Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97364-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97364-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |  |
|---------------------|-------------------|---------------------|--|
| Hexavalent Chromium | 7196A             | Canton, OH          |  |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID             | Laboratory ID | Sample Date | Matrix      | QC Sample       | Hexavalent<br>Chromium |
|-----------------------|---------------|-------------|-------------|-----------------|------------------------|
| CBLmw-001-062018-GW   | 240-97364-1   | 06/20/2018  | Groundwater |                 | $\checkmark$           |
| CBLmw-001-D-062018-GW | 240-97364-2   | 06/20/2018  | Groundwater | Field Duplicate | $\checkmark$           |
| CBLmw-002-062018-GW   | 240-97364-3   | 06/20/2018  | Groundwater |                 | $\checkmark$           |

# DATA VALIDATION REPORT

#### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

## 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 21, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than 6°C.

## 1.3 TECHNICAL DATA VALIDATION

#### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicate

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97441-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97441-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |  |
|---------------------|-------------------|---------------------|--|
| Hexavalent Chromium | 7196A             | Canton, OH          |  |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| FWGmw-024-062118-GW | 240-97441-1   | 06/21/2018  | Groundwater |           | $\checkmark$           |
| FWGmw-017-062118-GW | 240-97441-2   | 06/21/2018  | Groundwater |           | ✓                      |
| FWGmw-021-062118-GW | 240-97441-3   | 06/21/2018  | Groundwater |           | ✓                      |
| FWGmw-020-062118-GW | 240-97441-4   | 06/21/2018  | Groundwater |           | √                      |
| FWGmw-018-062118-GW | 240-97441-5   | 06/21/2018  | Groundwater |           | ✓                      |
| CBLmw-003-062118-GW | 240-97441-6   | 06/21/2018  | Groundwater |           | ✓                      |
| CBLmw-004-062118-GW | 240-97441-7   | 06/21/2018  | Groundwater |           | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

## 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 21, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than 6°C.

## 1.3 TECHNICAL DATA VALIDATION

#### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97629-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97629-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |  |
|---------------------|-------------------|---------------------|--|
| Hexavalent Chromium | 7196A             | Canton, OH          |  |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID             | Laboratory ID | Sample Date | Matrix      | QC Sample       | Hexavalent<br>Chromium |
|-----------------------|---------------|-------------|-------------|-----------------|------------------------|
| FBQmw-171-062518-GW   | 240-97629-1   | 06/25/2018  | Groundwater |                 | $\checkmark$           |
| FBQmw-171-D-062518-GW | 240-97629-2   | 06/25/2018  | Groundwater | Field Duplicate | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

## 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 25, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than 6°C.

## 1.3 TECHNICAL DATA VALIDATION

#### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- MS/MSD recoveries and RPDs
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicate

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97635-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97635-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |  |
|---------------------|-------------------|---------------------|--|
| Hexavalent Chromium | 7196A             | Canton, OH          |  |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| FBQmw-174-062518-GW | 240-97635-1   | 06/25/2018  | Groundwater |           | $\checkmark$           |
| FBQmw-175-062518-GW | 240-97635-2   | 06/25/2018  | Groundwater |           | ✓                      |

# DATA VALIDATION REPORT

#### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

## 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 26, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

## 1.3 TECHNICAL DATA VALIDATION

#### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97682-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97682-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |  |
|---------------------|-------------------|---------------------|--|
| Hexavalent Chromium | 7196A             | Canton, OH          |  |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID              | Laboratory ID | Sample Date | Matrix      | QC Sample       | Hexavalent<br>Chromium |
|------------------------|---------------|-------------|-------------|-----------------|------------------------|
| LL12mw-247-062618-GW   | 240-97682-1   | 06/26/2018  | Groundwater |                 | $\checkmark$           |
| LL12mw-247-D-062618-GW | 240-97682-2   | 06/26/2018  | Groundwater | Field Duplicate | $\checkmark$           |
| NTAmw-120-062618-GW    | 240-97682-3   | 06/26/2018  | Groundwater |                 | $\checkmark$           |
| NTAmw-120-D-062618-GW  | 240-97682-4   | 06/26/2018  | Groundwater | Field Duplicate | $\checkmark$           |

# DATA VALIDATION REPORT

#### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

## 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 26, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

## 1.3 TECHNICAL DATA VALIDATION

#### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- MS/MSD recoveries and RPDs
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field Duplicates

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97687-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97687-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |
|---------------------|-------------------|---------------------|
| Hexavalent Chromium | 7196A             | Canton, OH          |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| LL3mw-244-062618-GW | 240-97687-1   | 06/26/2018  | Groundwater |           | $\checkmark$           |
| FWGmw-019-062618-GW | 240-97687-2   | 06/26/2018  | Groundwater |           | ✓                      |
| FWGmw-022-062618-GW | 240-97687-3   | 06/26/2018  | Groundwater |           | $\checkmark$           |
| FWGmw-023-062618-GW | 240-97687-4   | 06/26/2018  | Groundwater |           | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 27, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

### 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97744-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97744-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |
|---------------------|-------------------|---------------------|
| Hexavalent Chromium | 7196A             | Canton, OH          |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID             | Laboratory ID | Sample Date | Matrix      | QC Sample       | Hexavalent<br>Chromium |
|-----------------------|---------------|-------------|-------------|-----------------|------------------------|
| LL1mw-089-062718-GW   | 240-97744-1   | 06/27/2018  | Groundwater |                 | $\checkmark$           |
| LL1mw-089-D-062718-GW | 240-97744-2   | 06/27/2018  | Groundwater | Field Duplicate | $\checkmark$           |
| LL1mw-084-062718-GW   | 240-97744-3   | 06/27/2018  | Groundwater |                 | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 27, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

### 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- MS/MSD recoveries and RPDs
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicates

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97767-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97767-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |
|---------------------|-------------------|---------------------|
| Hexavalent Chromium | 7196A             | Canton, OH          |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| LL1mw-083-062718-GW | 240-97767-1   | 06/27/2018  | Groundwater |           | $\checkmark$           |
| LL2mw-272-062718-GW | 240-97767-2   | 06/27/2018  | Groundwater |           | ✓                      |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 27, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

### 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97858-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97858-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |
|---------------------|-------------------|---------------------|
| Hexavalent Chromium | 7196A             | Canton, OH          |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| RQLmw-011-062818-GW | 240-97858-1   | 06/28/2018  | Groundwater |           | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 28, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than 6°C.

### 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- MS/MSD recoveries and RPDs
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 240-97871-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validation Chemist, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

7/10/18 Date

Camp Ravenna

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **240-97871-1**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters          | Analytical Method | Laboratory Location |
|---------------------|-------------------|---------------------|
| Hexavalent Chromium | 7196A             | Canton, OH          |

TestAmerica Canton does not hold DoD accreditation for hexavalent chromium analysis; therefore, method EPA SW-846 Method 7196A is reported.

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | QC Sample | Hexavalent<br>Chromium |
|---------------------|---------------|-------------|-------------|-----------|------------------------|
| RQLmw-012-062818-GW | 240-97871-1   | 06/28/2018  | Groundwater |           | $\checkmark$           |
| RQLmw-013-062818-GW | 240-97871-2   | 06/28/2018  | Groundwater |           | $\checkmark$           |
| RQLmw-014-062818-GW | 240-97871-3   | 06/28/2018  | Groundwater |           | $\checkmark$           |

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 28, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than 6°C.

### 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Hexavalent Chromium by Method 7196A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- MS/MSD recoveries and RPDs
- Method blank

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

No analytical or quality parameters requiring further discussion were identified for Method 7196A.

No qualifications were made in this SDG.

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 280-111344-1

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Travis Withers, Validator, TEC-WESTON JV

Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

9/12/18 Date

Camp Ravenna

Groundwater and Environmental Investigation Services

Data Validation Report

Page i

# THIS PAGE INTENTIONALLY LEFT BLANK

# INTRODUCTION

This report summarizes the results of the EPA Stage 2B data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **280-111344-1**.

TestAmerica, Inc., Denver, Colorado or TestAmerica, Inc., Sacramento, CA performed the analyses listed in the table below:

| Parameters                              | Analytical Method | Laboratory Location |
|-----------------------------------------|-------------------|---------------------|
| Volatile Organic Compounds (VOCs)       | 8260B             | Denver, CO          |
| Semi-Volatile Organic Compounds (SVOCs) | 8270D             | Denver, CO          |
| Organochlorine Pesticides               | 8081B             | Denver, CO          |
| Polychlorinated Biphenyls (PCBs)        | 8082A             | Denver, CO          |
| Nitroguanidine                          | 8330 (Modified)   | Sacramento, CA      |
| Perchlorate                             | 6860              | Denver, CO          |
| Explosives                              | 8330B             | Denver, CO          |
| Metals                                  | 6010C/6020A/7470A | Denver, CO          |
| Alkalinity                              | 2320B             | Denver, CO          |
| Nitrocellulose                          | 353.2             | Sacramento, CA      |
| Total Cyanide                           | 9012B             | Denver, CO          |
| Sulfide                                 | 9034              | Denver, CO          |
| Corrosivity (pH)                        | 9040C             | Denver, CO          |
| Nitrate                                 | 9056A             | Denver, CO          |

The data were reviewed using guidance and quality control criteria documented in the Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016) which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National Functional Guidelines for Organic Data Review (EPA 2014); and USEPA National Functional Guidelines for Inorganic Data Review (EPA 2014), the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The data was reviewed and validated by calculating Relative Percent Difference (RPD) between spiked sample values according to the USEPA National Functional Guidelines for Organic Data Review (EPA 2014) and USEPA National Functional Guidelines for Inorganic Data Review (EPA 2014). Therefore, the RPDs were calculated using the percent recovery values as stated in the above referenced USEPA documents. SW-846 Methods were utilized for this project and they recommend using the actual spiked sample values to calculate RPD values. However, the laboratory used varying spike amounts due to sample aliquot and percent moisture differences which lead to variations in the spike amounts making it very difficult to compare the spiked sample values. These differences would have created poor precision results for the spiked sample values that were not necessarily indicative of the data quality. The use of comparing spike recovery values in this case was a much better indicator of analytical precision.

#### The following samples were validated:

|                       |               | Sample   |             | OC         |      |       |            |      |                |              |            |              |            |                | Total |         |    |        |
|-----------------------|---------------|----------|-------------|------------|------|-------|------------|------|----------------|--------------|------------|--------------|------------|----------------|-------|---------|----|--------|
| Sample ID             | Laboratory ID |          | Matrix      | ~          | VOCs | SVOCs | Pesticides | PCBs | Nitroguanidine | Perchlorate  | Explosives | Metals       | Alkalinity | Nitrocellulose |       | Sulfide | pН | Anions |
| FWGmw-020-062118-GW   | 280-111344-1  | 06/21/18 | Groundwater |            | ✓    | ✓     |            | ✓    | ~              | ~            | ~          | $\checkmark$ |            | ~              | √     |         |    | ✓      |
| TB-062118-03          | 280-111344-2  | 06/21/18 | Groundwater | Trip Blank | ✓    |       |            |      |                |              |            |              |            |                |       |         |    |        |
| CBLmw-001-062018-GW   | 280-111344-3  | 06/20/18 | Groundwater |            |      | ✓     |            | ~    |                |              | ✓          | ✓            |            |                |       | ~       | ✓  |        |
| CBLmw-001-D-062018-GW | 280-111344-4  | 06/20/18 | Groundwater |            |      | ✓     |            | ~    |                |              | ✓          | ✓            |            |                |       | ✓       | >  |        |
| CBLmw-002-062018-GW   | 280-111344-5  | 06/20/18 | Groundwater |            |      | ✓     |            | ~    |                |              | ✓          | $\checkmark$ |            |                |       | ~       | ~  |        |
| LL1mw-088-062118-GW   | 280-111344-6  | 06/21/18 | Groundwater |            |      | ✓     | ~          |      |                |              | ✓          | $\checkmark$ | ~          |                |       |         |    |        |
| FWGmw-021-062118-GW   | 280-111344-7  | 06/21/18 | Groundwater |            | ✓    | ✓     | ~          | ~    | ✓              | ✓            | ✓          | $\checkmark$ |            | ✓              | ~     |         |    |        |
| TB-062118-01          | 280-111344-8  | 06/21/18 | Groundwater | Trip Blank | ✓    |       |            |      |                |              |            |              |            |                |       |         |    |        |
| CBLmw-003-062118-GW   | 280-111344-9  | 06/21/18 | Groundwater |            |      | ✓     |            | ~    |                |              | ✓          | ✓            |            |                | √     | ✓       | ✓  | ✓      |
| CBLmw-004-062118-GW   | 280-111344-10 | 06/21/18 | Groundwater |            |      | ✓     |            | ~    |                |              | ✓          | ✓            |            |                | √     | ✓       | ✓  | ✓      |
|                       |               |          |             | Field      |      | ✓     |            |      | ✓              | ✓            | ✓          | ✓            |            |                |       |         |    |        |
| LL3mw-246-D-062118-GW | 280-111344-11 | 06/21/18 | Groundwater | Duplicate  |      |       |            |      |                |              |            |              |            |                |       |         |    |        |
| FWGmw-018-062118-GW   | 280-111344-12 | 06/21/18 | Groundwater |            | ✓    | ✓     |            | ~    | $\checkmark$   | ✓            | ✓          | ✓            |            | $\checkmark$   | ~     |         |    |        |
| TB-062118-02          | 280-111344-13 | 06/21/18 | Groundwater | Trip Blank | ✓    |       |            |      |                |              |            |              |            |                |       |         |    |        |
| FWGmw-024-062118-GW   | 280-111344-14 | 06/21/18 | Groundwater |            | √    | ~     |            |      | ~              | $\checkmark$ | ✓          | ~            |            | ✓              |       |         |    |        |
| FWGmw-017-062118-GW   | 280-111344-15 | 06/21/18 | Groundwater |            |      | ~     |            |      |                | $\checkmark$ | ✓          | ~            |            | $\checkmark$   |       |         |    |        |
| TB-062118-04          | 280-111344-16 | 06/21/18 | Groundwater | Trip Blank | ✓    |       |            |      |                |              |            |              |            |                |       |         |    |        |
| LL3mw-246-062118-GW   | 280-111344-17 | 06/21/18 | Groundwater |            |      | ~     |            |      |                | ✓            | √          | $\checkmark$ |            |                |       |         |    |        |

Some samples were analyzed for natural attenuation parameters. Natural attenuation parameters are reported, but not validated in accordance with the QAPP.

# DATA VALIDATION REPORT

# 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

# 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 23, 2018; the samples were received in good condition, under chain-of-custody, properly preserved and cooler temperatures were less than 6°C.

All 11 coolers were received without a custody seal present. It was noted that the shipping tape was intact and there was no evidence of tampering during transit.

Nitroguanidine and nitrocellulose analyses were performed by TestAmerica, Sacramento.

Per request, the laboratory cancelled 2320B Alkalinity analysis and added 9040C pH analysis for the following samples: CBLmw-001-062018-GW, CBLmw-001-D-062018-GW, CBLmw-002-062018-GW, CBLmw-003-062118-GW, and CBLmw-004-062118-GW.

Sample volume for all requested 9056 nitrate analyses were received at the laboratory with less than 8 hours left of the holding time. The laboratory was not able to analyze these samples within the 48 hour sample hold time.

# 1.3 DEFINITIONS

**Detection limit (DL):** The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration with 99% confidence. At the DL, the false positive rate is 1%. A DL may be used as the lowest concentration for reliably reporting a detection of a specific matrix with a specific method with 99% confidence.

**Limit of detection (LOD):** The smallest concentration of a substance that must be present in a sample in order to be detected at the DL with 99% confidence. At the LOD, the false negative rate is 1%. An LOD may be used as the lowest concentration for reliably reporting a non-detect of a specific analyte in a specific matrix with a specific method with 99% confidence.

**Limits of Quantitation (LOQ):** The smallest concentration that produces a quantitative result with known and recorded precision and bias. For DoD/DOE projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard and within the calibration range.

| Validation | Reason |                                                               |
|------------|--------|---------------------------------------------------------------|
| Flag       | Code   | Description                                                   |
| U          | В      | Non-detection; blank criteria not met.                        |
| UJ         | S      | Estimated non-detection; surrogate recovery exceedance.       |
| UJ         | М      | Estimated non-detection; MS/MSD recovery or RPD exceedance.   |
| UJ         | L      | Estimated non-detection; LCS/LCSD recovery or RPD exceedance. |
| J          | S      | Estimated detection; surrogate recovery exceedance.           |
| J          | М      | Estimated detection; MS/MSD recovery or RPD exceedance.       |
| J          | L      | Estimated detection; LCS/LCSD recovery or RPD exceedance.     |
| J          | CC     | Estimated detection; CCV recovery exceedance.                 |
| J          | Н      | Estimated detection; holding time exceedance.                 |
| J          | D      | Estimated detection; laboratory duplicate RPD exceedance.     |
| J          | Q      | Estimated detection; professional judgement.                  |
| R          | L      | Rejected result; extremely low (<10%) LCS recovery.           |

The following validation flags and reason codes were applied:

# 1.4 TECHNICAL DATA VALIDATION

### 1.4.1 Volatile Organic Compounds by Method 8260B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- Method blank
- Instrument tuning

- Internal standard area counts
- Initial calibration
- Initial calibration verification
- Trip blank

All analytical or quality parameters requiring further discussion for Method 8260B are described in the sections below.

# 1.4.1.1 LCS/LCSD Recoveries and RPDs

1,1,2-Trichloroehtane (120%) recovered above the control limits (80-119%) in the LCSD. The LCS recovery (112%) and RPD (6%) were within the control limits; therefore, no qualification was

necessary.

### 1.4.1.2 Continuing Calibration Verification

2-Hexananoe (+21.7%) recovered above the control limits ( $\pm 20\%$ ) in the continuing calibration verification CCV 280-421119/2. All associated samples were non-detect for 2-hexanone; therefore, no qualification was necessary.

### 1.4.2 Semivolatile Organic Compounds by Method 8270D

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- Method blanks
- MS/MSD recoveries and RPDs
- LODs and LOQs
- Instrument tuning
- Internal standard area counts

- Initial calibration
- Initial calibration verification
- Continuing calibration verification
- Closing calibration verification
- Field duplicates

All analytical or quality parameters requiring further discussion for Method 8270D are described in the sections below.

### 1.4.2.1 Surrogate Recoveries

Surrogate terphenyl-d14 recovered below control limits (50-134%) in sample FWGmw-021-062118-GW. All associated sample results were qualified as estimated (UJ S).

### 1.4.2.2 LCS/LCSD Recoveries and RPDs

Hexachlorocyclopentadiene (4%) recovered below the control limits (10-120%) in the LCS associated with analytical batch 422564. All associated hexachlorocyclopentadiene sample results were rejected due to the extremely low (<10%) LCS recovery (R L). It is noted that hexachlorocyclopentadiene is a poor performer for this method.

# 1.4.3 Organochlorine Pesticides by Method 8081B

The following parameters were evaluated and met the required criteria. No validation flags were assigned:

• Holding times

- Surrogate recoveries
- Method blank
- LCS/LCSD recoveries and RPDs

Groundwater and Environmental Investigation Services Da

• Initial calibration

• LODs and LOQs

• Initial calibration verification

All analytical or quality parameters requiring further discussion for Method 8081B are described in the sections below.

# 1.4.3.1 Sample Preparation

Samples LL1mw-088-062118-GW and FWGmw-021-062118-GW required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur.

Only a portion of the sample volume submitted for sample FWGmw-021-062118-GW was used for analysis due the sample container not being the appropriate size. As such, the required solvent rinse of the original container could not be performed. Based on professional judgement, no qualifications were made.

# 1.4.3.2 Continuing Calibration Verifications

4,4-DDD (+21%) recovered above the control limits ( $\pm 20\%$ ) in the continuing calibration verification. All associated samples were non-detect for 4,4-DDD; therefore, no qualification was necessary.

# 1.4.4 Polychlorinated Biphenyls (PCBs) by Method 8082A

The following parameters were evaluated and met the required criteria. No validation flags were assigned:

- Holding times
- Method blank
- Surrogate recoveries
- LCS/LCSD recoveries and RPDs

- Initial calibration
- Initial calibration verification
- Continuing calibration verification
- LODs and LOQs

All analytical or quality parameters requiring further discussion for Method 8082A are described in the sections below.

# 1.4.4.1 Sample Preparation

Samples FWGmw-020-062118-GW, CBLmw-001-062018-GW, CBLmw-001-D-062018-GW, CBLmw-002-062018-GW, FWGmw-021-062118-GW, CBLmw-003-062118-GW, CBLmw-004-

062118, and FWGmw-018-062118-GW required a sulfuric acid clean-up, via EPA Method 3665A, to reduce matrix interferences.

### 1.4.5 Nitroguanidine by Method 8330 (Modified)

The following parameters were evaluated and met the required criteria. No validation flags were assigned:

- Holding times
- Method blanks
- LCS recoveries
- Initial calibration
- Initial calibration verification

- Initial calibration blank
- Continuing calibration verification
- Continuing calibration blank
- LODs and LOQs
- Initial calibration verification

No analytical or quality parameters required further discussion for Method 8330 (Modified).

#### 1.4.6 Perchlorate by Method 6860

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Method blank
- Initial calibration verification

- Initial calibration blank
- Continuing calibration verification
- Continuing calibration blank
- Detection limit check
- Interference check standards

No analytical or quality parameters required further discussion for Method 6860.

### 1.4.7 Explosives by Method 8330B

The following parameters were evaluated and met the required criteria. No validation flags were assigned:

- Holding times
- Method blank
- Initial calibration
- Initial calibration verification

- Initial calibration blank
- Continuing calibration blank
- LODs and LOQs

Groundwater and Environmental Investigation Services

All analytical or quality parameters requiring further discussion for Method 8330B are described in the sections below.

