu	Munsell Color Odor Staining Texture Sorting Plasticity Moisture Vater sample description should include: Color Odor Sheen Turbidity				Parameters	s: Some as Above - As	- TripBlanks - Field anks	
Signature: Christian	icNeill Aux	(Please Print)			Rev	iewed by <i>Pic/1A</i>	L Cc. Ile Date:	(Please Print)

Project Name: <u>Group 2 Pr</u> Location ID: <u>PCTsb-002M-(</u> Date: <u> </u>	opellant Can 7 1001-SO (-	TopsWeather	Field S	t Sampling R	Report	Rav. Tempera	INTERNATIONAL, I enna Army Ammunition Pla ture	ant
			Sa	mpling Informa	ition			
Source	Grou	ndwater / Product		Surface Wat	er /	Soil	s / Sediments / Sludge	
Method	Bailer	X	Sam	ple Bottle	1	Scoop	Trowel	
	Pump		Baco	on Bomb		Bowl	Hand Auger	
	Micro-purg	e		X		Push Probe	Plastic Liner	
Type/Construction	1			/		Mattocks	Direct-Push	x
Miscellaneous	Well Purg	ing Form			$\overline{}$			
Sample Collection: 756 h	(below surfac	Sample Type: Co If ISM, e) Decon: Dec	mposite # of ind licated	e - ISM - Grab crements <u>taken:</u> - Each Day - Each	Location	Location: Estin	Plotted on Map - Staked in E nated - Measured - Survey	ved
Field Parameters (at time of sample)		Anal	ytica	Parameters		0	ther Parameters	
PID / FID Readings:	PID / FID Readings: VOC					Corrosivity		
Background:	ppm	SVOC		TPH DRO		Reactivity Sulfide/Cy	ranit	
		Explosives		Chromium +6		lgnitability		
Sample:	ppm	Propellants	x	Nitrate				
Water Level	FT	TAL Metals	x	Sulfate			QA Samples	>
Temperature	"с	Pesticides/PCBs		Asbestos	-	MS/MSD	Yes / No	NA
Sp. Conductance:	uMHOs	Cyanides		pН		Duplicate ID	\times	NA
рН	units	Perchlorate	x	TOC		Equipment Rins 10		NA
Torbidity	NU	Grain Size				Tro Blank ID		NA
7	Sample	e Description			Split Smp	Split	Sample	_
Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture Water sample description should include: Color Odor Sheen Turbidity					Name: Agency/Con Address: QA/QC Pro Parameters	mpany: ovided: MSMSD - Duplicate s: Some as Above - As	- TripBlanks - Field talanks 5 Listed	-
Logged By: Christine Signature: Chailant	Maxiell	Please Print)		Rev	ignature: Richt and	l Callah- It Date: 4/	(Picase Prini) 12/16

Project Name: <u>Group 2</u>	<u>Propellant Can</u>	Tops	Field	d Sampling R	leport		IN		A., INC.
Location ID: <u>PCTsb-003</u> Date: <u>$4/2$</u>	<u>M-0001-SO</u>	Weather		SURN		Rav Tempera	enna Army nture		Plant / [–]
			Sa	mpling Informa	ition				
Source	Grou	ndwater / Product	\square	Surface Wat	er	Soil	ls / Sedime	nts / Sludge	
Method	Baile		Sam	plo Bottle	1	Scoop		Trowel	
	Pump		Bac	on Bornb		Bowl		Hand Auger	
	Micro-purg	ge A		X		Push Probe		Plastic Line	r
Type/Construction	/					Mattocks		Direct-Push	
Miscellaneous	Well Purg	ing Form		/					
Sample Collection: $\frac{25}{23} - 1/2$ Sample Depth: $1 - \frac{7}{2}$	hrs (۲۲ م) FT (below surfac	Sample Type: C IfISM re) Decon: De	omposit 1, # of in edicated	e - ISM - Grab acrements taken: - Each Day - Each	Location	Location: Esti	Plotted on mated - N	Map - Staked Measured - Sur	n Eield veyed
Field Parameters (at time of sample)		Ana	alytica	l Parameters		0	ther Par	ameters	
PID / FID Readings:	1	VOC		TPH GRO		Corrosivity			
Background:	ppm	SVOC		TPH DRO		Reactivity Sulfide/C	yanide		
		Explosives	1	Chromium +6		Ignitability			
Sample:	ppm	Propellants	x	Nitrate					/
Water Level	FT	TAL Metals	x	Sulfate			QA Sar	mples	
Temperature	°C	Pesticides/PCBs		Asbestos		MS/MSD	Yes N	10	N
Sp. Conductance:	uMHOs	Cyanides		pН		Duplicate ID			NA
рН	unuts	Perchlorate	x	TOC		Equipment Rinse ID			NA
Torbidity	NEU	Grain Size				Trip Blank ID			NA
	Sampl	e Description			Sentia Con-1	Spli	t Sample		
	- pr	+++++++++++++++++++++++++++++++++++++++	+	c	Shur 240bi	< ID			
	, ee	[7]].W	~		Name:		_	_/	
					Agency/Con Address:	npany:		/	-
							/	<u> </u>	_
						/	X		
Soil sample description show	uld include:						/		
Munsell Color Odor	Staining Texture	Sorting Plasticity Me	oisture		QA/QC Pro	vided: MS MSD - Duplicate	- TripBlanks	5 - Field slanks	
Water sample description sh	ould include:				Parameters	Some as Above - A	s Listed		
Color Odor Sheen	Turbidity								1
					1				
Logged By Christin	e Mch'eil	(Please Prin	t)		Revi	ewed by: Kick	Ail	Cc. 110	
(s)()-1:	512	1-1)				in di l	-		T

Project Name: <u>Group 2 Pr</u>	o <u>p</u> ellant Can´	rops	Field	d Sampling F	Report				KA	
Location ID: _ <u>PCTss-004M-(</u> Date:	0001-SO / (Weather	5	Loring /			Raver	ure6	ition Plant C	_
			Sa	mpling Informa	ation					
Source	Grou	ndwater / Product		Surface Wat	ter	/	Soils	/ Sediments / Sluc	lge	
Method	Bailer	X	Sam	pleBottle	/	Scoop		Trowe	el	
	Pump		Bace	on Bomb		Bowi		Hand	Auger	
	Micro-purg	e		X		Push Pr	obe	Plastic	: Liner	
Type/Construction	1				1	Mattock	s	Direct	-Push	X
Miscellaneous	aneous Well Purging Form Yes - No									
Sample Collection: $\frac{14 \text{ w}}{16 \text{ m}}$ h Sample Depth: $\underline{C} = [_F]$	rs F (below surfac	Sample Type: Con If ISM e) Decon Ded	nposite # of in icated	e - (ISM) - Grab crements taken: Each Day - Each	30 Location	_	Location: Estim	Plotted on Map - St nated - Measured	aked in Field - Surveyed	
Field Parameters (at time of sample)		Anal	ytica	l Parameters			Ot	her Parameter	s	\geq
PID / FID Readings:	VOC		TPH GRO		Corrosi	vity		/		
Background	O. O ppm	SVOC		TPH DRO		Reactiv	ity Sulfide/Cya	lfide/Cyanit		
		Explosives		Chromium +6		Ignitab	ility			
Sample).) ppm	Propellants	x	Nitrate		/				K
Water Level	FT	TAL Metals	x	Sulfate				QA Samples	/	
Temperature	°C	Pesticides/PCBs		Asbestos		MS/MS	D	Yes / No	/	NA
Sp. Conductance:	uMHOs	Cyanides		pН	1	Duplica	te ID	X	N	IA
рН	units	Perchlorate	x	TOC		Equipm	ent Riose ID	~		IA
Torbidity	New.	Grain Size				Trir Bla	ank ID		N	A
	Sampl	e Description			Solit	Monie ID:	Split	Sample		
DANIC SAND	70152.0	hy			Name:					
		_			Agency Addres	//Company:				_
Soil sample description should Munsell Color Odor Sta Water sample description shou	include: ining Texture	Sorting Plasticity Mois	sture		QA/QC Paramo	CProvided: Ms eters: Some	ASD - Duplicate - as Above - As	Trip Blanks - Field at Listed	anks	
Color Odor Sheen Tu	Color Odor Sheen Turbidity					/				7
Logged By: Christine Signature	Mc Neill	(Please Print)				Reviewed by: Signature	FicHA.	the lb	te 4/13	

Project Name: <u>Group 2 Pro</u>	pellant Can 1	<u>Fops</u>	Field	I Sampling R	eport			KA
Location ID: _ <u>PCTss-005M-00</u> Date: /	001-SO / <u>(</u>	Weather	-	Sunn,		RaveTempera	enna Army Ammur ture65 °	nition Plant
			Sa	mpling Informa	tion			
Source	Grou	ndwater / Product	N	Surface Wat	er /	Soil	s / Sediments / Slu	lge
Method	Bailer	X	Sam	plo Bottle	1	Scoop	Trow	el
	Pump		Baco	on Bornb		Bowl	Hand	Auger
	Micro-purg	e		X		Push Probe	Plasti	c Liner
Type/Construction	/			/	/	Mattocks	Direc	t-Push X
Miscellaneous	Well Purgi Yes - No	ing Form	1	/	/			
Sample Collection: $2 \downarrow \Box \downarrow \Box$ hr Sample Depth: $2 \downarrow \Box - 1$ FT	s (below surfac	Sample Type: Co If ISM e) Decon Dec	mposite #of in dicated	e - <u>ISM</u> - Grab crements taken: Each Day - Each	30 Location	Location: Estin	Plotted on Map - St mated - Measured	aked in Field - Surveyed
Field Parameters (at time of sample)		Апа	lytica	l Parameters		0	ther Parameter	s
PID / FID Readings:		VOC		TPH GRO		Corrosivity		
Background:	ppm	SVOC		TPH DRO		Reactivity Sulfide/Cy	vanid	
		Explosives		Chromium +6		Ignitability		
Sample:	ppm	Propellants	x	Nitrate	-			
Water Level	FT	TAL Metals	x	Sulfate			QA Samples	
Temperature	°C	Pesticides/PCBs		Asbestos		MS/MSD	Yes No	NA
Sp. Conductance:	uMHOs	Cyanides		pН		Duplicate ID	PCTss-005M-00	01-DUP
рН	units	Perchlorate	x	TOC		Equipment Rinse ID		NA
Jurbidity	Neu	Grain Size				Trip Blank ID		NA
DANIC IV L	Sampl !5 Kou !5 HT	e Description	14	01.37	Split Sampl Name: Agency/Cor	Split le ID: mpany:	t Sample	\leq
Soil sample description should Munsell Color Odor Stat Water sample description shoul Color Odor Sheen Tuu	include: ining Texture Id include: rbidity	Sorting Plasticity Mo	isture		Address:	ovided: MSAISD - Duplicate s: Some as Above - As	- Trip Blanks - Field a s Listed	lanks
Logged By: Christing Signature:	Mcn Jeil	(Please Print)		Rev <u>Si</u>	iewed by R. c. 14 i gnature	And Cull.	((Please Print) ate: 4/13/10

Project Name: <u>Group 2 Pr</u>	ropellant Can	Tops	Field	d Sampling R	Report			IKA		
Location ID: <u>PCTss-006M</u> - Date: $\frac{1}{4}$	0001-SO	Weather	-	SUM		Rave	enna Army Am Guire	munition Plant		
	10				2	rempera	itur e			
			Sa	mpling Informa	tion					
Source	Grou	ndwater / Product		Surface Wat	er	Soil	s / Sediments /	Sludge		
Method	Bailer		Sam	Bottle	/	Scoop	Т	rowel		
	Pump		Bac	on Bomb		Bowl	H	and Auger		
	Micro-purg	le X		X		Push Probe	Р	lastic Liner		
Type/Construction	/			/		Mattocks	E	virect-Push	x	
Miscellaneous	Well Purg Yes - No	ing Form	rm							
Sample Collection: 1275 Sample Depth: $\dot{C} - 1$ F	hrs T (below surfac	Sample Type: Co If ISM e) Decon Deco	mposite <u># of in</u> licated	e - (ISM) - Grab crements taken: Each Day - Each	30 Location	Location: Esti	Plotted on Map mated - Meas	- Staked in Field ured - Surveyed	>	
Field Parameters (at time of sample)		Anal	ytica	l Parameters		0	ther Param	eters		
PID / FID Readings:		VOC	x	TPH GRO		Corrosivity		1		
Background [®]	(), C ppm	SVOC	x	TPH DRO		Reactivity Sulfide/C	yanit			
		Explosives	x	Chromium +6		Ignitability				
Sample: O	, C ppm	Propellants	x	Nitrate	1					
Wover Level	FT	TAL Metals	x	Sulfate			QA Sample	es		
Temperature	°C	Pesticides/PCBs	x	Asbestos		MS/MSD	Yes No		NA	
Sp. Conductance:	uMHOs	Cyanides		pН		Duplicate ID			NA	
рн	units	Perchlorate	x	TOC	-	Equipment Rinse ID	PCTss-006N	I-0001-ER		
Turbidity	NTU	Grain Size				Trip Blank ID	PCTss-006M	1-0001-TB		
	Sampl	e Description				Spli	t Sample		/	
K.U.	in n is	LUIT CON	In		Split Sug	ple ID:		_/		
					Address:	company:			_	
Soil sample description should	d include:					Provided: MS_SD - Duplicate	- Trip Blanks - Fi	elJanks		
Munsell Color Odor Sta Water sample description show	aining Texture uld include:	Sorting Plasticity Moi	sture		Paramete	ers: Sme as Above - A	s Listed			
Color Odor Sheen Tu	urbidity				-/			(1	
Logged By Christine	Mr No il	(Please Print))		R	eviewed by <u>R</u> ; []].A. Signature	I Cul	Lee Le - a	Please Print)	

Project Name: <u>Group 2 Pro</u> Location ID: <u>PCTss-007M-0</u>	opellant Can 7	<u>Fops</u>	Field	l Sampling R	Report	Rave		A., INC. Plant
Date: 4/13	16	Weather		DUNNY		Tempera	ture65°	
			S.	maling Informa	tion			
Source	Crow	-durator (Duradurat	N Sa		ition	1 Soil	c / Sadimanta / Sludga	
Method	Baile	ndwater / Product	Sam	Surface wat	er	Scoon	Trowel	
	Bump		Baa	Proposition Port	/	Bowl	Hand Auger	_
	Ning		Daco	X		Duch Droho	Diastia Lina	
T. 10. 1. 1	Micro-purg	e	-	\rightarrow		Push Plobe	Plastic Liner	
			-	/	/	Mattocks	Direct-Push	X
Miscellaneous	Yes - No	ing Form	/					
Sample Collection: C9(i) hrs Sample Type: Composite - (ISM) - (IS					30 Location	Location: Estin	Plotted on Map - Staked nated - Measured - Sur	r Eield veyed
Field Parameters (at time of sample)		Anal	ytica	Parameters		0	ther Parameters	
PID / FID Readings:		VOC		TPH GRO		Corrosivity		
Background:	, C ppm	SVOC		TPH DRO		Reactivity Sulfide/Cy	ania	
0	.0	Explosives		Chromium +6		Ignitability		
Sample:	ppm	Propellants	x	Nitrate				X
Wang Level	FT	TAL Metals	x	Sulfate			QA Samples	
Temperature	°C	Pesticides/PCBs		Asbestos		MS/MSD	Yes / No	NA
Sp. Conductance:	uMHOs	Cyanides		pН		Duplicate ID	\times	NA
рН	units	Perchlorate	x	TOC		Equipment Rins 10		NA
Jorbidity	Dec	Grain Size				Tur Blank ID		NA
	Sample	e Description				Split	Sample	/
Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture Water sample description should include: Color Odor Sheen Turbidity					Agency/Cor Address:	wided: MS ASD - Duplicate : Some as Above - As	- Trip Blanks - Field Blanks 5 Listed	
Logged By: Christine Signature	Mexteril Mie	(Please Print)			Revi Si	iewed by: KicH.A.		(PleasePrint) 4/13/16

Project Name: <u>Group 2 Pr</u> Location ID: <u>PCTss-008M-</u> Date: <u> </u>	ropellant Can 0001-SO // G	<u>Fops</u> Weather	Field	S & nmp	Report	RaverTemperat	INTERNATIONAL, INC.
			Sa	mpling Informa	ation		
Source	Grou	ndwater / Product		Surface Wat	ter /	Soils	/ Sediments / Sludge
Method	Bailer	V	Sam	Bottle	X	Scoop	Trowel
	Pump		Bac	on Bornb	/ -	Bowl	Hand Auger
	Micro-purg	e		X		Push Probe	Plastic Liner
Type/Construction				$ \rightarrow $		Mattocks	Direct-Push X
Miscellaneous	Well Purg	ing Form		/	/		
	Yes - No						
Sample Collection: $O \ 8 \ 30$ F Sample Depth: $C \ -/$ F	hrs T (below surfiac	Sample Type: Con If ISM. e) Decon Ded	nposite # of in icated	e - (ISM) - Grab crements taken: Each Day - Each	30 Location	Location: E Estim	'lotted on Map - Staked in Field ated - Measured - Surveyed
Field Parameters (at time of sample)		Anal	ytica	l Parameters		Ot	her Parameters
PID / FID Readings:	VOC		TPH GRO		Corrosivity		
Background:	, C ppm	SVOC		TPH DRO		Reactivity Sulfide/Cya	nia
		Explosives		Chromium +6		Ignitability	
Sample:	. 👌 🏻 ppm	Propellants	x	Nitrate			
Water Level	FT	TAL Metals	x	Sulfate	1		OA Samples
Temperature	"с	Pesticides/PCBs	-	Asbestos		MS/MSD	Yes / No NA
Sp. Conductance:	uMHOs	Cyanides	-	pH		Duplicate ID	NA
рН	units	Perchlorate	x	TOC		Equipment Rios 10	NA
Jorbidity	Neu	Grain Size	-	-		Ter Blank ID	NA
	Sampl	e Description			Split Supp	Split S	Sample
Satura 12 Light Bluena Sith (SAAL Sould SAND				SA à c	Name: Agency/Con Address:	mpany:	
Soil sample description should Munsell Color Odor Sta Water sample description shou Color Odor Sheen Tu	Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture Water sample description should include: Color Odor Sheen Turbidity				QA/QC Pro Parameters	ovided: MSMSD - Duplicate - s: Some as Above - As	TripBlanks - Field Planks Listed
Logged By: Christine Signature: Christian	E Menter	(Please Print)			Revi <u>Si</u>	iewed by <u>R.(14</u>)	$\frac{1}{10000000000000000000000000000000000$

Project Name: <u>Group 2 Pro</u>	pellant Can '] Tops	Field	Sampling R	eport				
Location ID: <u>PCTss-WC001-</u> Date: <u>4/3/4</u>	<u>so</u>	Weather	-	SURNA		Ravenna Tempera	Army Ammuniti ture6	on Plant	_
			San	npling Informa	tion				_
Source	Grou	ndwater / Product		Surface Wate	er	Soil	s / Sediments / Slu	Idge	
Method	Bailer		Samp	Bottle	/	Scoop	Trov	vel	
	Pump		Bacor	Bornb		Bowl	Han	d Auger	
	Micro-purg	e		X		Push Probe	Plas	tic Liner	
Type/Construction				/		Mattocks	Dire	ct-Push	X
Miscellaneous	Well Purg	ing Form		1	/				
Sample Collection: 153 Gent Sample Depth: $0 - 3$ / FT	rs fr Dre (below surface	Sample Type: Cor L F If ISIN e) Decon Ded	mposite # of incl licated	- ISM - Grab rements taken Each Day - Each	Location	Location: Estim	Plotted on Map - S ated - Measured	Staked in Field - Surveyed (NA
Field Parameters (at time of sample)		Anal	ytical	Parameters		0	ther Paramete	ers	
PID / FID Readings:		VOC		TPH GRO		Corrosivity		P	
Background: Č	ک ppm	SVOC		TPH DRO		Reactivity Sulfide/Cy	vanit		
		Explosives		Chromium +6		Ignitability			
Sample: 0.0) ppm	Propellants		Nitrate					
Water Level	FT	TAL Metals		Total Sulfide	x		QA Samples		/
Temperature	°C	Pesticides/PCBs		Cyanide	x	MS/MSD Yes / No		/	NA
Sp. Conductance:	uMHOs	Cyanides		pН	x	Duplicate ID	\times		NA
рН	units	Perchlorate		Full TCLP	x	Equipment Rinse 10			NA
Jurbidity	New Y	Grain Size		Flash Point	x	Too Blank ID			NA
<u>50, L</u>	Sampl	e Description			Split Savpl	Split le 1D:	Sample		
Soil sample description should Munsell Color Odor Stat Water sample description shoul	include: ining Texture	Sorting Plasticity Moi	sture		Name: Agency/Con Address: QA/QC Pro Parameters	mpany: wided: MS MSD - Duplicate s: Sure as Above - As	- Trip Blanks - Field s Listed	Hanks	_
Color Odor Sheen Tu	Color Odor Sheen Turbidity						, C		X
Signature:	A LA AL	(Please Print))		Revi Si	gnature:	<i>n</i> .x	Date: 4/1	Please Prut)

ISM Surface and Shallow Sub-Surface Sampling

ISM Shallow Sub-Surface Magnetometer Anomaly Avoidance

Photo Log

Track-Mounted Geoprobe Drilling – Direct Push ISM Shallow Sub-Surface Sampling

Sealing Drilling Location with Bentonite Pellets

Sealed Drilling Location

ISM Surface and Shallow Sub-Surface Sampling

Photo Log (continued)

Logging and sampling ISM Sub-Surface Intervals

Lanes and Random ISM Surface Sampling Locations – Cluster 6

ISM Surface Soil Sample Dedicated Stainless Steel Push Probe

Collection of 30 Aliquots for ISM Surface Soil Sample

I. GENERAL PROJECT	AND SITE INFOR	RMATION	
Date: Instructor(s): Meluin	hor,	Time:	Log No.:
Site Name & Location:			
Contract No.:	Contract No.:		
Site Manager or SUXOS: Rich (Albhain	SSHO:	_	
II. SAFETY AND HEA	LTH TOPICS CO	VERED	
Tasks Being Conducted:	\ S		
Applicable AHA's Reviewed for Today's Tasks:	los Rusili		
Anticipated Weather Conditions for the Day: $\mathcal{R}_{\mathcal{A}}$			
Safety Concerns:	Tin Fal	1 Mar Anni	lanza
Permits Required: Safé Wo	ork Permit	r:	Excavation Permit
☐ Hot Work Permit ☐ Lift Perm Site	nit 🗌 Lock	out / Tagout 🗌	Permits Are On
Heavy Equipment to be Used Today:	hale Track	Musc hinro	
Site Control and Buddy Procedures:			
Subcontractors Working On-site Today and Their Ta	asks: Fronte.	Prilling	
Emergency Procedures:		/	
Assembly Locations: Garen Aren 2			
Scheduled Deliveries for Today:			
III. DAILY SAFETY E		DEES	
Name (printed) Sig	nature	Orga	anization

Christine McNeill	TerranearPMC	Ration Markeill,
I certify that the personnel listed	on this roster have received the safety and	health training described above.
Rel Far		SAME
Site Safety and Health Offi	cer Si	: UXO Supervisor or Site Supervisor

I. GENERAL PROJECT AND SITE INFORMATION									
Date: Instructor(s): Melu: LAS		Time: ^{Cⁱ・フ<i>:</i>で}	Log No.:						
Site Name'& Location:									
Contract No.:	Contract No.:								
Site Manager or SUXOS: Rick (1.4 //4 han SSHO:									
II. SAFETY AND HEAL	TH TOPICS COV	ERED							
Tasks Being Conducted:	le s								
Applicable AHA's Reviewed for Today's Tasks: n_{ℓ}	C Alicidance								
Anticipated Weather Conditions for the Day: $C/s_{\mu} \leftarrow$									
Safety Concerns: Pinch Points, Slips Trips Falls, Moc Aveidan									
Permits Required: Safe Wor	k Permit	Ē	Excavation Permit						
🗌 Hot Work Permit 🗌 Lift Permi Site	t 🗌 Lockou	ut / Tagout 🔲 F	Permits Are On						
Heavy Equipment to be Used Today:	Track M.	tehilas	8						
Site Control and Buddy Procedures:		Î							
Subcontractors Working On-site Today and Their Ta	sks: Fran. Y =	Drilling.							
Emergency Procedures: Main Cate Mutif	cation								
Assembly Locations:									
Scheduled Deliveries for Today:									
III. DAILY SAFETY BI	RIEFING ATTEND	EES							
Name (printed) Christine Mc Neill Michael Terronear PMC									

he Henry	ANDI &	Fint Dellen Tre
Rickie Shanks	Pris Stanlet	Frontz Drilling Inc
Riele Callaha	Zall	FIRT
James N Trunble	James D. Comble II	USACE
Kothwa S. Tait	Kuthkim STait	OHAKNO
Kerin Spockke	Henry	DKNG
·		
I certify that the personnel listed	on this roster have received the safety and	health training described above.
- Mel La		SALL
Site Safety and Health Offi	cer Sr.	UXO Supervisor or Site Supervisor

I. GENERAL PROJECT AND SITE INFORMATION									
Date: Instructor(s):	ate: Instructor(s): Time: Log No.:								
Site Name & Location:	2 RIMAP								
Contract No.: Contract No.:									
Site Manager or SUXOS: Rich Colliphon SSHO:									
II. SA	FETY AND HEALTH TOPICS CO	VERED							
Tasks Being Conducted: \leq_c	il Samples								
Applicable AHA's Reviewed for Too	day's Tasks: Mec Aucida	2 (7=							
Anticipated Weather Conditions for	the Day:								
Permits Required:	rmit ☐ Lift Permit ☐ Lock	er: cout/Tagout □	Excavation Permit						
Heavy Equipment to be Used Toda	y: NC inc								
Site Control and Buddy Procedures	5.								
Subcontractors Working On-site To	oday and Their Tasks:								
Emergency Procedures:	air Gate MetiFics	tion							
Assembly Locations:	te Area 2								
Scheduled Deliveries for Today:	iVc~r								
III. D	AILY SAFETY BRIEFING ATTEN	IDEES							
Name (printed)	Signature	Org	ganization						
Richail Callan DC Call Blas									

Christine McNeill	Terranear PMC	Austine Ale Maill
I certify that the personnel listed	on this roster have received the safety and	health training described above.
mel La	£	SAME
Site Safety and Health Offic	ser Sr.	UXO Supervisor or Site Supervisor

APPENDIX B: LABORATORY DATA

(FULL LABORATORY PACKAGE ON CD)

APPENDIX C: ADR AND DATA VALIDATION REPORTS

Field QC Assignments and Associated Samples

 EDD File Name:
 320-18324-1

 eQapp Name:
 Pika_Ravenna_05012016

		Associated Samples	Sample Collection Date
Field QC Sample: QC Type:	PCTss-005M-0001-DS FD		
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
Field QC Sample: QC Type:	PCTss-006M-0001-ER EB		
		PC1sb-001M-0001-SO	4/11/2016 4:45:00 PM
		PC1sb-002M-0001-SO	4/12/2016 4:50:00 PM
		PC1sb-003M-0001-SO	4/12/2016 12:30:00 PM
		PCTss-004M-0001-SO	4/13/2016 2:40:00 PM
		PCTss-005M-0001-DS	4/13/2016 10:25:00 AM
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
		PCTss-006M-0001-SO	4/13/2016 12:45:00 PM
		PCTss-007M-0001-SO	4/13/2016 9:10:00 AM
		PCTss-008M-0001-SO	4/13/2016 8:30:00 AM
Field QC Sample:	PCTss-006M-0001-TB		
QC Type:	ТВ		
		PCTsb-001M-0001-SO	4/11/2016 4:45:00 PM
		PCTsb-002M-0001-SO	4/12/2016 4:50:00 PM
		PCTsb-003M-0001-SO	4/12/2016 12:30:00 PM
		PCTss-004M-0001-SO	4/13/2016 2:40:00 PM
		PCTss-005M-0001-DS	4/13/2016 10:25:00 AM
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
		PCTss-006M-0001-ER	4/13/2016 12:30:00 PM
		PCTss-006M-0001-SO	4/13/2016 12:45:00 PM
		PCTss-007M-0001-SO	4/13/2016 9:10:00 AM
		PCTss-008M-0001-SO	4/13/2016 8:30:00 AM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method Cotocorus - GENCHEM

Method Catego	ory: GENCHEM									
Method:	353.2									
Sample ID: PCTss-0	06M-0001-ER	Collec	4/13/2 ted: PM	016 12:30):00 <i>A</i>	nalysis T	ype: RES	i	L	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.48	U	0.48	CRDL	2.0	MRL	mg/L	R	StoA

Method Category: GENCHEM

Method: 353.2			IVIč	atrix: 3	50				
Sample ID: PCTsb-001M-0001-SO	Collec	ted: 4/11/2	016 4:45:	00 PM A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTsb-002M-0001-SO	Collec	ted: 4/12/2	016 4:50:	00 PM A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTsb-003M-0001-SO	Collec	4/12/2 ted: PM	016 12:30):00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTss-004M-0001-SO	Collec	ted: 4/13/2	016 2:40:	00 PM A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.96	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA
Sample ID: PCTss-005M-0001-DS	Collec	4/13/2 ted: AM	016 10:25	5:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTss-005M-0001-SO	Collec	4/13/2 ted: AM	016 10:20):00 A	nalysis T	ype: RES	i		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

* denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Catego	ory: GENCHEM									
Method:	353.2			Ма	atrix:	so				
Sample ID: PCTss-	006M-0001-SO	Collec	4/13/2 ted: PM	016 12:4	5:00 A	nalysis T	ype: RES	5	1	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.84	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA
Sample ID: PCTss-007M-0001-SO		Collected: 4/13/2016 9:10:00 AM Analysis Type: RES							Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.77	U	0.77	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTss-	008M-0001-SO	Collec	ted: 4/13/2	016 8:30:	00 AM A	nalysis T	<i>ype:</i> RES	5		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Method Category:	GENCHEM			
Method:	6850	Matrix:	SO	
Sample ID: PCTsb-001M-	0001-SO	Collected: 4/11/2016 4:45:00 PM	Analysis Type: RES	Dilution: 1

	Conected. 4/11/2010 4.45.00 FM Analysis Type. RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.41	J	0.15	CRDL	5.1	MRL	ug/Kg	J	RI

Method Catego	ory: METALS									
Method:	6010C	Matrix: AQ								
Sample ID: PCTss-0	06M-0001-ER	Collec	4/13/2 <i>ted:</i> PM	016 12:30	:00 A	nalysis T	ype: RES	/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON		0.027	J	0.020	CRDL	0.10	MRL	mg/L	J	RI
SODIUM		0.31	J	0.25	CRDL	1.0	MRL	mg/L	J	RI
ZINC		0.0037	J	0.0030	CRDL	0.020	MRL	mg/L	U	Mb

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method Category: METALS

Method:	6010C			Ма	atrix:	SO						
Sample ID: PCTss-	006M-0001-SO	Collec	4/13/2016 12:45:00 Collected: PM Analysis							Dilution: 2		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ALUMINUM		9700	DJ	5.5	CRDL	20	MRL	mg/Kg	J	Ms		
ANTIMONY		0.92	UJ	0.92	CRDL	2.9	MRL	mg/Kg	R	Ms		
CADMIUM		0.23	JD	0.029	CRDL	0.29	MRL	mg/Kg	J	RI		
IRON		15000	DJ	2.0	CRDL	9.8	MRL	mg/Kg	J	Ms		
MANGANESE		730	DJ	0.25	CRDL	0.98	MRL	mg/Kg	J	Ms		
SODIUM		41	JD	20	CRDL	98	MRL	mg/Kg	J	RI		

Sample ID: PCTss-006M-0	0001-ER	Collec	4/13/20 ted: PM	016 12:30	:00	Analysis T	ype: RES	;		Dilution: 1
Method:	8081B	In succession in the succession of the		Ма	atrix:	AQ			TRACTIC .	
Method Category:	SVOA									

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4'-DDE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4'-DDT	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ALDRIN	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-BHC	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
BETA-BHC	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
DELTA-BHC	0.012	U	0.012	CRDL	0.054	MRL	ug/L	UJ	StoE
DIELDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN I	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN II	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.027	U	0.027	CRDL	0.11	MRL	ug/L	UJ	StoE
ENDRIN KETONE	0.022	U	0.022	CRDL	0.11	MRL	ug/L	UJ	StoE
gamma-BHC (Lindane)	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
GAMMA-CHLORDANE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR EPOXIDE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
METHOXYCHLOR	0.046	U	0.046	CRDL	0.11	MRL	ug/L	UJ	StoE
TOXAPHENE	0.55	U	0.55	CRDL	2.2	MRL	ug/L	UJ	StoE

* denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method Category:	SVOA	
Method:	8081B	

Method Category: SVOA Method: 8081B Matrix: SO

Sample ID; PCTss-006M-0001-SO	4/13/2016 12:45 Collected: PM				nalvsis T	vpe; RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-CHLORDANE	0.47	J	0.20	CRDL	1.7	MRL	ug/Kg	J	RI
DELTA-BHC	0.24	J	0.16	CRDL	1.7	MRL	ug/Kg	J	RI

Method Category:	SVOA				
Method:	8082A	Matrix	2	AQ	
		4/13/2016 12:30:00			

Sample ID: PCTss-006M-0001-ER	Collected: PM			A.	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1016	0.098	U	0.098	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1221	0.12	U	0.12	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1232	0.18	U	0.18	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1242	0.13	U	0.13	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1248	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1254	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1260	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method:	8270D	Statement of the local division of the local		Ма	atrix:	AQ			and the	
Sample ID: PCTss-	006M-0001-ER	Collec	4/13/2016 12:30 Collected: PM				ype: RES	Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Benzo[a]anthracene)	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Sample ID: PCTss-	006M-0001-ER	Collec	4/13/2 ted: PM	016 12:30):00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROF	PHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4,6-TRICHLOROF	PHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DICHLOROPHE	ENOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE

* denotes a non-reportable result

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method:	8270D			Ма	atrix: I	AQ						
Sample ID: PCTss-	006M-0001-ER	Collec	4/13/2 ted: PM	016 12:30):00 A	nalysis T	ype: RES	-ACID	Dilution: 1			
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,4-DIMETHYLPHE	NOL	2.3	U	2.3	CRDL	10	MRL	ug/L	UJ	StoE		
2,4-DINITROPHEN	OL	21	U	21	CRDL	62	MRL	ug/L	UJ	StoE		
2-CHLOROPHENO	L	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE		
2-METHYLPHENOL	L.	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE		
2-NITROPHENOL		2.0	U	2.0	CRDL	10	MRL	ug/L	UJ	StoE		
3 & 4 Methylphenol		1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE		
4,6-DINITRO-2-ME	THYLPHENOL	2.3	U	2.3	CRDL	62	MRL	ug/L	UJ	StoE		
4-CHLORO-3-METH	HYLPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE		
4-NITROPHENOL		6.3	U	6.3	CRDL	62	MRL	ug/L	UJ	StoE		
BENZOIC ACID		21	UQ	21	CRDL	77	MRL	ug/L	R	Lcs, StoE		
PENTACHLOROPH	IENOL	5.2	U	5.2	CRDL	62	MRL	ug/L	UJ	StoE		
PHENOL		1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE		
	4/13/2016 12:30:00											

Sample ID: PCTss-006M-0001-ER	Collec	Collected: PM				Analysis Type: RES-BASE/NEUTRAL Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,4-TRICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE			
1,2-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE			
1,3-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE			
1,4-DICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE			
2,4-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE			
2,6-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE			
2-CHLORONAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE			
2-METHYLNAPHTHALENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE			
2-NITROANILINE	2.1	U	2.1	CRDL	52	MRL	ug/L	UJ	StoE			
3,3'-DICHLOROBENZIDINE	0.99	U	0.99	CRDL	52	MRL	ug/L	UJ	StoE			
3-NITROANILINE	1.4	U	1.4	CRDL	52	MRL	ug/L	UJ	StoE			
4-BROMOPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE			
4-CHLOROANILINE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE			
4-CHLOROPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE			
4-NITROANILINE	1.5	U	1.5	CRDL	52	MRL	ug/L	UJ	StoE			
ACENAPHTHENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE			
ACENAPHTHYLENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE			
ANTHRACENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE			

* denotes a non-reportable result

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D			Ма	atrix: I	AQ				-
Sample ID: PCTss-006M-0001-ER	Collec	4/13/2 ted: PM	016 12:30):00 A	nalysis T	ype: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Benzo[a]pyrene	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[b]fluoranthene	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[g,h,i]perylene	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[k]fluoranthene	0.99	U	0.99	CRDL	10	MRL	ug/L	UJ	StoE
BENZYL ALCOHOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
Bis (2-chloroisopropyl) ether	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)METHANE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Bis(2-chloroethyl)ether	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL) PHTHALATE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Butyl benzyl phthalate	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
CARBAZOLE	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
CHRYSENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZOFURAN	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DIETHYL PHTHALATE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
DIMETHYL PHTHALATE	0.91	U	0.91	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
FLUORANTHENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
FLUORENE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	5.2	U	5.2	CRDL	52	MRL	ug/L	UJ	StoE
HEXACHLOROETHANE	1.4	UQ	1.4	CRDL	10	MRL	ug/L	UJ	Lcs, StoE
Indeno[1,2,3-cd]pyrene	3.5	U	3.5	CRDL	15	MRL	ug/L	UJ	StoE
ISOPHORONE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
NAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
NITROBENZENE	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
N-Nitrosodi-n-propylamine	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PHENANTHRENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PYRENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category:	SVOA									
Method:	8270D			Ма	trix:	SO				
Sample ID: PCTss-006M-0	0001-SO	Collec	4/13/20 ted: PM	016 12:45	:00 A	nalysis T	ype: RES	-ACID		Dilution: 1
		Lab	Lab		DL		RL		Data Review	Reason
Analyte		Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
BENZOIC ACID		280	ΟJ	280	CRDL	1600	MRL	ug/Kg	UJ	Ms

Method Category: VOA

Method:	8260C			Ма	atrix:	AQ				
Sample ID: PCTss-	-006M-0001-ER	Collec	4/13/2016 12:30:00 Collected: PM Anal					nalysis Type: RES		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLOROFORM		0.20	J	0.12	CRDL	1.0	MRL	ug/L	J	RI
Sample ID: PCTss-	-006M-0001-TB	Collected: 4/13/2016 8:00:00 AM Analysis Type: RE Dilution: 1								
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE		20	н	2.1	CRDL	10	MRL	ug/L	J	StoA
Sample ID: PCTss-	Collected: 4/13/2016 8:00:00 AM Analysis Type: RES Dilution:								Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
METHYLENE CHLO	ORIDE	0.77	J	0.35	CRDL	1.0	MRL	ug/L	J	RI

Method Category: VOA Method: 8260C Matrix: SO 4/13/2016 12:45:00 Collected: PM Sample ID: PCTss-006M-0001-SO Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Result Qual DL RL Units Qual Analyte Туре Туре Code ACETONE 8.3 J 2.0 CRDL 28 MRL U Tb ug/Kg

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Reason Code Legend

Reason Code	Description						
Lcs	Laboratory Control Precision						
Lcs	Laboratory Control Spike Lower Rejection						
Mb	Method Blank Contamination						
Ms	Matrix Spike Lower Estimation						
Ms	Matrix Spike Lower Rejection						
Ms	Matrix Spike Precision						
Ms	Matrix Spike Upper Estimation						
RI	Reporting Limit Trace Value						
StoA	Sampling to Analysis Estimation						
StoA	Sampling to Analysis Rejection						
StoE	Sampling to Extraction Estimation						
Surr	Surrogate/Tracer Recovery Upper Estimation						
Tb	Trip Blank Contamination						

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				14	TOXAPHENE (8001-35-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/2-A.
Analytical Results				14	ENDOSULFAN I (959-98-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	HEPTACHLOR (76-44-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ENDRIN ALDEHYDE (7421-93-4) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	4,4'-DDE (72-55-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	4,4'-DDD (72-54-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	METHOXYCHLOR (72-43-5) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ENDRIN (72-20-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	DIELDRIN (60-57-1) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	gamma-BHC (Lindane) (58-89-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ENDRIN KETONE (53494-70-5) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	GAMMA-CHLORDANE (5103-74-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ALPHA-CHLORDANE (5103-71-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	4,4'-DDT (50-29-3) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ENDOSULFAN II (33213-65-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	DELTA-BHC (319-86-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	BETA-BHC (319-85-7) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ALPHA-BHC (319-84-6) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	ALDRIN (309-00-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-10648/4-A.
Analytical Results				14	ENDOSULFAN SULFATE (1031-07-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	HEPTACHLOR EPOXIDE (1024-57-3) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCS 320-106848/4-A.
Analytical Results				14	TOXAPHENE (8001-35-2) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/2-A.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				14	ENDOSULFAN I (959-98-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	HEPTACHLOR (76-44-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ENDRIN ALDEHYDE (7421-93-4) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	4,4'-DDE (72-55-9) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	4,4'-DDD (72-54-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	METHOXYCHLOR (72-43-5) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ENDRIN (72-20-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	DIELDRIN (60-57-1) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	gamma-BHC (Lindane) (58-89-9) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ENDRIN KETONE (53494-70-5) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	GAMMA-CHLORDANE (5103-74-2) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ALPHA-CHLORDANE (5103-71-9) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	4,4'-DDT (50-29-3) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ENDOSULFAN II (33213-65-9) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	DELTA-BHC (319-86-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	BETA-BHC (319-85-7) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ALPHA-BHC (319-84-6) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ALDRIN (309-00-2) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	ENDOSULFAN SULFATE (1031-07-8) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	HEPTACHLOR EPOXIDE (1024-57-3) is a required SPK compound for Method: '8081B', Matrix: 'SO' and QCType: 'LCS', but is not reported for sample LCS 320-107618/3-A.
Analytical Results				14	TOXAPHENE (8001-35-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/3-A.
Analytical Results				14	ENDOSULFAN I (959-98-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				14	HEPTACHLOR (76-44-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ENDRIN ALDEHYDE (7421-93-4) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	4,4'-DDE (72-55-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	4,4'-DDD (72-54-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	METHOXYCHLOR (72-43-5) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ENDRIN (72-20-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	DIELDRIN (60-57-1) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	gamma-BHC (Lindane) (58-89-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ENDRIN KETONE (53494-70-5) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	GAMMA-CHLORDANE (5103-74-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ALPHA-CHLORDANE (5103-71-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	4,4'-DDT (50-29-3) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ENDOSULFAN II (33213-65-9) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	DELTA-BHC (319-86-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	BETA-BHC (319-85-7) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ALPHA-BHC (319-84-6) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ALDRIN (309-00-2) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	ENDOSULFAN SULFATE (1031-07-8) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				14	HEPTACHLOR EPOXIDE (1024-57-3) is a required SPK compound for Method: '8081B', Matrix: 'AQ' and QCType: 'LCS', but is not reported for sample LCSD 320-106848/5-A.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method. '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results				14	4-NITROTOLUENE (99-99-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	1,3-DINITROBENZENE (99-65-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	1,3,5-TRINITROBENZENE (99-35-4) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	3-NITROTOLUENE (99-08-1) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	NITROBENZENE (98-95-3) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	2-NITROTOLUENE (88-72-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results	_			14	PETN (78-11-5) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				14	2,6-DINITROTOLUENE (606-20-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	Tetryl (479-45-8) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	HMX (2691-41-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	RDX (121-82-4) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	2,4-DINITROTOLUENE (121-14-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	2,4,6-TRINITROTOLUENE (118-96-7) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results				14	4-NITROTOLUENE (99-99-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	1,3-DINITROBENZENE (99-65-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	1,3,5-TRINITROBENZENE (99-35-4) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	3-NITROTOLUENE (99-08-1) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	NITROBENZENE (98-95-3) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	2-NITROTOLUENE (88-72-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	PETN (78-11-5) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	2,6-DINITROTOLUENE (606-20-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	Tetryl (479-45-8) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	HMX (2691-41-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	RDX (121-82-4) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	2,4-DINITROTOLUENE (121-14-2) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				14	2,4,6-TRINITROTOLUENE (118-96-7) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				14	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required SPK compound for Method: '8330B', Matrix: 'SO' and QCType: 'MS', but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-004M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.

Laboratory: TA SAC

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Laboratory: TA SAC

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-DS.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-005M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	2.6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-007M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.

Laboratory: TA SAC

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: '8330B' and Matrix: 'SO', but is not reported for sample PCTss-008M-0001-SO.
Sample Analysis	47	PreparationBatch	320-107226	17	This batch has more that one sample with QCType MB.
Sample Analysis	48	PreparationBatch	320-107226	17	This batch has more that one sample with QCType MB.
Sample Analysis	49	PreparationBatch	320-107232	17	This batch has more that one sample with QCType MB.
Sample Analysis	50	PreparationBatch	320-107232	17	This batch has more that one sample with QCType MB.
Sample Analysis	12	PreparationBatch	320-107232	17	This batch has more that one sample with QCType LCS.
Sample Analysis	13	PreparationBatch	320-107232	17	This batch has more that one sample with QCType LCS.
Sample Analysis	83	MethodBatch	320-107232	17	This batch has more that one sample with QCType MS.
Sample Analysis	84	MethodBatch	320-107232	17	This batch has more that one sample with QCType MS.
Sample Analysis	88	MethodBatch	320-107232	17	This batch has more that one sample with QCType MSD.
Sample Analysis	89	MethodBatch	320-107232	17	This batch has more that one sample with QCType MSD.
Sample Analysis	41	PreparationBatch	320-106848	17	This batch has more that one sample with QCType MB.
Sample Analysis	42	PreparationBatch	320-106848	17	This batch has more that one sample with QCType MB.
Sample Analysis	5	PreparationBatch	320-106848	17	This batch has more that one sample with QCType LCS.
Sample Analysis	6	PreparationBatch	320-106848	17	This batch has more that one sample with QCType LCS.
Sample Analysis	38	PreparationBatch	320-106710	17	This batch has more that one sample with QCType MB.
Sample Analysis	39	PreparationBatch	320-106710	17	This batch has more that one sample with QCType MB.
Sample Analysis	2	PreparationBatch	320-106710	17	This batch has more that one sample with QCType LCS.
Sample Analysis	3	PreparationBatch	320-106710	17	This batch has more that one sample with QCType LCS.
Sample Analysis				38	MethodBatch '320-108702' is missing a sample of QCType 'MS' for LabAnalysisRefMethodID '7471A'
Sample Analysis				38	MethodBatch '320-108702' is missing a sample of QCType 'MSD' for LabAnalysisRefMethodID '7471A'
Sample Analysis	51	PreparationBatch	320-107618	17	This batch has more that one sample with QCType MB.
Sample Analysis	52	PreparationBatch	320-107618	17	This batch has more that one sample with QCType MB.
Sample Analysis	14	PreparationBatch	320-107618	17	This batch has more that one sample with QCType LCS.
Sample Analysis	15	PreparationBatch	320-107618	17	This batch has more that one sample with QCType LCS.
Sample Analysis				38	MethodBatch '320-107922' is missing a sample of QCType 'MS' for LabAnalysisRefMethodID '8260C'
Sample Analysis				38	MethodBatch '320-107922' is missing a sample of QCType 'MSD' for LabAnalysisRefMethodID '8260C'
Sample Analysis				38	MethodBatch '320-107200' is missing a sample of QCType 'MS' for LabAnalysisRefMethodID '8260C'
Sample Analysis				38	MethodBatch '320-107200' is missing a sample of QCType 'MSD' for LabAnalysisRefMethodID '8260C'

Data Review Summary

Lab Reporting Batch ID: 320-18324-1 EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Validation Area	Note
Technical Holding Times	SR
Temperature	А
Initial Calibration	Ν
Continuing Calibration/Initial Calibration Verification	Ν
Method Blanks	SR
Surrogate/Tracer Spikes	SR
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	Ν
Laboratory Replicates	Ν
Laboratory Control Samples	SR
Compound Quantitation	SR
Field Duplicates	A
Field Triplicates	Ν
Field Blanks	SR

A = Acceptable, N = Not provided/applicable, SR = See report

The contents of this report reflect findings made by ADR during Automated Data Review, manual applied qualifiers are not considered. Please refer to the Overall Qualifier Summary report for manual qualifiers.

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 320-18324-1 EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method: 353.2				Pr	eparation Method: Method
Matrix: AQ					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-ER (RES) PCTss-006M-0001-ERMS (RES) PCTss-006M-0001-ERMSD (RES)	Sampling To Analysis	649.25 649.25 649.50	48.00 48.00 48.00	HOURS HOURS HOURS	J (all detects) R (all non-detects)
Method: 8081B				Pr	eparation Method: Method
Matrix: AQ					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-ER (RES) PCTss-006M-0001-ER (RES2)	Sampling To Extraction	6.00 6.00	5.00 5.00	DAYS DAYS	J(all detects) UJ(all non-detects)
Method: 8082A				Pr	eparation Method: Method
Matrix: AQ					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-ER (RES)	Sampling To Extraction	6.00	5.00	DAYS	J(all detects) UJ(all non-detects)
Method: 8260C				Pr	eparation Method: Method
Matrix: AQ					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-TB (RE)	Sampling To Analysis	15.00	14.00	DAYS	J(all detects) UJ(all non-detects)
Method: 8270D				Pr	eparation Method: Method
Matrix: AQ					
Sample ID	Type	Actual	Criteria	Units	Flag
PCTss-006M-0001-ER (RES)	Sampling To Extraction	6.00	5.00	DAYS	J(all detects) UJ(all non-detects)
Method: 353.2			· · ·	Pr	eparation Method: Method
Matrix: SO					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTsb-001M-0001-SO (RES) PCTsb-002M-0001-SO (RES) PCTsb-003M-0001-SO (RES) PCTsb-003M-0001-SOMS (RES) PCTsb-003M-0001-SOMSD (RES) PCTss-004M-0001-SO (RES) PCTss-005M-0001-SO (RES) PCTss-005M-0001-SO (RES) PCTss-006M-0001-SO (RES) PCTss-007M-0001-SO (RES)	Sampling To Analysis	574.75 550.75 555.00 555.25 529.00 533.25 533.25 533.25 533.25 534.75	48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00	HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS	J(all detects) R(all non-detects)

Project Name and Number: W912QR-12-F-0212 -

6/2/2016 8:38:12 PM

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 320-18324-1 EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method: 8260C				Pr	eparation Method: Method
Matrix: SO					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-SO (RE)	Sampling To Analysis	24.00	14.00	DAYS	J(all detects) UJ(all non-detects)

Project Name and Number: W912QR-12-F-0212 - 6/2/2016 8:38:12 PM

ADR version 1.9.0.325

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-1

HEXACHLOROETHANE

EDD Filename: 320-18324-1

LCSD 320-106852/3-A

(PCTss-006M-0001-ER)

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

J(all detects)

UJ(all non-detects)

<i>Method:</i> 8270D <i>Matrix:</i> AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 320-106852/2-A LCSD 320-106852/3-A (PCTss-006M-0001-ER)	BENZOIC ACID	0	0	10.00-40.00	-	BENZOIC ACID	J (all detects) R (all non-detects)

-

21.00-115.00 21 (20.00) HEXACHLOROETHANE

-

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method: 8081B							
Maurix: 50							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS PCTss-006M-0001-SOMSD (PCTss-006M-0001-SO)	ENDOSULFAN I	153	424	53.00-132.00	95 (30.00)	ENDOSULFAN I	J (all detects)
Method: 8270D							
Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS PCTss-006M-0001-SOMSD (PCTss-006M-0001-SO)	BENZOIC ACID	0	0	10.00-89.00	-	BENZOIC ACID	J(all detects) UJ(all non-detects)
Method: 6010C							
Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS (TOT) PCTss-006M-0001-SOMSD (TOT) (PCTss-006M-0001-SO)	ALUMINUM IRON	1593 1890	1399 1321	74.00-119.00 81.00-118.00	-	ALUMINUM IRON	J(all detects)
PCTss-006M-0001-SOMS (TOT) PCTss-006M-0001-SOMSD (TOT) (PCTss-006M-0001-SO)	ANTIMONY MANGANESE	27 -197	26 -30	79.00-114.00 84.00-114.00	-	ANTIMONY MANGANESE	J(all detects) R(all non-detects)

Method Blank Outlier Report

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method: Matrix:	6010C AQ				
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples
MB 320-107757	7/1-A	4/28/2016 10:43:00 AM	ZINC	0.00771 mg/L	PCTss-006M-0001-ER

The following samples and their listed target analytes were qualified due to contamination reported in this

blank

Sample ID	Analyte	Reported Result	Modified Final Result
PCTss-006M-0001-ER(RES/TOT)	ZINC	0.0037 mg/L	0.0037U mg/L

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category:	GENCHEM									
Method:	353.2			Ма	atrix:	AQ				
Sample ID: PCTss-006M-0	0001-ER	Collec	4/13/20 ted: PM	016 12:30):00 A	nalysis T	ype: RES	5		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.48	U	0.48	CRDL	2.0	MRL	mg/L	R	StoA
Method Category:	GENCHEM									
Method:	353.2			Ма	atrix:	SO				
Sample ID: PCTsb-001M-	0001-SO	Collec	ted: 4/11/2	016 4:45:	00 PM A	nalysis T	ype: RES	;		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTsb-002M-	0001-SO	Collected: 4/12/2016 4:50:00 PM Analysis Type: RES								Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTsb-003M-	0001-SO	Collec	4/12/20 ted: PM	016 12:30):00 A	nalysis T	ype: RES	5		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA
Sample ID: PCTss-004M-(0001-SO	Collec	ted: 4/13/2	016 2:40:	00 PM A	nalysis T	ype: RES	5		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.96	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA
Sample ID: PCTss-005M-(0001-DS	Collec	4/13/2 ted: AM	016 10:25	5:00 A	nalysis T	ype: RES	;		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category:	GEN	CHE

Method:	353.2			Ма	atrix:	SO					
Sample ID: PCTss-(005M-0001-SO	Collec	4/13/2 ted: AM	016 10:20):00 A	nalysis T	<i>ype:</i> RES	5		Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA	
Sample ID: PCTss-(006M-0001-SO	Collec	4/13/2016 12:45:00 Collected: PM Analysis Type: RES							Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose		0.84	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA	
Sample ID: PCTss-(007M-0001-SO	Collec	ted: 4/13/2	016 9:10:	00 AM A	nalysis T	<i>ype:</i> RES	5		Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose		0.77	U	0.77	CRDL	5.0	MRL	mg/Kg	R	StoA	
Sample ID: PCTss-(008M-0001-SO	Collected: 4/13/2016 8:30:00 AM Analysis Type: RES Dilution							Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose		0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA	

Method Category:	GENCHEM			
Method:	6850	Matrix:	SO	

Sample ID: PCTsb-001M-0001-SO	Collected: 4/11/2016 4:45:00 PM Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
PERCHLORATE	0.41	J	0.15	CRDL	5.1	MRL	ug/Kg	J	RI		

Method Category:	METALS									
Method:	6010C									
Sample ID: PCTss-006M-	4/13/2016 12:30:00 Collected: PM Analysis Type: RES/TOT							Dilution: 1		
		Lab	Lab		DL		RL		Data Review	Reason
Analyte		Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
IRON		0.027	J	0.020	CRDL	0.10	MRL	mg/L	J	RI

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category:	METALS									
Method:	6010C	Matrix: AQ								
Sample ID: PCTss-006M-0	0001-ER	Collec	4/13/2 ted: PM	016 12:30	:00 A	nalysis T	ype: RES	лот	1	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM		0.31	J	0.25	CRDL	1.0	MRL	mg/L	J	RI
ZINC		0.0037	J	0.0030	CRDL	0.020	MRL	mg/L	U	Mb

Method Category: METALS

Method:	6010C		Matrix: SO								
Sample ID: PCTss-(006M-0001-SO	4/13/2016 12:45:00 Collected: PM Analysis Type: RES/TOT Dilution: 2									
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM		9700	DJ	5.5	CRDL	20	MRL	mg/Kg	J	Ms	
ANTIMONY		0.92	ΟJ	0.92	CRDL	2.9	MRL	mg/Kg	R	Ms	
CADMIUM		0.23	JD	0.029	CRDL	0.29	MRL	mg/Kg	J	RI	
IRON		15000	DJ	2.0	CRDL	9.8	MRL	mg/Kg	J	Ms	
MANGANESE		730	DJ	0.25	CRDL	0.98	MRL	mg/Kg	J	Ms	
SODIUM		41	JD	20	CRDL	98	MRL	mg/Kg	J	RI	

Method Category: SVOA

Method: 8081B Ma						AQ						
Sample ID: PCTss-006M-000	1-ER	Collec	4/13/2 ted: PM	016 12:30	6 12:30:00 Analysis Type: RES					Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDD		0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
4,4'-DDE		0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
4,4'-DDT		0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
ALDRIN		0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE		
ALPHA-BHC		0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE		
ALPHA-CHLORDANE		0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE		
BETA-BHC		0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE		
DELTA-BHC		0.012	U	0.012	CRDL	0.054	MRL	ug/L	UJ	StoE		
DIELDRIN		0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
ENDOSULFAN I		0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE		

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8081B			Ма	trix:	AQ						
Sample ID: PCTss-006M-0001-ER	Collec	4/13/2016 12: Collected: PM			0:00 Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ENDOSULFAN II	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
ENDOSULFAN SULFATE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
ENDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
ENDRIN ALDEHYDE	0.027	U	0.027	CRDL	0.11	MRL	ug/L	UJ	StoE		
ENDRIN KETONE	0.022	U	0.022	CRDL	0.11	MRL	ug/L	UJ	StoE		
gamma-BHC (Lindane)	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE		
GAMMA-CHLORDANE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE		
HEPTACHLOR	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE		
HEPTACHLOR EPOXIDE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE		
METHOXYCHLOR	0.046	U	0.046	CRDL	0.11	MRL	ug/L	UJ	StoE		
TOXAPHENE	0.55	U	0.55	CRDL	2.2	MRL	ug/L	UJ	StoE		

Method Category: SVOA

Method:	8081B	Matrix: SO								
Sample ID: PCTss-006M-0001-SO Analyte		Collec	Dilution: 1							
		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-CHLORDAN	IE	0.47	J	0.20	CRDL	1.7	MRL	ug/Kg	J	RI
DELTA-BHC		0.24	J	0.16	CRDL	1.7	MRL	ug/Kg	J	RI

Method Category: SVOA

Method: 8082A	2A Matrix: AQ								
Sample ID: PCTss-006M-0001-ER	Collec):00 A	nalysis T	ype: RES	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1016	0.098	U	0.098	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1221	0.12	U	0.12	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1232	0.18	U	0.18	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1242	0.13	U	0.13	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1248	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category:	SVOA

Method:	8082A	Matrix: AQ								
Sample ID: PCTss-	006M-0001-ER	Collec	0:00 Analysis Type: RES				Dilution: 1			
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1254		0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1260		0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method:	8270D			Ма	atrix:	AQ				
Sample ID: BCTcc. 006	M.0001 EP	Colleg	4/13/2	016 12:30	:00	nalveis T	What DES			Dilution: 1
Sample ID. FC155-000	WI-000 I-ER	Collec	led. PM		A	naiysis i	ype. KES		Data	
		Lab	Lab		DL		RL		Review	Reason
Analyte		Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
Benzo[a]anthracene		1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Sample ID: PCTss-006	M-0001-ER	4/13/2016 12:30:00 Collected: PM Analysis Type: RES-ACID Diluti								Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHE	NOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4,6-TRICHLOROPHE	NOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DICHLOROPHENO	L	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DIMETHYLPHENOI	L.	2.3	U	2.3	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROPHENOL		21	U	21	CRDL	62	MRL	ug/L	UJ	StoE
2-CHLOROPHENOL		1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLPHENOL		0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROPHENOL		2.0	U	2.0	CRDL	10	MRL	ug/L	UJ	StoE
3 & 4 Methylphenol		1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
4,6-DINITRO-2-METHY	LPHENOL	2.3	U	2.3	CRDL	62	MRL	ug/L	UJ	StoE
4-CHLORO-3-METHYL	PHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROPHENOL		6.3	U	6.3	CRDL	62	MRL	ug/L	UJ	StoE
BENZOIC ACID		21	UQ	21	CRDL	77	MRL	ug/L	R	Lcs, StoE
PENTACHLOROPHEN	OL	5.2	U	5.2	CRDL	62	MRL	ug/L	UJ	StoE
PHENOL		1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method:	8270D	Matrix: AQ								
Sample ID: PCTss-006M-00	001-ER	Collec	4/13/2 ted: PM	016 12:30	:00 A	nalysis T	ype: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZEN	E	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
1,2-DICHLOROBENZENE		1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,3-DICHLOROBENZENE		1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,4-DICHLOROBENZENE		1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROTOLUENE		2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,6-DINITROTOLUENE		2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2-CHLORONAPHTHALENE		1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLNAPHTHALENE		1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROANILINE		2.1	U	2.1	CRDL	52	MRL	ug/L	UJ	StoE
3,3'-DICHLOROBENZIDINE		0.99	U	0.99	CRDL	52	MRL	ug/L	UJ	StoE
3-NITROANILINE		1.4	U	1.4	CRDL	52	MRL	ug/L	UJ	StoE
4-BROMOPHENYL PHENYL	LETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROANILINE		2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROPHENYL PHENY	/L ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROANILINE		1.5	U	1.5	CRDL	52	MRL	ug/L	UJ	StoE
ACENAPHTHENE		1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ACENAPHTHYLENE		1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ANTHRACENE		1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[a]pyrene		1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[b]fluoranthene		1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[g,h,i]perylene		1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[k]fluoranthene		0.99	U	0.99	CRDL	10	MRL	ug/L	UJ	StoE
BENZYL ALCOHOL		2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
Bis (2-chloroisopropyl) ether		1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)MI	ETHANE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Bis(2-chloroethyl)ether		1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL) PHTH	IALATE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Butyl benzyl phthalate		1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
CARBAZOLE		1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
CHRYSENE		1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	E	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZOFURAN		1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D			Ма	atrix:	AQ				
Sample ID: PCTss-006M-0001-ER	Collec	4/13/2 ted: PM	016 12:30	:00 A	nalysis T	ype: RES	-BASE/N	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIETHYL PHTHALATE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
DIMETHYL PHTHALATE	0.91	U	0.91	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
FLUORANTHENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
FLUORENE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	5.2	U	5.2	CRDL	52	MRL	ug/L	UJ	StoE
HEXACHLOROETHANE	1.4	UQ	1.4	CRDL	10	MRL	ug/L	UJ	Lcs, StoE
Indeno[1,2,3-cd]pyrene	3.5	U	3.5	CRDL	15	MRL	ug/L	UJ	StoE
ISOPHORONE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
NAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
NITROBENZENE	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
N-Nitrosodi-n-propylamine	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PHENANTHRENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PYRENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method:	8270D			Ма	atrix:	SO					
Sample ID: PCTss-	-006M-0001-SO	Collec	4/13/2016 12:45:00 Collected: PM Analysis Type: RES-ACID							Dilution: 1	
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZOIC ACID		280	UJ	280	CRDL	1600	MRL	ug/Kg	UJ	Ms	

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:56 PM

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method	Category	VOA
Methou	Calegory.	VUA

Method: 8260C	Matrix: AQ								
Sample ID: PCTss-006M-0001-EP	Collec	4/13/2	016 12:30):00	nalveie T	Who: RES	1		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLOROFORM	0.20	J	0.12	CRDL	1.0	MRL	ug/L	J	RI
Sample ID: PCTss-006M-0001-TB	Collec	ted: 4/13/2	016 8:00:	00 AM A	nalysis T	ype: RE			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1,1-TRICHLOROETHANE*	0.19	UН	0.19	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1,2,2-TETRACHLOROETHANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1,2-TRICHLOROETHANE*	0.31	UH	0.31	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1-DICHLOROETHANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1-DICHLOROETHENE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-Dibromoethane (EDB)*	0.22	UH	0.22	CRDL	2.0	MRL	ug/L	UJ	StoA
1,2-DICHLOROETHANE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-Dichloroethene, Total*	0.20	UH	0.20	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-DICHLOROPROPANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
2-BUTANONE (MEK)*	0.53	JH	0.35	CRDL	2.0	MRL	ug/L	J	RI, StoA
2-HEXANONE*	0.17	UH	0.17	CRDL	2.0	MRL	ug/L	UJ	StoA
4-METHYL-2-PENTANONE (MIBK)*	0.18	UH	0.18	CRDL	2.0	MRL	ug/L	UJ	StoA
ACETONE	20	н	2.1	CRDL	10	MRL	ug/L	J	StoA
BENZENE*	0.13	UH	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOCHLOROMETHANE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMODICHLOROMETHANE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOFORM*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOMETHANE*	0.29	UH	0.29	CRDL	1.0	MRL	ug/L	UJ	StoA
CARBON DISULFIDE*	0.16	UH	0.16	CRDL	2.0	MRL	ug/L	UJ	StoA
CARBON TETRACHLORIDE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROBENZENE*	0.12	UH	0.12	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLORODIBROMOMETHANE*	0.13	UH	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROETHANE*	0.34	UH	0.34	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROFORM*	0.12	UH	0.12	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROMETHANE*	0.25	UH	0.25	CRDL	1.0	MRL	ug/L	UJ	StoA
CIS-1,2-DICHLOROETHENE*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA
CIS-1,3-DICHLOROPROPENE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:57 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category: VOA

