

June 20, 2017

Cardno 1658 Cole Blvdm, Suite 190 Golden, CO 80401 ATTN: Travis Withers

SUBJECT: Camp Ravenna, Data Validation

Dear Mr. Withers,

Enclosed are the final validation reports for the fractions listed below. There SDGs were received on May 18, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #38742:

<u>SDG #</u>	Fraction					
280-96051-1	Volatiles,	Semivolatiles,	Chlorinated	Pesticides,	Metals,	Explosives,
280-96051-2	Wet Chem	nistry				

280-96104-1

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 - Quality Assurance Project Pan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio, December 2016
- U.S. Department of Defense, Quality Systems Manual, for Environmental Laboratories, Version 5.0 July, 2013
- USEPA, National Functional Guidelines for Superfund Organic Methods Data Review, August 2014
- USEPA, National Functional Guidelines for Inorganic Superfund Data Review, August 2014
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007, update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng Project Manager/Senior Chemist

bc	SDG#	DATE REC'D	(3) DATE DUE	V((826	DA 50C)	SV (82)	OA 70D)	PA (82) -SI	Hs 70D M)	Pe (808	st. 31B)	Met (SW	tals 846)	Ex (833	pl. 30B)	A (232	lk. 20B)	Fr Ci (90	ee N- 16)	To Cl (901	tal N- I2B)	(905	CI 56A)	S((905	O₄ 56A)	NO NO (905	-N ₂-N 56A)	Cr (71	(VI) 96A)	(90	6=)34)				
latrix:	Water/Soil			w	s	w	s	w	s	w	S	w	s	Ŵ	s	w	s	w	s	W	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s
	280-96051-1	05/18/17	06/09/17	-	-	6	0	<u> </u>	-	1	0	7	0	7	0	2	0	-	-	3	0	1	0	2	0	2	0	1	0	2	0				
	280-96051-2	05/18/17	06/09/17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0	-	-	-	<u> </u>	-	-	-	-	-	-	-	-				
-	280-96104-1	05/18/17	06/09/17	3	0	2	0	1	0	-	-	7	0	3	0	5	0	-	-	3	0	5	0	5	0	5	0	7	0	5	0				
					<u> </u>																<u> </u>														
+																							-					-							\vdash
																															<u> </u>				-
																															1				
																													<u> </u>						
_																						ļ									ļ				
	······································																											<u> </u>			<u> </u>				
+-						<u> </u>																						<u> </u>							
+				-													·																		┢
+																																			┢
																															<u> </u>				
																	<u> </u>														<u> </u>				ļ
_																																			
																														<u> </u>	-				
																							-												
+																																			
																<u> </u>													<u> </u>						
+	7/00										_			40		-						-	-							<u> </u>	-				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Camp Ravenna

LDC Report Date: May 30, 2017

Parameters: Semivolatiles

Validation Level:Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
SCFmw-004-041817-GW	280-96051-8	Water	04/18/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample FWGmw-016-041717-GW. Using professional judgment, no data were qualified when one base or one acid surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Semivolatiles - Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Semivolatiles - Field Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

LDC #: <u>38742A2a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 65 /2.6
SDG #: <u>280-96051-1</u>	Stage 4	Page: 1_of_1
Laboratory: Test America, Inc.		Reviewer:
		2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	A	
- 111.	Initial calibration/ICV	AIA	$1CAL \leq 1570$ $101 \leq 202$
IV.	Continuing calibration (ending	A	CON = 20/50 /2
V.	Laboratory Blanks	Á	
VI.	Field blanks	N	
VII.	Surrogate spikes	ŚŴ	
VIII.	Matrix spike/Matrix spike duplicates	N	CS
IX.	Laboratory control samples	A	LCS B
Х.	Field duplicates	Ň	
XI.	Internal standards	À	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	4	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
2	FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
3	FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
4	LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
5	LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
6	SCFmw-004-041817-GW	280-96051-8	Water	04/18/17
7				
8				
9				
Note	S:		·	
-	144 200 3701466			

-418250-370146/1-4

Phthalates only)

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2 Reviewer: JVG 2nd Reviewer:

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	<			
Were all percent relative standard deviations (%RSD) $\leq 26\%$ and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	-
IIIb. Initial Calibration Verification	I	-		
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		-1		
Were all percent differences (%D) <u></u>		-		
IV. Continuing calibration	1			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\langle			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.			ſ	
VI. Field blanks	1			
Were field blanks were identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes		-	P	
Were all surrogate percent recovery (%R) within QC limits?	N	\angle	[
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			/	-
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	

VALIDATION FINDINGS CHECKLIST

	Page:_	2	_of	2	
	Reviewer:		ЧY	G	
2nd	Reviewer:		Q		

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	\square			
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		1		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		(
Were target compounds detected in the field duplicates?			/	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?		-		
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?			-	
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: 38792 A2a

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_ Reviewer: 2nd Reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y NANA Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? YNN/A

Y N N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

Surrogate %R (Limits) Date Sample ID Qualifications 42 (50-134 1 TPH gral only one out No)))) ١) ١ ١ ۱ ١ ١)) ì))) .)))

(NBZ) = Nitrobenzene-d5

(FBP) = 2-Fluorobiphenyl

(TPH) = Terphenyl-d14 (DCB) = 1,2-Dichlorobenzene-d4

LDC #: _38742A2a_

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page	: <u>1</u> of <u>1</u>
Reviewer	JVG
2nd Reviewer:	<u> </u>

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_x = Area of Compound$

 $C_x = Concentration of compound,$

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(50 std)	(50 std)	(Initial)	(Initial)		
1	ICAL	4/14/2017	Diethyl phthalate (ANT)	1.2119	1.2119	1.1908	1.1908	7.3	7.3
	SMS G6		Di-n-butylphthalate (PHN)	1.3671	1.3671	1.3003	1.3003	5.3	5.3
			Bis(2-eh)phthalate (CRY)	0.8652	0.8652	0.8517	0.8517	8.5	8.5

LDC # 38742A2a

VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

ave. RRF = initial calibration average RRFAx = Area of compoundCx = Concentration of compound

RRF = continuing calibration RRF Ais = Area of associated internal standard Cis = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (IS)	Average RRF (Initial RRF)	Reported (CC RRF)	Recalculated (CC RRF)	Reported %D	Recalculated %D
1	G6_28287	04/25/17	Diethyl phthalate (ANT)	1.1908	1.1893	1.1893	0.1	0.1
			Di-n-butylphthalate (PHN)	1.3003	1.3060	1.3060	0.4	0.4
	SMS G6		Bis(2-eh)phthalate (CRY)	0.8517	0.8334	0.8334	2.1	2.1

LDC #: 38792 A20

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: _ _]

Percent Percent Surrogate Surrogate Recovery Recovery Percent Recalculated Spiked Found Reported Difference 59.6 0 Nitrobenzene-d5 100.0 60 60 45,0 65 65 2-Fluorobiphenyl 9~ 92 Terphenyl-d14 92.2 Phenol-d5 63.1 63 63 61 2-Fluorophenol 60.6 61 2,4,6-Tribromophenol 86.5 86 86 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	-				
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 38792 AZA

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JVG

Page: 1_of_1

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

10/ 280-370146/23-A

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: ____

	Sp	oike	Sp	pike		:s	ic	SD		
Compound	Ad (WG	ded ル)	Concer (И	ntration	Percent I	Recovery	Percent	Recovery	RI	PD
					Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene										
Pentachlorophenol										
Pyrene										
BEHP	80.0	80.0	69.5	69.6	87	87	87	87	٥	6
								,		
							· · ·			

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

- Concentration = $(A_x)(I_s)(V_t)(DF)(2.0)$ $(A_{is})(RRF)(V_{s})(V_{i})(\%S)$ Area of the characteristic ion (EICP) for the A, = compound to be measured Area of the characteristic ion (EICP) for the specific A_{is} = internal standard Amount of internal standard added in nanograms (ng) I, = ٧, Volume or weight of sample extract in milliliters (ml) or = grams (g). Volume of extract injected in microliters (ul) V, = = Volume of the concentrated extract in microliters (ul) V, Df = Dilution Factor. %S = Percent solids, applicable to soil and solid matrices only.
 - Sample I.D. $\frac{ND}{LG}$, $\underline{B}.EHP$ Conc. = (538492)(-40.0)(-1M) - ((-))(-)(-) 363913 - (0.8517)(-1L)(-)(-)(-)= 69.497.69.5 ng L

2.0 =	Factor of 2 to account for GPC cleanup
-------	--

#	Sample ID	Compound	Reported Concentration (سح (ارے)	Calculated Concentration ()	Qualification
			69.5		
				·	
				·	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
L			l		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna
--------------------	--------------

LDC Report Date: May 31, 2017

Parameters: Chlorinated Pesticides

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SCFmw-004-041817-GW	280-96051-8	Water	04/18/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

ï

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
04/30/17	04300013	CLP 1	Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endosulfan sulfate	28.1 21.1 20.2 23.7 21.1	All samples in SDG 280-96051-1	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identification

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Chlorinated Pesticides - Data Qualification Summary - SDG 280-96051-1

Sample	Compound	Flag	A or P	Reason
SCFmw-004-041817-GW	Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endosulfan sulfate	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D)

Camp Ravenna

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna

Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

LDC #: <u>38742A3a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 05/26/17
SDG #: <u>280-96051-1</u>	_ Stage 4	Page: <u>_</u> of
Laboratory: Test America, Inc.		Reviewer:
		2nd Reviewer:

METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		(Comments	
I.	Sample receipt/Technical holding times	A IA			
П.	GC Instrument Performance Check	A			
- 111.	Initial calibration/ICV	AIA	KALE 202	Y	101 € 20/5
IV.	Continuing calibration	SN	$cal = z_0 ?$		
V.	Laboratory Blanks	A			
VI.	Field blanks	N			
VII.	Surrogate spikes // S	A/A			
VIII.	Matrix spike/Matrix spike duplicates	N	CS		
IX.	Laboratory control samples	A	us (p		
X .	Field duplicates	Ň		······	
XI.	Compound quantitation/RL/LOQ/LODs	A			
XII.	Target compound identification	A			
XIII.	System Performance	Á ·			· · · · · · · · · · · · · · · · · · ·
XIV	Overall assessment of data	A			

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate	
TB = Trip blank	
EB = Equipment blank	ί

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SCFmw-004-041817-GW .	280-96051-8	Water	04/18/17
2				
3				
4				
5				
6				
7				
8				
9				
10				
Note	S:	·		
-	MB 280- 370 546 1-4			

-	MB 280- 370 546	1-	A		
	· · · ·				

VALIDATION FINDINGS CHECKLIST

Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Validation Area	Yes	No	ΝΔ	Findings/Comments
I. Technical holding times	1.03			- mangaroonmenta
Were all technical holding times met?				
Was cooler temperature criteria met?	Ĺ			
II. GC/ECD Instrument performance check				
Was the instrument performance found to be acceptable?	<			
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?	/	-		
Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
Were the RT windows properly established?		· .		
IIIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		-		
Were all percent differences (%D) \leq 20% or percent recoveries (%R) 80-120%?				
IV Continuing calibration				
Was a continuing calibration analyzed daily?	/	[
Were all percent differences (%D) \leq 20% or percent recoveries (%R) 80-120%?	M	/		
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks		r	1	
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed for each matrix and concentration?	\triangleleft			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI. Field blanks				
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VII Surrogate spikes/Internal Standards	1	1	T	
Were all surrogate percent recovery (%R) within the QC limits?	/			

VALIDATION FINDINGS CHECKLIST

Page:_	<u>2_of_2</u>	
Reviewer:	J <u>V</u> G	_
2nd Reviewer:	Y	

Validation Area	Yes	No	NA	Findings/Comments
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	•		/	
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?		i		()) /
Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration?				
VII. Matrix spike/Matrix spike duplicates	<i>(</i>			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	•	(
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	\langle			
Was an LCS analyzed per extraction batch?	7			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
XI. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?	/	ſ		
Were relative percent difference (RPD) of the results between two columns \leq 40%?	/			
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?	/	ſ		
XIII Overall assessment of data		ć		
Overall assessment of data was found to be acceptable.				

LDC #: 38792 A3A

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page: Reviewer: JVG 2nd Reviewer: (

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N" Not applicable questions are identified as "N/A".

Were Evaluation mix standards run before initial calibration and before samples? Y)N N/A

XN N/A Were Endrin & 4,4'-DDT breakdowns acceptable in the Evaluation Mix standard (<15.0% for individual breakdowns)? Y)N_N/A

Was at least one standard run daily to verify the working curve?