#### 1.4.7.1 Surrogate Recoveries

Surrogate 1,2-dinitrobenzene recovered above the control limits (83-119%) in method blank MB 280-420406/1-A (122%). All associated method blank analytes were non-detect and the surrogate recoveries an all associated samples were within control; therefore, no qualification was necessary.

Surrogate 1,2-dinitrobenze recovered below the control limits (83-119%) in method blank MB 280-420242/1-A. All associated sample results were qualified as estimated (UJ/J S).

Surrogate 1,2-dinitrobenzene recovered below the control limits (83-119%) in laboratory control sample LCS 280-420242/2-A (60%). All associated sample results were qualified as estimated (UJ/J S).

#### 1.4.7.2 LCS/LCSD Recoveries and RPDs

Several analytes recovered outside of the control limits in the LCS/LCSD associated with prep batch 420242. The following table outlines these exceedances:

| Analyte                    | LCS %R | LCSD %R | %R Limits | RPD | <b>RPD</b> Limit |
|----------------------------|--------|---------|-----------|-----|------------------|
| 1,3,5-Trinitrobenzene      | 70     | 105     | 73-125    | 40  | 20               |
| 1,3-Dinitrobenzene         | 56     | 92      | 78-120    | 49  | 20               |
| 2,4,6-Trinitrotoluene      | 58     | 91      | 71-123    | 45  | 20               |
| 2,4-Dinitrotoluene         | 48     | 84      | 78-120    | 54  | 20               |
| 2,6-Dinitrotoleune         | 46     | 81      | 77-127    | 55  | 20               |
| 2-Amino-4,6-dinitrotoluene | 41     | 73      | 79-120    | 56  | 20               |
| 2-Nitrotoluene             | 33     | 66      | 70-127    | 67  | 20               |
| 3-Nitrotoluene             | 33     | 64      | 73-125    | 65  | 20               |
| 4-Amino-2,6-dinitrotoluene | 42     | 70      | 76-125    | 51  | 20               |
| 4-Nitrotoluene             | 34     | 67      | 71-127    | 65  | 20               |
| HMX                        | 83     | 103     | 65-135    | 22  | 20               |
| Nitrobenzene               | 47     | 82      | 65-134    | 55  | 20               |
| Nitroglycerin              | 79     | 113     | 74-127    | 36  | 20               |
| PETN                       | 73     | 103     | 73-127    | 34  | 20               |
| RDX                        | 76     | 104     | 68-130    | 31  | 20               |
| Tertyl                     | 65     | 99      | 64-128    | 41  | 20               |
| %R = percent recovery      | •      | •       | •         | •   |                  |

Bolded values are outside control limits.

Camp Ravenna

Groundwater and Environmental Investigation Services Data

The LCS recovery and RPD were outside of control limits for analytes 1,3,5-trinitrobenzene, 1,3dinitrobenzene, 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and nitrobenzene. All associated sample results were qualified as estimated (UJ/J L).

The LCS recovery, LCSD recovery and RPD were outside of control limits for analytes 2-amino-4,6-dinitrotoluene, 2-nitrotoluene, 3-nitrotoluene, 4-amino-2,6-dinitrotoluene, and 4-nitrotoluene. All associated sample results were qualified as estimated (UJ/J L).

The RPD was outside of control limits for analytes HMX, nitroglycerin, PETN, RDX, and tertyl. The LCS and LCSD recoveries were within control limits for these analytes; therefore, no qualification was necessary.

m-Nitrotoluene (71%) recovered below the control limits (73-125%) in the LCS associated with prep batch 420406 on the secondary confirmation column. m-Nitrotoluene recovered within the control limits on the primary column; therefore, no qualification was necessary.

#### 1.4.7.3 MS/MSD Recoveries and RPDs

An MS/MSD was performed on sample LL3mw-246-062118-GW. Several analytes exceeded the control limits for the MS/MSD. The following table outlines the exceedances:

| Analyte                    | MS %R | MSD %R | %R Limits | RPD | <b>RPD</b> Limit |
|----------------------------|-------|--------|-----------|-----|------------------|
| 1,3-Dinitrobenzene         | 107   | 91     | 78-120    | 23  | 20               |
| 2,4-Dinitrotoluene         | 103   | 86     | 78-120    | 25  | 20               |
| 2,6-Dinitrotoleune         | 99    | 83     | 77-127    | 24  | 20               |
| 2-Amino-4,6-dinitrotoluene | 99    | 74     | 79-120    | 30  | 20               |
| 2-Nitrotoluene             | 96    | 67     | 70-127    | 42  | 20               |
| 3-Nitrotoluene             | 95    | 66     | 73-125    | 42  | 20               |
| 4-Amino-2,6-dinitrotoluene | 94    | 71     | 76-125    | 29  | 20               |
| Nitrobenzene               | 100   | 73     | 65-134    | 37  | 20               |

%R = percent recovery

Bolded values are outside control limits.

The RPD for 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,6-ditnitrotoluene, and nitrobenzene were above the control limit. The MS and MSD recoveries are within the control limits for these analytes; therefore, no qualification was necessary.

The MSD recovery and RPD were above the control limits for 2-amino-4,6-dinitrotoluene, 2nitrotoluene, 3-nitrotoluene, and 4-amino-2,6-dinitrotoluene. The associated parent sample results were qualified as estimated (UJ/J M).

# 1.4.7.4 Continuing Calibration Verification

m-Nitrotoluene recovered outside of the control limits in a continuing calibration verification on the secondary confirmation column. All of these analytes were within the control limits on the primary column; therefore, no qualification was necessary.

# 1.4.7.5 Sample Preparation

The laboratory analyst inadvertently used a 1L sample volume for analysis instead of the method required 500mL for samples CBLmw-001-062018-GW, CBLmw-001-D-062018-GW, and CBLmw-002-062018-GW, so only a portion of the sample was used in preparation. As such, the required solvent rinse of the original container could not be performed. Based on professional judgement, no qualification was necessary.

The incorrect sample volume was received by the laboratory for samples FWGmw-020-062118-GW, FWGmw-024-062118-GW, and FWGmw-017-062118-GW. A 1L sample volume for analysis instead of the method required 500mL. As such, the required solvent rinse of the original container could not be performed. Based on professional judgement, no qualification was necessary.

Samples LL1mw-088-062118-GW and FWGmw-021-062118-GW were filtered prior to analysis to reduce matrix interferences.

# 1.4.7.6 Confirmation Column

The RPD between the primary and confirmation column results for 2-amino-4,6-dinitrotoluene in samples FWGmw-021-062118-GW (85%), LL3mw-246-D-062118-GW (58%), and LL3mw-246-062118-GW (50%) exceeded 40%. The higher of the two results will be reported and qualified as estimated (J Q).

The RPD between the primary and confirmation column results for RDX in samples FWGmw-021-062118-GW (63%) and LL3mw-246-062118-GW (78%) exceeded 40%. The higher of the two results will be reported and qualified as estimated (J Q).

The RPD between the primary and confirmation column results for 4-amino-2,6-dinitrotoluene in samples FWGmw-021-062118-GW (77%) and LL3mw-246-D-062118-GW (42%) exceeded 40%. The higher of the two results will be reported and qualified as estimated (J Q).

### 1.4.8 Total Metals by Method 6010C/6020A/7470A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS/LCSD recoveries and RPDs
- Post digestion spike
- Serial dilution
- Initial and continuing calibration blanks

- Contract required detection limit standard
- Instrument tuning
- Interference check solutions
- Field duplicate

All analytical or quality issues requiring further discussion for Methods 6010C, 6020A, and/or 7470A are described in the sections below.

# 1.4.8.1 Sample Dilution

Sample LL3mw-246-062118-GW required a 5x dilution prior to mercury analysis. The reporting limits were adjusted accordingly.

# 1.4.8.2 Method Blank

Calcium (51.8  $\mu$ g/L), magnesium (12.1  $\mu$ g/L), and sodium (158  $\mu$ g/L) were detected in the method blank at a concentration above their respective LOQs (1000  $\mu$ g/L, 100  $\mu$ g/L, & 5000  $\mu$ g/L).

Calcium and magnesium were detected at concentrations above the LOQ in all associated samples; therefore, no qualification was necessary.

Sodium was detected at a concentration below the LOQ in samples CBLmw-001-06218-GW (1700  $\mu$ g/L), CBLmw-001-D-062018-GW (1600  $\mu$ g/L), CBLmw-002-062018-GW (2600  $\mu$ g/L), FWGmw-021-062118-GW (3500  $\mu$ g/L), CBLmw-003-062118-GW (1500  $\mu$ g/L), CBLmw-004-062118-GW (2100  $\mu$ g/L), LL3mw-246-D-062118-GW (3200  $\mu$ g/L), LL3mw-246-062118-GW (3200  $\mu$ g/L). These results were qualified as non-detect at the LOQ (U B). All other associated sample results were at concentrations above the LOQ; therefore, no qualification was necessary.

# 1.4.8.3 MS/MSD Recoveries and RPDs

An MS/MSD was performed on sample LL3mw-246-062118-GW. Mercury recovered below the control limits (82-119%) in the MS (77%) and MSD (78%). The associated parent sample result was qualified as estimated (J M).

# 1.4.8.4 Initial/Continuing Calibrations Verifications

Sodium recovered above control limits (80-120%) in the low-level continuing calibration verification CCVL 280-421256/74 (125%). All associated, detected sample results were qualified as estimated (J CC).

Barium recovered below control limits (80-120%) in the low-level continuing calibration verification CCVL 280-421258/134 (68%) and CCVL 280-421258/146 (79%). All associated sample results were qualified as estimated (J CC).

# 1.4.9 Alkalinity by Method 2320B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicate

All analytical or quality issues requiring further discussion for Method 2320B are described in the sections below.

### 1.4.9.1 Method Blanks

Alkalinity was detected in the method blanks MB 280-421103/5 (2.86 mg/L) and MB 280-421103/31 (1.167mg/L) at a concentration below the LOQ (5.0 mg/L). All associated samples had alkalinity concentrations above the LOQ; therefore, no qualification was necessary.

#### 1.4.10 Nitrocellulose by Method 353.2

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicate

No analytical or quality issues required further discussion for Method 353.2.

### 1.4.11 Total Cyanide by Method 9012B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- Method blank
- LCS/LCSD recoveries and RPDs
- MS/MSD recoveries and RPDs
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Low and high level control sample recoveries
- Field duplicate

No analytical or quality issues required further discussion for Method 9012B.

### 1.4.12 Sulfide by Method 9034

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- Method blank

- LCS/LCSD recoveries and RPDs
- MS/MSD recoveries and RPDs

No analytical or quality issues required further discussion for Methods 9034.

### 1.4.13 Corrosivity (pH) by Method 9040C

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

• Holding times

• LCS recoveries

• LODs and LOQs

No analytical or quality issues required further discussion for Methods 9040C.

### 1.4.14 Anions by Method 9056A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- LODs and LOQs
- Method blank
- LCS/LCSD recoveries and RPDs
- MS/MSD recoveries and RPDs

- Initial calibration verification
- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank

All analytical or quality issues requiring further discussion for Method 9056A are described in the sections below.

# 1.4.14.1 Holding Time

Samples FWGmw-020-062118-GW, CBLmw-003-062118-GW and CBLmw-062118-GW were analyzed for nitrate as N outside of the sample holding time. All nitrate as N results for these samples were qualified as estimated (J H).

# 1.4.14.2 Laboratory Duplicate

A laboratory duplicate was performed on sample CBLmw-004-062118-GW. The RPD for nitrate as N (14%) exceeded the control limit (10%). The associated parent sample result was qualified as estimated (J D).

# DATA VALIDATION TABLE

| SDG          | Field Sample ID       | Lab Sample ID | Matrix       | Parameter                  | CAS Number | Units | Result | Lab Flag | DV Flag | Detection | LOQ  | LOD  | MDL   | AnalyticMethod | Reason Code |
|--------------|-----------------------|---------------|--------------|----------------------------|------------|-------|--------|----------|---------|-----------|------|------|-------|----------------|-------------|
| 280-111344-1 | FWGmw-020-062118-GW   | 280-111344-1  | Ground Water | Sodium                     | 7440-23-5  | μg/L  | 16000  | v        | j       | у         | 5000 | 350  | 120   | 6010C          | CC          |
| 280-111344-1 | FWGmw-020-062118-GW   | 280-111344-1  | Ground Water | Barium                     | 7440-39-3  | μg/L  | 84     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | FWGmw-020-062118-GW   | 280-111344-1  | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | μg/L  | 28     | uq       | r       | n         | 47   | 28   | 9.5   | 8270D          | L           |
| 280-111344-1 | FWGmw-020-062118-GW   | 280-111344-1  | Ground Water | Nitrate as N               | 14797-55-8 | mg/L  | 0.19   | j h      | j       | у         | 0.5  | 0.1  | 0.042 | 9056A          | Н           |
| 280-111344-1 | CBLmw-004-062118-GW   | 280-111344-10 | Ground Water | Sodium                     | 7440-23-5  | μg/L  | 5000   | j        | u       | n         | 5000 | 350  | 120   | 6010C          | В           |
| 280-111344-1 | CBLmw-004-062118-GW   | 280-111344-10 | Ground Water | Barium                     | 7440-39-3  | μg/L  | 20     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | CBLmw-004-062118-GW   | 280-111344-10 | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | µg/L  | 30     | uq       | r       | n         | 50   | 30   | 10    | 8270D          | L           |
| 280-111344-1 | CBLmw-004-062118-GW   | 280-111344-10 | Ground Water | Nitrate as N               | 14797-55-8 | mg/L  | 0.37   | j h      | j       | у         | 0.5  | 0.1  | 0.042 | 9056A          | H D         |
| 280-111344-1 | LL3mw-246-D-062118-GW | 280-111344-11 | Ground Water | Sodium                     | 7440-23-5  | μg/L  | 5000   | j        | u       | n         | 5000 | 350  | 120   | 6010C          | В           |
| 280-111344-1 | LL3mw-246-D-062118-GW | 280-111344-11 | Ground Water | Barium                     | 7440-39-3  | μg/L  | 14     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | LL3mw-246-D-062118-GW | 280-111344-11 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L  | 0.47   | j1 m     | j       | у         | 0.22 | 0.13 | 0.055 | 8330B          | Q           |
| 280-111344-1 | LL3mw-246-D-062118-GW | 280-111344-11 | Ground Water | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | μg/L  | 0.42   | j1       | j       | у         | 0.22 | 0.13 | 0.063 | 8330B          | Q           |
| 280-111344-1 | FWGmw-018-062118-GW   | 280-111344-12 | Ground Water | Sodium                     | 7440-23-5  | μg/L  | 18000  | v        | j       | у         | 5000 | 350  | 120   | 6010C          | CC          |
| 280-111344-1 | FWGmw-018-062118-GW   | 280-111344-12 | Ground Water | Barium                     | 7440-39-3  | μg/L  | 69     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | FWGmw-018-062118-GW   | 280-111344-12 | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | μg/L  | 28     | uq       | r       | n         | 47   | 28   | 9.4   | 8270D          | L           |
| 280-111344-1 | FWGmw-024-062118-GW   | 280-111344-14 | Ground Water | Sodium                     | 7440-23-5  | µg/L  | 5500   | v        | j       | у         | 5000 | 350  | 120   | 6010C          | CC          |
| 280-111344-1 | FWGmw-024-062118-GW   | 280-111344-14 | Ground Water | Barium                     | 7440-39-3  | µg/L  | 8.5    | v        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | FWGmw-024-062118-GW   | 280-111344-14 | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | µg/L  | 29     | uq       | r       | n         | 48   | 29   | 9.6   | 8270D          | L           |
| 280-111344-1 | FWGmw-017-062118-GW   | 280-111344-15 | Ground Water | Sodium                     | 7440-23-5  | µg/L  | 14000  | v        | j       | у         | 5000 | 350  | 120   | 6010C          | CC          |
| 280-111344-1 | FWGmw-017-062118-GW   | 280-111344-15 | Ground Water | Barium                     | 7440-39-3  | µg/L  | 120    | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | FWGmw-017-062118-GW   | 280-111344-15 | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | µg/L  | 28     | uq       | r       | n         | 47   | 28   | 9.5   | 8270D          | L           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | Sodium                     | 7440-23-5  | µg/L  | 5000   | j        | u       | n         | 5000 | 350  | 120   | 6010C          | В           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | Barium                     | 7440-39-3  | µg/L  | 13     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | Mercury                    | 7439-97-6  | µg/L  | 0.93   | j j1 d   | j       | у         | 1    | 0.4  | 0.14  | 7470A          | М           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L  | 0.29   | j1       | j       | у         | 0.22 | 0.13 | 0.056 | 8330B          | М           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | 2-Nitrotoluene             | 88-72-2    | µg/L  | 0.22   | u j1     | uj      | n         | 0.44 | 0.22 | 0.094 | 8330B          | М           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | 3-Nitrotoluene             | 99-08-1    | µg/L  | 0.22   | u j1     | uj      | n         | 0.44 | 0.22 | 0.092 | 8330B          | М           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | µg/L  | 0.3    | j1       | j       | у         | 0.22 | 0.13 | 0.063 | 8330B          | М           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | µg/L  | 0.5    | j1       | j       | у         | 0.22 | 0.13 | 0.056 | 8330B          | Q           |
| 280-111344-1 | LL3mw-246-062118-GW   | 280-111344-17 | Ground Water | RDX                        | 121-82-4   | µg/L  | 0.25   | j1       | j       | у         | 0.22 | 0.13 | 0.057 | 8330B          | Q           |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | Sodium                     | 7440-23-5  | μg/L  | 5000   | j        | u       | n         | 5000 | 350  | 120   | 6010C          | В           |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | Barium                     | 7440-39-3  | μg/L  | 33     | q        | j       | у         | 3    | 0.95 | 0.29  | 6020A          | CC          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 1,3,5-Trinitrobenzene      | 99-35-4    | µg/L  | 0.46   | uq       | uj      | n         | 1.2  | 0.46 | 0.23  | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 1,3-Dinitrobenzene         | 99-65-0    | µg/L  | 0.23   | uq       | uj      | n         | 0.46 | 0.23 | 0.1   | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 2,4,6-Trinitrotoluene      | 118-96-7   | μg/L  | 0.23   | uq       | uj      | n         | 0.46 | 0.23 | 0.084 | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 2,4-Dinitrotoluene         | 121-14-2   | µg/L  | 0.23   | uq       | uj      | n         | 0.46 | 0.23 | 0.097 | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 2,6-Dinitrotoluene         | 606-20-2   | μg/L  | 0.23   |          | uj      | n         | 0.23 | 0.23 | 0.074 | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  |              | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L  | 0.14   |          | uj      | n         | 0.23 | 0.14 | 0.059 | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  |              | 2-Nitrotoluene             | 88-72-2    | μg/L  | 0.23   |          | uj      | n         | 0.46 | 0.23 | 0.099 | 8330B          | S L         |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 3-Nitrotoluene             | 99-08-1    | μg/L  | 0.23   | uq       | uj      | n         | 0.46 | 0.23 | 0.096 | 8330B          | SL          |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | μg/L  | 0.14   |          | uj      | n         | 0.23 | 0.14 | 0.067 | 8330B          | S L         |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water | 4-Nitrotoluene             | 99-99-0    | μg/L  | 0.46   |          | uj      | n         | 1.2  | 0.46 | 0.23  | 8330B          | S L         |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3  | Ground Water |                            | 2691-41-0  | μg/L  | 0.23   |          | uj      | n         | 0.46 | 0.23 |       | 8330B          | S           |
|              |                       |               |              |                            |            | 1.9.2 | 5.20   | 1        | j       | -         | 50   | 0.20 |       |                |             |