Method:	8260C	Matrix: AQ

Sample ID: PCTss-006M-0001-TB	Collec	ted: 4/13/2	016 8:00:	00 AM A	nalysis T	ype: RE		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ETHYLBENZENE*	0.15	UН	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
METHYLENE CHLORIDE*	4.6	н	0.35	CRDL	1.0	MRL	ug/L	J	StoA	
m-Xylene & p-Xylene*	0.18	UH	0.18	CRDL	1.0	MRL	ug/L	UJ	StoA	
O-XYLENE*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA	
STYRENE*	0.21	JHM	0.15	CRDL	1.0	MRL	ug/L	J	RI, StoA	
TETRACHLOROETHENE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
TOLUENE*	0.25	UH	0.25	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRANS-1,2-DICHLOROETHENE*	0.11	UH	0.11	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRANS-1,3-DICHLOROPROPENE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRICHLOROETHENE*	0.13	UH	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA	
VINYL CHLORIDE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA	
Xylenes, Total*	0.18	UH	0.18	CRDL	1.5	MRL	ug/L	UJ	StoA	

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ACETONE*	7.8	JQ	2.1	CRDL	10	MRL	ug/L	J	RI	
METHYLENE CHLORIDE	0.77	J	0.35	CRDL	1.0	MRL	ug/L	J	RI	

Method Category: VOA

Method: 8260C Matrix: SO											
Sample ID: PCTss-006M-0001-SO	4/13/2016 12:45:00 Collected: PM Analysis Type: RE Dilut										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,1,1-TRICHLOROETHANE*	0.52	UH	0.52	CRDL	7.2	MRL	ug/Kg	UJ	StoA		
1,1,2,2-TETRACHLOROETHANE*	0.98	UH	0.98	CRDL	7.2	MRL	ug/Kg	UJ	StoA		
1,1,2-TRICHLOROETHANE*	0.63	UH	0.63	CRDL	7.2	MRL	ug/Kg	UJ	StoA		
1,1-DICHLOROETHANE*	0.42	UH	0.42	CRDL	7.2	MRL	ug/Kg	UJ	StoA		
1,1-DICHLOROETHENE*	0.37	UH	0.37	CRDL	7.2	MRL	ug/Kg	UJ	StoA		
1,2-Dibromoethane (EDB)*	0.39	UH	0.39	CRDL	14	MRL	ug/Kg	UJ	StoA		
1,2-DICHLOROETHANE*	1.0	UH	1.0	CRDL	7.2	MRL	ug/Kg	UJ	StoA		

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:57 PM

Ĭ

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method Category: VO	A
---------------------	---

Method: 8260C			Má	atrix:	SO					
Sample ID: PCTss-006M-0001-SO	Collec	4/13/2 ted: PM	016 12:45	5:00 A	nalvsis T	vpe: RE		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
I,2-Dichloroethene, Total*	1.3	UН	1.3	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
I,2-DICHLOROPROPANE*	0.86	UH	0.86	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
2-BUTANONE (MEK)*	2.0	UH	2.0	CRDL	14	MRL	ug/Kg	UJ	StoA	
2-HEXANONE*	1.1	UH	1.1	CRDL	14	MRL	ug/Kg	UJ	StoA	
1-METHYL-2-PENTANONE (MIBK)*	1.3	UH	1.3	CRDL	14	MRL	ug/Kg	UJ	StoA	
ACETONE*	24	JH	2.0	CRDL	29	MRL	ug/Kg	UJ	StoA, Tb	
BENZENE*	0.37	UН	0.37	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
BROMOCHLOROMETHANE*	1.4	UН	1.4	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
BROMODICHLOROMETHANE*	0.76	UН	0.76	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
BROMOFORM*	0.58	UН	0.58	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
BROMOMETHANE*	1.2	UН	1.2	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CARBON DISULFIDE*	0.70	UН	0.70	CRDL	14	MRL	ug/Kg	UJ	StoA	
CARBON TETRACHLORIDE*	0.76	UН	0.76	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CHLOROBENZENE*	0.42	UН	0.42	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CHLORODIBROMOMETHANE*	0.37	UН	0.37	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CHLOROETHANE*	0.65	UН	0.65	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CHLOROFORM*	0.37	UH	0.37	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CHLOROMETHANE*	0.72	UH	0.72	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CIS-1,2-DICHLOROETHENE*	1.3	UH	1.3	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
CIS-1,3-DICHLOROPROPENE*	0.92	UH	0.92	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
ETHYLBENZENE*	0.49	UH	0.49	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
METHYLENE CHLORIDE*	1.2	UH	1.2	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
n-Xylene & p-Xylene*	1.2	UH	1.2	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
D-XYLENE*	0.47	UН	0.47	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
STYRENE*	0.45	UН	0.45	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
FETRACHLOROETHENE*	0.88	UН	0.88	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
FOLUENE*	0.88	UН	0.88	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
FRANS-1,2-DICHLOROETHENE*	0.55	UH	0.55	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
FRANS-1,3-DICHLOROPROPENE*	1.1	UН	1.1	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
FRICHLOROETHENE*	0.86	UН	0.86	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
/INYL CHLORIDE*	0.52	UН	0.52	CRDL	7.2	MRL	ug/Kg	UJ	StoA	
Kylenes, Total*	1.2	UH	1.2	CRDL	7.2	MRL	ug/Kg	UJ	StoA	

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:57 PM

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016

Method	Category:	VOA

Method:	8260C			Ма	atrix:	so				
Sample ID: PCTss-	Collec	4/13/2016 12:45:00 Collected: PM Analysis Type: RES					Dilution: 1			
Analyta		Lab	Lab		DL	DI	RL Type	Unite	Data Review	Reason
Analyte		Nesun	Quai		Type	NL	Type	Units	Quai	COUE
ACETONE		8.3	J	2.0	CRDL	28	MRL	ug/Kg	U	Tb

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Reason Code Legend

Reason Code	Description
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Lower Rejection
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Estimation
StoA	Sampling to Analysis Rejection
StoE	Sampling to Extraction Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method:	6010C							
Matrix:	AQ							
SampleID		Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M	-0001-ER	IRON SODIUM ZINC	J J	0.027 0.31 0.0037	0.10 1.0 0.020	MRL MRL MRL	mg/L mg/L mg/L	J (all detects)
Method:	8260C							
Matrix:	AQ							
SampleID		Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M	-0001-ER	CHLOROFORM	J	0.20	1.0	MRL	ug/L	J (all detects)
PCTss-006M	-0001-TB	2-BUTANONE (MEK) ACETONE METHYLENE CHLORIDE STYRENE	JHW JG JH	0.53 7.8 0.77 0.21	2.0 10 1.0 1.0	MRL MRL MRL MRL	ug/L ug/L ug/L ug/L	J (all detects)
Method:	353.2							
Matrix:	SO							
SampleID		Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-004M	-0001-SO	Nitrocellulose	J	0.96	5.0	MRL	mg/Kg	J (all detects)
PCTss-006M	-0001-SO	Nitrocellulose	J	0.84	5.0	MRL	mg/Kg	J (all detects)
Method: Matrix:	6010C SO							
SampleID		Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M	-0001-SO	CADMIUM SODIUM	J D J D	0.23 41	0.29 98	MRL MRL	mg/Kg mg/Kg	J (all detects)
Method:	6850							
Matrix:	SO							
Matrix: SampleID	SO	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

6/2/2016 8:38:26 PM

Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-1

EDD Filename: 320-18324-1

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016

Method: 8081B							
Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-SO	ALPHA-CHLORDANE DELTA-BHC	J J	0.47 0.24	1.7 1.7	MRL MRL	ug/Kg ug/Kg	J (all detects)
Method: 8260C							
Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-SO	ACETONE	JH	24	29	MRL	ug/Kg	J (all detects)

Trip Blank Outlier Report

Lab Reporting Batch ID: 320-18324-1

Laboratory: TA SAC

EDD Filename: 320-18324-1

eQAPP Name: Pika_Ravenna_05012016

Method: 8260C Matrix: SO				
Trip Blank Sample ID	Collected Date	Analyte	Result	Associated Samples
PCTss-006M-0001-TB(RE)	4/13/2016 8:00:00 AM	2-BUTANONE (MEK) ACETONE METHYLENE CHLORIDE STYRENE	0.53 ug/L 20 ug/L 4.6 ug/L 0.21 ug/L	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-005M-0001-SO PCTss-005M-0001-SO PCTss-006M-0001-SO PCTss-006M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO
PCTss-006M-0001-TB (RES)	4/13/2016 8:00:00 AM	ACETONE METHYLENE CHLORIDE	7.8 ug/L 0.77 ug/L	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-005M-0001-SO PCTss-006M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO

The following samples and their listed target analytes were qualified due to contamination reported in this hlank

Sample ID	Analyte	Reported Result	Modified Final Result
PCTss-006M-0001-SO(RES)	ACETONE	8.3 ug/Kg	8.3U ug/Kg

Field QC Assignments and Associated Samples

EDD File Name: 320-18324-2 eQapp Name: Pika_Ravenna_05012016a

	Associated Samples	Sample Collection Date
Field QC Sample: PCTss-005M-0001-DS QC Type: FD		
	PCTss-005M-0001-SO	4/13/2016 10:20:00 AM

Matrix: SO

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC

Mothod Cotogory: METAL

eQAPP	Name: Pika	Ravenna	_05012016a
-------	------------	---------	------------

Method Category:	METALS	
Method:	6010C	

Sample ID: PCTsb-001M-0001-SO	Collected: 4/11/2016 4:45:00 PM Analysis Type: RES/TOT Dilution:							Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.95	U	0.95	CRDL	3.0	MRL	mg/Kg	R	Ms
ARSENIC	2.7	JD	1.3	CRDL	4.0	MRL	mg/Kg	J	RI
BERYLLIUM	0.22	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
CADMIUM	0.043	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	8100	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	56	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.13	JD	0.091	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	21	JD	20	CRDL	100	MRL	mg/Kg	J	RI
ALUMINUM	6300	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms

Collec	Dilution: 2							
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
11000	D	5.5	CRDL	20	MRL	mg/Kg	J	Ms
0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms
22000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms
330	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms
0.15	JD	0.089	CRDL	0.49	MRL	mg/Kg	U	Mb
36	JD	20	CRDL	99	MRL	mg/Kg	J	RI
	Lab Result 11000 0.93 22000 330 0.15 36	Lab Result Lab Qual 11000 D 0.93 U 22000 D 330 D 0.15 J D 36 J D	Lab Result Lab Qual DL 11000 D 5.5 0.93 U 0.93 22000 D 2.0 330 D 0.25 0.15 J D 0.089 36 J D 20	Collected: 4/12/2016 4:50:00 PM A Lab Result Lab Qual DL DL Type 11000 D 5.5 CRDL 0.93 U 0.93 CRDL 22000 D 2.0 CRDL 330 D 0.25 CRDL 0.15 J D 0.089 CRDL 36 J D 20 CRDL	Collected: 4/12/2016 4:50:00 PM Analysis T Lab Result Lab Qual DL DL DL Type RL 11000 D 5.5 CRDL 20 0.93 U 0.93 CRDL 3.0 22000 D 2.0 CRDL 9.9 330 D 0.25 CRDL 0.99 0.15 J D 0.089 CRDL 0.49 36 J D 20 CRDL 99	Collected: 4/12/2016 4:50:00 PM Analysis Type: RES Lab Result Lab Qual DL DL Type RL RL Type 11000 D 5.5 CRDL 20 MRL 0.93 U 0.93 CRDL 3.0 MRL 22000 D 2.0 CRDL 9.9 MRL 330 D 0.25 CRDL 0.99 MRL 0.15 J D 0.089 CRDL 0.49 MRL 36 J D 20 CRDL 99 MRL	Collected: 4/12/2016 4:50:00 PM Analysis Type: RES/TOT Lab Result Lab Qual DL DL Type RL RL Type Units 11000 D 5.5 CRDL 20 MRL mg/Kg 0.93 U 0.93 CRDL 3.0 MRL mg/Kg 22000 D 2.0 CRDL 9.9 MRL mg/Kg 330 D 0.25 CRDL 0.99 MRL mg/Kg 0.15 J D 0.089 CRDL 0.49 MRL mg/Kg 36 J D 20 CRDL 99 MRL mg/Kg	Lab Result Lab Qual DL DL DL Type RL RL RL Type Mail Mark Data Review Qual 11000 D 5.5 CRDL 20 MRL mg/Kg J 0.93 U 0.93 CRDL 3.0 MRL mg/Kg R 22000 D 2.0 CRDL 9.9 MRL mg/Kg J 330 D 0.25 CRDL 0.99 MRL mg/Kg J 0.15 J D 0.089 CRDL 0.49 MRL mg/Kg J 36 J D 20 CRDL 9.9 MRL mg/Kg J

Sample ID: PCTsb-003M-0001-SO	Collec	4/12/2 ted: PM	010 12:30	A.	nalysis T	ype: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	8100	JD	5.6	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.94	UJ	0.94	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.081	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	17000	JD	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	490	JD	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.18	JD	0.090	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	30	JD	20	CRDL	100	MRL	mg/Kg	J	RI

Sample ID: PCTss-004M-0001-SO	Collec	ted: 4/13/2	016 2:40:	00 PM A	nalysis T	ype: RES	/тот		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	11000	D	5.7	CRDL	20	MRL	mg/Kg	J	Ms

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Matrix: SO

Lab Reporting Batch ID: 320-18324-2

Laboratory: TA SAC

EDD Filename: 320-18324-2

eQAPP Name: Pika_Ravenna_05012016a

Method Category:	METALS
Method:	6010C

Sample ID: PCTss-004M-0001-SO	Collec	ted: 4/13/2	016 2:40:	00 PM A	nalysis T	ype: RES	/тот	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.95	U	0.95	CRDL	3.0	MRL	mg/Kg	R	Ms	
CADMIUM	0.21	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI	
IRON	21000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms	
MANGANESE	420	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms	
SILVER	0.19	JD	0.091	CRDL	0.50	MRL	mg/Kg	U	Mb	
SODIUM	36	JD	20	CRDL	100	MRL	mg/Kg	J	RI	
Sample ID: PCTss-005M-0001-DS	Collec	4/13/2 ted: AM	016 10:25	:00 A	nalysis T		Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	7900	D	5.5	CRDL	20	MRL	mg/Kg	J	Ms	
ANTIMONY	0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms	
CADMIUM	0.10	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI	
IRON	13000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms	
MANGANESE	440	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms	
SILVER	0.31	JD	0.089	CRDL	0.49	MRL	mg/Kg	U	Mb	
SODIUM	21	JD	20	CRDL	99	MRL	mg/Kg	J	RI	
All All Collected: Analysis Type: RES/TOT						·	Dilution: 2			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	7800	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.11	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	13000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms
MANGANESE	460	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms
SILVER	0.25	JD	0.089	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	21	JD	20	CRDL	99	MRL	mg/Kg	J	RI

Sample ID: PCTss-007M-0001-SO	Collec	Dilution: 2							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	9100	D	5.7	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.96	U	0.96	CRDL	3.1	MRL	mg/Kg	R	Ms
CADMIUM	0.13	JD	0.031	CRDL	0.31	MRL	mg/Kg	J	RI

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

Method Category:	METALS									
Method:	6010C	Company of the		Ма	atrix:	so			TTO ALCON	
Sample ID: PCTss-007M-	0001-SO	Collec	ted: 4/13/2	016 9:10:	00 AM A	nalysis T	ype: RES	б/тот		Dilution: 2
Analyta		Lab	Lab	01	DL	DI	RL	Unito	Data Review	Reason

Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
IRON	15000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	570	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.29	JD	0.092	CRDL	0.51	MRL	mg/Kg	U	Mb
SODIUM	22	JD	20	CRDL	100	MRL	mg/Kg	J	RI
Sample ID: PCTss-008M-0001-SO	Collec	ted: 4/13/2	016 8:30:	00 AM 4	nalvsis T	vpe: RES	утот		Dilution: 2

Sample 10. FC155-000W-0001-30	Conected. 4/13/2010 8.30.00 AM Analysis Type. RES/101										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ALUMINUM	7900	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms		
ANTIMONY	0.94	U	0.94	CRDL	3.0	MRL	mg/Kg	R	Ms		
CADMIUM	0.15	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI		
IRON	13000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms		
MANGANESE	500	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms		
SILVER	0.20	JD	0.090	CRDL	0.50	MRL	mg/Kg	U	Mb		
SODIUM	22	JD	20	CRDL	100	MRL	mg/Kg	J	RI		

Method Category: METALS

Method:	7471A	Company of Com		Ма	ntrix:	SO			TENET				
Sample ID: PCTsb-00	1M-0001-SO	Collected: 4/11/2016 4:45:00 PM Analysis Type: RES/TOT Dilution: 1											
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY		0.015	JH	0.0051	CRDL	0.024	MRL	mg/Kg	J	RI, StoA			
Sample ID: PCTsb-00	2M-0001-SO	Collected: 4/12/2016 4:50:00 PM Analysis Type: RES/TOT Dilution: 1											
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY		0.020	JH	0.0051	CRDL	0.024	MRL	mg/Kg	J	RI, StoA			
Sample ID: PCTsb-00	3M-0001-SO	Collec	4/12/2 ted: PM	016 12:30	:00 A	nalysis T	ype: RES	/тот		Dilution: 1			
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY		0.023	JH	0.0052	CRDL	0.024	MRL	mg/Kg	J	RI, StoA			

* denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-2

Laboratory: TA SAC

EDD Filename: 320-18324-2

eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

method Outcyc										
Method:	7471A			Ма	atrix:	so				
Sample ID: PCTss-0	004M-0001-SO	Collec	ted: 4/13/2	016 2:40:	00 PM A	nalysis T	ype: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY		0.038	н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA
Sample ID: PCTss-0	005M-0001-DS	Collec	4/13/2 ted: AM	016 10:25	:00 A	nalysis T	ype: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY		0.038	н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA
Sample ID: PCTss-0	005M-0001-SO	Collec	:00 A	nalysis T	ype: RES	б/тот		Dilution: 1		
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY		0.035	н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA
Sample ID: PCTss-0	007M-0001-SO	Collec	ted: 4/13/2	016 9:10:	00 AM A	nalysis T	ype: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reasor Code
MERCURY		0.039	Н	0.0052	CRDL	0.024	MRL	mg/Kg	J	StoA
Sample ID: PCTss-0	008M-0001-SO	Collec	ted: 4/13/2	016 8:30:	00 AM <i>A</i>	nalysis T	ype: RES	б/тот		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reasor Code

0.040

MERCURY

0.0052

Н

CRDL

0.024

MRL

mg/Kg

J

StoA

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Reason Code Legend

Reason Code	Description
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Rejection

Data Review Summary

Lab Reporting Batch ID: 320-18324-2 EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Validation Area	Note
Technical Holding Times	SR
Temperature	А
Initial Calibration	Ν
Continuing Calibration/Initial Calibration Verification	Ν
Method Blanks	SR
Surrogate/Tracer Spikes	Ν
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	Ν
Laboratory Replicates	Ν
Laboratory Control Samples	А
Compound Quantitation	SR
Field Duplicates	А
Field Triplicates	N
Field Blanks	N

A = Acceptable, N = Not provided/applicable, SR = See report

The contents of this report reflect findings made by ADR during Automated Data Review, manual applied qualifiers are not considered. Please refer to the Overall Qualifier Summary report for manual qualifiers.

Field Duplicate RPD Report

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016a

Method: 6010C Matrix: SO

	Concentrat					
	PCTss-005M-0001-SO	PCTss-005M-0001-DS	Sample	eQAPP		
Analyte	(101)	(101)	RPD	RPD	Flag	
ALUMINUM	7800	7900	1	50.00		
ARSENIC	7.4	7.6	3	50.00		
BARIUM	49	49	0	50.00		
BERYLLIUM	0.31	0.30	3	50.00		
CADMIUM	0.11	0.10	10	50.00		
CALCIUM	280	340	19	50.00		
CHROMIUM	11	10	10	50.00		
COBALT	6.0	5.9	2	50.00		
COPPER	9.8	9.4	4	50.00		
IRON	13000	13000	0	50.00	No Qualifiers Applied	
LEAD	27	27	0	50.00		
MAGNESIUM	1300	1300	0	50.00		
MANGANESE	460	440	4	50.00		
NICKEL	11	11	0	50.00		
POTASSIUM	470	470	0	50.00		
SILVER	0.25	0.31	21	50.00		
SODIUM	21	21	0	50.00		
VANADIUM	13	13	0	50.00		
ZINC	50	50	0	50.00		
Method: 7471A						
Matrix: SO	Matrix: SO					
	Concentrat					
	PCTss-005M-0001-SO	PCTss-005M-0001-DS	Sample	eQAPP		
Analyte	(TOT)	(TOT)	RPD	RPD	Flag	
MERCURY	0.035	0.038	8	50.00	No Qualifiers Applied	

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 320-18324-2 EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Method: 7471A Preparation Method: 7471A								
Matrix: SO								
Sample ID	Туре	Actual	Criteria	Units	Flag			
PCTsb-001M-0001-SO (RES/TOT) PCTsb-002M-0001-SO (RES/TOT) PCTsb-003M-0001-SO (RES/TOT) PCTsb-003M-0001-SOMSD (RES/TOT) PCTsb-003M-0001-SO (RES/TOT) PCTss-004M-0001-SO (RES/TOT) PCTss-005M-0001-SO (RES/TOT) PCTss-007M-0001-SO (RES/TOT) PCTss-008M-0001-SO (RES/TOT)	Sampling To Analysis	72.00 71.00 71.00 71.00 71.00 70.00 70.00 70.00 70.00 70.00	28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	DAYS DAYS DAYS DAYS DAYS DAYS DAYS DAYS	J (all detects) R (all non-detects)			

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Met	hod:	6010	C

Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTsb-003M-0001-SOMS (TOT) PCTsb-003M-0001-SOMSD (TOT) (PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-005M-0001-SO PCTss-005M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO)	ALUMINUM IRON MANGANESE	1126 308 149	1141 489 134	74.00-119.00 81.00-118.00 84.00-114.00	-	ALUMINUM IRON MANGANESE	J (all detects)
PCTsb-003M-0001-SOMS (TOT) PCTsb-003M-0001-SOMSD (TOT) (PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-005M-0001-SO PCTss-005M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO)	ANTIMONY	19	21	79.00-114.00	-	ANTIMONY	J(all detects) R(all non-detects)

Method Blank Outlier Report

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016a

Method: Matrix:	6010C SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples
MB 320-115129/	'1-A	6/25/2016 10:48:00 AM	SILVER	0.114 mg/Kg	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-SO PCTss-005M-0001-SO PCTss-008M-0001-SO

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
PCTsb-001M-0001-SO(RES/TOT)	SILVER	0.13 mg/Kg	0.13U mg/Kg
PCTsb-002M-0001-SO(RES/TOT)	SILVER	0.15 mg/Kg	0.15U mg/Kg
PCTsb-003M-0001-SO(RES/TOT)	SILVER	0.18 mg/Kg	0.18U mg/Kg
PCTss-004M-0001-SO(RES/TOT)	SILVER	0.19 mg/Kg	0.19U mg/Kg
PCTss-005M-0001-DS(RES/TOT)	SILVER	0.31 mg/Kg	0.31U mg/Kg
PCTss-005M-0001-SO(RES/TOT)	SILVER	0.25 mg/Kg	0.25U mg/Kg
PCTss-007M-0001-SO(RES/TOT)	SILVER	0.29 mg/Kg	0.29U mg/Kg
PCTss-008M-0001-SO(RES/TOT)	SILVER	0.20 mg/Kg	0.20U mg/Kg
Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Method: 6010C *Matrix:* SO

		Lab		Reporting	RI		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
PCTsb-001M-0001-SO	ARSENIC BERYLLIUM CADMIUM SILVER SODIUM	J D J D J D	2.7 0.22 0.043 0.13 21	4.0 0.30 0.30 0.50 100	MRL MRL MRL MRL MRL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
PCTsb-002M-0001-SO	SILVER SODIUM	J D	0.15 36	0.49 99	MRL MRL	mg/Kg mg/Kg	J (all detects)
PCTsb-003M-0001-SO	CADMIUM SILVER SODIUM	J D J D J D	0.081 0.18 30	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-004M-0001-SO	CADMIUM SILVER SODIUM	1 D 1 D 1 D	0.21 0.19 36	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-005M-0001-DS	CADMIUM SILVER SODIUM	J D J D J D	0.10 0.31 21	0.30 0.49 99	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-005M-0001-SO	CADMIUM SILVER SODIUM	1 D 1 D 1 D	0.11 0.25 21	0.30 0.50 99	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-007M-0001-SO	CADMIUM SILVER SODIUM	1 D 1 D 1 D	0.13 0.29 22	0.31 0.51 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-008M-0001-SO	CADMIUM SILVER SODIUM	J D J D J D	0.15 0.20 22	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTsb-001M-0001-SO	MERCURY	JH	0.015	0.024	MRL	mg/Kg	J (all detects)
PCTsb-002M-0001-SO	MERCURY	JH	0.020	0.024	MRL	mg/Kg	J (all detects)
PCTsb-003M-0001-SO	MERCURY	JH	0.023	0.024	MRL	mg/Kg	J (all detects)

Data Validation Report For PIKA International, Inc.

Date: 10/27/16 Rev D Project: RAVENNA PO# 1208157-009 Project LAB #: 320-18324-1 and 320-18324-2 Laboratory: Test America (Various)

Prepared By:

Signed: 2/2/2

William W. Purves

Table of Contents

Introduction	3
Quality Control	1
Method 8260B Summary 5	5
ICP Quality Control	1
Mercury Quality Control	7
Nitrate Quality Control Method 9056A)
QC Summary 1	10
References 1	11
Glossary of Terms 1	12
Tables Appendix A 1	15
Check Sheets Appendix B 5	52

1.0 Introduction

This Data Validation Report (DVR) details the assessment and validation of analytical data generated for samples collected by PIKA during field activities at the Ravenna Army Arsenal, Ravenna Ohio, PIKA Project # 1208157-009. The laboratories subcontracted for the chemical analysis of the soil and water samples were various Test America facilities. The laboratories are ELAP accredited.

This report is the accumulation of all the laboratory reports/project numbers into one document. The samples evaluated in this report were sampled April 11-13, 2016. All samples were delivered to TestAmerica in Canton, Ohio on April 14, 2016 and forwarded to ELAP certified TestAmerica Sacramento for analysis. Analytical results of the samples are provided by the ADR and not provided in this report. The professional judgment of the data and qualifiers used and/or changed by the data validator are presented under each method. An overview of the validation findings is presented in tabular form in Appendix A Appendix B contains all the check lists that were used in the validation effort. The methods are provided in the list following this paragraph:

Volatile Organic Compounds via USEPA Method 8260B Semi-Volatile Organic Compounds via USEPA Method 8270C Pesticides via USEPA Method 8081A Poly Chlorinated Biphenyls via USEPA Method 8082 Explosives via USEPA Method 8330 Nitroglycerine via USEPA Method 8330 Nitroguanidine (propellant) via USEPA Method 8330 Modified Perchlorate via USEPA Method 6860 Metals excluding Mercury via USEPA Methods 6010B and 6010B (trace) Mercury by USEPA Methods 7470A (water) and 7471A (soil) Nitrocellulose (propellant) via USEPA Methods 3532 Percent Solids via USEPA Method 160.3

All sample results were systematically verified using the ADR software (Level II Validation) followed by a Level IV validation by Purves Environmental in Hudson, OH in accordance with the project specified QAAP, DOD QSM, National Functional Guidelines for Data Validation and USEPA SW-846 Test Methods for Evaluating Solid Waste. A completeness review of 100% of the package was performed. One water sample (PCTss-006M-0001-ER, Equipment Rinse) and one soil sample (PCT ss-006M-0001-SO) were fully validated (complete reconstruction) to meet the project objective of Level IV validation of ten percent of the data. This validation includes all QA/QC data, calibration curves for ten percent of the compound listed, and any data where calibration or QA/QC data indicated an issue. The soil samples were evaluated and checked separately from the equipment rinse sample.

1.1 Sample Data Selection Criteria

All the QA/QC data was reviewed for the samples in all project numbers based upon the following criteria.

Flagging Criteria: All samples that had R, J, H, and M flags were checked.

As the QA/QC data was reviewed, all samples that were affected by any QA/QC outlier was isolated and reviewed. Ten Percent (10%) of the samples were then reviewed. Due to the small sample group, only one soil and water was available for full evaluation.

The of the data was validated in accordance with the analytical methods and the documents entitled:

Project Specified QAAP The DOD QSM National Functional Guidelines for Data Validation USEPA Test Methods for evaluating Solid Waste SW-846

All data is computer generated and has been consistent. The data package used by Test America is an industry standard and re-calculation consistently demonstrates that there are no issues with the data in terms of accuracy of the calculations. Calculations that may be generated by hand was be checked. However, the computer data generation systems used by Test America are 100% accurate based upon the input. The only time that data validation issues arise is when the calibration, QA or QC does not meet established criteria and sample data is generated and reported within the outlying criteria.

The results of the data validation are presented in the following subsections.

Section 2.0 Quality Control Results Section 3.0 QC Summary Section 4.0 References Appendix A

2.0 Quality Control Results

This section provides a summary of the laboratory QC results, which were used to meet the project data quality objectives (DQOs) for the investigation. The section below outlines what parts of each method were checked and a brief statement is provided where issues may occur.

- 2.1 All organic data utilizes the same validation flagging letters. J= Estimated Value (used primarily when the result is below the reporting limit (RL) but above the detection limit (DL)), otherwise, when QA/QCs are out of range but the sample result is above the reporting limit. R= Rejected (used when calibrations and QA/QCs fail) often used per analyte when multiple compounds or elements are analyzed by the same method.
- 2.1.1 Metals Data Soils ICP Method 6010B and 6010B (trace) Soil, and Water.

Test America uses a J Flag as and estimated value for blank results that are greater than the Method Detection Limit (MDL) and below the Reporting Limit (RL) or Method Reporting Limit (MRL). The J flag is also used for data that is considered estimated for other quality control reasons as well. All data that was J

flagged was reviewed by the data validator and an evaluation provided in the summary. All changes in flags by the data validator are fully explained.

2.1.2 Flag Removal

2.1.2.1 All estimated data generated for all organic and general chemistry are valid and should remain.

2.1.2.2 Results for aluminum, iron, and manganese by Method 6010B were more than 4 times greater than the spike concentration. All estimated results for aluminum, iron, and manganese by due to low MS/MSD recovery were removed because the spiking criteria were not met.

2.2 Method 8260B Volatile Organic Compounds (Water)

- 2.2.1 Initial Calibration All method requirements were met for all data generated.
- 2.2.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.
- 2.2.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits except Acetone as described in the case narrative. This issue is normally due to acetone as a laboratory contaminant and it is the professional judgment that the sample is not affected by the contaminant.
- 2.2.4 Matrix Spike and Matrix Spike Duplicate Analysis Not enough sample was provided for a MS/MSD analysis.
- 2.2.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

2.2.6 Method Blank

All the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

2.2.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

Data Validation Specialists

- 2.2.8 Surrogates All surrogates met method criteria
- 2.2.9 Internal Standards All Internal Standards met method limits.
- 2.2.10 Tuning Tuning requirements for the method were met.
- 2.2.11 SPCC Check The SPCC Check met all method requirements.
- 2.2.12 Holding Time The holding time for this sample was met.
- 2.2.13 Relative Retention Times All relative retention times and retention time windows met method requirements.
- 2.3 Method 8260B Volatile Organic Compounds (Soil)
 - 2.3.1 Initial Calibration All method requirements were met for all data generated.
 - 2.3.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered within the method limits. The LCS Dup was also within method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.
 - 2.3.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
 - 2.3.4 Matrix Spike and Matrix Spike Duplicate Analysis MS/MSD was not analyzed on a project sample. Per the laboratory narrative, "insufficient sample volume was provided to perform a matrix spike and matrix spike duplicate". This statement was provided for both analytical batches.
 - 2.3.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.3.6 Method Blank

All the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

- 2.3.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.3.8 Surrogates All surrogates met method criteria.
- 2.3.9 Internal Standards All Internal Standards met method criteria.
- 2.3.10 Tuning Tuning requirements for the method were met.
- 2.3.11 SPCC Check The SPCC Check met all method requirements.
- 2.3.12 MRL Sequence Analysis The MRL Analysis met method requirements
- 2.3.13 Holding Time The holding time for this sample was met.
- 2.3.14 Relative Retention Times All relative retention times and retention time windows met method requirements.
- 2.4 Method 8270C Semi-Volatile Organic Compounds (Water)
 - 2.4.1 Initial Calibration All method requirements were met for all data generated.
 - 2.4.2 Laboratory Control Sample (LCS) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed. Benzoic Acid did not meet method requirements; however, Benzoic Acid is a poor chromatographic compound and has no effect on the non-detect data. The %RPD for Hexachloroethane did not affect sample data.
 - 2.4.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.

