Cardno June 20, 2017 1658 Cole Blvd, Suite 190

Golden, CO 80401 ATTN: Travis Withers

SUBJECT: Camp Ravenna, Data Validation

Dear Mr. Withers,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on May 22, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #38756:

SDG #	<u>Fraction</u>					
280-96239-1	Volatiles, Biphenyls, Perchlorate	Metals,	•	Pesticides, Explosives,	,	

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 - Quality Assurance Project Pan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio, December 2016
- U.S. Department of Defense, Quality Systems Manual, for Environmental Laboratories, Version 5.0 July, 2013
- USEPA, National Functional Guidelines for Superfund Organic Methods Data Review, August 2014
- USEPA, National Functional Guidelines for Inorganic Superfund Data Review, August 2014
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007, update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng Project Manager/Senior Chemist

	4,656 pages-DL									2. a. /4.			A	ttach	nmer	nt 1								Status rises	7.0.50000000000000000000000000000000000							Statement and the			
	Stage 4 EDD		AMERICAN AME				LD	C#	38	756	(C	ard	no-	Gol	ldei	1, C	:0/	Ca	mp	Ra	ven	ına													
LDC	SDG#	DATE REC'D	(3) DATE DUE	V(DA SOC)	SV (827		PA (82) -SI	70D	Pe (808	st. 31B)	PC (808	Bs 32A)	Met (SW	tals 846)	Ex (833	pl. 30B)	guan	tro- nidine 30M)	CL (68	.O₄ 60)	A (232	lk. 20B)	C	tal N- I2B)	NO	SO ₄ 03-N 02-N	Cr((719	(VI) 96A)	Nit cellu (35	ro- ilose 3.2)	S (90:			
Matri	x: Water/Soil	E8 550 (10)	1	w	s	W	s	W	s	W	s	W	s	W	s	W		w	s	w	s	w	s	w	s	W		W	s		s	W	s	w	s
Α_	280-96239-1	05/22/17	06/13/17	7	0	7	0	4	0	5	0	5	0	13	0	9	0	4	0	3	0	10	0	6	0	7	0	5	0	4	0	8	0	<u> </u>	₩
		ļ																<u> </u>								-			-			\vdash	-	├-	┢
$\vdash\vdash$				-														-	 	ļ			_									\mid		├	╁
Н				-														_					 	-			<u> </u>				<u> </u>	\vdash		 	╁
		•									<u> </u>																							<u> </u>	T
				<u> </u>																									\Box						
																																			<u> </u>
		ļ							,																	ļ	ļ							ļ	<u> </u>
		<u> </u>		_								 							_			_	_				<u> </u>					$\vdash\vdash$		├-	⊢
		<u> </u>																														$\vdash\vdash$		├-	\vdash
																	<u> </u>	<u> </u>	_				 											-	-
											ļ																								
		1																					<u> </u>									\Box			
		ļ																						ļ										<u> </u>	$oxed{oxed}$
	***************************************	<u> </u>																																<u> </u>	igspace
																				-												$\vdash \vdash$		<u> </u> -	┡
																			ļ —			ļ	<u> </u>		-				\vdash					├─	⊢
\vdash				-															-			-		-					\vdash			$\vdash \vdash$	\vdash	\vdash	
$\ - \ $																	<u> </u>	 			-			-				-	\vdash	-				 	\vdash
М																	<u> </u>	 											П		<u> </u>			<u> </u>	\vdash
																					l														T
																					<u> </u>											\Box			
				<u> </u>															<u> </u>							.							└─!	ـــــ	_
Total	T/PG			7	0	7	0	4	0	5	0	5	0_	13	0	9	0	4	0	3	0	10	0	6	0	7	0	5	0	4	0	8	0	0_	97

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 19, 2017

Parameters:

Volatiles

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
TB-042117	280-96239-8	Water	04/20/17
LL5mw-001-042117-GW	280-96239-14	Water	04/21/17
TB-042117-2	280-96239-15	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples TB-042117 and TB-042117-2 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
TB-042117	04/20/17	Acetone	7.4 ug/L	BKGmw-024-042017-GW BKGmw-023-042017-GW
TB-042117-2	04/21/17	Acetone	7.2 ug/L	LL5mw-001-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
BKGmw-024-042017-GW	Acetone	6.6 ug/L	6.6U ug/L
BKGmw-023-042017-GW	Acetone	4.8 ug/L	6.4U ug/L
BKGmw-022-042117-GW	Acetone	5.5 ug/L	6.4U ug/L
BKGmw-510-042117-GW	Acetone	6.9 ug/L	6.9U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)				
Compound	BKGmw-022-042117-GW	BKGmw-510-042117-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Acetone	5.5	6.9	-	1.4 (≤10)	-	-
Toluene 0.38		0.37	-	0.01 (≤1.0)	-	<u>-</u>

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to trip blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Volatiles - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Volatiles - Field Blank Data Qualification Summary - SDG 280-96239-1

Sample	Compound	Modified Final Concentration	A or P
BKGmw-024-042017-GW	Acetone	6.6U ug/L	А
BKGmw-023-042017-GW	Acetone	6.4U ug/L	A
BKGmw-022-042117-GW	Acetone	6.4U ug/L	А
BKGmw-510-042117-GW	Acetone	6.9U ug/L	А

LDC #: 38756A1	VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-96239-1	Stage 4
Laboratory: Test America, Inc	<u>) </u>
	B
METHOD: GC/MS Volatiles (E	PA SW 846 Method 8260¢C)

2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

۱۰۰۱ <u>دو در</u> بداد	Validation Area		Comments	
. I.	Sample receipt/Technical holding times	AIA		
II.	GC/MS Instrument performance check	A		
111.	Initial calibration/ICV	AIA	1CAL6 157 12 1016 CW & 20/567.	29 32
IV.	Continuing calibration	Á	CW & 20/56 7.	
٧.	Laboratory Blanks	A		
VI.	Field blanks	SW	TB = 3 5	
VII.	Surrogate spikes	A		
VIII.	Matrix spike/Matrix spike duplicates	N	CS	
IX.	Laboratory control samples	A	LCS	
Χ.	Field duplicates	SW	D = 6/9	
XI.	Internal standards	A		
XII.	Compound quantitation RL/LOQ/LODs	Δ		
XIII.	Target compound identification	A		
XIV.	System performance	A		
XV.	Overall assessment of data	A		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
 1	BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
2	BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
<u> </u>	TB-042117	280-96239-8	Water	04/20/17
4	LL5mw-001-042117-GW	280-96239-14	Water	04/21/17
5	TB-042117-2	280-96239-15	Water	04/21/17
↓ 6	BKGmw-022-042117-GW p	280-96239-17	Water	04/21/17
1 7	BKGmw-540-042117-GW	280-96239-18	Water	04/21/17
3				
9				
10		·		
11	MB 280-371985/6			
12				
13				

LDC #: 38 756 A1

VALIDATION FINDINGS CHECKLIST

	Page:	1	_of_	2
	Reviewer:		JXC	}
2nd	Reviewer:	(_

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?		Page 18		
II. GC/MS instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa: Initial Calibration	1			
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?	/			
Were all percent relative standard deviations (%RSD) \leq 30%/15% and relative response factors (RRF) \geq 0.05?				
IIIb. Initial Calibration Verification	i H		a Zia	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
IV Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05?				
V Laboratory Blanks.				
Was a laboratory blank associated with every sample in this SDG?				<u> </u>
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
☑i. Field blanks		l I		
Were field blanks were identified in this SDG?				
Were target compounds detected in the field blanks?	/			
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	/			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	

	387576
DC #:	38756A1

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX: Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?		TT-room in Nilson Nilson		
XII: Compound quantifation		25-16		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				4
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				·
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?		Annan a		
XIV. System perfermance.				
System performance was found to be acceptable.				
XV. Overall assessment of data		/		and the second s
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

METHOD: TOX					
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene	A2.
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB, tert-Amyl methyl ether	B1. Hexane	B2.
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane	C2.
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene	D2.
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11	E2.
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12	F2.
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113	G2.
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114	H2.
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane	12.
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide	J2.
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane	К2.
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane	L2.
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane	M2.
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane	N2.
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane	O2.
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane	P2.
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane	Q2.
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane	R2.
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane	S2.
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane	T2.
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal	U2.
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene	V2.
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol	W2.
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene	X2.
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.	Y2.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.	Z2.

LDC #:	3	87	57	Á	
--------	---	----	----	---	--

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	_of	١
Reviewer:	JVG	
2nd Reviewer:	0	_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Were field blanks identified in this SDG? Y\N N/A

Y/N N/A Were target compounds detected in the field blanks?

Blank units: 49 /L Associated sample units: 49 /L

Sampling date: 04 /20 /17

Field blank type: (circle one) Field Blank / Rinsate / (rip Blank / Other:____ Associated Samples:

Compound	Blank ID		Sample Identification							
	3		* 1	美 2						
F	7.4	6	5.6/4	4.8/6.44	1					
				,						
					÷					
									:	

Blank units: ug /L Associated sample units: Sampling date: 04/21/17

4 6 7 Field blank type: (circle one) Field Blank / Rinsate /(Trip Blank / Other: Associated Samples:

Tiona Braint type: (elliole elle						olatoa oaliipi				-
Compound	Blank ID	Sample Identification								
	5		6	7						
F	7. 2		5.5/6.4U	6.9/U						
					-					
		·								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

38756A1 LDC#:_

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page	1	_of_	1
Reviewer:	J	γG	
2nd Reviewer:			

METHOD: GC MS Volatiles (EPA SW 846 Method 8260B)

١.	γ	Ν	NA	
	\overline{Y}	N	NA	

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentra	ition (ug/L)	RPD	Difference	Limits	Qualifications
Compound	Ç	7	(≤30%)	(ug/L)	(ug/L)	(Parent Only)
F	5,5	6.9		1.4	(s 10)	
cc	0.38	0.37		0. 61	(≤ ,0)	
					(≤)	
					· (≤)	
					(≤)	
			1		(≤)	
					(≤)	

Compound	Concentration (ug/L)		RPD Difference (≤30%) (ug/L)		Limits (ug/L)	Qualifications (Parent Only)
- Compound						
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	

Compound	Concentrat	ion (ug/L)	RPD (≤30%)	Difference (ug/L)	Limits (ug/L)	Qualifications (Parent Only)
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	
					(≤)	

LDC #: <u>38756A1</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_1_ of	_1_
Reviewer:	JV	Ģ_
2nd Reviewer:		

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs

X = Mean of the RRFs

		Calibration			Reported RRF	Recalculated RRF	Reported Average RRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compoun	d (IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)	701100	701105
1	ICAL	5/3/2017	Toluene	(FB)	1.2970	1.2970	1.2264	1.2264	5.6	5.6
1	GC MS9		o-Xylene	(CBZ)	2.8403	2.8403	2.5765	2.5765	5.1	5.1
1			1,1,2,2-TCA	(DCB)	0.4497	0.4497	0.4192	0.4192	4.5	4.5

LDC#: 38756A1

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Calculation Verification</u>

Page: 1 of 1
Reviewer: JVG
2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ax = Area of compound

Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound	(IS)	(Initial)	(CCV)	(CCV)		
1	MS9_5858	5/3/2017	Toluene	(FB)	1.2264	1.1524	1.1524	6.0	6.0
	:		o-Xylene	(CBZ)	2.577	2.382	2.382	7.5	7.5
			1,1,2,2-TCA	(DCB)	0.4192	0.397	0.397	5.2	5.2

LDC#: 38756A/

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	_1_of_1_
Reviewer:	JVG
2nd reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: # 1

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	9.00	10.2	113	113	0
1,2-Dichloroethane-d4		9.5	106	106	
Toluene-d8		9.03	100	(00	
Bromofluorobenzene		8.04	89	89	1

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane >	1				
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4				· · · · · · · · · · · · · · · · · · ·	
Toluene-d8					
Bromofluorobenzene					

LDC #: _ 38756 A1

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: LCS 280 - 371985/4

Compound		oike ded (レ)	Conce	Sample ntration (し)		CS Recovery		CSD Recovery		/LCSD PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	5.0	M	4.81	MA	96	96				
Trichloroethene			4-84		97	97				
Benzene			4.93		99	99				
Toluene			4-91		98	98				
Chlorobenzene		V	4.95		99	99				

Comments: Refer to Laboratory Control Sa	mple findings worksheet for list of	qualifications and associ	ated samples when repo	orted results do not agree	within 10.0%
of the recalculated results.					
					,

LDC #: 38 756 A1

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1 Reviewer: JVG 2nd reviewer: -

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

<u>Y) N N/A</u>

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results? N N/A

Conce	ntratio	$n = \frac{(A_s)(I_s)(DF)}{(A_{ls})(RRF)(V_o)(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	. =	Amount of internal standard added in nanograms (ng)	Conc. = $(30926)(12.5)($
RRF	=	Relative response factor of the calibration standard.	
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 0.379 20.38 vg (L
Df	=	Dilution factor.	20.7800).
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Concentration (ug /L)	Calculated Concentration ()	Qualification
			0.38		
	·				
·					
					-

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Semivolatiles

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
LL1mw-065-042117-GW	280-96239-11	Water	04/21/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-370565/1-A	04/24/17	Bis(2-ethylhexyl)phthalate Dimethylphthalate	5.48 ug/L 0.316 ug/L	All samples in SDG 280-96239-1
MB 280-370565/1-A	04/24/17	2,4,6-Trichlorophenol 3&4-Methylphenol Dibenzofuran N-Nitroso-di-n-propylamine	0.348 ug/L 0.281 ug/L 0.354 ug/L 0.406 ug/L	BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-022-042117-GW BKGmw-510-042117-GW

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D280-370565/2,3-A (All samples in SDG 280-96239-1)	Hexachlorocyclopentadiene	0 (10-120)	-	R (all non-detects)	Р

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LCS/D280-370565/2,3-A (All samples in SDG 280-96239-1)	Hexachlorocyclopentadiene	200 (≤20)	NA	1

Although the above listed RPD flagged "NA" demonstrate a high bias, the affected compound in the associated samples were non-detected and did not warrant the qualification of the data.

X. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to LCS/LCSD %R, data were rejected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna

Semivolatiles - Data Qualification Summary - SDG 280-96239-1

Sample	Compound	Flag	A or P	Reason
BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-022-042117-GW BKGmw-510-042117-GW	Hexachlorocyclopentadiene	R (all non-detects)	Р	Laboratory control samples (%R)

Camp Ravenna

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Semivolatiles - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 38756A2a

SDG #: 280-96239-1 Laboratory: Test America, Inc. Stage 4

Reviewer:_ 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Cor	nments	
l.	Sample receipt/Technical holding times	A /A			
II.	GC/MS Instrument performance check	A			
III.	Initial calibration/ICV	AIA	1CAL 61575 COV = 20/50?	V~	101 = 20%
, IV.	Continuing calibration / ending	A	Car = 20/50?		
V.	Laboratory Blanks	SW			
VI.	Field blanks	N			
VII.	Surrogate spikes	A			
VIII.	Matrix spike/Matrix spike duplicates	N	CS		
IX.	Laboratory control samples	SW	ucs /b		
Χ.	Field duplicates	ND	D = 6/7		
XI.	Internal standards	A			
XII.	Compound quantitation RL/LOQ/LODs	A			
XIII.	Target compound identification	A			
XIV.	System performance	A			
XV.	Overall assessment of data	Á			

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

Client	ID	Lab ID	Matrix	Date
1 BKGm	w-024-042017-GW	280-96239-2	Water	04/20/17
2 BKGm	w-023-042017-GW	280-96239-3	Water	04/20/17
	v-065-042117-GW	280-96239-11	Water	04/21/17
4 LL1mv	y-084-042117-GW	280-96239-12	Water	04/21/17
5 LL1mv	v-086-042117-GW	280-96239-13	Water	04/21/17
6 BKGm	w-022-042117-GW	280-96239-17	Water	04/21/17
7 BKGm	w-540-042117-GW	280-96239-18	Water	04/21/17
8				
9				
10				
11				
12 Mb	280-370565/1-A			
13	1267 Landiet			

3-5- In thelates mily

VALIDATION FINDINGS CHECKLIST

Page: 1_of_2 Reviewer: __JVG 2nd Reviewer: ____

Method: Semivolatiles (EPA SW 846 Method 8270D)

Method: Semivolatiles (EPA SW 846 Method 8270D)							
Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times			1				
Were all technical holding times met?	/						
Was cooler temperature criteria met?							
II. GC/MS Instrument performance check	r						
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/						
Were all samples analyzed within the 12 hour clock criteria?							
Illa. Initial calibration							
Did the laboratory perform a 5 point calibration prior to sample analysis?			<u></u>				
Were all percent relative standard deviations (%RSD) 20% and relative response factors (RRF) within method criteria?	_						
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?							
IIIb Initial Calibration Verification				en e			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	_						
Were all percent differences (%D) < 26% or percent recoveries (%R) 79-130%?							
IV. Continuing calibration							
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	_						
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) within method criteria?							
V. Laboratory Blanks							
Was a laboratory blank associated with every sample in this SDG?	/						
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?							
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.							
VI. Field blanks							
Were field blanks were identified in this SDG?		/	+				
Were target compounds detected in the field blanks?							
VII. Surrogate spikes	I	I					
Were all surrogate percent recovery (%R) within QC limits?							
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?							
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?							

LDC#: 387 56 A 20

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates.				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				,
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/	_	
X. Field duplicates				The state of the s
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?		/		
XI. Internal standards				A Property of the second of th
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				The second second second second second
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	_			
Were chromatogram peaks verified and accounted for?	Ĺ			
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

			· · · · · · · · · · · · · · · · · · ·	
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
i. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1.

LDC #: 38756 A 29

VALIDATION FINDINGS WORKSHEET Blanks

Page:	<u>l</u> 0	f_	
Reviewer:	JV	G	
2nd Reviewer:	\bigcap		_

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y\N N/A Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Blank analysis date:

Y/N N/A Was a method blank associated with every sample?

'N N/A Was the blank contaminated? If yes, please see qualification below.

Compound	Blank ID		1,2,6,7 = Y, QRQR, JJ, J						
и	280-370565	1-A							
Y	0.348		·						
ORRR	0.281								
FEE	5,48								
JJ	0.354								
cc	0, 316								
J	0.406								

Compound Blank ID Service Samples:

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Blank extraction date:

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	(of/_	
Reviewer: _	JVG	
nd Reviewer:	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y N N/A Y N N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		KS/D 280- 370525/	63-A X	0 (10120)	. ()	()	All (ND)	5/R/P
		/	' X	• ()	. ()	200 (20)	1 1	Jdets 19
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	(.)		
				()	().	()		
				()	()	()		
				()	()	()		
				()	()	()		
			:	()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
 				()	()	()		
				()	()	()		
\parallel				()	()	()		
				()	()	<u> </u>		
				()	()	. ()		
				()	()	()		
 				()	()	()		
\vdash				()	. (()		
				()	()	()		
$\ - \ $				()	()	()		

LDC #: <u>38756A2a</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (I	S)	(50 std)	(50 std)	(Initial)	(Initial)		
1	ICAL	5/3/2017	Phenol	(DCB)	1.6679	1.6679	1.6156	1.6156	6.8	6.8
	SMS Y		Nitrobenzene	(NPT)	0.3394	0.3394	0.3320	0.3320	6.6	6.6
		\$	Diethyl phthalate	(ANT)	1.1582	1.1582	1.1182	1.1182	11.1	11.1
	·		Hexachlorobenzene	(PHN)	0.1378	0.1378	0.1369	0.1369	6.9	7.0
		3	BEPH	(CRY)	0.7961	0.7961	0.7865	0.7865	3.2	3.2
		·							:	

LDC #_38756A2a_

VALIDATION FINDINGS WORSHEET <u>Continuing Calibration Results Verification</u>

Page:	_1_0	of_1_
Reviewer:	JУ4	<u>G</u>
2nd Reviewer:	$\overline{}$	

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Cx = Concentration of compound

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

Ax = Area of compound

RRF = continuing calibration RRF

Ais = Area of associated internal standard

Cis = Concentration of internal standard

#	Standard ID	Calibration Date	Compound	(IS)	Average RRF (Initial RRF)	Reported (CC RRF)	Recalculated (CC RRF)	Reported %D	Recalculated %D
1	y15116	05/05/17	Phenol	(DCB)	1.6156	1.7659	1.7659	9.3	9.3
			Nitrobenzene	(NPT)	0.3320	0.3681	0.3681	10.9	10.9
	SMSY		Diethyl phthalate	(ANT)	1.1182	1.1799	1.1799	5.5	5.5
			Hexachlorobenzene	(PHN)	0.1369	0.1444	0.1444	5.5	5.5
			BEPH	(CRY)	0.7865	0.8177	0.8177	4.0	4.0
	<i>:</i>								

LDC #: 38750 Aza

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	<u>_1_</u> ot_1_
Reviewer:	JVG
2nd reviewer:	

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: # /

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Nitrobenzene-d5	160	91.0	9)	91	0	
2-Fluorobiphenyl		91.6	92	92		
Terphenyl-d14		99.3	99	99		
Phenol-d5		94.5	94	94		
2-Fluorophenol		94.6	95	95		
2,4,6-Tribromophenol	<i>y</i>	104.0	104	104	1	
2-Chlorophenol-d4						
1,2-Dichlorobenzene-d4						

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol			Λ.		
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 38756 AZA

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JVG
2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: LCS 10 280 - 370 545/2, 3-A

		ike		oike		is		L CSD Percent Recovery		/LCSD
Compound		ded ル)		ntration /レ)	Percent I	Recovery	Percent I			RPD
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	80.0		81.7	79.0	107	102	99	99	3	3
N-Nitroso-di-n-propylamine			77.4	77.4	97	97	97	97	σ	0
4-Chioro-3-methylphenol			84.3	84.4	105	105	106	104	σ	6
Acenaphthene							,			
Pentachlorophenol	160		181	187	113	113	117	117	3	3
Pyrene		_								

Comments: _	Refer to I	_aboratory Co	<u>ntrol Sam</u>	ple/Laboratory	Control	<u>Sample I</u>	<u>Duplicates</u>	<u>findings v</u>	vorksheet	for list c	<u>of qualifica</u>	tions and	associated:	samples when
reported resu	ults do not	agree within	10.0% of	the recalculate	d results.									

LDC #: 38756 A 24

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>1</u> of 1
Reviewer:	JVG
2nd reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Factor of 2 to account for GPC cleanup

N	N	N/A
Y	N	N/A
1 —		

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	entratio	$n = \frac{(A_{\bullet})(I_{\circ})(V_{\bullet})(DF)(2.0)}{(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(%S)}$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D,Phend
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = $\frac{(349897)(46.0)(1ml)(1600)(}{(105976)(1,6156)(1000 ml)(}$
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V_{i}	=	Volume of extract injected in microliters (ul)	= 81.7 mg/L
V_{t}	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration (\(\(\(\(\) \(\) \)	Calculated Concentration ()	Qualification
			81.7		
			31./		<u> </u>
				<u> </u>	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D280-370964/2,3-A (All samples in SDG 280-96239-1)	Chrysene	121 (57-120)	121 (57-120)	NA	-

Although the above listed %Rs flagged "NA" demonstrate a high bias, the affected compound in the associated samples were non-detected and did not warrant the qualification of the data.

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna

Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

SDG#	: 38756A2b VALIDATIO : 280-96239-1 atory: <u>Test America, Inc.</u>		LETENES: Stage 4	S WORKSHEET		Date: 04/66/ Page: Lof D Reviewer: WG Reviewer:
The sa	OD: GC/MS Polynuclear Aromatic Hydro amples listed below were reviewed for ea- ion findings worksheets.)	iveviewei
	Validation Area			Comn	nents	
1.	Sample receipt/Technical holding times	A/A				
11:	GC/MS Instrument performance check	A			·	
III.	Initial calibration/ICV	AIA	LCF	16 = 15%		W = 20 %
IV.	Continuing calibration / rading	A	C	N = 157.	•	
V.	Laboratory Blanks	À				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	N	ري			
IX.	Laboratory control samples	SW		us/p		
Χ.	Field duplicates	ND		45 D= 3,	14	
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A			······································	
XIII.	Target compound identification	A				
XIV.	System performance	A	· · · · · · · · · · · · · · · · · · ·			
XV.	Overall assessment of data	A				
Note:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds	detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :
	Client ID			Lab ID	Matrix	Date
1 E	BKGmw-024-042017-GW			280-96239-2	Water	04/20/17
2 E	3KGmw-023-042017-GW			280-96239-3	Water	04/20/17
3 E	BKGmw-5#0-042117-GW			280-96239-18	Water	04/21/17
4	BKGmV-022-092117-GW D			1-17	L	
5						
6						
7						
<u>a </u>		- forting in the second				
lotes:	720 0504/6/		- r-r-		<u> </u>	
- M	18 280-370949/1-A					····

LDC #: 38756 A 26

VALIDATION FINDINGS CHECKLIST

Page: 1_of 2 Reviewer: JVG 2nd Reviewer: ____

Method: PAH (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	(
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa: Initial calibration			ı	
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤20% and relative response factors (RRF) ≥ 0.05?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				And the second s
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤30% or percent recoveries (%R) 7 0-130%?				<u>n a sa sa mangka na na angara ang at</u>
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Field blanks			ı	
Were field blanks identified in this SDG?		/	_	
Were target compounds detected in the field blanks?				
VII. Surrogate spikes	T -	1		
Were all surrogate percent differences (%R) within QC limits?	/	<u> </u>		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?				

LDC #: 38756 A26

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: J//G
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX Laboratory control samples				T_{ij}
Was an LCS analyzed for this SDG?	(
Was an LCS analyzed per analytical batch?	_			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				The state of the s
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards	Table 15 at			
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/	<u> </u>		

LDC #: 38757 A 26

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Reviewer: JVG 2nd Reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Prease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y(N)N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID LCS 1 250-370964	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LCS/D 250-370964	2,3-A DD	D 121 (57-120)	121 (57-120)	()	AII (MD)	J dets/P
			•	()	()	()	,	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	_			(_)	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	· ()	()		
				()	()	()		
				()	()	()	Marketing and Armed Arme	
				()	()	()		
						,		
				()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()_	()			1

LDC#: 38756A2b

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Calculation Verification</u>

Page: 1_of_1
Reviewer: JVG
2nd Reviewer: _____

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ax = Area of compound

Cx = Concentration of compound

Ais = Area of associated internal standard

Cis = Concentration of internal standard

		Calibration			Ave RRF	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound	l		RRF	RRF	% D	%D
1	F6418	5/4/2017	Naphthalene	(ANT)	1.828	2.044	2.044	11.8	11.8
			Pyrene	(PHN)	1.360	1.413	1.413	3.9	3.9
			Benzo(a)pyrene	(CRY)	1.264	1.184	1.184	6.3	6.3

LDC#: 38756A2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	of_	1_
Reviewer:	Ų	IVG	
2nd Reviewer:		4	_

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

		Calibration			Reported RRF	Recalculated RRF	Reported Average RRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound	(IS)	(600 std)	(600 std)	(Initial)	(Initial)		
1	ICAL	4/17/17	Naphthalene	(ANT)	1.9389	1.9389	1.8283	1.8283	5.6	5.6
	SMS F		Pyrene	(PHN)	1.3185	1.3185	1.3598	1.3598	6.7	6.7
			Benzo(a)pyrene	(CRY)	1.2308	1.2308	1.2638	1.2638	9.6	9.6

LDC #: 38756 A24

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

	`
Page:_	<u>1_of_1_</u>
Reviewer:	JVG
2nd reviewer:	~

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%F	 i) of surrogates were 	recalculated for the compounds	identified below using the	following calculation:
----------------------------	---	--------------------------------	----------------------------	------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # 1

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Nitrobenzene-d5	125.0	103.6	83	83	0	
2-Fluorobiphenyl		84.1	67	67		
Terphenyl-d14	· ·	97.2	78	78	8	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl			·		
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate - Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	·				
2-Fluorobiphenyl					
Terphenyl-d14					

LDC#:_38756 Azb

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: 2nd Reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSDC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

US/3 280-370964/2,3-A LCS/LCSD samples:

	Sp	ike	S	Spike Concentration		:s	LC	SD	LCS/	LCSD
Compound	Add (US)	ded	Conce			Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene	0.900	0.900	0.976	0.974	188	108	708	108	ا ل	9
Pyrene		ļ	1.03	7-05	115	115	116	116	1	Ţ
<i>i</i>										
								<u> </u>		

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when</u>
reported results do not agree within 10.0% of the recalculated results.