Camp Ravenna

Groundwater and Environmental Investigation Services

Data Validation Report

| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | Nitrobenzene               | 98-95-3    | µg/L         | 0.23 | uq      | ui | n | 0.46 | 0.23 | 0.11  | 8330B          | SL    |
|--------------|-----------------------|--------------|--------------|----------------------------|------------|--------------|------|---------|----|---|------|------|-------|----------------|-------|
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | Nitroglycerin              | 55-63-0    | μg/L         | 2.3  |         | ui | n | 3.5  | 2.3  | 1.1   | 8330B          | S S S |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | PETN                       | 78-11-5    | μg/L<br>μg/L | 1.4  | uq      | ui | n | 2.3  | 1.4  | 0.48  | 8330B          | S     |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | RDX                        | 121-82-4   | μg/L         | 0.14 | uq      | ui | n | 0.23 | 0.14 | 0.06  | 8330B          | S     |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | Tetryl                     | 479-45-8   | μg/L         | 0.23 | uq      | ui | n | 0.28 | 0.23 | 0.092 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | 2,4-Dinitrotoluene         | 121-14-2   | μg/L         | 0.21 | uhq     | uj | n | 0.41 | 0.21 | 0.086 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | 2,6-Dinitrotoluene         | 606-20-2   | μg/L         | 0.21 | uhq     | uj | n | 0.21 | 0.21 | 0.066 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-062018-GW   | 280-111344-3 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L         | 0.12 | uhq     | uj | n | 0.21 | 0.12 | 0.052 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | Sodium                     | 7440-23-5  | μg/L         | 5000 | i       | u  | n | 5000 | 350  | 120   | 6010C          | В     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | Barium                     | 7440-39-3  | μg/L         | 32   | q       | i  | y | 3    | 0.95 | 0.29  | 6020A          | CC    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 1,3,5-Trinitrobenzene      | 99-35-4    | μg/L         | 0.5  | uq      | uj | n | 1.3  | 0.5  | 0.25  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 1,3-Dinitrobenzene         | 99-65-0    | μg/L         | 0.25 | uq      | uj | n | 0.5  | 0.25 | 0.11  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2,4,6-Trinitrotoluene      | 118-96-7   | μg/L         | 0.25 | uq      | uj | n | 0.5  | 0.25 | 0.091 | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2,4-Dinitrotoluene         | 121-14-2   | μg/L         | 0.25 | uq      | uj | n | 0.5  | 0.25 | 0.11  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2,6-Dinitrotoluene         | 606-20-2   | μg/L         | 0.25 | u q     | uj | n | 0.25 | 0.25 | 0.081 | 8330B          | S L   |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L         | 0.15 | uq      | uj | n | 0.25 | 0.15 | 0.064 | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2-Nitrotoluene             | 88-72-2    | μg/L         | 0.25 | uq      | uj | n | 0.5  | 0.25 | 0.11  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 3-Nitrotoluene             | 99-08-1    | μg/L         | 0.25 | uq      | uj | n | 0.5  | 0.25 | 0.1   | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | μg/L         | 0.15 | uq      | uj | n | 0.25 | 0.15 | 0.073 | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 4-Nitrotoluene             | 99-99-0    | µg/L         | 0.5  | uq      | uj | n | 1.3  | 0.5  | 0.25  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | HMX                        | 2691-41-0  | µg/L         | 0.25 | u m q   | uj | n | 0.5  | 0.25 | 0.11  | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | Nitrobenzene               | 98-95-3    | μg/L         | 0.25 | u q     | uj | n | 0.5  | 0.25 | 0.11  | 8330B          | SL    |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | Nitroglycerin              | 55-63-0    | μg/L         | 2.5  | u q     | uj | n | 3.8  | 2.5  | 1.2   | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | PETN                       | 78-11-5    | μg/L         | 1.5  | u q     | uj | n | 2.5  | 1.5  | 0.52  | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | RDX                        | 121-82-4   | μg/L         | 0.15 | u q     | uj | n | 0.25 | 0.15 | 0.066 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | Tetryl                     | 479-45-8   | µg/L         | 0.25 | u q     | uj | n | 0.3  | 0.25 | 0.1   | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2,4-Dinitrotoluene         | 121-14-2   | μg/L         | 0.21 | u h m q | uj | n | 0.42 | 0.21 | 0.088 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2,6-Dinitrotoluene         | 606-20-2   | µg/L         | 0.21 | u h q   | uj | n | 0.21 | 0.21 | 0.068 | 8330B          | S     |
| 280-111344-1 | CBLmw-001-D-062018-GW | 280-111344-4 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | µg/L         | 0.13 | u h q   | uj | n | 0.21 | 0.13 | 0.053 | 8330B          | S     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | Sodium                     | 7440-23-5  | µg/L         | 5000 | j       | u  | n | 5000 | 350  | 120   | 6010C          | В     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water | Barium                     | 7440-39-3  | µg/L         | 51   | q       | j  | у | 3    | 0.95 | 0.29  | 6020A          | CC    |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water | 1,3,5-Trinitrobenzene      | 99-35-4    | µg/L         | 0.49 | uq      | uj | n | 1.2  | 0.49 | 0.25  | 8330B          | SL    |
|              | CBLmw-002-062018-GW   | 280-111344-5 |              | 1,3-Dinitrobenzene         | 99-65-0    | µg/L         | 0.25 |         | uj | n | 0.49 | 0.25 |       | 8330B          | SL    |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 2,4,6-Trinitrotoluene      | 118-96-7   | μg/L         |      | uq      | uj | n | 0.49 | 0.25 |       | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 2,4-Dinitrotoluene         | 121-14-2   | µg/L         | 0.25 | uq      | uj | n | 0.49 | 0.25 | 0.1   | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 2,6-Dinitrotoluene         | 606-20-2   | µg/L         | 0.25 | u q     | uj | n | 0.25 | 0.25 |       | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | µg/L         | 0.15 |         | uj | n | 0.25 | 0.15 |       | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 2-Nitrotoluene             | 88-72-2    | µg/L         | 0.25 | uq      | uj | n | 0.49 | 0.25 | 0.11  | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 3-Nitrotoluene             | 99-08-1    | µg/L         | 0.25 | uq      | uj | n | 0.49 | 0.25 | 0.1   | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | µg/L         | 0.15 |         | uj | n | 0.25 | 0.15 | 0.071 | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water | 4-Nitrotoluene             | 99-99-0    | µg/L         | 0.49 |         | uj | n | 1.2  | 0.49 |       | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | HMX                        | 2691-41-0  | µg/L         | 0.25 | u m q   | uj | n | 0.49 | 0.25 | 0.11  | 8330B          | S     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 |              | Nitrobenzene               | 98-95-3    | µg/L         | 0.25 | uq      | uj | n | 0.49 | 0.25 | 0.11  | 8330B          | S L   |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water |                            | 55-63-0    | µg/L         | 2.5  |         | uj | n | 3.7  | 2.5  | 1.1   | 8330B          | S     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water |                            | 78-11-5    | µg/L         | 1.5  | uq      | uj | n | 2.5  | 1.5  | 0.51  | 8330B<br>8330B | S     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water |                            | 121-82-4   | µg/L         |      |         | uj | n | 0.25 | 0.15 | 0.064 |                | S     |
| 280-111344-1 | CBLmw-002-062018-GW   | 280-111344-5 | Ground Water |                            | 479-45-8   | µg/L         | 0.25 | uq      | uj | n | 0.3  | 0.25 | 0.098 | 8330B          | S     |

Camp Ravenna

Groundwater and Environmental Investigation Services

Data Validation Report

| 280-111344-1 | CBLmw-002-062018-GW | 280-111344-5 | Ground Water | 2,4-Dinitrotoluene         | 121-14-2   | μg/L | 0.13  | jhq    | j  | у | 0.43 | 0.21 | 0.089 | 8330B | S  |
|--------------|---------------------|--------------|--------------|----------------------------|------------|------|-------|--------|----|---|------|------|-------|-------|----|
| 280-111344-1 | CBLmw-002-062018-GW | 280-111344-5 | Ground Water | 2,6-Dinitrotoluene         | 606-20-2   | μg/L | 0.081 | jhq    | j  | У | 0.21 | 0.21 | 0.069 | 8330B | S  |
| 280-111344-1 | CBLmw-002-062018-GW | 280-111344-5 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | μg/L | 0.13  | u h q  | uj | n | 0.21 | 0.13 | 0.054 | 8330B | S  |
| 280-111344-1 | LL1mw-088-062118-GW | 280-111344-6 | Ground Water | Sodium                     | 7440-23-5  | μg/L | 27000 | v      | j  | У | 5000 | 350  | 120   | 6010C | CC |
| 280-111344-1 | LL1mw-088-062118-GW | 280-111344-6 | Ground Water | Barium                     | 7440-39-3  | µg/L | 40    | q      | j  | У | 3    | 0.95 | 0.29  | 6020A | CC |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Sodium                     | 7440-23-5  | μg/L | 3500  | j      | j  | У | 5000 | 350  | 120   | 6010C | CC |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Barium                     | 7440-39-3  | μg/L | 14    | q      | j  | У | 3    | 0.95 | 0.29  | 6020A | CC |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | bis(2-Ethylhexyl)phthalate | 117-81-7   | μg/L | 1.9   | u      | uj | n | 9.5  | 1.9  | 0.53  | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Butyl benzyl phthalate     | 85-68-7    | μg/L | 1.9   | u      | uj | n | 19   | 1.9  | 0.95  | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Diethylphthalate           | 84-66-2    | μg/L | 0.95  | u      | uj | n | 19   | 0.95 | 0.36  | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Dimethyl phthalate         | 131-11-3   | µg/L | 0.47  | u      | uj | n | 19   | 0.47 | 0.2   | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Di-N-Butyl phthalate       | 84-74-2    | μg/L | 4.2   | u      | uj | n | 19   | 4.2  | 1.1   | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | Di-N-Octyl phthalate       | 117-84-0   | µg/L | 0.95  | u      | uj | n | 19   | 0.95 | 0.33  | 8270D | S  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | RDX                        | 121-82-4   | μg/L | 0.11  | j j1 m | j  | У | 0.2  | 0.12 | 0.053 | 8330B | Q  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | 2-Amino-4,6-dinitrotoluene | 35572-78-2 | µg/L | 0.42  | j1     | j  | у | 0.2  | 0.12 | 0.052 | 8330B | Q  |
| 280-111344-1 | FWGmw-021-062118-GW | 280-111344-7 | Ground Water | 4-Amino-2,6-dinitrotoluene | 19406-51-0 | μg/L | 0.43  | j1     | j  | У | 0.2  | 0.12 | 0.059 | 8330B | Q  |
| 280-111344-1 | CBLmw-003-062118-GW | 280-111344-9 | Ground Water | Sodium                     | 7440-23-5  | μg/L | 5000  | j      | u  | n | 5000 | 350  | 120   | 6010C | В  |
| 280-111344-1 | CBLmw-003-062118-GW | 280-111344-9 | Ground Water | Barium                     | 7440-39-3  | µg/L | 38    | q      | j  | у | 3    | 0.95 | 0.29  | 6020A | CC |
| 280-111344-1 | CBLmw-003-062118-GW | 280-111344-9 | Ground Water | Hexachlorocyclopentadiene  | 77-47-4    | μg/L | 28    | uq     | r  | n | 47   | 28   | 9.5   | 8270D | L  |
| 280-111344-1 | CBLmw-003-062118-GW | 280-111344-9 | Ground Water | Nitrate as N               | 14797-55-8 | mg/L | 0.91  | h      | j  | У | 0.5  | 0.1  | 0.042 | 9056A | Н  |

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 280-111344-2

Prepared For:



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

# THIS PAGE INTENTIONALLY LEFT BLANK

### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validation Chemist and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

for Erica Fisher

Erica Fisher, Validation Chemist, TEC-WESTON JV

V <u>10 | 15 | 1 B</u> Date

A. C.

Peter Chapman, Senior Chemist, TEC-WESTON JV

10/15/18 Date

ð

# THIS PAGE INTENTIONALLY LEFT BLANK

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **280-111344-2**.

TestAmerica, Inc., Canton, Ohio performed the analyses listed in the table below:

| Parameters      | Analytical Method   | Laboratory Location |
|-----------------|---------------------|---------------------|
| Sulfate/Nitrite | SW-846 Method 9056A | Arvada, CO          |

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the *Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National Functional Guidelines for Organic Data Review (EPA 2014)*; and *USEPA National Functional Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The following samples were validated:

| Sample ID           | Laboratory ID | Sample Date | Matrix      | OC Sample | SO4/NO2      |
|---------------------|---------------|-------------|-------------|-----------|--------------|
|                     |               | 06/21/2018  | Groundwater | 20 Sumpto | <u> </u>     |
|                     |               |             |             |           | •            |
| CBLmw-004-062118-GW | 280-111344-10 | 06/21/2018  | Groundwater |           | $\checkmark$ |

# DATA VALIDATION REPORT

# 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

# 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 27, 2018; the samples were received in good condition, under chain-of-custody, and custody seals intact. Samples were properly preserved and cooler temperatures were less than  $6^{\circ}$ C.

# 1.3 TECHNICAL DATA VALIDATION

### 1.3.1 Sulfate/Nitrite by Method 9056A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- LODs and LOQs
- LCS recoveries
- Method blank
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Continuing calibration blank
- Field duplicate

The nitrate analyses were conducted past the 48 hour holding time as required by the method. Therefore, the non-detect and detected nitrate/nitrite results for these two samples were qualified as estimated values (UJ H).

No analytical or quality parameters requiring further discussion were identified for Method 9056A.

# DATA VALIDATION TABLE

| SDG      | Field Sample<br>ID | Lab Sample<br>ID | Matrix | Parameter | Units | Result | Lab<br>Flag | DV<br>Flag | Detect | LOQ | LOD | MDL | Method | Reason<br>Code |
|----------|--------------------|------------------|--------|-----------|-------|--------|-------------|------------|--------|-----|-----|-----|--------|----------------|
| 280-     | CBLmw-003-         | 280-111344-      | Ground |           |       |        |             |            |        |     |     |     |        |                |
| 111344-2 | 062118-GW          | 9                | Water  | Nitrite   | μg/L  | 100    | u h         | uj         | n      | 500 | 100 | 49  | 9056A  | Н              |
| 280-     | CBLmw-004-         | 280-111421-      | Ground |           |       |        |             |            |        |     |     |     |        |                |
| 111344-2 | 062118-GW          | 10               | Water  | Nitrite   | μg/L  | 100    | u h         | uj         | n      | 500 | 100 | 49  | 9056A  | Н              |

Data Validation Report Remedial Investigation at RVAAP-66 Facility Wide Groundwater Semi-Annual & Quarterly Sampling Event for June 2018

> Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio

Contract Number: W9133L-14-D-0008 Task Order Number: 0003

Laboratory SDG 280-111377-1

**Prepared For:** 



#### **National Guard Bureau**

NGB-ZC-AQ 111 South George Mason Drive Building 2, 4<sup>th</sup> Floor Arlington, VA 22204-1373

Prepared By:

#### **TEC-WESTON Joint Venture**

2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903-4895

# THIS PAGE INTENTIONALLY LEFT BLANK

#### CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TEC-WESTON Joint Venture has completed this Data Validation Report. Data validation was performed by the Validator and Secondary QC Review was performed by a Senior Chemist. Signatures indicate the report is approved for release.

Erica Fisher, Validator, TEC-WESTON JV

08/01/2018 Date

Peter Chapman, Senior Chemist, TEC-WESTON JV

8/1/18

Date

Camp Ravenna

# THIS PAGE INTENTIONALLY LEFT BLANK

# INTRODUCTION

This report summarizes the results of the **EPA Stage 2B** data validation performed on groundwater samples and quality control (QC) sample data for the Remedial Investigation for RVAAP-66, Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio. Results are reported in laboratory sample delivery group (SDG) **280-111377-1**.

| Parameters                              | Analytical Method | Laboratory Location |
|-----------------------------------------|-------------------|---------------------|
| Volatile Organic Compounds (VOCs)       | 8260B             | Denver, CO          |
| Semi-Volatile Organic Compounds (SVOCs) | 8270D             | Denver, CO          |
| Explosives                              | 8330B             | Denver, CO          |
| Metals                                  | 6010C/6020A/7470A | Denver, CO          |
| Alkalinity                              | 2320B             | Denver, CO          |
| Total Cyanide                           | 9012B             | Denver, CO          |
| Sulfide                                 | 9034              | Denver, CO          |

TestAmerica, Inc., Denver, Colorado performed the analyses listed in the table below:

The data were reviewed using guidance and quality control criteria documented in the *Draft Remedial Investigation Work Plan for Groundwater and Environmental Services for RVAAP-66 Facility-Wide Groundwater, Appendix A: Sampling Analysis Plan, A.2: Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) Former Ravenna Army Ammunition Plant, Portage and Trumbull Counties, Ohio Attachment A Data Validation Evaluation Sheets (January 2016)* which are based on the Department of Defense Quality Systems Manual (DoD QSM), Version 5.0; USEPA National *Functional Guidelines for Organic Data Review (EPA 2014)*; and USEPA National Functional *Guidelines for Inorganic Data Review (EPA 2014)*, the analytical methods, and professional judgment.

During data validation, qualifiers are assigned to assist in proper data interpretation. If values are estimated, data may be used for site evaluation purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. Data that have been rejected (R) should not be used for any purpose. Results with no qualifiers meet all data quality goals as outlined in the UFP-QAPP.

The data was reviewed and validated by calculating Relative Percent Difference (RPD) between spiked sample values according to the USEPA National Functional Guidelines for Organic Data *Review* (*EPA 2014*) and *USEPA National Functional Guidelines for Inorganic Data Review* (*EPA 2014*). Therefore, the RPDs were calculated using the percent recovery values as stated in the above referenced USEPA documents. SW-846 Methods were utilized for this project and they recommend using the actual spiked sample values to calculate RPD values. However, the laboratory used varying spike amounts due to sample aliquot and percent moisture differences which lead to variations in the spike amounts making it very difficult to compare the spiked sample values. These differences would have created poor precision results for the spiked sample values that were not necessarily indicative of the data quality. The use of comparing spike recovery values in this case was a much better indicator of analytical precision.

The following samples were validated:

| Sample ID             | Laboratory ID | Sample Date | Matrix      | QC Sample       | VOCs | SVOCs | Explosives   | Metals | Arsenic | Total<br>Cyanide | Alkalinity |
|-----------------------|---------------|-------------|-------------|-----------------|------|-------|--------------|--------|---------|------------------|------------|
| FWGmw-007-062518-GW   | 280-111377-1  | 06/25/18    | Groundwater |                 |      | ✓     | ✓            | ✓      |         |                  |            |
| FBQmw-171-062518-GW   | 280-111377-2  | 06/25/18    | Groundwater |                 |      |       |              |        | ✓       | $\checkmark$     | ✓          |
| FBQmw-171-D-062518-GW | 280-111377-3  | 06/25/18    | Groundwater | Field Duplicate |      |       |              |        | ✓       | $\checkmark$     | ✓          |
| FBQmw-172-062518-GW   | 280-111377-4  | 06/25/18    | Groundwater |                 |      |       |              |        |         | $\checkmark$     |            |
| LL11mw-005-062518-GW  | 280-111377-5  | 06/25/18    | Groundwater |                 |      |       |              |        |         | $\checkmark$     |            |
| LL7mw-001-062518-GW   | 280-111377-6  | 06/25/18    | Groundwater |                 | ~    | ✓     | ~            | ~      |         | $\checkmark$     |            |
| LL7mw-006-62518-GW    | 280-111377-7  | 06/25/18    | Groundwater |                 |      |       | $\checkmark$ |        |         |                  |            |
| TB-062518-01          | 280-111377-8  | 06/25/18    | Groundwater | Trip Blank      | ~    |       |              |        |         |                  |            |

Some samples were analyzed for natural attenuation parameters. Natural attenuation parameters are reported, but not validated in accordance with the QAPP.

# DATA VALIDATION REPORT

### 1.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. All requested target analytes were reported for each sample.

### 1.2 SAMPLE RECEIPT

The samples were received by the laboratory on June 26, 2018; the samples were received in good condition, under chain-of-custody, properly preserved and cooler temperatures were less than 4°C. The laboratory noted that the coolers were received without a custody seal present; however, the shipping tape was intact and no evidence of sample volume tampering was evident.

### 1.3 **DEFINITIONS**

**Detection limit (DL):** The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration with 99% confidence. At the DL, the false positive rate is 1%. A DL may be used as the lowest concentration for reliably reporting a detection of a specific matrix with a specific method with 99% confidence.

**Limit of detection (LOD):** The smallest concentration of a substance that must be present in a sample in order to be detected at the DL with 99% confidence. At the LOD, the false negative rate is 1%. An LOD may be used as the lowest concentration for reliably reporting a non-detect of a specific analyte in a specific matrix with a specific method with 99% confidence.

**Limits of Quantitation (LOQ):** The smallest concentration that produces a quantitative result with known and recorded precision and bias. For DoD/DOE projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard and within the calibration range.

| Validation<br>Flag | Reason<br>Code | Description                                                       |
|--------------------|----------------|-------------------------------------------------------------------|
| UJ                 | Q              | Estimated non-detection; professional judgement.                  |
| J                  | L              | Estimated detection; LCS/LCSD percent recovery or RPD exceedance. |
| J                  | IC             | Estimated detection; initial calibration criteria not met.        |

The following validation flags and reason codes were applied:

Groundwater and Environmental Investigation Services

Data Validation Report

| Validation<br>Flag | Reason<br>Code | Description                                                       |
|--------------------|----------------|-------------------------------------------------------------------|
| J                  | CC             | Estimated detection; continuing calibration criteria not met.     |
| UJ                 | CC             | Estimated non-detection; continuing calibration criteria not met. |

# 1.4 TECHNICAL DATA VALIDATION

#### 1.4.1 Volatile Organic Compounds by Method 8260B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- Method blanks
- MS/MSD recoveries and RPDs
- LODs and LOQs
- Instrument tuning

- Internal standard area counts
- Initial calibration
- Initial calibration verification
- Closing calibration verification
- Trip blank

All analytical or quality parameters requiring further discussion for Method 8260B are described in the sections below.

## 1.4.1.1 LCS/LCSD Recoveries and RPDs

All LCS/LCSD recoveries and RPDs were within control limits with the exception of the exceedances presented in the following table:

| Analyte        | LCS<br>%R | LCSD<br>%R | %R QC<br>Limits | RPD | RPD<br>Limits |
|----------------|-----------|------------|-----------------|-----|---------------|
| Bromoethane    | 168       | 164        | 53-141          | 2   | 20            |
| Chloroethane   | 156       | 160        | 60-138          | 2   | 20            |
| Chloromethane  | 144       | 143        | 50-139          | 1   | 20            |
| Vinyl chloride | 138       | 128        | 58-137          | 7   | 20            |

%R = percent recovery

Bolded values are outside control limits.

The LCS and LCSD recoveries for bromoethane, chloroethane, chloromethane and vinyl chloride are above the acceptable limits, although the RPD was within acceptable limits. However, the analytes were not detected in the associated samples, therefore no qualification is necessary.

# 1.4.2 Semivolatile Organic Compounds by Method 8270D

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- Method blanks
- Surrogate recoveries
- LCS/LCSD recoveries and RPDs
- LODs and LOQs
- Instrument tuning

- Internal standard area counts
- Initial calibration
- Initial calibration verification
- Continuing calibration verification
- Closing calibration verification
- Field duplicates

# 1.4.3 Explosives by Method 8330B

The following parameters were evaluated and met the required criteria. No validation flags were assigned:

- Holding times
- Method blank

•

- Surrogate recoveries
  - LCS/LCSD recoveries and RPDs
- Initial calibration
- Initial calibration verification
- LODs and LOQs

All analytical or quality parameters requiring further discussion for Method 8330B are described in the sections below.