2.4.4 Matrix Spike and Matrix Spike Duplicate Analysis Not enough sample was provided for a MS/MSD analysis. 2.4.5 Contract Required Detection Limit Standard and Reporting Limit **Standard Analysis** All method requirements were met. 2.4.6 Method Blank All the blanks were below the reporting limit for water. 2.4.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available. 2.4.8 Surrogates All surrogates met method limits. 2.4.9 Internal Standards All Internal Standards met method guidelines. 2.4.10 Tuning Tuning requirements for the method were met. 2.4.11 SPCC Check The SPCC Check met all method requirements. 2.4.12 MRL Standard

The MRL met method requirements.

2.4.13 Holding Time

Sample PCTss-006M-0001-SO was analyzed for the RVAAP full suite. Holding times were met except for re-extraction for Benzoic Acid to verify the low MS/MSD recoveries. No other issues were found.

- 2.4.14 Relative Retention Times All relative retention times and retention time windows met method requirements.
- 2.5 Method 8270C Semi-Volatile Organic Compounds (Soil)
 - 2.5.1 Initial Calibration All method requirements were met for all data generated.
 - 2.5.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered within the method limits. The LCS Dup was also within

method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

- 2.5.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.5.4 Matrix Spike and Matrix Spike Duplicate Analysis The MS/MSD recovery for Benzoic Acid was low for both the MS and MSD. Reference to multiple compounds in the narrative was incorrect as they were samples that were not part of the Ravenna sample group. No additional measures were taken to verify the reason for the low recovery thus the MS/MSD recovery. The flag stands for the Benzoic Acid.
- 2.5.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.5.6 Method Blank All the blanks were below the reporting limit for water.
- 2.5.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.5.8 Surrogates All surrogates met method limits.
- 2.5.9 Internal Standards All Internal Standards met method guidelines.
- 2.5.10 Tuning Tuning requirements for the method were met.
- 2.5.11 SPCC Check The SPCC Check met all method requirements.
- 2.5.12 MRL Standard The MRL met method requirements.
- 2.5.13 Holding Time The holding times for the samples were met.
- 2.5.14 Relative Retention Times All relative retention times and retention time windows met method requirements.

2.6 Method 8081A Pesticides (Water)

The validation reviewed only those compounds of concern.

- 2.6.1 Initial Calibration All method requirements were met for all data generated.
- 2.6.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.6.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.6.4 Matrix Spike and Matrix Spike Duplicate Analysis There was insufficient sample to run the MS/MSD.
- 2.6.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met for most compounds
- 2.6.6 Method Blank All the blanks were below the reporting limit for water.
- 2.6.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.6.8 Surrogates All surrogates met method guidelines.
- 2.6.9 Holding Time Holding times for extraction were met.
- 2.6.10 Endrin and 4,4'-DDT Breakdown All breakdown analysis passed method requirements.
- 2.6.11 Retention Times All retention times and retention time windows met method requirements.
- 2.6.12 Second Column Confirmation Second column confirmation was not required as no compounds were detected.
- 2.7 Method 8081A Pesticides (Soil)

The validation reviewed only those compounds of concern.

2.7.1 Initial Calibration

All method requirements were met for all data generated.

- 2.7.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.7.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.7.4 Matrix Spike and Matrix Spike Duplicate Analysis The MS/MSD met method requirements for all compounds except Endosulfan I. The MS and MSD were biased high. Since no Endosulfan I was not detected in the samples, there was no effect on data.
- 2.7.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.7.6 Method Blank All the blanks were below the reporting limit for water.
- 2.7.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.7.8 Surrogates All surrogates met method limits.
- 2.7.9 Holding Time There was no holding time issue with the sample.
- 2.7.10 Endrin and 4,4'-DDT Breakdown All breakdown analysis passed method requirements.
- 2.7.11 Retention Times All retention times and retention time windows met method requirements.
- 2.7.12 Second Column Confirmation Second column confirmation was not required as no compounds were detected.

2.8 Method 8082 Polychlorinated Biphenyl (PCBs) (Water) The validation reviewed only those compounds of concern.

- 2.8.1 Initial Calibration All method requirements were met for all data generated.
- 2.8.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.8.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.8.3 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) There was not sufficient sample provided to perform a MS/MSD.
- 2.8.4 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.8.5 Method Blank All the blanks were below the reporting limit for water.
- 2.8.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.8.7 Surrogates All surrogates met recovery limits.
- 2.8.8 Holding Time There was no holding time issue with the sample.
- 2.8.9 Retention Times All retention times and retention time windows met method requirements.
- 2.8.10 Second Column Confirmation Second column confirmation was not required as no compounds were detected.

2.9 Method 8082 Polychlorinated Biphenyl (PCBs) (Soil) The validation reviewed only those compounds of concern.

2.9.1 Initial Calibration

All method requirements were met for all data generated.

- 2.9.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.9.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.9.4 Matrix Spike and Matrix Spike Duplicate Analysis All method requirements were met. All Matrix Spike compounds recovered with in the method limits. The Matrix Spike Duplicate was also within method limits and all Relative Percent Differences passed.
- 2.9.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.9.6 Method Blank All the blanks were below the reporting limit for water.
- 2.9.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.9.8 Surrogates

All surrogates met method requirements except in the method blank. The recovery was biased positively and did not affect any sample data.

- 2.9.9 Manual Integration The laboratory followed all proper protocols for manual integration.
- 2.9.10 Holding Time There was no holding time issue with the sample.

2.9.11 Retention Times

All retention times and retention time windows met method requirements.

2.9.12 Second Column Confirmation Second column confirmation was not required as no compounds were detected. 2.10 Method 8330 Explosives and Nitroglycerine (Water) The validation reviewed only those compounds of concern.

- 2.10.1 Initial Calibration All method requirements were met for all data generated.
- 2.10.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.10.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.10.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) Not enough sample was provided for MS/MSD analysis.
- 2.10.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.10.5 Method Blank All the blanks were below the reporting limit for water.
- 2.10.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.10.7 Surrogates

All surrogates met method limits.

- 2.10.8 Holding Time There was no holding time issue with the sample.
- 2.10.9 Retention Times All retention times and retention time windows met method requirements.
- 2.10.10Second Column Confirmation Second column confirmation was not required as no compounds were detected.

2.11 Method 8330 Explosives (Includes Nitroglycerine)(Soil) The validation reviewed only those compounds of concern.

2.11.1 Initial Calibration

All method requirements were met for all data generated.

- 2.11.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.11.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.11.4 Matrix Spike and Matrix Spike Duplicate Analysis All method requirements were met. All Matrix Spike compounds recovered with in the method limits. The Matrix Spike Duplicate was also within method limits and all Relative Percent Differences passed.
- 2.11.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.11.6 Method Blank All the blanks were below the reporting limit for water.
- 2.11.7 Field Duplicate (Sample Duplicate) AnalysisThe field duplicate was non-detect as well as the original sample.No percent difference can be calculated. (Nitroglycerine only).
- 2.11.8 Surrogates

All surrogates met method limits.

- 2.11.9 Manual Integration Manual integration was performed and followed method guidelines.
- 2.11.10Holding Time

There was no holding time issue with the sample.

2.11.11Retention Times

All retention times and retention time windows met method requirements.

- 2.11.12Second Column Confirmation Second column confirmation was not required as no compounds were detected.
- 2.12 Method 8330 Modified Nitroguanidine (Water)

The validation reviewed only the compound of concern.

2.12.1 Initial Calibration

All method requirements were met for all data generated.

- 2.12.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS ands LCS Dup compound recovered with in the method limits and the Relative Percent Difference passed.
- 2.12.3 Continuing Calibration Checks. (CCCs) All method requirements were met. The CCCs recovered within the method limits.
- 2.12.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) Not enough sample was provided for MS/MSD analysis.
- 2.12.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.12.6 Method Blank All the blanks were below the reporting limit for water.
- 2.12.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.12.8 Surrogates

No surrogate is used in this method.

2.12.9 Holding Time

There was no holding time issue with the sample.

2.12.10Retention Times

All retention times and retention time windows met method requirements.

2.12.11Second Column Confirmation Second column confirmation was not required as no compounds were detected.

2.13 Method 8330 Modified Nitroguanidine (Soil) The validation reviewed only the compound of concern.

2.13.1 Initial Calibration

All method requirements were met for all data generated.

- 2.13.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the method limits and the Relative Percent Difference passed.
- 2.13.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.13.4 Matrix Spike and Matrix Spike Duplicate Analysis All method requirements were met. The Matrix Spike and Matrix Spike Duplicate compound recovered within the method limits and the Relative Percent Difference passed.
- 2.13.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.13.6 Method Blank All the blanks were below the reporting limit for water.
- 2.13.7 Field Duplicate (Sample Duplicate) AnalysisThe field duplicate was non-detect as well as the original sample.No percent difference can be calculated.
- 2.13.8 Surrogates No surrogate is used in this method.
- 2.13.9 Holding Time

There was no holding time issue with the sample.

2.13.10Retention Times

All retention times and retention time windows met method requirements.

- 2.13.11Second Column Confirmation Second column confirmation was not required as no compounds were detected.
- 2.14 Method 6850 Perchlorate (Water)
 - 2.14.1 Tune

Tune met method criteria.

- 2.14.2 Initial Calibration All method requirements were met.
- 2.14.3 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS ands LCS Dup compound recovered with in the method limits and the Relative Percent Difference passed.
- 2.14.4 LC Interference Check Standard The LC Interference Check Standard recovered within the method limits.
- 2.14.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) Prep Batch reports that an MS/MSD was extracted but on data is provided in the report.
- 2.14.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.14.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.14.8 Holding Time There was no holding time issue with the sample.
- 2.14.9 Retention Times All retention times and retention time windows met method requirements.
- 2.14.10Method Blank, Initial Calibration Blank All the blanks were below the reporting limit for water

2.15 Method 6850 Perchlorate by ICMS (Soil)

The validation reviewed only the compound of concern.

2.15.1 Tune Tune met method criteria.

2.15.2 Initial Calibration

All method requirements were met for all data generated.

2.15.3 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the method limits and the Relative Percent Difference passed.

- 2.15.4 LC Interference Check Standard The LC Interference Check Standard recovered within the method limits
- 2.15.5 Matrix Spike and Matrix Spike Duplicate Analysis The Matrix Spike and Matrix Spike Duplicate met method requirements.
- 2.15.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.15.7 Method Blank All the blanks were below the reporting limit for water.
- 2.15.8 Field Duplicate (Sample Duplicate) Analysis The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.
- 2.15.9 Holding Time There was no holding time issue with the sample.
- 2.15.10 Retention Times, Relative Retention Time All retention times and retention time windows met method requirements.

2.16 Method 353.2 Nitrocellulose General Chemistry (Water) The validation reviewed only the compound of concern.

- 2.16.1 Initial Calibration All method requirements were met.
- 2.16.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.16.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
- 2.16.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The MS/MSD met method requirements.
- 2.16.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

- 2.16.6 Method Blank, Initial Calibration Blank, Continuing Calibration BlankAll the blanks were below the reporting limit for water.
- 2.16.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.16.8 Holding Time There was no holding time issue with the sample.
- 2.17 Method 353.2 Nitrocellulose General Chemistry (Soil) The validation reviewed only the compound of concern.
 - 2.17.1 Initial Calibration All method requirements were met.
 - 2.17.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.17.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.17.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.17.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.17.6 Method Blank, Initial Calibration Blank, Continuing Calibration BlankAll the blanks were below the reporting limit for water.
 - 2.17.7 Field Duplicate (Sample Duplicate) AnalysisThe field duplicate was non-detect as well as the original sample.No percent difference can be calculated.
 - 2.17.8 Holding Time There was no holding time issue with the samples.
- 2.18 Method 7470A Mercury (Water)
 - 2.18.1 Initial Calibration

All method requirements were met.

- 2.18.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.18.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
- 2.18.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and the Matrix Spike Duplicate passed and the RPD was within method limits.
- 2.18.4 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.18.5 Method Blank, Initial Calibration Blank, Continuing Calibration BlankAll the blanks were below the reporting limit for water.
- 2.18.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.18.7 Holding Time There was no holding time issue with the sample.
- 2.19 Method 7471A Mercury (Soil) Two packages were reviewed.
 - 2.19.1 Initial Calibration All method requirements were met.
 - 2.19.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.19.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.19.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.19.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

 2.19.6 Method Blank, Initial Calibration Blank, Continuing Calibration Blank
 All the blanks were below the reporting limit

All the blanks were below the reporting limit.

- 2.19.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was provided.
- 2.19.8 Holding Time

There was no holding time issue with sample PCTss-006M-0001so in Project # 320-18324-1. The soil samples PCTsb-001M-0001-SO, PCTsb-002M-0001-SO, PCTsb-003M-0001-SO, PCTss-004M-0001-SO, PCTss-005M-0001-SO, PCTss-005M-0001-DS, PCTss-007M-0001-SO, PCTss-008M-0001-SO were all analyzed outside of the holding time for soil. All detected concentrations were qualified as estimated, biased low (J-).

- 2.20 Method 6010B and 6010B trace Metals (Water) The validation reviewed only the elements of concern.
 - 2.20.1 Initial Calibration All method requirements were met.
 - 2.20.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.20.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.20.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All the blanks were below the reporting limit.
 - 2.20.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.20.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.20.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.
 - 2.20.8 ICP Serial Dilution

No serial dilution as no elements were detected 4 time higher than the reporting limit.

2.20.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.

2.21 Method 6010B and 6010B trace Metals (Soil) The validation reviewed only the elements of concern.

- 2.21.1 Initial Calibration All method requirements were met.
- 2.21.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.21.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
- 2.21.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All the blanks were below the reporting limit.
- 2.21.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD for many elements. The elements that had concentration that were more than 4 times greater than the spike concentration are not valid and do not have any affect on data

The MS/MSD results for antimony in soil were less than the evaluation criteria and the percent recovery for both the spike and duplicate were less than 35%. Therefore, the result for antimony in sample PCTsb-003M-0001-SO, associated with the low MS/MSD recovery, was rejected. However, since matrix homogeneity could not be established, antimony was not qualified in the associated batch samples.

- 2.21.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.21.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.
- 2.21.8 ICP Serial Dilution

The serial dilution passed for all elements that qualified. Elements that were not at least 10 time the reporting limit would not qualify.

2.21.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.

3.0 QC Summary

- 3.1 Executive Summary
 - 3.3.1 All Methods

All the system quality assurance and controls were met. There is no indication that any instrument quality system did not meet method criteria. The Benzoic Acid in both water and soil failed due to the LCS and LCS Dup which is not an instrument issue. The flag for the Benzoic Acid is justified. The results for mercury in the seven samples that exceeded the holding time qualified as estimated, biased low (J-). The result for antimony in sample PCTsb-003M-0001-SO, associated with the low MS/MSD recovery, was rejected.

3.3.2 Data Validator Narrative

For each issue the data validator provided an explanation for each issue that would have affected data. There were no issues in any sample or method that would have adversely affected any data. All data is valid and useful.

3.3.3 Holding Times

The issue regarding the holding time for Mercury in soils in report 320-18324-2: It is the professional judgment of the data validator that the results are usable (J-).

3.4 Usability and Comparability

Usability of data was evaluated by assuring that all the analytical requests were met, samples that were received in the proper condition, and all analysis were performed within the appropriate holding times. Additionally, all quality control and quality assurance measures were taken to assure accurate and useable data. Most sample results that are estimated were flagged because the reported value is below the Reporting Limit. Eight results were estimated because of holding time exceedances and eight results were estimated because of matrix spike criteria exceedances. **Except for one antimony result, all sample data above the Report Limit is valid and usable.**

An overview of the validation findings is presented in tabular form in Appendix A. The check sheets and any additional comments are found in those sheets. The suggested data validation flags are listed below and are defined as follows:

R Quality Control (QC) indicated the data is not usable.

- J Indicates an estimated value.
- UJ Indicates that the compound is detected above the MDL (Method Detection Limit) but below the RL (Reporting Limit).
- U Indicates the compound or analyte was analyzed for, but not detected at or above the stated limit.

The above flags are incorporated in the data table where they apply based upon the RVAAP QAAP. Any flags generated by the laboratory utilizing the laboratory's internal QC program are not presented in the data tables.

All sample data described in this report are usable and valid except for one antimony result.

4.0 References

RVAAP QAAP The DOD QSM National Functional Guidelines for Data Validation USEPA Test Methods for evaluating Solid Waste SW-846

Glossary of Terms

°C	degrees Celsius
CCB	Continuing Calibration Blank (used in Metals analysis)
CCV	Continuing Calibration Verification (used in all methods to verify system calibration)
CLP	Contract Laboratory Program (used in Superfund program)
COC	Chain of Custody
%D	Percent Difference
DQO	Data Quality Objectives
DS	Down Stream
FB	Field Blank
FD	Field Duplicate
ICB	Initial Calibration Blank (used primarily in metals analysis)
ICP	Inductively Coupled Plasma
ICPMS	Inductively Coupled Plasma Mass Spectrometer
ICV	Initial Calibration Verification (second source standard used to initially verify the
	calibration curve.
ICS	Interference Check Solution (used in ICP and ICPMS only)
ICSA	Interference Check Solution A
ICSAB	Interference Check Solution A&B combined
IS	Internal Standard
LCG	Louisville Chemistry Guideline Version 5
LCS	Laboratory Control Sample
MRL	Method Reporting Limit (MRL)
MDL	Method Detection Limit (MDL)
MD	Matrix Duplicate (often referred to as the sample duplicate)
MSA	Method of Standard Additions
MS/MSD	Matrix Spike (MS)/Matrix Spike Duplicate (MSD)
PARCC	Precision, Accuracy, Representativeness, Completeness, Comparability
PD	Post Digested Spike (also PDS)
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC .	Quality Control
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
SAP	Sampling and Analysis Plan
SD	Standard Deviation
SDG	Sample Delivery Group
SOP	Standard Operating Procedure (SOPs is plural)
TB	Trip Blank
TCLP	Toxic Compound Leaching Procedure
TERC	Total Environmental Restoration Contract
USACE or	United States Army Corps of Engineers
ACE	Army Corps of Engineers
USEPA	United States Environmental Protection Agency
%R	Percent Recovery

Appendix A

Tables

Flag Change Table

Analyte	Lab	ADR	QAAP	Validator	Samples Affected	Reason For Change
	Flag	Flag	Flag	Flag		
Aluminum	JD	J	none	none	PCTsb-003M-0001-SO	The spike concentrations were less than 4 time the analyte
Iron	JD	J	none	none	PCTsb-003M-0001-SO	concentration in the sample (<1/4). Therefore, no qualification
Manganese	JD	J	none	none	PCTsb-003M-0001-SO	is required.
Mercury	JH	J	R	J-	PCTsb-001M-0001-SO	The holding time for mercury was exceeded. The results are
	JH	J	R	J-	PCTsb-002M-0001-SO	qualified as estimated, biased low.
	JH	J	R	J-	PCTsb-003M-0001-SO	
	JH	J	R	J-	PCTss-004M-0001-SO	
	JH	J	R	J-	PCTss-005M-0001-SO	
	JH	J	R	J-	PCTss-005M-0001-DS	
	JH	J	R	J-	PCTss-007M-0001-SO	
	JH	J	R	J-	PCTss-008M-0001-SO	
Antimony	UJ	R	U	U	PCTsb-001M-0001-SO	The MS/MSD results for antimony in soil were less than the
	UJ	R	U	U	PCTsb-002M-0001-SO	evaluation criteria and the percent recovery for both the spike
	UJ	R	R	R	PCTsb-003M-0001-SO	and duplicate were less than 35%. Therefore, antimony in
	UJ	R	U	U	PCTss-004M-0001-SO	sample PCTsb-003M-0001-SO, associated with the low
	UJ	R	U	U	PCTss-005M-0001-SO	MS/MSD recovery, was rejected. However, since matrix
	UJ	R	U	U	PCTss-005M-0001-DS	homogeneity could not be established, antimony was not
	UJ	R	U	U	PCTss-007M-0001-SO	qualified in the associated batch samples.
	UJ	R	U	U	PCTss-008M-0001-SO	
Nitrocellulose	U	R	U	U	PCTsb-001M-0001-SO	Samples were extracted and analyzed within the QAPP
	U	R	U	U	PCTsb-002M-0001-SO	required holding time for preserved samples. No qualification
	U	R	U	U	PCTsb-003M-0001-SO	was warranted.
	U	R	U	U	PCTss-004M-0001-SO	
	U	R	U	U	PCTss-005M-0001-SO	
	U	R	U	U	PCTss-005M-0001-DS	
	U	R	U	U	PCTss-007M-0001-SO	
	U	R	U	U	PCTss-008M-0001-SO	

Appendix B

All Check Lists

Semi-Volatile Organic Analysis Checklist Method 8270C

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

		Yes	No	
Holding Time:	Were Samples extracted within holding times?	Yes		
	Were Samples analyzed within holding times?	Yes		
Tune	Was DFTPP tune performed at the beginning of each 12-hour	Yes		
	period during which samples were analyzed?			
	Was mass assignment based on m/z 198?	Yes		

Indicate if DFTPP ion abundance relative to m/z 198 base peak met the ion abundance criteria.

m/z	Acceptance Criteria	
51	30-60%	Yes
68	< 2% mass 69	Yes
70	< 2% mass 69	Yes
127	40-60%	Yes
197	<1%	Yes
198	100% Base Peak	Yes
199	5-9%	Yes
275	10-30%	Yes
365	>1%	Yes
441	present but < mass 443	Yes
442	>40%	Yes
443	17-23% of mass 442	Yes

Initial Calibration

Five calibration standard minimum	Yes	
Was the linear model applied?	Yes	
Was the quadratic model applied as needed?	Yes	

System Performance Check Compounds (SPCC)

Did they meet the minimum mean responsfactor?

N-nitroso-di-n-propylamine	Yes	
Hexachlorocyclopentadiene	Yes	
2,4-dinitrophenol	Yes	
4-nitrophenol	Yes	

Calibration Check Compounds (CCC)

Did the RSD meet the criteria of < 30% for each compound?

Base/Neutral Fraction:

Acenaphthene	Yes
1,4-Dichlorobenzene	Yes
Hexachlorobutadiene	Yes
Diphenylamine	Yes
Di-n-octylphthalate	Yes
Fluoranthene	Yes
Benzo(a)pyrene	Yes
Acid Fraction	
4-Chloro-3-3methylphenol	Yes
2,4-Dichlorophenol	Yes
2-Nitrophenol	Yes
Phenol	Yes
Pentachlorophenol	Yes
2,4,6-Trchlorophenol	Yes

Semi-Volatile Organic Analysis Checklist Method 8270C (Cont pg 2)

Remaining Target Analytes

	Are the RSDs <15% for the remaining target analytes	Yes	
	If No are the mean RSDs < 15% or $r > 0.00$ with a maximum RSD < 20% 2		
Manual Integration			
j	Was manual integration "M" performed?	Yes	
Manual intrgr	ation was performed within the method guidelines and was required	under the operat	ting conditions.
QCMDL	Was MDL check performed?	Yes	
QCMRL	Was QCMRL run at thebeginning and end of every daily	Yes	
	sequence or every 12 hours?		
	Was OCMRI between 70-130% recovery	Yes	
		100	
	For the non-contaminants of concern, was the QCMRL	Yes	
	between 50-150%	•	•

Intital Calibration Verification (ICV)

Is the mid level (2nd source) recovery within 70-130% for	Yes	
contaminants of concern?		
Is the mid level (2nd source) recovery within 50-150% for	Yes	
non-contaminants of concern?		

Continuing Calibration Verification (CCV)

Was CCV run every 12 hours?	Yes	

Did SPCC meet the minimum mean response factor?

N-nitroso-di-n-propylamine	Yes	
Hexachlorocyclopentadiene	Yes	
2,4-dinitrophenol	Yes	
4-nitrophenol	Yes	

Did the CCC meet the minimum requirements (D< 20%)

Base/Neutral Fraction:

Acenaphthene	Yes	
1,4-Dichlorobenzene	Yes	
Hexachlorobutadiene	Yes	
Diphenylamine	Yes	
Di-n-octylphthalate	Yes	
Fluoranthene	Yes	
Benzo(a)pyrene	Yes	

Acid Fraction

4-Chloro-3-3methylphenol	Yes	
2,4-Dichlorophenol	Yes	
2-Nitrophenol	Yes	
Phenol	Yes	
Pentachlorophenol	Yes	
2,4,6-Trchlorophenol	Yes	
Defense in Freehendland Mine the area an deffe. 000% frame the initial	V	

Primary Evaluation: Was the mean drift < 20% from the initial Yes Calibration?

Semi-Volatile Organic Analysis Checklist Method 8270C (Cont pg 3)

- - -	· · · · · · · · · · · · · · · · · · ·		
	Maximum allowable drift for each target analyte s <30%	Yes	
	when D < 20%?		
Sample Analysis			
	Was the RRT of an identified componet within +/- 0.06	Yes	
	RRT units of the RRT f the standard componet.		
	Did the abundanceof ions I the sample spectra agree within	Yes	
	30% of the major ions (> 10% of the base peak) in the standard		
	spectra		
	Were internal standards within the QC limits of -50% to +200%	Yes	
Sample Quality Control			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	N/A	
	Were RPD within control limits?	N/A	

Yes

Surrogates

Some surrogates were diluted out. All other surrogates met method requirements Comments

Are surrogate recoveries within QC limits

Signed: ____ With un Pure

VVIIIIaIII VV. FUIVES

Method 8330 Nitroaromatic, Nitramine and Nitroglycerine Data Analysis (Explosive Residues) Checklist Project Name: Ravenna PO# 1208157-009

Ravenna PO# 1208157-009 TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

Laboratory:

		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
-	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
		100	
Manual Integration			
Manual Integration	Wee manual integration "M" parformed?	Voo	
	was manual integration will performed?	165	
OCMPI	Wee MDL sheets nerformed?	Vee	
QCMDL	was MDL check performed?	res	
QCMRL			1
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?	1	
	Was the % "D" <30%	Yes	
Intital Calibration Verificat	ion (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration Ve	rification (CCV)		
•			
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?	100	
	Was the midpoint sample (CCV) conducted at the end of the	Vec	1
		165	
	uay/run.		
	Did the OOV meet the minimum remains and (D. 459/ with a		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.	_	
Sample Analysis			1
	Was the RRT of an identified componet within the required	Yes	
	retention time window.	_	
	Were all identified hits, above the initial calibration curve diluted	Yes	
	and reanalyzed		
	Were all identified compounds confirmed on a second column	Yes	
	Was all RPD of target analyte confirmation <40%	Yes	
	Was there a shoulder on the 2,4,6-TNT peak?		No
	· · · · ·	-	•
Sample Quality Control			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
			1

Were the % recoveries for the LCS within the limits?

Yes

LCS

Method 8330 Nitroaromatic, Nitramine and Nitroglycerine Data Analysis (Explosive Residues) Checklist

MS/MSD	Were percent recovries within control limits?	Yes: Soils only run	: Soils only run	
	Were RPD within control limits?	Yes		
Surrogates				
	Are surrogate recoveries within QC limits	Yes		
Second Column C	onfirmation			
	Was Second column confirmation performed?	Yes	-	

Comments

Signed:_____ With un Pures

Volatile Organic Analysis Checklist Method 8260B

Project Name:	Ravenna PO# 1208157-009
Laboratory:	TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

			Yes	No
Holding Time:	Were Sam	ples extracted within holding times?	Yes	
	Were Sam	ples analyzed within holding times?	Yes	
Tune	Was BFB 1	tune performed at the beginning of each 12-hour	Yes	
	period duri	ng which samples were analyzed?		
	-			
	Was mass	assignment based on m/z 95, 174, 176	Yes	
			·	
	m/e	Acceptance Criteria		
	50	15.0-40.0% of mass 95	Yes	
	75	30.0-60.0% of mass 95	Yes	
	95	Base Peak 100%	Yes	
	96	5.0-9.0% of mass 95	Yes	
	173	Less than 2% of mass 174	Yes	
	174	50.0-120.0 of mass 95	Yes	
	175	5.0-9.0% of mass 174	Yes	
	176	95.0-101.0% of mass 174	Yes	
	177	5.0-9.0% of mass 176	Yes	
	-			

Initial Calibration

Five calibration standard minimum	Yes	
Was the linear model applied?	Yes	
Was the quadratic model applied as needed?	Yes	

System Performance Check Compounds (SPCC)

Did the SPCC meet the minimum mean response factor?	Yes	

Calibration Check Compounds (CCC)

Did the RSD meet the criteria of $< 30\%$ for each compound?	Yes	
	100	

Remaining Target Analytes

Are the RSDs <15% for the remaining target analytes	Yes	

If No are the mean RSDs < 15%

or r >0.99 with a mean RSD < 15% with a maximum RSD< 30%?

Manual Integration

Was manual integration "M" performed?	Yes		
Manual intrgration was performed within the method guidelines and was required under the operating conditions.			

QCMDL

Was MDL check performed? Yes
Volatile Organic Analysis Checklist Method 8260B (Cont)

QCMRL

Was QCMRL run at thebeginning and end of every daily	Yes	
sequence or every 12 hours?		
Was OCMRI between 70-130% recovery	Yes	
For the non-contaminants of concern, was the QCMRL	Yes	
between 50-150%		

Intital Calibration Verification (ICV)

Is the mid level (2nd source) recovery within 70-130% for	Yes	
contaminants of concern?		•
Is the mid level (2nd source) recovery within 50-150% for	Yes	
non-contaminants of concern?		

Continuing Calibration Verification (CCV)

M/s s 001/ mms success 10 h succes	V	
Ivvas CCV run every 12 nours?	res	

νιπι

Maximum allowable drift for each target analyte s <30%	Yes	
when D < 20%?		

Sample Analysis

Was the RRT of an identified componet within +/- 0.06	Yes	
RRT units of the RRT f the standard componet.		