LDC #: 38 756 A 26

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1_of_1_
Reviewer:	JVG
2nd reviewer:	=

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Factor of 2 to account for GPC cleanup

1	$\widehat{\mathbf{Y}}$	N	N/A
	Y	N	N/A

2.0

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conc	entratio	on = $\frac{(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)}{(A_{i\bullet})(RRF)(V_{\circ})(V_{\bullet})(\%S)}$	Example:
A_x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. MD Naphthalene
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (13008)(600)(1~)((18152)(1-8283)(250 m))()(
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
V_{i}	=	Volume of extract injected in microliters (ul)	= 0.9407
V_{t}	=	Volume of the concentrated extract in microliters (ul)	2 5 5 6 1 4 1
Df	=	Dilution Factor.	20.941 m/L
%S	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	∕ Compound	Reported Concentration (ゅんし)	Calculated Concentration ()	Qualification
			0,941		
			1		
				to the state of th	

					*
			<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
05/04/17	05040030	CLP 1	Endrin	23.5	All samples in SDG 280-96239-1	UJ (all non-detects)	А

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-371191/1-A	04/27/17	alpha-BHC	0.00885 ug/L	All samples in SDG 280-96239-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D280-371191/,3-A (All samples in SDG 280-96239-1)	Aldrin	-	43 (45-134)	UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

All compound quantitations met validation criteria.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LL1mw-084-042117-GW	Endosulfan I	198.6	J (all detects)	А

XII. Target Compound Identification

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, LCS/LCSD %R, and RPD between two columns, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Chlorinated Pesticides - Data Qualification Summary - SDG 280-96239-1

Sample	Compound	Flag	A or P	Reason
BKGmw-024-042017-GW BKGmw-023-042017-GW LL1mw-084-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW	Endrin	UJ (all non-detects)	Α	Continuing calibration (%D)
BKGmw-024-042017-GW BKGmw-023-042017-GW LL1mw-084-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW	Aldrin	UJ (all non-detects)	Р	Laboratory control samples (%R)
LL1mw-084-042117-GW	Endosulfan I	J (all detects)	А	Compound quantitation (RPD between two columns)

Camp Ravenna

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

LDC #:_	38756A3a	: \	ALIDATION COMPLETENESS WORKSHEET
SDG #:	280-96239-1		Stage 4

Date: 06/06/17
Page: <u>l</u> of <u>)</u>
Reviewer:(\mathbb{W}
2nd Reviewer:

Laboratory: Test America, Inc.

METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A, A	
II.	GC Instrument Performance Check	A	
III.	Initial calibration/ICV	A/A	1cal = 206 VV 101 = 20/3 CW = 20/0
IV.	Continuing calibration	SW	CW = 20/0
V	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Surrogate spikes /じ	A/A	
VIII.	Matrix spike/Matrix spike duplicates	N	CS
IX.	Laboratory control samples	SW	US 10 D = 4/5
X.	Field duplicates	M	D= 4/5
XI.	Compound quantitation/RL/LOQ/LODs	SM	
XII.	Target compound identification	A	
XIII.	System Performance	A	
XIV	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
<u> </u>	BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
2	BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
₃ +	LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
4	BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
5	BKGmw-540-042117-GW	280-96239-18	Water	04/21/17
6				
7				
8				
9				
10				

NOU	2 8	and the second second	 	<u> </u>	 	
	MB 280-371191/1-A					

	38	756	A39
LDC #:			

VALIDATION FINDINGS CHECKLIST

	Page:	<u>1</u> c	of_2	
	Reviewer:	J <u>ʻ</u>	ŲĠ	
2nd	Reviewer:	7	1	

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	NA	Findings/Comments
I, Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?				
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?				
Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?				
tilla, Initial calibration				A Comment of the Comm
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
Were the RT windows properly established?	/			
IIIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
IV: Continuing calibration		r		
Was a continuing calibration analyzed daily?	_			
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.	/	٠.		
VI. Field blanks				The second of th
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes/Internal Standards		[Z		
Were all surrogate percent recovery (%R) within the QC limits?				

LDC #: 38756 Ama

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: VG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?				
Were internal standard area counts within \pm 50% of the average area calculated during calibration?				
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	**			
Was a MS/MSD analyzed every 20 samples of each matrix?	٠			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	-	/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				·
Were target compounds detected in the field duplicates?				
XI. Compound quantitation				A CANADA AND AND AND AND AND AND AND AND AN
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
Were relative percent difference (RPD) of the results between two columns \leq 40%?	1			
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data				100 (100 (100 (100 (100 (100 (100 (100
Overall assessment of data was found to be acceptable.				

LDC #: 38 756 A3a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Reviewer: JYC 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

N N/A N N/A Were Evaluation mix standards run before initial calibration and before samples?

Were Endrin & 4,4'-DDT breakdowns acceptable in the Evaluation Mix standard (<15.0% for individual breakdowns)? V N/A

Was at least one standard run daily to verify the working curve?

Did the continuing calibration standards meet the percent difference (%D) / relative percent difference (RPD) criteria of <20.0%? A/N(N)Y

Level IV/D Only

05/64/17	1511-1-3		Compound	(Limit ≤ 20.0)	RT (Limits)		Associated Sam	ples	Qualificat	ions
	05040030	cupi	K	23,5	()	All (M)		J/UJ/A	
					()			,	
				·	()				
					()				
					()				
					(
			_		()				
					(
					(·	
					()				
					(
					(_)				
					(
					(-		
					()				
					()				
					(
					(
					(
					(

Y. Aroclor-1242

DD. 2,4'-DDE

II. Aroclor 1262

E. Heptachlor

J. 4,4'-DDE

O. 4,4'-DDT

T. gamma-Chlordane

LDC #: 38 756 A 3	a
-------------------	---

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	<u> </u>	
Reviewer:_	JУĢ	
2nd Reviewer:	4	

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Y N N/A Was a met Y/N N/A If extract cl	amples associated hod blank perforn ean-up was perfo	d with a methoned for each remed, were extended to the method by	od blank? natrix and wh xtract clean-u	enever a sam p blanks anal please see th	ple extraction	n was perform oper frequents as below.	cies?	<u>M07</u>		
Compound	Blank ID				Sar	nple Identificati	on			
M	280-371191/1.	A								
Å	0.00885									
				•					·	
Blank extraction date: Conc. units:	Blank analysis	date:		Ass	ociated sample	s:				
Compound	Blank ID				San	nple Identificati	on			
						-				
										-

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 38756 A3A

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples</u>

Page: _of__\
Reviewer: _JVG
2nd Reviewer: __

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

Y(NN/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

(Y)N N/A Was a LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	US/D 280-371191/2	3-A F	()	43 (95-134)	()	AU (ND)	5/NJA
1	. , ,	,	()	()	()		
			()	()	()		
			(')	()	()		
)	()	()		
			()	(_)	()		
			()	()	()		
			()	()	()		
\Box			()	()	()		
			()	()	()		
\perp			()	()	()		
			()	()	()		
			()	()	()	· · · · · · · · · · · · · · · · · · ·	
			()	()	()		
			()	()	()		
		1	()	()	()		
		:	()	()	()		
T			()	()	()		
			()	()	()		
			()	()	()		
Ī			()	()	()		
			()	()	()		
+			()	()	()		
\dashv			()	()	()		
十			()	()	()		
\dashv				,	()	()		

LDC #:	3 8756	A 3a

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u>

Page:	<u>l</u> of <u>l</u>
Reviewer:	ہلاG
2nd Reviewer:	4

METHOD: \angle GC _ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Y N N/A Y N N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors ≤40%?

If no, please see findings bellow.

	ii iio, piease see iiiidiiigs		%RPD/%D Between Two Columns/Detectors	
#	Compound Name	Compound Name Sample ID		Qualifications
	H	3	198.6	J dets /A
ļ				
<u> </u>				

Comments:	See sample calculation verification worksheet for recalculations	

LDC #: _38756A3a_

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _1_ of _4_ Reviewer: __JVG 2nd Reviewer: ___

METHOD: GC Pesticides (EPA SW 846 Method 8081B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

Where

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound,

 C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

#	Standard ID	Calibration Date	Compound (I	S = BNB)	Reported RRF (25 std)	Recalculated RRF (25 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
1	ICAL	4/15/2017	DDT	(CLP1)	see r2 calc					
	SGC_P1		g-BHC	(CLP1)	see r2 calc					
			DDT	(CLP2)	see r2 calc					
			Endosulfan I	(CLP2)	0.7702	0.7702	0.7910	0.7910	6.2	6.2

LDC#: <u>38756A3a</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2 of 4 Reviewer: JVG 2nd Reviewer:

METHOD:

Pesticides (EPA SW 846 Method 8081B)

Parameter:

DDT

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	DDT	Point 1	0.021018441	0.027
	CLP1		Point 2	0.054481114	0.067
			Point 3	0.144270078	0.167
			Point 4	0.311940414	0.333
			Point 5	0.479473983	0.500
			Point 6	0.675665023	0.667
•					

Regres	ssion Output: Regression Output:		Reported WLR		
Constant	b =	-0.01708	b =	-0.38500	
Std Err of Y Est	-	0.04			
R Squared	r^2 =	0.99802	r^2 =	0.99600	
No. of Observations		6.00			
Degrees of Freedom		4.00			
X Coefficient(s)	m =	1.01666	m =	0.95210	
Std Err of Coef.	0.01				

LDC#: <u>38756A3a</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_3	<u>3_</u> of	4
Reviewer:	JX	G
2nd Reviewer:		

METHOD:

Pesticides (EPA SW 846 Method 8081B)

Parameter:

g-BHC

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	g-BHC	Point 1	0.030879497	0.027
	CLP1		Point 2	0.082507585	0.067
			Point 3	0.215060565	0.167
			Point 4	0.461096976	0.333
			Point 5	0.708772492	0.500
			Point 6	0.989175429	0.667
·				:	

Regre	ssion Output: Regression Output:		Reported WLR	
Constant	b =	-0.02242	b =	-0.56800
Std Err of Y Est		0.04		
R Squared	r^2 =	0.99856	r^2 =	0.99700
No. of Observations		6.00		
Degrees of Freedom		4.00		
X Coefficient(s)	m =	1.48977	m =	1.41040
Std Err of Coef.	0.01			

LDC#: <u>38756A3a</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 4 of 4 Reviewer: JVG_

2nd Reviewer: __

METHOD:

Pesticides (EPA SW 846 Method 8081B)

Parameter:

DDT

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	DDT	Point 1	0.029312657	0.027
	CLP2		Point 2	0.072600805	0.067
			Point 3	0.176316571	0.167
			Point 4	0.354543185	0.333
			Point 5	0.53286071	0.500
			Point 6	0.723552817	0.667
		41		V-	

Regression Output: Regression Output:			Reported WLR	
Constant	b =	-0.00178	b =	0.07830
Std Err of Y Est		0.04		
R Squared	r^2 =	0.99977	r^2 =	1.00000
No. of Observations		6.00		
Degrees of Freedom		4.00		
X Coefficient(s)	m =	1.07946	m =	0.65080
Std Err of Coef.	0.01			

LDC # <u>38756A3a</u>

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	<u>_1</u> _of_ <u>1</u> _
Reviewer:	JVG
2nd Reviewer:	4

METHOD: GC Pesticides (EPA SW 846 Method 8081B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

RRF = (Ax)(Cis)/(Ais)(Cx)

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

Ax = Area of compound,

Cx = Concentration of compound,

Ais = Area of associated internal standard

Cis = Concentration of internal standard

					The state of the s	Reported	Recalculated	Reported	Recalculated
		Calibration			Average RRF	RRF	RRF	% D	% D
#	Standard ID	Date	Comp	ound	Conc	(CC)	(CC)		
1	5040028	5/4/2017	DDT	(CLP1)	25.00	29.1	29.1	16.5	16.5
			g-BHC	(CLP1)	25.00	23.9	23.9	4.5	4.5
			DDT	(CLP2)	25.00	26.3	26.3	5.4	5.4
			Endosulfan I	(CLP2)	25.00	24.8	24.8	0.9	0.9

LDC #: 38 756 A39

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1_of_1_
Reviewer:_	JVG
2nd reviewer:	

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds	identified below using the following calculation:
---	---

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene		·				
Tetrachloro-m-xylene	cre 1	10.0	7. 20	72	72	0,
Decachlorobiphenyl			8.31	83	83	

Sample ID:

Decachlorobiphenyl

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene		ì				
Tetrachloro-m-xylene						
Decachlorobiphenyl					·	
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
. Å				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:		 	
	 *	 	

LDC #._ 38 752 A39

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1 of 1

Reviewer: JVG 2nd Reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: LCS/D 280-371191/2, 3-A

	S	ipike dded		d Sample entration	LCS		LCSD		LCS/LCSD	
Compound		51L)	()	5/L)	Percent	Recovery	Percent	Recovery	RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC	0,500	0.500	0.459	0.438	92	92	88	88	5	5
4,4'-DDT	F	(_	0.498	0,529	100	100	106	106	Ç	6
Aroclor 1260		8								
									·	
					·					

Comments:	Refer to Laboratory	Control Sample/Laboratory	Control Sample D	<u>Duplicate findings</u>	worksheet for list	<u>of qualifications ar</u>	<u>nd associated s</u>	amples when rep	orted
results do no	ot agree within 10.0	% of the recalculated results	.						

LDC #: 38756 A3A

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u>1_of_1</u>
Reviewer:	JVG
2nd reviewer:	=

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

1	Υ	N	N/A
Ĺ	V	N	N/A

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example.			
Sample I.D	9	<u>H</u>	Clp2
Conc. = $\sqrt{27}$	17973) (75.0)	(5 M) 0)(242,5M)
C 40	84897	11) (0.791)(242,5M)
= 0.013	ug/L		

r======					
#	Sample ID	Compound	Reported Concentration (W) /L)	Calculated Concentration ()	Qualification
			0.013		

Note:										
		-								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

All compound quantitations met validation criteria.