# 1.4.3.1 Sample Preparation

Samples FWGmw-007-062518-GW, LL7mw-001-062518-GW and LL7mw-006-62518-GW were filtered prior to analysis to reduce matrix interferences.

# 1.4.3.2 Continuing Calibration Verifications

The percent difference (%D) for 2-nitrotoluene (-32.9%), 2,4,6-trinitrotoluene (-33.8%) and PETN (-31.1%) exceeded the QC limit ( $\pm$ 20%) on the secondary column for continuing calibration verification sample CCV 280-421027/7 bracketing the samples in the SDG. All associated sample results are therefore qualified estimated (UJ CC).

The percent difference (%D) for 2-nitrotoluene (-33.5%) 3-nitrotoluene (-21.5%), 2,6dinitrotoluene (-23.5%), 2,4,6-trinitrotoluene (-37.3%) and PETN (-33.6%) exceeded the QC limit ( $\pm 20\%$ ) on the second column for continuing calibration verification sample CCV 280-421027/18 bracketing the samples in this SDG. All associated sample results are therefore qualified estimated (UJ CC).

# 1.4.3.3 Second Column Confirmation

The RPD between the primary and secondary column (40.1%) marginally exceeded the acceptable limit (40%) for RDX in sample LL7mw-006-62518-GW and is therefore qualified estimated (J Q).

#### 1.4.4 Total Metals by Method 6010C/6020A/7470A

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- Method blank
- LODs and LOQs
- LCS/LCSD recoveries and RPDs
- Post digestion spike
- Serial dilution

- Initial and continuing calibration blanks
- Contract required detection limit standard
- Instrument tuning
- Interference check solutions
- Field duplicate

All analytical or quality issues requiring further discussion for Methods 6010C, 6020A, and/or 7470A are described in the sections below.

## 1.4.4.1 Initial/Continuing Calibrations Verifications

Beryllium (126%) recovered above control limits (80-120%) in the low-level initial calibration verification ICVL 280-42124/11. Beryllium (125%) also recovered above control limits in the low-level continuing calibration verification 280-421124/206. All associated samples are qualified estimated (J/UJ IC/CC).

Manganese (126%) recovered above control limits (80-120%) in the low-level continuing calibration verification CCVL 280-421124/193. All associated sample results are qualified estimated (J/CC).

# 1.4.5 Total Cyanide by Method 9012B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- Method blank
- MS/MSD sample recovery and RPD
- Initial calibration verification

- Initial calibration blank
- Continuing calibration blank
- Low and high level control sample recoveries
- Field duplicate
- Continuing calibration verification

All analytical or quality issues requiring further discussion for Methods 9012B are described in the sections below.

# 1.4.5.1 LCS/LCSD Recoveries and RPDs

Total cyanide recovered above the control limits (83-116%) in the LCS (133%) and LCSD (131%), though the RPD (1%) was within control limits (20%). Total cyanide was detected in all associated samples below the LOQ and are therefore qualified estimated (J L).

## 1.4.6 Alkalinity by Method 2320B

The following parameters were evaluated and met the required criteria. No validation flags were assigned based on the following:

- Holding times
- LODs and LOQs
- LCS recoveries
- Initial calibration verification

- Continuing calibration verification
- Initial calibration blank
- Field duplicate

All analytical or quality issues requiring further discussion for Methods 2320B are described in the sections below.

## 1.4.6.1 Method Blanks

Alkalinity (2.21 mg/L) was detected in the method blank at a concentration below the LOQ (5.0 mg/L). Alkalinity was detected at a concentration above the LOQ in all associated samples; therefore, no qualification was necessary.

# 1.4.6.2 Continuing Calibration Blanks

Alkalinity was detected in one continuing calibration blanks (1.64 mg/L) below the LOQ (5 mg/L). Alkalinity was detected at a concentration above the LOQ in all associated samples; therefore, no qualification was necessary.

# DATA VALIDATION TABLE

| SDG          | Field Sample ID       | Lab Sample ID | Matrix       | Parameter             | CAS Number | Units | Result | Lab Flag | DV Flag | Detection | LOQ  | LOD  | MDL   | AnalyticMethod | Reason Code |
|--------------|-----------------------|---------------|--------------|-----------------------|------------|-------|--------|----------|---------|-----------|------|------|-------|----------------|-------------|
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | 2,4,6-Trinitrotoluene | 118-96-7   | µg/L  | 0.21   | u        | uj      | n         | 0.43 | 0.21 | 0.077 | Explosives     | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | 2,6-Dinitrotoluene    | 606-20-2   | μg/L  | 0.21   | u        | uj      | n         | 0.43 | 0.21 | 0.077 | Explosives     | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | 2-Nitrotoluene        | 88-72-2    | µg/L  | 0.21   | u        | uj      | n         | 0.42 | 0.21 | 0.091 | Explosives     | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | 3-Nitrotoluene        | 99-08-1    | µg/L  | 0.21   | u        | uj      | n         | 0.42 | 0.21 | 0.089 | Explosives     | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | PETN                  | 78-11-5    | µg/L  | 1.3    | u        | uj      | n         | 2.1  | 1.3  | 0.44  | Explosives     | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | Beryllium             | 7440-41-7  | µg/L  | 0.12   | j        | j       | у         | 1.0  | 0.30 | 0.080 | Metals         | IC CC       |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | Manganese             | 7439-96-5  | µg/L  | 170    |          | j       | у         | 3.5  | 0.95 | 0.31  | Metals         | CC          |
| 280-111377-1 | FWGmw-007-062518-GW   | 280-111377-1  | Ground Water | Total Cyanide         | 57-12-5    | µg/L  | 3.5    | jq       | j       | у         | 10   | 5.0  | 2.0   | Total Cyanide  | L           |
| 280-111377-1 | FBQmw-171-D-062518-GW | 280-111377-3  | Ground Water | Total Cyanide         | 57-12-5    | µg/L  | 3.2    | jq       | j       | у         | 10   | 5.0  | 2.0   | Total Cyanide  | L           |
| 280-111377-1 | FBQmw-172-062518-GW   | 280-111377-4  | Ground Water | Total Cyanide         | 57-12-5    | µg/L  | 2.3    | jq       | j       | у         | 10   | 5.0  | 2.0   | Total Cyanide  | L           |
| 280-111377-1 | LL11mw-005-062518-GW  | 280-111377-5  | Ground Water | Total Cyanide         | 57-12-5    | µg/L  | 2.1    | jq       | j       | у         | 10   | 5.0  | 2.0   | Total Cyanide  | L           |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | 2,4,6-Trinitrotoluene | 118-96-7   | µg/L  | 0.41   | u        | uj      | n         | 1.0  | 0.41 | 0.20  | Explosives     | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | 2,6-Dinitrotoluene    | 606-20-2   | µg/L  | 0.21   | u        | uj      | n         | 0.21 | 0.21 | 0.069 | Explosives     | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | 2-Nitrotoluene        | 88-72-2    | μg/L  | 0.21   | u        | uj      | n         | 0.43 | 0.21 | 0.091 | Explosives     | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | 3-Nitrotoluene        | 99-08-1    | µg/L  | 0.21   | u m      | uj      | n         | 0.43 | 0.21 | 0.089 | Explosives     | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | PETN                  | 78-11-5    | µg/L  | 1.3    | u        | uj      | n         | 2.1  | 1.3  | 0.43  | Explosives     | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | Beryllium             | 7440-41-7  | µg/L  | 0.32   | j        | j       | у         | 1.0  | 0.30 | 0.080 | Metals         | IC CC       |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | Manganese             | 7439-96-5  | µg/L  | 430    |          | j       | у         | 3.5  | 0.95 | 0.31  | Metals         | CC          |
| 280-111377-1 | LL7mw-001-062518-GW   | 280-111377-6  | Ground Water | Total Cyanide         | 57-12-5    | μg/L  | 3.8    | jq       | j       | у         | 10   | 5.0  | 2.0   | Total Cyanide  | L           |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | 2,4,6-Trinitrotoluene | 118-96-7   | µg/L  | 0.21   | u        | uj      | n         | 0.43 | 0.21 | 0.077 | Explosives     | CC          |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | 2,6-Dinitrotoluene    | 606-20-2   | µg/L  | 0.21   | u q      | uj      | n         | 0.43 | 0.21 | 0.091 | Explosives     | CC          |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | 2-Nitrotoluene        | 88-72-2    | μg/L  | 0.21   | uq       | uj      | n         | 0.43 | 0.21 | 0.089 | Explosives     | CC          |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | 3-Nitrotoluene        | 99-08-1    | μg/L  | 0.13   | uq       | uj      | n         | 0.21 | 0.13 | 0.061 | Explosives     | CC          |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | PETN                  | 78-11-5    | µg/L  | 0.43   | uq       | uj      | n         | 1.1  | 0.43 | 0.21  | Explosives     | CC          |
| 280-111377-1 | LL7mw-006-062518-GW   | 280-111377-7  | Ground Water | RDX                   | 121-82-4   | μg/L  | 0.43   | m j1     | uj      | n         | 0.21 | 0.13 | 0.056 | Explosives     | Q           |



August 7, 2018

Cardno 2496 Old Ivy Road, Suite 300 Charlottesville, VA 22903 ATTN: Peter Chapman

SUBJECT: Ravenna, Ohio, Data Validation

Dear Mr. Chapman,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 31, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

#### LDC Project #42791:

SDG #

Fraction

280-111421-1 Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Chlorinated Pesticides, Polychlorinated Biphenyls, Metals, Wet Chemistry, Explosives, Nitroguanidine, Perchlorate

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio; December 20, 2016
- U.S. Department of Defense, Quality Systems Manual, for Environmental Laboratories, Version 5.0; July 2013
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review; August 2014
- USEPA National Functional Guidelines for Inorganic Superfund Data Review; August 2014
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007, update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng Project Manager/Senior Chemist

| ·      | 5,609 pages-DL | 1 WEEK TAT     Attachment 1       LDC #42791 (Cardno, GS, Inc-Charlottesville, VA / Ravenna, Ohio) |                    |            |            |            |            |                   |          |            |             |            | _          |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|--------|----------------|----------------------------------------------------------------------------------------------------|--------------------|------------|------------|------------|------------|-------------------|----------|------------|-------------|------------|------------|-----|------|------|-----------|------------|------------|---------------------|----------|-----------|------------|------------|----|----------|---|--------------------|-----|------------|---|----------------------|--------------|-----------|------------|
|        | Stage 4 EDD    |                                                                                                    |                    | I          | LDC        | C #4       | 1279       | 91 (              | Ca       | rdn        | o, (        | GS,        | Inc        | -Ch | arl  | otte | esv       | ille,      | V۸         | ( / F               | Rave     | enn       | a, C       | Dhi        | 0) |          |   |                    |     |            |   |                      |              |           |            |
| LDC    | SDG#           | DATE<br>REC'D                                                                                      | (3)<br>DATE<br>DUE | VC<br>(826 | DA<br>50B) | SV<br>(827 | OA<br>70D) | PA<br>(827<br>-SI |          | Pe<br>(808 | st.<br>31B) | PC<br>(808 | Bs<br>32A) |     | 846) |      | g<br>′0A) | Ex<br>(833 | рІ.<br>0В) | Nitr<br>anic<br>(83 | dine     | CL<br>(68 | .O₄<br>60) | AI<br>(232 |    | S<br>(90 |   | CI,5<br>NO<br>(905 | 3-N | CI<br>(901 |   | Nit<br>cellu<br>(353 | lose         |           |            |
| Matrix | : Water/Soil   | 1                                                                                                  |                    | W          | s          | W          | s          | W                 | s        | W          |             | W          | s          |     | S    |      |           | W          | S          |                     |          | W         | S          | W          | S  | W        | S | W                  | s   | W          | S | W                    | s            | w         | S          |
| А      | 280-111421-1   | 07/31/18                                                                                           | 08/07/18           | 7          | 0          | 14         | 0          | 4                 | 0        | 3          | 0           | 2          | 0          | 11  | 0    | 11   | 0         | 11         | 0          | 2                   | 0        | 2         | 0          | 2          | 0  | 2        | 0 | 4                  | 0   | 10         | 0 | 2                    | 0            | $\square$ | ⊢          |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | ┢──┦                 | <sup> </sup> | $\vdash$  | ┢━━┩       |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              | $\vdash$  | ┢──┤       |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┢──┤         | $\vdash$  |            |
| ∦+     |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┟──┤         |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┢──┤         |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              | $\square$ | ⊢          |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | $\mid$               | $\vdash$     | $\vdash$  | ┢──┦       |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | $\mid$               | $\vdash$     | $\vdash$  | ┢──┦       |
|        |                | -                                                                                                  |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┢──┤         | $\vdash$  | ┍──┦       |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┢───┦        |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | ┢──┦                 | ┟──┦         | ┢──┤      | $ \square$ |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      | ┟──┦         |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              |           |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            | <u> </u>    | <u> </u>   |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   |                      |              | $\square$ | ╷──┦       |
| ╟──┼   |                |                                                                                                    | ļ                  |            | <u> </u>   |            | <u> </u>   |                   | <u> </u> | <u> </u>   | <u> </u>    | <u> </u>   |            |     |      |      |           |            |            |                     | <u> </u> |           |            |            |    |          |   | <u> </u>           |     |            |   | $\square$            | $\vdash$     | $\square$ |            |
|        |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | ┢──┦                 | <sup> </sup> | ┢──┨      | <b> </b>   |
| ╟──┼   |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | ┝──┦                 | $\vdash$     | ┝──┨      |            |
| ╟──┼   |                |                                                                                                    |                    |            |            |            |            |                   |          |            |             |            |            |     |      |      |           |            |            |                     |          |           |            |            |    |          |   |                    |     |            |   | ┢──┦                 | ┢───┤        | ┢──┨      |            |
| Total  | J/PG           |                                                                                                    |                    | 7          | 0          | 14         | 0          | 4                 | 0        | 3          | 0           | 2          | 0          | 11  | 0    | 11   | 0         | 11         | 0          | 2                   | 0        | 2         | 0          | 2          | 0  | 2        | 0 | 4                  | 0   | 10         | 0 | 2                    | 0            | 0         | 87         |

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: Ravenna, C | <b>Ohio</b> |
|-------------------------------|-------------|
|-------------------------------|-------------|

LDC Report Date: August 3, 2018

Parameters: Volatiles

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

|                         | Laboratory Sample |        | Collection |
|-------------------------|-------------------|--------|------------|
| Sample Identification   | Identification    | Matrix | Date       |
| NTAmw-119-062518-GW     | 280-111421-8      | Water  | 06/25/18   |
| NTAmw-119-D-062518-GW   | 280-111421-9      | Water  | 06/25/18   |
| TB-062518-02            | 280-111421-12     | Water  | 06/25/18   |
| DETmw-003-D-062618-GW   | 280-111421-16     | Water  | 06/26/18   |
| DETmw-003-062618-GW     | 280-111421-18     | Water  | 06/26/18   |
| LL10mw-003-062618-GW    | 280-111421-19     | Water  | 06/26/18   |
| TB-062618-01            | 280-111421-20     | Water  | 06/26/18   |
| LL10mw-003-062618-GWMS  | 280-111421-19MS   | Water  | 06/26/18   |
| LL10mw-003-062618-GWMSD | 280-111421-19MSD  | Water  | 06/26/18   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### **II. GC/MS Instrument Performance Check**

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples TB-062518-02 and TB-062618-01 were identified as trip blanks. No contaminants were found with the following exceptions:

| Blank ID     | Collection<br>Date | Compound           | Concentration | Associated<br>Samples                                                                                                |
|--------------|--------------------|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------|
| TB-062618-01 | 06/26/18           | Methylene chloride | 0.78 ug/L     | NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW<br>DETmw-003-D-062618-GW<br>DETmw-003-062618-GW<br>LL10mw-003-062618-GW |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

| Sample                | Compound           | Reported<br>Concentration | Modified Final<br>Concentration |
|-----------------------|--------------------|---------------------------|---------------------------------|
| DETmw-003-D-062618-GW | Methylene chloride | 0.62 ug/L                 | 5.0U ug/L                       |
| DETmw-003-062618-GW   | Methylene chloride | 0.43 ug/L                 | 5.0U ug/L                       |

#### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

| Spike ID<br>(Associated Samples)                     | Compound             | MS (%R)<br>(Limits) | MSD (%R)<br>(Limits) | Flag            | A or P |
|------------------------------------------------------|----------------------|---------------------|----------------------|-----------------|--------|
| LL10mw-003-062618-GWMS/MSD<br>(LL10mw-003-062618-GW) | Carbon tetrachloride | -                   | 69 (72-136)          | J (all detects) | A      |

Relative percent differences (RPD) were within QC limits.

#### **IX. Laboratory Control Samples**

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                                                         | Compound                                                        | LCS<br>%R (Limits)                                           | LCSD<br>%R (Limits)                               | Flag | A or P |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|------|--------|
| LCS/D 280-421459/8,9<br>(NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW<br>TB-062518-02) | Bromomethane<br>Chloroethane<br>Chloromethane<br>Vinyl chloride | 168 (53-141)<br>156 (60-138)<br>144 (50-139)<br>138 (58-137) | 164 (53-141)<br>160 (60-138)<br>143 (50-139)<br>- | NA   | -      |

Relative percent differences (RPD) were within QC limits.

#### X. Field Duplicates

Samples NTAmw-119-062518-GW and NTAmw-119-D-062518-GW and samples DETmw-003-D-062618-GW and DETmw-003-062618-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|          | Concentra           | tion (ug/L)           |                 |                        |      |        |
|----------|---------------------|-----------------------|-----------------|------------------------|------|--------|
| Compound | NTAmw-119-062518-GW | NTAmw-119-D-062518-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Acetone  | 10                  | 3.8                   | -               | 6.2 (≤10)              | -    |        |

|                    | Concentra             | tion (ug/L)         |                 |                        |      |        |
|--------------------|-----------------------|---------------------|-----------------|------------------------|------|--------|
| Compound           | DETmw-003-D-062618-GW | DETmw-003-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Acetone            | 5.2                   | 6.5                 | -               | 1.3 (≤10)              | -    | -      |
| Methylene chloride | 0.62                  | 0.43                | -               | 0.19 (≤5.0)            | -    | -      |

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XII. Compound Quantitation

All compound quantitations met validation criteria.

#### XIII. Target Compound Identifications

All target compound identifications met validation criteria.

#### XIV. System Performance

The system performance was acceptable.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in one sample.