Did the abundanceof ions I the sample spectra agree within	Yes	
30% of the major ions (> 10% of the base peak) in the standard		
spectra		

Were internal standards within the QC limits of -50% to +200% Yes

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soil Only Run	
		•	
	Were RPD within control limits?	Yes: Soil Only Run	

Surrogates

Are surrogate recoveries within QC limits	Yes	
Are surregate recoveries within do infints	103	

Comments

Signed:_

With us Pure

William W. Purves

Method 8081A Pesticides

Project Name:	Ravenna PO# 1208157-009
Laboratory:	TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration			
Manual Integration	Was manual integration "M" performed?	Yes	
	Was manual mogration in ponomica.	100	
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
	W/20 the % "D" <20%	Voc	
		165	
Intital Calibration Verifi	cation (ICV)		
		- 1	-
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration	Verification (CCV)		
	We CV run at the beginning of the day or run every 12 beyrs?	Voc	
	was CCV full at the beginning of the day of full every 12 hours?	165	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements $(D_{<}15\%)$ with a	Vec	
	maximum D < 20% for a specific compound.	163	
Sample Analysis			
	Was the RRT of an identified componet within the required	Yes	
	retention time window.		
	··· ··· ··· ··· ··· ··· ··· ··· ··· ··		
	Were all identified hits, above the initial calibration curve diluted	Yes	
	Were all identified compounds confirmed on a second column	Yes	
	Was all RPD of target analyte confirmation <40%	Yes	
	Was there Endrin or 4,4-DDT peak breakdown?		No

Method 8081A Pesticides (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
		<u> </u>	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only	run
	Were RPD within control limits?	Yes	
Surrogates			
	Are surrogate recoveries within QC limits	Yes	

Comments

Signed:___

With us Pine

William W. Purves

Method 8082 PCB (Arochlors)

Project Name:	Ravenna PO# 1208157-009
Laboratory:	TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration	W/oo manual integration "M" parformed?	Vee	
	was manual megration in performed?	res	<u> </u>
QCMDL	Was MDL check performed?	Yes	
			•
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
			<u> </u>
	Was the % "D" <30%	Yes	
Intital Calibration Verificat	ion (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration Ve	rification (CCV)		
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
			1
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		
Comula Analusia			
Sample Analysis	Was the PPT of an identified companet within the required	Voc	
	retention time window	163	ļļ
	Were all identified hits, above the initial calibration curve diluted	Yes	
	and reanalyzed		
	Were all identified compounds confirmed on a second column	Yes	
	Wee all DDD of target analyte confirmation (400/	Vaa	1
	vvas an NPD of larger analyte confirmation <40%	res	
	Was there Endrin or 4,4-DDT peak breakdown?		No

Method 8082 PCBs (Arochlors) (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only run	
	Were RPD within control limits?	Yes	
Surrogates			
	Are surrogate recoveries within QC limits	Yes	
Second Column Cor	firmation		
	Was Second column confirmation performed?	Yes	

Comments:

Signed:_

With u Pine

William W. Purves

Method 8330 Modified Nitroguanidine Check List

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration			
	Was manual integration "M" performed?		No
		!	
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
	Was the % "D" <30%	Yes	
Intital Calibration Verif	ication (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration	Verification (CCV)		
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		
Sample Analysis			
	Was the RT of an identified componet within the required	Yes	
	retention time window.	-	
		_	
	Were all identified hits, above the initial calibration curve diluted	Yes	
	and reanalyzed		
	Were all identified compounds confirmed on a second column	Yes	
		-	· · · · · · · · · · · · · · · · · · ·
	Was all RPD of target analyte confirmation <40%	Yes	

Method 8330 Modified Nitroguanidine Check List (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only run	
		·	
	Were RPD within control limits?	Yes	

Second Column Confirmation

Was Second column confirmation performed? Yes

Comments

Signed:__

With u Pure

William W. Purves

Method 6850 Perchlorate LCMS Check List

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

MS Tune		Yes	No
	Did the system Tune Pass?	Yes	
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
		-	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration			
	Was manual integration "M" performed?		No
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
		-	
	Was the % "D" <30%	Yes	
Internal Standard			
	Did the internal Standard Meet Method Criteria?	Yes	
Intital Calibration Verificat	ion (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration Ve	rification (CCV)		
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		

Sample Analysis

Was the RRT of an identified componet within the required	Yes	
retention time window.		
Were all identified hits, above the initial calibration curve diluted	Yes	

Method 6850 Perchlorate LCMS Check List (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only r	un
	Were RPD within control limits?	Yes	

Comments

With us Pine Signed:_

William W. Purves

Method 6010B ICP Metals (Water and Soil)

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1 and 320-18324-2

Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Three calibration standard minimum	Yes	
ICV	Did the ICV Pass?	Yes	
		100	
ICS AdB		Vee	
	Did the ICS A & B Pass?	res	
		L .	
QCMDL	Was MDL check performed?	Yes	
QCMRL		-	
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
		-	
	Was the recovery 75-125%	Yes	
Intital Calibration Verificati	ion (ICV)		
	In the middlevel (and environ) measuremunithin 00 4400(Maa	
	is the mid level (2nd source) recovery within 90-110%	res	
Continuing Calibration Ver	ification (CCV)		
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements	Yes	
		103	
Comula Analysia		Vee	
Sample Analysis	was all data within the calibration range or diluted within the range?	Tes	
Sample Quality Control			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	

LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes	
	Were RPD within control limits?	Yes	
Serial Dilution	Was the serial Dilution within control limits?	Yes	

Method 6010B ICP Metals (Water and Soil) (Cont)

Comments:

TestAmerica Job ID: 320-18324-1 and 320-18324-2 The water for Job # 320-18324-1 was analyzed within holding requirements. The Soil for Job # 320-18324-1 was analyzed at the same time as the water The Soils for Job # 320-18324-2 were analyzed within the holding time eventhough Soils have no specified holding time in 40CFR136

Wille u Pine

William W. Purves

Signed:_

Method 7141A Mercury (Soil)

Project Name:	Ravenna PO# 1208157-009
Laboratory:	TestAmerica (Various)

TestAmerica Job ID: 320-18324-2

Holding Time:	Were Samples extracted within holding times? 320-18324-2		No*
Initial Calibration	Five calibration standard minimum	Yes	
ICV	Did the ICV Pass	Yes	
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily sequence or every 12 hours?	Yes	
	Was the recovery 75-125%	Yes	

Intital Calibration Verification (ICV)

Is the mid level (2nd source) recovery within 85-115% Yes

Continuing Calibration Verification (CCV)

	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	r		
	Did the CCV meet the minimum requirements	Yes	
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes	
Sample Quality Control			
Method Blank	Was mercury results analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes	
	·		
	Were RPD within control limits?	Yes	

Comments:

Signed:_

* Soils have no established hold time in 40CFR136, all of the soil data for mercury is valid H flags should be removed.

With up Pure

William W. Purves

Method 7140A/7141A Mercury (Water and Soil)

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

Holding Time:	Were Samples extracted within holding times? 320-18324-1	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
ICV	Did the ICV Pass	Yes	
		·	
QCMDL	Was MDL check performed?	Yes	
		-	-
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
	Was the recovery 75-125%	Yes	

Intital Calibration Verification (ICV)

Is the mid level (2nd source) recovery within 85-115% Yes

Yes

Continuing Calibration Verification (CCV)

	Was the midpoint sample (CCV) conducted every ten samples	Yes
	Was the midpoint sample (CCV) conducted at the end of the	Yes
	day/run.	
	Did the CCV meet the minimum requirements	Yes
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes
Sample Quality Control		
Method Blank	Was mercury results analytes < 1/2 the MRL for the Method Blank	Yes
LCS	Were the % recoveries for the LCS within the limits?	Yes
MS/MSD	Were percent recovries within control limits?	Yes

Comments:

With us Pine

Signed:_

William W. Purves

Were RPD within control limits?

Method Nitrocellulose Method 353.2 (Water and Soil)

Project Name:Ravenna PO# 1208157-009Laboratory:TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

Holding Time:	Were Samples extracted within holding times?	Yes			
Initial Calibration	Was the number of calibration standards required met?	Yes			
ICV	Did the ICV Pass	Yes			
QCMDL	Was MDL check performed?	Yes			
QCMRL	Was QCMRL run at the beginning and end of every daily	Yes			
	sequence or every 12 hours?				
	Was the recovery requirements met?	Yes			
Intital Calibration Verificat	ion (ICV)				
	Did the ICV met requirements?	Yes			
Continuing Calibration Ve	rification (CCV)				
	Was the midpoint sample (CCV) conducted every ten samples	Yes			
	Was the midpoint sample (CCV) conducted at the end of the	Yes			
	day/run.				
	Did the CCV meet the minimum requirements	Yes			
	· · · ·	<u> </u>			
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes			
Sample Quality Control					
Method Blank	Was the blank results < 1/2 the MRL for the Method Blank	Yes			
LCS	Were the % recoveries for the LCS within the limits?	Yes			
10/100					
MS/MSD	Were percent recovries within control limits?	Yes			

Were RPD within control limits? Yes

Comments:

With us Pine

Signed:__

William W. Purves

APPENDIX D: SURVEY DATA AND INFORMATION

SCA

		Flag Northing Easting Station Offset Flag Northing Easting Station Offset 60005 566362.4 2367508.6 -0+4.2 344.3 60088 566133.8 2367935.9 4+19.5 579.4
+		60006 566445.7 2367494.6 -0+17.0 260.8 60102 566309.2 2367935.9 4+22.1 404.0 60007 566483.7 2367543.7 0+32.7 223.6 60095 566294.9 2367938.7 4+24.8 418.3
<u></u>		60004 566414.2 2367549.5 0+37.5 293.1 60107 566416.2 2367936.9 4+24.8 297.0
		60003 566434.2 2367556.7 0+44.9 273.2 60094 566291.9 2367940.2 4+26.2 421.4 60008 566488.6 2367560.1 0+49.2 218.9 60101 566310.5 2367943.7 4+30.0 402.8
		60002 566436.0 2367569.8 0+58.1 271.7 60096 566291.5 2367947.8 4+33.8 421.9 60009 566496.2 2367579.5 0+68.7 211.6 60093 566282.5 2367948.6 4+34.5 430.9
		60013 566547.6 2367581.6 0+71.5 160.3 60035 566102.4 2367951.5 4+34.6 611.0
	~ '	60012 566528.7 2367583.8 0+73.9 147.9 60032 566145.3 2367955.8 4+39.6 568.2 60015 566559.9 2367583.8 0+73.9 147.9 60032 566145.3 2367955.8 4+39.6 568.2
	()	60010 566497.1 2367585.3 0+74.5 210.8 60100 566311.1 2367954.6 4+40.9 402.4 60020 566712 3 2367582 1 0+74.6 -4 60100 566419.6 2367953.3 4+41.2 293.9
		60016 566585.1 2367588.6 0+79.1 122.9 60097 566295.7 2367956.5 4+42.5 417.9
		60014 566552.3 2367593.6 0+83.6 155.7 60098 566294.4 2367960.7 4+46.7 419.2 60001 566430.3 2367595.6 0+83.7 277.7 60105 566418.7 2367962.8 4+50.8 294.9
		60019 566708.3 2367592.6 0+85.0 -0.29 60036 566075.1 2367969.7 4+52.4 638.6 60000 566262 5 2367606 2 0+91.8 445.7 60034 566111.7 2367973.8 4+57.1 602.0
		60011 566518.2 2367614.9 1+04.4 190.2 60103 566326.0 2367971.2 4+57.7 387.8
	100'	60017 566555.9 2367622.1 1+12.1 152.5 60039 566507.5 2367973.4 4+62.7 206.3 60022 566505.4 2367645.7 1+35.0 203.4 60033 566112.4 2367984.8 4+68.0 601.5
		60018 566592.1 2367651.3 1+41.9 116.8 60116 566193.5 2367984.8 4+69.3 520.4 60023 566503 1 2367658 6 1+47.9 205.9 60044 566056.7 2367987.4 4+69.8 657.3
		60155 566597.7 2367707.1 1+97.8 112.0 60104 566310.1 2367985.0 4+71.3 403.9 60155 566597.7 2367707.1 1+97.8 112.0 60104 566310.1 2367985.0 4+71.3 403.9
		60021 566707.4 2367708.1 2+00.5 2.4 60041 566049.4 2367989.1 4+71.4 664.6 60028 566313.3 2367781.9 2+68.2 397.5 60043 566060.5 2367990.5 4+73.0 653.5
		60164 566611.1 2367795.1 2+86.0 100.0 60042 566056.5 2367994.7 4+77.1 657.6 60157 566628.0 2367797.0 2+88.1 83.2 60040 566046.5 2367995.4 4+77.7 667.6
		60137 566028.0 2307797.0 2488.1 83.2 60163 566598.1 2367797.8 2+88.5 113.0 60115 566200.3 2367997.4 4+82.0 513.8 60163 566598.1 2367797.8 2+88.5 113.0 60115 566200.3 2367997.4 4+82.0 513.8
	200 '	60162 566599.9 2367805.8 2+96.5 111.4 60039 566051.2 2368005.5 4+88.8 663.0 60161 566599.4 2367811.0 3+01.8 111.9 60037 566081.3 2368007.4 4+90.2 633.0
		60160 566605.8 2367813.2 3+04.0 105.5 60045 566027.0 2368010.5 4+92.4 687.3 60159 566614.2 2367814.5 3+05.4 97.2 60113 566213.3 2368012.5 4+97.3 501.1
		60155 500014.2 2307814.3 5103.4 97.2 10012
		60027 566352.0 2367832.5 3+19.4 359.6 60038 566067.0 2368017.3 4+99.9 647.4 60024 566388.6 2367835.6 3+23.1 323.1 60111 566216.8 2368016.7 5+01.6 497.7
		60165 566566.7 2367839.4 3+29.6 145.1 60114 566204.5 2368019.0 5+03.6 510.0 60165 5665567.7 2367839.4 3+29.6 145.1 60114 566204.5 2368024.5 5+03.6 510.0
		60166 566570.8 2367846.3 3+36.5 141.1 60025 566386.8 2367852.7 3+40.1 325.1 60109 566274.9 2368033.6 5+19.3 439.8 60025 566386.8 2367852.7 3+40.1 325.1 60109 566274.9 2368033.6 5+19.3 439.8
	<u> </u>	60026 566356.1 2367857.1 3+44.1 355.9 60117 566184.0 2368057.9 5+42.2 531.0 60029 566253.8 2367859.0 3+44.4 458.2 60046 566029.1 2368068.7 5+50.7 686.1
		60030 566259.6 2367884.2 3+69.7 452.8 60118 566131.3 2368068.6 5+52.1 583.9 60000 566120.1 2367884.2 3+69.7 452.8 60047 566019.2 2368072.5 5+54.4 696.0
		60090 566169.1 2367904.0 3+88.1 543.6 60056 566505.7 2367899.4 3+88.6 207.0 60119 566110.0 2368076.3 5+59.5 605.3 60056 566505.7 2367899.4 3+88.6 207.0 60119 566110.0 2368076.3 5+59.5 605.3
		60031 566227.9 2367909.1 3+94.2 484.9 60048 565997.0 2368100.4 5+81.9 718.7 60089 566155.1 2367910.8 3+94.7 557.7 60120 566169.3 2368107.8 5+91.9 546.5
		60057 566501.1 2367924.0 4+13.2 212.0 60121 566192.7 2368111.6 5+96.1 523.1 60100 555111 2367925.4 4+14.2 201.2 60122 566151.4 2368172.8 6+56.6 565.3
		60108 566411.8 2367926.4 4+14.3 301.3 60058 566497.5 2367927.8 4+16.9 215.6 60123 566127.4 2368201.3 6+84.7 589.8 60058 566497.5 2367927.8 4+16.9 215.6 60123 566127.4 2368201.3 6+84.7 589.8
	— 400'	60091 566177.8 2367934.5 4+18.7 535.4 60124 566067.1 2368231.1 7+13.7 650.6 60126 566024.9 2368334.3 8+16.2 694.4
		LEGEND 60125 566052.1 2368335.6 8+18.0 667.1 60127 566017.8 2368338.1 8+19.8 701.5
		E ELECTRIC PEDESTAL
		SS = Surficial Soil Sample
	$\neg \circ \circ'$	SB = Subsurface Soft Sample
	500	
	——600'	
		Figure 5 - CC RVAAP-80 Sample Locations
	•	PREPARED BY ME. THE SURVEY IS CORRECT TO THE BEST OF MY
	——700'	EXPRESSED IN FEET AND DECIMAL PARTS THEREOF. BEARINGS ARE BASED
		ZONE NAD 83 DATUM.
		WITH ATE OF OF
		ミン
		CHRISTOPHER J. DEMPSEY PROFESSIONAL SURVEYOR NO. 6914
		DATE OF SURVEY: MAY 11, 2011
		DATE SIGNED:
	、 I	
00		LOCATION SURVEY
+ $+$ $+$	-	CEOSEAPOUES
	-	
		THE RAVENNA ARSENAL
		JOB NO. 8002 HORZ. SCALE 1" = 50' VERT. SCALE NONE DRAWN BY MS FIELD CREW MS-SB
		May 16, 2011 DATE OF SURVEY MAY 11, 2011 CHECKED BY CJD
50 100	150	www.dempseysurvey.com DEMPSEY/SURVEYING/COMPANY
LE: 1" = 50'		g 85 1 P 216/226/1130 12815 DETROIT AVENUE F 216/226/1131 CLEVELAND , OH 44107-2835 OF 1

Flag	Northing	Easting	Station	Offset
60000	566262.5	2367606	0+91.8	445.7
60001	566430.3	2367596	0+83.7	277.7
60002	566436	2367570	0+58.1	271.7
60003	566434.2	2367557	0+44.9	273.2
60004	566414.2	2367550	0+37.5	293.1
60005	566362.4	2367509	-0+4.2	344.3
60006	566445.7	2367495	-0+17.0	260.8
60007	566483.7	2367544	0+32.7	223.6
60008	566488.6	2367560	0+49.2	218.9
60009	566496.2	2367580	0+68.7	211.6
60010	566497.1	2367585	0+74.5	210.8
60011	566518.2	2367615	1+04.4	190.2
60012	566528.7	2367582	0+71.8	179.1
60013	566547.6	2367582	0+71.5	160.3
60014	566552.3	2367594	0+83.6	155.7
60015	566559.9	2367584	0+73.9	147.9
60016	566585.1	2367589	0+79.1	122.9
60017	566555.9	2367622	1+12.1	152.5
60018	566592.1	2367651	1+41.9	116.8
60019	566708.3	2367593	0+85.0	-0.29
60020	566712.3	2367582	0+74.6	-4.44
60021	566707.4	2367708	2+00.5	2.4
60022	566505.4	2367646	1+35.0	203.4
60023	566503.1	2367659	1+47.9	205.9
60024	566388.6	2367836	3+23.1	323.1
60025	566386.8	2367853	3+40.1	325.1
60026	566356.1	2367857	3+44.1	355.9
60027	566352	2367833	3+19.4	359.6
60028	566313.3	2367782	2+68.2	397.5
60029	566253.8	2367859	3+44.4	458.2
60030	566259.6	2367884	3+69.7	452.8
60031	566227.9	2367909	3+94.2	484.9
60032	566145.3	2367956	4+39.6	568.2
60033	566112.4	2367985	4+68.0	601.5
60034	566111.7	2367974	4+57.1	602
60035	566102.4	2367952	4+34.6	611
60036	566075.1	2367970	4+52.4	638.6

Flag	Northing	Easting	Station	Offset
60037	566081.3	2368007	4+90.2	633
60038	566067	2368017	4+99.9	647.4
60039	566051.2	2368007	4+88.8	663
60040	566046.5	2367995	4+77.7	667.6
60041	566049.4	2367989	4+71.4	664.6
60042	566056.5	2367995	4+77.1	657.6
60043	566060.5	2367991	4+73.0	653.5
60044	566056.7	2367987	4+69.8	657.3
60045	566027	2368011	4+92.4	687.3
60046	566029.1	2368069	5+50.7	686.1
60047	566019.2	2368073	5+54.4	696
60048	565997	2368100	5+81.9	718.7
60056	566505.7	2367899	3+88.6	207
60057	566501.1	2367924	4+13.2	212
60058	566497.5	2367928	4+16.9	215.6
60059	566507.5	2367973	4+62.7	206.3
60088	566133.8	2367936	4+19.5	579.4
60089	566155.1	2367911	3+94.7	557.7
60090	566169.1	2367904	3+88.1	543.6
60091	566177.8	2367935	4+18.7	535.4
60093	566282.5	2367949	4+34.5	430.9
60094	566291.9	2367940	4+26.2	421.4
60095	566294.9	2367939	4+24.8	418.3
60096	566291.5	2367948	4+33.8	421.9
60097	566295.7	2367957	4+42.5	417.9
60098	566294.4	2367961	4+46.7	419.2
60099	566303.3	2367953	4+39.4	410.2
60100	566311.1	2367955	4+40.9	402.4
60101	566310.5	2367944	4+30.0	402.8
60102	566309.2	2367936	4+22.1	404
60103	566326	2367971	4+57.7	387.8
60104	566310.1	2367985	4+71.3	403.9
60105	566418.7	2367963	4+50.8	294.9
60106	566419.6	2367953	4+41.2	293.9
60107	566416.2	2367937	4+24.8	297
60108	566411.8	2367926	4+14.3	301.3
60109	566274.9	2368034	5+19.3	439.8

Flag	Northing	Easting	Station	Offset
60110	566221.2	2368025	5+09.4	493.4
60111	566216.8	2368017	5+01.6	497.7
60112	566216.4	2368014	4+98.6	498
60113	566213.3	2368013	4+97.3	501.1
60114	566204.5	2368019	5+03.6	510
60115	566200.3	2367997	4+82.0	513.8
60116	566193.5	2367985	4+69.3	520.4
60117	566184	2368058	5+42.2	531
60118	566131.3	2368069	5+52.1	583.9
60119	566110	2368076	5+59.5	605.3
60120	566169.3	2368108	5+91.9	546.5
60121	566192.7	2368112	5+96.1	523.1
60122	566151.4	2368173	6+56.6	565.3
60123	566127.4	2368201	6+84.7	589.8
60124	566067.1	2368231	7+13.7	650.6
60125	566052.1	2368336	8+18.0	667.1
60126	566024.9	2368334	8+16.2	694.4
60127	566017.8	2368338	8+19.8	701.5
60155	566597.7	2367707	1+97.8	112
60157	566628	2367797	2+88.1	83.2
60158	566626.1	2367815	3+06.5	85.3
60159	566614.2	2367815	3+05.4	97.2
60160	566605.8	2367813	3+04.0	105.5
60161	566599.4	2367811	3+01.8	111.9
60162	566599.9	2367806	2+96.5	111.4
60163	566598.1	2367798	2+88.5	113
60164	566611.1	2367795	2+86.0	100
60165	566566.7	2367839	3+29.6	145.1
60166	566570.8	2367846	3+36.5	141.1

AA-150

PT,NORTHING,EASTING,DESC NAD83 UTM 105,4562388.310,495917.985,NWC1 106,4562387.996,495936.264,NEC1 107,4562371.849,495935.987,SEC1 108,4562372.164,495917.707,SWC1 109,4562380.080,495926.986,CENT C1 110,4562295.522,495961.917,NWC2 111,4562295.182,495981.720,NEC2 112,4562276.903,495981.405,SEC2 113,4562277.243,495961.603,SWC2 114,4562286.213,495971.661,CENT C2 115,4562266.214,495978.467,NWC3 116,4562265.900,495996.746,NEC3 117,4562249.753,495996.468,SEC3 118,4562250.068,495978.189,SWC3 119,4562257.984,495987.467,CENT C3 119,4562257.984,495987.467,CENT C3 120,4562249.278,495953.208,NWC4 121,4562248.964,495971.487,NEC4 122,4562230.076,495971.162,SEC4 123,4562230.390,495952.883,SWC4 124,4562239.677,495962.185,CENT C4 125,4562214.681,495975.520,NWC5 126,4562214.451,495988.925,NEC5 127,4562202.874,495988.726,SEC5 128,4562202.874,495988.726,SEC5 128,4562203.104,495975.321,S 129,4562208.778,495982.123,CENT C 130,4562208.219,496080.450,NWC6 131,4562207.909,496094.116,NEC6 132,4562193.895,496093.875,SEC6 133,4562194.136,496079.861,SWC6 134,4562201.022,496086.988,CENT C6 135.4562324.095,495959.057,NWC7 136.4562323.781.495977.336.NEC7 137.4562314.641.495977.179.SEC7 138,4562314.956,495958.900,SWC7 139,4562319.368,495968.118,CENT C7 140,4562366.464,495848.677,NWC8 141,4562366.055,495872.440,NEC8 142,4562344.120,495872.062,SEC8 143,4562344.529,495848.300,SWC8

144,4562355.292,495860.370,CENT C8

0

C8

PT,NORTHING,EASTING,DESC NAD83 OHIO SPC

67

0

120

0

C2

0

116

C3

115

0

C5

C1

105,566638.73,2367776.12,NWC1 566638.73,2367836.12,NEC1 106 107,566585.73,2367836.12,SEC1 108,566585.73,2367776.12,SWC1 566612.23,2367806.12,CENT C1 ,566336.73,2367925.52,NWC2 566336.73,2367990.52,NEC2 112,566276.73,2367990.52,SEC2 113,566276.73,2367925.52,SWC2 114,566306.73,2367958.02,CENT C2 115,566241.49,2367981.48,NWC3 116,566241.49,2368041.48,NEC3 117,566188.49,2368041.48,SEC3 118,566188.49,2367981.48,SWC3 119,566214.99,2368011.48,CENT C3 120,566184.49,2367899.55,NWC4 121,566184.49,2367959.55,NEC4 122,566122.49,2367959.55,SEC4 123,566122.49,2367899.55,SWC4 ,566152,49,2367929,55,CENT C4 ,566072,22,2367974,72,NWC5 ,566072,22,2368018,72,NEC5 ,566034,22,2368018,72,SEC5 ,566034,22,2367974,72,SWC5 125 566053.22,2367996.72,CENT C5 566056.69,2368318.27,NWC6 66056.69,2368364.27,NEC6 566010.69,2368364.27,SEC6 566010.69,2368318.27,SWC6 566033.69,2368341.27,CENT C6 566430.33,2367914.52,NWC7 566430.33.2367974.52.NEC7 6400.33.2367974.52.SEC7 38.566400.33,2367914.52,SWC7 6415.33,2367944.52,CENT C7 40,566563.13,2367549.92,NWC8 141,566563.13,2367627.92,NEC8 142,566491.13,2367627.92,SEC8 143,566491.13,2367549.92,SWC8 527 13 2367588 92 CENT C8

C6

AC-161

Camp Ravenna Joint Military Training Center

Portage & Trumbull County LOCATOR MAP

Ohio Army National Guard

Produced in April 2016 for:

PIKA INTERNATIONAL, INC GROUP 2 PROPELLANT CAN TOPS

INVESTIGATION SITE CC RVAAP-80

Multi Increment Sample Areas

SCIENCES

CORPORATION

Projection Datum is NAD83, Ohio State Plane Rectangular Grid, North Zone

Newton Falls, OH 44444 Don Trocchio, PS don.trocchio@vistasciences.com

MGRS 17T NF01946150 (NAD83)

PROPELLANT CAN TOPS (RVAAP-80) SAMPLE AREAS COORDINATES

Prepared for PIKA Inc. by Vista Sciences Corporation

April 2016

Sample	Survey Point No	Survey Point	UTM Coordir	nates, NAD83	Ohio State Plane	Ohio State Plane Coordinates, NAD83			
Alca		Description	NORTHING	EASTING	NORTHING	EASTING			
	105	NWC1	4,562,388.310	495,917.985	566,638.730	2,367,776.120			
	106	NEC1	4,562,387.996	495,936.264	566,638.730	2,367,836.120			
C1	107	SEC1	4,562,371.849	495,935.987	566,585.730	2,367,836.120			
	108	SWC1	4,562,372.164	495,917.707	566,585.730	2,367,776.120			
	109	Cent C1	4,562,380.080	495,926.986	566,612.230	2,367,806.120			
	110	NWC2	4,562,295.522	495,961.917	566,336.730	2,367,925.520			
	111	NEC2	4,562,295.182	495,981.720	566,336.730	2,367,990.520			
C2	112	SEC2	4,562,276.903	495,981.405	566,276.730	2,367,990.520			
	113	SWC2	4,562,277.243	495,961.603	566,276.730	2,367,925.520			
	114	CENT C2	4,562,286.213	495,971.661	566,306.730	2,367,958.020			
	115	NWC3	4,562,266.214	495,978.467	566,241.490	2,367,981.480			
	116	NEC3	4,562,265.900	495,996.746	566,241.490	2,368,041.480			
C3	117	SEC3	4,562,249.753	495,996.468	566,188.490	2,368,041.480			
	118	SWC3	4,562,250.068	495,978.189	566,188.490	2,367,981.480			
	119	CENT C3	4,562,257.984	495,987.467	566,214.990	2,368,011.480			
	120	NWC4	4,562,249.278	495,953.208	566,184.490	2,367,899.550			
	121	NEC4	4,562,248.964	495,971.487	566,184.490	2,367,959.550			
C4	122	SEC4	4,562,230.076	495,971.162	566,122.490	2,367,959.550			
	123	SWC4	4,562,230.390	495 <i>,</i> 952.883	566,122.490	2,367,899.550			
	124	CENT C4	4,562,239.677	495,962.185	566,153.490	2,367,929.550			
	125	NWC5	4,562,214.681	495,975.520	566,072.220	2,367,974.720			
	126	NEC5	4,562,214.451	495 <i>,</i> 988.925	566,072.220	2,368,018.720			
C5	127	SEC5	4,562,202.874	495,988.726	566,034.220	2,368,018.720			
	128	SWC5	4,562,203.104	495,975.321	566,034.220	2,367,974.720			
	129	CENT C5	4,562,208.778	495,982.123	566,053.220	2,367,996.720			

PROPELLANT CAN TOPS (RVAAP-80) SAMPLE AREAS COORDINATES

Prepared for PIKA Inc. by Vista Sciences Corporation

April 2016

Sample Area	Survey Point No.	Survey Point	UTM Coordir	nates, NAD83	Ohio State Plane Coordinates, NAD83			
/		Description	NORTHING	EASTING	NORTHING	EASTING		
	130	NWC6	4,562,208.219	496,080.450	566,056.690	2,368,318.270		
	131	NEC6	4,562,207.909	496,094.116	566,056.690	2,368,364.270		
C6	132	SEC6	4,562,193.895	496,093.875	566,010.690	2,368,364.270		
	133	SWC6	4,562,194.136	496,079.861	566,010.690	2,368,318.270		
	134	CENT C6	4,562,201.022	496,086.988	566,033.690	2,368,341.270		
	135	NWC7	4,562,324.095	495,959.057	566,430.330	2,367,914.520		
	136	NEC7	4,562,323.781	495,977.336	566,430.330	2,367,974.520		
C7	137	SEC7	4,562,314.641	495,977.179	566,400.330	2,367,974.520		
	138	SWC7	4,562,314.956	495,958.900	566,400.330	2,367,914.520		
	139	CENT C7	4,562,319.368	495,968.118	566,415.330	2,367,944.520		
	140	NWC8	4,562,366.464	495,848.677	566,563.130	2,367,549.920		
	141	NEC8	4,562,366.055	495,872.440	566,563.130	2,367,627.920		
C8	142	SEC8	4,562,344.120	495,872.062	566,491.130	2,367,627.920		
	143	SWC8	4,562,344.529	495,848.300	566,491.130	2,367,549.920		
	144	CENT C8	4,562,355.292	495,860.370	566,527.130	2,367,588.920		

APPENDIX E: SCRAP METAL MDAS CERTIFICATION AND RECYCLING RECORDS

Project: Camp Ravenna
Ravenna, Ohio .
Date: May 17, 2011
Coordinates are based on the
Ohio State Plane Coordinate
North Zone, 1983 Datum
All Anomalies < 9 inches in depth
102 Locations

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60000	566262.5	2367606	0+91.8	445.7	3/29/2016	4 Prop can lids
60001	566430.3	2367596	0+83.7	277.7	3/28/2016	5 Prop can lids
60002	566436	2367570	0+58.1	271.7	3/28/2016	3 Prop can lids
60003	566434.2	2367557	0+44.9	273.2	3/28/2016	Scrap metal
60004	566414.2	2367550	0+37.5	293.1	3/28/2016	Scrap nuts, bolts and rod
60005	566362.4	2367509	-0+4.2	344.3	3/28/2016	3 metal plates
60006	566445.7	2367495	-0+17.0	260.8	3/28/2016	Nothing Found
60007	566483.7	2367544	0+32.7	223.6	3/28/2016	Scrap Metal
60008	566488.6	2367560	0+49.2	218.9	3/28/2016	5 Prop can lids
60009	566496.2	2367580	0+68.7	211.6	3/28/2016	10 Prop can lids
60010	566497.1	2367585	0+74.5	210.8	3/28/2016	10 Prop can lids
60011	566518.2	2367615	1+04.4	190.2	3/28/2016	1 Prop Can Lid
60012	566528.7	2367582	0+71.8	179.1	3/28/2016	1 Prop Can Lid
60013	566547.6	2367582	0+71.5	160.3	3/28/2016	5 Prop can lids
60014	566552.3	2367594	0+83.6	155.7	3/28/2016	Metal Plate
60015	566559.9	2367584	0+73.9	147.9	3/28/2016	Metal Pipe
60016	566585.1	2367589	0+79.1	122.9	3/28/2016	Metal Plate
60017	566555.9	2367622	1+12.1	152.5	3/28/2016	1 Prop Can Lid
60018	566592.1	2367651	1+41.9	116.8	3/28/2016	Bolt
60019	566708.3	2367593	0+85.0	-0.29	3/28/2016	1 Prop Can Lid
60020	566712.3	2367582	0+74.6	-4.44	3/28/2016	2 Prop Can Lids
60021	566707.4	2367708	2+00.5	2.4	3/28/2016	New construction (manhole) replaces previous anomoly
60022	566505.4	2367646	1+35.0	203.4	3/28/2016	1 Prop Can Lid
60023	566503.1	2367659	1+47.9	205.9	3/28/2016	Nothing Found
60024	566388.6	2367836	3+23.1	323.1	3/28/2016	Propellant Canister Lid x 1
60025	566386.8	2367853	3+40.1	325.1	3/28/2016	Canister Rings x 2
60026	566356.1	2367857	3+44.1	355.9	3/28/2016	Propellant Canister Lids x 2
60027	566352	2367833	3+19.4	359.6	3/29/2016	Bed of nails
60028	566313.3	2367782	2+68.2	397.5	3/29/2016	Propellant Canister Lid 1
60029	566253.8	2367859	3+44.4	458.2	3/29/2016	Propellant Canister Lid 1
60030	566259.6	2367884	3+69.7	452.8	3/29/2016	Propellant Canister Lids x 38
60031						
00031	566227.9	2367909	3+94.2	484.9	3/29/2016	Metal Scrap 2"x2"x1/4"