Did the continuing calibration standards meet the percent difference (%D) / relative percent difference (RPD) criteria of <20.0%? Y (N N/A

Level IV/D Only

MN N/A Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Column	Compound	%D (Limit ≤ 20.0)	RT (Limits)	Associa	ited Samples	Qualifications
	04/30/17	0430 00 3	UP1	k	28.1	() All	(ND)	JINJA
				M	21. /	()		1
		· ·		L	20.2	()		
		·		0	23.7	()		
				N	21.]	(
						()		
						· ()		
					(()		
						()		
						()		
					·)		
						()		
						()		
		· · · · · · · · · · · · · · · · · · ·				()	·	
						()		
		<i>x</i>				()	•	
						()	······································	
						(.)		
						()		
						()		
						()		
						()		
						()		
A. alp B. be C. de D. ga E. He	oha-BHC ta-BHC lta-BHC mma-BHC optachlor	F. Aldrin G. Heptachlor epoxide H. Endosulfan I I. Dieldrin J. 4,4'-DDE	K. Endrin L. Endosulfan II M. 4,4'-DDD N. Endosulfan sulfate O. 4,4'-DDT	P. Methoxychlor Q. Endrin ketone R. Endrin aldehyde S. alpha-Chlordane T. gamma-Chlorda	U. Toxaphene V. Aroclor-101 W. Aroclor-122 W. Aroclor-123 ne Y. Aroclor-124	Z. Aroclor-1248 6 AA. Aroclor-1254 1 BB. Aroclor-1260 2 CC. 2,4'-DDD 2 DD. 2,4'-DDE	EE. 2,4'-DDT FF. Hexachloroben GG. Chlordane HH. Chlordane (Tec II. Aroclor 1262	JJ. Aroclo zene KK. Oxych LL. trans- h) MM. cis-No NN	r 1268 OO lordane PP Nonachlor QQ onachlor RR SS

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>1</u> of <u>4</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>1</u>

METHOD:

Pesticides (EPA SW 846 Method 8081B)

Parameter: <u>g-BHC</u>

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	g-BHC	Point 1	0.030879497	0.027
	CLP1		Point 2	0.082507585	0.067
			Point 3	0.215060565	0.167
			Point 4	0.461096976	0.333
			Point 5	0.708772492	0.500
			Point 6	0.989175429	0.667

	Regression Output: Regre	ssion Output:		Reported WLR	
Constant		b =	-0.02242	b =	-0.56800
Std Err of Y Est		· · · · · · · · · · · · · · · · · · ·	0.04		
R Squared		r^2 =	0.99856	r^2 =	0.99700
No. of Observations		· · · · ·	6.00		
Degrees of Freedom	· · · · · · · · · · · · · · · · · · ·	an e arrene a transformer	4.00		· · · · · · · · · · · · · · · · · · ·
X Coefficient(s)		m =	1.48977	m =	1.41040
Std Err of Coef.		0.01			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2 of 4 Reviewer: JVG 2nd Reviewer: ______

METHOD:

Pesticides (EPA SW 846 Method 8081B)

Parameter: DDT

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	DDT	Point 1	0.021018441	0.027
	CLP1		Point 2	0.054481114	0.067
			Point 3	0.144270078	0.167
			Point 4	0.311940414	0.333
			Point 5	0.479473983	0.500
			Point 6	0.675665023	0.667
			· ·		

	Regression Output: Regressi	on Output:		· · · · · · · · · · · · · · · · · · ·	Reported WLR	
Constant		. b =	-0.01708	*	b =	-0.38500
Std Err of Y Est			0.04	· · · · · ·		
R Squared		r^2 =	0.99802	÷ .	r^2 =	0.99600
No. of Observations	· · · · · · · · · · · · · · · · · · ·		6.00			
Degrees of Freedom		and a second s	4.00		A construction of the cons	
X Coefficient(s)		m =	1.01666		m =	0.95210
Std Err of Coef.		0.01		•		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>3</u> of <u>4</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u></u>

METHOD: Pesticides (EPA SW 846 Method 8081B)

Parameter: <u>g-BHC</u>

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	g-BHC	Point 1	0.029312657	0.027
	CLP2		Point 2	0.072600805	0.067
			Point 3	0.176316571	0.167
			Point 4	0.354543185	0.333
			Point 5	0.53286071	0.500
-			Point 6	0.723552817	0.667
			· · · · · · · · · · · · · · · · · · ·		

 Regression Output: Regression Output:
 Reported WLR

 Constant
 b =
 -0.00178
 b =
 0.06610

Std Err of Y Est				0.04		· · · ·	
R Squared			r^2 =	0.99977		r^2 =	1.00000
No. of Observations				6.00			· · ·
Degrees of Freedom	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		4.00	· · · · · · · · · · · ·	•••••••	· · · · · · · · · · · ·
X Coefficient(s)	· · · ·	· · · · · · · · · · · · · · · · · · ·	m =	1.07946		m =	1.06730
Std Err of Coef.	······································	· · · · · · · · · · · · · · · · · · ·	0.01		· · · · · · · · · · · · · · · · · · ·		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>4</u> of <u>4</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>____</u>

METHOD: Pesticides (EPA SW 846 Method 8081B)

Parameter: DDT

Order of regression: Linear

Date	Instrument	Compound	Points	x Response ratio	y Conc ratio
4/15/2017	SGC P1	DDT	Point 1	0.018449666	0.027
	CLP2		Point 2	0.044351251	0.067
			Point 3	0.107880918	0.167
			Point 4	0.217676024	0.333
			Point 5	0.321265172	0.500
			Point 6	0.44861078	0.667
		· .			

				· · · · · · · · · · · · · · · · · · ·			
	Regression	Output: Regression Ou	itput:			Reported WLR	
Constant			b =	-0.00173	:	b =	0.07830
Std Err of Y Est				0.04			
R Squared			r^2 =	0.99892		r^2 =	1.00000
No. of Observations				6.00			
Degrees of Freedom			······································	4.00			
X Coefficient(s)			m =	0.66397		m =	0.65080
Std Err of Coef.			0.01				

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GC____HPLC___

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 * (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

						Reported	Recalculated	Reported	Recalculated
		Calibration			CCV Conc	Conc	Conc	% D	%D
#	Standard ID	Date	Compound	(IS=BNB)	-				ļ
1	04100013	4/30/2017	g-BHC	(CLP1)	25.0	25.5	25.5	2.1	2.1
			4,4'-DDT	(CLP1)	25.0	30.9	30.9	23.7	23.7
			g-BHC	(CLP2)	25.0	24.0	24.0	3.8	3.8
			4,4'-DDT	(CLP2)	25.0	26.7	26.7	6.7	6.7

LDC #: 38 742 A3a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	<u>1_of_1_</u>
Reviewer:	JVG
2nd reviewer:	\times

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Sample ID:

#1

Where: SF = Surrogate Found SS = Surrogate Spiked

Percent Percent Percent Surrogate Surrogate Difference Surrogate Column Spiked Found Recovery Recovery Reported Recalculated 0 3.64 36 36 CIP 1 Ø Tetrachloro-m-xylene 10, 67 67 Y 6.74 Tetrachloro-m-xylene 53 53 1 5.34 Decachlorobiphenyl 79 2 79 7.89 Decachlorobiphenyl

Sample ID:___

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:_____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:____

LDC #: 38792 Aza

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1_of_1 Reviewer: _JVG 2nd Reviewer: _____

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Concentration

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: 105 (1) 280 - 370 546/2, 3-A

	S	pike	Spike	d Sample	l	_CS	LC	CSD	LCS	LCSD
Compound	АС (И	g /L)	(Mg L)		Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recaic.	Reported	Recalc.
gamma-BHC	0.500	0.500	0.460	0,465	gr	92	93	93	1	, 1
4,4'-DDT	7	L	0.498	0.506	100	100	0	101	1	/
Aroclor 1260										
								·		
			1							
					- 					

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 38742 A3a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1_of_1_
Reviewer:	JVG
2nd reviewer:	X

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

<u>N N/A</u> <u>V N N/A</u> Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

<u><u>g</u>-pHC (754-752098) (75.0)] (1774646663) (1.91097 3.4.</u> Example: - (-0. 568) Sample I.D. Conc. 23.02 final conc. 2 (23,02 (5ml) (250'ml) = 0. 46037 ~ 0. 460 ug/L

#	Sample ID	Compound	Reported Concentration ()/()	Calculated Concentration ()	Qualification
			0,460		

Note:
Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna
LDC Report Date:	June 2, 2017
Parameters:	Metals
Validation Level:	Stage 4
Laboratory:	TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
SCFmw-004-041817-GW	280-96051-8	Water	04/18/17
BKGmw-008-041817-GW	280-96051-9	Water	04/18/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Methods 6010C/6020A Mercury by EPA SW 846 Method 7470A

All sample results were subjected to Stage 4 evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

2

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
04/21/17	CCV (00:24)	Chromium Vanadium	111 (90-110) 111 (90-110)	All samples in SDG 280-96051-1	NA	-

Although the above listed %R flagged "NA" demonstrate a high bias, the affected compound in the associated samples were non-detected and did not warrant the qualification of the data.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Metals - Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Metals - Laboratory Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Metals - Field Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

LDC #: <u>38742A4a</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 280-96051-1	_ Stage 4

SDG #:___ Laboratory: Test America, Inc.

Date: 6/2/17 Page: 1 of 1 Reviewer: <u>JB</u> 2nd Reviewer:_

METHOD: Metals (EPA SW 846 Method 6010C/6020A/7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
11.	ICP/MS Tune	A	
III.	Instrument Calibration	SW	
IV.	ICP Interference Check Sample (ICS) Analysis	A-	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	2	C.S.
VIII.	Duplicate sample analysis	N	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	LCS
XI.	Field Duplicates	R	
XII.	Internal Standard (ICP-MS)	A	
XIII.	Sample Result Verification	A	
xiv	Overall Assessment of Data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

····	T			
	Client ID	Lab ID	Matrix	Date
1	FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
2	FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
3	FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
4	LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
5	LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
6	SCFmw-004-041817-GW	280-96051-8	Water	04/18/17
7	BKGmw-008-041817-GW	280-96051-9	Water	04/18/17
8				
9				
10				
11				
12				
13				
lote	S:			

Method: Metals (EPA SW 846 Method 6010/6020/7000)

Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
All technical holding times were met.	1	/					
Cooler temperature criteria was met.							
II. ICP/MS Tune							
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	\checkmark						
Were %RSD of isotopes in the tuning solution							
III. Calibration							
Were all instruments calibrated daily, each set-up time?	\checkmark						
Were the proper number of standards used?	/						
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?	1						
Were the low standard checks within 70-130%	\checkmark						
Were all initial calibration correlation coefficients within limits as specified by the method?	/						
IV. Blanks							
Was a method blank associated with every sample in this SDG?	\checkmark						
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	*						
V. ICP Interference Check Sample							
Were ICP interference check samples performed daily?	\checkmark						
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/						
VI. Matrix spike/Matrix spike duplicates							
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	1		\checkmark				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			\checkmark				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.							
VII. Laboratory control samples							
Was an LCS anaylzed for this SDG?							
Was an LCS analyzed per extraction batch?							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	<i>\</i>						

	1		<u> </u>					
Validation Area	Yes	No	NA	Findings/Comments				
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)								
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	\checkmark							
If the %Rs were outside the criteria, was a reanalysis performed?								
IX. ICP Serial Dilution								
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?								
Were all percent differences (%Ds) < 10%?			\checkmark					
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		\checkmark						
X. Sample Result Verification								
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark							
XI. Overall assessment of data	,							
Overall assessment of data was found to be acceptable.								
XII. Field duplicates								
Field duplicate pairs were identified in this SDG.		<i>\</i>						
Target analytes were detected in the field duplicates.			1					
XIII. Field blanks								
Field blanks were identified in this SDG.		5						
Target analytes were detected in the field blanks.			7					

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-7	\sim	(Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V; Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd (Ca) Cr, Co, Cu, Fe, Pb, (Mg, Mn, Hg, Ni, K, Se, Ag, Na) TI, V, Zn, Mo, B, Sn, Ti, U,
ICP-MS		AI, Sb)(A3, B3, B2, C0, Ca, (Cr) Co, Cu) Fe, Kb/Mg, MD, Hg, Ni) K, Se, A9, Na, Ti, V, Zn Mo, B, Sn, Ti, U,
GEAA		AL Sh. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Ph. Mg. Mn. Hg. Ni, K. Se, Ag. Na, TI, V. Zn, Mo, B. Sn, Ti, U
Comments:_	Mercury	y by CVAA if performed

٠

LDC #: <u>38742A4a</u>					
SDG #:	280-96051-1				

VALIDATION FINDINGS WORKSHEET Calibration

METHOD: Trace Metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y/N N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% for all analytes except mercury (80-120%) and cyanide (85-115%)?

LEVEL W ONLY:

X N N/A Was a midrange cyanide standard distilled?

N N/A Are all correlation coefficients ≥ 0.995 ?

<u>N N/A</u> Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recalculation Worksheet for recalculations.

# Date	Calibration ID	Analyte	%R	Associated Samples	Qualification of Data
4/21/17 (00:24)	ccv	Cr	111 (90 - 110)	All	Jdet/A/P (ND)
4/21/17 (00:24)	CCV	V	111 (90 - 110)	All	Jdet/A/P (ND)
	r				

Comments:

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
Icv	ICP (Initial calibration) 4/27 22:42-	ĸ	20.251400 mg/1L	20000 ug /L	10170	10170	Y
Icv	ICP/MS (Initial calibration) ৭៸০০ াে7:০৭	Cu	38.321 Jug1-	40.0.491	967.	963	Y
ICV	CVAA (Initial calibration) ギノな	Hq	3. B31 mar	4.00 mg/L	967	962	Y
cev	ICP (Continuing calibration) ギノセタ ほういろ	Fe	2.472477 mg/L	2500 سال	997.	997.	Y
Cev	ICP/MS (Continuing calibration) ຖາບ ອາະນອ	In	50.854 ugil	50.0 луІL	1023	1027,	Y
CCV	CVAA (Continuing calibration)	Hq	5.1014491	5.00 mg/L	10270	10270	Y

Comments:

SDG #: 280 - 96051-1

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

	Page:	1	of	1
	Reviewer:		تيل	3
2nd	Reviewer:	(

METHOD: Trace metals (EPA CLP SOW ILM02.1)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 True Where, Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = |I-SDR| \times 100$

Where, I = Initial Sample Result (ug/L) SDR = Serial Dilution Result (ug/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated	Reported %R / RPD / %D	Acceptable (Y/N)
ICSAB	ICP interference check	Se	98.019 بسم/ي	100 mg/L	987.	98%	У
Las	Laboratory control sample えキル463	Hq	5. 105 بروار	5.00 Jug IL	l 02 73	10273	У
	Matrix spike		(SSR-SR)				e.
	Duplicate						
	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:_	<u> </u>	<u> </u>
Reviewer:	പദ	
2nd reviewer:	X	

.

.

METHOD: Trace metals (EPA CLP SOW ILM02.1)

	e see qualifications belo <u>N/A</u> Have results <u>N/A</u> Are results w <u>N/A</u> Are all detect	w for all questions answered "N". Not app been reported and calculated correctly? ithin the calibrated range of the instrumer tion limits below the CRDL?	plicable questions an	e identified as "N/ ear range of the I0	'A". CP?
Detect equati	ted analyte results for _ on:	h#3	were recalculated	I and verified usin	g the following
Concen	tration = <u>(RD)(FV)(Dil)</u> (In. Vol.)	Recalculation:			
RD FV In. Vol. Dil	 Raw data conce Final volume (m Initial volume (m Dilution factor 	ntration I) II) or weight (G)	buta h= 0.510 = 510.	808 mg IL 808 sug IL	
#	Sample ID	Analyte	Reported Concentration _(uq IL_)	Calculated Concentration (.ug(L)	Acceptable (Y/N)
	l	Fe	150	150	Y
	2	Mn	210	210	Y
	3	K	510	510	у
	Ч	Co	0.069	0.069	У
	5	AI	130	130	Y
	6	Cu	1.1	1.1	у
	7	Ba	4.0	4.0	У
		<u></u>		·	
	· · · · · · · · · · · · · · · · · · ·				
		·			
Note:_			· · · · · · · · · · · · · · · · · · ·		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Camp Ravenna
LDC Report Date:	June 5, 2017

Parameters:

Wet Chemistry

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-1

Comula Identification	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
EBGmw-125-041717-GW	280-96051-6	Water	04/17/17
EBGmw-131-041717-GW	280-96051-7	Water	04/17/17
BKGmw-008-041817-GW	280-96051-9	Water	04/18/17
RQLmw-014-041817-GW	280-96051-10	Water	04/18/17
RQLmw-014-041817-GWMS	280-96051-10MS	Water	04/18/17
RQLmw-014-041817-GWMSD	280-96051-10MSD	Water	04/18/17
RQLmw-014-041817-GWDUP	280-96051-10DUP	Water	04/18/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Total Cyanide by Environmental Protection Agency (EPA) SW 846 Method 9012B Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, and Sulfate by EPA SW 846 Method 9056A Hexavalent Chromium by EPA SW 846 Method 7196A

Sulfide by EPA SW 846 Method 9034

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Alkalinity	2.78 mg/L	BKGmw-008-041817-GW RQLmw-014-041817-GW
ICB/CCB	Alkalinity	2.13 mg/L	BKGmw-008-041817-GW RQLmw-014-041817-GW

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field duplicates were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
RQLmw-014-041817-GWMS/MSD (RQLmw-014-041817-GW)	Hexavalent chromium	35 (90-111)	62 (90-111)	UJ (all non-detects)	А

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Wet Chemistry - Data Qualification Summary - SDG 280-96051-1

Sample	Analyte	Flag	A or P	Reason
RQLmw-014-041817-GW	Hexavalent chromium	UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Camp Ravenna Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

LDC #:	38742A6	_ VALIDATION
SDG #:_	280-96051-1	
Laborato	ory: Test America, In	C.

ALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: <u>612417</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>13</u> 2nd Reviewer: <u>0</u>

METHOD: (Analyte) Alkalinity (SM2320B), Total Cyanide (EPA SW846 Method 9012B), Chloride, Nitrate-N, Nitrite-N, Sulfate (EPA SW846 Method 9056A(), Hexavalent Chromium (EPA SW846 Method 7196A), Sulfide (EPA SW846 Method 9034)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	SW	
v	Field blanks	St	E-B-+,2-
VI.	Matrix Spike/Matrix Spike Duplicates	SW	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCSID
IX.	Field duplicates	N	,
Х.	Sample result verification	A	
LxL	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Matrix **Client ID** Lab ID Date 1 EBGmw-125-041717-GW 280-96051-6 Water 04/17/17 280-96051-7 2 Water 04/17/17 EBGmw-131-041717-GW 3 BKGmw-008-041817-GW 280-96051-9 Water 04/18/17 RQLmw-014-041817-GW 280-96051-10 Water 04/18/17 4 5 RQLmw-014-041817-GWMS Cru 280-96051-10MS Water 04/18/17 Д 6 RQLmw-014-041817-GWMSD 280-96051-10MSD Water 04/18/17 T RQLmw-014-041817-GWDUP 280-96051-10DUP Water 04/18/17 7 8 9 10 11 12 13 14 Notes:

VALIDATION FINDINGS CHECKLIST

Page: <u>1</u>	_of_2_
Reviewer: <u>J</u>	B
2nd Reviewer:	

Method:Inorganics (EPA Method See (منحد)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
II. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?	\checkmark			
Were all initial calibration correlation coefficients 2.995?	\checkmark			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	\checkmark			
Were titrant checks performed as required? (Level IV only)				
Were balance checks performed as required? (Level IV only)	\checkmark			
III. Blanks	r			·
Was a method blank associated with every sample in this SDG?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	\checkmark			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	\			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	\checkmark			
Was an LCS analyzed per extraction batch?	<i>\</i>			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			5	
Were the performance evaluation (PE) samples within the acceptance limits?			/	

LDC #: 38742A6

VALIDATION FINDINGS CHECKLIST

Page:_	1	_0	f_2_
Reviewer:	J	B	/
2nd Reviewer		9	

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark			
Were detection limits < RL?	/			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\checkmark			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			\checkmark	
X. Field blanks	~			
Field blanks were identified in this SDG.	Ø	/		
Target analytes were detected in the field blanks.	ł	/	/	

.

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: <u>1</u> of <u>1</u> Reviewer: JB 2nd reviewer: <u>1</u>

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk $(NNH_3$ TKN TOC Cr6+ ClO ₄
3(3)	ph TDS (C) F (NO ₃) NO ₂ $O_4O_7O_4$ (AIKCN NH ₃ TKN TOC Cr6+ CIO ₄ (S^2)
40	ph TDS CI F $NO_3 (NO_3 (SO_4 O - PO_4 (AIB CN NH_3 TKN TOC Cr6+ CIO_4 (S*))$
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
0c	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
5.6	ph TDS (c_1) F NO $_3$ NO $_3$ $(so_1 O - PO_4$ Alk CN NH ₃ TKN TOC $(c_1 G + c_1 O_4)$
7	ph TDS(C) F (NO_3) (NO_3) (O_3) (O_2) (O_2) O_2 (O_3)
-	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Aik CN NH ₃ TKN TOC Cr6+ ClO ₄
	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Aik CN NH ₃ TKN TOC Cr6+ ClO ₄
	$\frac{1}{100} \text{ CLF NO}_3 \text{ NO}_2 \text{ SO}_4 \text{ O-PO}_4 \text{ Alk CN NH}_3 \text{ TKN TOC Cr6+ ClO}_4$
	$\frac{1}{100} \text{ of } F \text{ ino}_3 \text{ ino}_2 \text{ so}_4 \text{ of } \text{or}_4 \text{ are on inf}_3 \text{ trial for orbit oio}_4$
	$\frac{1}{100} \text{ CIP} \text{ NO}_3 \text{ NO}_2 \text{ SO}_4 \text{ O-PO}_4 \text{ Aik ON NH}_3 \text{ TKN TOC OR + CIO}_4$ $\frac{1}{100} \text{ CIP} \text{ Aik ON NH} \text{ TKN TOC OR + CIO}_4$
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO
	pH_TDS_CL_E_NO_NO_SO_O-PO_Aik CN_NH_TKN_TOC_Cr6+ClO.

.

Comments:___

LDC #: 38742A6

VALIDATION FINDINGS WORKSHEET Blanks

1

Page: <u>(</u> of <u>(</u> Reviewer: <u>3</u> 2nd Reviewer: <u>9</u>

METHOD: Inorganics, Method See Cover

Conc. units	onc. units: mg/L Associated Samples: <u>3, 4</u>											
Analyte	Blank ID	Blank ID	Blank									
	РВ	ICB/CCB (mg/L)	Action Limit	No Qualifiers								
Alkalinity	2.78	2.13	13.9									

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	1	of	1
age.		U 1	

METHOD: Inorganics, EPA Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>V N N/A</u> Was a matrix spike analyzed for each matrix in this SDG?

Y W/N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

(Y N N/A) Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?

LEVEL IV ONLY:

WN N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	5, 6	Water	Hexavalent Cr	35 (90 - 111)	42 (90 - 111)		4	J/UJ/A (ND)
						-		

Comments:_____

LDC #: 33742A4

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: 1 of (Reviewer: 2nd Reviewer

Method: Inorganics, Method See Cover

The correlation coefficient (r) for the calibration of \underline{Crut} was recalculated. Calibration date: $\underline{4/19/17}$

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found X 100
 Where,
 Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

 True
 True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.01	0.014			
		s2	0.02	0.023	0.9998	0.9998	
	Crut	s3	0.05	0.062			
	_	s4	0.1	0.119			Y
		s5	0.2	0.233			
	<u> </u>		Found	TRAE:		. D	
Calibration verification	JOy	Icv	80.642.ugi	- 80. Quqil	1012	1012	У
15:40	A114-	Cev	FOUND:	TRUE:	967-	967	Y
Calibration verification	1. (V)	<u> </u>	142.9 mg/C	- 200 mgil			
	,						
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 33742A4

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

METHOD: Inorganics, Method

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 Where, Found = True

Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	%R / RPD	%R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	CN-	89.774.mll	. 100 Jug 1L	907	907.	У
MS	Matrix spike sample	NO2	5141.716.001L	5000.ug/L	1037-	1037	У
MSD	Duplicate sample	No2	5239.43 Lova 1	FOUND: 5141.716 Mgl L	22 RPP	2 RPD	×

Comments:

Validation Findings 2a.wpd

VALIDATION FINDINGS WORKSHEET LDC #: 38742A4 Page: 1_of_ Reviewer: JB 2nd reviewer: Sample Calculation Verification METHOD: Inorganics, Method Sec Cover Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Have results been reported and calculated correctly? Y/N N/A Y N N/A Are results within the calibrated range of the instruments? Are all detection limits below the CRQL? Compound (analyte) results for ______AIM_ reported with a positive detect were recalculated and verified using the following equation: Concentration = Recalculation: $A1K^{-} = [1.20] \times [0.02] \times [50000]$ 25 m AIN- = [vol p++ 4.5] x [N] × [50000] Sumple vol. = 48 mg1L Reported Calculated Concentration Concentration Acceptable Analyte # Sample ID (Y/N) (___) () CNT 19 MgIL 19 ug1 Y 3800. CI^{-} 3 3800 11914 Y 170 Mg/L 3 170 4 91 N02 Y Sout 49000.0914 49000 ugi L 4 γ 48 mall 48 mg 4 Y ()Note:____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Camp Raven	Project/Site Name:	Camp Ravenna
-------------------------------	--------------------	--------------

LDC Report Date: May 31, 2017

Parameters: Explosives

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
SCFmw-004-041817-GW	280-96051-8	Water	04/18/17
RQLmw-014-041817-GW	280-96051-10	Water	04/18/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

Retention time windows were established as required by the method.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
SCFmw-004-041817-GW	ultracarb	1,2-Dinitrobenzene	72 (83-119)	All compounds	UJ (all non-detects)	Ρ

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

All compound quantitations met validation criteria.

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
FWGmw-016-041717-GW	RDX	143.8	J (all detects)	A
FWGmw-004-041717-GW	RDX	188.3	J (all detects)	A
RQLmw-014-041817-GW	RDX	125.7	J (all detects)	А

XI. Target Compound Identifications

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to surrogate %R and RPD between two columns, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Explosives - Data Qualification Summary - SDG 280-96051-1

Sample	Compound	Flag	A or P	Reason
SCFmw-004-041817-GW	All compounds	UJ (all non-detects)	Р	Surrogate spikes (%R)
FWGmw-016-041717-GW FWGmw-004-041717-GW RQLmw-014-041817-GW	RDX	J (all detects)	A	Compound quantitation (RPD between two columns)

Camp Ravenna

Explosives - Laboratory Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG

Camp Ravenna Explosives - Field Blank Data Qualification Summary - SDG 280-96051-1

No Sample Data Qualified in this SDG
LDC #: 38742A40	VALIDATION COMPLETENESS WORKSHEET	Date: 05 /20 /7
SDG #: 280-96051-1	Stage 4	Page: of /
Laboratory: Test America, Inc.		Reviewer: M
		2nd Reviewer:

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments							
1	Sample receipt/Technical holding times	A A	, , **		>/					
· 11.	Initial calibration/ICV	AIA	ICAL = 20 %	r	1CV≤ №7.					
Ш.	Continuing calibration	A	CON E 15307.							
IV.	Laboratory Blanks	A	· · · · · · · · · · · · · · · · · · ·							
<u>v</u> .	Field blanks	N		·						
VI.	Surrogate spikes	SW			X (X)					
VII.	Matrix spike/Matrix spike duplicates	N	CS.							
VIII.	Laboratory control samples	A	105							
IX.	Field duplicates	N			————————————————————————————————————					
X .	Compound quantitation RL/LOQ/LODs	SW	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
XI.	Target compound identification	A								
XIL	Overall assessment of data	A								

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID	Lab ID	Matrix	Date
FWGmw-015-041717-GW	280-96051-1	Water	04/17/17
FWGmw-016-041717-GW	280-96051-2	Water	04/17/17
- FWGmw-004-041717-GW	280-96051-3	Water	04/17/17
LL1mw-064-041817-GW	280-96051-4	Water	04/18/17
LL1mw-087-041817-GW	280-96051-5	Water	04/18/17
SCFmw-004-041817-GW	280-96051-8	Water	04/18/17
RQLmw-014-041817-GW	280-96051-10	Water	04/18/17
0			
1			
2			
3			
otes:			

his 200 370596		· · · · · · · · · · · · · · · · · · ·		,		
MB 280- 510 514/1-	A		L		·	
		· .		· · · · · · · · · · · · · · · · · · ·		

LDC #: 38747 A 40

VALIDATION FINDINGS CHECKLIST

1	
Page:	1 of 2
Reviewer	JVG
2nd Reviewer:	

-

Method:	GC	 HPLC	
		 ····	

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	\langle			
Was cooler temperature criteria met?				
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) < 20%?	\leq			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	<			
Were the RT windows properly established?				
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 20% or percent recoveries (%R) 80-120%?	-			
III. Continuing calibration				
Was a continuing calibration analyzed daily?	\leq			······································
Were all percent differences (%D) \leq 20% or percent recoveries (%R) 80-120%?	\leq			
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks			[
Was a laboratory blank associated with every sample in this SDG?	\leq			
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. Field Blanks				
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?			/	
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?		\leq		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?		/		~
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates	1		r	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Page:_	<u>2_of_2</u>
Reviewer:	JVG
2nd Reviewer:	

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
X. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target compound identification	,			
Were the retention times of reported detects within the RT windows?				\ \
XIII. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				· · · · · · · · · · · · · · · · · · ·

VALIDATION FINDINGS WORKSHEET

METHOD: ____GC ____HPLC

8310	8330	8151	8141	8141 (Con't)	8021B
A. Acenaphthene	A. HMX	A. 2,4-D	A. Dichlorvos	X. EPN	V. Benzene
B. Acenaphthylene	B. RDX	B. 2,4-DB	B. Mevinphos	Y. Azinphos-methyl	CC. Toluene
C. Anthracene	C. 1,3,5-Trinitrobenzene	C. 2,4,5-T	C. Demeton-O	Z. Coumaphos	EE. Ethyl Benzene
D. Benzo(a)anthracene	D. 1,3-Dinitrobenzene	D. 2,4,5-TP	D. Demeton-S	AA. Parathion	SSS. O-Xylene
E. Benzo(a)pyrene	E. Tetryl	E. Dinoseb	E. Ethoprop	BB. Trichloronate	RRR. MP-Xylene
F. Benzo(b)fluoranthene	F. Nitrobenzene	F. Dichlorprop	F. Naled	CC. Trichlorinate	GG. Total Xylene
G. Benzo(g,h,i)perylene	G. 2.4.6-Trinitrotoluene	G. Dicamba	G. Sulfotep	DD. Trifluralin	
H. Benzo(k)fluoranthene	H. 4-Amino-2,6-dinitrotoluene	H. Dalapon	H. Phorate	EE. Def	8315A
I. Chrysene	I. 2-Amino-4,6-dinitrotoluene	I. MCPP	I. Dimethoate	FF. Prowl	A. Formaldehyde
J. Dibenz(a,h)anthracene	J. 2,4-Dinitrotoluene	J. MCPA	J. Diazinon	GG. Ethion	B. Acetaldehyde
K. Fluoranthene	K. 2,6-Dinitrotoluene	K. Pentachlorophenol	K. Disulfoton	HH. Famphur	C. Benzaldehyde
L. Fluorene	L. 2-Nitrotoluene	L. 2,4,5-TP (silvex)	L. Parathion-methyl	II. Phosmet	D. Butyraldehyde
M. Indeno(1,2,3-cd)pyrene	M. 3-Nitrotoluene	M. Silvex	M. Ronnel	JJ. Tetrachlorvinphos	
N. Naphthalene	N. 4-Nitrotoluene	Ν.	N. Malathion	KK. Demeton (total)	
O. Phenanthrene	O. Nitroglycerin	0.	O. Chlorpyrifos		
P. Pyrene	P. Picric acid	Ρ.	P. Fenthion		
Q.	Q. 2,4-Dinitrophenol	Q.	Q. Parathion-ethyl		
R.	R. 3,5-Dinitroaniline		R. Trichlornate		
S.	S. 2-Nitrophenol		S. Merphos		
	T. 4-Nitrophenol		T. Stirofos		
	U. Picramic acid		U. Tokuthion		
	V. PETN		V. Fensulfothion		
			W. Bolstar		

Notes:_____

LDC # 38747 A.fo

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page:_	_lof_/
Reviewer:	JVG [′]
2nd Reviewer:_	0

METHOD: __GC __HPLC

Are surrogates required by the method? Yes____or No____. Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YANA Were surrogates spiked into all samples and blanks?