XI. Target Compound Identification

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna

Polychlorinated Biphenyls - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

apora	t: <u>280-96239-1</u> atory: <u>Test America, Inc.</u>		ETENESS tage 4	S WORKSHEET		Date: <u>66 /</u> Page: c Reviewer: c Reviewer: <i>C</i>
ETH	OD: GC Polychlorinated Biphenyls (EP	A SW846 Me	thod 8082A)			
	amples listed below were reviewed for e ion findings worksheets.	ach of the foll	lowing valida	ition areas. Validation	on findings are	noted in atta
	Validation Area			Comn	nents	
l.	Sample receipt/Technical holding times	AIA				
il.	Initial calibration/ICV	AIA	ICAL -	cod all r	1	WEZOG
III.	Continuing calibration	A	CW =	20%		
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes / IS	A /A				
VII.	Matrix spike/Matrix spike duplicates	N	CS			
VIII.	Laboratory control samples	A	LC	s /b		
IX.	Field duplicates	ND	b:	= 4/5		У
Χ.	Compound quantitation/RL/LOQ/LODs	A				
XI.	Target compound identification	Ä				
XII	Overall assessment of data	Δ				
ote:	A = Acceptable ND =	No compounds	detected	D = Duplicate	SB=Sou	
T	N = Not provided/applicable R = R	insate Field blank		TB = Trip blank EB = Equipment blai	OTHER	
Ţ	N = Not provided/applicable R = R	tinsate		TB = Trip blank	OTHER	
	N = Not provided/applicable R = R SW = See worksheet FB =	tinsate		TB = Trip blank EB = Equipment blai	OTHER	
E	N = Not provided/applicable R = R SW = See worksheet FB =	tinsate		TB = Trip blank EB = Equipment blan Lab ID	OTHER	Date
E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID 3KGmw-024-042017-GW	tinsate		TB = Trip blank EB = Equipment blan Lab ID 280-96239-2	OTHER Matrix Water	Date 04/20/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID 3KGmw-024-042017-GW 3KGmw-023-042017-GW	tinsate		TB = Trip blank EB = Equipment blan Lab ID 280-96239-2 280-96239-3	Matrix Water Water	Date 04/20/17 04/20/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW _L1mw-084-042117-GW	tinsate		TB = Trip blank EB = Equipment blan Lab ID 280-96239-2 280-96239-3 280-96239-12	Matrix Water Water Water	Date 04/20/17 04/20/17 04/21/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17
E E E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17
E E	N = Not provided/applicable R = R SW = See worksheet FB = Client ID BKGmw-024-042017-GW BKGmw-023-042017-GW L1mw-084-042117-GW BKGmw-022-042117-GW	tinsate		TB = Trip blank EB = Equipment blank Lab ID 280-96239-2 280-96239-3 280-96239-12 280-96239-17	Matrix Water Water Water Water Water	Date 04/20/17 04/20/17 04/21/17 04/21/17

VALIDATION FINDINGS CHECKLIST

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

	ř —			
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II) GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?	<u> • </u>		/	
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?			/	
Were endrin and 4,4'-DDT breakdowns ≤ 15% for individual breakdown in the Evaluation mix standards?			/	
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?	-			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?	/			
Were the RT windows properly established?				
IIIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
IV. Continuing calibration		_		
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Field blanks				
Were field blanks identified in this SDG?	_	/		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes/internal Standards				
Were all surrogate percent recovery (%R) within the QC limits?				

LDC #: 38756 A 36

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: VG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?				
Were internal standard area counts within \pm 50% of the average area calculated during calibration?				
VII. Matrix spike/Matrix spike duplicates				and the second of the second o
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?	/			
Were relative percent difference (RPD) of the results between two columns \leq 40%?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data				4 12 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Overall assessment of data was found to be acceptable.				

LDC#: 38756A3b_

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1_of 2_ Reviewer: ___JVG__ 2nd Reviewer:

METHOD:

PCBs (EPA SW 846 Method 8082A)

Parameter:

1260-1

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
5/8/2017	SGC P3	1260-1	Point 1	0.02211	0.025
	CLP1		Point 2	0.04083	0.050
			Point 3	0.07665	0.100
	1		Point 4	0.17867	0.250
			Point 5	0.33149	0.500
* T		·	Point 6	0.49614	0.750
154 11	**************************************		Point 7	0.65586	1.000
		· · · · · · · · · · · · · · · · · · ·			

	Regression Output:		Reported WLR	
Constant	b =	0.01020	b=	7.45950
Std Err of Y Est		0.04		
R Squared	r^2 =	0.99979	r^2 =	0.99900
No. of Observations	*	6.00		
Degrees of Freedom		4.00		
X Coefficient(s)	m =	0.64687	m =	0.65400
Std Err of Coef.	0.01			

LDC#: <u>38756A3b</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	<u>2</u> of	2_
Reviewer:	JV	3
2nd Reviewer:	\Box	

METHOD:

PCBs (EPA SW 846 Method 8082A)

Parameter:

<u>1260-1</u>

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
5/8/2017	SGC P3	1260-1	Point 1	0.02836	0.025
	CLP2		Point 2	0.05269	0.050
			Point 3	0.09888	0.100
			Point 4	0.22979	0.250
			Point 5	0.43915	0.500
			Point 6	0.66131	0.750
. i.e.		e participation of the control of th	Point 7	0.90514	1.000

		Regression Output:	,	Reported WLR	
Constant		b =	0.00594	b =	7.34470
Std Err of Y Est			0.04		
R Squared	·	r^2 =	0.99944	r^2 =	1.00000
No. of Observations			6.00		
Degrees of Freedom			4.00		
X Coefficient(s)		m =	0.88738	m =	0.88370
Std Err of Coef.		0.01			

LDC#: 38756A3b

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Calculation Verification</u>

Page:_	<u>1</u> of <u>1</u>	
Reviewer:_	JVG_	
2nd Reviewer:		_

METHOD: GC____HPLC____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

		Calibration		CCV Conc	Reported Conc	Recalculated Conc	Reported % D	Recalculated %D
#	Standard ID	Date	Compound					
1	05120021	5/12/2017	1260-1 CLP1	500	501.2	501.2	0.2	0.2
		•	1260-2 CLP2	500	542.8	542.8	8.6	8.6
7.7				1,000	*		ly to	

LDC#: 38 757 A36

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	_1_of_1_
Reviewer:	JVG
2nd reviewer:	$\overline{}$

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The perd	cent recoveries	(%R)	of surrogates were	recalculated for the	e compounds identified	below using	the following calculation
----------	-----------------	------	--------------------	----------------------	------------------------	-------------	---------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	CUP?	70,0	8.15	41	41	0
Decachlorobiphenyl	1		15.3	76	76	
Decachlorobiphenyl						

Sample ID:

Surrogate	Surrogate Column		Surrogate Surrogate nn Spiked Found		Percent Recovery	Percent Difference	
				Reported	Recalculated		
Tetrachloro-m-xylene							
Tetrachloro-m-xylene							
Decachlorobiphenyl	·						
Decachlorobiphenyl							

Sample ID:

Surrogate Column		Surrogate Surrogate Found		Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	*					
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:	

LDC#: 38756 Anh

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

rayei	0
Reviewer:_	JγG
2nd Reviewer:	

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/D 280- 372814/2,3-A LCS/LCSD samples:_

		Spike	Spiked Sample		Į į	_cs	L	CSD	LCS	/LCSD
Compound		Added ぬんし)		entration ちん)	Percent	t Recovery	Percent	Recovery	RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC										
4,4'-DDT			/							
Aroclor 1260	U. 200	0.200	0.207	0. 154	101	16)	77	77	2-7	27
							,			-
					'		·			

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for	list of qualifications and associated samples when reported
results do not agree within 10.0% of the recalculated results.	

LDC #: 387 57 A 75

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1
Reviewer: JVG
2nd reviewer:

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

(Y)	N	N/A
V	Ν	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:
Sample I.D. M 1268 CUP?
1266-1 Conc. = (35913669) (1000) 1 - (47.3447) (214936169)
(0,8837)
- 180.77
1260 total= 180.77 + 180.5 + 214. 5 + 216. 3 + 215. 4
= 201. 494
final conc. = (201. 5)(1ml) (1000 ml)
= 0.2015
2 0. 202 ug/L

#	Sample ID	Compound	Reported Concentration () (L)	Calculated Concentration ()	Qualification
-			0,202		

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 19, 2017

Parameters:

Metals

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-021-042117-GW	280-96239-1	Water	04/21/17
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
BKGmw-018-042017-GW	280-96239-4	Water	04/20/17
BKGmw-509-042017-GW	280-96239-5	Water	04/20/17
BKGmw-017-042017-GW	280-96239-6	Water	04/20/17
BKGmw-017-042017-GF	280-96239-7	Water	04/20/17
LL1mw-065-042117-GW	280-96239-11	Water	04/21/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
LL1mw-086-042117-GF	280-96239-16	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17
BKGmw-021-042117-GWMS	280-96239-1MS	Water	04/21/17
BKGmw-021-042117-GWMSD	280-96239-1MSD	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Methods 6010C/6020A

Mercury by EPA SW 846 Method 7470A

All sample results were subjected to Stage 4 evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Sodium	608 ug/L	All was samples in SDG 280-96239-1
ICB/CCB	Sodium Vanadium	147ug/L 0.550ug/L	All was samples in SDG 280-96239-1
ICB/CCB	Beryllium	0.0810ug/L	BKGmw-017-042017-GW BKGmw-017-042017-GF LL1mw-065-042117-GW LL1mw-084-042117-GW LL1mw-086-042117-GW LL1mw-086-042117-GF BKGmw-022-042117-GW BKGmw-510-042117-GW

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
BKGmw-017-042017-GF	Vanadium	1.1 ug/L	2.0U ug/L
BKGmw-510-042117-GW	Sodium	3000 ug/L	3000U ug/L
BKGmw-017-042017-GW	Beryllium	0.15 ug/L	0.30U ug/L
LL1mw-084-042117-GW	Beryllium	0.15 ug/L	0.30U ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples BKGmw-018-042017-GW and BKGmw-509-042017-GW and samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)	. THE TAX HAVE BUT TO THE PARTY OF THE PARTY			
Analyte	BKGmw-018-042017-GW	BKGmw-509-042017-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Calcium	23000	23000	0 (≤30)	-	-	-
Magnesium	3000	2800	7 (≤30)	-	-	-
Sodium	3400	3200	-	200 (≤5000)	-	-
Barium	7.6	6.7	-	0.9 (≤15)	-	-
Copper	0.99	1.8U	-	0.81 (≤2.0)	-	-
Lead	0.53	0.70U	-	0.17 (≤3.0)	-	-
Manganese	1.6	0.70	-	0.9 (≤3.5)	-	-
Nickel	0.33	0.40	-	0.07 (≤3.0)	-	-
Zinc	4.2	8.0U	-	3.8 (≤20)	-	

	Concentra	tion (ug/L)				
Analyte	BKGmw-022-042117-GW	BKGmw-510-042117-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Calcium	23000	22000	4 (≤30)	<u>-</u>	-	-
Iron	9700	9100	6 (≤30)	-	-	-
Magnesium	6600	6300	5 (≤30)	-	-	-
Potassium	280	250	-	30 (≤3000)	-	-
Sodium	3300	3000	-	300 (≤5000)	-	-
Arsenic	3.1	3.0	-	0.1 (≤5.0)	-	-
Barium	82	84	2 (≤30)	-	-	
Chromium	0.75	1.8U	-	1.05 (≤10)	-	-
Cobalt	2.2	2.3	-	0.1 (≤1.0)	-	-
Manganese	370	380	3 (≤30)	-	-	_
Nickel	2.5	2.4	-	0.1 (≤3.0)	-	-

	Concentra	tion (ug/L)				
Analyte	BKGmw-022-042117-GW	BKGmw-510-042117-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Zinc	3.2	3.3	-	0.1 (≤20)	-	-

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Metals - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna Metals - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

Sample	Analyte	Modified Final Concentration	A or P
BKGmw-017-042017-GF	Vanadium	2.0U ug/L	А
BKGmw-510-042117-GW	Sodium	3000U ug/L	Α
BKGmw-017-042017-GW	Beryllium	0.30U ug/L	А
LL1mw-084-042117-GW	Beryllium	0.30U ug/L	Α

Camp Ravenna

Metals - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 38756A4a SDG #: 280-96239-1

Stage 4

Date: 6181.7 Page: 1 of 2 Reviewer:__ 2nd Reviewer:

Laboratory: Test America, Inc.

METHOD: Metals (EPA SW 846 Method 6010C/6020A/7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	The second second	Comments
l.	Sample receipt/Technical holding times	A/A	
11.	ICP/MS Tune	A	
m.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	A	
X.	Laboratory control samples	A	Los
XI.	Field Duplicates	SW	(4,5) (12,13)
XII.	Internal Standard (ICP-MS)	A	
XIII.	Sample Result Verification	A	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BKGmw-021-042117-GW	280-96239-1	Water	04/21/17
2	BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
3	BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
4	BKGmw-018-042017-GW	280-96239-4	Water	04/20/17
5	BKGmw-509-042017-GW	280-96239-5	Water	04/20/17
6	BKGmw-017-042017-GW	280-96239-6	Water	04/20/17
7	BKGmw-017-042017-GF	280-96239-7	Water	04/20/17
8	LL1mw-065-042117-GW	280-96239-11	Water	04/21/17
9	LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
10	LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
11	LL1mw-086-042117-GF	280-96239-16	Water	04/21/17
12	BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
13	BKGmw-540-042117-GW	280-96239-18	Water	04/21/17
14	BKGmw-021-042117-GWMS (4.02.0/ Hm)	280-96239-1MS	Water	04/21/17
15	BKGmw-021-042117-GWMSD	280-96239-1MSD	Water	04/21/17

SDG Labo	#: 38756A4a 5 #: 280-96239-1 pratory: <u>Test America</u> " HOD: Metals (EPA S	<u>, Inc.</u>	Stage	NESS WORKSHEET 4		Date:_b_ı Page:_2- Reviewer: Reviewer:	
	Client ID			Lab ID	Matrix	Date	
16							
17							
18							
19							

Notes:

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JB
2nd Reviewer:

Method: Metals (EPA SW 846 Method 6010/6020/7000)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	✓			
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?	/			
Were the low standard checks within 70-130%	1			
Were all initial calibration correlation coefficients within limits as specified by the method?				
IV. Blanks	1			
Was a method blank associated with every sample in this SDG?	~			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			
V. ICP Interference Check Sample		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
VI. Matrix spike/Matrix spike duplicates	,		·	
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	\ <u></u>			
VII. Laboratory control samples				
Was an LCS anayized for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				·

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JR
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/		`	
If the %Rs were outside the criteria, was a reanalysis performed?			•	
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	✓			
Were all percent differences (%Ds) < 10%?			_/	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.				
X. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XII. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.				
XIII. Field blanks				
Field blanks were identified in this SDG.		1		/
Target analytes were detected in the field blanks.				

LDC #: 38750A4a

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1

Reviewer: 18

2nd reviewer:

All circled elements are applicable to each sample.