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60033	566112.4	2367985	4+68.0	601.5	3/29/2016	1 Prop Can Lid
60034	566111.7	2367974	4+57.1	602	3/29/2016	5 Prop can lids
60035	566102.4	2367952	4+34.6	611	3/29/2016	1 Prop Can Lid
60036	566075.1	2367970	4+52.4	638.6	3/29/2016	1 Prop Can
60037	566081.3	2368007	4+90.2	633	3/29/2016	1 Prop Can Lid, 8 Prop Cans
60038	566067	2368017	4+99.9	647.4	3/29/2016	Prop Cans and Lids
60039	566051.2	2368007	4+88.8	663	3/29/2016	Prop Can and Lid
60040	566046.5	2367995	4+77.7	667.6	3/29/2016	Prop Can and Lid
60041	566049.4	2367989	4+71.4	664.6	3/29/2016	Prop Can and Lid
60042	566056.5	2367995	4+77.1	657.6	3/29/2016	Prop Can and Lid
60043	566060.5	2367991	4+73.0	653.5	3/29/2016	Prop Can and Lid
60044	566056.7	2367987	4+69.8	657.3	3/29/2016	Prop Can and Lid
60045	566027	2368011	4+92.4	687.3	3/29/2016	T Post
60046	566029.1	2368069	5+50.7	686.1	3/29/2016	Prop Can Lid
60047	566019.2	2368073	5+54.4	696	3/29/2016	Prop Can
60048	565997	2368100	5+81.9	718.7	3/29/2016	Prop Can
60056	566505.7	2367899	3+88.6	207	3/28/2016	Metal Scrap 3"x2"x1.5", Metal Scrap 2"x2"x1", 1Railroad Spike, 1 Propellant Canister Lid
60057	566501.1	2367924	4+13.2	212	3/28/2016	Propellant Canister Lids x 12
60058	566497.5	2367928	4+16.9	215.6	3/28/2016	Propellant Canister Lids x 11
60059	566507.5	2367973	4+62.7	206.3	3/28/2016	Propellant Canister Lid x 1
60088	566133.8	2367936	4+19.5	579.4	3/29/2016	Prop Can Tube
60089	566155.1	2367911	3+94.7	557.7	3/29/2016	Prop Can and Lid
60090	566169.1	2367904	3+88.1	543.6	3/29/2016	20 prop Cans and Lids
60091	566177.8	2367935	4+18.7	535.4	3/29/2016	2 Prop Can Tubes
60093	566282.5	2367949	4+34.5	430.9	3/30/2016	3 Prop can lids and 2 tubes
60094	566291.9	2367940	4+26.2	421.4	3/29/2016	Propellant Canister Lids x 38
60095	566294.9	2367939	4+24.8	418.3	3/29/2016	Propellant Canister Lids x 2, Metal scrap 1.5"x 1.5"x 1"
60096	566291.5	2367948	4+33.8	421.9	3/29/2016	Propellant Canister Lids x 5
60097	566295.7	2367957	4+42.5	417.9	3/29/2016	Propellant Canister Lids x 3
60098	566294.4	2367961	4+46.7	419.2	3/29/2016	Propellant Canister Lids x 2
60099	566303.3	2367953	4+39.4	410.2	3/29/2016	Propellant Canister Lids x 6, 1 Canister Body

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60100	566311.1	2367955	4+40.9	402.4	3/29/2016	Propellant Canister Lid x 1, 1 Canister Body, 4 Ring pieces
60101	566310.5	2367944	4+30.0	402.8	3/29/2016	Propellant Canister Lids x 7, 1 Canister Body
60102	566309.2	2367936	4+22.1	404	3/29/2016	Propellant Canister Lid x 1
60103	566326	2367971	4+57.7	387.8	3/29/2016	Propellant Canister Lids x 3, 1 Canister ring
60104	566310.1	2367985	4+71.3	403.9	3/30/2016	2 prop Can Lids and locking ring
60105	566418.7	2367963	4+50.8	294.9	3/28/2016	1"x18"x 1/4" Metal Strap
60106	566419.6	2367953	4+41.2	293.9	3/28/2016	1 Deteriorated Canister Lid
60107	566416.2	2367937	4+24.8	297	3/28/2016	Tri Canister Lid x 1, Canister Band
60108	566411.8	2367926	4+14.3	301.3	3/28/2016	Canister x 1, Canister Ring x 1, Propellant Canister Lids x 7
60109	566274.9	2368034	5+19.3	439.8	3/29/2016	1 Propellant Lid Locking handle
60110	566221.2	2368025	5+09.4	493.4	3/29/2016	Propellant Canister Lids x 22
60111	566216.8	2368017	5+01.6	497.7	3/29/2016	Propellant Canister Lids x 20
60112	566216.4	2368014	4+98.6	498	3/29/2016	Propellant Canister Lids x 20
60113	566213.3	2368013	4+97.3	501.1	3/29/2016	Propellant Canister Lids x 20
60114	566204.5	2368019	5+03.6	510	3/29/2016	Propellant Canister Lids x 8
60115	566200.3	2367997	4+82.0	513.8	3/29/2016	Propellant Canister Lids x 21
60116	566193.5	2367985	4+69.3	520.4	3/29/2016	Propellant Canister Lids x 1, Propellant Canister x 1
60117	566184	2368058	5+42.2	531	3/29/2016	Propellant Canister Lids x 4, Propellant Canister x 2
60118	566131.3	2368069	5+52.1	583.9	3/29/2016	6 Prop Can Lids
60119	566110	2368076	5+59.5	605.3	3/29/2016	6 Prop Can Lids
60120	566169.3	2368108	5+91.9	546.5	3/29/2016	2 T Posts
60121	566192.7	2368112	5+96.1	523.1	3/29/2016	Nothing Found
60122	566151.4	2368173	6+56.6	565.3	3/29/2016	Barbed Wire
60123	566127.4	2368201	6+84.7	589.8	3/29/2016	Prop Can Tube
60124	566067.1	2368231	7+13.7	650.6	3/29/2016	Prop Can and Lid
60125	566052.1	2368336	8+18.0	667.1	3/29/2016	Nothing Found
60126	566024.9	2368334	8+16.2	694.4	3/29/2016	Prop Can and Lid
60127	566017.8	2368338	8+19.8	701.5	3/29/2016	Nothing Found
60155	566597.7	2367707	1+97.8	112	3/28/2016	Prop Can and Lid
60157	566628	2367797	2+88.1	83.2	3/28/2016	Propellant Canister Lid
60158	566626.1	2367815	3+06.5	85.3	3/28/2016	Propellant Canister Lid

Project: Camp Ravenna
Ravenna, Ohio .
Date: May 17 <i>,</i> 2011
Coordinates are based on the
Ohio State Plane Coordinate
North Zone, 1983 Datum
All Anomalies < 9 inches in depth
102 Locations

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60159	566614.2	2367815	3+05.4	97.2	3/28/2016	Propellant Canister Lids x 38
60160	566605.8	2367813	3+04.0	105.5	3/28/2016	Propellant Canister Lids x 25
60161	566599.4	2367811	3+01.8	111.9	3/28/2016	Propellant Canister Lids x 2
60162	566599.9	2367806	2+96.5	111.4	3/28/2016	Nothing Found
60163	566598.1	2367798	2+88.5	113	3/28/2016	Nothing Found
60164	566611.1	2367795	2+86.0	100	3/30/2016	Nothing Found
60165	566566.7	2367839	3+29.6	145.1	3/28/2016	24" Pipe Wrench, 1- Canister, Propellant Canister Lids x 9
60166	566570.8	2367846	3+36.5	141.1	3/28/2016	Geo Rocks

CLEAR TOTAL PRICE 2. SHIP FROM 3. SHIP TO RVAPP Falls Recycling ų DOLLARS QUANTIT B Portage/Trumbl 1536A 1st St. PREVIOUS EDITION MAY DOLLARS CTS e, Ohio NewtonFalls Oh 4. MARK FOR LB 1760 S XP H G RAV 0100 0100 DOC DATE FRT RATE 8. TYPE CARGO PS 24. DOCUMENT NUMBER & SUFFIX (30-44) Client: Louisville District COE U 30 Mar16 Contractor: PIKA International Inc. 13. UNIT CUBE 15. SL RELEASE/RECEIPT DOCUMENT 10. QTY. REC'D 11.UP 12. UNIT WEIGHT 14. UFC Contract #: W912QR-12-F-0212 0 16. FREIGHT CLASSIFICATION NOMENCLATURE 17. ITEM NOMENCLATURE Scrap Metal Debris, Scrap Metal 25. NATIONAL STOCK NO. & ADD (8-22) 20. TOTAL WEIGHT 21. TOTAL CUBE Load Number - RVAAP-80-001 18. TY CONT 19. NO CONT 1760 22. RECEIVED BY 23. DATE RECEIVED 03/30/2016 Falls Recycling (See PO receipt) 1 ISSUE "This certifies and verifies that the material listed has either 1) been subjected to a 100-percent inspection and an independent 100-percent re-inspection, or 26. RIC (4-6) UI (23-24) QTY (26-29) CON CODE (71 DIST (56-56) UP (74-80) 2) been processed by a DDESB-approved process with an appropriate post-processing inspection. To the best of our knowledge and belief, the material listed is free of explosive hazards and is Material Documented as Safe (MDAS)" 91 (EG) JUL 27. ADDITIONAL DATA DD FORM 1348-1A, Cameron Wenzel mor UXO Supervisor Bendel, VXOOC Specialis Gr PIKA International, Inc PIKA International, Inc. Certifier's Signature Verifier's signature ₹ Q Ph# (281) 543-3316 Ph # (540) 354-9109 TOTAL PRICE 2. SHIP FROM 3. SHIP TO RVAPP Falls Recycling DOLLARS BE QUANTIT Portage/Trumbl 1536A 1st St. MAY NewtonFalls Oh e, Ohio S 4. MARK FOR G RAV LB 1760 S XF H 0 00 0 00 /IOUS E 5. DOC DATE 7. FRT RATE 8. TYPE CARGO 9. PS 6. NMFC & SUFFIX (30-44) Client: Louisville District COE U 30 Mar16 PREV Contractor: PIKA International Inc. DD FORM 1348-1A, JUL, 91 (EG) ISSUE RELEASE/RECEIPT DOCUMENT 10. OTY. REC'D 15. SL 11.UP 12. UNIT WEIGHT 13. UNIT CUBE 14 UFC Contract #: W912QR-12-F-0212 0 16. FREIGHT CLASSIFICATION NOMENCLATURE 24. 17. ITEM NOMENCLATURE Scrap Metal Debris, Scrap Metal 25. NATIONAL STOCK NO. & ADD (8-22) Load Number - RVAAP-80-001 18. TY CONT 19. NO CONT 20. TOTAL WEIGHT 21. TOTAL CUBE 1760 22. RECEIVED BY 23. DATE RECEIVED 03/30/2016 Falls Recycling (See PO receipt) 1 "This certifies and verifies that the material listed has either 1) been subjected to a 100-percent inspection and an independent 100-percent re-inspection, or 2) 26. RIC (4-6) UI (23-24) QTY (25-29) CON CODE (71) DIST (56-56) UP (74-80) been processed by a DDESB-approved process with an appropriate post-processing inspection. To the best of our knowledge and belief, the material listed is free of explosive hazards and is Material Documented as Safe (MDAS)" Kn DATA UXOQQ Cameron Wenzel, Senior UXO Supervisor Grady Be 27. ADDITIONAL PIKA International, Inc. PIKA In ernational. Certifier's Signature Verifier's signature Ph# (281) 543-3316 Ph # (540) 354-9109

Falls Recycling LLC.

1536A 1st street Newton Falls, OH 44444

Phone #330-872-0402Fax #330-872-0595

Cameron Wenzel	
1063 Overton Hills Dr	
Hendersonville NC 28739	

Pu	rcł	nase	Orc	ler

Date	P.O. No.
3/30/2016	72844

Ship to	
Falls Recycling LLC. 1536A 1st Street	10 yr.
Newton Falls, Ohio 44444 WWW.FALLSRECYCLING.COM	

Item	Description	Qty	U/M	Rate	Amount
misc FE	miscellaneous iron	1,760		0.044	77.44
an an la	A CONTRACTOR OF				Non an
		_			
	1 - A				
	and the second s		+		
			Tatal		1910 - 19
			Iotal		\$77.44
1060 300					
,	< Comparison of the second sec				1 4
By Signin	g, You Attest That Material Being Sold Is No	ot Stolen Or Of False			
	Ownership	a second s			

APPENDIX F: IDW DRUM DISPOSAL RECORDS

April 28, 2016

Jay Trumble U.S Army Corps of Engineers, Louisville District ATTN: CELRL-PM-P-E 600 Martin Luther King Jr. Place Louisville, KY 40202-0059

Reference: Contract No. W912QR-12-F-0212, Site Inspection At Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops, Camp Ravenna Joint Military Training Center, Ravenna, Ohio

Subject: Contract Line Item (CLIN) 2, Task 3 – Implementation of Work Plan, Management and Disposal of Investigation Derived Wastes

Dear Mr. Trumble:

Soil investigative activities in accordance with the Revised Final Field Sampling Plan Addendum for Site Inspection at Compliance Restoration Site CC RVAAP-80, Group 2, Propellant Can Tops Area (January 2016) (herein referred to as the SAP Addendum) were performed from April 11, 2016 through April 13, 2016 (Prop Can Area Investigation). These activities have resulted in the generation of Investigation-Derived Waste (IDW) solids including soil cuttings, plastic Geoprobe liners and PPE sampling gloves. The purpose of this letter is to characterize and classify IDW for disposal and to propose methods for disposing the IDW.

This letter report includes a summary of IDW generated, the origin of the IDW (Table 1), as well as proposed classification and recommendations for disposal of the IDW (Table 2). This letter report follows guidance established by the following:

- 1) The Facility-Wide Sampling and Analysis Plan (USACE 2011) (herein referred to at the Facility-Wide SAP); and
- 2) The SAP Addendum for this project;

One distinct IDW waste stream was sampled as part of the Prop Can Area Investigation field activities. The waste stream was composited and sampled on April 13, 2016 as per the Camp Ravenna Waste Management Guidelines (dated 30 March 2015) and the requirements outlined in Section 7.0 of the Facility-wide SAP and SAP Addendum. IDW stream generated was:

• Two (2) 55-gallon, open top drums containing soil cuttings, Geoprobe sample liners and PPE gloves.

Table 1Summary of Sampled Investigation-Derived Wastes from Sampling Activities for the
Prop Can Area Investigation.

Container Number	Container Type and Size	Contents	Generation Date	Sample ID	Sample Date
PIKA-IDW-1 and PIKA-IDW-2	55 Gallon Steel, Open Top Drum	Soil cuttings, plastic Geoprobe liners and PPE gloves	4-11-16 – 4-13-16	PCTss-WC001-SO	4-13-16

IDW Discussion

Per Section 7.0 of the Facility-wide SAP and the SAP Addendum, one composite waste sample was collected for Toxicity Characteristic Leaching Procedure (TCLP) VOC, SVOC, Metals, Pesticides, Herbicides, Total Sulfide, Total Cyanide, Corrosivity(pH) and Flashpoint and submitted for laboratory analysis to characterize the waste stream for disposal. The sample (PCTss-WC001-SO) characterized two (2), 55-gallon drums containing soil cuttings, Geoprobe sample liners and PPE gloves. Upon receipt of analytical results from the laboratory, the analytical results were reviewed to determine if the waste was potentially hazardous. This review consisted of a comparison of the analytical results against the TCLP criteria presented in Table 7-1, Maximum Concentration of Contaminants for the Toxicity Characteristic (40 CFR 261.24), presented in the Facility-Wide SAP (USACE 2011) and Resource Conservation Recovery Act (RCRA) Hazardous Waste regulations 40 CFR 261 – 265.

Attachment 1 summarizes the analytical laboratory data and compares them to the applicable RCRA TCLP Limits for the IDW sample collected during the Prop Can Areas Investigation field activities. The results are summarized below:

- 1) All analytical results were below quantitative limits;
- 2) The pH for the waste is 5.73 S. U., which is in the normal range for soils and precipitation;
- 3) The flash point was >200∘F.

Given the observed analytical results, it is recommended that IDW stream be classified as nonhazardous, non-contaminated.

Recommended Disposal Pathway for IDW

Table 2 presents the disposal pathway identified as a result of IDW characterization data. Please note that this IDW has been characterized under provisions of the Facility-Wide SAP and SAP Addendum No. 1 using TCLP analyses and process knowledge. PIKA recommends that this

IDW be transported and disposed of as non-hazardous, non-contaminated waste by Republic Services – Carbon Limestone Landfill, in Lowellville, Ohio.

Table 2 Summary of Final Waste Classification and Recommended Disposal

NON-Hazardous Waste				
Containers	Medium	Waste Criterion	Disposal	
			Recommendation	
PIKA-IDW-1 and PIKA-IDW-2	Solid	Solid Waste	Permitted Solid Waste Facility	

Since RVAAP Restoration Program (at Camp Ravenna), under RCRA, is the generator of this material, PIKA requests concurrence or direction on the waste classification and recommended disposal pathways prior to disposal. Following your concurrence, we will proceed with the appropriate waste disposal.

If you have any questions or need clarifications, please feel free to contact us at 330-352-4822.

Sincerely,

PIKA INTERNATIONAL, INC.

Birhard C. Callaham

Richard Callahan Project Manager

Cc: Kathryn Tait – OHARNG Kevin Sedlak – ARNG

ATTACHMENT 1 ANALYTICAL RESULTS SUMMARY TABLE AND COMPARISON TO RCRA TCLP LIMITS

Attachment 1 - Waste Characterization Results PIKA IDW Sample

Contaminant	Units TCLP Limit (mg		Detection Limit (mg/L)	Sample Results PCTss-WC001-SO	Qualifier		
VOCs Method 8260B - TCLP							
1,1-Dichloroethene	mg/L	0.7	0.025	0.025	U		
1,2-Dichloroethane	mg/L	0.5	0.025	0.025	U		
2-Butanone (MEK)	mg/L	200	0.25	0.25	U		
Benzene	mg/L	0.5	0.025	0.025	U		
Carbon Tetrachloride	mg/L	0.5	0.025	0.025	U*		
Chlorobenzene	mg/L	100.0	0.025	0.025	U		
Chloroform	mg/L	6	0.025	0.025	U		
Tetrachloroethene	mg/L	0.7	0.025	0.025	U		
Trichloroethene	mg/L	0.5	0.025	0.025	U		
Vinyl Chloride	mg/L	0.2	0.025	0.025	U		
VOCs Method 8270C - TCLP							
3 & 4 Methylphenol (m & p-Cresol)	mg/L	200	0.004	0.004	U		
1,4-Dichlorobenzene	mg/L	7.5	0.004	0.004	U		
2,4-Dinitrotoluene	mg/L	0.13	0.004	0.004	U		
Hexachlorobenzene	mg/L	0.13	0.0008	0.0008	U		
Hexachlorobutadiene	mg/L	0.5	0.004	0.004	U		
Hexachloroethane	mg/L	3.0	0.004	0.004	U		
2-Methylphenol (o-Cresol)	mg/L	200	0.004	0.004	U		
Nitrobenzene	mg/L	2.0	0.004	0.004	U		
Pentachlorophenol	mg/L	100.0	0.016	0.016	U		
Pyridine	mg/L	5.0	0.004	0.004	U		
2,4,5-Trichlorophenol	mg/L	400.0	0.004	0.004	U		
2,4,6-Trichlorophenol	mg/L	2.0	0.004	0.004	U		
Pesticides Method 8081A - TCLP							
Chlordane	mg/L	0.03	0.005	0.005	U		
Endrin	mg/L	0.02	0.0005	0.0005	U		
Lindane (gamma-BHC)	mg/L	0.4	0.0005	0.0005	U		
Heptachlor	mg/L	0.008	0.0005	0.0005	U		
Heptachlor Epoxide	mg/L	0.008	0.0005	0.0005	U		
Methoxychlor	mg/L	10.0	0.001	0.001	U		
Toxaphene	mg/L	0.5	0.02	0.02	U		
Herbicides Method 8151A - TCLP	I	r					
2,4-D	mg/L	10.0	0.004	0.004	U		
Silvex (2,4,5-TP)	mg/L	1.0	0.001	0.001	U		
Metals 6010B - TCLP	T	1					
Aesenic	mg/L	5.0	0.5	0.0031	J		
Barium	mg/L	100.0	10	0.32	J B		
Cadmium	mg/L	1.0	0.1	0.0013	J		
Chromium	mg/L	5.0	0.5	0.00087	J B		
Lead	mg/L	5.0	0.5	0.0027	J		
Selenium	mg/L	1.0	0.25	0.25	U		
Silver	mg/L	5.0	0.5	0.5	U		
Mercury	mg/L	0.2	0.002	0.002	U		
General Chemistry							
Flashpoint	Deg F	<140° F	1.00	>200° F			
рН	Std Units	2 ≤ pH ≤ 12	0.100	5.73			
Corrosivity	Std Units	2 ≤ pH ≤ 12	0.100	5.73			
Cyanide, Total	mg/Kg	LF Acceptance	0.63	0.63	U		
Sulfide	mg/Kg	LF Acceptance	37	37	U		
Percent Solids	%	No Standard	0.1	82.4			
Percent Moisture	%	No Standard	0.1	17.6			

ATTACHMENT 2 SIGNED WASTE PROFILE FOR THE PROP CAN AREA INVESTIGATION IDW

1

Requested Disposal Facility: 5076		Waste Profile #					
Saveable fill-in form. Restricted printing until all requi	red (yellow) fields are com	pleted.					
I. Generator Informatio	n		S	ales Rep #	#:		
Generator Name: Former Rave	enna Army Amn	nunition Plant					
Generator Site Address: 845	1 State Route 5						
City: Ravenna	County: Port	age	State: Oh	io		Zip: 44266	
State ID/Reg No: OH521002	ate ID/Reg No: OH521002 State Approval/Waste Code: (if applicable)			NAICS # :			
Generator Mailing Address (if different):			nmental Of	ental Office, 1438 State Route 534 SW			
City: Newton Falls	County: Trun	nbull	State: Of	nio	Zip: 44444		
Generator Contact Name: Kath	ryn Tait			Email: kathryn.s.tait.nfg@mail.mil			
Phone Number: (614) 336-6136	6	Ext:	Fax Num	ber:			
II. Billing Information							
Bill To: PIKA International, Inc Contac					ct Name: Richard Callahan		
Billing Address: 12723 Capricorn Dr, Suite 500				Email: rcallahan@pikainc.com			
City: Stafford State: TX			Zip: 7747	'477 Phone: (281) 340-5525			

III. Waste Stream Information

Name of Waste: CC RVAAP-80 Grp 2 Prop Can Tops - Investigation Derived Waste - PIKA						
Process Generating Waste:						
Soil cuttings, plastic liners, a	nd gloves from Geoprobe Drilling and sampling activities					
Type of Waste:	□ INDUSTRIAL PROCESS WASTE					
Physical State:	SOLID SEMI-SOLID POWDER LIQUID					
Method of Shipment:	BULK DRUM BAGGED OTHER:					
Estimated Annual Volume:	2 Drums					
Frequency:						
Disposal Consideration:						

IV. Representative Sample Certification							
Is the representative sample collected to prepare this profile and laboratory analysis, collected in accordance with U.S. EPA 40 CFR 261.20(c) guidelines or equivalent rules? ✓ YES or □NO							
Type of Sample: COMPOSITE SAMPLE							
Sample Date: 04/13/2016							
Sample ID Numbers: PCTss-WC001-SO							

					Waste Profile #			
V. Physica	l Characteristics of	Waste						
Characteristic (Components		% by	v Weight (r	ange)			
1. Soil	,		50					
2. Plastic sleeves/liners from drilling 49								
3. PPE - gloves			1					
5								
Color	Odor (describe)	Does Waste Contain Free Liquids?	% Solids	pH:		Flash Po	int	
Brown soil	NA	YES or 🗸 NO	82.4	5.73		>200	۴F	
Attach La	aboratory Analytical Re Re	port (and/or Material Safety Data quired Parameters Provided for t	Sheet) Includi his Profile	ng Chain	of Cus	stody and	1	
Does this waste or generating process contain regulated concentrations of the following Pesticides and/or Herbicides: Chlordane, Endrin, Heptachlor (and its epoxides), Lindane, Methoxychlor, Toxaphene, 2,4-D, or 2,4,5-TP Silvex as defined in 40 CFR 261.33?						∐Yes or √ No		
Does this waste contain reactive sulfides (greater than 500 ppm) or reactive cyanide (greater than 250 ppm)[reference 40 CFR 261.23(a)(5)]?						Yes or 🖉 No		
Does this waste contain regulated concentrations of Polychlorinated Biphenyls (PCBs) as defined in 40 CFR Part 761?						Yes or VNo		
Does this waste including RCRA	contain concentrations of li F-Listed Solvents?	sted hazardous wastes defined in 40 Cl	FR 261.31, 261.3	2, 261.33,	☐Yes or ✔No			
Does this waste	exhibit a Hazardous Chara	cteristic as defined by Federal and/or S	tate regulations?		ΠV	es or 🖌 N	0	
Does this waste other dioxin as d	contain regulated concentra efined in 40 CFR 261.31?	ations of 2,3,7,8-Tetrachlorodibenzodio	xin (2,3,7,8-TCCE), or any	ΠY	es or 🔽 N	0	
Is this a regulated Radioactive Waste as defined by Federal and/or State regulations?						Yes or √ No		
Is this a regulated Medical or Infectious Waste as defined by Federal and/or State regulations?						Yes or √ No		
Is this waste a reactive or heat generating waste?							0	
Does the waste	contain sulfur or sulfur by-p	roducts?			Yes or √ No		0	
Is this waste gen	Is this waste generated at a Federal Superfund Clean Up Site?							
is this waste from a TSD facility, TSD like facility or consolidator?								

VI. Certification

I hereby certify that to the best of my knowledge and belief, the information contained herein is a true, complete and accurate description of the waste material being offered for disposal and all known or suspected hazards have been disclosed. All Analytical Results/Material Safety Data Sheets submitted are truthful and complete and are representative of the waste.

I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste or infectious waste, or any other waste material this facility is prohibited from accepting by law. I shall immediately give written notice of any change or condition pertaining to the waste not provided herein. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue.

I further certify that the company has not altered the form or content of this profile sheet as provided by Republic Services Inc.

Company Name
4/28/2016
Date

ATTACHMENT 3 COMPLETE ANALYTICAL REPORT FOR THE PROP CAN AREA INVESTIGATION IDW

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-63443-1 Client Project/Site: Ravenna, OH

For: PIKA International, Inc. 4935 South Prospect Street Suite A Ravenna, Ohio 44266

Attn: Mr. Brian Stockwell

Authorized for release by: 4/22/2016 11:37:32 AM

Jill Kellmann, Manager of Project Management (916)374-4402 jill.kellmann@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	11
QC Sample Results	13
QC Association Summary	20
Lab Chronicle	23
Certification Summary	24
Chain of Custody	25

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD is outside acceptance limits.
GC/MS Se	mi VOA
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
GC Semi V	'OA
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
U	Indicates the analyte was analyzed for but not detected.
General Cl	nemistry

Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Job ID: 240-63443-1

Laboratory: TestAmerica Canton

Narrative

Receipt

The sample was received on 4/13/2016 4:20 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.3° C.

Receipt Exceptions

The collection time listed on the COC for sample PCTss-WC001-SO (240-63443-1) was chronologically later than the laboratory receipt time for the sample. The client was contacted, and the lab was instructed to record the collection time of15:20.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) for preparation batch 240-226135 and analytical batch 240-226198 recovered outside control limits for carbon tetrachloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: The continuing calibration verification (CCV) associated with batch 240-226986 recovered above the upper control limit for 2,4-D. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: PCTss-WC001-SO (240-63443-1) and (240-63447-O-1-K).

Method(s) 8081A: The continuing calibration verification (CCV) associated with batch 240-227093 recovered above the upper control limit for Endrin and Heptachlor. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: PCTss-WC001-SO (240-63443-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
8081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
8151A	Herbicides (GC)	SW846	TAL CAN
6010B	Metals (ICP)	SW846	TAL CAN
7470A	Mercury (CVAA)	SW846	TAL CAN
1010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
9012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
9034	Sulfide, Acid soluble and Insoluble (Titrimetric)	SW846	TAL CAN
9045C	рН	SW846	TAL CAN
Moisture	Percent Moisture	EPA	TAL CAN

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-63443-1	PCTss-WC001-SO	Solid	04/13/16 15:20	04/13/16 16:20

Client Sample ID: PCTss-WC001-SO

Lab Sample ID: 240-63443-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0031	J	0.50	0.0029	mg/L	1	_	6010B	TCLP
Barium	0.32	JB	10	0.0010	mg/L	1		6010B	TCLP
Cadmium	0.0013	J	0.10	0.00014	mg/L	1		6010B	TCLP
Chromium	0.00087	JB	0.50	0.00055	mg/L	1		6010B	TCLP
Lead	0.0027	J	0.50	0.0019	mg/L	1		6010B	TCLP
Flashpoint	>200		1.00	1.00	Degrees F	1		1010	Total/NA
рН	5.73		0.100	0.100	SU	1		9045C	Total/NA
Corrosivity	5.73		0.100	0.100	SU	1		9045C	Total/NA

14

This Detection Summary does not include radiochemical test results.