N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID		Detec Colur	tor/ ក្សា	Surrogate Compound		%R (Limits)			Qu	alifications
	6 (ND)	NI	trace	irb	FF		72 (83	-119) J	-/UJ	19
					-		()	/	
							()		
							()		
							() ·		
							()		
		-)		
							()		
							()		
	1		dia dia						<u> </u>		
								<u> </u>	·····		······································
				······			()		
						<u>i</u>	('				
							(
F									<u> </u>		
					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
									/		
		1								1	
	Surrogate Compound	d		Surro	gate Compound		Surrogate Compound	+	Surrogate Compound	<u></u>	Surrogate Compound
A	Chlorobenzene (CBZ)	·	H	Or	tho-Terphenyl	0	Decachlorobiphenyl (DCB)	V	Tri-n-propyltin	CC	2,5-Dibromotoluene
B	4-Bromofluorobenzene (B	BFB)		Fluo	obenzene (FBZ)	P	1-methylnaphthalene	W V	Tributyl Phosphate		n-Nonatriacontane
	a,a,a- i ritiuorotoiuene Bromochlorobenene		R J	n		 		$\frac{1}{v}$	Tetrachloro-m- xvlene		1 2-Dipitrohenzene
E	1,4-Dichlorobutane		`	В	romobenzene	s	1-Chloro-3-Nitrobenzene	z	2-Bromonaphthalene	GG	2-Nitro-m-xvlene
F	1,4-Difluorobenzene (DF	в)	м	B	enzo(e)Pyrene	т	3,4-Dinitrotoluene	AA	1-Chlorooctadecane	НН	p-Terphenyl
G	Octacosane		N	T	erphenyl-D14	U	Tripentyltin	BB	2.4-Dichlorophenylacetic acid	1 11	

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

METHOD: ____GC ____HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

			%RPD/%D Between Two Columns/Detectors	
#	Compound Name	Sample ID	Limit (≤ 40%)	Qualifications
	B	2	143.8	J dets A
	· · ·	3	188.3	
	· ·			
		7	125.7	

Comments: See sample calculation verification worksheet for recalculations

LDC #: _38742A40_

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	<u>1</u> of <u>3</u>	
Reviewer:	JVG	
2nd Reviewer:	4	

METHOD: GC HPLC

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

Where:

A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			CF	CF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date		Compound	(1.0 std)	(1.0 std)	(Initial)	(Initial)	·	
1	ICAL	3/6/2017	3-NT	(Ultracarb5u)	137428.00	137428.00	14895.20	140895.25	5.0	5.0
	LC X3		RDX	(Ultracarb5u)	see r2 calc		-			
2	ICAL	3/13/2017	3-NT	(Luna-phenyl)	276613.00	276613.00	274670.67	274670.75	5.2	5.2
	LC G2		RDX	(Luna-phenyl)	see r2 calc					

LDC#: 38742A40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2_of _3_ Reviewer: JVG 2nd Reviewer: _____

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

				X	У
Date	Instrument	Compound	STD	area	conc
	· · · ·	·			(ug/L)
3/6/2017	CHHPLC_X3	RDX	1	818	0.01
			. 2 .	5115	0.05
			3	9983	0.10
	16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 -		4	23223	0.25
		· .	5	41515	0.40
			6	72798	0.70
	e go e		7	99774	1.00
			8	260044	2.50
L.					

	Regression Output:	Regression Output:		Reported WLR	· · · · · · · · · · · · · · · · · · ·
Constant		c =	-967.64371	C =	-246.491950
Std Err of Y Est			0.04		
R Squared		r^2 =	0.99965	r^2 = 100	0.99900
No. of Observations			6.00		
Degrees of Freedom			4.00		······································
X Coefficient(s)		m =	103994.24145	m =	102842.7020
Std Err of Coef.		0.01			

LDC#: 38742A40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>3</u> of <u>3</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u></u>

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

				x	у	
Date	Instrument	Compound	STD	area	conc	
					(ug/L)	
3/13/2017	CHHPLC_G2_LUNA	RDX	1	2958	0.01	
			. 2	11849	0.05	
			3	21007	0.10	
			4	50370	0.25	
			5	86438	0.40	
			6	143998	0.70	
			7	199757	1.00	
			8	511537	2.50	

Reg	ression Output: Regression Output:		Reported WLR		
Constant	c =	903.89595	C = .	903.895953	
Std Err of Y Est		0.04			
R Squared	r^2 =	0.99978	r^2 =	1.00000	
No. of Observations		6.00			
Degrees of Freedom		4.00			
X Coefficient(s)	m =	203729.10826	m =	203729.1083	
Std Err of Coef.	0.01				

LDC # <u>38742A40</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC____HPLC___

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 * (N - C)/N

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

			1			Reported	Recalculated	Reported	Recalculated
		Calibration			CCV Conc	Conc	Conc	% D	%D
#	Standard ID	Date		Compound	·				
1	04251707	4/25/2017	RDX	(Ultracarb5u)	250	263	263	5.0	5.0
	X3		3-NT	(Ultracarb5u)	250	267	267	6.8	6.8
2	04251714	4/25/2017	RDX	(Ultracarb5u)	250	260	260	3.9	3.9
	Х3		3-NT	(Ultracarb5u)	250	260	260	3.8	3.8
3	04261707	4/26/2017	RDX	(Luna-phenyl)	250	257	257	2.7	2.7
	G2		3-NT	(Luna-phenyl)	250	271	271	8.6	8.6
4	04261716	4/26/2017	RDX	(Luna-phenyl)	250	265	265	6.0	6.0
	G2		3-NT	(Luna-phenyl)	250	265	265	5.9	5.9

LDC #: 38742 A40

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 2

Surrogate	Surrogate Column/Detector Spiked		Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference	
				Reported	Recalculated		
FF	ulfacarb	0.200	0.1707	85	85	6 6	
	· .	• • •	•		· .	· · ·	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound	Surrogate Compound			Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	н	Ortho-Terphenyl	0	Decachlorobiphenyl (DCB)	v	Tri-n-propyltin	сс	2,5-Dibromotoluene
В	4-Bromofluorobenzene (BFB)	ł	Fluorobenzene (FBZ)	Р	1-methylnaphthalene	w	Tributyl Phosphate		n-Nonatriacontane
с	a,a,a-Trifluorotoluene	J	n-Triacontane	Q	Dichlorophenyl Acetic Acid (DCAA)	х	Triphenyl Phosphate	EE	1,2-Dibromopropane
D	Bromochlorobenene	к	Hexacosane	R	4-Nitrophenol	Y	Tetrachloro-m- xylene	FF	1,2-Dinitrobenzene
E	1,4-Dichlorobutane	L	Bromobenzene	s	1-Chloro-3-Nitrobenzene	z	2-Bromonaphthalene	GG	2-Nitro-m-xylene
F	1,4-Difluorobenzene (DFB)	м	Benzo(e)Pyrene	т	3,4-Dinitrotoluene	AA	1-Chlorooctadecane	нн	p-Terphenyl
G	Octacosane	N	Terphenyl-D14	υ	Tripentyltin	BB	2.4-Dichlorophenylacetic acid	1	

LDC #: 38 742 A FO

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1 of 1 Reviewer: 2nd Reviewer:

METHOD: HPLC GC (

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 10

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:

280-370596/2-A

		S	oike Idead	Spike	Sample	L	<u> </u>	LC	SD	LCS/L	CSD
Comp	ound	<u>(</u> 40	<u>β/L_)</u>	Conce	<u>ylu</u>	Percent	Recovery	Percent I	Recovery	RF	סי
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)										
Diesel	(8015)										· · · · · · · · · · · · · · · · · · ·
Benzene	(8021B)										
Methane	(RSK-175)										
2,4-D	(8151)										
Dinoseb	(8151)										
Naphthalene	(8310)										
Anthracene	(8310)										
нмх	(8330)	2.00	MA	1.95	MA	98	98				
2,4,6-Trinitrotolue	ne (8330)	• +	V	2.15		108	108				
Phorate	(8141A)										· · · · · · · · · · · · · · · · · · ·
Malathion	(8141A)										
Formaldehyde	(8315A)										
Comments: <u>Refe</u>	r to Laboratory	Control Samp	le/Laboratory (Control Sample	e Duplicate find	ings worksheet	for list of quali	fications and a	ssociated sam	ples when repor	ted results do

LDC #: 38742 A 40 VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification** GC (HPLC METHOD: Were all reported results recalculated and verified for all level IV samples? N/A Were all recalculated results for detected target compounds within 10% of the reported results? N/A

*

Concentration= (A)(Fv)(Df)	Example:	
(RF)(Vs or Ws)(%S/100)	Sample ID. 7 Compound Name	Lemapheny !
A= Area or height of the compound to be measured		/ 0
Df= Dilution Factor	(1235 913 501) (1) (1)	
RF= Average response factor of the compound	Concentration = (235 - 107.810) (5ml) (1000)	= 0.2788
In the initial calibration Vs= Initial volume of the sample	(2037 2911) (469.2ml)	Y & JE We /
Ws= Initial weight of the sample		2 0. 20 mg/L
%S= Percent Solid		

Page: 1 of 1

Reviewer: JVG

2nd Reviewer:

#	Sample ID	Compound	Reported Concentrations (ഗ്ര /)	Recalculated Results Concentrations ()	Qualifications
			0,28		
		· · · · · · · · · · · · · · · · · · ·			
	·				

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna
--------------------	--------------

LDC Report Date: June 2, 2017

Parameters: Free Cyanide

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96051-2

Sample Identification	Laboratory Sample Identification	Matrix	Collection - Date
EBGmw-125-041717-GW	280-96051-6	Water	04/17/17
EBGmw-125-041717-GWMS	280-96051-6MS	Water	04/17/17
EBGmw-125-041717-GWMSD	280-96051-6MSD	Water	04/17/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Free Cyanide by Standard Method 4500-CN I

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Free Cyanide - Data Qualification Summary - SDG 280-96051-2

No Sample Data Qualified in this SDG

Camp Ravenna Free Cyanide - Laboratory Blank Data Qualification Summary - SDG 280-96051-2

No Sample Data Qualified in this SDG

Camp Ravenna Free Cyanide - Field Blank Data Qualification Summary - SDG 280-96051-2

No Sample Data Qualified in this SDG

6

LDC #: <u>38742B6</u> SDG #: <u>280-96051-2</u> Laboratory: <u>Test America, Inc.</u>

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: <u>۱/۱/17</u> Page: <u>۱</u> of <u>۱</u> Reviewer: <u>3</u> 2nd Reviewer: <u>4</u>

METHOD: (Analyte) Free Cyanide (SM4500-CN I)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area **Comments** A/A I. Sample receipt/Technical holding times A Ш Initial calibration A 111. Calibration verification A IV Laboratory Blanks V Field blanks N A VI. Matrix Spike/Matrix Spike Duplicates VII. N Duplicate sample analysis A VIII. Laboratory control samples LCSID N IX. **Field duplicates** A Sample result verification Х. A Overall assessment of data XL

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

ï

	Client ID	Lab ID	Matrix	Date
1	EBGmw-125-041717-GW	280-96051-6	Water	04/17/17
2	EBGmw-125-041717-GWMS	280-96051-6MS	Water	04/17/17
3	EBGmw-125-041717-GWMSD	280-96051-6MSD	Water	04/17/17
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
Notes	3:			

1

VORKSHEET	Date
	Page
	Reviewe

VALIDATION FINDINGS CHECKLIST

Page: 1	of 2
Reviewer: JB	<u>^</u>
2nd Reviewer:	\mathbf{r}

Method: Inorganics (EPA Method See Cover)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	\checkmark			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	\checkmark			
Were the proper number of standards used?				
Were all initial calibration correlation coefficients ≥ 0.995?	~			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)			1	
Were balance checks performed as required? (Level IV only)			\checkmark	
III. Blanks				
Was a method blank associated with every sample in this SDG?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		\checkmark		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	1			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			1	/
Were the performance evaluation (PE) samples within the acceptance limits?			/	

LDC #: 38742Ble

VALIDATION FINDINGS CHECKLIST

Page: 1_of 2 Reviewer: JB 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark			
Were detection limits < RL?	1			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\checkmark			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		~		
Target analytes were detected in the field duplicates.			/	
X. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.				