Due to trip blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

# Ravenna, Ohio Volatiles - Data Qualification Summary - SDG 280-111421-1

| Sample               | Compound             | Flag            | A or P | Reason                                      |
|----------------------|----------------------|-----------------|--------|---------------------------------------------|
| LL10mw-003-062618-GW | Carbon tetrachloride | J (all detects) | А      | Matrix spike/Matrix spike<br>duplicate (%R) |

# Ravenna, Ohio Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

## Ravenna, Ohio Volatiles - Field Blank Data Qualification Summary - SDG 280-111421-1

| Sample                | Compound           | Modified Final<br>Concentration | A or P |
|-----------------------|--------------------|---------------------------------|--------|
| DETmw-003-D-062618-GW | Methylene chloride | 5.0U ug/L                       | A      |
| DETmw-003-062618-GW   | Methylene chloride | 5.0U ug/L                       | А      |

LDC #: <u>42791A1</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

## Stage 4

| Date:         | 08/  | 02/18     |
|---------------|------|-----------|
| Page:_        | 1 of | F         |
| Reviewer:     |      | <u>(4</u> |
| 2nd Reviewer: |      | 2         |

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|            | Validation Area                        |                                       |            |                                                | Comments                              |                                        |
|------------|----------------------------------------|---------------------------------------|------------|------------------------------------------------|---------------------------------------|----------------------------------------|
| Ι.         | Sample receipt/Technical holding times | Å,A                                   |            |                                                |                                       |                                        |
| 11.        | GC/MS Instrument performance check     | A                                     |            |                                                |                                       |                                        |
| - 111.     | Initial calibration/ICV                | A / A                                 | ICAL S     | 157, 20 / 507                                  | r~                                    | 1015202                                |
| IV.        | Continuing calibration / conting       | A                                     | CCI E      | 20/507                                         | •                                     | · · · · · · · · · · · · · · · · · · ·  |
| V.         | Laboratory Blanks                      | A                                     |            | *                                              |                                       | ······································ |
| VI.        | Field blanks                           | SW                                    | 75         | 3 = 3                                          | 7                                     |                                        |
| VII.       | Surrogate spikes                       | SW                                    |            |                                                |                                       |                                        |
| VIII.      | Matrix spike/Matrix spike duplicates   | SW                                    |            |                                                |                                       |                                        |
| IX.        | Laboratory control samples             | SW                                    | <u> </u>   | s/p                                            |                                       |                                        |
| <b>X</b> . | Field duplicates                       | SW                                    | り =        | 1/2                                            | 4/5                                   |                                        |
| XI.        | Internal standards                     | Ă                                     |            |                                                |                                       |                                        |
| XII.       | Compound quantitation RL/LOQ/LODs      | A                                     |            |                                                | · · · · · · · · · · · · · · · · · · · |                                        |
| XIII.      | Target compound identification         | A                                     |            |                                                |                                       |                                        |
| XIV.       | System performance                     | ' A                                   |            |                                                |                                       |                                        |
| xv.        | Overall assessment of data             | A                                     |            |                                                |                                       |                                        |
| Note:      | N = Not provided/applicable R = R      | No compounds<br>insate<br>Field blank | s detected | D = Duplicate<br>TB = Trip blar<br>EB = Equipm | nk OT                                 | B=Source blank<br>rHER:                |
|            | Client ID                              |                                       |            | Lab ID                                         | Matrix                                | Date                                   |
| + \<br>1 \ | NTAmw-119-062518-GW                    | Ð.                                    |            | 280-111421-8                                   | Water                                 | 06/25/18                               |
|            | NTAmw-119-D-062518-GW                  |                                       |            | 280-111421-9 Water                             |                                       | 06/25/18                               |
| 317        |                                        |                                       |            | 280-111421-12                                  | Water                                 | 06/25/18                               |
| τ 2<br>4 [ | DETmw-003-D-062618-GW                  | Dr                                    |            | 280-111421-16                                  | Water                                 | 06/26/18                               |
| ± 2        | DETmw-003-062618-GW                    | Dr                                    |            | 280-111421-18                                  | Water                                 | 06/26/18                               |
|            | L10mw-003-062618-GW                    |                                       |            | 280-111421-19                                  | Water                                 | 06/26/18                               |
| 4 2        |                                        |                                       |            |                                                |                                       |                                        |

TB-062618-01

LL10mw-003-062618-GWMS

LL10mw-003-062618-GWMSD

MB 280- 421459/11

- 421 566/6

7 8 **2** 

1

7

280-111421-20

280-111421-19MS

280-111421-19MSD

Water

Water

Water

06/26/18

06/26/18

06/26/18

# VALIDATION FINDINGS CHECKLIST

Page: <u>1 of 2</u> Reviewer: JVG 2nd Reviewer: \_\_\_\_\_

#### Method: Volatiles (EPA SW 846 Method 8260B)

| Validation Area                                                                                                                                             | Yes      | No | NA       | Findings/Comments |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|----------|-------------------|
| I. Technical holding times                                                                                                                                  |          |    |          |                   |
| Were all technical holding times met?                                                                                                                       |          |    |          |                   |
| Was cooler temperature criteria met?                                                                                                                        |          |    |          |                   |
| II, GC/MS Instrument performance check                                                                                                                      |          |    |          |                   |
| Were the BFB performance results reviewed and found to be within the specified criteria?                                                                    | /        |    |          |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                |          |    |          |                   |
| IIIa. Initial calibration                                                                                                                                   |          |    |          |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                  | -        |    |          |                   |
| Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                     | /        |    |          |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?                            | /        |    |          |                   |
| Were all percent relative standard deviations (%RSD) $\leq$ 30%/15% and relative response factors (RRF) $\geq$ 0.05?                                        |          |    |          |                   |
| IIIb. Initial Calibration Verification                                                                                                                      |          |    |          |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                               | /        |    |          |                   |
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                                            |          |    |          |                   |
| IV. Continuing calibration                                                                                                                                  | I        | 1  | I        |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                                         | $\leq$   | İ  |          |                   |
| Were all percent differences (%D) and relative response factors (RRF) within<br>method criteria for all CCCs and SPCCs?                                     | <        |    |          |                   |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) $\geq$ 0.05?                                                               |          |    |          |                   |
| V. Laboratory Blanks                                                                                                                                        |          |    |          |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                            | K        |    | ļ        |                   |
| Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?                                                             |          |    |          |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                          |          | /  |          |                   |
| VI. Field blanks                                                                                                                                            |          |    |          |                   |
| Were field blanks were identified in this SDG?                                                                                                              |          |    |          |                   |
| Were target compounds detected in the field blanks?                                                                                                         |          | 1  |          |                   |
| VII. Surrogate spikes                                                                                                                                       | 1        | 1  | <u>г</u> |                   |
| Were all surrogate percent recovery (%R) within QC limits?                                                                                                  | <u> </u> |    | <b> </b> |                   |
| If the percent recovery (%R) for one or more surrogates was out of QC limits, was a<br>reanalysis performed to confirm samples with %R outside of criteria? |          |    | Ł        |                   |

# VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: 196 2nd Reviewer:

| Validation Area                                                                                                                                                                | Yes      | No | NA    | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-------|-------------------|
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                     |          |    |       |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | /        |    |       |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         | /        |    |       |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       | _        | /  |       |                   |
| IX. Laboratory control samples                                                                                                                                                 |          |    |       |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              | /        |    |       |                   |
| Was an LCS analyzed per analytical batch?                                                                                                                                      | $\angle$ |    |       |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               |          |    |       | ~<br>             |
| X. Field duplicates                                                                                                                                                            |          |    |       |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                             | $\angle$ | -  |       |                   |
| Were target compounds detected in the field duplicates?                                                                                                                        |          |    |       |                   |
| XI. Internal standards                                                                                                                                                         |          |    |       |                   |
| Were internal standard area counts within -50% to +100% of the associated calibration standard?                                                                                |          |    |       |                   |
| Were retention times within $\pm$ 30 seconds of the associated calibration standard?                                                                                           |          |    |       |                   |
| XII. Compound quantitation                                                                                                                                                     |          |    | 1<br> |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                  | 1/       |    |       |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and<br>dry weight factors applicable to level IV validation?                                       | /        |    |       |                   |
| XIII Target compound identification                                                                                                                                            |          |    |       |                   |
| Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?                                                                                             | /        |    |       |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                                                      |          |    |       |                   |
| Were chromatogram peaks verified and accounted for?                                                                                                                            | /        |    |       |                   |
| XIV. System performance                                                                                                                                                        |          |    |       |                   |
| System performance was found to be acceptable.                                                                                                                                 | /        |    |       |                   |
| XV Overall assessment of data                                                                                                                                                  |          |    |       |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                         |          |    |       |                   |

# TARGET COMPOUND WORKSHEET

| METHOD: VOA                  |                                                    |                                            |                                   |                            |     |
|------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------|----------------------------|-----|
| A. Chloromethane             | AA. Tetrachloroethene                              | AAA. 1,3,5-Trimethylbenzene                | AAAA. Ethyl tert-butyl ether      | A1. 1,3-Butadiene          | A2. |
| B. Bromomethane              | BB. 1,1,2,2-Tetrachloroethane BBB. 4-Chlorotoluene |                                            | BBBB. tert-Amyl methyl ether      | B1. Hexane                 | B2. |
| C. Vinyl choride             | CC. Toluene                                        | CCC. tert-Butylbenzene                     | CCCC. 1-Chlorohexane              | C1. Heptane                | C2. |
| D. Chloroethane              | DD. Chlorobenzene                                  | DDD. 1,2,4-Trimethylbenzene                | DDDD. Isopropyl alcohol           | D1. Propylene              | D2. |
| E. Methylene chloride        | EE. Ethylbenzene                                   | EEE. sec-Butylbenzene                      | EEEE. Acetonitrile                | E1. Freon 11               | E2. |
| F. Acetone                   | FF. Styrene                                        | FFF. 1,3-Dichlorobenzene                   | FFFF. Acrolein                    | F1. Freon 12               | F2. |
| G. Carbon disulfide          | GG. Xylenes, total                                 | GGG. p-Isopropyltoluene                    | GGGG. Acrylonitrile               | G1. Freon 113              | G2. |
| H. 1,1-Dichloroethene        | HH. Vinyl acetate                                  | HHH. 1,4-Dichlorobenzene                   | HHHH. 1,4-Dioxane                 | H1. Freon 114              | H2. |
| I. 1,1-Dichloroethane        | II. 2-Chloroethylvinyl ether                       | III. n-Butylbenzene                        | IIII. Isobutyl alcohol            | 11. 2-Nitropropane         | 12. |
| J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane                        | JJJ. 1,2-Dichlorobenzene                   | JJJJ. Methacrylonitrile           | J1. Dimethyl disulfide     | J2. |
| K. Chloroform                | KK. Trichlorofluoromethane                         | KKK. 1,2,4-Trichlorobenzene                | KKKK. Propionitrile               | K1. 2,3-Dimethyl pentane   | K2. |
| L. 1,2-Dichloroethane        | LL. Methyl-tert-butyl ether                        | LLL. Hexachlorobutadiene                   | LLLL. Ethyl ether                 | L1. 2,4-Dimethyl pentane   | L2. |
| M. 2-Butanone                | MM. 1,2-Dibromo-3-chloropropane                    | MMM. Naphthalene                           | MMMM. Benzyl chloride             | M1. 3,3-Dimethyl pentane   | M2. |
| N. 1,1,1-Trichloroethane     | NN. Methyl ethyl ketone                            | NNN. 1,2,3-Trichlorobenzene                | NNNN. lodomethane                 | N1. 2-Methylpentane        | N2. |
| O. Carbon tetrachloride      | OO. 2,2-Dichloropropane                            | OOO. 1,3,5-Trichlorobenzene                | 0000.1,1-Difluoroethane           | O1. 3-Methylpentane        | 02. |
| P. Bromodichloromethane      | PP. Bromochloromethane                             | PPP. trans-1,2-Dichloroethene              | PPPP. Tetrahydrofuran             | P1. 3-Ethylpentane         | P2. |
| Q. 1,2-Dichloropropane       | QQ. 1,1-Dichloropropene                            | QQQ. cis-1,2-Dichloroethene                | QQQQ. Methyl acetate              | Q1. 2,2-Dimethylpentane    | Q2. |
| R. cis-1,3-Dichloropropene   | RR. Dibromomethane                                 | RRR. m,p-Xylenes                           | RRRR. Ethyl acetate               | R1. 2,2,3- Trimethylbutane | R2. |
| S. Trichloroethene           | SS. 1,3-Dichloropropane                            | SSS. o-Xylene                              | SSSS. Cyclohexane                 | S1. 2,2,4-Trimethylpentane | S2. |
| T. Dibromochloromethane      | TT. 1,2-Dibromoethane                              | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methylcyclohexane           | T1. 2-Methylhexane         | T2. |
| U. 1,1,2-Trichloroethane     | UU. 1,1,1,2-Tetrachloroethane                      | UUU. 1,2-Dichlorotetrafluoroethane         | UUUU. Allyl chloride              | U1. Nonanal                | U2. |
| V. Benzene                   | VV. Isopropylbenzene                               | VVV. 4-Ethyltoluene                        | VVVV. Methyl methacrylate         | V1. 2-Methylnaphthalene    | V2. |
| W. trans-1,3-Dichloropropene | WW. Bromobenzene                                   | WWW. Ethanol                               | WWWW. Ethyl methacrylate          | W1. Methanol               | W2. |
| X. Bromoform                 | XX. 1,2,3-Trichloropropane                         | XXX. Di-isopropyl ether                    | XXXX. cis-1,4-Dichloro-2-butene   | X1. 1,2,3-Trimethylbenzene | X2. |
| Y. 4-Methyl-2-pentanone      | YY. n-Propylbenzene                                | YYY. tert-Butanol                          | YYYY. trans-1,4-Dichloro-2-butene | Y1.                        | Y2. |
| Z. 2-Hexanone                | ZZ. 2-Chlorotoluene                                | ZZZ. tert-Butyl alcohol                    | ZZZZ. Pentachloroethane           | Z1.                        | Z2. |

| LDC #: | 42791 | AI |
|--------|-------|----|
|--------|-------|----|

# VALIDATION FINDINGS WORKSHEET

#### <u>Field Blanks</u>

| Page:_        | <u>\</u> of |   |
|---------------|-------------|---|
| Reviewer:     | JVG         |   |
| 2nd Reviewer: |             | - |
|               |             |   |

| METHOD: GC/MS VOA (EF                 | PA SW 846 Me     | ethod 8260B)    |                 |              |      |                  |                                       |        | 2nd Rev | viewer: |
|---------------------------------------|------------------|-----------------|-----------------|--------------|------|------------------|---------------------------------------|--------|---------|---------|
|                                       | olanks identifie |                 |                 | •            |      |                  |                                       |        |         |         |
| Y <u>NN/A</u> vvere targe             | t compounds o    | detected in the | e field blanks: | (            |      |                  |                                       |        |         |         |
| Blank units: <u> </u>                 | 6 /18            |                 | <u>j · c</u>    |              |      |                  |                                       |        | _       |         |
| Field blank type: (circle on          | e) Field Blank   | / Rinsate / (Tr | ip Blank)/ Oth  | er: <u> </u> | Asso | ciated Sampl     | <u>es:Al/</u>                         | excipt | 3,7     |         |
| Compound                              | Blank ID         |                 |                 |              | S    | ample Identifica | ation                                 |        |         |         |
|                                       | 7                |                 | 4               | 5            |      |                  |                                       |        |         |         |
| E                                     | 0.78             |                 | 0.62/5.00       | 0.43/5.04    |      | 1                |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  | · · · · · · · · · · · · · · · · · · · |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 | -            |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
| Blank units: Ass<br>Sampling date:    | ociated samp     | le units:       |                 |              |      |                  |                                       |        |         |         |
| Field blank type: (circle on          | e) Field Blank   | / Rinsate / Tr  | ip Blank / Oth  | er:          | Asso | ciated Sampl     | es:                                   |        |         |         |
| Compound                              | Blank ID         |                 |                 | ····         | Sa   | ample Identifica | tion                                  |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  | -                                     |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
| · · · · · · · · · · · · · · · · · · · |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |
|                                       |                  |                 |                 |              |      |                  |                                       |        |         |         |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

42791 AI LDC #:

#### VALIDATION FINDINGS WORKSHEET **Surrogate Spikes**

| Page:_        | <u> </u> |
|---------------|----------|
| Reviewer:     | JVG      |
| 2nd Reviewer: | 0        |

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

· YOR N/A Were all surrogate %R within QC limits?

N/A N

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

| # | Date | Sample ID        | Surrogate | %Recovery (Limits)                    | Qualifications |
|---|------|------------------|-----------|---------------------------------------|----------------|
|   |      | MB 280-421459/11 | BFB       | 117 (85-119)                          |                |
|   |      | ,<br>            |           | ( )                                   |                |
| L |      |                  |           |                                       |                |
|   | . er |                  |           | ( )                                   |                |
|   |      |                  |           | · · · · · · · · · · · · · · · · · · · |                |
|   |      |                  |           | ( )                                   |                |
|   |      |                  | <u> </u>  | ( )                                   |                |
|   |      |                  |           | ( )                                   |                |
|   |      |                  |           | ( )                                   |                |
|   |      |                  |           | ()                                    |                |
|   |      |                  |           | ()<br>()                              |                |
|   |      |                  |           | ( )<br>( )                            |                |
|   |      |                  |           | ( )                                   |                |
|   |      |                  |           | ()                                    |                |
|   |      |                  |           |                                       |                |
|   |      |                  |           | ()<br>()                              |                |
|   |      |                  |           | · · · · · · · · · · · · · · · · · · · |                |

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

LDC #: 42791A1

#### VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

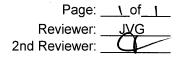
| Page:         | <u> </u> |
|---------------|----------|
| Reviewer:     | J¥G      |
| 2nd Reviewer: |          |

METHOD : GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.




Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

| #        | MS/MSD ID                             | Compound | MS<br>%R (Limits) | MSD<br>%R (Limits)                           | RPD (Limits) | Associated Samples                    | Qualifications                        |
|----------|---------------------------------------|----------|-------------------|----------------------------------------------|--------------|---------------------------------------|---------------------------------------|
|          | 8/9                                   | 0        | ( )               | 69 (72-136)                                  | ()           | 6 (Det)                               | J/UJ/A                                |
|          |                                       |          | ()                | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          | · · · · · · · · · · · · · · · · · · · |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          | · · · · · · · · · · · · · · · · · · · |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               | ( )                                          | ( )          |                                       |                                       |
|          |                                       |          | ( )               |                                              | ( )          |                                       | · · · · · · · · · · · · · · · · · · · |
|          |                                       |          | ( )               |                                              | ( )          |                                       |                                       |
| <b> </b> |                                       |          | ( )               |                                              | ( )          | · · · · · · · · · · · · · · · · · · · |                                       |
|          |                                       |          | ( )               |                                              | ( )          |                                       |                                       |
|          |                                       |          | ( )               |                                              | ( )          |                                       | · · · ·                               |
|          |                                       |          |                   | <u>    (                                </u> | <u>()</u>    | L                                     |                                       |

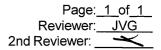
LDC #: \$2791 A)

#### VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)



METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


Was a LCS required?

Y(N) N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

| # | LCS/LCSD ID          | Compound | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | RPD (Limits) | Associated Samples | Qualifications |
|---|----------------------|----------|--------------------|---------------------|--------------|--------------------|----------------|
|   | Les 10 280- 421459/8 | g B      | 168 (53-14))       | 164 (53-141)        | ( )          | 1-3, MB1 (ND)      | J dets (P      |
|   | /                    | ' Þ      | 156 (60-138)       | 160 (60-138)        | ( )          |                    |                |
|   |                      | A        | 144 ( 50-139)      | 143 (50-139)        | ( )          |                    |                |
|   |                      | ċ        | 138 (58-137)       | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ()           |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ()                 | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ()           |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ()                 | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ()                  | ( )          |                    |                |
|   |                      |          | ()                 | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ()           | · · ·              |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    | · · ·          |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |
|   |                      |          | ( )                | . ( )               | ( )          |                    |                |
|   |                      |          | ( )                | ( )                 | ( )          |                    |                |

#### LDC#:<u>42791A1</u>

#### VALIDATION FINDINGS WORKSHEET Field Duplicates



METHOD: GCMS VOA (EPA SW 846 Method 8260B)

Y<u>N NA</u> YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

|          | Concentration (ug/L) |     | RPD<br>(≤ %) | Difference<br>(ug/L) | Limits<br>( <loq)< th=""><th>Qualifications<br/>(Parent Only)</th></loq)<> | Qualifications<br>(Parent Only) |
|----------|----------------------|-----|--------------|----------------------|----------------------------------------------------------------------------|---------------------------------|
| Compound | 1                    | 2   | (3           | (49.2)               | (104)                                                                      | (i arone only)                  |
| F        | 10                   | 3.8 |              | 6.2                  | (≤10)                                                                      |                                 |

|          | Concentrat | tion (ug/L) | RPD  | Difference | Limits                                        | Qualifications |
|----------|------------|-------------|------|------------|-----------------------------------------------|----------------|
| Compound | 4          | 5           | (≤%) | (ug/L)     | ( <loq)< th=""><th>(Parent Only)</th></loq)<> | (Parent Only)  |
| F        | 5.2        | 6.5         |      | 1.3        | (≤10)                                         |                |
| E        | 0.62       | 0.43        |      | 0.19       | (≤5.0)                                        |                |

V:\Josephine\FIELD DUPLICATES\42791A1 cardno ravenna.wpd

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

| Page:         | _1 | _ of | _1_ |
|---------------|----|------|-----|
| Reviewer:     |    | VL   | G   |
| 2nd Reviewer: |    | 4    | /   |

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

| $RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$           | $A_x$ = Area of Compound          | A <sub>is</sub> = Area of associated internal standard |
|---------------------------------------------------|-----------------------------------|--------------------------------------------------------|
| average RRF = sum of the RRFs/number of standards | $C_x$ = Concentration of compound | C <sub>is</sub> = Concentration of internal standard   |
| %RSD = 100 * (S/X)                                | S= Standard deviation of the RRFs | X = Mean of the RRFs                                   |

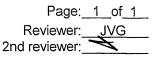
| [ |             |             |                           | Reported     | Recalculated | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|-------------|---------------------------|--------------|--------------|-------------|--------------|----------|--------------|
|   |             | Calibration |                           | RRF          | RRF          | Average RRF | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound (IS)             | (RRF 10 std) | (RRF 10 std) | (Initial)   | (Initial)    |          |              |
| 1 | ICAL        | 7/5/2018    | Carbon tetrachloride (FB) | 0.4734       | 0.4734       | 0.4035      | 0.4036       | 11.9     | 11.9         |
|   | VMS_Q       |             | Tetrachloroethene (CBZ)   | 1.2964       | 1.2964       | 1.1964      | 1.1964       | 8.4      | 8.4          |
|   |             |             | 1,1,2,2-TCA (DCB)         | 0.4674       | 0.4674       | 0.4226      | 0.4226       | 6.4      | 6.4          |
| 3 | ICAL        | 7/4/2018    | Carbon tetrachloride (FB) | 0.7305       | 0.7305       | 0.7606      | 0.7606       | 7.7      | 7.7          |
|   | VMS_Z       |             | Tetrachloroethene (CBZ)   | 1.8005       | 1.8005       | 1.8179      | 1.8179       | 7.0      | 7.0          |
|   |             |             | 1,1,2,2-TCA (DCB)         | 0.8326       | 0.8326       | 0.8513      | 0.8514       | 3.1      | 3.1          |

LDC#: <u>42791A1</u>

#### VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

| Page: _       | <u>1</u> 0 | f_1_ |
|---------------|------------|------|
| Reviewer:     | JY         | ′G   |
| 2nd Reviewer: | C          |      |

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)


The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

|   |             |             |                           | · · · · · · · · · · · · · · · · · · · | Reported | Recalculated | Reported | Recalculated |
|---|-------------|-------------|---------------------------|---------------------------------------|----------|--------------|----------|--------------|
|   |             | Calibration |                           | Average RRF                           | RRF      | RRF          | % D      | %D           |
| # | Standard ID | Date        | Compound (IS)             | (Initial)                             | (CCV)    | (CCV)        | -        |              |
| 1 | Q5568       | 7/9/2018    | Carbon tetrachloride (FB) | 0.4035                                | 0.4185   | 0.4185       | 3.7      | 3.7          |
| 1 |             |             | Tetrachloroethene (CBZ)   | 1.196                                 | 1.283    | 1.283        | 7.2      | 7.2          |
|   |             |             | 1,1,2,2-TCA (DCB)         | 0.4226                                | 0.4232   | 0.4232       | 0.1      | 0.1          |
| 2 | Z8967       | 7/10/2018   | Carbon tetrachloride (FB) | 0.7606                                | 0.7852   | 0.7852       | 3.2      | 3.2          |
|   |             |             | Tetrachloroethene (CBZ)   | 1.818                                 | 1.885    | 1.885        | 3.7      | 3.7          |
|   |             |             | 1,1,2,2-TCA (DCB)         | 0.8513                                | 0.818    | 0.818        | 3.9      | 3.9          |