Client Sample ID: PCTss-WC001-SO Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20

Lab Sample ID: 240-63443-1 Matrix: Solid

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) - TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L			04/15/16 23:16	1
1,2-Dichloroethane	0.025	U	0.025	0.011	mg/L			04/15/16 23:16	1
2-Butanone (MEK)	0.25	U	0.25	0.029	mg/L			04/15/16 23:16	1
Benzene	0.025	U	0.025	0.0065	mg/L			04/15/16 23:16	1
Carbon tetrachloride	0.025	U *	0.025	0.0065	mg/L			04/15/16 23:16	1
Chlorobenzene	0.025	U	0.025	0.0075	mg/L			04/15/16 23:16	1
Chloroform	0.025	U	0.025	0.0080	mg/L			04/15/16 23:16	1
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			04/15/16 23:16	1
Trichloroethene	0.025	U	0.025	0.0085	mg/L			04/15/16 23:16	1
Vinyl chloride	0.025	U	0.025	0.011	mg/L			04/15/16 23:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 121					04/15/16 23:16	1
4-Bromofluorobenzene (Surr)	95		70 - 124					04/15/16 23:16	1
Toluene-d8 (Surr)	99		80 - 120					04/15/16 23:16	1
Dibromofluoromethane (Surr)	105		80 - 128					04/15/16 23:16	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.0040	U	0.0040	0.00080	mg/L		04/19/16 12:56	04/21/16 12:54	1
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4-Dinitrotoluene	0.0040	U	0.0040	0.00025	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachlorobenzene	0.00080	U	0.00080	0.000085	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachlorobutadiene	0.0040	U	0.0040	0.00027	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachloroethane	0.0040	U	0.0040	0.00019	mg/L		04/19/16 12:56	04/21/16 12:54	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		04/19/16 12:56	04/21/16 12:54	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		04/19/16 12:56	04/21/16 12:54	1
Pentachlorophenol	0.016	U	0.016	0.00027	mg/L		04/19/16 12:56	04/21/16 12:54	1
Pyridine	0.0040	U	0.0040	0.00035	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4,5-Trichlorophenol	0.0040	U	0.0040	0.00030	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4,6-Trichlorophenol	0.0040	U	0.0040	0.00024	mg/L		04/19/16 12:56	04/21/16 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	90		30 - 110				04/19/16 12:56	04/21/16 12:54	1
2-Fluorophenol (Surr)	74		20 - 110				04/19/16 12:56	04/21/16 12:54	1
2,4,6-Tribromophenol (Surr)	76		23 - 110				04/19/16 12:56	04/21/16 12:54	1
Nitrobenzene-d5 (Surr)	98		28 - 110				04/19/16 12:56	04/21/16 12:54	1
Phenol-d5 (Surr)	64		21 - 110				04/19/16 12:56	04/21/16 12:54	1
Terphenyl-d14 (Surr)	106		48 - 110				04/19/16 12:56	04/21/16 12:54	1

Method: 8081A - Organochlorine Pesticides (GC) - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.00014	mg/L		04/19/16 12:58	04/22/16 10:51	1
Endrin	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
Heptachlor	0.00050	U	0.00050	0.000014	mg/L		04/19/16 12:58	04/22/16 10:51	1
Heptachlor epoxide	0.00050	U	0.00050	0.000015	mg/L		04/19/16 12:58	04/22/16 10:51	1
Methoxychlor	0.0010	U	0.0010	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
Toxaphene	0.020	U	0.020	0.00020	mg/L		04/19/16 12:58	04/22/16 10:51	1

Client Sample ID: PCTss-WC001-SO Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20

Lab Sample ID: 240-63443-1 Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	74		10 - 141				04/19/16 12:58	04/22/16 10:51	1
DCB Decachlorobiphenyl	70		10 - 141				04/19/16 12:58	04/22/16 10:51	1
Tetrachloro-m-xylene	66		34 - 121				04/19/16 12:58	04/22/16 10:51	1
Tetrachloro-m-xylene	69		34 - 121				04/19/16 12:58	04/22/16 10:51	1
Method: 8151A - Herbicides	(GC) - TCL P								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.0019	mg/L		04/19/16 13:01	04/22/16 03:43	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00027	mg/L		04/19/16 13:01	04/22/16 03:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	90		56 - 120				04/19/16 13:01	04/22/16 03:43	1
2,4-Dichlorophenylacetic acid	76		56 - 120				04/19/16 13:01	04/22/16 03:43	1
Method: 6010B - Metals (ICE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0031	J	0.50	0.0029	mg/L		04/19/16 12:16	04/20/16 12:33	1
Barium	0.32	JB	10	0.0010	mg/L		04/19/16 12:16	04/20/16 12:33	1
Cadmium	0.0013	J	0.10	0.00014	mg/L		04/19/16 12:16	04/20/16 12:33	1
Chromium	0.00087	JB	0.50	0.00055	mg/L		04/19/16 12:16	04/20/16 12:33	1
Lead	0.0027	J	0.50	0.0019	mg/L		04/19/16 12:16	04/20/16 12:33	1
Selenium	0.25	U	0.25	0.0040	mg/L		04/19/16 12:16	04/20/16 12:33	1
Silver	0.50	U	0.50	0.00092	mg/L		04/19/16 12:16	04/20/16 12:33	1
Method: 7470A - Mercury (C	VAA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.0020	0.000090	mg/L		04/19/16 12:21	04/20/16 11:43	1
Conoral Chamistry									
Analyto	Pocult	Qualifier	DI	мпі	Unit	п	Proparad	Analyzod	Dil Eac
Flashpoint		Quanner	1.00	1.00	Degrees F			04/18/16 07:03	1
nH	- 200 5 73		0 100	0 100	SU			04/14/16 10:25	1
Corrosivity	5.73		0 100	0 100	SU			04/14/16 10:25	1
Percent Solids	5.75 82 A		0.100	0.100	%			04/14/16 09:36	····· 1
Parcent Moisture	17 6		0.1	0.1	%			04/14/16 09:36	1
	17.0		0.1	0.1	70			0-1, 1-1, 10, 00, 00	1

Lab Sample ID: 240-63443-1

Matrix: Solid

Percent Solids: 82.4

Client Sample ID: PCTss-WC001-SO Date Collected: 04/13/16 15:20

Date Received: 04/13/16 16:20

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.63	U	0.63	0.38	mg/Kg	<u> </u>	04/15/16 15:14	04/15/16 19:53	1
Sulfide	37	U	37	27	mg/Kg	¢	04/18/16 11:06	04/18/16 13:38	1

Prep Type: TCLP

Pron Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid						Prep Type: Total/NA
			Pe	ercent Surro	ogate Recove	ry (Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)	
LCS 240-226198/18	Lab Control Sample	102	97	100	105	
Surrogate Legend						
12DCE = 1,2-Dichloro	pethane-d4 (Surr)					
BFB = 4-Bromofluoro	benzene (Surr)					

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Solid

			P	ercent Surr	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)
240-63443-1	PCTss-WC001-SO	108	95	99	105
LB 240-226135/1-A MB	Method Blank	106	98	103	108
Surrogate Legend					
12DCE = 1,2-Dichloroe	thane-d4 (Surr)				
BFB = 4-Bromofluorobe	enzene (Surr)				
TOL = Toluene-d8 (Sur	r)				
DBFM = Dibromofluoro	methane (Surr)				

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

							1100	Type: Totain
			Pe	ercent Surr	ogate Reco	very (Acce	otance Limits)
		FBP	2FP	TBP	NBZ	PHL	ТРН	
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)	
LCS 240-226581/5-A	Lab Control Sample	92	76	80	101	66	98	
MB 240-226581/4-A	Method Blank	88	75	71	91	66	103	
Surrogate Legend								
FBP = 2-Fluorobiphen	ıyl (Surr)							
2FP = 2-Fluorophenol	(Surr)							
TBP = 2,4,6-Tribromo	phenol (Surr)							
NBZ = Nitrobenzene-o	15 (Surr)							

TPH = Terphenyl-d14 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS) Matrix: Solid

Prep Type: TCLP

			Pe	ercent Surro	ogate Reco	very (Accep	otance Lim
		FBP	2FP	TBP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)
240-63443-1	PCTss-WC001-SO	90	74	76	98	64	106
240-63443-1 MS	PCTss-WC001-SO	90	73	82	97	74	100
Surrogate Legend							

FBP = 2-Fluorobiphenyl (Surr)

PHL = Phenol-d5 (Surr)

Prep Type: Total/NA

2FP = 2-Fluorophenol (Surr) TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid

			Pe	ercent Surro	ogate Recov	ery (Acceptance Lir
		DCB1	DCB2	TCX1	TCX2	
Lab Sample ID	Client Sample ID	(10-141)	(10-141)	(34-121)	(34-121)	
LCS 240-226583/5-A	Lab Control Sample	72	73	71	71	
MB 240-226583/4-A	Method Blank	65	64	58	59	

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid						Prep Type: T	CLP
_			Pe	ercent Surre	ogate Recov	very (Acceptance Limits)	
		DCB1	DCB2	TCX1	TCX2		
Lab Sample ID	Client Sample ID	(10-141)	(10-141)	(34-121)	(34-121)		
240-63443-1	PCTss-WC001-SO	74	70	66	69		
240-63443-1 MS	PCTss-WC001-SO	82	84	66	71		

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8151A - Herbicides (GC) Matrix: Solid

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCPA1 DCPA2 **Client Sample ID** (56-120) (56-120) Lab Sample ID LCS 240-226584/5-A Lab Control Sample 84 74 MB 240-226584/4-A Method Blank 68 78

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

Method: 8151A - Herbicides (GC) Matrix: Solid

_			Per	cent Surrogate Recovery (Acceptance Limits)
		DCPA1	DCPA2	
Lab Sample ID	Client Sample ID	(56-120)	(56-120)	
240-63443-1	PCTss-WC001-SO	90	76	

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

Prep Type: TCLP

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: TCLP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 240-226198/18 Matrix: Solid Analysis Batch: 226198

Spike	LCS	LCS			%Rec.	
Added	Result	Qualifier	Unit	D %Rec	Limits	
1.00	1.10		mg/L		71 - 133	
1.00	1.08		mg/L	108	80 - 120	
2.00	1.76		mg/L	88	49 - 120	
1.00	0.930		mg/L	93	80 - 120	
1.00	1.23	*	mg/L	123	54 - 122	
1.00	0.948		mg/L	95	80 - 120	
1.00	1.07		mg/L	107	80 - 123	
1.00	1.03		mg/L	103	79 ₋ 134	
1.00	1.10		mg/L	110	78 ₋ 130	
1.00	0.864		mg/L	86	56 - 120	
	Spike Added 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Spike LCS Added Result 1.00 1.10 1.00 1.08 2.00 1.76 1.00 0.930 1.00 1.23 1.00 0.948 1.00 1.07 1.00 1.03 1.00 0.864	Spike LCS LCS Added Result Qualifier 1.00 1.10 Qualifier 1.00 1.08 Qualifier 1.00 1.08 Qualifier 1.00 1.08 Qualifier 1.00 1.08 Qualifier 1.00 0.930 Qualifier 1.00 0.930 Qualifier 1.00 0.930 Qualifier 1.00 1.23 * 1.00 1.07 Qualifier 1.00 1.03 Qualifier 1.00 1.03 Qualifier 1.00 0.864 Provide State	Spike LCS LCS Added Result Qualifier Unit 1.00 1.10 mg/L 1.00 1.08 mg/L 2.00 1.76 mg/L 1.00 0.930 mg/L 1.00 0.938 mg/L 1.00 1.07 mg/L 1.00 1.03 mg/L 1.00 1.03 mg/L 1.00 1.03 mg/L 1.00 1.03 mg/L 1.00 0.864 mg/L	Spike LCS LCS Added Result Qualifier Unit D %Rec 1.00 1.10 mg/L 100 110 1.00 1.08 mg/L 108 2.00 1.76 mg/L 88 1.00 0.930 mg/L 93 1.00 1.23 mg/L 95 1.00 0.948 mg/L 95 1.00 1.07 mg/L 107 1.00 1.03 mg/L 103 1.00 1.03 mg/L 103 1.00 0.864 mg/L 86	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	LUS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 121
4-Bromofluorobenzene (Surr)	97		70 - 124
Toluene-d8 (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	105		80 - 128

.

Lab Sample ID: LB 240-226135/1-A MB Matrix: Solid Analysis Batch: 226198

MB MB Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethene 0.025 U 0.025 0.0095 mg/L 04/15/16 22:31 1 1,2-Dichloroethane 0.025 U 0.025 0.011 mg/L 04/15/16 22:31 1 2-Butanone (MEK) 0.25 U 0.25 0.029 mg/L 04/15/16 22:31 1 Benzene 0.0065 mg/L 0.025 U 0.025 04/15/16 22:31 1 Carbon tetrachloride 0.025 U 0.025 0.0065 mg/L 04/15/16 22:31 1 Chlorobenzene 0.025 U 0.025 0.0075 mg/L 04/15/16 22:31 1 Chloroform 0.025 U 0.025 0.0080 mg/L 04/15/16 22:31 1 Tetrachloroethene 0.025 U 0.025 0.015 mg/L 04/15/16 22:31 1 Trichloroethene 0.0085 mg/L 0.025 U 0.025 04/15/16 22:31 1 0.025 U Vinyl chloride 0.025 0.011 mg/L 04/15/16 22:31 1 MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 106 80 - 121 04/15/16 22:31 1 4-Bromofluorobenzene (Surr) 98 70 - 124 04/15/16 22:31 1 Toluene-d8 (Surr) 103 80 - 120 04/15/16 22:31 1 108 80 - 128 Dibromofluoromethane (Surr) 04/15/16 22:31 1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-226581 Matrix: Solid Analysis Batch: 226939	/4-A	MD					Client Samp	le ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 226581
Analyte	Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
3 & 4 Methylphenol	0.0040	U	0.0040	0.00080	mg/L		04/19/16 12:56	04/21/16 10:55	1

TestAmerica Canton

4/22/2016

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-226 Matrix: Solid	581/4-A						Client Samp	le ID: Methoc Prep Type: To	l Blank otal/NA
Analysis Batch: 226939								Prep Batch:	226581
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4-Dinitrotoluene	0.0040	U	0.0040	0.00025	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachlorobenzene	0.00080	U	0.00080	0.000085	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachlorobutadiene	0.0040	U	0.0040	0.00027	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachloroethane	0.0040	U	0.0040	0.00019	mg/L		04/19/16 12:56	04/21/16 10:55	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		04/19/16 12:56	04/21/16 10:55	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		04/19/16 12:56	04/21/16 10:55	1
Pentachlorophenol	0.016	U	0.016	0.00027	mg/L		04/19/16 12:56	04/21/16 10:55	1
Pyridine	0.0040	U	0.0040	0.00035	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4,5-Trichlorophenol	0.0040	U	0.0040	0.00030	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4,6-Trichlorophenol	0.0040	U	0.0040	0.00024	mg/L		04/19/16 12:56	04/21/16 10:55	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		30 - 110				04/19/16 12:56	04/21/16 10:55	1
2-Fluorophenol (Surr)	75		20 - 110				04/19/16 12:56	04/21/16 10:55	1
2,4,6-Tribromophenol (Surr)	71		23 - 110				04/19/16 12:56	04/21/16 10:55	1
Nitrobenzene-d5 (Surr)	91		28 - 110				04/19/16 12:56	04/21/16 10:55	1
Phenol-d5 (Surr)	66		21 - 110				04/19/16 12:56	04/21/16 10:55	1
Terphenyl-d14 (Surr)	103		48 - 110				04/19/16 12:56	04/21/16 10:55	1

Lab Sample ID: LCS 240-226581/5-A Matrix: Solid _ _ _ _ _ _ A

Analysis Batch: 226939						Prep Batch: 226581
	Spike	LCS LCS				%Rec.
Analyte	Added	Result Qualifier	r Unit	D	%Rec	Limits
3 & 4 Methylphenol	0.0800	0.0689	mg/L		86	48 - 110
1,4-Dichlorobenzene	0.0800	0.0633	mg/L		79	52 - 110
2,4-Dinitrotoluene	0.0800	0.0861	mg/L		108	54 - 110
Hexachlorobenzene	0.0800	0.0686	mg/L		86	50 - 110
Hexachlorobutadiene	0.0800	0.0642	mg/L		80	34 - 110
Hexachloroethane	0.0800	0.0711	mg/L		89	41 - 110
2-Methylphenol	0.0800	0.0756	mg/L		95	44 - 111
Nitrobenzene	0.0800	0.0865	mg/L		108	40 - 110
Pentachlorophenol	0.160	0.132	mg/L		82	12 - 110
Pyridine	0.0800	0.0594	mg/L		74	30 - 110
2,4,5-Trichlorophenol	0.0800	0.0726	mg/L		91	51 - 110
2,4,6-Trichlorophenol	0.0800	0.0734	mg/L		92	46 - 110
	100					

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	92		30 - 110
2-Fluorophenol (Surr)	76		20 - 110
2,4,6-Tribromophenol (Surr)	80		23 - 110
Nitrobenzene-d5 (Surr)	101		28 - 110
Phenol-d5 (Surr)	66		21 - 110
Terphenyl-d14 (Surr)	98		48 - 110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-6344 Matrix: Solid	43-1 MS					CI	ient S	ample	ID: PCTss-WC001-SO Pren Type: TCL P
Analysis Batch: 226939									Prep Batch: 226581
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
3 & 4 Methylphenol	0.0040	U	0.0800	0.0676		mg/L		84	29 - 110
1,4-Dichlorobenzene	0.0040	U	0.0800	0.0640		mg/L		80	31 - 110
2,4-Dinitrotoluene	0.0040	U	0.0800	0.0865		mg/L		108	42 - 110
Hexachlorobenzene	0.00080	U	0.0800	0.0653		mg/L		82	42 - 110
Hexachlorobutadiene	0.0040	U	0.0800	0.0641		mg/L		80	28 - 110
Hexachloroethane	0.0040	U	0.0800	0.0694		mg/L		87	26 - 110
2-Methylphenol	0.0040	U	0.0800	0.0691		mg/L		86	33 - 112
Nitrobenzene	0.0040	U	0.0800	0.0856		mg/L		107	32 - 110
Pentachlorophenol	0.016	U	0.160	0.124		mg/L		78	10 - 124
Pyridine	0.0040	U	0.0800	0.0567		mg/L		71	21 - 110
2,4,5-Trichlorophenol	0.0040	U	0.0800	0.0658		mg/L		82	41 - 110
2,4,6-Trichlorophenol	0.0040	U	0.0800	0.0707		mg/L		88	35 - 110
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
2-Fluorobiphenyl (Surr)	90		30 - 110						
2-Fluorophenol (Surr)	73		20 - 110						
2,4,6-Tribromophenol (Surr)	82		23 - 110						
Nitrobenzene-d5 (Surr)	97		28 - 110						
Phenol-d5 (Surr)	74		21 - 110						
Terphenyl-d14 (Surr)	100		48 - 110						

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 240-226583/4-A Matrix: Solid Analysis Batch: 227093

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 226583

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.00014	mg/L		04/19/16 12:58	04/22/16 10:05	1
Endrin	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
Heptachlor	0.00050	U	0.00050	0.000014	mg/L		04/19/16 12:58	04/22/16 10:05	1
Heptachlor epoxide	0.00050	U	0.00050	0.000015	mg/L		04/19/16 12:58	04/22/16 10:05	1
Methoxychlor	0.0010	U	0.0010	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
Toxaphene	0.020	U	0.020	0.00020	mg/L		04/19/16 12:58	04/22/16 10:05	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	65		10 - 141				04/19/16 12:58	04/22/16 10:05	1
DCB Decachlorobiphenyl	64		10 - 141				04/19/16 12:58	04/22/16 10:05	1
Tetrachloro-m-xylene	58		34 - 121				04/19/16 12:58	04/22/16 10:05	1
Tetrachloro-m-xylene	59		34 - 121				04/19/16 12:58	04/22/16 10:05	1

Client Sample ID: PCTss-WC001-SO

Prep Type: TCLP

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

71

Lab Sample ID: LCS 240-2 Matrix: Solid Analysis Batch: 227093	226583/5-A					Clie	nt Sa	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 226583
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Endrin			0.000400	0.000320	J	mg/L		80	49 - 150
gamma-BHC (Lindane)			0.000400	0.000309	J	mg/L		77	22 - 144
Heptachlor			0.000400	0.000323	J	mg/L		81	40 - 129
Heptachlor epoxide			0.000400	0.000330	J	mg/L		83	42 - 137
Methoxychlor			0.000800	0.000606	J	mg/L		76	35 - 147
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl	72		10 - 141						
DCB Decachlorobiphenyl	73		10_141						
Tetrachloro-m-xylene	71		34 - 121						

34 - 121

Lab Sample ID: 240-63443-1 MS Matrix: Solid Analysis Batch: 227093

Tetrachloro-m-xylene

Analysis Batch: 227093									Prep Batch: 226583
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Endrin	0.00050	U	0.000400	0.000309	J	mg/L		77	43 - 138
gamma-BHC (Lindane)	0.00050	U	0.000400	0.000305	J	mg/L		76	32 - 120
Heptachlor	0.00050	U	0.000400	0.000337	J	mg/L		84	42 - 120
Heptachlor epoxide	0.00050	U	0.000400	0.000330	J	mg/L		82	48 - 120
Methoxychlor	0.0010	U	0.000800	0.000652	J	mg/L		82	45 - 127
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl	82		10 - 141						
DCB Decachlorobiphenyl	84		10 - 141						
Tetrachloro-m-xylene	66		34 - 121						
Tetrachloro-m-xylene	71		34 - 121						

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 240-226584/4-/ Matrix: Solid Analysis Batch: 226986	4						Client Samp	le ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 226584
	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.0019	mg/L		04/19/16 13:01	04/22/16 02:52	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00027	mg/L		04/19/16 13:01	04/22/16 02:52	1
	МВ	MB							
Surrogate %F	ecovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	78		56 - 120				04/19/16 13:01	04/22/16 02:52	1
2,4-Dichlorophenylacetic acid	68		56 - 120				04/19/16 13:01	04/22/16 02:52	1

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 240-2 Matrix: Solid Analysis Batch: 226986	226584/5-A		Snike	LCS	LCS	Clie	nt Saı	nple ID	E: Lab Control Sample Prep Type: Total/NA Prep Batch: 226584
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-D	· · · · · · · · · · · · · · · · · · ·		0.0200	0.0152		mg/L		76	50 - 120
Silvex (2,4,5-TP)			0.00500	0.00398		mg/L		80	45 - 129
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
2,4-Dichlorophenylacetic acid	84		56 - 120						
2,4-Dichlorophenylacetic acid	74		56 - 120						

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-226553/2-A Matrix: Solid Analysis Batch: 226739

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0029	mg/L		04/19/16 12:16	04/20/16 11:47	1
Barium	0.00239	J	10	0.0010	mg/L		04/19/16 12:16	04/20/16 11:47	1
Cadmium	0.10	U	0.10	0.00014	mg/L		04/19/16 12:16	04/20/16 11:47	1
Chromium	0.50	U	0.50	0.00055	mg/L		04/19/16 12:16	04/20/16 11:47	1
Lead	0.50	U	0.50	0.0019	mg/L		04/19/16 12:16	04/20/16 11:47	1
Selenium	0.25	U	0.25	0.0040	mg/L		04/19/16 12:16	04/20/16 11:47	1
Silver	0.50	U	0.50	0.00092	ma/L		04/19/16 12:16	04/20/16 11:47	1

Lab Sample ID: LCS 240-226553/3-A Matrix: Solid Analysis Batch: 226739

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 226553

Prep Batch: 226553

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic		2.11		mg/L		106	50 - 150	
Barium	2.00	1.96	J	mg/L		98	50 - 150	
Cadmium	0.0500	0.0510	J	mg/L		102	50 - 150	
Chromium	0.200	0.201	J	mg/L		101	50 - 150	
Lead	0.500	0.453	J	mg/L		91	50 - 150	
Selenium	2.00	2.20		mg/L		110	50 - 150	
Silver	0.0500	0.0536	J	mg/L		107	50 ₋ 150	

Lab Sample ID: LB 240-226432/1-B Matrix: Solid Analysis Batch: 226739

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0029	mg/L		04/19/16 12:16	04/20/16 11:43	1
Barium	0.0218	J	10	0.0010	mg/L		04/19/16 12:16	04/20/16 11:43	1
Cadmium	0.10	U	0.10	0.00014	mg/L		04/19/16 12:16	04/20/16 11:43	1
Chromium	0.00112	J	0.50	0.00055	mg/L		04/19/16 12:16	04/20/16 11:43	1
Lead	0.50	U	0.50	0.0019	mg/L		04/19/16 12:16	04/20/16 11:43	1
Selenium	0.25	U	0.25	0.0040	mg/L		04/19/16 12:16	04/20/16 11:43	1
Silver	0.50	U	0.50	0.00092	mg/L		04/19/16 12:16	04/20/16 11:43	1

Prep Type: TCLP

Prep Batch: 226553

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-226557/2-A Matrix: Solid Analysis Batch: 226851	MB	MB							Clie	ent Samı	ole ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 226557
Analyte	Result	Qualifier		RL	N		Unit		D P	repared	Analyzed	Dil Fac
Mercury	0.0020	U	C	.0020	0.000	090	mg/L		04/1	19/16 12:21	04/20/16 11:25	1
Lab Sample ID: LCS 240-226557/3-/ Matrix: Solid Analysis Batch: 226851	4		Spike		LCS	LCS		Clie	nt Sa	mple ID:	Lab Control Prep Type: T Prep Batch: %Rec.	Sample otal/NA 226557
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	
Mercury			0.00500	(0.00522			mg/L		104	80 - 120	
Lab Sample ID: LB 240-226432/1-C Matrix: Solid Analysis Batch: 226851	LB	LB							Clie	ent Samı	ole ID: Metho Prep Type Prep Batch:	d Blank e: TCLP 226557
Analyte	Result	Qualifier		RL	N	IDL I	Unit		D P	repared	Analyzed	Dil Fac
Mercury	0.0020	U	0	.0020	0.000	090 i	mg/L		04/1	19/16 12:21	04/20/16 11:32	1

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 240-226381/1 Matrix: Solid Analysis Batch: 226381			Client	Sai	mple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Balch. 220301							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Flashpoint	81.0	81.00		Degrees F	_	100	97 - 103

Method: 9012A - Cyanide, Total and/or Amenable

Lab Sample ID: MB 240-226196/1 Matrix: Solid Analysis Batch: 226212	- А МВ	мв							Cli	ent Samp	ole ID: Method Prep Type: To Prep Batch:	d Blank otal/NA 226196
Analyte	Result	Qualifier		RL	I	MDL	Unit) (Prepared	Analyzed	Dil Fac
Cyanide, Total	0.51	U		0.51		0.31	mg/Kg		04/	15/16 15:14	04/15/16 19:47	1
Lab Sample ID: MB 240-226196/1 Matrix: Solid Analysis Batch: 226212	- А мв	МВ							Cli	ent Samp	ole ID: Method Prep Type: To Prep Batch:	d Blank otal/NA 226196
Analyte	Result	Qualifier		RL	I	MDL	Unit) (Prepared	Analyzed	Dil Fac
Cyanide, Total	0.51	U		0.51		0.31	mg/Kg		04/	15/16 15:14	04/15/16 21:27	1
Lab Sample ID: LCS 240-226196/ Matrix: Solid Analysis Batch: 226212	2-A							Clier	nt Sa	mple ID:	Lab Control S Prep Type: To Prep Batch:	Sample otal/NA 226196
			Spike		LCS	LCS	5				%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Cyanide, Total			3.92		4.07			mg/Kg		104	68 - 123	

Method: 9012A - Cyanide, Total and/or Amenable (Continued) Lab Sample ID: LCS 240-226196/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 226212 Prep Batch: 226196 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits 3.92 68 - 123 Cyanide, Total 4.14 mg/Kg 105 Method: 9034 - Sulfide, Acid soluble and Insoluble (Titrimetric) Lab Sample ID: MB 240-226301/8-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 226349 Prep Batch: 226301 MB MB RL MDL Unit Analyte **Result Qualifier** D Analyzed Dil Fac Prepared 04/18/16 08:07 04/18/16 12:02 Sulfide 30 U 30 22 mg/Kg 1 Lab Sample ID: LCS 240-226301/9-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 226349 Prep Batch: 226301 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Sulfide 92.6 88 70 - 130 81.8 mg/Kg Method: 9045C - pH Lab Sample ID: LCS 240-225948/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Solid** Analysis Batch: 225948 Spike LCS LCS %Rec. Added **Result Qualifier** Analyte Unit D %Rec Limits 6.15 6.210 SU pН 101 97 - 103 6.15 6.210 SU 101 97 - 103 Corrosivity Lab Sample ID: LCS 240-225948/21 **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 225948 Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits 6.15 SU pН 6.210 101 97 - 103 Corrosivity 6.15 6.210 SU 101 97 - 103 Client Sample ID: PCTss-WC001-SO Lab Sample ID: 240-63443-1 DU **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 225948 Sample Sample DU DU RPD **Result Qualifier** Analyte **Result Qualifier** Unit D RPD Limit 5.73 5.780 SU 20 pH 0.9 Corrosivity 5.73 5.780 SU 0.9 20

GC/MS VOA

Leach Batch: 226135

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
PCTss-WC001-SO	TCLP	Solid	1311	
Method Blank	TCLP	Solid	1311	
	Client Sample ID PCTss-WC001-SO Method Blank	Client Sample IDPrep TypePCTss-WC001-SOTCLPMethod BlankTCLP	Client Sample IDPrep TypeMatrixPCTss-WC001-SOTCLPSolidMethod BlankTCLPSolid	Client Sample IDPrep TypeMatrixMethodPCTss-WC001-SOTCLPSolid1311Method BlankTCLPSolid1311

Analysis Batch: 226198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8260B	226135
LB 240-226135/1-A MB	Method Blank	TCLP	Solid	8260B	226135
LCS 240-226198/18	Lab Control Sample	Total/NA	Solid	8260B	

GC/MS Semi VOA

Leach Batch: 226432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	1311	

Prep Batch: 226581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3510C	226432
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	3510C	226432
LCS 240-226581/5-A	Lab Control Sample	Total/NA	Solid	3510C	
MB 240-226581/4-A	Method Blank	Total/NA	Solid	3510C	

Analysis Batch: 226939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8270C	226581
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	8270C	226581
LCS 240-226581/5-A	Lab Control Sample	Total/NA	Solid	8270C	226581
MB 240-226581/4-A	Method Blank	Total/NA	Solid	8270C	226581

GC Semi VOA

Leach Batch: 226432

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	1311	

Prep Batch: 226583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3520C	226432
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	3520C	226432
LCS 240-226583/5-A	Lab Control Sample	Total/NA	Solid	3520C	
MB 240-226583/4-A	Method Blank	Total/NA	Solid	3520C	

Prep Batch: 226584

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8151A	226432
LCS 240-226584/5-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 240-226584/4-A	Method Blank	Total/NA	Solid	8151A	

QC Association Summary

8081A

GC Semi VOA (Continued)

Method Blank

Analysis Batch: 226986

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8151A	226584	
LCS 240-226584/5-A	Lab Control Sample	Total/NA	Solid	8151A	226584	
MB 240-226584/4-A	Method Blank	Total/NA	Solid	8151A	226584	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8081A	226583	
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	8081A	226583	
LCS 240-226583/5-A	Lab Control Sample	Total/NA	Solid	8081A	226583	

Total/NA

Solid

Metals

Leach Batch: 226432

MB 240-226583/4-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
LB 240-226432/1-B	Method Blank	TCLP	Solid	1311	
LB 240-226432/1-C	Method Blank	TCLP	Solid	1311	
Prep Batch: 226553	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3010A	226432
LB 240-226432/1-B	Method Blank	TCLP	Solid	3010A	226432
LCS 240-226553/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 240-226553/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 226557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	7470A	226432
LB 240-226432/1-C	Method Blank	TCLP	Solid	7470A	226432
LCS 240-226557/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 240-226557/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 226739

Lab Sample ID	Client Sample ID Pre		Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	6010B	226553
LB 240-226432/1-B	Method Blank	TCLP	Solid	6010B	226553
LCS 240-226553/3-A	Lab Control Sample	Total/NA	Solid	6010B	226553
MB 240-226553/2-A	Method Blank	Total/NA	Solid	6010B	226553

Analysis Batch: 226851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	7470A	226557
LB 240-226432/1-C	Method Blank	TCLP	Solid	7470A	226557
LCS 240-226557/3-A	Lab Control Sample	Total/NA	Solid	7470A	226557
MB 240-226557/2-A	Method Blank	Total/NA	Solid	7470A	226557

226583

QC Association Summary

TestAmerica Job ID: 240-63443-1

General Chemistry

Analysis Batch: 225948

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9045C	
240-63443-1 DU	PCTss-WC001-SO	Total/NA	Solid	9045C	
LCS 240-225948/2	Lab Control Sample	Total/NA	Solid	9045C	
LCS 240-225948/21	Lab Control Sample	Total/NA	Solid	9045C	
Analysis Batch: 225	951				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	Moisture	
Prep Batch: 226196					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9012A	
LCS 240-226196/2-A	Lab Control Sample	Total/NA	Solid	9012A	
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	
Analysis Batch: 226	212				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9012A	226196
LCS 240-226196/2-A	Lab Control Sample	Total/NA	Solid	9012A	226196
LCS 240-226196/2-A	Client Sample ID Prep Type Matrix PCTss-WC001-SO Total/NA Solid Lab Control Sample Total/NA Solid Lab Control Sample Total/NA Solid 5951 Client Sample ID Prep Type Matrix PCTss-WC001-SO Total/NA Solid 5951 Client Sample ID Prep Type Matrix PCTss-WC001-SO Total/NA Solid Client Sample ID Prep Type Matrix PCTss-WC001-SO Total/NA Solid Lab Control Sample Total/NA Solid Method Blank Total/NA Solid 6212 Client Sample ID Prep Type Matrix PCTss-WC001-SO Total/NA Solid Solid Lab Control Sample Total/NA Solid Solid Method Blank Total/NA Solid Solid Client Sample ID<			9012A	226196
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	226196
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	226196
Prep Batch: 226301					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9030B	
LCS 240-226301/9-A	Lab Control Sample	Total/NA	Solid	9030B	
MB 240-226301/8-A	Method Blank	Total/NA	Solid	9030B	
Analysis Batch: 226	349				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9034	226301
LCS 240-226301/9-A	Lab Control Sample	Total/NA	Solid	9034	226301
MB 240-226301/8-A	Method Blank	Total/NA	Solid	9034	226301
Analysis Batch: 226	381				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	1010	
LCS 240-226381/1	Lab Control Sample	Total/NA	Solid	1010	

Client Sample ID: PCTss-WC001-SO Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20

Lab Sample ID: 240-63443-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			226135	04/14/16 19:10	DRJ	TAL CAN
TCLP	Analysis	8260B		1	226198	04/15/16 23:16	TJL1	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3510C			226581	04/19/16 12:56	CS	TAL CAN
TCLP	Analysis	8270C		1	226939	04/21/16 12:54	JMG	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3520C			226583	04/19/16 12:58	JDR	TAL CAN
TCLP	Analysis	8081A		1	227093	04/22/16 10:51	BPM	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	8151A			226584	04/19/16 13:01	SDE	TAL CAN
TCLP	Analysis	8151A		1	226986	04/22/16 03:43	DEB	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3010A			226553	04/19/16 12:16	WKD	TAL CAN
TCLP	Analysis	6010B		1	226739	04/20/16 12:33	KLC	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	7470A			226557	04/19/16 12:21	WKD	TAL CAN
TCLP	Analysis	7470A		1	226851	04/20/16 11:43	DSH	TAL CAN
Total/NA	Analysis	1010		1	226381	04/18/16 07:03	ТРН	TAL CAN
Total/NA	Analysis	9045C		1	225948	04/14/16 10:25	DTN	TAL CAN
Total/NA	Analysis	Moisture		1	225951	04/14/16 09:36	LCN	TAL CAN

Client Sample ID: PCTss-WC001-SO Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20

Lab Sample ID: 240-63443-1 Matrix: Solid Percent Solids: 82.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	9012A			226196	04/15/16 15:14	JWW	TAL CAN
Total/NA	Analysis	9012A		1	226212	04/15/16 19:53	JWW	TAL CAN
Total/NA	Prep	9030B			226301	04/18/16 11:06	BLW	TAL CAN
Total/NA	Analysis	9034		1	226349	04/18/16 13:38	BLW	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Laboratory: TestAmerica Canton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
Dhio VAP	State Pro	gram	5	CL0024	09-14-17
The following analyte	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
1010		Solid	Flashp	point	
7470A	7470A	Solid	Mercu	ry	
8081A	3520C	Solid	Chlord	lane (technical)	
9034	9030B	Solid	Sulfide	e	
9045C		Solid	Corros	sivity	
9045C		Solid	pН		
Moisture		Solid	Percer	nt Moisture	
Moisture		Solid	Percer	nt Solids	

TestAmerica Laboratories, Inc.