LDC #: 38742By

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:/ of _/
کل_Reviewer
2nd Reviewer:

Method: Inorganics, Method ______

The correlation coefficient (r) for the calibration of CN free was recalculated. Calibration date: 4/2a/17

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found X 100</u>

True

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/L)	Response	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0	111.441956			
		s2	10	8760.166016	0.999960	0.999960	
		s3	20	17144.32419			
	CNFree	\$4	50	43345.01563			Y
		s5	100	85815.98438			/
		s6	200	170030.5781			
		s7	400	334648.8125			
			Fourp:	TRUE:		C: O T	
Calibration verification	CNTree	ICV	97.877.mgh	0.100 mg/L	987.	48%	Y
		d 0, 1	Found:	TRUE!			
Calibration verification	CNFree		199.956001	- 0.200 mg12	100%	100%	У
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._____

LDC #: 3874286

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 1_of_1 Reviewer: JB 2nd Reviewer: _____

METHOD: Inorganics, Method See Cover

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found
 x 100
 Where,
 Found =
 concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

 True
 Found =
 SSR (spiked sample result) - SR (sample result).

 True = concentration of each analyte in the source.
 True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = |S-D|x 100Where,S =Original sample concentration(S+D)/2D =Duplicate sample concentration

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	%R / RPD	%R / RPD	Acceptable (Y/N)
Les	Laboratory control sample ພະນ	CNFFree	98.006 ugi	سار ۱۳۵۹	987	987.	Υ.,
MS	Matrix spike sample	CN-Free	SL=29 (SSR-SR) 131.519-29= 102.519_10	100 mg 1	1037	103%	У
MSD	Duplicate sample	CNTT	122.80547-	Fourp: 131.519.11g/L -100.11g-11 -15	- 77. RPD	77D	У

Comments:

Validation Findings 2a.wpd

LDC #: <u>387 42 By</u> VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u> 2nd reviewer: JB 2nd reviewer:					e:1of1 r:JB	
METH	IOD: Inorganics, Metho	dSeeCover				
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{Y \ N \ N/A}{Y \ N \ N/A}$ Have results been reported and calculated correctly? $\frac{Y \ N \ N/A}{Y \ N \ N/A}$ Are results within the calibrated range of the instruments? $\frac{Y \ N \ N/A}{Y \ N \ N/A}$ Are all detection limits below the CRQL?						
Comp recalc	ound (analyte) results for ulated and verified using	or <u>(N, Free</u> g the following equation:	rep	orted with a positi	ve detect were	
Concen	tration = Y= 5x +a a = 1.0133e+ 5= 8.3238	03 e+02	25271 = 8.34 X= 28.9	88e+02x+1.01	35e + 83	
	y = 252+1		Benerted	Coloulated		
#	Sample ID	Analyte	Concentration		Acceptable (Y/N)	
[1	CNT, Frec	29	29	Y	
		·				
				· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		
 						
L				<u> </u>	L	

Note:_____

Laboratory Data Consultants, Inc. Data Validation Report

Flojecu Sile Name. Camp Navenna	Project/Site	Name:	Camp	Ravenna
--	--------------	-------	------	---------

LDC Report Date: June 8, 2017

Parameters: Volatiles

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LL10mw-003-041917-GW	280-96104-2	Water	04/19/17
TRIP BLANK	280-96104-3	Water	04/19/17
LL7mw-001-041917-GW	280-96104-4	Water	04/19/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

١

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TRIP BLANK was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
TRIP BLANK	04/19/17	Acetone	9.4 ug/L	LL7mw-001-041917-GW LL10mw-003-041917-GW

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LL7mw-001-041917-GW	Acetone	10 ug/L	10U ug/L
LL10mw-003-041917-GW	Acetone	4.5 ug/L	6.4U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to trip blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Volatiles - Data Qualification Summary - SDG 280-96104-1

.ţ

No Sample Data Qualified in this SDG

Camp Ravenna Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Volatiles - Field Blank Data Qualification Summary - SDG 280-96104-1

Sample	Compound	Modified Final Concentration	A or P
LL7mw-001-041917-GW	Acetone	10U ug/L	A
LL10mw-003-041917-GW	Acetone	6.4U ug/L	A

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: 05/26/7 Page: 1 of 1 Reviewer: <u>V</u> 2nd Reviewer: **1**

SDG #: <u>280-96104-1</u> Laboratory: <u>Test America, Inc.</u>

LDC #: 38742C1

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A,A	
П.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AIA	1042 = 15? r~ 161 = 202
IV.	Continuing calibration / ending	A	Ca) = 20/50%
V.	Laboratory Blanks	A	
VI.	Field blanks	Sh)	7B = 1
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ň	<i>CS</i>
IX.	Laboratory control samples	A	LCS
Х	Field duplicates	N.	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	Á	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1		280-96104-3	Water	04/19/17
2	LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
3	LL 10MW-003-041917-GW	1 -2		
4				
5				· ·
6				
7		· · ·		
8				
Note	<u>5:</u>			
-	MB 280- 371473 6			

Page: <u>1 of 2</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>U</u>

Method: Volatiles (EPA SW 846 Method 8260C)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?	\langle			
Was cooler temperature criteria met?		Albuman		
II. GC/MS Instrument performance check		d -		
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) <20% and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of > 0.990?	/	-		
IIIb Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 30% or percent recoveries (%R) 7 0-130% ?	/			
Ⅳ Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	-			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/	ſ		
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			-
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		-		
VI. Field blanks				
Were field blanks were identified in this SDG?	/			
Were target compounds detected in the field blanks?	/	ſ		
VII / Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?		<u> </u>		
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates			1	n an
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		<		
Was a MS/MSD analyzed every 20 samples of each matrix?			1	

VALIDATION FINDINGS CHECKLIST

Page: <u>2_of_2</u> Reviewer: <u>JVG</u> 2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IX- Laboratory control samples				
Was an LCS analyzed for this SDG?	\square			-
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		·····
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		•		
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification.				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV System performance				
System performance was found to be acceptable.	/	f		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	<u> </u>			

	LDC #: <u>38742</u> C) VALIDATION FINDINGS WORKSHEET Field Blanks METHOD: GC/MS VOA (EPA SW 846 Method 8260C) Y N N/A Were field blanks identified in this SDG? Y N N/A Were target compounds detected in the field blanks? Blank units: <u>47/L</u> Associated sample units: <u>47/L</u> Sampling date: <u>64/14/7</u> Field blank type: (circle one) Field Blank / Rinsate / (rip Blank) Other: Associated Samples: 23									ا Revi 2nd Revi	Page: <u>l</u> of_ ewer: <u>JVG</u> ewer: <u></u>
	Compound	Sample Identification									
(aX)	}	2	3							
18.8	F	9.4	10/4	4.5/6.4	И						
				·····		-					
									n.		
	Blank units: Associated sample units: Sampling date: Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: Associated Samples:										
	Compound		Sample Identification								
				1				1	1		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".
LDC #: _38742A1_

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_1_of_1_
Reviewer:	JVG
2nd Reviewer:	<u>q</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

$RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound

 C_x = Concentration of compound

S= Standard deviation of the RRFs

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration	· ·	RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(RRF 10 std)	(RRF 10 std)	(Initial)	(Initial)		
1	ICAL	3/7/2017	1,1-Dichloroethene (FB)	0.3829	0.3829	0.3927	0.3927	3.0	12.5
	GC MS9	to	Tetrachloroethene (CBZ)	1.3098	1.3098	1.4027	1.4027	11.4	11.4
		3/8/2017	1,1,2,2-TCA (DCB)	0.4719	0.4719	0.4914	0.4914	13.6	13.6

LDC #: 38742A1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
		Calibration		Average RRF	RRF	RRF	% D	%D
#	Standard ID	Date	Compound (IS)	(Initial)	(CCV)	(CCV)		
1	MS9_5758	4/28/2017	1,1-Dichloroethene (FB)	0.3927	0.4481	0.4481	14.1	14.1
	GC MS9		Tetrachloroethene (CBZ)	1.4027	1.2672	1.4273	1.8	1.8
			1,1,2,2-TCA (DCB)	0.4914	0.4850	0.4850	1.3	1.3

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd reviewer: ____

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 2

Percent Percent Surrogate Spiked Recovery Surrogate Recovery Percent Reported Recalculated Found Difference 115 à 9.88 11.4 115 Dibromofluoromethane 108 7 108 1,2-Dichloroethane-d4 10-108 108 Toluene-d8 10 04 V う 104 Y Bromofluorobenzene 10.

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane		-			
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene	/				

Sample ID:

6	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4		-			
Toluene-d8					
Bromofluorobenzene					

LDC #: 387424

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of_1_ Reviewer: JVG 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: _____ LCS 280-37 1 473 /4

· · ·	Sp Ad	vike ded	Spiked Concer	Sample ntration	<u>_</u>	CS	ı	sn		
Compound	(45	4)	(15	14	Percent	Recovery	Percent	Recovery	R	PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	5,00	NA	4,99	VA	100	100				
Trichloroethene			9-88		98	98				
Benzene			5.15		103	103				
Toluene			5,00		100	100				
Chlorobenzene		I F	4.69	ð	94	94	Ť.			

Comments: Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Y<u>N N/A</u> Y N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentra	$n = \frac{(A_{\rm s})(I_{\rm s})(DF)}{(A_{\rm is})(RRF)(V_{\rm s})(\%S)}$
A _x :	Area of the characteristic ion (EICP) for the compound to be measured
A _{is} :	Area of the characteristic ion (EICP) for the specific internal standard
l _s :	Amount of internal standard added in nanograms (ng)
RRF =	Relative response factor of the calibration standard.
V _o =	Volume or weight of sample pruged in milliliters (ml) or grams (g).
Df =	Dilution factor.
%S =	Percent solids, applicable to soils and solid matrices only.

Example: Sample I.D. _____ 1_ 1_ D CE

Conc. = (100 855) (12,5) (0) = 3.57 mg/L

#	Sample ID	Compound	Reported Concentration (49 4)	Calculated Concentration ()	Qualification
			3.5		
				···	
	· · · · · · · · · · · · · · · · · · ·				
			~		
				· · · · · · · · · · · · · · · · · · ·	
				·	
					· · · · · · · · · · · · · · · · · · ·

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna
--------------------	--------------

LDC Report Date: May 30, 2017

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LL10mw-003-041917-GW	280-96104-2	Water	04/19/17
LL7mw-001-041917-GW	280-96104-4	Water	04/19/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 280-370565/1-A	04/24/17	Bis(2-ethylhexyl)phthalate Dimethylphthalate	5.48 ug/L 0.316 ug/L	All samples in SDG 280-96104-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Semivolatiles - Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Semivolatiles - Field Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET	

LDC #: 38742C2a SDG #: 280-96104-1 Laboratory: Test America, Inc.

Stage 4

Date 05/20 Page: 1 Reviewer: 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
П.	GC/MS Instrument performance check	A.	
III.	Initial calibration/ICV	AIA	$ CAL = 5 _{0} \qquad \alpha \leq 20 L$
IV.	Continuing calibration / Ending	4	$cw \leq 20/50$
V.	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ń	CS
IX.	Laboratory control samples	A	LCS D
X .	Field duplicates	Ú	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	Ă	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LL10mw-003-041917-GW	280-96104-2	Water	04/19/17
2	LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
3		· · · · · · · · · · · · · · · · · · ·		
4			·	
5				
6				
7				
8				
Note	5:			

-				

1 - Phthalates + NB; 2,9-DNT; 2 - Phthalates aly L:\Cardno-TEC\Camp Ravenna\38742C2aW.wpd 2,6-DXT

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2 Reviewer: JVG 2nd Reviewer:

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	1			
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check	T			
Were the DFTPP performance results reviewed and found to be within the specified criteria?	<			
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration	1	F		
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) $\leq 20\%$ and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		, ,		
Were all percent differences (%D) <30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\leq			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		Å	J	
VI. Field blanks				
Were field blanks were identified in this SDG?		/		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes		P		
Were all surrogate percent recovery (%R) within QC limits?	<		 	·
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			-	-
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	

LDC #:_______38792626

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: JVG 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	\square			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/	-	
X. Field duplicates			-	
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Compound quantitation			r	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			·
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				na na 1920 ana ang ang ang ang ang ang ang ang ang
Overall assessment of data was found to be acceptable.				
	7			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	Н1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	0000. 2,6-Dinitrotoluene	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	Р1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4 Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR.	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS.	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	тттт.	Τ1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	υυυυ.	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV.	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	www.	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY.	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.	Z1.

•

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a method blank analyzed for each matrix?

Y) N N/A Was a method blank analyzed for each concentration preparation level?

V N N/A Was a method blank associated with every sample?

 M N/A
 Was the blank contaminated? If yes, please see qualification below.

 Blank extraction date:
 04 /24 /7

 Blank analysis date:
 05 /05 /7

 Conc. units:
 10

 Main
 Main

Associated Samples:

ND 7 A()

Compound	Blank ID		A	 		
MB	280-370 565	K-A				
EEE	5.48					
CC	0.316					
· .	· · ·	· .	· · ·		• •	· .