	<u> </u>	
Sample ID	Matrix	Target Analyte List (TAL)
1-13	W	(Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo) B, Sn, Ti, U,
DC.		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V; Zn, Mo, B, Sn, Ti, U,
QC	. /	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
14,15	-W-	Al, (Sb, As, Ba, Be, Cd) Ca, (Cr, Co, Cu) Fe, (Pb), Mg, (Mn, Hg, Ni), K, (Se, Ag, Na, (Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
	-	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd Ca Cr, Co, Cu Fe, Pb Mg, Mn, Hg, N, K, Se, Ag, Na Tl, V, Zn, Mo, B, Sn, Ti, U,
ICP-MS	_	AI, St), (As Ba, (Be, Cd), Ca, Cr) Co, Cu), Fe, Pb, Mg, Mn, Hg, Ni), K, Se, Ag, Na, Ti, V, Zn, Mo, B, Sn, Ti, U,
GFAA		Al Sh. As Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Ph, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,

Comments: Mercury by CVAA if performed

LDC #: 38756A4a

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied: NA
Associated Samples: All Waters

Page:_	<u>\</u> of_!_
Reviewer:	13
2nd Reviewer:	9

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L

						The state of the		Section 1	er i sasa ngasasa ang	
Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)	Maximum ICB/CCB ^a (ug/L)		7	13				
Na		608	147	3040		3000	-			
V			0.550	2.75	1.1 / 2.0					

Sample Concentration units, unless otherwise noted: <u>ug/L</u> Associated Samples: <u>6 - 13</u>

Analyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/l)	Action Level	6	9				
Ве		0.0810	0.405	0.15 / 0.30	0.15 / 0.30				

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC#: <u>38756A4a</u> SDG#: <u>See Cover</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_/_of_2 Reviewer:______2 2nd Reviewer:_____

METHOD: Metals (EPA Method 6010B/7000)

YN NA YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	ion (ug/L)			
Analyte	4 5		RPD (≤ 30)	Difference (< LOQ)	Qualifier (Parent Only)
Calcium	23000	23000	0		
Magnesium	3000	2800	7		
Sodium	3400	3200		200 (5000)	
Barium	7.6	6.7		0.9 (15)	
Copper	0.99	1.8U		0.81 (2.0)	
Lead	0.53	0.70U		0.17 (3.0)	,
Manganese	1.6	0.70		0.9 (3.5)	
Nickel	0.33	0.40		0.07 (3.0)	
Zinc	4.2	8.0U		3.8 (20)	

	Concentrat	ion (ug/L)			
Analyte	12 13		RPD (≤ 30)	Difference (< LOQ)	Qualifier (Parent Only)
Calcium	23000	22000	4		
Iron	9700	9100	6		
Magnesium	6600	6300	5		
Potassium	280	250		30 (3000)	
Sodium	3300	3000		300 (5000)	
Arsenic	3.1	3.0		0.1 (5.0)	
Barium	82	84	2		
Chromium	0.75	1.8U		1.05 (10)	

LDC#:	38756A4a
SDG#:	See Cover

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_ <i>_</i> _of_ <u>_</u> 2_
Reviewer: ジ
2nd Reviewer:

METHOD: Metals (EPA Method 6010B/7000)

Y N NA Y N NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat				
Analyte	12	13	RPD (≤ 30)	Difference (< LOQ)	Qualifier (Parent Only)
Cobalt	2.2	2.3		0.1 (1.0)	
Manganese	370	380	3		
Nickel	2.5	2.4		0.1 (3.0)	
Zinc	3.2	3.3		0.1 (20)	

 $\verb|\LDCFILESERVER|\Validation|\FIELD DUPLICATES|\FD_inorganic|\2017|\38756A4a.wpd|$

LDC #: 38756A4a

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

	Page:_	<u>/_</u> of_	1
	Reviewer:_	UB	
2nd	Reviewer:_		

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	(Y/N)
Icv	ICP (Initial calibration)	Na	2.04 7330 mg/L	2000 mg/L	10270	1027.	Y
ICU	ICP/MS (Initial calibration)	Pb	40. 395 mg 1	40.0 yg1L	10170	101%	У
ICV	CVAA (Initial calibration)	Hq	3.99_ug1L	4.00 mg 1 L	10070	100%	Y
CCV	ICP (Continuing calibration)	Ca	4.994804 19914	- 5000 yg/L	100%	1007.	γ
cev	ICP/MS (Continuing calibration)	Aq	50. 921,4914	50.0 ug 1L	10275	1027.	Y
ccv	CVAA (Continuing calibration) ५:०५	Hg	4.893 mg1	5.00 Mg1L	987	987.	Y

Comments:			

LDC #: 38756A4a SDG#: 280-96239-1

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 1 of 1 Reviewer: 2nd Reviewer:

METHOD: Trace metals (EPA CLP SOW ILM02.1)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

Concentration of each analyte in the source. True =

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$

Where, S=

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = |I-SDR| \times 100$

Where, I=

Initial Sample Result (ug/L)

Serial Dilution Result (ug/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated %R / RPD / %D	Reported %R / RPD / %D	Acceptable (Y/N)
ICSAB	ICP interference check	Be	96.2932916	ا ويد ١٥٥	967.	9670	7
Les	Laboratory control sample	Αı	2.009 850 mg IL	2000 mg 12	1007.	1007.	Y
ms	Matrix spike	119	(SSR-SR) 5.001,491	5.00 mg/L	1007-	10070	У
msi	Duplicate	He	4.945mg1L	Found: 5.001 hangl	IRPD	1 RPD	γ
	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 38756A4~ SDG#: 230-96239-1

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of	
Reviewer:	ubl	
2nd reviewer:	V	_

METHOD: Trace metals (EPA CLP SOW ILM02.1)

Ptease Y N N Y N N Y N N	<u>V/A</u> V/A	Have results been reported	d and calculated rated range of th	'N". Not applicable questions are identified as "N/A". correctly? e instruments and within the linear range of the ICP?
Detecto equation		e results for	2n #4	were recalculated and verified using the following
Concent	ration =	(RD)(FV)(Dil) (In. Vol.)		ecalculation:
RD FV In. Vol. Dil	= = =	Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor		rom Raw Dota Zn = 4.249 ug/L

#	Sample ID	Analyte	Reported Concentration (ルタル)	Calculated Concentration (ょっし)	Acceptable (Y/N)
	1	Ca	8500D	8500 O	У
	2	· Na	11000	11000	Y
	3	ē	.300	300	У
	4	Z	4.2	4.2	Y
	5	Mg	2800	2800	У
	6	AS	2	21	У
	7	Ni	1.8	1.8	Y
	8	Ba	50	50	Υ
	9	TQ	0.29	0.29	Y
	10	A١	470	470	Y
	11	Со	0.26	0.26	Y
	12	Mn	370	370	У
	13	К	250	250	Y
ļ					
 					
ļ					
ll .	İ				

Note:		 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 19, 2017

Parameters:

Wet Chemistry

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BKGmw-021-042117-GW	280-96239-1	Water	04/21/17
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
BKGmw-018-042017-GW	280-96239-4	Water	04/20/17
BKGmw-509-042017-GW	280-96239-5	Water	04/20/17
BKGmw-017-042017-GW	280-96239-6	Water	04/20/17
LL1mw-081-042117-GW	280-96239-9	Water	04/21/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17
LL1mw-084-042117-GW	280-96239-19	Water	04/21/17
BKGmw-021-042117-GWMS	280-96239-1MS	Water	04/21/17
BKGmw-021-042117-GWMSD	280-96239-1MSD	Water	04/21/17
BKGmw-021-042117-GWDUP	280-96239-1DUP	Water	04/21/17
BKGmw-024-042017-GWMS	280-96239-2MS	Water	04/20/17
BKGmw-024-042017-GWMSD	280-96239-2MSD	Water	04/20/17
BKGmw-024-042017-GWDUP	280-96239-2DUP	Water	04/20/17
LL1mw-084-042117-GWMS	280-96239-12MS	Water	04/21/17
LL1mw-084-042117-GWMSD	280-96239-12MSD	Water	04/21/17
LL1mw-084-042117-GWDUP	280-96239-12DUP	Water	04/21/17
BKGmw-022-042117-GWMS	280-96239-17MS	Water	04/21/17
BKGmw-022-042117-GWMSD	280-96239-17MSD	Water	04/21/17
BKGmw-022-042117-GWDUP	280-96239-17DUP	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Total Cyanide by Environmental Protection Agency (EPA) SW 846 Method 9012B Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, and Sulfate by EPA SW 846 Method 9056A

Hexavalent Chromium by EPA SW 846 Method 7196A Nitrocellulose by EPA Method 352.2 Sulfide by EPA SW 846 Method 9034

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
BKGmw-021-042117-GW	Hexavalent chromium	24.15 hours	24 hours	UJ (all non-detects)	Р
LL1mw-084-042117-GW	Hexavalent chromium	58.82 hours	24 hours	UJ (all non-detects)	Р
BKGmw-022-042117-GW	Hexavalent chromium	25.00	24 hours	UJ (all non-detects)	Р
BKGmw-510-042117-GW	Hexavalent chromium	25.83	24 hours	UJ (all non-detects)	Р
LL1mw-084-042117-GW	Hexavalent chromium	24.92	24 hours	UJ (all non-detects)	Р
BKGmw-024-042017-GW	Nitrate as N Nitrite as N	53.52 hours 53.52 hours	48 hours 48 hours	UJ (all non-detects) UJ (all non-detects)	Р
BKGmw-023-042017-GW	Nitrate as N Nitrite as N	55.52 hours 55.52 hours	48 hours 48 hours	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р
BKGmw-018-042017-GW	Nitrate as N Nitrite as N	55.88 hours 55.88 hours	48 hours 48 hours	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р
BKGmw-017-042017-GW	Nitrate as N Nitrite as N	55.85 hours 55.85 hours	48 hours 48 hours	UJ (all non-detects) UJ (all non-detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Sulfate	326 ug/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW LL1mw-084-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
ICB/CCB	Sulfate	0.328 mg/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW LL1mw-084-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
PB (prep blank)	Chloride	606 ug/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
ICB/CCB	Chloride	0.604 mg/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
PB1 280-371837/31	Alkalinity	2.15 mg/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW BKGmw-509-042017-GW BKGmw-017-042017-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
PB2 280-371837/5	Alkalinity	2.79 mg/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW BKGmw-509-042017-GW BKGmw-017-042017-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW
ICB/CCB	Alkalinity	2.32 mg/L	BKGmw-018-042017-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Alkalinity	2.37 mg/L	BKGmw-021-042117-GW BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-509-042017-GW BKGmw-017-042017-GW BKGmw-510-042117-GW

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
BKGmw-017-042017-GW	Chloride	1800 ug/L	1800U ug/L
BKGmw-022-042117-GW	Chloride	2900 ug/L	2900U ug/L
BKGmw-510-042117-GW	Chloride	2600 ug/L	2600U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For LL1mw-084-042117-GWMS/MSD, no data were qualified for Sulfate percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples BKGmw-018-042017-GW and BKGmw-509-042017-GW and samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Concentration (mg/L)						
Analyte	BKGmw-018-042017-GW	BKGmw-509-042017-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Alkalinity	94	57	49 (≤30)		J (all detects)	А

	Concentration (mg/L)					
Analyte	BKGmw-022-042117-GW	BKGmw-510-042117-GW	RPD (Limits)	Difference (Limits)	Flag	A or P
Total cyanide	5.5	5.0U	-	0.5 (≤10)	-	-
Chloride	2900	2600	-	300 (≤3000)	-	-
Nitrate as N	190	43	-	147 (≤500)	-	-
Sulfate	25000	25000	0 (≤30)	-	-	-
Alkalinity	67	63	6 (≤30)	-	-	-

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time and field duplicate RPD, data were qualified as estimated in nine samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Wet Chemistry - Data Qualification Summary - SDG 280-96239-1

Sample	Analyte	Flag	A or P	Reason
BKGmw-021-042117-GW LL1mw-084-042117-GW BKGmw-022-042117-GW BKGmw-510-042117-GW LL1mw-084-042117-GW	Hexavalent chromium	UJ (all non-detects)	Р	Technical holding times
BKGmw-024-042017-GW BKGmw-023-042017-GW BKGmw-018-042017-GW BKGmw-017-042017-GW	Nitrate as N Nitrite as N	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	Technical holding times
BKGmw-018-042017-GW BKGmw-509-042017-GW	Alkalinity	J (all detects)	А	Field duplicates (RPD)

Camp Ravenna

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

Sample	Analyte	Modified Final Concentration	A or P
BKGmw-017-042017-GW	Chloride	1800U ug/L	Α
BKGmw-022-042117-GW	Chloride	2900U ug/L	Α
BKGmw-510-042117-GW	Chloride	2600U ug/L	А

Camp Ravenna

Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

LDC #: 38756A6 VALIDATION COMPLETENESS WORKSHEET SDG #: 280-96239-1 Stage 4 Laboratory: Test America, Inc.

Page: 1 of 2
Reviewer: 3
2nd Reviewer: 9

METHOD: (Analyte) Alkalinity (SM2320B), Total Cyanide (EPA SW846 Method 9012B), Chloride, Nitrate-N, Nitrite-N, Sulfate (EPA SW846 Method 9056A), Hexavalent Chromium (EPA SW846 Method 7196A), Nitrocellulose (EPA Method 353.2), Sulfide (EPA SW846 Method 9034)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A ISW	
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	(19,20) - SDy > 4x
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LesiD
IX.	Field duplicates	SW	(4,5) (12,13)
X	Sample result verification	A	
ΧI	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	BKGmw-021-042117-GW	280-96239-1	Water	04/21/17
2	BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
3	BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
4	BKGmw-018-042017-GW	280-96239-4	Water	04/20/17
5	BKGmw-509-042017-GW	280-96239-5	Water	04/20/17
6	BKGmw-017-042017-GW	280-96239-6	Water	04/20/17
7	LL1mw-081-042117-GW	280-96239-9	Water	04/21/17
8	LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
9 .	LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
10	BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
11	BKGmw-540-042117-GW	280-96239-18	Water	04/21/17
12	LL1mw-084-042117-GW	280-96239-19	Water	04/21/17
13	BKGmw-021-042117-GWMS (rut 52	280-96239-1MS	Water	04/21/17
14	BKGmw-021-042117-GWMSD	280-96239-1MSD	Water	04/21/17
15	BKGmw-021-042117-GWDUP	280-96239-1DUP	Water	04/21/17
16	BKGmw-024-042017-GWMS	280-96239-2MS	Water	04/20/17

LDC	C#: 38756A6 VALIDATION COMPLETENESS WORKSHEET Date: 61						
	#:280-96239-1 Stage 4				Page: 2 of 2		
Labo	oratory: Test America, Inc.				د ه _ Reviewer:		
				2nd	Reviewer:		
MET	HOD: (Analyte) Alkalinity	(SM2320B), Total Cyanide (EPA S	SW846 Method 9012B). Chlo	oride Nitrate-N	N Nitrite-N Sulf:		
(EPA	SW846 Method 9056A), F	lexavalent Chromium (EPA SW84	6 Method 7196A), Nitrocellul	ose (EPA Met	hod 353.2), Sulfi		
	A SW846 Method 9034)	<u> </u>					
				· · · · · · · · · · · · · · · · · · ·			
	Client ID		Lab ID	Matrix	Date		
17	BKGmw-024-042017-GWMSD	A	280-96239-2MSD	Water	04/20/17		
18	BKGmw-024-042017-GWDUP	AIK	280-96239-2DUP	Water	04/20/17		
19	LL1mw-084-042117-GWMS		280-96239-12MS	Water	04/21/17		
20	LL1mw-084-042117-GWMSD		280-96239-12MSD	Water	04/21/17		
21	LL1mw-084-042117-GWDUP		280-96239-12DUP	Water	04/21/17		
22	BKGmw-022-042117-GWMS	Crie	280-96239-17MS	Water	04/21/17		
23	BKGmw-022-042117-GWMSD		280-96239-17MSD	Water	04/21/17		
24	BKGmw-022-042117-GWDUP	V	280-96239-17DUP	Water	04/21/17		
25							
26							

2

Notes:

Page: <u>1</u> o	f_2_
Reviewer: JB	
2nd Reviewer: 1	\overline{z}

Method: Inorganics (EPA Method See Civer)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			,	×1
All technical holding times were met.				
II. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial calibration correlation coefficients ≥ 0.995?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)	/			·
Were balance checks performed as required? (Level IV only)				
III. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/			~
IV. Matrix spike/Matrix spike duplicates and Duplicates	-			
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	✓			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?	1	/		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?				
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			/	
Were the performance evaluation (PE) samples within the acceptance limits?				