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification



#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

| % Recovery: SF/SS * 100 Sample ID: |                     |                    | SF = Surrogate Found<br>SS = Surrogate Spiked | •                                   |                       |
|------------------------------------|---------------------|--------------------|-----------------------------------------------|-------------------------------------|-----------------------|
|                                    | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported               | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
| Dibromofluoromethane               | 16.5                | 11.3               | 167                                           | 108                                 | 1                     |
| 1,2-Dichloroethane-d4              |                     | 10.9               | 104                                           | 104                                 | 0                     |
| Toluene-d8                         |                     | 10.7               | 102                                           | 102                                 |                       |
| Bromofluorobenzene                 | )                   | 11.5               | 110                                           | 110                                 |                       |

#### Sample ID:\_\_\_\_\_

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    | ·<br>·                          |                                     |                       |

#### Sample ID:\_

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |

#### Sample ID:

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    | <u> </u>                        |                                     |                       |

#### Sample ID:\_\_\_

|                       | Surrogate<br>Spiked | Surrogate<br>Found                                                                                             | Percent<br>Recovery<br>Reported                                                                                 | Percent<br>Recovery<br>Recalculated                                                   | Percent<br>Difference |
|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|
| Dibromofluoromethane  |                     |                                                                                                                |                                                                                                                 |                                                                                       |                       |
| 1,2-Dichloroethane-d4 |                     | *****                                                                                                          |                                                                                                                 | nganayaka tingili kapanganan kata di sapapani si 2019 kang pani si sa si kapanan kata |                       |
| Toluene-d8            |                     | an gang gang ditter ang gang ang mang ak diga gang saka an mini gang pakian sebagai sa sebagai sa sebagai sa s | and a second statement of the second statement of the second statement of the second statement of the second st |                                                                                       |                       |
| Bromofluorobenzene    |                     |                                                                                                                |                                                                                                                 |                                                                                       |                       |

LDC #: 42791 41

#### VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>\_\_\_\_</u>

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added

8/9

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

SC = Sample concentration

RPD = I MSC - MSC I \* 2/(MSC + MSDC)

MS/MSD sample:

| Compound           | Spike<br>Added<br>(いっノレ) |      | Sample<br>Concentration<br>( ୳ୠ /ᡶ | Spiked Sample<br>Concentration<br>( いんん) |      | Matrix Spike<br>Percent Recovery |        | Matrix Spike Duplicate Percent Recovery |        | MS/MSD<br>RPD |              |
|--------------------|--------------------------|------|------------------------------------|------------------------------------------|------|----------------------------------|--------|-----------------------------------------|--------|---------------|--------------|
|                    | MS                       | MSD  |                                    |                                          | MSD  | Reported                         | Recalc | Reported                                | Recalc | Reported      | Recalculated |
| 1,1-Dichloroethene | 5.00                     | 5.00 | 0                                  | 4.56                                     | 4.62 | 91                               | 91     | 92                                      | 92     | ι             | 1            |
| Trichloroethene    |                          |      |                                    | 4.29                                     | 4.57 | 84                               | 86     | 90                                      | 90     | 5             | 5            |
| Benzene            |                          |      |                                    | 4.41                                     | 4.54 | 88                               | 88     | 91                                      | 91     | 3             | 3            |
| Toluene            |                          |      |                                    | 4.35                                     | 4.55 | 87                               | \$7    | 91                                      | 11     | 5             | S            |
| Chlorobenzene      | Y                        | X.   |                                    | 4.11                                     | 4.46 | 82                               | 82     | 89                                      | 89     | ४             | 8            |

# Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree</u> within 10.0% of the recalculated results.

LDC #: 4279141

#### VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

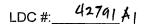
Page: 1\_of 1 Reviewer: \_JVG 2nd Reviewer: \_\_\_\_\_

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added


RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: LCS /p 280- 421459/8,9

| Compound           | Spike<br>Added<br>(いっん) |   | Conce | d Sample<br>entration<br>らん) | I CS<br>Percent Recovery |          |         | SD       | LCS/LCSD<br>RPD |          |              |
|--------------------|-------------------------|---|-------|------------------------------|--------------------------|----------|---------|----------|-----------------|----------|--------------|
|                    | LCS                     |   | LCSD  | LCS                          | LCSD                     | Reported | Recalc. | Reported | Recalc.         | Reported | Recalculated |
| 1,1-Dichloroethene | 5.0                     | , | 5.00  | 4.90                         | 5.23                     | 98       | 98      | 105      | 105             | 6        | 6            |
| Trichloroethene    |                         |   |       | 5.11                         | 5.00                     | 102      | 102     | 160      | (60)            | ×        | ~            |
| Benzene            |                         |   |       | 5.35                         | 5.25                     | 107      | 107     | 105      | 105             | 2        | 2            |
| Toluene            |                         |   |       | 5.08                         | 5.17                     | 102      | 102     | 10-1     | 107             | 1        | 1            |
| Chlorobenzene      | 4                       |   | ł     | 5.15                         | 5,08                     | 103      | 103     | 107      | 102             | 1        | )            |

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>



#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page: <u>1</u> of <u>1</u> |
|----------------------------|
| Reviewer: <u>JVG</u>       |
| 2nd reviewer:              |

# METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

YN N/A

V。

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Concer         | ntratio | $n = \frac{(A_{\rm s})(1_{\rm s})(DF)}{(A_{\rm ts})(RRF)(V_{\rm s})(\%S)}$ |
|----------------|---------|----------------------------------------------------------------------------|
| A <sub>x</sub> | =       | Area of the characteristic ion (EICP) for the<br>compound to be measured   |
| $A_{is}$       | =       | Area of the characteristic ion (EICP) for the specific internal standard   |
| l <sub>s</sub> | =       | Amount of internal standard added in nanograms (ng)                        |
| RRF            | =       | Relative response factor of the calibration standard.                      |

Relative response factor of the calibration standard. = Volume or weight of sample pruged in milliliters (ml) or grams (g).

Df = Dilution factor.

%S = Percent solids, applicable to soils and solid matrices only.

Example: Sample I.D. 6 Carbon Tetrach Lonide Conc. = (597066)(12.5)()= 7.54 ng/L

|   | only.                                                                                                           |                                          |                                    |                                    |               |
|---|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------------------------|---------------|
| # | Sample ID                                                                                                       | Compound                                 | Reported<br>Concentration<br>(いっし) | Calculated<br>Concentration<br>( ) | Qualification |
|   |                                                                                                                 |                                          | 7.5                                |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    | ļ             |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    | ·                                  |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 | ,<br>                                    |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    | +             |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    | <u> </u>                           |               |
|   |                                                                                                                 | an a |                                    |                                    | ·             |
|   | alan dara di Nala garan di Kana da kata |                                          |                                    |                                    |               |
|   |                                                                                                                 |                                          |                                    |                                    |               |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ravenna, Ohio

LDC Report Date: August 3, 2018

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification   | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-------------------------|-------------------------------------|--------|--------------------|
| FBQmw-174-062518-GW     | 280-111421-1                        | Water  | 06/25/18           |
| LL12mw-247-062618-GW    | 280-111421-4                        | Water  | 06/26/18           |
| LL12mw-247-D-062618-GW  | 280-111421-5                        | Water  | 06/26/18           |
| LL10mw-003-062618-GW    | 280-111421-7                        | Water  | 06/26/18           |
| NTAmw-119-062518-GW     | 280-111421-8                        | Water  | 06/25/18           |
| NTAmw-119-D-062518-GW   | 280-111421-9                        | Water  | 06/25/18           |
| FWGmw-016-062518-GW     | 280-111421-13                       | Water  | 06/25/18           |
| FWGmw-015-062518-GW     | 280-111421-14                       | Water  | 06/25/18           |
| FWGmw-004-062518-GW     | 280-111421-15                       | Water  | 06/25/18           |
| DETmw-003-D-062618-GW   | 280-111421-16                       | Water  | 06/26/18           |
| DA2mw-115-062618-GW     | 280-111421-21                       | Water  | 06/26/18           |
| DETmw-003-062618-GW     | 280-111421-22                       | Water  | 06/26/18           |
| NTAmw-120-062618-GW     | 280-111421-23                       | Water  | 06/26/18           |
| NTAmw-120-D-062618-GW   | 280-111421-24                       | Water  | 06/26/18           |
| LL12mw-247-062618-GWMS  | 280-111421-4MS                      | Water  | 06/26/18           |
| LL12mw-247-062618-GWMSD | 280-111421-4MSD                     | Water  | 06/26/18           |
| LL10mw-003-062618-GWMS  | 280-111421-7MS                      | Water  | 06/26/18           |
| LL10mw-003-062618-GWMSD | 280-111421-7MSD                     | Water  | 06/26/18           |

#### Introduction

.#

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

No field blanks were identified in this SDG.

#### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                                                                                           | Compound                  | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | Flag                | A or P |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|---------------------|---------------------|--------|
| LCS/D 280-420810/2,3-A<br>(DETmw-003-D-062618-GW<br>DETmw-003-062618-GW<br>NTAmw-120-062618-GW<br>NTAmw-120-D-062618-GW) | Hexachlorocyclopentadiene | 9 (10-120)         | 8 (10-120)          | R (all non-detects) | Ρ      |

Relative percent differences (RPD) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                                                                                           | Compound                  | RPD<br>(Limits) | Flag | A or P |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|------|--------|
| LCS/D 280-420810/2,3-A<br>(DETmw-003-D-062618-GW<br>DETmw-003-062618-GW<br>NTAmw-120-062618-GW<br>NTAmw-120-D-062618-GW) | Hexachlorocyclopentadiene | 21 (≤20)        | NA   | -      |

#### X. Field Duplicates

Samples LL12mw-247-062618-GW and LL12mw-247-D-062618-GW, samples NTAmw-119-062518-GW and NTAmw-119-D-062518-GW, samples DETmw-003-D-062618-GW and DETmw-003-062618-GW, and samples NTAmw-120-062618-GW and NTAmw-120-D-062618-GW were identified as field duplicates. No results were detected in any of the samples.

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

# XII. Compound Quantitation

All compound quantitations were within validation criteria.

## XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

### XIV. System Performance

The system performance was acceptable.

### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to MS/MSD %R, data were rejected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Based upon the data validation all other results are considered valid and usable for all purposes.

# Ravenna, Ohio Semivolatiles - Data Qualification Summary - SDG 280-111421-1

| Sample                                                                                       | Compound                  | Flag                | A or P | Reason                                      |
|----------------------------------------------------------------------------------------------|---------------------------|---------------------|--------|---------------------------------------------|
| DETmw-003-D-062618-GW<br>DETmw-003-062618-GW<br>NTAmw-120-062618-GW<br>NTAmw-120-D-062618-GW | Hexachlorocyclopentadiene | R (all non-detects) | Ρ      | Matrix spike/Matrix spike<br>duplicate (%R) |

## Ravenna, Ohio Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

# No Sample Data Qualified in this SDG

Ravenna, Ohio Semivolatiles - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

| LDC #:42791A2a                 | VALIDATION COMPLETENESS WORKSHEET | Date: 08/      |
|--------------------------------|-----------------------------------|----------------|
| SDG #: 280-111421-1            | Stage 4                           | Page: <u> </u> |
| Laboratory: Test America, Inc. | -                                 | Reviewer:      |

/02/18 f\_7 XV 2nd Reviewer:

#### METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|                                       | Validation Area                        |                                      |                                        | Cor                                                | mments |                    |
|---------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------|--------|--------------------|
| 1.                                    | Sample receipt/Technical holding times | A / Á                                |                                        |                                                    |        |                    |
| ١١.                                   | GC/MS Instrument performance check     | A                                    |                                        |                                                    |        |                    |
| III.                                  | Initial calibration/ICV                | A/A                                  | ICALS                                  | = 152                                              | ٢Y     | 101-206            |
| IV.                                   | Continuing calibration / and in        | Å                                    |                                        | = 20/502                                           |        |                    |
| V.                                    | Laboratory Blanks                      | ŚŴ                                   |                                        |                                                    |        |                    |
| VI.                                   | Field blanks                           | ND.                                  | FB =                                   | l                                                  |        |                    |
| VII.                                  | Surrogate spikes                       | A                                    |                                        |                                                    |        |                    |
| VIII.                                 | Matrix spike/Matrix spike duplicates   | A                                    |                                        |                                                    |        |                    |
| IX.                                   | Laboratory control samples             | ŚW                                   |                                        | cs b                                               |        |                    |
| <b>X</b> .                            | Field duplicates                       | M                                    | ) = <sup>2</sup>                       | 2/3 5/6                                            | 10/12  | 13/14              |
| XI.                                   | Internal standards                     | Å                                    |                                        | •                                                  | _,,    |                    |
| XII.                                  | Compound quantitation RL/LOQ/LODs      | A                                    |                                        |                                                    |        |                    |
| XIII.                                 | Target compound identification         | A                                    | ······································ |                                                    |        |                    |
| XIV.                                  | System performance                     | A                                    |                                        |                                                    |        |                    |
| xv.                                   | Overall assessment of data             | A                                    |                                        |                                                    |        |                    |
| Note:                                 | N = Not provided/applicable R = Rin    | No compounds<br>nsate<br>Field blank | s detected                             | D = Duplicate<br>TB = Trip blank<br>EB = Equipment | OTHE   | ource blank<br>ER: |
|                                       | Client ID                              |                                      |                                        | Lab ID                                             | Matrix | Date               |
| 1   F                                 | FBQmw-174-062518-GW                    |                                      |                                        | 280-111421-1                                       | Water  | 06/25/18           |
| 2 2 L                                 | LL12mw-247-062618-GW                   | D,                                   |                                        | 280-111421-4                                       | Water  | 06/26/18           |
| 3 2 L                                 | LL12mw-247-D-062618-GW                 | <u>ש</u>                             |                                        | 280-111421-5                                       | Water  | 06/26/18           |
| - 2<br>4 L                            | LL10mw-003-062618-GW                   |                                      |                                        | 280-111421-7                                       | Water  | 06/26/18           |
|                                       | NTAmw-119-062518-GW                    | D,                                   |                                        | 280-111421-8                                       | Water  | 06/25/18           |
| i i i i i i i i i i i i i i i i i i i | NTAmw-119-D-062518-GW                  | <u>Þ,</u>                            |                                        | 280-111421-9                                       | Water  | 06/25/18           |
| 7   F                                 | FWGmw-016-062518-GW                    |                                      |                                        | 280-111421-13                                      | Water  | 06/25/18           |
|                                       | FWGmw-015-062518-GW                    | _                                    |                                        | 280-111421-14                                      | Water  | 06/25/18           |
| 9 F                                   | FWGmw-004-062518-GW                    |                                      |                                        | 280-111421-15                                      | Water  | 06/25/18           |
| 10 <sup>1</sup> [                     | DETmw-003-D-062618-GW                  | D7                                   |                                        | 280-111421-16                                      | Water  | 06/26/18           |
| <u>11  </u>                           | DA2mw-115-062618-GW                    |                                      |                                        | 280-111421-21                                      | Water  | 06/26/18           |
| 12 1                                  | ون<br>DETmw-003-062818-GW              | D3                                   | 1                                      | 280-111421-22                                      | Water  | 06/26/18           |

NTAmw-120-062618-GW

13

280-111421-23

Water

06/26/18

Þ4

| VALIDATION | COMPL | ETENESS | <b>WORKSHEET</b> |
|------------|-------|---------|------------------|
|------------|-------|---------|------------------|

LDC #: <u>42791A2a</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

Stage 4

Date: <u>05/02/18</u> Page: <u>10 of 2</u> Reviewer: <u>56</u> 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

|                | Client ID                | Lab ID          | Matrix | Date     |
|----------------|--------------------------|-----------------|--------|----------|
| 14             | NTAmw-120-D-062618-GW D4 | 280-111421-24   | Water  | 06/26/18 |
| 15 <b>2</b>    | LL12mw-247-062618-GWMS   | 280-111421-4MS  | Water  | 06/26/18 |
| <b>1</b> 6     | LL12mw-247-062618-GWMSD  | 280-111421-4MSD | Water  | 06/26/18 |
| 17 7           | LL10mw-003-062618-GWMS   | 280-111421-7MS  | Water  | 06/26/18 |
| <b>7</b><br>18 | LL10mw-003-062618-GWMSD  | 280-111421-7MSD | Water  | 06/26/18 |
| 19             |                          |                 |        |          |
| 20             |                          |                 |        |          |
| 21             |                          |                 |        |          |
| Vote           | S:                       |                 |        |          |
| 1              | MB 280- F20810/1-A       |                 |        |          |
| 2              | - 4210/2/1-A             |                 |        |          |

List 4 = 1-3, 7-9,11

415+ 2 =4,5,6

List 1 = 11,12

Full list = 13,14

#### VALIDATION FINDINGS CHECKLIST

|     | Page:     | <u>1</u> 0 | f_2_ |
|-----|-----------|------------|------|
|     | Reviewer: | _          | /G   |
| 2nd | Reviewer: | (          |      |
|     |           | 9          |      |

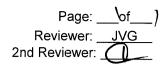
# Method: Semivolatiles (EPA SW 846 Method 8270D)

| Validation Area                                                                                                                           | Yes       | No | NA | Findings/Comments |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----|-------------------|
| 1. Technical holding times                                                                                                                |           |    |    |                   |
| Were all technical holding times met?                                                                                                     | $\leq$    |    |    |                   |
| Was cooler temperature criteria met?                                                                                                      |           |    |    |                   |
| II. GC/MS Instrument performance check                                                                                                    |           |    |    |                   |
| Were the DFTPP performance results reviewed and found to be within the specified criteria?                                                | /         |    |    |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                              |           |    |    |                   |
| Illa. Initial calibration                                                                                                                 |           |    |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                |           |    |    |                   |
| Were all percent relative standard deviations (%RSD) $\leq \frac{20\%}{20\%}$ and relative response factors (RRF) within method criteria? | /         |    |    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?          |           |    |    |                   |
| IIIb. Initial Calibration Verification                                                                                                    |           |    |    |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                             | /         |    |    |                   |
| <b>2.0</b><br>Were all percent differences (%D) <u>ح</u> <del>20%</del> or p <del>ercent recoveries (%R) 70-130%</del> ?                  |           |    |    |                   |
| IV. Continuing calibration                                                                                                                |           |    |    |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                       | /         |    |    |                   |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) within method criteria?                                  | /         |    |    |                   |
| V. Laboratory Blanks                                                                                                                      |           |    |    |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                          |           |    | ļ  |                   |
| Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?                                           | $\langle$ |    |    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                        |           |    |    |                   |
| VI. Field blanks                                                                                                                          |           |    |    |                   |
| Were field blanks were identified in this SDG?                                                                                            | $\langle$ |    |    |                   |
| Were target compounds detected in the field blanks?                                                                                       |           |    |    |                   |
| VII Surrogate spikes                                                                                                                      |           |    |    |                   |
| Were all surrogate percent recovery (%R) within QC limits?                                                                                | $\leq$    |    |    |                   |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?                                                    |           |    | /  | -                 |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a<br>reanalysis performed to confirm %R?                         |           |    |    |                   |

# VALIDATION FINDINGS CHECKLIST

| Page:_        | 2 | _of      | 2      |
|---------------|---|----------|--------|
| Reviewer:     |   | 2        | G      |
| 2nd Reviewer: | ( | <u>_</u> | $\leq$ |

| Validation Area                                                                                                                                                                      | Yes       | No | NA | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----|-------------------|
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                           |           |    |    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each<br>matrix in this SDG? If no, indicate which matrix does not have an associated<br>MS/MSD. Soil / Water. | /         |    |    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                               |           |    |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                             |           |    |    |                   |
| IX Laboratory control samples                                                                                                                                                        |           |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                                    | [         |    |    |                   |
| Was an LCS analyzed per analytical batch?                                                                                                                                            | $\square$ |    | -  |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                     |           |    |    |                   |
| X. Field duplicates                                                                                                                                                                  |           | 1  |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                                   |           |    |    |                   |
| Were target compounds detected in the field duplicates?                                                                                                                              |           |    |    |                   |
| XI. Internal standards                                                                                                                                                               |           |    |    |                   |
| Were internal standard area counts within -50% to +100% of the associated calibration standard?                                                                                      |           |    |    |                   |
| Were retention times within $\pm$ 30 seconds of the associated calibration standard?                                                                                                 |           |    |    |                   |
| XII. Compound quantitation                                                                                                                                                           | r1        |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                        | $\langle$ | -  |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and<br>dry weight factors applicable to level IV validation?                                             |           |    |    |                   |
| XIII. Target compound identification                                                                                                                                                 |           |    |    |                   |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                                                                       |           |    |    |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                                                            | <         |    |    |                   |
| Were chromatogram peaks verified and accounted for?                                                                                                                                  |           |    |    |                   |
| XIV System performance                                                                                                                                                               | , ,       |    |    |                   |
| System performance was found to be acceptable.                                                                                                                                       |           | -  |    |                   |
| XV. Overall assessment of data                                                                                                                                                       |           |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                               |           | -  |    |                   |
|                                                                                                                                                                                      |           |    |    |                   |