Blank extraction date:_____ Blank analysis date:___

Conc. units:

Associated Samples:

Compound	Blank ID	 		 	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 38742C2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	<u>1</u> of	1
Reviewer:	JVG	
2nd Reviewer:	4	\leq

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of Compound

 C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS	;)	(50 std)	(50 std)	(Initial)	(Initial)		
1	ICAL	5/3/2017	Nitrobenzene	(NPT)	0.3394	0.3394	0.3320	0.3320	6.6	6.6
			Diethyl phthalate	(ANT)	1.1582	1.1582	1.1182	1.1182	11.1	11.1
			Di-n-butyl phthalate	(PHN)	1.1761	1.1761	1.1475	1.1475	8.3	8.3
			Bis(2-eh)phthalate	(CRY)	0.7961	0.7961	0.7865	0.7865	3.2	3.16

LDC # 38742A2a

VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification

Page	_1_	_ of_	1
Reviewer:		JVG)
2nd Reviewer:		4	_

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound

Cx = Concentration of compound Ais = Area of associated internal standard Cis = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (IS)		Average RRF (Initial RRF)	Reported (CC RRF)	Recalculated (CC RRF)	Reported %D	Recalculated %D
1	Y15116	05/05/17	Nitrobenzene (N	IPT)	0.3320	0.3681	0.3681	10.9	10.9
			Diethyl phthalate (A	NT)	1.1182	1.1799	1.1799	5.5	5.5
	· ·		Di-n-butyl phthalate (F	PHN)	1.1475	1.1793	1.1793	2.8	2.8
			Bis(2-eh)phthalate (0	CRY)	0.7865	0.8177	0.8177	4.0	4.0

LDC #: 38742 C29

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Percent Percent Recovery Reported Surrogate Spiked Surrogate Found Recovery Percent Recalculated Difference 92.1 92 Nitrobenzene-d5 92 0 100.0 92 92.3 2-Fluorobiphenyl 9% 74 74.3 Terphenyl-d14 74 86.7 8 Phenol-d5 87 90.5 90 90 2-Fluorophenol 96. 96 46 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5			·		
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chiorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #:_38742CZC

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1_of_1 Reviewer: JVG

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: ____

10/ 280 - 370565/2,3-A

	Sr	bike	Sr	pike	i	<u></u>	IC	SD	LCS				
Compound	Ad (الإ	Added Concentration		Concentration (Mg 化)		Concentration (いりり)		Percent Recovery		Percent Recovery		RPD	
			LCS		Reported	Recalc	Reported	Recalc	Reported	Recalculated			
Phenol													
N-Nitroso-di-n-propylamine													
4-Chloro-3-methylphenol													
Acenaphthene													
Pentachlorophenol													
Pyrene													
BEPH	80,8	80.0	83.1	85,4	104	k4	107	117	3	3			
-													

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Sample I.D. _____, _____, ______;

Example:

Conce	entratio	on = $(A_{,i})(I_{,i})(V_{,i})(DF)(2.0)$ $(A_{is})(RRF)(V_{,i})(V_{i})(S)$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
ا _s	=	Amount of internal standard added in nanograms (ng)
V₀	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
V	=	Volume of extract injected in microliters (ul)
V _t	=	Volume of the concentrated extract in microliters (ul)
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices

2.0 = Factor of 2 to account for GPC cleanup

 $Conc. = (\frac{7990}{436546})(\frac{46.0}{0.3320})(\frac{101}{1037.4ml})(\frac{1000}{10})(\frac{1}{1000})(\frac{$ = 2.16 2, 2.2 ug/L

#	Sample ID	Compound	Reported Concentration (ਪ _ਿ (Calculated Concentration ()	Qualification
			2.2		
			·	· · · · · · · · · · · · · · · · · · ·	
	·				
			l		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ca	amp Ravenna
-----------------------	-------------

LDC Report Date: May 31, 2017

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LL12mw-183-041917-GW	280-96104-19	Water	04/19/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D 280-370964/2,3-A (All samples in SDG 280-96104-1)	Chrysene	121 (57-120)	121 (57-120)	NA	-

Although the above listed %R flagged "NA" demonstrate a high bias, the affected compound in the associated samples were non-detected and did not warrant the qualification of the data.

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

6

Camp Ravenna Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 280-96104-1

No Sample Data Qualified in this SDG

7

VALIDATION COMPLETENESS WORKSHEET

Stage 4

LDC #:_	38742C2b
SDG #:_	280-96104-1
Laborato	ory: Test America, Inc.

Date: 15/24 /	,
Page: 1 of 1	
Reviewer:	
2nd Reviewer:	

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
<u> </u>	Sample receipt/Technical holding times	A/A		
11.	GC/MS Instrument performance check	Á		
111.	Initial calibration/ICV	AA	1CAL 5 157.	101 = 203
IV.	Continuing calibration / ending	A	CM & 20/50/2	
V.	Laboratory Blanks	'		
VI.	Field blanks	N		
VII.	Surrogate spikes	Á		
VIII.	Matrix spike/Matrix spike duplicates	N	CS	
IX.	Laboratory control samples	SW	LO 12	
X .	Field duplicates	N		
XI.	Internal standards	A		
XII.	Compound quantitation RL/LOQ/LODs	A		
XIII.	Target compound identification	Á		-
XIV.	System performance	Á		
XV.	Overall assessment of data	A		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LL12mw-183-041917-GW	280-96104-19	Water	04/19/17
2				
3.				
4				
5				
6				
7				
8				
Note	S:			
	(

 MB 280 - 370 964 /1-	A			

VALIDATION FINDINGS CHECKLIST

Page: <u>1</u> of <u>2</u> Reviewer: JVG 2nd Reviewer: _____

Method: PAH (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?	\leq			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check (Not required)		r – 1		
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) \geq 0.05?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	
IIIb. Initial Calibration Ventication				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?				
V. Laboratory Blanks		-		
Was a laboratory blank associated with every sample in this SDG?	(
Was a laboratory blank analyzed for each matrix and concentration?			-	
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			2	
VII. Surrogate spikes	1			
Were all surrogate percent differences (%R) within QC limits?		[
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			/	

VALIDATION FINDINGS CHECKLIST

	Page:	2	_of	2
	Reviewer:		JV	3
2nd	Reviewer:		Q	

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?		/		<i>/</i>
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		<		£
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			· · · · · · · · · · · · · · · · · · ·
XIII. Target compound identification		2		
Were relative retention times (RRT's) within <u>+ 0.06 RRT units of the standard?</u>	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.		ł		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1	1		

LDC #: 38742 C26

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _____of___) Reviewer: 2nd Reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		US/ 280 - 370960	1/23-A D	DD 121 (57-120)	121 (57-120)	()	All (ND)	J dits /P
				()	().	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	(_)	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	• • • • • • • • • • • • • • • • • • •	
				()	()	()		
				()	()	()		
				()	()	()		
			····	()	()	()		
				()	()	()		
				()	()	()		
			·····	()	()	()		
							·	
				()	()	()		
				()	()	()		
				()	()	()		
				()		()		

LDC#: 38742C2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	of	1
Reviewer:	J	VG	
2nd Reviewer:			/

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound

 C_x = Concentration of compound,

S= Standard deviation of the RRFs,

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(IS)	(600 std)	(600 std)	(Initial)	(Initial)		
1	ICAL	4/17/17	Naphthalene	(ANT)	1.9389	1.9389	1.8283	1.8283	5.6	5.6
	SMS F		Pyrene	(PHN)	1.3185	1.3185	1.3598	1.3598	6.7	6.7
			Benzo(a)pyrene	(CRY)	1.2308	1.2308	1.2638	1.2638	9.6	9.6

LDC#: 38742C2b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: JVG 2nd Reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: Where:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound Cx = Concentration of compound

Ais = Area of associated internal standard

Cis = Concentration of internal standard

		Calibration			Ave RRF	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound	1		RRF	RRF	<u> </u>	%D
1	F6418	5/4/2017	Naphthalene	(ANT)	1.828	2.044	2.044	11.8	11.8
			Pyrene	(PHN)	1.360	1.413	1.413	3.9	3.9
			Benzo(a)pyrene	(CRY)	1.264	1.184	1.184	6.3	6.3

LDC #: 38792 C26

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1_of_1</u> Reviewer: <u>JVG</u> 2nd reviewer: <u>____</u>

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

1

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 4

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	125.0	98.3	79	79	0
2-Fluorobiphenyl		78.0	67	6 ~	(
Terphenyl-d14		97.6	76	78	

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:_____

	Surrogate Spiked	Surrogate . Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
LDC #: 28742(26

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: ()

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

	Sp	oike	Sr	pike		LCS Percent Recovery		SD			
Compound	Ad (105)	ded , /L)	Conce	ntration	Percent			Recovery	RPD		
			LCS		Reported	Recaic	Reported	Recalc	Reported	Recalculated	
Acenaphthene	0.700	0.900	0.976	0.974	108	108	108	108	٥	0	
Pyrene	ł	ł	1-63	1.15	115	115	116	116	1		
								,		1	
			· ·								
· · · · · · · · · · · · · · · · · · ·											
							······				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

38792 (26) LDC #:

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: 1 of 1 Reviewer: JÌVG 2nd reviewer:

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

N N/A N N/A

2.0

Ξ

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conc	entratio	$pn = (A_{v})(I_{v})(V_{v})(DF)(2.0) - (A_{ts})(RRF)(V_{v})(V_{v})(V_{s})$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, <u>Naphtheune</u>
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	$Conc. = (\frac{ 230 }{(19745)(1000)} \frac{600}{(241500)} \frac{ m }{(19745)(1000)} \frac{1}{(1000)} \frac{1}{(100$
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	111 10 1000
V	=	Volume of extract injected in microliters (ul)	= 0.0847
V _t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	2 0.085 kg /L
%S	=	Percent solids, applicable to soil and solid matrices only.	<i>w</i>

Factor of 2 to account for GPC cleanup

 $Conc. = (\frac{|230\rangle}{(19745)^{(1.828)}(241.5.161)^{(1)}}) (1)$ = 0. 0847 ~ 0.085 45 1L

#	Sample ID	Compound	Reported Concentration (火、ルン)	Calculated Concentration ()	Qualification
			0.085		
					· · ·
		· · · · · · · · · · · · · · · · · · ·			<u>*</u>
	-	·			
		· · · · · · · · · · · · · · · · · · ·			
<u> </u>					
-					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna
LDC Report Date:	June 1, 2017
Parameters:	Metals
Validation Level:	Stage 4
Laboratory:	TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LL10mw-003-041917-GW	280-96104-2	Water	04/19/17
LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
FWGmw-005-041917-GW	280-96104-6	Water	04/19/17
BKGmw-005-041917-GW	280-96104-7	Water	04/19/17
BKGmw-016-041917-GW	280-96104-8	Water	04/19/17
SCFmw-006-041917-GW	280-96104-9	Water	04/19/17
BKGmw-015-041917-GW	280-96104-11	Water	04/19/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Methods 6010C/6020A Mercury by EPA SW 846 Method 7470A

All sample results were subjected to Stage 4 evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Sodium	185 ug/L	All samples in SDG 2850-96104-1
ICB/CCB	Sodium	127 ug/L	LL10mw-003-041917-GW
ICB/CCB	Sodium	146 ug/L	LL7mw-001-041917-GW FWGmw-005-041917-GW BKGmw-005-041917-GW BKGmw-016-041917-GW SCFmw-006-041917-GW BKGmw-015-041917-GW

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Metals - Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Metals - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Metals - Field Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: <u>280-96104-1</u> Laboratory: <u>Test America, Inc.</u>

LDC #: 38742C4a

Date: <u>6/111</u> Page: <u>1</u> of <u>1</u> Reviewer: <u>6</u> 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6010C/6020A/7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments AIA Sample receipt/Technical holding times I. A **ICP/MS** Tune 11. A III. Instrument Calibration Ł IV. ICP Interference Check Sample (ICS) Analysis V. Laboratory Blanks Sw N VI. Field Blanks N VII. Matrix Spike/Matrix Spike Duplicates C.S. N VIII. Duplicate sample analysis N IX. Serial Dilution A Х. Laboratory control samples ICS N XI. **Field Duplicates** A XII. Internal Standard (ICP-MS) A XIII. Sample Result Verification A XIV Overall Assessment of Data

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LL10mw-003-041917-GW	280-96104-2	Water	04/19/17
2	LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
3	FWGmw-005-041917-GW	280-96104-6	Water	04/19/17
4	BKGmw-005-041917-GW	280-96104-7	Water	04/19/17
5	BKGmw-016-041917-GW	280-96104-8	Water	04/19/17
6	SCFmw-006-041917-GW	280-96104-9	Water	04/19/17
7	BKGmw-015-041917-GW	280-96104-11	Water	04/19/17
8				
9				
10_				
11				
12				
13		1	1	L
lote	S:			

Method:Metals (EPA SW 846 Method 6010/6020/7000)

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times						
All technical holding times were met.	\sim					
Cooler temperature criteria was met.						
II. ICP/MS Tune						
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	1					
Were %RSD of isotopes in the tuning solution ≤5%?	/					
III. Calibration						
Were all instruments calibrated daily, each set-up time?	~					
Were the proper number of standards used?	/					
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?	~					
Were the low standard checks within 70-130%						
Were all initial calibration correlation coefficients within limits as specified by the method?						
IV. Blanks						
Was a method blank associated with every sample in this SDG?	\checkmark					
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	/					
V. ICP Interference Check Sample						
Were ICP interference check samples performed daily?	~					
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			-		
VI. Matrix spike/Matrix spike duplicates						
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.			/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			~			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			~			
VII. Laboratory control samples						
Was an LCS anaylzed for this SDG?	/					
Was an LCS analyzed per extraction batch?	 					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?						

Validation Area	Yes	No	NA	Findings/Comments			
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)							
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	\checkmark						
If the %Rs were outside the criteria, was a reanalysis performed?							
IX. ICP Serial Dilution							
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?			~				
Were all percent differences (%Ds) < 10%?			/				
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			/				
X. Sample Result Verification		ک					
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark						
XI. Overall assessment of data				х.			
Overall assessment of data was found to be acceptable.	\checkmark						
XII. Field duplicates							
Field duplicate pairs were identified in this SDG.		\checkmark					
Target analytes were detected in the field duplicates.			/				
XIII. Field blanks							
Field blanks were identified in this SDG.		~		/			
Target analytes were detected in the field blanks.							

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:_1_of_1_	
Reviewer:B	
2nd reviewer:	-

All circled elements are applicable to each sample.

Commite ID	Maduin	
1-7	$\overline{\mathbf{w}}$	AI, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zh, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V; Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
		Analysis Method
ICP		Al) Sb, As, Ba, Be, Cd, Ca) Cr, Co, Cu, Fe) Pb, Mg, Mn, Hg, Ni (K, Se, Ag, (Na, TI, V, Zn, Mo, B, Sn, Ti, U,
ICP-MS		AI, \$0, AS Ba Ba, Cd) Ca, Cr) Co Cu, Fe, Pb, Mg, Mn, Hg (N), K, Se (Ag) Na, (TI, V), Cn) Mo, B, Sn, Ti, U,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,
Comments:	Mercury	y by CVAA if performed

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u> Soil preparation factor applied: <u>NA</u> Associated Samples: <u>All</u>

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)	Maximum ICB/CCB ^a (mg/l_)	Action Level					
Na		185		925					

Sample Concentration units, unless otherwise noted: ug/L

Associated Samples: 1

Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Level					
Na			127						

Sample Concentration units, unless otherwise noted: ug/L

Associated Samples: 2 - 7

Analyte	Maximum PBª (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Level					
Na			146						

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>18</u> 2nd Reviewer: <u>1</u>

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

			~		Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
Icv	ICP (Initial calibration)	Na	39.687112 mg1L	40000 mg/L	992	99 7.	У
Tev	ICP/MS (Initial calibration) 10:55	CL	40.875 Jugil	40.0 mg1L	10270	10270	· y
Icv	CVAA (Initial calibration)	Hq	4.001 war	- 4.00 Jugit	1007.	10070	ү
CCV	الالالالالالالالالالالالالالالالالالال	Ca	5.019510 mg 1L	5000ug12	1007	100 7.	Y
CCV	ICP/MS (Continuing calibration)	Be	48.312 Jug 1-	50.0 mg1L	9770	978	Y
Cev	CVAA (Continuing calibration)	Hq	5.141 mgr	5.00 mg 1	10370	1037.	Y

Comments:

1 .