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JB
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
IX. Field duplicates	,			
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.	/			
X. Field blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.			/	,

C#: 38756A4

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:1	_of_	1_
Reviewer:	JB.)
2nd reviewer:	Q	

circled methods are applicable to each sample.

ample ID	Parameter (a)
	pH TDS CV F NO, NO, SO, O-PO4 (Alk)CN NH3 TKN TOC (CrO+ C(O4) (S2)
2,3	ph TDS (CI)F (NO) NO) \$0,0-PO4 (AIK)(N)NH3 TKN TOC Cr6+ CIO4 (S2)
4,6	pH TDS(CI)F (NO) (NO) (SO4)0-PO4 (AIK)CN NH3 TKN TOC Cr6+ CIO4 (S2)
5, 9	pH TDS CI F NO3 NO2 SO4 O-PO4 (AIR) CN NH3 TKN TOC Cr6+ CIO4
7	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
පි	pH TDS CI F (NO3) NO3 (SO4)O-PO4 (AIK) CN)NH3 TKN TOC (Cr6+ CIO4 (S2)
10,11	pH TDS (CI) F (NO), (NO), (SO), O-PO, (AIK(CN)NH3 TKN TOC (CIO+ (10)) (S2)
12	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC (C16+ C104 (Vitraellalase)
2.3,011	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
Oc	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
13,14	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+) CIO(S)
15	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
4,17	pH TDS (C) F NO. NO. 60. O-PO. AIK CN NH3 TKN TOC Cr6+ CIO.
18	PH TDS (CI) F (NO) (NO) SO) O-PO4 (AIK) CN NH3 TKN TOC Cr6+ CIO4
9-21	pH TDS (CI)F (NO) (NO) (O4)0-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
22-24	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC (r6+) CIO4
<u> </u>	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
···	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLE NO ₂ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₂ TKN TOC Cr6+ ClO ₄

omments:	

LDC #: 38756A6

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: <u>1</u>	of_	1	_
Reviewer:	JB.		
2nd reviewer:			

All circled dates have exceeded the technical holding time.

Y N N/A Were all samples preserved as applicable to each method?

Y N N/A Were all cooler temperatures within validation criteria?

Method:		EPA 7196A				
Parameters	Parameters: Hexavalent Chromium		-			
Technical h	olding time:		24 Hours			
Sample ID	Sampling date/ time	Analysis date/time	Total Time	Qualifier		
1	4/21/17 14:36	4/22/17 14:45	26.15	J/UJ/P (ND)		
8	4/21/17 10:10	4/23/17 20:59	60.82	J/UJ/P (ND)		
10	4/21/17 15:45	4/22/17 14:45	25.00	J/UJ/P (ND)		
11	4/21/17 14:55	4/22/17 14:45	25.83	J/UJ/P (ND)		
12	4/21/17 15:50	4/22/17 14:45	24.92	J/UJ/P (ND)		

Method:		EPA 9056A EPA 9056A					
Parameters		N	Nitrite as N Nitrate as N				
Technical h	olding time:		18 Hours			48 Hours	
Sample ID	Sampling date/ time	Analysis date/time	Total Time	Qualifier	Analysis date/time	Total Time	Qualifier
2	4/20/17 15:35	4/22/17 21:06	55.52	J/UJ/P (ND)	4/22/17 21:06	55.52	J/UJ/P (ND)
3	4/20/17 14:55	4/22/17 22:26	57.52	J/UJ/P (ND)	4/22/17 22:26	57.52	J/UJ/P (Det)
4	4/20/17 14:53	4/22/17 22:46	57.88	J/UJ/P (ND)	4/22/17 22:46	57.88	J/UJ/P (Det)
6	4/20/17 15:15	4/22/17 23:06	57.85	J/UJ/P (ND)	4/22/17 23:06	57.85	J/UJ/P (ND)

+ 2 HR Time A from OHIO - COLORADO +

LDC #: 38756A6

VALIDATION FINDINGS WORKSHEET Blanks

	Page:_	1	_of_ <i>'</i> _	
	Reviewer:		√3	
nd	Reviewer			

METHOD:			e Cover		Asse	ociated Sar	nples:	1 - 4, 6, 8,	10, 11		
Analyte	Blank ID	Blank ID	Blank								
	PB (ug/L)	ICB/CCB (mg/L)	Action Limit	6	10	11					
Sulfate	326	0.328	1640								
Conc. units	s: <u>ug/L</u>				Ass	ociated Sar	nples:	1 - 4, 6, 10	0, 11		
Analyte	Blank ID	Blank ID	Blank								
	PB (ug/L)	ICB/CCB (mg/L)	Action Limit	6	10	11					
Chloride	606	0.604	3030	1800/	2900/20	2600	200				
Conc. units	s: <u>mg/l</u>			/300	o Áss	ociated Sar		1 - 6, 8	- 11		•
Analyte	Blank	ID Blank I								-	
	PB1 280- 371837	PB2 280- /31 371837.	Action Limit								
Alkalinity (m	g/L) 2.15	2.79	13.95								
Conc. units	s: mg/L				Ass	ociated Sar	nples:	4, 8 - 10			
Analyte	Blank ID	Blank ID	Blank								
	PB (mg/L)	ICB/CCB (mg/L)	Action Limit	No Qualifiers							
Alkalinity	·	2.32	11.6								
Conc. units	s: <u>mg/</u> L	10	7		Ass	ociated Sar	nples:	1 - 3, 9	5, 6, 11		
Analyte	Blank ID	Blank ID	Blank								
	PB (ug/L)	ICB/CCB (mg/L)	Action Limit	No Qualifiers							
Alkalinity		2.37	11.85								

LDC#<u>38756A6</u>

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:_	/ _of	1
Reviewer:	√3	
2nd Reviewer:		

Inorganics: Method See Cover

	Concentra	ation (mg/L)	RPD	D:#	Qualifiers	
Analyte	4	4 5		Difference (< LOQ)	(parent only)	
Alkalinity	94	57	49		Jdet/A	

	Concentration (mg/L)		RPD	Difference (< LOQ)	Qualifiers
Analyte	12	13	(≤ 30)	(CLOQ)	(parent only)
Cyanide, Total	5.5	5.0U		0.5 (10)	
Chloride	2900	2600		300 (3000)	
Nitrate as N	190	43		147 (500)	
Sulfate	25000	25000	0		
Alkalinity	67	63	6		

 $\verb|\LDCFILESERVER|\Validation|\FIELD DUPLICATES|\FD_inorganic \| 2017 \| 38756A6.wpd \\$

LDC #: 38756A4

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:	1	of_	1	
Reviewe	r:_	(15	3	
2nd Revie	- we	er:		

Method: Inorganics, Meth	od <u>See Cover</u>	
The correlation coefficient (r) f	or the calibration of	was recalculated.Calibration date: 514117
An initial or continuing calibrat	ion verification percent	recovery (%R) was recalculated for each type of analysis using the following formula:
%R = <u>Found X 100</u>	Where,	Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution
True		True = concentration of each analyte in the ICV or CCV source

			R		Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/L)	Response	r or r ²	r orr ²	(Y/N)
Initial calibration		s1	0	197.289703			
		s2	2 10 8234.15332 0.99985		0.999858 0.999858		
	CN-	s3	20	16556.0918	·		
	CN	s4	50	40139.14453			\ \ \
		s5	100	79288.0625			(
		s6	200	157841.3438			
		s7	400	305134.5938			
4/12	1.10		Found:	TANE			
Calibration verification	N03	Iev	3.866 maje	,	9773	977。	Y
20:07	Soy	ceV.	FOUND:	TRUE:			
Calibration verification	004	001	103.873 mg/s	LIOO MGIL	1047.	1057.	У
				0			
Calibration verification							

Comments: Refer to Calibration \	Verification findings worksheet for	or list of qualifications and a	associated samples when rep	orted results do not agree withi
10.0% of the recalculated results.	•			

LDC #: 39756A6

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page:	1	_of_	1	
Reviewer:		JB		
2nd Reviewer				

METHOD: Inorganics, Method	_See	Cover	

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = \frac{Found}{True} \times 100$

Where,

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$

Where,

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
LCS	음료구기시 Laboratory control sample	AIN-	195-2mg/L	- 200 mg 1 L	987.	987-	У
ms	Matrix spike sample - \2-	(Nitrite)	SR=ND (SSR-SR) 5213769 11911	- 5000ug IL	1047.	110476	γ
MSD	Duplicate sample	NO2 (Nithite)	52.31.07·149/L	Tourd: 5213.769mg/L	ORP	ORPD	У

Comments:				

LDC #: 38750A6

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:1_	_of_	1	
Reviewer:	JB		
nd reviewer:			_

METHOD: Inorganics, Method	Care	
M N/A Have results been report	ted and calculated correctly? ibrated range of the instrume	
Compound (analyte) results forrecalculated and verified using the following	CN+- 10 ing equation:	reported with a positive detect were
Concentration =	Recalculation:	
CN= Y=mx+5	CN=	5352 = 757.62427 x + 1162.613772
y = 5352 $m = 757.62427$		x = 5.52964 mg 1

#	Sample ID	Analyte	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
	ı	ATUS SOY	50000 yell	5000 Jal	_ у
	2	Ci ⁻	6800 mg 12	1 pu 00 8 2	У
	3	NO ₃	1000 vg1L	1000mgh	Y
	4	Soy	14000 mg 1L	14000 ug1	Υ
	5	Ain-	57 mg/L	57mg 1L	Υ
	la	Cı-	1800 ugil	1800 2314	У
	ზ	N03	450 11	4100 mg 1	Y
ļ	9	AIN-	110 mg 1L	110 411	У
	10	CN-	5.5 ug 1L	5.5 mg 7L	Y
	- 11	A14-	63 mg 1L	63mglu	У
			0	O	
					<u> </u>
				<u> </u>	
ļ					
-					

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Nitroguanidine

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Nitroguanidine by Environmental Protection Agency (EPA) SW 846 Method 8330 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 15.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were not required by the method.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

All compound quantitations met validation criteria.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna
Nitroguanidine - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna Nitroguanidine - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna Nitroguanidine - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

SDG #	:_ 38756A26		LETENESS Stage 4	S WORKSHEET		Date: <u>66 /</u> Page:tot Reviewer: Reviewer:(
Γhe sa	OD: HPLC Nitroguanidine (EPA SW 846 amples listed below were reviewed for eation findings worksheets.			ition areas. Validatio		
_	Validation Area			Comn	nents	
I.	Sample receipt/Technical holding times	AIA				
11.	Initial calibration/ICV	A/A	ICAL S	= 20%	16) E 15%
III.	Continuing calibration	A	CAE	15 %.		
IV.	Laboratory Blanks	A				
V.	Field blanks	, N	·	1		
VI.	Surrogate spikes	N	Not	regid.		· .
VII.	Matrix spike/Matrix spike duplicates	N	CS	:		
VIII.	Laboratory control samples	A		-CS	· · · · · · · · · · · · · · · · · · ·	
IX.	Field duplicates	ND	D =	3/4		
Χ.	Compound quantitation RL/LOQ/LODs	Á		:		
XI.	Target compound identification	A				
XII	Overall assessment of data	A				
ote:	N = Not provided/applicable R = Rir	No compounds nsate ïeld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	rce blank :
	Client ID			Lab ID	Matrix	Date
-	3KGmw-024-042017-GW	·		280-96239-2	Water	04/20/17
	3KGmw-023-042017-GW			280-96239-3	Water	04/20/17
	3KGmw-022-042117-GW			280-96239-17	Water	04/21/17
-	\$KGmw-5 <mark>4</mark> 0-042117-GW			280-96239-18	Water	04/21/17
\perp						
			·			
3						

Note					
	MB 398- 162348/1-	A			
			17		

 LDC#: 38756424

VALIDATION FINDINGS CHECKLIST

Page:_	<u>1_</u> of_2
Reviewer:	JVA
2nd Reviewer:	a

Method:	GC	HPLC

wethod: GC / HPLC				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	Γ .			
Were all technical holding times met?				
Was cooler temperature criteria met?				
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?			/	
Were the RT windows properly established?				
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤20% or percent recoveries (%R) 89-120%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
Were all the retention times within the acceptance windows?				`
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			4.
Was a laboratory blank analyzed for each matrix and concentration?	_			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
V. Field Blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			/	
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?	ļ			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates	T			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

LDC#: 38756 A 26

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JMG
2nd Reviewer: U

Validation Area	Yes	No	NA	Findings/Commonts
	res	NO	NA	Findings/Comments
VIII. Laboratory control samples			ı	
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		٠		
Were target compounds detected in the field duplicates?				
X. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: <u>38756A26</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_1	_ of	1
Reviewer:		JV	<u> </u>
2nd Reviewer:		\subseteq)

METHOD: GC	HPLC
------------	------

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where:

A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		CF	CF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(100 std)	(100 std)	(Initial)	(Initial)		
1	ICAL	3/27/2017	Nitroguanadine	30.040	30.040	30.578	30.578	8.0	8.0
	PDA1								

LDC # <u>38756A26</u>

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	_1_of_1_
Reviewer:	JVG
2nd Reviewer	. 4

METHOD: GC_	HPL	c
-------------	-----	---

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

	·	Calibration		CCV Conc	Reported Conc	Recalculated Conc	Reported % D	Recalculated %D
#	Standard ID	Date	Compound					
- 1	0042600-010-1	5/3/2017	Nitroguanadine	100.0	97.6	97.6	2.4	2.4

LDC #: 38756 A24

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_i	_01
Reviewer:	J∀G
2nd Reviewer:	7

METHOD: __GC __HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Where SSC = Spiked sample concentration

LCS = Laboratory Control Sample LCS

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: LCS 320-162343/2-A

		St	oike	Spike	Sample	LC	cs	LC	SD	LCS/L	CSD
Comp	ound	(Light	ded (L)	Concer (パケ)	ntration レ)	Percent I	Recovery	Percent I	Recovery	RF	םי
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)						-				
Diesel	(8015)										
Benzene	(8021B)										
Methane	(RSK-175)										
2,4-D	(8151)										
Dinoseb	(8151)										
Naphthalene	(8310)										
Anthracene	(8310)				ť		· .				
НМХ	(8330)						!				
2,4,6-Trinitrotolue	ne (8330)										
Phorate	(8141A)										
Malathion	(8141A)										
Formaldehyde	(8315A)				·						
Ni troguanad	ine (8330)	250	NA	237	NA	95	95				
	7										

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicate findings worksheet for list of qualifications and associated	d samples when reported results do
not agree within 10.0% of the recalculated results.		