CHAIN-OF-CUSTODY AND RECEIVING DOCUMENTS

240-63443 Chain of Custody

Page 25 of 27

4/22/2016

4101 Shuffel Street N.W. North Canton OH 44720 tol 330 497 9396 fax 330 497 0772 Julium testamericaine com

																5		:1
	6.8	<u>ک</u> ه ک/														, ,		
TestAmerica - Sacrament	to	1												Page	1	of		
	Report To:				Bill	To:												
	Contact:	Richard Ca	llahan		Conta	act:		s	ame as	Repor	t To			Lab Lot #			_	
TestAmerica - Sacramento	Company:	PIKA			Com	pany:												
880 Riveride Parkway	Address:	3975 Walnutw	ood Way	-	Addre	ess:								Package Se	aled S	amples.	Sealed	
West Sacramento, CA		Uniontown, O	H 44685		<u> </u>									Yes	< No	Yes		VO C
916-374-4402	Phone:	330-352-4	822		Phon	e:								Received on	lce S	amples	intact	
Fax. 916-372-1059	Fax:	NA		-	Fax:				-			,		Yes	No	Yeş		JO BAR
Jili Kellmann	[Email:	rcailahan@pik	ainc.com	<u>1</u>	PO #	:			12081	57-009	9			Temperature	C of Cooler			
Sampler Name: R.	Callahan				Quote	e #:			3200)7742						58) (A)		
Sampler Signature:	Richard C. allahan													Within Hold Yes ^{ista}	Time			
														Preserv. Ind	cated		1	
					1									Yes	No	N/A	· ·	
Lab PM: Jill	Kellmann													pH Check Ø	K	ŭ. -,	120	
		1	10. 8. W. T. C. 4. W. S.	1	1. 2.694	S. Charles		1012-00	wante	r 100-00-0				Yes	No	N/Å	× 80 0	1
	Date Required		Refrg #					1873. Maria			2	₽ ₩₩	\$1 57	Res CL2 C	heck OK		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Hard Copy	1 21 Days	.#/Cont	1014-02 40 10 1014-02 40 10	* 5-10.27 (A)		a na				38.3		61	Yes	No	N/A	*	
	[Fax/Email	14 Days	Volume	2 7707X \						-244-97				Sample Lab	els and COC	Agree		
			Preserv.						<u>5</u> .2253	i Biga		HE Q		Yes	No 👾	<u> 6</u> 3	SOC not pres	serte
Laboratory ID.	Client Sample ID	Sampling Sampling Date Time	Matrix Composite	TCLP VOC	TCLP SVOC	TCLP Pesticides	TCLP Herbocides	gnitability	Corrosive	Cyanide	Sulfide				No. c	of Conta	ners	
	PC155-WC001-50	4/13/2016 /630	SO X	X	<u> </u>	X	X	X	<u> </u>	X	X					3		
	······································	<u> </u>	┝─-┞──	<u> </u>			<u> </u>		_	 	<u> </u>	<u> </u>	ļ			·		
Alternative States				_	·					ļ								
																•		
				<u> </u>						L								
				<u> </u>					_	1	ļ					•		
					ļ		<u> </u>		_		L							
											L		ļ	l		•		,
						·								ļ		· · · ·		
	· · · · · · · · · · · · · · · · · · ·		<u>├</u>			<u> </u>			_	ļ		ļ						
		<u> </u>	+					\square	_		 							
Relinquished by:	L			1		-		Ц		1	l	<u> </u>	I					
	Company.		i ime:			Kece	eived By	/:				Com	bany:		D	ate:	Time:	
Binhard C. Callehan		13/16 10	21 n			1	20-		14	ζ.		<u> </u>		0	11.	. h.	- 17	
Relinquished by:		<u>- 10 18</u>	-A-V				<u> </u>	~	<u>3</u> /-	<u>n</u>	~~		IA	Can	<u>- 4/13</u>	<u>s//4</u>	/6	20
ricentiquistieu by:	Company: /	Date:	(ime:			Rece	eived By	/:]				Com	bany:		, D	ate:	Time:	
Matrix Kev						<u> </u>	TCom	nont						·	Data Data i	;		<u> </u>
W - Water	WW - Wastewater	DL - Drum Liquid	А Аіг						5.						Jate Receive	ed i		:
S - Soil	SE - Sediment	DS - Drum Solid	OL - Oil												Courier:	··· · · · · · ·		
SL - Sludge SO - Solid	L - Leachate	W - Wipe	o												Hand Deliver	ed:		
50 - 30liu	IVI - IVIISCEIIANEOUS						L								Bill of Lading			
																		1 .

4

1

Page 26 of 27

4/22/2016

	1,21412
TestAmerica Canton Sample Receipt Form/Narrative	n# <u>10344</u> Did (1993)
Canton Facility	4.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Client PIKA Site Name	Cooler unpacked by:
Cooler Received on 4/13/16 Opened on 4/13/16	alum Burno
EadEx: 1 st Grd Exp LIDS EAS Station Client Dron Off Test America Courier	Other
Pecceint After hours: Dron off Date/Time	
Test America Cooler # Form Box (Client Tooler) Box Other	
Packing material used: Bubble Wran Foam Plastic Bag None Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	·····
1. Cooler temperature upon receint	ארחז
IR GUN#48 (CF -1.9 °C) Observed Cooler Temp. °C Corrected Cooler Temp.	emp. °C
IR GUN# 36 (CF -1.5 °C) Observed Cooler Temp. °C Corrected Cooler Te	emp. °C
IR GUN# 18 (CF -0.5 °C) Observed Cooler Temp. O.8 °C Corrected Cooler Te	emp. <u>O,3</u> °C
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity Yes	s NO
-Were custody seals on the outside of the cooler(s) signed & dated? Yes	s No NA
-Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes	s @
3. Shippers' packing slip attached to the cooler(s)? Yes	s to
4. Did custody papers accompany the sample(s)?	s) No
5. Were the custody papers relinquished & signed in the appropriate place?	No l
6. Was/were the person(s) who collected the samples clearly identified on the COC?	s No
7. Did all bottles arrive in good condition (Unbroken)?	s' No
8. Could all bottle labels be reconciled with the COC?	8' No
9. Were correct bottle(s) used for the test(s) indicated?	S NO
	<u>g No</u>
11. Are these work share samples? Yes	s NO
If yes, Questions 12-10 have been checked at the originating laboratory.	No. No. NA State Lott HCEEDIES
12. Were sample(s) at the confect pri lipon receipt:	ATO ANA PH Sulp LOU# <u>HC339136</u>
15. Were sir hubbles >6 mm in any VOA vials?	No KIA
15. Was a VOA trin blank present in the cooler(s)? Trin Blank Lot #	
16. Was a L H g or Me Hg trin blank present?	s Xia
Contacted PM Date by via Verbal V	Voice Mail Other
Concerning	
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
	· · ·
	· · · · · · · · · · · · · · · · · · ·
- Sample time = 1600 after sample	war reed -
will log 1680 for sample time	
18. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ing time had expired.
Sample(s) were received	l in a broken container.
Sample(s) were received with bubble >6 mm i	in diameter. (Notify PM)
19. SAMPLE PRESERVATION	
Some lo(a)	ther preserved in the laboratory
Sample(s)	THET DIESETAER III HIE INOUNIOLÀ.
	•

.

· ·

4

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE INSPECTION/INVENTORY SHEET

CONTRACTOR:	ΡΙΚΑ	Month:	April	Year:	2016	Waste	Description:	So	lids / Soils	
Container Nos ·	ΡΙΚΔ-ΙΠ\-1 ΡΙΚΔ-ΙΙ	DW/-2								
	T IKA-10 W-1, F IKA-11	500-2								
		WEEK 1		WEEK 2			WEEK 3		WEEK 4	
		Date:		Date:		Date:	Date: 4-20-16			
		Time:		Time:		Time:	1443	Date:	Time:	
Point of Contact (Name/Number) Project Name Contracting Agency and POC						R	ick Callahan			
		+				3: 	30-352-4822 ron Can Area			
						 Ir	nvestigation			
						US	ACE -Louisville			
						J	ay Trumble			
						(5	02) 315-6349			
Waste Determinati	ion: Pending Analysis.									
Hazardous, Non-Ha	azardous					Pei	nding Analysis			
*Location on Instal	llation	<u> </u>					Bldg 1036			
Date Generated		+					4/13/2016			
Projected Date of [Disposal	+					5/13/2016			
	Joposal	+					5/15/2010			
Non-Haz, Satellite,	90-Day Storage Area						Non-Haz			
Waste Generation	Site					Pi	rop Can Area			
Number of Contain	iers (size/type)					2 (55	5 gal open top)			
Condition of Conta	iner(s)						Excellent			
Containers closed, loose bungs	no loose lids, no	yes	/ no	У	es / no		yes/no		yes / no	
Waste labeled prop (40CFR 262.34 (c)	perly and visible (1)	yes	/ no	У	es / no		ves/ no	,	yes / no	
Secondary Contain	ment	yes	/ no	У	es / no		yes no		yes / no	
Incompatibles stor	ed together?	yes	/ no	У	es / no		yes no		yes / no	
Any SpillIs?		yes	/ no	У	es / no		yes no		yes / no	
Spill Kit Available?		yes	/ no	У	es / no		yes/ no		yes / no	
Fire extinguisher A	vaialble and Charged	yes	/ no	У	es / no		yes/ no		yes / no	
Containers gounde	d if ignitables?	yes / r	no / NA	yes	/ no / NA	у	es / no /NA	ye	s / no / NA	
Emergency notifica present?	ation form/info	yes	/ no	y	es / no		yes/ no		yes / no	
Container log binde	er present?	yes	, / no	У	es / no		yes/ no		yes / no	
Signs posted if requ	uired?	yes	, / no	У	es / no		yes/ no		yes / no	
Photos Submitted		yes	/ no	У	es / no		yes/ no		yes / no	
		 		_						
Printed Name						Ric	hard Callahan			
Signature						Rich	ad C. Cillaham			

Photo Documentation 4-20-16 Inspection

Palleted IDW Drums in Bldg. 1036

Palleted IDW Drums Condition

PIKA-IDW-1 Drum Label

PIKA-IDW-2 Drum Label

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE INSPECTION/INVENTORY SHEET

2016 Waste Description:

Solids / Soils

Month: April Year:

CONTRACTOR:

PIKA

	Date:			
		Date:	Date: 4-20-16	Date: 4-27-16
	Time:	Time:	Time: 1443	Time: 1450
Point of Contact (Name/Number)			Rick Callahan	Rick Callahan
			330-352-4822	330-352-4822
Project Name			Prop Can Area	Prop Can Area
Contracting Agency and POC			lav Trumble	lay Trumble
			(502) 315-6349	(502) 315-6349
Waste Determination: Pending Analysis,				
Hazardous, Non-Hazardous			Pending Analysis	Pending Analysis
*Location on Installation			Bldg 1036	Bldg 1036
Date Generated			4/13/2016	4/13/2016
Projected Date of Disposal			5/13/2016	5/13/2016
Non-Haz, Satellite, 90-Day Storage Area			Non-Haz	Non-Haz
Waste Generation Site			Prop Can Area	Prop Can Area
Number of Containers (size/type)			2 (55 gal open top)	2 (55 gal open top
Condition of Container(s)			Excellent	Excellent
Containers closed, no loose lids, no oose bungs	yes / no	yes / no	yes/no	ves no
Waste labeled properly and visible 40CFR 262.34 (c) (1)	yes / no	yes / no	yes/ no	ves no
Secondary Containment	yes / no	yes / no	yes no	yes no
ncompatibles stored together?	yes / no	yes / no	yes no	yes no
Any Spills?	yes / no	yes / no	yes no	yes /no
Spill Kit Available?	yes / no	yes / no	yes/ no	(yes) no
ire extinguisher Avaialble and Charged	yes / no	yes / no	yes/ no	ves no
Containers gounded if ignitables?	yes / no / NA	yes / no / NA	yes / no NA	yes / no /NA
mergency notification form/info present?	yes / no	yes / no	ves no	ves no
Container log binder present?	yes / no	yes / no	yes/ no	ves no
igns posted if required?	yes / no	yes / no	ves/ no	vesy no
Photos Submitted	yes / no	yes / no	yes/ no	ves no
Printed Name			Richard Callahan	Richard Callahar
			0 10 0100	0.10.0100

Photo Documentation 4-27-16 Inspection

Palleted IDW Drums in Bldg. 1036

Palleted IDW Drums Condition

PIKA-IDW-1 Drum Label

PIKA-IDW-2 Drum Label

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE **INSPECTION/INVENTORY SHEET**

CONTRACTOR: PIKA	Month:	May	Year:	2016	Waste Descript	ion: Solids / Soils
Container Nos.:PIKA-IDW-1, PIK	A-IDW-2					
	N N	/FFK 1	v	VFFK 2	WEEK 3	WFFK 4
	Date:	5-9-16	Date:		Date:	Date:
Point of Contact (Name/Number)	Rick 330-3	Callahan 352-4822	Time.			Time.
Project Name	Prop Inve	Prop Can Area Investigation				
Contracting Agency and POC	USACE Jay ⁻ (502)	USACE -Louisville Jay Trumble (502) 315-6349				
Waste Determination: Pending Analy Hazardous, Non-Hazardous	sis, Non-F	Non-Hazardous				
*Location on Installation	Bld	Bldg 1036				
Date Generated	4/	4/13/16				
Projected Date of Disposal	5,	5/9/16				
Non-Haz, Satellite, 90-Day Storage Ar	ea No	Non-Haz				
Waste Generation Site	Prop	Prop Can Area				
Number of Containers (size/type)	2 (55 ga	2 (55 gal open top)				
Condition of Container(s)	Ex	Excellent				
Containers closed, no loose lids, no loose bungs	Ve	veg / no		es / no	yes / nc	o yes / no
Waste labeled properly and visible (40CFR 262.34 (c) (1)	Ve	ves/ no		es / no	yes / nc	o yes / no
Secondary Containment	ye	yes /no		es / no	yes / no	o yes / no
Incompatibles stored together?	ye	yes /no		es / no	yes / no	o yes / no
Any Spills?	y Spills? yes /n		У	es / no	yes / no	o yes / no
Spill Kit Available?	Ve	ves/ no		es / no	yes / no	o yes / no
Fire extinguisher Avaialble and Charg	ed 🛛	ves/ no		es / no	yes / nc	yes / no
Containers gounded if ignitables?	yes /	no /NA	yes	/ no / NA	yes / no /	NA yes / no / NA
Emergency notification form/info present?	Ve	(yes) no		es / no	yes / nc	yes / no
Container log binder present?	Ve	yes) no		es / no	yes / no	yes / no
Signs posted if required?	Qe	yes/ no		es / no	yes / no	yes / no
Photos Submitted	Ve	esy no	у	es / no	yes / no	yes / no
Μ	anifest Signed	by Camp Rav	enna Enviro	nmental Off	ice; Kathryn Tait	·
Printed Name	Richar	d Callahan				
Signature	Bilord (C. Cillahan				

Photo Documentation 5-9-16 Drum Pickup

Palleted IDW Drums in Bldg. 1036

Wolfords - Trucking, Transporting for Republic Services

Loading Drums

Drums Secured for Transport and Disposal

NON-HAZARDOUS SPECIAL WASTE & ASBESTOS MANIFEST

If waste is asbestos waste, complete Sections I, II, III and IV If waste is $\underline{\text{NOT}}$ asbestos waste, complete Sections I, II and III

I. GENERATOR (Generate	or complete	es la-r)					
a. Generator's US EPA ID Number NA		b. Manifest Docur	nent Number 167002-02		c. Page	1 of 1	
d. Generator's Name and Location: Former Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna Ohio 44266 f. Phone:614-336-6136 If owner of the generating facility differs fr	om the genera	ator, provide:	e. Generator's Mailing Ac Camp Ravenna Environn 1438 State Route 534 SV Newton Falls OH 44444 g. Phone:614-366-6136	ldress: nental Offi V	ce		
i. Waste Profile #	k, Exp. Date	I. Waste Shir	I. Owners Phone No.: NA	4 m. Ce	ontainers	n. Total	o, Unit
	Description		No.	Туре	Quantity	Wt/Vol	
5076 16 7002	INVESTIGAT	NVESTIGATION DERIVED WASTE		DR	~ 02	DR	
GENERATOR'S CERTIFICATION: I here state law, has been properly described, c waste is a treatment residue of a previous been treated in accordance with the requi	by certify that assified and p ly restricted h rements of 40	the above named mate backaged, and is in prop azardous waste subject CFR 268 and is no long	rial is not a hazardous was er condition for transportation to the Land Disposal Restr ger a hazardous waste as d	te as defir on accord ictions. I efined by	ted by 40 C ing to applic certify and 40 CFR 26	FR 261 or any cable regulation warrant that the 1.	applicable is; AND, if this waste has
Kathryn D. last		Kethe	you stait		94	lay 201	6
p. Generator Authorized Agent Name (Pri	nt) vrator comp	d. Signature	sportor completes lle	2	r. Date	1	
a. Transporter's Name and Address: Wolfords 175 Ohio Avenue McDonald OH 44437 b. Phone: 330-530-3200 Lew 15 Struck		la the		05	-/09	116	
III DESTINATION (General	tor complet	o Illa_c and Destin	ation Site completes II	Id-a)			
a. Disposal Facility and Site Address: CARBON LIMESTONE LANDFILL 8100 SOUTH STATELINE ROAD LOWELLVILLE, OH 44436 b. Phone: 330-536-8013		c. US EPA Nun OHD98704821	alion Site completes in ber d. Discrepancy India	cation Spa	ice:		
I herby certify that the above named mate	rial has been	accepted and to the bes	st of my knowledge the fore	going is tr	ue and acc	urate.	,
e Name of Authorized Agent (Print)	ness	Manature	1 HOURA	g. Date	5.	-10-16	0
IV. ASBESTOS (Generator	completes	IVa-f and Operator	complete IVg-i)				-
a. Operator's Name and Address: NA	A	- 1	c. Responsible Agency Na NA	ame and A	ddress:		
b. Phone:		11	d. Phone:				
e. Special Handling Instructions and Addi	tional Informat	tion:					
f. Friable Non-Friable Both	1	% Friable	% Non-Friable				
OPERATOR'S CERTIFICATION: I hereby and are classified, packed, marked and la national governmental regulations.	declare that beled and are	the contents of this cons in all respects in prope	signment are fully and accu r condition for transport by t	rately des nighway a	cribed abov ccording to	e by proper shi applicable inter	pping name rnational and
	1.18.3			1			
g. Operator's Name and Title (Print)	h. :	Signature	opulana tha facility bais - de	i. Date	an ran averta	المحملة مطقعه الأ	iting of
renovation operation or both	viis, ieases, o	perates, controls, or sup	ervises the racility being de	mousned	or renovate	a, or the demol	illion or

Project: Camp Ravenna Ravenna, Ohio . Date: May 17, 2011 Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum All Anomalies < 9 inches in depth 102 Locations

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60033	566112.4	2367985	4+68.0	601.5	3/29/2016	1 Prop Can Lid
60034	566111.7	2367974	4+57.1	602	3/29/2016	5 Prop can lids
60035	566102.4	2367952	4+34.6	611	3/29/2016	1 Prop Can Lid
60036	566075.1	2367970	4+52.4	638.6	3/29/2016	1 Prop Can
60037	566081.3	2368007	4+90.2	633	3/29/2016	1 Prop Can Lid, 8 Prop Cans
60038	566067	2368017	4+99.9	647.4	3/29/2016	Prop Cans and Lids
60039	566051.2	2368007	4+88.8	663	3/29/2016	Prop Can and Lid
60040	566046.5	2367995	4+77.7	667.6	3/29/2016	Prop Can and Lid
60041	566049.4	2367989	4+71.4	664.6	3/29/2016	Prop Can and Lid
60042	566056.5	2367995	4+77.1	657.6	3/29/2016	Prop Can and Lid
60043	566060.5	2367991	4+73.0	653.5	3/29/2016	Prop Can and Lid
60044	566056.7	2367987	4+69.8	657.3	3/29/2016	Prop Can and Lid
60045	566027	2368011	4+92.4	687.3	3/29/2016	T Post
60046	566029.1	2368069	5+50.7	686.1	3/29/2016	Prop Can Lid
60047	566019.2	2368073	5+54.4	696	3/29/2016	Prop Can
60048	565997	2368100	5+81.9	718.7	3/29/2016	Prop Can
60056	566505.7	2367899	3+88.6	207	3/28/2016	Metal Scrap 3"x2"x1.5", Metal Scrap 2"x2"x1", 1Railroad Spike, 1 Propellant Canister Lid
60057	566501.1	2367924	4+13.2	212	3/28/2016	Propellant Canister Lids x 12
60058	566497.5	2367928	4+16.9	215.6	3/28/2016	Propellant Canister Lids x 11
60059	566507.5	2367973	4+62.7	206.3	3/28/2016	Propellant Canister Lid x 1
60088	566133.8	2367936	4+19.5	579.4	3/29/2016	Prop Can Tube
60089	566155.1	2367911	3+94.7	557.7	3/29/2016	Prop Can and Lid
60090	566169.1	2367904	3+88.1	543.6	3/29/2016	20 prop Cans and Lids
60091	566177.8	2367935	4+18.7	535.4	3/29/2016	2 Prop Can Tubes
60093	566282.5	2367949	4+34.5	430.9	3/30/2016	3 Prop can lids and 2 tubes
60094	566291.9	2367940	4+26.2	421.4	3/29/2016	Propellant Canister Lids x 38
60095	566294.9	2367939	4+24.8	418.3	3/29/2016	Propellant Canister Lids x 2, Metal scrap 1.5"x 1.5"x 1"
60096	566291.5	2367948	4+33.8	421.9	3/29/2016	Propellant Canister Lids x 5
60097	566295.7	2367957	4+42.5	417.9	3/29/2016	Propellant Canister Lids x 3
60098	566294.4	2367961	4+46.7	419.2	3/29/2016	Propellant Canister Lids x 2
60099	566303.3	2367953	4+39.4	410.2	3/29/2016	Propellant Canister Lids x 6, 1 Canister Body

Project: Camp Ravenna Ravenna, Ohio . Date: May 17, 2011 Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum All Anomalies < 9 inches in depth 102 Locations

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60100	566311.1	2367955	4+40.9	402.4	3/29/2016	Propellant Canister Lid x 1, 1 Canister Body, 4 Ring pieces
60101	566310.5	2367944	4+30.0	402.8	3/29/2016	Propellant Canister Lids x 7, 1 Canister Body
60102	566309.2	2367936	4+22.1	404	3/29/2016	Propellant Canister Lid x 1
60103	566326	2367971	4+57.7	387.8	3/29/2016	Propellant Canister Lids x 3, 1 Canister ring
60104	566310.1	2367985	4+71.3	403.9	3/30/2016	2 prop Can Lids and locking ring
60105	566418.7	2367963	4+50.8	294.9	3/28/2016	1"x18"x 1/4" Metal Strap
60106	566419.6	2367953	4+41.2	293.9	3/28/2016	1 Deteriorated Canister Lid
60107	566416.2	2367937	4+24.8	297	3/28/2016	Tri Canister Lid x 1, Canister Band
60108	566411.8	2367926	4+14.3	301.3	3/28/2016	Canister x 1, Canister Ring x 1, Propellant Canister Lids x 7
60109	566274.9	2368034	5+19.3	439.8	3/29/2016	1 Propellant Lid Locking handle
60110	566221.2	2368025	5+09.4	493.4	3/29/2016	Propellant Canister Lids x 22
60111	566216.8	2368017	5+01.6	497.7	3/29/2016	Propellant Canister Lids x 20
60112	566216.4	2368014	4+98.6	498	3/29/2016	Propellant Canister Lids x 20
60113	566213.3	2368013	4+97.3	501.1	3/29/2016	Propellant Canister Lids x 20
60114	566204.5	2368019	5+03.6	510	3/29/2016	Propellant Canister Lids x 8
60115	566200.3	2367997	4+82.0	513.8	3/29/2016	Propellant Canister Lids x 21
60116	566193.5	2367985	4+69.3	520.4	3/29/2016	Propellant Canister Lids x 1, Propellant Canister x 1
60117	566184	2368058	5+42.2	531	3/29/2016	Propellant Canister Lids x 4, Propellant Canister x 2
60118	566131.3	2368069	5+52.1	583.9	3/29/2016	6 Prop Can Lids
60119	566110	2368076	5+59.5	605.3	3/29/2016	6 Prop Can Lids
60120	566169.3	2368108	5+91.9	546.5	3/29/2016	2 T Posts
60121	566192.7	2368112	5+96.1	523.1	3/29/2016	Nothing Found
60122	566151.4	2368173	6+56.6	565.3	3/29/2016	Barbed Wire
60123	566127.4	2368201	6+84.7	589.8	3/29/2016	Prop Can Tube
60124	566067.1	2368231	7+13.7	650.6	3/29/2016	Prop Can and Lid
60125	566052.1	2368336	8+18.0	667.1	3/29/2016	Nothing Found
60126	566024.9	2368334	8+16.2	694.4	3/29/2016	Prop Can and Lid
60127	566017.8	2368338	8+19.8	701.5	3/29/2016	Nothing Found
60155	566597.7	2367707	1+97.8	112	3/28/2016	Prop Can and Lid
60157	566628	2367797	2+88.1	83.2	3/28/2016	Propellant Canister Lid
60158	566626.1	2367815	3+06.5	85.3	3/28/2016	Propellant Canister Lid

Project: Camp Ravenna
Ravenna, Ohio .
Date: May 17 <i>,</i> 2011
Coordinates are based on the
Ohio State Plane Coordinate
North Zone, 1983 Datum
All Anomalies < 9 inches in depth
102 Locations

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60159	566614.2	2367815	3+05.4	97.2	3/28/2016	Propellant Canister Lids x 38
60160	566605.8	2367813	3+04.0	105.5	3/28/2016	Propellant Canister Lids x 25
60161	566599.4	2367811	3+01.8	111.9	3/28/2016	Propellant Canister Lids x 2
60162	566599.9	2367806	2+96.5	111.4	3/28/2016	Nothing Found
60163	566598.1	2367798	2+88.5	113	3/28/2016	Nothing Found
60164	566611.1	2367795	2+86.0	100	3/30/2016	Nothing Found
60165	566566.7	2367839	3+29.6	145.1	3/28/2016	24" Pipe Wrench, 1- Canister, Propellant Canister Lids x 9
60166	566570.8	2367846	3+36.5	141.1	3/28/2016	Geo Rocks

CLEAR TOTAL PRICE 2. SHIP FROM 3. SHIP TO RVAPP Falls Recycling ų DOLLARS QUANTIT B Portage/Trumbl 1536A 1st St. PREVIOUS EDITION MAY DOLLARS CTS e, Ohio NewtonFalls Oh 4. MARK FOR LB 1760 S XP H G RAV 0100 0100 DOC DATE FRT RATE 8. TYPE CARGO PS 24. DOCUMENT NUMBER & SUFFIX (30-44) Client: Louisville District COE U 30 Mar16 Contractor: PIKA International Inc. 13. UNIT CUBE 15. SL RELEASE/RECEIPT DOCUMENT 10. QTY. REC'D 11.UP 12. UNIT WEIGHT 14. UFC Contract #: W912QR-12-F-0212 0 16. FREIGHT CLASSIFICATION NOMENCLATURE 17. ITEM NOMENCLATURE Scrap Metal Debris, Scrap Metal 25. NATIONAL STOCK NO. & ADD (8-22) 20. TOTAL WEIGHT 21. TOTAL CUBE Load Number - RVAAP-80-001 18. TY CONT 19. NO CONT 1760 22. RECEIVED BY 23. DATE RECEIVED 03/30/2016 Falls Recycling (See PO receipt) 1 ISSUE "This certifies and verifies that the material listed has either 1) been subjected to a 100-percent inspection and an independent 100-percent re-inspection, or 26. RIC (4-6) UI (23-24) QTY (26-29) CON CODE (71 DIST (56-56) UP (74-80) 2) been processed by a DDESB-approved process with an appropriate post-processing inspection. To the best of our knowledge and belief, the material listed is free of explosive hazards and is Material Documented as Safe (MDAS)" 91 (EG) JUL 27. ADDITIONAL DATA DD FORM 1348-1A, Cameron Wenzel mor UXO Supervisor Bendel, VXOOC Specialis Gr PIKA International, Inc PIKA International, Inc. Certifier's Signature Verifier's signature ₹ Q Ph# (281) 543-3316 Ph # (540) 354-9109 TOTAL PRICE 2. SHIP FROM 3. SHIP TO RVAPP Falls Recycling DOLLARS BE QUANTIT Portage/Trumbl 1536A 1st St. MAY NewtonFalls Oh e, Ohio S 4. MARK FOR G RAV LB 1760 S XF H 0 00 0 00 /IOUS E 5. DOC DATE 7. FRT RATE 8. TYPE CARGO 9. PS 6. NMFC & SUFFIX (30-44) Client: Louisville District COE U 30 Mar16 PREV Contractor: PIKA International Inc. DD FORM 1348-1A, JUL, 91 (EG) ISSUE RELEASE/RECEIPT DOCUMENT 10. OTY. REC'D 15. SL 11.UP 12. UNIT WEIGHT 13. UNIT CUBE 14 UFC Contract #: W912QR-12-F-0212 0 16. FREIGHT CLASSIFICATION NOMENCLATURE 24. 17. ITEM NOMENCLATURE Scrap Metal Debris, Scrap Metal 25. NATIONAL STOCK NO. & ADD (8-22) Load Number - RVAAP-80-001 18. TY CONT 19. NO CONT 20. TOTAL WEIGHT 21. TOTAL CUBE 1760 22. RECEIVED BY 23. DATE RECEIVED 03/30/2016 Falls Recycling (See PO receipt) 1 "This certifies and verifies that the material listed has either 1) been subjected to a 100-percent inspection and an independent 100-percent re-inspection, or 2) 26. RIC (4-6) UI (23-24) QTY (25-29) CON CODE (71) DIST (56-56) UP (74-80) been processed by a DDESB-approved process with an appropriate post-processing inspection. To the best of our knowledge and belief, the material listed is free of explosive hazards and is Material Documented as Safe (MDAS)" Kn DATA UXOQQ Cameron Wenzel, Senior UXO Supervisor Grady Be 27. ADDITIONAL PIKA International, Inc. PIKA In ernational. Certifier's Signature Verifier's signature Ph# (281) 543-3316 Ph # (540) 354-9109

Falls Recycling LLC.

1536A 1st street Newton Falls, OH 44444

Phone # 330-872-0402 Fax # 330-872-0595

Cameron Wenzel	
1063 Overton Hills Dr	
Hendersonville NC 28739	

Pu	rcha	ase	Or	der

Date	P.O. No.
3/30/2016	72844

10 s.

nisc FE		· · · · · · · · · · · · · · · · · · ·	a contraction of a second s		
	miscellaneous iron	1,760		0.044	77.44
	A CONTRACTOR OF A CONTRACTOR O			82 0 S .	New
1.1.1					
4.5.					
			Total		\$77.44
1060					
v					
A Du Signian	Variation That Make 10 Price On the Marcol				1