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

	Page:_	1	_of	1
	Reviewer:		JI	3
2nd	Reviewer:	(\mathcal{A}	

METHOD: Trace metals (EPA CLP SOW ILM02.1)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 True

 Where,
 Found =
 Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True =
 Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = |I-SDR| \times 100$

 Where,
 I =
 Initial Sample Result (ug/L)

 SDR =
 Serial Dilution Result (ug/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	<u>%R / RPD / %D</u>	Acceptable (Y/N)
ICSAB	ICP interference check	Pb	94.537.ugi-	اس 100	95%	957	У
LCS	Laboratory control sample	Zn	39.581 Jugil	40.0 mg 1L	997.	99%	Y
	Matrix spike		(SSR-SR)	2			
	Duplicate	· · · · · ·					
	ICP serial dilution						

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: <u>38742C4a</u> SDG #: <u>280-96104</u>-1

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u></u>
Reviewer:	UB
2nd reviewer:	X

.

METHOD: Trace metals (EPA CLP SOW ILM02.1)

Please Y N Y N Y N	e see qualifications belo <u>N/A</u> Have results <u>N/A</u> Are results w <u>N/A</u> Are all detect	ow for all questions answer been reported and calcula rithin the calibrated range of tion limits below the CRDL	red "N". Not appl ated correctly? of the instruments ?	icable questions ar s and within the line	e identified as "N/ ear range of the I0	A". CP?
Detect equation	ed analyte results for _ on:	te #1	*	_were recalculated	d and verified usin	g the following
Concent	tration = <u>(RD)(FV)(Dil)</u> (In. Vol.)		Recalculation:			74.0
RD FV In. Vol. Dil	 Raw data conce Final volume (m Initial volume (m Dilution factor 	ntration l) l) or weight (G)	from Raw J	Jota Fe = 0.0	524816 mali-=	29.8
#	Sample ID	Analyte		Reported Concentration (علوالي)	Calculated Concentration (ユル(ト)	Acceptable (Y/N)
	1	FF.		25	25	Y
	2	As		1.8	1.8	×
	3	Mn		24D	240	У
	4	Ma		17000	A000	У
	5	Ba		12	12	У
	k	. К		2000	2000	У
	7	Ni		0.35	0.35	У
		· · · · · · · · · · · · · · · · · · ·				
				· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		
	······································					
		<i>i</i> .				

Note:_____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Camp Ravenna

LDC Report Date: June 8, 2017

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
FWGmw-005-041917-GW	280-96104-6	Water	04/19/17
BKGmw-005-041917-GW	280-96104-7	Water	04/19/17
BKGmw-016-041917-GW	280-96104-8	Water	04/19/17
SCFmw-006-041817-GW	280-96104-9	Water	04/18/17
FWGmw-013-041917-GW	280-96104-10	Water	04/19/17
BKGmw-015-041917-GW	280-96104-11	Water	04/19/17
BKGmw-008-041917-GW	280-96104-12	Water	04/19/17
BKGmw-015-041917-GW	280-96104-13	Water	04/19/17
FWGmw-005-041917-GW	280-96104-14	Water	04/19/17
SCFmw-006-041917-GW	280-96104-15	Water	04/19/17
BKGmw-005-041917-GW	280-96104-16	Water	04/19/17
BKGmw-016-041917-GW	280-96104-17	Water	04/19/17
FWGmw-023-041917-GW	280-96104-18	Water	04/19/17
LL12mw-183-041917-GW	280-96104-19	Water	04/19/17
BKGmw-015-041917-GWMS	280-96104-11MS	Water	04/19/17
BKGmw-015-041917-GWMSD	280-96104-11MSD	Water	04/19/17
BKGmw-015-041917-GWDUP	280-96104-11DUP	Water	04/19/17
FWGmw-005-041917-GWMS	280-96104-14MS	Water	04/19/17
FWGmw-005-041917-GWMSD	280-96104-14MSD	Water	04/19/17
FWGmw-005-041917-GWDUP	280-96104-14DUP	Water	04/19/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Total Cyanide by Environmental Protection Agency (EPA) SW 846 Method 9012B Chloride, Nitrate as Nitrogen, Nitrite as Nitrogen, and Sulfate by EPA SW 846 Method 9056A

Hexavalent Chromium by EPA SW 846 Method 7196A Sulfide by EPA SW 846 Method 9034

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

2

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
SCFmw-006-041817-GW	Nitrate as N Nitrite as N	54.58 hours 54.58 hours	48 hours 48 hours	UJ (all non-detects) UJ (all non-detects)	Ρ

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Hexavalent Chromium	6.42 ug/L	BKGmw-008-041917-GW BKGmw-015-041917-GW FWGmw-005-041917-GW SCFmw-006-041917-GW BKGmw-005-041917-GW BKGmw-016-041917-GW FWGmw-023-041917-GW
ICB/CCB	Hexavalent Chromium	0.00904 mg/L 、	BKGmw-008-041917-GW BKGmw-015-041917-GW FWGmw-005-041917-GW SCFmw-006-041917-GW BKGmw-005-041917-GW BKGmw-016-041917-GW FWGmw-023-041917-GW
PB (prep blank)	Alkalinity	2.79 mg/L	FWGmw-005-041917-GW BKGmw-005-041917-GW SCFmw-006-041817-GW BKGmw-015-041917-GW

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Alkalinity	2.16 mg/L	FWGmw-005-041917-GW BKGmw-005-041917-GW SCFmw-006-041817-GW BKGmw-015-041917-GW
PB (prep blank)	Alkalinity	2.41 mg/L	BKGmw-016-041917-GW
ICB/CCB	Alkalinity	2.18 mg/L	BKGmw-016-041917-GW

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
FWGmw-005-041917-GWMS/MSD (FWGmw-005-041917-GW)	Hexavalent chromium	86.0 (90-111)	-	UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time and MS/MSD %R, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Camp Ravenna Wet Chemistry - Data Qualification Summary - SDG 280-96104-1

Sample	Analyte	Flag	A or P	Reason
SCFmw-006-041817-GW	Nitrate as N Nitrite as N	UJ (all non-detects) UJ (all non-detects)	Р	Technical holding times
FWGmw-005-041917-GW	Hexavalent chromium	UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Camp Ravenna

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET _____ Stage 4

LDC #: <u>38742C6</u> SDG #: 280-96104-1

Laboratory: Test America, Inc.

Date: <u>6/1//7</u> Page: <u>1</u> of <u>2</u> Reviewer: <u>3</u> 2nd Reviewer: <u>1</u>

METHOD: (Analyte) Alkalinity (SM2320B), Total Cyanide (EPA SW846 Method 9012B), Chloride, Nitrate-N, Nitrite-N, Sulfate (EPA SW846 Method 9056A(), Hexavalent Chromium (EPA SW846 Method 7196A), Sulfide (EPA SW846 Method 9034)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A ISW	
11	Initial calibration	A	
	Calibration verification	A	
IV	Laboratory Blanks	SW	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	รพ	
VII.	Duplicate sample analysis	+	
VIII.	Laboratory control samples	A	Les 17
IX.	Field duplicates	N	
Х.	Sample result verification	A	
x	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LL7mw-001-041917-GW 💫	280-96104-4	Water	04/19/17
2	FWGmw-005-041917-GW	280-96104-6	Water	04/19/17
3	BKGmw-005-041917-GW	280-96104-7	Water	04/19/17
4	BKGmw-016-041917-GW	280-96104-8	Water	04/19/17
5	FWGmw-013-041917-GW 2 _N	280-96104-10	Water	04/19/17
6	BKGmw-015-041917-GW	280-96104-11	Water	04/19/17
7	BKGmw-008-041917-GW (rot	280-96104-12	Water	04/19/17
8	BKGmw-015-041917-GW	280-96104-13	Water	04/19/17
9	FWGmw-005-041917-GW	280-96104-14	Water	04/19/17
10	SCFmw-006-041917-GW	280-96104-15	Water	04/19/17
11	BKGmw-005-041917-GW	280-96104-16	Water	04/19/17
12	BKGmw-016-041917-GW	280-96104-17	Water	04/19/17
13	FWGmw-023-041917-GW	280-96104-18	Water	04/19/17
14	LL12mw-183-041917-GW دم-	280-96104-19	Water	04/19/17
15	BKGmw-015-041917-GWMS N.N.S.C	280-96104-11MS	Water	04/19/17
16	BKGmw-015-041917-GWMSD	280-96104-11MSD	Water	04/19/17

VALIDATION COMPLETENESS WORKSHEET

SDG #: 280-96104-1 Laboratory: Test America, Inc.

LDC #: 38742C6

Stage 4

Date: <u>b/1117</u> Page: <u>2</u> of <u>2</u> Reviewer: <u>2</u> 2nd Reviewer: <u>2</u>

METHOD: (Analyte) Alkalinity (SM2320B), Total Cyanide (EPA SW846 Method 9012B), Chloride, Nitrate-N, Nitrite-N, Sulfate (EPA SW846 Method 9056A(), Hexavalent Chromium (EPA SW846 Method 7196A), Sulfide (EPA SW846 Method 9034)

	Client ID	Lab ID	Matrix	Date
17	BKGmw-015-041917-GWDUP	280-96104-11DUP	Water	04/19/17
18	FWGmw-005-041917-GWMS (280-96104-14MS	Water	04/19/17
19	FWGmw-005-041917-GWMSD	280-96104-14MSD	Water	04/19/17
20	↓ FWGmw-005-041917-GWDUP	280-96104-14DUP	Water	04/19/17
21	SCFmm - 000 - 041817- GW	280-94104-9	W	4/18/17
22				
23				
24				•
25				
Note	s:			•

L:\Cardno-TEC\Camp Ravenna\38742C6W.wpd

VALIDATION FINDINGS CHECKLIST

Method: Inorganics (EPA Method See Cover)								
Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times			_					
All technical holding times were met.		\checkmark						
II. Calibration			ч. 					
Were all instruments calibrated daily, each set-up time?	1							
Were the proper number of standards used?								
Were all initial calibration correlation coefficients \geq 0.995?	1							
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?								
Were titrant checks performed as required? (Level IV only)	/							
Were balance checks performed as required? (Level IV only)			\checkmark					
III. Blanks		r						
Was a method blank associated with every sample in this SDG?								
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	\checkmark							
IV. Matrix spike/Matrix spike duplicates and Duplicates								
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	\checkmark							
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		\checkmark						
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/							
V. Laboratory control samples								
Was an LCS anaylzed for this SDG?	1							
Was an LCS analyzed per extraction batch?	/							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?								
VI. Regional Quality Assurance and Quality Control	_							
Were performance evaluation (PE) samples performed?								
Were the performance evaluation (PE) samples within the acceptance limits?								

VALIDATION FINDINGS CHECKLIST

Page: 1_of_2 Reviewer: __JB 2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	, ·			
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	~			
IX. Field duplicates			-	
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
X. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			/	

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:__1_of__1_ Reviewer:____ 2nd reviewer:

All circled methods are applicable to each sample.

Sample ID	Parameter
1,5,14	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
2-4,6,21	ph TDS (CI)F $(NO_3)(NO_3)(SO_4)O-PO_4$ (Ally CN NH ₃ TKN TOC Cr6+ CIO ₄ (5 ²)
7-13	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC C_{16} CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
15-17	ph TDS C) F $(NO_3)(NO_2)(SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4)$
18-20	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6+ClO_4$
·	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $\widetilde{Cr6}$ + ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN \dot{NH}_3 TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CL_F_NONOSO_O-POAIK_CN_NH_TKN_TOC_Cr6+_CIO_

.

Comments:_____

VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

AIN circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method ? Y N N/A Were all cooler temperatures within validation criteria?

Method:			EPA 9056A		EPA 9056A			
Parameters		n	Nitrate as N			Nitrite as N		
Technical h	olding time:		48 hours			48 hours		
Sample ID	Sampling date	Analysis date	Total Time	Qualifier	Analysis date	Total Time	Qualifier	
21	4/18/17 14:48	4/20/17 21:23	54.58	J/UJ/P (Det)	4/20/17 21:23	54.58	J/UJ/P (Det)	

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: Inorganics, Method See Cover

Conc. units	s: <u>ug/L</u>				Associated Sa	nples:	7 - 13	 		
Analyte	Blank ID	Blank ID	Blank							
	РВ	ICB/CCB (ug/L)	Action Limit	No Qualifiers						
Hexavalent Cr	6.42	0.00904	45.2							

Conc. unit	s: <u>mg/l</u>				Associate	d Samples:	2, 3, 21,	<u>}</u>	 =	
Analyte	Blank ID	Blank ID	Blank							
	РВ	ICB/CCB (mg/L)	Action Limit	No Qualifiers						
Alkalinity	2.79	2.16	13.95							

Conc. unit	s: <u>mg/l</u>				Assoc	iated San	nples:	4	 	 	
Analyte	Blank ID	Blank iD	Blank							 	
	РВ	ICB/CCB (mg/L)	Action Limit	No Qualifiers							
Alkalinity	2.41	2.18	12.05								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2000	1	of	1
aue.		01	

METHOD: Inorganics, EPA Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Y/N N/A Y N/N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. ___

Were all duplicate sample relative percent differences (RPD) $\leq 20\%$ for water samples and $\leq 35\%$ for soil samples? (Y) N N/A

LEVEL IV ONLY:

(Y) N N/AWere recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	18, 19	Water	Hexavalent Cr	86.0 (90 - 111)			9	J/UJ/A (ND)
		[· · · · · · · · · · · · · · · · · · ·	
								· · · · · · · · · · · · · · · · · · ·

Comments:

LDC #: 38742C4

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:	of	(
Reviewer:	J.	3
2nd Reviev	ver: <u>(</u>	L

Method: Inorganics, Method ______

The correlation coefficient (r) for the calibration of \underline{CN} was recalculated. Calibration date: $\underline{5/2/17}$

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100_

True

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (ug/L)	Response	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0	-37.822754			
		s2	10	8002.324219	0.999980	0.999980	
		s3	20	16186.20898			
	CN	s4	50	40470.14063			Ý
		s5	100	80720.38281			
		s6	200	160170.8906			
		s7	400	316876			
217	0.1-		FOUND:	TRUE:	L D		
Calibration verification	C۱	Iev	81.858 mgl	- 80.0 mg1L	102%	1027-	У
4/20	1.0	0.04	FOUND	TRUE!	_		
Calibration verification	NU3		5.044 mg/L	5.00 mg/L	101%	1017	У
			9	0			
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._____

LDC #: 38742CLe

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

METHOD: Inorganics, Method ______ Cover_____

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found_</u>x 100 Where, True

Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Found =

RPD = <u> S-D </u>	x 100	Where,	S =	
(S+D)/2			D =	

Original sample concentration Duplicate sample concentration

			Found / S	True / D	Recalculated	Reported	Acceptable
Sample ID	Type of Analysis	Element	(units)	(units)	%R / RPD	%R / RPD	(Y/N)
LCS	Laboratory control sample 3구·12고1	A111-	196my1L	200 mg 1 L	987	9870	. Y
MS	Matrix spike sample	NO2 (Nitvite)	<u>sr- ND</u> (SSR-SR) 5315. 64 مراك	5000.mg12	10672	1047	У
msi	Duplicate sample	NO2 (Nitvite)	54405120mg/	5315.64.491L	2 RPD	2 RPD	¥

Comments:

Validation Findings 2a.wpd

LDC #: 38742 CL.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u>	of	1
Reviewer:	JB	
2nd reviewer:	2	

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Have results been reported and calculated correctly? Y N N/A Are results within the calibrated range of the instruments? Y N N/A Are all detection limits below the CRQL?