LDC #:	38756	A26

Ws= Initial weight of the sample

%S= Percent Solid

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page: _	_1_of_1_
Reviewer:	JVG
2nd Reviewer:	4

METHOD: __GC __HPLC

/	- /		
	Y)	N	N/A
	$\overline{\mathbb{Z}}$	N	N/A
١.			

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= (A)(Fv)(Df)	Example:				
(RF)(Vs or Ws)(%S/100)	Sample ID	M	Compound Name	Ni tro guanadine	
A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor		ves			a
RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample	Concentration =	(725		· · · · · · · · · · · · · · · · · · ·	_ = 237.2 ug/L

#	Sample ID	Compound	Reported Concentrations (ぬんし))	Recalculated Results Concentrations ()	Qualifications
			237		
				,	

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Explosives

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
BKGmw-024-042017-GW	280-96239-2	Water	04/20/17
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
LL1mw-081-042117-GW	280-96239-9	Water	04/21/17
LL1mw-080-042117-GW	280-96239-10	Water	04/21/17
LL1mw-065-042117-GW	280-96239-11	Water	04/21/17
LL1mw-084-042117-GW	280-96239-12	Water	04/21/17
LL1mw-086-042117-GW	280-96239-13	Water	04/21/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

Retention time windows were established as required by the method.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
LL1mw-080-042117-GW	Luna-phenyl	1,2-Dinitrobenzene	81 (83-119)	All compounds	J (all detects) UJ (all non-detects)	Р
LL1mw-080-042117-GW	ultracarb	1,2-Dinitrobenzene	76 (83-119)	All compounds	J (all detects) UJ (all non-detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

All compound quantitations met validation criteria.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LL1mw-081-042117-GW	RDX 2-Amino-4,6-dinitrotoluene 3-Nitrotoluene	74.5 43.3 129.2	J (all detects) J (all detects) J (all detects)	A
LL1mw-080-042117-GW	4-Amino-2,6-dinitrotoluene	41.6	J (all detects)	А
LL1mw-084-042117-GW	RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	56.7 45.5 162.7	J (all detects) J (all detects) J (all detects)	А

XI. Target Compound Identifications

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to surrogate %R and RPD between two columns, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Explosives - Data Qualification Summary - SDG 280-96239-1

Sample	Compound	Flag	A or P	Reason
LL1mw-080-042117-GW	All compounds	J (all detects) UJ (all non-detects)	Р	Surrogate spikes (%R)
LL1mw-081-042117-GW	RDX 2-Amino-4,6-dinitrotoluene 3-Nitrotoluene	J (all detects) J (all detects) J (all detects)	А	Compound quantitation (RPD between two columns)
LL1mw-080-042117-GW	4-Amino-2,6-dinitrotoluene	J (all detects)	Α	Compound quantitation (RPD between two columns)
LL1mw-084-042117-GW	RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	J (all detects) J (all detects) J (all detects)	А	Compound quantitation (RPD between two columns)

Camp Ravenna

Explosives - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna

Explosives - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

	:: 38756A40 VALIDATIC #: 280-96239-1 atory: <u>Test America, Inc.</u>		ETENESS WORKS age 4		Date: <u>b 6 /</u> Page:of Reviewer: d Reviewer:
IETH	IOD: HPLC Explosives (EPA SW 846 M	ethod 8330B)			Treviewer
	amples listed below were reviewed for e tion findings worksheets.	ach of the foll	owing validation areas. '	√alidation findings ar	re noted in attac
	Validation Area			Comments	
. 1.	Sample receipt/Technical holding times	A /A			
II.	Initial calibration/ICV	AIA	1CAL = 157,	r×	101 = 20 %
Ĥ.	Continuing calibration	A	Car = 20%		
IV.	Laboratory Blanks	A			
V.	Field blanks	I N			
VI.	Surrogate spikes	SW			
VII.	Matrix spike/Matrix spike duplicates	N	CS		
VIII.	Laboratory control samples	A	VCS		
IX.	Field duplicates	ND	D = 8/9		
Χ.	Compound quantitation RL/LOQ/LODs	SW			
XI.	Target compound identification	A			
XII	Overall assessment of data	A			
ote:	N = Not provided/applicable R = R	No compounds c nsate Field blank	letected D = Duplica TB = Trip b EB = Equip	lank OTHE	ource blank R:
	Client ID		Lab ID	Matrix	Date
- 1	BKGmw-024-042017-GW		280-96239-2	Water	04/20/17
	BKGmw-024-042017-GW BKGmw-023-042017-GW		280-96239-2 280-96239-3		04/20/17 04/20/17
-				Water	
- <u> </u>	BKGmw-023-042017-GW		280-96239-3	Water	04/20/17
- -	BKGmw-023-042017-GW LL1mw-081-042117-GW		280-96239-3 280-96239-9	Water Water Water	04/20/17 04/21/17
- - -	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW		280-96239-3 280-96239-9 280-96239-1	Water Water Water Water Water	04/20/17 04/21/17 04/21/17
	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1	Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17
- - - - -	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW LL1mw-086-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1 280-96239-1	Water Water Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17 04/21/17
- - - - -	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1 280-96239-1	Water Water Water Water Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17 04/21/17
	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1 280-96239-1 280-96239-1	Water Water Water Water Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17 04/21/17 04/21/17
- L - L - L - L	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1 280-96239-1 280-96239-1	Water Water Water Water Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17 04/21/17 04/21/17
- I	BKGmw-023-042017-GW LL1mw-081-042117-GW LL1mw-080-042117-GW LL1mw-065-042117-GW LL1mw-084-042117-GW LL1mw-086-042117-GW BKGmw-022-042117-GW		280-96239-3 280-96239-9 280-96239-1 280-96239-1 280-96239-1 280-96239-1	Water Water Water Water Water Water Water Water Water Water Water	04/20/17 04/21/17 04/21/17 04/21/17 04/21/17 04/21/17

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JVG
2nd Reviewer:

Method:	GC	HPLC
HICHICA:		111

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?	W	[
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?				
Were the RT windows properly established?				
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%?				
Were all the retention times within the acceptance windows? IV Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
V. Field Blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VI. Surrogate spikes				SAME THE SAME TO SAME TO SAME THE SAME
Were all surrogate percent recovery (%R) within the QC limits?	٠ ,			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates			ı	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

LDC#: 38756 #40

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: JVG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Field duplicates	,			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
X. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data	,	/		
Overall assessment of data was found to be acceptable.	/			

VALIDATION FINDINGS WORKSHEET

METHOD: ___GC __/HPLC

8310	8330	8151	8141	8141(Con't)	8021B
A. Acenaphthene	A. HMX	A. 2,4-D	A. Dichlorvos	X. EPN	V. Benzene
B. Acenaphthylene	B. RDX	B. 2,4-DB	B. Mevinphos	Y. Azinphos-methyl	CC. Toluene
C. Anthracene	C. 1,3,5-Trinitrobenzene	C. 2,4,5-T	C. Demeton-O	Z. Coumaphos	EE. Ethyl Benzene
D. Benzo(a)anthracene	D. 1,3-Dinitrobenzene	D. 2,4,5-TP	D. Demeton-S	AA. Parathion	SSS. O-Xylene
E. Benzo(a)pyrene	E. Tetryl	E. Dinoseb	E. Ethoprop	BB. Trichloronate	RRR. MP-Xylene
F. Benzo(b)fluoranthene	F. Nitrobenzene	F. Dichlorprop	F. Naled	CC. Trichlorinate	GG. Total Xylene
G. Benzo(g,h,i)perylene	G. 2.4.6-Trinitrotoluene	G. Dicamba	G. Sulfotep	DD. Trifluralin	
H. Benzo(k)fluoranthene	H. 4-Amino-2,6-dinitrotoluene	H. Dalapon	H. Phorate	EE. Def	8315A
1. Chrysene	I. 2-Amino-4,6-dinitrotoluene	I. MCPP	I. Dimethoate	FF. Prowl	A. Formaldehyde
J. Dibenz(a,h)anthracene	J. 2,4-Dinitrotoluene	J. MCPA	J. Diazinon	GG. Ethion	B. Acetaldehyde
K. Fluoranthene	K. 2,6-Dinitrotoluene	K. Pentachlorophenol	K. Disulfoton	HH. Famphur	C. Benzaldehyde
L. Fluorene	L. 2-Nitrotoluene	L. 2,4,5-TP (silvex)	L. Parathion-methyl	II. Phosmet	D. Butyraldehyde
M. Indeno(1,2,3-cd)pyrene	M. 3-Nitrotoluene	M. Silvex	M. Ronnel	JJ. Tetrachlorvinphos	
N. Naphthalene	N. 4-Nitrotoluene	N.	N. Malathion	KK. Demeton (total)	
O. Phenanthrene	O. Nitroglycerin	О.	O. Chlorpyrifos		
P. Pyrene	P. Picric acid	P.	P. Fenthion		
Q.	Q. 2,4-Dinitrophenol	Q.	Q. Parathion-ethyl		
R.	R. 3,5-Dinitroaniline		R. Trichlornate		
S.	S. 2-Nitrophenol		S. Merphos		
	T. 4-Nitrophenol		T. Stirofos		
	U. Picramic acid		U. Tokuthion		
	V. PETN		V. Fensulfothion		
			W. Bolstar		

Notes:		

LDC #: 38756 A40

VALIDATION FINDINDS WORKSHEET <u>Surrogate Recovery</u>

Page:_	<u>\</u> of/	1
Reviewer:	JVG	
2nd Reviewer:	<u>a</u>	_

METHOD: ___GC __HPLC

Are surrogates required by the method? Yes___or No___.

Ptease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were surrogates spiked into all samples and blanks?

YN N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID	Detector/ Column	Surrogate Compound	%R (Limits)	Qualifications
	4	Luna-phenyl	PP	8) (83-119)	J/UJ/P
	(ND + Det)	Ultracarb		76 ()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				(1	
				()	
				(
				()	
				()	
				()	
				()	
				()	
				(

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	Н	Ortho-Terphenyl	0	Decachlorobiphenyl (DCB)	٧	Tri-n-propyltin	СС	2,5-Dibromotoluene
В	4-Bromofluorobenzene (BFB)	1	Fluorobenzene (FBZ)	Р	1-methylnaphthalene	w	Tributyl Phosphate	DD	n-Nonatriacontane
С	a,a,a-Trifluorotoluene	J	n-Triacontane	Q	Dichlorophenyl Acetic Acid (DCAA)	x	Triphenyl Phosphate	EE	1,2-Dibromopropane
D	Bromochlorobenene	K	Hexacosane	R	4-Nitrophenol	Y	Tetrachloro-m- xylene	(FF)	1,2-Dinitrobenzene
Е	1,4-Dichlorobutane	L	Bromobenzene	s	1-Chloro-3-Nitrobenzene	z	2-Bromonaphthalene	GG	2-Nitro-m-xylene
F	1,4-Difluorobenzene (DFB)	М	Benzo(e)Pyrene	Т	3,4-Dinitrotoluene	AA	1-Chlorooctadecane	НН	p-Terphenyl
G	Octacosane	N	Terphenyl-D14	υ	Tripentyltin	ВВ	2.4-Dichlorophenylacetic acid		

LDOm.	LDC	#:	38756	A	40
-------	-----	----	-------	---	----

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u>

Page:	_of	1
Reviewer:	JχG	_
2nd Reviewer:		_

METHOD: __GC __HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

♥ N N/A ♥ N N/A Y(N) N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors ≤40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	В	3	74,5	Jats A
	I		43.3	
	. M	<i>y</i>	129.2	
	H	4	41.6	
	В	G	56.7	
	C		45,5	
	D	<u> </u>	162.7	Y
				·
			1	
		, ·		

Comments:	See sample calculation verification worksheet for recalculations	
•		

LDC #: <u>38756A40</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	of	3_	
Reviewer:		JχC	<u>3</u>	
2nd Reviewer:		4		

METHOD: GC	HPLC	/

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where:

A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

#	Standard ID	Calibration Date	Compou	und	Reported CF (0.10 std)	Recalculated CF (0.10 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported %RSD	Recalculated %RSD
1	ICAL	5/4/2017	RDX (Li	una-phenyl)	see r2 calc					
	LC G2		2-A-4,6-DNT (L	una-phenyl)	see r2 calc			1		
2	ICAL	5/9/2017	RDX (U	Iltracarb5u)	99820.00	99820.00	105871.78	105871.86	5.9	5.9
	LC X3		2-A-4,6-DNT (L	Ultracarb5u)	197980.00	197980.00	208659.90	208660.00	4.6	4.6

LDC#: 38756A40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2 of 3
Reviewer: JVG
2nd Reviewer:

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

				X	У
Date	Instrument	Compound	STD	area	conc
					(ug/L)
5/4/2017	CHHPLC_G2_LUNA	2-Amino-4,6-Dinitrotoluene	1	5102	0.01
•			2	24488	0.05
			3	40985	0.10
		[4	97209	0.25
	,		5	152049	0.40
			6	292028	0.70
			7	416137	1.00
			8	1057477	2.50

Regression Output: Regression Output:			Reported WLR		
Constant	c =	-4532.22102	c =	1083.490490	
Std Err of Y Est		0.04			
R Squared	r^2 =	0.99965	r^2 =	0.99500	
No. of Observations		6.00			
Degrees of Freedom		4.00		-	
X Coefficient(s)	m =	423499.55453	m =	410514.7470	
Std Err of Coef.	0.01				

LDC#: 38756A40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 3 of 3
Reviewer: JVG
2nd Reviewer:

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

				x	У
Date	Instrument	Compound	STD	area	conc
					(ug/L)
5/4/2017	CHHPLC_G2_LUNA	RDX	1	3143	0.01
	·		2	12919	0.05
			3	23056	0.10
***************************************			4	49821	0.25
			5	76270	0.40
			6	145563	0.70
•			7	202501	1.00
	,	,	8	511309	2.50
	V 1 t	·			

Regression Output: Regression Output:			Reported WLR	
Constant	c=	304.60999	c =	1359.984650
Std Err of Y Est		0.04		
R Squared	r^2 =	0.99972	r^2 =	0.99900
No. of Observations		6.00		
Degrees of Freedom		4.00	•	
X Coefficient(s)	m =	204020.98205	m =	202335.7530
Std Err of Coef.	0.01			

LDC # <u>37756A40</u>

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_	1	_of_	1_
Reviewer:_		JXG	<u>. </u>
2nd Reviewer:	(

METHOD: GC	HPLC
------------	------

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

#	Standard ID	Calibration Date	Compound	CCV Conc	Reported Conc	Recalculated Conc	Reported % D	Recalculated %D
1	05101731	5/10/2017	RDX (Ultracarb5u)	0.2500	0.2441	0.2441	2.4	2.4
	x3		2-A-4,6-DNT (Ultracarb5u)	0.2500	0.2509	0.2509	0.4	0.4
2	05101743	5/11/2017	RDX (Ultracarb5u)	0.2500	0.2436	0.2436	2.6	2.6
	x3		2-A-4,6-DNT (Ultracarb5u)	0.2500	0.2520	0.2520	0.8	0.8
3	51717015	5/16/2017	RDX (Luna-phenyl)	0.2500	0.2569	0.2569	2.8	2.8
	g2		2-A-4,6-DNT (Luna-phenyl)	0.2500	0.2650	0.2650	6.0	6.0

LDC #: 38 756 A 40

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1 of 1 Reviewer: JVG 2nd reviewer:

METHOD: __ GC _/ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
FF	Ultracarb	0,200	0, 1761	88	88	9
,		·		-		
			·			

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	Н	Ortho-Terphenyl	0	Decachlorobiphenyl (DCB)	V	Tri-n-propyltin	cc	2,5-Dibromotoluene
В	4-Bromofluorobenzene (BFB)	_	Fluorobenzene (FBZ)	Р	1-methylnaphthalene	w	Tributyl Phosphate	DD	n-Nonatriacontane
С	a,a,a-Trifluorotoluene	J	n-Triacontane	Q	Dichlorophenyl Acetic Acid (DCAA)	Х	Triphenyl Phosphate	EE	1,2-Dibromopropane
D	Bromochlorobenene	K	Hexacosane	R	4-Nitrophenol	Υ	Tetrachloro-m- xylene	FF	1,2-Dinitrobenzene
E	1,4-Dichlorobutane	L	Bromobenzene	s	1-Chloro-3-Nitrobenzene	z	2-Bromonaphthalene	GG	2-Nitro-m-xylene
F	1,4-Difluorobenzene (DFB)	М	Benzo(e)Pyrene	Т	3,4-Dinitrotoluene	AA	1-Chlorooctadecane	нн	p-Terphenyl
G	Octacosane	N	Terphenyl-D14	U	Tripentyltin	BB	2.4-Dichlorophenylacetic acid	11	

LDC #: 38 756 A40

LCS/LCSD samples:

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1 of 1 Reviewer: JV 2nd Reviewer:

METHOD:	GC <u></u> HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Les 280- 37/222/2-A

		Spike Spike Sample Added Concentration		L	CS	LC	SD	LCS/I	LCSD		
Comp	ound	(149		(16/L)		Percent	Recovery	Percent I	Recovery	RF	ם?
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)										
Diesel	(8015)										
Benzene	(8021B)										
Methane	(RSK-175)										
2,4-D	(8151)								·		
Dinoseb	(8151)										
Naphthalene	(8310)										
Anthracene	(8310)										
HMX	(8330)	2,00	M	1.88	MA	94	94				
2,4,6-Trinitrotolue	ene (8330)	1		2.15		108	108				
Phorate	(8141A)						i				
Malathion	(8141A)										
Formaldehyde	(8315A)				1						

Comments: Refer to Laborator	<u>y Control Sample/Laboratory</u>	Control Sample Dupli	<u>icate findings v</u>	<u>worksheet for list o</u>	of qualifications and ass	<u>sociated samples when re</u>	<u>ported results do</u>
not agree within 10.0% of the re	ecalculated results.						

	LCSCLCNe	w.wpd

LDC #:	38	756	Ago
--------	----	-----	-----

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: _	_1_of_1_
Reviewer: _	JVG
2nd Reviewer:	_0_

METHOD:	GC	HPLO

/	\mathbf{Y}	N	N/A
(.	丒	N	N/A

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= (A)(Fv)(Df)	Example:	
(RF)(Vs or Ws)(%S/100)	Sample ID. 3 Compound Name 2-a-4,6-bxt	(X3)
A= Area or height of the compound to be measured Fv= Final Volume of extract		
Df= Dilution Factor	(12/6) 2 (12/6)	C.1.
RF= Average response factor of the compound	Concentration = (12681) (5 m) (1000)	= 0.649
In the initial calibration Vs= Initial volume of the sample	(2084 59A) (467. 9 M)	
Ws= Initial volume of the sample Ws= Initial weight of the sample	11/(40/. 1701)	7 0,65 mg/
%S= Percent Solid		-

#	Sample ID	Compound	Reported Concentrations (Recalculated Results Concentrations ()	Qualifications
			0,45		
				1	
	·			,	

Comments:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Camp Ravenna

LDC Report Date:

June 7, 2017

Parameters:

Perchlorate

Validation Level:

Stage 4

Laboratory:

TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96239-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
BKGmw-023-042017-GW	280-96239-3	Water	04/20/17
BKGmw-022-042117-GW	280-96239-17	Water	04/21/17
BKGmw-510-042117-GW	280-96239-18	Water	04/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perchlorate by Environmental Protection Agency (EPA) SW 846 Method 6860

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance check was performed prior to initial calibration.

All perchlorate ion signal to noise ratio requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

The isotope ratios were within QC limits.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 15.0%.

The percent differences (%D) of the limit of detection verification (LODV) standard were less than or equal to 30.0%.

The isotope ratios were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples BKGmw-022-042117-GW and BKGmw-510-042117-GW were identified as field duplicates. No results were detected in any of the samples.

X. Internal Standards

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria.

XII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna
Perchlorate - Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna
Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

Camp Ravenna Perchlorate - Field Blank Data Qualification Summary - SDG 280-96239-1

No Sample Data Qualified in this SDG

				S WORKSHEE	T	Date: <u>06 /00</u>
	t: <u>280-96239-1</u> atory: <u>Test America, Inc.</u>	St	tage 4			Page: of _
abore	atory. Test America, inc.				2nd l	Reviewer:
/IETH	OD: LC/MS Perchlorate (EPA SW846 N	/lethod 6860)				•
	amples listed below were reviewed for eation findings worksheets.	ach of the foll	lowing valid	ation areas. Valida	tion findings are	noted in attache
anaat	T Thirdings worksheets.			The state of the s		
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	AIA				
II.	GC/MS Instrument performance check					
III.	Initial calibration/ICV	AIA	Y	Y		101 = 15%
IV.	Continuing calibration	TAT	cn =	157.	LODV	= 30)
V.	Laboratory Blanks	A				
VI.	Field blanks					· .
VII.	Surrogate spikes		No-1	regid.		
VIII.	Matrix spike/Matrix spike duplicates	l u	CS	•		
IX.	Laboratory control samples	A		es		
X.	Field duplicates	ND	b :	= 2/3	· · · · · · · · · · · · · · · · · · ·	
XI.	Internal standards	A		1		
XII.	Compound quantitation RL/LOQ/LODs	A	 			
XIII.	Target compound identification	A	- 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 			and the second s
XIV.	System performance	A		ere en	· · · · · · · · · · · · · · · · · · ·	·····
XV.	Overall assessment of data	A			-	
ote:	N = Not provided/applicable R = Ri	No compounds on nsate Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER:	rce blank
<u> </u>						- j
ļ (Client ID		<u>-</u>	Lab ID	Matrix	Date
	BKGmw-023-042017-GW		. ' -	280-96239-3	Water	04/20/17
_ E	BKGmw-022-042117-GW	<u> </u>		280-96239-17	Water	04/21/17
_	3KGmw-5 <mark>4</mark> 0-042117-GW		<u> </u>	280-96239-18	Water	04/21/17
		· · · · · · · · · · · · · · · · · · ·				
,		<u> </u>				
				<u> </u>		
otes:			<u> </u>		T	
M	1B 280-371646/12 2B 280-371646/35					
<u> </u>	eb 480-7/1646/35					

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: JV6
2nd Reviewer:

Method: Perchlorate (EPA SW 846 Method 6850)

Validation Area	Vaa	Na	NA	Findings (Comments
I. Technical holding times	Yes	No	NA_	Findings/Comments
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?			214	
Were the Perchlorate ions within ±0.3 m/z of mass 99,101 and 107?	4			
Illa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?	•		\	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990?				
Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8?				
IIIb. Initial Calibration Verification			1	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 15%?		e areas		
IV Continuing calibration			4. 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) of the mid-range continuing calibration ≤ 15%?				
Were all percent differences (%D) of the low-range continuing calibration ≤ 50%?	/			
Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8?				
V. Laboratory Blanks			ı	The second secon
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				garanta da maranta da m Maranta da maranta da m
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

LDC #: 38757 A87

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 4VG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?.				
XI. Internal standards			Britis I	
Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?				
Were retention times of m/z 89 ($Cl^{18}O_3$) within 0.2 minutes of m/z 83 (ClO_3)?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII: Target compound identification		# 15 m		
Were relative retention times (RRT's) within 0.98 to 1.02?				
Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8?				
XIV. System performance.				
System performance was found to be acceptable.				
XIII: Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC#: 38756A87

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1	_of_	1	
Reviewer:		لإلىر	G	
2nd Reviewer:_		7		

Method: LCMS Perchlorate (EPASW 846 Method 6860)

Calibration Date	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
5/1/2017	LCMS2	Perchlorate	1	0.18546	0.10
o/ _c		. 5.55.0.0	2	0.45738	0.25
			3	0.97474	0.49
			4	2.01609	0.98
,			5	4.60392	2.45
			6	9.39034	4.90
	'				

Regression Output		Calculated	Reported WLR
Constant	b =	0.027038	0.8492
R Squared	r2 =	0.999583	0.999000
X Coefficient(s)	m =	1.905348	1.9203
Correlation Coefficient		0.999791	
Coefficient of Determination (r^2)		0.999583	0.999000

LDC#: 38756A87

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Calculation Verification</u>

Page:	<u>1</u> o	f_1_
Reviewer:	JV	<u>G</u>
2nd Reviewer:_	\Box	

Method: LCMS Perchlorate (EPASW 846 Method 6860)

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

#	Standard ID	Calibration Date	Compound	CCV Conc	Reported Conc	Recalculated Conc	Reported % D	Recalculated %D
1	IC217D28031B	5/1/2017	Perchlorate	0.200	0.189	0.189	5.6	5.6

LDC #:	3815C	A87
レレし か.		/

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Paye.	01
Reviewer:_	JYG
2nd Reviewer:	

METHOD: LC/MS Perchlorate (EPA SW 846 Method 6850/6860)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration

SA = Spike added

RPD = i LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS 200- 371696/14 LCS/LCSD samples: _

	s	pike	Spi	ike		S	ıc	SD	LCS/I	CSD
Compound	Added Con Compound (45/L) (Concer (VS)	Concentration (ルルル) Percent Recovery		Percent Recovery		RPD		
	LCS	I CSD	Lcs	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
Perchlorate	0.0500	MA	0.0515	NA	103	103		·		
									-	
					· · · · · · · · · · · · · · · · · · ·					

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported
results do not agree within 10.0% of the recalculated results.

LDC #: 38756 487

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	_1_of	1_
Reviewer:_	JVĠ	
2nd reviewer:		

METHOD: LCMS Perchlorate (EPA SW 846 Method 6850/6860)

Factor of 2 to account for GPC cleanup

Y N	N/A N/A	Were all reported results recalculated and were all recalculated results for detected to	verified for all level IV samples? arget compounds agree within 10.0% of the reported results?
Cor	ncentration	$ \begin{array}{ll} 1 &=& (A_{})(I_{})(V_{.})(DF)(2.0) \\ (A_{})(RRF)(V_{})(V_{.})(%S) \end{array} $	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, <u>Perchlorate</u> :
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
Is	=	Amount of internal standard added in nanograms (ng)	Conc. (872734) (204.0) - (0.8492)
Vo	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(3472234)
V_i	=	Volume of extract injected in microliters (ul)	•
V_{t}	=	Volume of the concentrated extract in microliters (ul)	D = 26.2 c. /s
Df	=	Dilution Factor.	= 0.0263 ug/
%S	=	Percent solids, applicable to soil and solid matrices only.	,

#	Sample ID	Compound	Reported Concentration (ゅん)	Calculated Concentration ()	Qualification
			6.026		
				·	
			·		

ldc#:<u>3875</u>6

EDD POPULATION COMPLETENESS WORKSHEET

The LDC job number listed above was entered by

	EDD Process		Comments/Action
	EDD Hocess		Comments/Action
I.	EDD Completeness	-	·
Ia.	- All methods present?	9	
Ib.	- All samples present/match report?	<i>y</i>	
Ic.	- All reported analytes present?	<i>J</i>	
Id.	- 10% or 100% verification of EDD?	9	
200 200 200 200 200 200 200 200 200 200			
II.	EDD Preparation/Entry	-	
IIa.	- Carryover U/J?	N	
IIb.	- Reason Codes used? If so, note which codes.	y	uc
IIc.	- Additional Information (QC Level, Validator, Validated Y/N, etc.)	N	
III.	Reasonableness Checks	-	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	y	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	Y	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	_	
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	N/M	
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?	y	
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?	N/WA	
IIIg.	-Are there any discrepancies between the data packet and the EDD?	W	

Notes:	*see discrepancy sheet		 	