Compound (analyte) results for ______CN⁻ # I______reported with a positive detect were recalculated and verified using the following equation:

Concentration =

Recalculation:

y = bx + a y = 2164 b = 7.9257 + 02a = 5.9738 + 02 $CN = 2164 = 7.9257e^{+02} \times + 5.9738e^{+02} \times - 1.974e^{-10}/L$

#	Sample ID	Analyte	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
	1	CN-	2.0.491L	2.0, 491L	Y
	Ł	C1-	3200 Mg 1L	3200 Jugic	Y
	3	N03	110 Jug 1L	110 Jugil	у
	4	Soy -	-76000 mg1L	36000 mgn	Y
	5	CN ⁻	7.9 ug 1L	7.9 1191	Y
	لو	<u> </u>	790. mg 1L	790. 491L	ý
	14	<u>CN</u> ⁻	3.4 ug 1L	3.4 mgi L	у
	21	A114-	210 mgiL	210 mg1	у
				0	
		· · · · · · · · · · · · · · · · · · ·			-

Note:

Laboratory Data Consultants, Inc. Data Validation Report

	Project/Site Name:	Camp Ravenna
--	--------------------	--------------

LDC Report Date: May 31, 2017

Parameters: Explosives

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-96104-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
LL7mw-006-041917-GW	280-96104-5	Water	04/19/17

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Appendix A: Sampling Analysis Plan, A.2 – Quality Assurance Project Plan, Former Ravenna Army Ammunition Plant, Portage and Trumbull Countries, Ohio (December 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.
The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

3

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

Retention time windows were established as required by the method.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

All compound quantitations met validation criteria.

XI. Target Compound Identifications

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Camp Ravenna Explosives - Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Explosives - Laboratory Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

Camp Ravenna Explosives - Field Blank Data Qualification Summary - SDG 280-96104-1

No Sample Data Qualified in this SDG

LDC #: 38742C40	VALIDATION COMPLETENESS WORKSHEET	Date: 05/26/17
SDG #: 280-96104-1	Stage 4	Page: \ of \
Laboratory: Test America, Inc.		Reviewer: 34

Laboratory: Test America, Inc.

METHOD: HPLC Explosives	s (EPA SW 846 N	/lethod 8330B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments						
Ι.	Sample receipt/Technical holding times	HIA	15	-	A				
11.	Initial calibration/ICV	A/A	1041 = 20%	~	10161872				
- 111.	Continuing calibration	4	CW EXE?						
IV.	Laboratory Blanks	Â	10						
V.	Field blanks	Ň	·		· · · · · · · · · · · · · · · · · · ·				
VI.	Surrogate spikes	A							
VII.	Matrix spike/Matrix spike duplicates	N	CS		·				
· VIII.	Laboratory control samples	A	LCS						
IX.	Field duplicates	N							
X .	Compound quantitation RL/LOQ/LODs	A	·						
XI.	Target compound identification	A A							
	Overall assessment of data	A	······						

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

2nd Reviewer:

		l · · · · · · · · · · · · · · · · · · ·		1
∥	Client ID	Lab ID	Matrix	Date
1	LL10mw-003-041917-GW	280-96104-2	Water	0 4/19/17+
2	LL7mw-001-041917-GW	280-96104-4	Water	04/19/17
† 3	LL7mw-006-041917-GW	280-96104-5	Water	04/19/17
4				·
5				
6				
7		·		
8				
9				
10		•		
11				
12				
13				
Note	S:			

Hrp 280- 371031 / A			

LDC #: 38742C40

VALIDATION FINDINGS CHECKLIST

Page:	<u>1_of_2_</u>
Reviewer	UG
2nd Reviewer:	4

Method:GCHPLC				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	<			
Was cooler temperature criteria met?				
IIa. Initial calibration		1		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	<			
Were the RT windows properly established?		ľ		
IIb. Initial calibration verification	r	1	r	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 20% or percent recoveries (%R) 80-120%?				
III. Continuing calibration		1		
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 20% or percent recoveries (%R) 80-120%?				
Were all the retention times within the acceptance windows?		<u>† </u>		
IV. Laboratory Blanks		(1	
Was a laboratory blank associated with every sample in this SDG?	Ľ,			
Was a laboratory blank analyzed for each matrix and concentration?	 			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
V. Field Blanks	T	1	r	
Were field blanks identified in this SDG?	. 			
Were target compounds detected in the field blanks?				
VI. Surrogate spikes		1	r	
Were all surrogate percent recovery (%R) within the QC limits?		1	ļ	
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	<u> </u>			
If any %R was less than 10 percent, was a reanalysis performed to confirm %R? VII. Matrix spike/Matrix spike duplicates	<u> </u>			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	ļ		ļ	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

VALIDATION FINDINGS CHECKLIST

	Page:	2	_of	2	
	Reviewer:		10	G	
2nd	Reviewer:		Ч		

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples		a		
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Field duplicates	1			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?		-		
X. Compound quantitation				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.		1		

LDC #: <u>38742C40</u>

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_1_ of _4_
Reviewer:	JVG '
2nd Reviewer:	

METHOD: GC HPLC

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where:

- A = Area of compound
- C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			CF	CF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date		Compound	(1.0 std)	(1.0 std)	(Initial)	(Initial)		
1	ICAL	3/6/2017	3-NT	(Ultracarb5u)	137428.00	137428.00	140895.20	140895.25	5.0	5.0
	LC X3		RDX	(Ultracarb5u)	see r2 calc					
2	ICAL	5/4/2017	3-NT	(Ultracarb5u)	see r2 calc					
	LC G2		RDX	(Luna-phenyl)	see r2 calc					

LDC#: 38742C40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2_of <u>4</u> Reviewer: JVG 2nd Reviewer: <u></u>

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

Date	Instrument	Compound	STD	x area	y conc
					(ug/L)
3/6/2017	CHHPLC_X3	RDX	1	818	0.01
			2	5115	0.05
			3	9983	0.10
			4	23223	0.25
		(4.1)	5	41515	0.40
			6	72798	0.70
			7	99774	1.00
			8	260044	2.50

Regress	Regression Output: Regression Output:				
Constant	C =	-967.64371	c =	-246.491950	
Std Err of Y Est		0.04			
R Squared	r^2 =	0.99965	r^2 =	0.99900	
No. of Observations		6.00			
Degrees of Freedom	••••••••••••••••••••••••••••••••••••••	4.00		· · · ·	
X Coefficient(s)	m =	103994.24145	m =	102842.7020	
Std Err of Coef.	0.01	· · · · · · · · · · · · · · · · · · ·			

LDC#: 38742C40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>3</u> of <u>4</u> Reviewer: JVG 2nd Reviewer: <u></u>

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

			×	X	У
Date	Instrument	Compound	STD	area	conc
					(ug/L)
5/4/2017	CHHPLC_G2_LUNA	RDX	1	3143	0.01
	i.		2	12919	0.05
			3	23056	0.10
			4	49821	0.25
			5	76270	0.40
			6	145563	0.70
			7	202501	1.00
			8	511309	2.50
			· · · · · · · · · · · · · · · · · · ·		

	Regression Output: Reg	ression Output:		Reported WLR		
Constant		C =	304.60999	C =	1359.984650	
Std Err of Y Est			0.04			
R Squared		r^2 =	0.99972	r^2 =	0.99900	
No. of Observations			6.00			
Degrees of Freedom			4.00		· · · · · · · · · · · · · · · · · · ·	
X Coefficient(s)		m =	204020.98205	m =	202335.7530	
Std Err of Coef.	· ·	0.01				

LDC#: 38742C40

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_4_of_4 Reviewer:__<u>JVG</u> 2nd Reviewer:___

METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

Parameter: RDX

Order of regression: Linear

Date	Instrument	Compound	STD	x area	y conc
					(ug/L)
5/4/2017	CHHPLC_G2_LUNA	3-NT	1	3789	0.01
			2	13419	0.05
			3	21559	0.10
		х. Х	4	59200	0.25
			5	90811	0.40
			6	183852	0.70
			7	268237	1.00
			8	712728	2.50

Regre	ssion Output: Regression Output:		Reported WLR			
Constant	C =	-10102.77956	C =	-148.219020		
Std Err of Y Est		0.04	· · · · · · · · · · · · · · · · · · ·			
R Squared	r^2 =	0.99859	r^2 =	0.99400		
No. of Observations		6.00	······································			
Degrees of Freedom	<i></i>	4.00	······································			
X Coefficient(s)	m =	286310.82564	m =	270415.3200		
Std Err of Coef.	0.01			·		

LDC # 38742C40

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: JVG 2nd Reviewer:

HPLC METHOD: GC_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 * (N - C)/N

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

						Reported	Recalculated	Reported	Recalculated
		Calibration			CCV Conc	Conc	Conc	% D	%D
#	Standard ID	Date	Compound						
1	04271707	4/27/2017	RDX	(Ultracarb5u)	250	240	240	3.8	3.8
	X3		3-NT	(Ultracarb5u)	250	228	228	8.8	8.8
2	51017C09	5/11/2017	RDX	(Luna-phenyl)	250	237	237	5.1	5.1
	G2		3-NT	(Luna-phenyl)	250	219	219	12.5	12.5

LDC #: 38747 CAU

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # 3

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
<u> </u>	Ultracarb	ə. 200	0,2044	102	102	n. n. a a a a a a a a a a a a a a a a a
•		• •	•	•	· .	· .

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	н	Ortho-Terphenyl	0	Decachlorobiphenyl (DCB)	v	Tri-n-propyltin	сс	2,5-Dibromotoluene
В	4-Bromofluorobenzene (BFB)	1	Fluorobenzene (FBZ)	Р	1-methylnaphthalene	w	Tributyl Phosphate	DD	n-Nonatriacontane
С	a,a,a-Trifluorotoluene	J	n-Triacontane	Q	Dichlorophenyl Acetic Acid (DCAA)	x	Triphenyl Phosphate	EE	1,2-Dibromopropane
D	Bromochlorobenene	ĸ	Hexacosane	R	4-Nitrophenol	Y	Tetrachloro-m- xylene	FF	1,2-Dinitrobenzene
E	1,4-Dichlorobutane	L	Bromobenzene	S	1-Chloro-3-Nitrobenzene	z	2-Bromonaphthalene	GG	2-Nitro-m-xylene
F	1,4-Difluorobenzene (DFB)	м	Benzo(e)Pyrene	т	3,4-Dinitrotoluene	AA	1-Chlorooctadecane	нн	p-Terpheny!
G	Octacosane	N	Terphenyl-D14	U	Tripentyltin	BB	2.4-Dichlorophenylacetic acid	11	·

LDC #:_____38792 C40

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>1</u>

METHOD: ____GC ____HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: LCS 280- 371031/2-A

		S	pike	Spike	Sample	L	CS	LC	SD	LCS/L	CSD
Compo	ound	Ас (Из	(L)	Conce (الم	ntration	Percent	Recovery	Percent F	Recovery	RP	םי
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)										<i>i</i>
Diesel	(8015)					·					
Benzene	(8021B)							· ·			
Methane	(RSK-175)										
2,4-D	(8151)										· · · · · · · · · · · · · · · · · · ·
Dinoseb	(8151)										
Naphthalene	(8310)										
Anthracene	(8310)										
нмх	(8330)	2,00	MA	1-90	MA.	95	95				
2,4,6-Trinitrotolue	ne (8330)			2,11		105	105				
Phorate	(8141A)										
Malathion	(8141A)										
Formaldehyde	(8315A)										
Comments: <u>Refe</u>	r to Laboratory	Control Samp	ole/Laboratory C	Control Sample	Duplicate findi	ings workshee	t for list of quali	fications and a	ssociated sam	ples when repor	ted results do

LDC #:____ 38792. (40

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1 of 1</u> Reviewer: <u>JVG</u> 2nd Reviewer: _____

METHOD: __ GC __ HPLC

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= $(A)(Fv)(Df)$	Example:			<i>k</i> b x	
A= Area or height of the compound to be measured	Sample ID	3	Compound Name	~DX	Luna
 Privative of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid 	Concentration =	(12306	-1359.985) (5ml) 33,5.753) (435.8)	(1000)	= 0.6207ug1L

#	Sample ID	Compound	Reported Concentrations (いら ル)	Recalculated Results Concentrations ()	Qualifications
			0,42		
	·				
			· ·		
		· ·	·		
				·	
			1		

Comments: _____

EDD POPULATION COMPLETENESS WORKSHEET

	EDD Process		Comments/Action
I.	EDD Completeness		
Ia.	- All methods present?	Y	
Ib.	- All samples present/match report?	Ý	
Ic.	- All reported analytes present?	r	
Id.	- 10% or 100% verification of EDD?	Y	
<u>II.</u>	EDD Preparation/Entry	-	
IIa.	- Carryover U/J?	N	
IIb.	- Reason Codes used? If so, note which codes.	Y	LDC
IIc.	- Additional Information (QC Level, Validator, Validated Y/N, etc.)	N	
H. H.			
III.	Reasonableness Checks	-	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	Y	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	Y	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	7	
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	N/A	
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?		
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?		
IIIg.	-Are there any discrepancies between the data packet and the EDD?	N	

Notes: <u>*see discrepancy sheet</u>