# VALIDATION FINDINGS WORKSHEET

#### METHOD: GC/MS SVOA

| A. Phenol                       | AA. 2-Chloronaphthalene         | AAA. Butylbenzylphthalate        | AAAA. Dibenzothiophene                    | A1. N-Nitrosodiethylamine             |
|---------------------------------|---------------------------------|----------------------------------|-------------------------------------------|---------------------------------------|
| B. Bis (2-chloroethyl) ether    | BB. 2-Nitroaniline              | BBB. 3,3'-Dichlorobenzidine      | BBBB. Benzo(a)fluoranthene                | B1. N-Nitrosodi-n-butylamine          |
| C. 2-Chlorophenol               | CC. Dimethylphthalate           | CCC. Benzo(a)anthracene          | CCCC. Benzo(b)fluorene                    | C1. N-Nitrosomethylethylamine         |
| D. 1,3-Dichlorobenzene          | DD. Acenaphthylene              | DDD. Chrysene                    | DDDD. cis/trans-Decalin                   | D1. N-Nitrosomorpholine               |
| E. 1,4-Dichlorobenzene          | EE. 2,6-Dinitrotoluene          | EEE. Bis(2-ethylhexyl)phthalate  | EEEE. Biphenyl                            | E1. N-Nitrosopyrrolidine              |
| F. 1,2-Dichlorobenzene          | FF. 3-Nitroaniline              | FFF. Di-n-octylphthalate         | FFFF. Retene                              | F1. Phenacetin                        |
| G. 2-Methylphenol               | GG. Acenaphthene                | GGG. Benzo(b)fluoranthene        | GGGG. C30-Hopane                          | G1. 2-Acetylaminofluorene             |
| H. 2,2'-Oxybis(1-chloropropane) | HH. 2,4-Dinitrophenol           | HHH. Benzo(k)fluoranthene        | HHHH. 1-Methylphenanthrene                | H1. Pronamide                         |
| I. 4-Methylphenol               | II. 4-Nitrophenol               | III. Benzo(a)pyrene              | IIII. 1,4-Dioxane                         | 11. Methyl methanesulfonate           |
| J. N-Nitroso-di-n-propylamine   | JJ. Dibenzofuran                | JJJ. Indeno(1,2,3-cd)pyrene      | JJJJ. Acetophenone                        | J1. Ethyl methanesulfonate            |
| K. Hexachloroethane             | KK. 2,4-Dinitrotoluene          | KKK. Dibenz(a,h)anthracene       | KKKK. Atrazine                            | K1. o,o',o''-Triethylphosphorothioate |
| L. Nitrobenzene                 | LL. Diethylphthalate            | LLL. Benzo(g,h,i)perylene        | LLLL. Benzaldehyde                        | L1. n-Phenylene diamine               |
| M. Isophorone                   | MM. 4-Chlorophenyl-phenyl ether | MMM. Bis(2-Chloroisopropyl)ether | MMMM. Caprolactam                         | M1. 1,4-Naphthoquinone                |
| N. 2-Nitrophenol                | NN. Fluorene                    | NNN. Aniline                     | NNNN. 2,6-Dichlorophenol                  | N1. N-Nitro-o-toluidine               |
| O. 2,4-Dimethylphenol           | OO. 4-Nitroaniline              | OOO. N-Nitrosodimethylamine      | OOOO. 1,2-Diphenylhydrazine               | O1. 1,3,5-Trinitrobenzene             |
| P. Bis(2-chloroethoxy)methane   | PP. 4,6-Dinitro-2-methylphenol  | PPP. Benzoic Acid                | PPPP. 3-Methylphenol                      | P1. Pentachlorobenzene                |
| Q. 2,4-Dichlorophenol           | QQ. N-Nitrosodiphenylamine      | QQQ. Benzyl alcohol              | QQQQ. 3&4-Methylphenol                    | Q1. 4-Aminobiphenyl                   |
| R. 1,2,4-Trichlorobenzene       | RR. 4-Bromophenyl-phenylether   | RRR. Pyridine                    | RRRR. 4-Dimethyldibenzothiophene (4MDT)   | R1. 2-Naphthylamine                   |
| S. Naphthalene                  | SS. Hexachlorobenzene           | SSS. Benzidine                   | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | S1. Triphenylene                      |
| T. 4-Chloroaniline              | TT. Pentachlorophenol           | TTT. 1-Methylnaphthalene         | TTTT. 1-Methyldibenzothiophene (1MDT)     | T1. Octachlorostyrene                 |
| U. Hexachlorobutadiene          | UU. Phenanthrene                | UUU.Benzo(b)thiophene            | UUUU 2,3,4,6-Tetrachlorophenol            | U1. Famphur                           |
| V. 4-Chloro-3-methylphenol      | VV. Anthracene                  | VVV.Benzonaphthothiophene        | VVVV. 1,2,4,5-Tetrachlorobenzene          | V1. 1,4-phenylenediamine              |
| W. 2-Methylnaphthalene          | WW. Carbazole                   | WWW.Benzo(e)pyrene               | WWWW 2-Picoline                           | W1. Methapyrilene                     |
| X. Hexachlorocyclopentadiene    | XX. Di-n-butylphthalate         | XXX. 2,6-Dimethylnaphthalene     | XXXX. 3-Methylcholanthrene                | X1. Pentachloroethane                 |
| Y. 2,4,6-Trichlorophenol        | YY. Fluoranthene                | YYY. 2,3,5-Trimethylnaphthalene  | YYYY. a,a-Dimethylphenethylamine          | Y1. 3,3'-Dimethylbenzidine            |
| Z. 2,4,5-Trichlorophenol        | ZZ. Pyrene                      | ZZZ. Perylene                    | ZZZZ. Hexachloropropene                   | Z1. o-Toluidine                       |

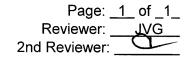
LDC #: 42791 A2a

## VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)



#### METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


<u>Was a LCS required?</u>

YN)N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

| # | Date | LCS/LCSD ID          | Compound | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | RPD (Limits)            | Associated Samples  | Qualifications                        |
|---|------|----------------------|----------|--------------------|---------------------|-------------------------|---------------------|---------------------------------------|
|   |      | LCS/10 280- 420810/2 | 3-A X    | 9 (10-120)         | 8 (10-120)          | ( )                     | 10, 12-14, MB 1 (ND | J/R/P                                 |
|   |      |                      | Х        | ( )                | ( )                 | <b>21</b> ( <b>20</b> ) |                     | J dets/P                              |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ()                 | ()                  | ()                      |                     |                                       |
|   |      |                      |          | ()                 | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ()                 | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ()                 | ()                  | ()                      |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ()                 | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ( )                     |                     | · · · · · · · · · · · · · · · · · · · |
|   |      |                      |          | ()                 | ( )                 | ( )                     |                     |                                       |
|   |      |                      |          | ( )                | ( )                 | ()                      |                     |                                       |
|   |      | L                    | L        | ()                 |                     | ()                      |                     |                                       |

LDC #: <u>42791A2a</u>

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

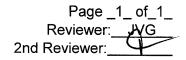


#### METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

| $RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$           |  |
|---------------------------------------------------|--|
| average RRF = sum of the RRFs/number of standards |  |
| %RSD = 100 * (S/X)                                |  |

 $A_x$  = Area of Compound  $C_x$  = Concentration of compound, S= Standard deviation of the RRFs,  $A_{is}$  = Area of associated internal standard


C<sub>is</sub> = Concentration of internal standard

X = Mean of the RRFs

| # | Standard ID | Calibration<br>Date | Compound (           | IS)     | Reported<br>RRF<br>( 50 std) | Recalculated<br>RRF<br>( 50 std) | Reported<br>Average RRF<br>(Initial) | Recalculated<br>Average RRF<br>(Initial) | Reported<br>%RSD | Recalculated<br>%RSD |
|---|-------------|---------------------|----------------------|---------|------------------------------|----------------------------------|--------------------------------------|------------------------------------------|------------------|----------------------|
| 1 | ICAL        | 6/28/2018           | Phenol               | (IS1)   | 1.8823                       | 1.8823                           | 1.8893                               | 1.8893                                   | 2.8              | 2.8                  |
|   | SMS G6      |                     | Naphthalene          | (IS2)   | 1.1038                       | 1.1038                           | 1.1002                               | 1.1002                                   | 2.4              | 2.4                  |
|   |             |                     | Diethyl phthalate    | (IS3)   | 1.5222                       | 1.5222                           | 1.5150                               | 1.5150                                   | 4.4              | 4.4                  |
|   |             |                     | Hexachlorobenzene    | (IS4)   | 0.2447                       | 0.2447                           | 0.2415                               | 0.2415                                   | 3.0              | 3.0                  |
|   |             |                     | Butylbenzylphthalate | e (IS5) | 0.7352                       | 0.7352                           | 0.7262                               | 0.7262                                   | 2.4              | 2.4                  |
|   |             |                     | Benzo(a)pyrene       | (IS6)   | 1.2362                       | 1.2362                           | 1.2256                               | 1.2256                                   | 3.4              | 3.4                  |

LDC#: <u>42791A2</u>a\_\_\_

# VALIDATION FINDINGS WORSHEET Continuing Calibration Results Verification



#### METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound Cx = Concentration of compound Ais = Area of associated internal standard Cis = Concentration of internal standard

| # | Standard ID | Calibration<br>Date | Compound (IS)              | Average RRF<br>(Initial RRF) | Reported<br>(CC RRF) | Recalculated<br>(CC RRF) | Reported<br>%D | Recalculated<br>%D |
|---|-------------|---------------------|----------------------------|------------------------------|----------------------|--------------------------|----------------|--------------------|
| 1 | G6_34594    | 07/13/18            | Phenol (IS1)               | 1.8893                       | 1.8841               | 1.8841                   | 0.3            | 0.3                |
|   |             |                     | Naphthalene (IS2)          | 1.1002                       | 1.1080               | 1.1080                   | 0.7            | 0.7                |
|   |             |                     | Diethyl phthalate (IS3)    | 1.5150                       | 1.5874               | 1.5874                   | 4.8            | 4.8                |
|   |             |                     | Hexachlorobenzene (IS4)    | 0.2415                       | 0.2446               | 0.2446                   | 1.3            | 1.3                |
|   |             |                     | Butylbenzylphthalate (IS5) | 0.7262                       | 0.7415               | 0.7415                   | 2.1            | 2.1                |
|   |             |                     | Benzo(a)pyrene (IS6)       | 1.2256                       | 1.2820               | 1.2820                   | 4.6            | 4.6                |
| 2 | G6_34628    | 7/14/2018           | Diethyl phthalate (IS3)    | 1.5150                       | 1.4966               | 1.4966                   | 1.2            | 1.2                |
|   |             |                     | Butylbenzylphthalate (IS5) | 0.7262                       | 0.7214               | 0.7214                   | 0.7            | 0.7                |
| 3 | G6_34662    | 07/16/18            | Diethyl phthalate (IS3)    | 1.5150                       | 1.4931               | 1.4931                   | 1.4            | 1.4                |
|   |             |                     | Butylbenzylphthalate (IS5) | 0.7262                       | 0.6986               | 0.6986                   | 3.8            | 3.8                |
| 4 | G6_34732    | 07/18/18            | Phenol (IS1)               | 1.8893                       | 1.9268               | 1.9268                   | 2.0            | 2.0                |
|   |             |                     | Naphthalene (IS2)          | 1.1002                       | 1.1076               | 1.1076                   | 0.7            | 0.7                |
|   |             |                     | Diethyl phthalate (IS3)    | 1.5150                       | 1.4962               | 1.4962                   | 1.2            | 1.2                |
|   |             |                     | Hexachlorobenzene (IS4)    | 0.2415                       | 0.2314               | 0.2314                   | 4.2            | 4.2                |
|   |             |                     | Butylbenzylphthalate (IS5) | 0.7262                       | 0.7241               | 0.7241                   | 0.3            | 0.3                |
|   |             |                     | Benzo(a)pyrene (IS6)       | 1.2256                       | 1.2960               | 1.2960                   | 5.7            | 5.7                |

LDC #: 42791 A 20

# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:_        | 1 | _of_    | 1 | _ |
|---------------|---|---------|---|---|
| Reviewer:     | , | JVG     | ; |   |
| 2nd reviewer: |   | $\prec$ |   |   |

#### METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

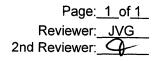
% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # 1

Percent Percent Surrogate Surrogate Recovery Recovery Percent Recalculated Spiked Found Reported Difference 71 71 71.5 Nitrobenzene-d5 С 100 70.6 71 2-Fluorobiphenyl 71 79 79 Terphenyl-d14 78.6 77 77.1 77 Phenol-d5 79 79.2 2-Fluorophenol 79 У 74.0 74 74 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4

#### Sample ID:\_\_\_


|                        | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5        |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl       |                     |                    |                                 |                                     |                       |
| Terphenyl-d14          |                     |                    |                                 |                                     |                       |
| Phenol-d5              |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol         |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol   |                     |                    |                                 |                                     |                       |
| 2-Chlorophenol-d4      |                     |                    |                                 |                                     |                       |
| 1,2-Dichlorobenzene-d4 |                     |                    |                                 |                                     |                       |

#### Sample ID:

|                        | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5        |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl       |                     |                    |                                 |                                     |                       |
| Terphenyl-d14          |                     |                    |                                 |                                     |                       |
| Phenol-d5              |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol         |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol   |                     |                    |                                 |                                     |                       |
| 2-Chlorophenol-d4      |                     |                    |                                 |                                     |                       |
| 1,2-Dichlorobenzene-d4 |                     |                    |                                 |                                     |                       |

42791 AZA

# VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>



#### METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I \* 2/(MSC + MSDC) MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: \_\_\_\_\_15 /16

| Compound                   | Ad   | ike<br>ded<br>ノレ) | Sample<br>Concentration<br>( 以 /나 | Spiked<br>Concer<br>( 1/4 | tration | Matrix<br>Percent F |        | Matrix Spik | · .    | MS/I     | · · ·  |
|----------------------------|------|-------------------|-----------------------------------|---------------------------|---------|---------------------|--------|-------------|--------|----------|--------|
|                            |      | MSD               |                                   | MS                        | MSD     | Reported            | Recalc | Reported    | Recalc | Reported | Recalc |
| Phenol                     |      |                   |                                   |                           |         |                     |        |             |        |          |        |
| N-Nitroso-di-n-propylamine |      |                   |                                   |                           |         |                     |        |             |        |          |        |
| 4-Chloro-3-methylphenol    |      |                   |                                   |                           |         |                     |        |             |        |          |        |
| Acenaphthene               |      |                   |                                   |                           |         |                     |        |             |        |          |        |
| Pentachlorophenol          |      |                   |                                   |                           |         |                     |        |             |        |          |        |
| Pyrene                     |      |                   |                                   |                           |         |                     |        |             | 1      |          |        |
| EEE                        | 75.6 | 76.5              | 0                                 | 57.9                      | 56.4    | 77                  | 77     | 74(         | 74     | 3        | 3      |
|                            |      |                   |                                   |                           |         |                     |        |             |        |          |        |
|                            |      |                   |                                   |                           |         |                     |        |             |        |          |        |
|                            |      |                   |                                   |                           |         |                     |        |             |        |          |        |
|                            |      |                   |                                   |                           |         |                     |        |             |        |          |        |

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 42 791 A2a

#### VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JVG

Page: 1 of 1

2nd Reviewer: Q

#### METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

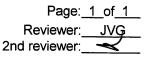
% Recovery = 100 \* (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: UCS /D


250-420810/2,3-4

| Compound                   |       | ike<br>ded<br>//) | Conce | bike<br>ntration |          | <u>CS</u> |          | SD     |          | <u>/I CSD</u> |
|----------------------------|-------|-------------------|-------|------------------|----------|-----------|----------|--------|----------|---------------|
| Compound                   |       |                   |       | L CSD            | Reported | Recalc    | Reported | Recalc | Reported | Recalculated  |
| Phenol                     | 80.0  | 80.0              | 57.)  | 66.0             | 71       | 71        | 82       | 87     | 14       | 14            |
| N-Nitroso-di-n-propylamine |       |                   | 59.0  | 65.3             | 74       | 74        | 82       | 82     | 10       | 10            |
| 4-Chloro-3-methylphenol    |       |                   | 62.9  | 68.4             | 79       | 79        | 86       | 54     | 8        | 8             |
| Acenaphthene               |       |                   | 61.9  | 65.6             | 77       | 77        | 87       | 8~     | 6        | 6             |
| Pentachlorophenol          | 160.0 | 160.0             | 120   | 129              | 75       | 75        | 81       | 81     | 7        | 7             |
| Pyrene                     | 80.0  | 80.0              | 64.8  | 68.6             | 81       | ej        | 86       | 84     | 6        | 6             |
|                            |       |                   |       |                  |          |           |          |        |          |               |
|                            |       |                   |       |                  |          |           |          |        |          |               |
|                            |       |                   |       |                  |          |           |          |        |          |               |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

# LDC #: 42791 422

# VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**



#### METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

N N/A N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

= 57.1 mg/L

| Concer         | ntratio | $n = (A_{i})(I_{i})(V_{i})(DF)(2.0) (A_{is})(RRF)(V_{o})(V_{i})(%S)$     | E   |
|----------------|---------|--------------------------------------------------------------------------|-----|
| A <sub>x</sub> | =       | Area of the characteristic ion (EICP) for the<br>compound to be measured | s   |
| $A_{is}$       | =       | Area of the characteristic ion (EICP) for the specific internal standard |     |
| l <sub>s</sub> | =       | Amount of internal standard added in nanograms (ng)                      | c   |
| V <sub>°</sub> | =       | Volume or weight of sample extract in milliliters (ml) or grams (g).     |     |
| Vi             | =       | Volume of extract injected in microliters (ul)                           |     |
| Vt             | =       | Volume of the concentrated extract in microliters (ul)                   |     |
| Df             | =       | Dilution Factor.                                                         |     |
| %S             | =       | Percent solids, applicable to soil and solid matrices only.              |     |
| 20             | =       | Eactor of 2 to account for GPC cleanup                                   | 1 · |

Sample I.D. ND, Phenol  

$$VCS = 420 810$$
  
Conc. = (121/68)( 40.0)( 1ml )( )( )  
(44896)(1.8893)( 1L )( )( )

| 2.0 | = Factor of 2 to accou | nt for GPC cleanup |                                      |                                    |               |
|-----|------------------------|--------------------|--------------------------------------|------------------------------------|---------------|
| #   | Sample ID              | Compound           | Reported<br>Concentration<br>( W / 4 | Calculated<br>Concentration<br>( ) | Qualification |
|     |                        |                    | 57.                                  | -                                  |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      | -                                  |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      | ·····                              |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |
|     |                        |                    |                                      |                                    |               |

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Ravenna, Ohio                     |
|--------------------|-----------------------------------|
| LDC Report Date:   | August 3, 2018                    |
| Parameters:        | Polynuclear Aromatic Hydrocarbons |
| Validation Level:  | Stage 4                           |
| Laboratory:        | TestAmerica, Inc.                 |

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| NTAmw-119-062518-GW   | 280-111421-8                        | Water  | 06/25/18           |
| NTAmw-119-D-062518-GW | 280-111421-9                        | Water  | 06/25/18           |
| DETmw-003-D-062618-GW | 280-111421-16                       | Water  | 06/26/18           |
| DETmw-003-062618-GW   | 280-111421-22                       | Water  | 06/26/18           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## **II. GC/MS Instrument Performance Check**

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID          | Extraction<br>Date | Compound                                                                                                                                              | Concentration                                                                                                                                       | Associated<br>Samples                        |
|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| MB 280-420756/1-A | 07/01/18           | Acenaphthylene<br>Benzo(a)anthracene<br>Chrysene<br>Fluoranthene<br>Phenanthrene<br>Pyrene                                                            | 0.0135 ug/L<br>0.0131 ug/L<br>0.0124 ug/L<br>0.0323 ug/L<br>0.0729 ug/L<br>0.0209 ug/L                                                              | NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW |
| MB 280-420946/1-A | 07/03/18           | Anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Chrysene<br>Fluoranthene<br>Naphthalene<br>Phenanthrene<br>Pyrene | 0.00951 ug/L<br>0.0250 ug/L<br>0.0282 ug/L<br>0.0285 ug/L<br>0.0320 ug/L<br>0.0166 ug/L<br>0.0170 ug/L<br>0.0170 ug/L<br>0.0246 ug/L<br>0.0122 ug/L | DETmw-003-D-062618-GW<br>DETmw-003-062618-GW |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample                                                                                                                                                                         | Compound                                                          | Reported<br>Concentration                                                                                                  | Modified Final<br>Concentration                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| NTAmw-119-062518-GW                                                                                                                                                            | Fluoranthene<br>Phenanthrene<br>Pyrene                            | 0.025 ug/L<br>0.038 ug/L<br>0.015 ug/L                                                                                     | 0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L                                                                                                   |
| NTAmw-119-D-062518-GW                                                                                                                                                          | Acenaphthylene<br>Fluoranthene<br>Phenanthrene<br>Pyrene          | 0.014 ug/L<br>0.027 ug/L<br>0.051 ug/L<br>0.021 ug/L                                                                       | 0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L                                                                       |
| DETmw-003-D-062618-GW<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Chrysene<br>Fluoranthene<br>Naphthalene<br>Phenanthrene<br>Pyrene |                                                                   | 0.015 ug/L<br>0.037 ug/L<br>0.030 ug/L<br>0.029 ug/L<br>0.035 ug/L<br>0.045 ug/L<br>0.020 ug/L<br>0.045 ug/L<br>0.033 ug/L | 0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L |
| DETmw-003-062618-GW                                                                                                                                                            | Chrysene<br>Fluoranthene<br>Naphthalene<br>Phenanthrene<br>Pyrene | 0.012 ug/L<br>0.012 ug/L<br>0.012 ug/L<br>0.022 ug/L<br>0.011 ug/L                                                         | 0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L                                                   |

## VI. Field Blanks

No field blanks were identified in this SDG.

### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                                           | Compound                                                                                                                                                   | LCS<br>%R (Limits) | LCSD<br>%R (Limits)                                                                                          | Flag                               | A or P |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|--------|
| LCS/D 280-420756/2,3-A<br>(NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW) | Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene<br>Chrysene<br>Dibenzo(a,h)anthracene<br>Indeno(1,2,3-cd)pyrene |                    | 136 (59-120)<br>148 (53-126)<br>148 (54-125)<br>148 (44-128)<br>171 (57-120)<br>134 (44-131)<br>140 (48-130) | NA                                 | -      |
| LCS/D 280-420756/2,3-A<br>(NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW) | Fluoranthene<br>Pyrene                                                                                                                                     | -                  | 121 (58-120)<br>124 (53-121)                                                                                 | J (all detects)<br>J (all detects) | A      |

Relative percent differences (RPD) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                                                                                                                                                                                                          | Compound | RPD<br>(Limits)                                                                                                                                                                                        | Flag                                                  | A or P |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------|
| LCS/D 280-420756/2,3-A<br>(NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW)<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(a,h)iperylene<br>Benzo(a,h)anthracene<br>Dibenzo(a,h)anthracene<br>Indeno(1,2,3-cd)pyrene |          | $\begin{array}{l} 38 (\leq\!\!20) \\ 62 (\leq\!\!20) \\ 65 (\leq\!\!20) \\ 69 (\leq\!\!20) \\ 61 (\leq\!\!20) \\ 51 (\leq\!\!20) \\ 67 (\leq\!\!20) \\ 66 (\leq\!\!20) \\ 66 (\leq\!\!20) \end{array}$ | NA                                                    |        |
| LCS/D 280-420756/2,3-A<br>(NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW)<br>Pyrene                                                                                                                                                      |          | 53 (≤20)<br>32 (≤20)<br>53 (≤20)                                                                                                                                                                       | J (all detects)<br>J (all detects)<br>J (all detects) | A      |
| LCS/D 280-420946/2,3-A<br>(DETmw-003-D-062618-GW)                                                                                                                                                                                       |          |                                                                                                                                                                                                        | J (all detects)                                       | A      |

| LCS ID<br>(Associated Samples)                  | Compound             | RPD<br>(Limits) | Flag | A or P |
|-------------------------------------------------|----------------------|-----------------|------|--------|
| LCS/D 280-420946/2,3-A<br>(DETmw-003-062618-GW) | Benzo(k)fluoranthene | 21 (≤20)        | NA   | -      |

## X. Field Duplicates

Samples NTAmw-119-062518-GW and NTAmw-119-D-062518-GW and samples DETmw-003-D-062618-GW and DETmw-003-062618-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|                | Concentra           | Concentration (ug/L)  |                 |                        |      |        |
|----------------|---------------------|-----------------------|-----------------|------------------------|------|--------|
| Compound       | NTAmw-119-062518-GW | NTAmw-119-D-062518-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Acenaphthylene | 0.042U              | 0.014                 | -               | 0.028 (≤0.10)          | -    | -      |
| Fluoranthene   | 0.025               | 0.027                 | -               | 0.002 (≤0.10)          | -    | -      |
| Naphthalene    | 0.022               | 0.025                 | -               | 0.003 (≤0.10)          | -    | -      |
| Phenanthrene   | 0.038               | 0.051                 | -               | 0.013 (≤0.10)          | -    | -      |
| Pyrene         | 0.015               | 0.021                 | -               | 0.006 (≤0.10)          | -    | -      |

|                      | Concentrat            | tion (ug/L)         |                 |                        |      |        |
|----------------------|-----------------------|---------------------|-----------------|------------------------|------|--------|
| Compound             | DETmw-003-D-062618-GW | DETmw-003-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Anthracene           | 0.015                 | 0.040U              | -               | 0.025 (≤0.099)         | -    | -      |
| Benzo(a)anthracene   | 0.037                 | 0.012U              | -               | 0.025 (≤0.099)         | -    | -      |
| Benzo(b)fluoranthene | 0.030                 | 0.012U              | -               | 0.018 (≤0.099)         | -    | -      |
| Benzo(k)fluoranthene | 0.029                 | 0.012U              | -               | 0.017 (≤0.099)         | -    | -      |
| Benzo(a)pyrene       | 0.019                 | 0.012U              | -               | 0.007 (≤0.099)         | -    | -      |
| Chrysene             | 0.035                 | 0.012               | -               | 0.023 (≤0.11)          | -    | -      |
| Fluoranthene         | 0.045                 | 0.012               | -               | 0.033 (≤0.11)          | -    | -      |
| Naphthalene          | 0.020                 | 0.012               | -               | 0.008 (≤0.11)          | -    | -      |

|              | Concentra             | - · · · · · · · · · · · · · · · · · · · |                 |                        |      |        |
|--------------|-----------------------|-----------------------------------------|-----------------|------------------------|------|--------|
| Compound     | DETmw-003-D-062618-GW | DETmw-003-062618-GW                     | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Phenanthrene | 0.045                 | 0.022                                   | -               | 0.023 (≤0.11)          | -    | -      |
| Pyrene       | 0.033                 | 0.011                                   | -               | 0.022 (≤0.11)          | -    | -      |

### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

## XII. Compound Quantitation

All compound quantitations were within validation criteria.

## XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

### XIV. System Performance

The system performance was acceptable.

## XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to LCS/LCSD %R and RPD, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

## Ravenna, Ohio Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 280-111421-1

| Sample                                       | Compound                               | Flag                                                  | A or P | Reason                              |
|----------------------------------------------|----------------------------------------|-------------------------------------------------------|--------|-------------------------------------|
| NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW | Fluoranthene<br>Pyrene                 | J (all detects)<br>J (all detects)                    | A      | Laboratory control samples<br>(%R)  |
| NTAmw-119-062518-GW<br>NTAmw-119-D-062518-GW | Fluoranthene<br>Phenanthrene<br>Pyrene | J (all detects)<br>J (all detects)<br>J (all detects) | A      | Laboratory control samples<br>(RPD) |
| DETmw-003-D-062618-GW                        | Benzo(k)fluoranthene                   | J (all detects)                                       | A      | Laboratory control samples<br>(RPD) |

#### Ravenna, Ohio

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

| Sample                | Compound                                                                                                                                              | Modified Final<br>Concentration                                                                                                          | A or P |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|
| NTAmw-119-062518-GW   | Fluoranthene<br>Phenanthrene<br>Pyrene                                                                                                                | 0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L                                                                                                   | A      |
| NTAmw-119-D-062518-GW | Acenaphthylene<br>Fluoranthene<br>Phenanthrene<br>Pyrene                                                                                              | 0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L<br>0.10U ug/L                                                                                     | A      |
| DETmw-003-D-062618-GW | Anthracene<br>Benzo(a)anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Chrysene<br>Fluoranthene<br>Naphthalene<br>Phenanthrene<br>Pyrene | 0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L<br>0.11U ug/L | A      |
| DETmw-003-062618-GW   | Chrysene<br>Fluoranthene<br>Naphthalene<br>Phenanthrene<br>Pyrene                                                                                     | 0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L<br>0.099U ug/L                                                                  | A      |

## Ravenna, Ohio Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 280-111421-1

No Sample Data Qualified in this SDG

## VALIDATION COMPLETENESS WORKSHEET

LDC #: 42791A2b SDG #: 280-111421-1 Laboratory: Test America, Inc.

#### Stage 4

| Date: 05/02/18             |
|----------------------------|
| Page: <u>\</u> of <u>)</u> |
| Reviewer:                  |
| 2nd Reviewer:              |

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|             | Validation Area                                             |                                  |          | Com                                                    | nents        |          |
|-------------|-------------------------------------------------------------|----------------------------------|----------|--------------------------------------------------------|--------------|----------|
| ١.          | Sample receipt/Technical holding times                      | AIA                              |          |                                                        |              |          |
| 11.         | GC/MS Instrument performance check                          | A                                |          |                                                        |              |          |
| 111.        | Initial calibration/ICV                                     | A/A                              | ICALS    | - 153                                                  |              | 1015 202 |
| IV.         | Continuing calibration / ending                             | A                                | dav s    | 20/50%                                                 |              |          |
| <b>V</b> .  | Laboratory Blanks                                           | SN                               |          |                                                        |              |          |
| VI.         | Field blanks                                                | N                                |          |                                                        |              |          |
| VII.        | Surrogate spikes                                            | A                                |          |                                                        |              |          |
| VIII.       | Matrix spike/Matrix spike duplicates                        | N                                | cs       |                                                        |              |          |
| IX.         | Laboratory control samples                                  | SN                               |          | ra B                                                   |              |          |
| <b>X</b> .  | Field duplicates                                            | SW                               | J =      | 1/2 3/4                                                |              |          |
| XI.         | Internal standards                                          | A                                |          |                                                        |              |          |
| XII.        | Compound quantitation RL/LOQ/LODs                           | A                                |          |                                                        |              |          |
| XIII.       | Target compound identification                              | A                                |          |                                                        |              |          |
| XIV.        | System performance                                          | A                                |          |                                                        |              |          |
| xv.         | Overall assessment of data                                  | A                                |          |                                                        |              |          |
| Note:       | N = Not provided/applicableR = RinSW = See worksheetFB = Fi | o compounds<br>sate<br>eid blank | detected | D = Duplicate<br>TB = Trip blank<br>EB = Equipment bla | OTHER:<br>nk |          |
| 1           | Client ID                                                   |                                  |          | Lab ID                                                 | Matrix       | Date     |
|             | ITAmw-119-062518-GW 01                                      |                                  |          | 280-111421-8                                           | Water        | 06/25/18 |
| 2   N       | ITAmw-119-D-062518-GW                                       |                                  |          | 280-111421-9                                           | Water        | 06/25/18 |
| <u>3</u> [  | DETmw-003-D-062618-GW                                       |                                  |          | 280-111421-16                                          | Water        | 06/26/18 |
| 4 C         | DETmw-003-062818-GW                                         | )~                               |          | 280-111421-22                                          | Water        | 06/26/18 |
| 5           |                                                             |                                  |          |                                                        |              |          |
| 6           |                                                             |                                  |          |                                                        |              |          |
| 7           |                                                             |                                  |          |                                                        |              |          |
| 8<br>Notes: | <u></u>                                                     |                                  |          | I                                                      | 1            |          |
|             | 18 280 - 420756/1                                           |                                  |          |                                                        |              |          |
| "<br>/      | 1B 280-420756/1-A<br>} - 420946/1-A                         |                                  |          |                                                        |              |          |
|             |                                                             |                                  |          |                                                        |              |          |
|             |                                                             |                                  |          |                                                        |              |          |
|             |                                                             |                                  |          |                                                        |              |          |

Page: 1 of 2 Reviewer: JKG 2nd Reviewer:

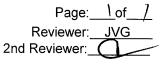
### Method: PAH (EPA SW 846 Method 8270D-SIM)

| Validation Area                                                                                                                  | Yes    | No | NA | Findings/Comments |
|----------------------------------------------------------------------------------------------------------------------------------|--------|----|----|-------------------|
| I. Technical holding times                                                                                                       |        |    |    |                   |
| Were all technical holding times met?                                                                                            | /      |    |    |                   |
| Was cooler temperature criteria met?                                                                                             |        |    |    |                   |
| II GC/MS Instrument performance check (Not required)                                                                             |        |    |    |                   |
| Were the DFTPP performance results reviewed and found to be within the specified criteria?                                       | /      |    |    |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                     |        | ·  |    |                   |
| IIIa. Initial calibration                                                                                                        |        |    |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       | /      |    |    | ·                 |
| Were all percent relative standard deviations (%RSD) $\leq 20\%$ and relative response factors (RRF) $\geq 0.05$ ?               | <      |    |    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? |        | /  |    |                   |
| IIIb. Initial Calibration Verification                                                                                           |        |    |    |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                    | 1      |    |    |                   |
| 20<br>Were all percent differences (%D) ≤ <del>30% o</del> r p <del>ercent recoverles (%R) 70-130%</del> ?                       |        |    |    |                   |
| IV. Continuing calibration                                                                                                       | 1      |    |    |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?                                 | /      | ×  |    |                   |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) $\geq$ 0.05?                                    |        |    |    |                   |
| V. Laboratory Blanks                                                                                                             | 1 .    |    |    |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                 | $\leq$ |    |    |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                               |        |    |    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.               | 1      | M  | h  |                   |
| VI. Field blanks                                                                                                                 |        |    |    |                   |
| Were field blanks identified in this SDG?                                                                                        | •      |    | /  |                   |
| Were target compounds detected in the field blanks?                                                                              |        |    | /  |                   |
| VII. Surrogate spikes                                                                                                            |        |    |    |                   |
| Were all surrogate percent differences (%R) within QC limits?                                                                    | /      |    |    |                   |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?                   |        |    | /  |                   |
| If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?                               |        |    | /  |                   |

### VALIDATION FINDINGS CHECKLIST

|     | Page:     | 2 | _of | 2  |
|-----|-----------|---|-----|----|
|     | Reviewer: | / | 44  | G/ |
| 2nd | Reviewer: | C | 1   |    |

| Validation Area                                                                                                                                                                      | Yes | No | NA | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                           |     |    |    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix<br>in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil /<br>Water. |     | /  |    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                               |     | /  |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                             |     |    |    |                   |
| IX Laboratory control samples                                                                                                                                                        |     |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                                    | 1   |    |    |                   |
| Was an LCS analyzed per analytical batch?                                                                                                                                            | /   |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                     | /   |    |    |                   |
| X. Field duplicates                                                                                                                                                                  |     |    |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                                   | /   |    |    |                   |
| Were target compounds detected in the field duplicates?                                                                                                                              |     |    |    |                   |
| XI. Internal standards                                                                                                                                                               |     |    |    |                   |
| Were internal standard area counts within -50% or +100% of the associated calibration standard?                                                                                      | 1   |    |    |                   |
| Were retention times within <u>+</u> 30 seconds of the associated calibration standard?                                                                                              |     |    |    |                   |
| XII. Compound quantitation                                                                                                                                                           |     |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                        | 1   | -  |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                | /   |    |    |                   |
| XIII. Target compound identification                                                                                                                                                 |     |    |    |                   |
| Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?                                                                                                | 1   |    |    |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                                                            | 1   |    |    |                   |
| Were chromatogram peaks verified and accounted for?                                                                                                                                  | 1   |    |    |                   |
| XIV. System performance                                                                                                                                                              |     |    |    |                   |
| System performance was found to be acceptable.                                                                                                                                       |     |    |    |                   |
| XV. Overall assessment of data                                                                                                                                                       |     | 1  |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                               |     |    |    |                   |


# VALIDATION FINDINGS WORKSHEET

#### METHOD: GC/MS SVOA

| A. Phenol                       | AA. 2-Chloronaphthalene         | AAA. Butylbenzylphthalate        | AAAA. Dibenzothiophene                    | A1. N-Nitrosodiethylamine             |
|---------------------------------|---------------------------------|----------------------------------|-------------------------------------------|---------------------------------------|
| B. Bis (2-chloroethyl) ether    | BB. 2-Nitroaniline              | BBB. 3,3'-Dichlorobenzidine      | BBBB. Benzo(a)fluoranthene                | B1. N-Nitrosodi-n-butylamine          |
| C. 2-Chlorophenol               | CC. Dimethylphthalate           | CCC. Benzo(a)anthracene          | CCCC. Benzo(b)fluorene                    | C1. N-Nitrosomethylethylamine         |
| D. 1,3-Dichlorobenzene          | DD. Acenaphthylene              | DDD. Chrysene                    | DDDD. cis/trans-Decalin                   | D1. N-Nitrosomorpholine               |
| E. 1,4-Dichlorobenzene          | EE. 2,6-Dinitrotoluene          | EEE. Bis(2-ethylhexyl)phthalate  | EEE. Biphenyl                             | E1. N-Nitrosopyrrolidine              |
| F. 1,2-Dichlorobenzene          | FF. 3-Nitroaniline              | FFF. Di-n-octylphthalate         | FFFF. Retene                              | F1. Phenacetin                        |
| G. 2-Methylphenol               | GG. Acenaphthene                | GGG. Benzo(b)fluoranthene        | GGGG. C30-Hopane                          | G1. 2-Acetylaminofluorene             |
| H. 2,2'-Oxybis(1-chloropropane) | HH. 2,4-Dinitrophenol           | HHH. Benzo(k)fluoranthene        | HHHH. 1-Methylphenanthrene                | H1. Pronamide                         |
| i. 4-Methylphenol               | II. 4-Nitrophenol               | III. Benzo(a)pyrene              | IIII. 1,4-Dioxane                         | I1. Methyl methanesulfonate           |
| J. N-Nitroso-di-n-propylamine   | JJ. Dibenzofuran                | JJJ. Indeno(1,2,3-cd)pyrene      | JJJJ. Acetophenone                        | J1. Ethyl methanesulfonate            |
| K. Hexachloroethane             | KK. 2,4-Dinitrotoluene          | KKK. Dibenz(a,h)anthracene       | KKKK. Atrazine                            | K1. o,o',o''-Triethylphosphorothioate |
| L. Nitrobenzene                 | LL. Diethylphthalate            | LLL. Benzo(g,h,i)perylene        | LLLL. Benzaldehyde                        | L1. n-Phenylene diamine               |
| M. Isophorone                   | MM. 4-Chlorophenyl-phenyl ether | MMM. Bis(2-Chloroisopropyl)ether | MMMM. Caprolactam                         | M1. 1,4-Naphthoquinone                |
| N. 2-Nitrophenol                | NN. Fluorene                    | NNN. Aniline                     | NNNN. 2,6-Dichlorophenol                  | N1. N-Nitro-o-toluidine               |
| O. 2,4-Dimethylphenol           | OO. 4-Nitroaniline              | OOO. N-Nitrosodimethylamine      | 0000. 1,2-Diphenylhydrazine               | O1. 1,3,5-Trinitrobenzene             |
| P. Bis(2-chloroethoxy)methane   | PP. 4,6-Dinitro-2-methylphenol  | PPP. Benzoic Acid                | PPPP. 3-Methylphenol                      | P1. Pentachlorobenzene                |
| Q. 2,4-Dichlorophenol           | QQ. N-Nitrosodiphenylamine      | QQQ. Benzyl alcohol              | QQQQ. 3&4-Methylphenol                    | Q1. 4-Aminobiphenyl                   |
| R. 1,2,4-Trichlorobenzene       | RR. 4-Bromophenyl-phenylether   | RRR. Pyridine                    | RRRR. 4-Dimethyldibenzothiophene (4MDT)   | R1. 2-Naphthylamine                   |
| S. Naphthalene                  | SS. Hexachlorobenzene           | SSS. Benzidine                   | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | S1. Triphenylene                      |
| T. 4-Chloroaniline              | TT. Pentachlorophenol           | TTT. 1-Methylnaphthalene         | TTTT. 1-Methyldibenzothiophene (1MDT)     | T1. Octachlorostyrene                 |
| U. Hexachlorobutadiene          | UU. Phenanthrene                | UUU.Benzo(b)thiophene            | UUUU 2,3,4,6-Tetrachlorophenol            | U1. Famphur                           |
| V. 4-Chloro-3-methylphenol      | VV. Anthracene                  | VVV.Benzonaphthothiophene        | VVVV. 1,2,4,5-Tetrachlorobenzene          | V1. 1,4-phenylenediamine              |
| W. 2-Methylnaphthalene          | WW. Carbazole                   | WWW.Benzo(e)pyrene               | WWWW. 2-Picoline                          | W1. Methapyrilene                     |
| X. Hexachlorocyclopentadiene    | XX. Di-n-butylphthalate         | XXX. 2,6-Dimethylnaphthalene     | XXXX. 3-Methylcholanthrene                | X1. Pentachloroethane                 |
| Y. 2,4,6-Trichlorophenol        | YY. Fluoranthene                | YYY. 2,3,5-Trimethylnaphthalene  | YYYY. a,a-Dimethylphenethylamine          | Y1. 3,3'-Dimethylbenzidine            |
| Z. 2,4,5-Trichlorophenol        | ZZ. Pyrene                      | ZZZ. Perylene                    | ZZZZ. Hexachloropropene                   | Z1. o-Toluidine                       |

# VALIDATION FINDINGS WORKSHEET

#### **Blanks**



METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Was a method blank analyzed for each matrix?

Y N N/A Was a method blank analyzed for each concentration preparation level?

Y N N/A Was a method blank associated with every sample?

 $\frac{\sqrt{N N/A}}{\sqrt{N N/A}}$  Was the blank contaminated? If yes, please see qualification below.

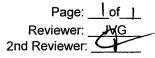
Blank extraction date: 07 /01 /18 Blank analysis date: 67 /19 /18

Conc. units: ug /L

1,2

| Compound | Blank ID     |             |               |  |  |
|----------|--------------|-------------|---------------|--|--|
|          | MB 280-42075 | 6/1-A 1     | 2             |  |  |
| Dh       | 0, 0135      |             | 0.014/0.1014  |  |  |
| uc       | 0.0131       |             |               |  |  |
| bod      | 0, 0124      |             |               |  |  |
| 77       | 0.0323       | 0.025 010 M | 0. 027 /0.10V |  |  |
| иу       | 6.0729       | 0.078/      | 0.051/        |  |  |
| 22       | 0.0209       | 0.015/      | 0.021/        |  |  |
|          |              |             |               |  |  |

Associated Samples:


| :. units: <u>/ 4</u> |                    | Associa     |               |   |      |
|----------------------|--------------------|-------------|---------------|---|------|
| Compound             | Blank ID           |             |               |   | <br> |
|                      | MB 280-42094 6/1-A | 3           | 4             |   |      |
| VV                   | 0.00 951           | 0.015/0.11U |               |   |      |
| ca                   | 0.0250             | 0.037/      |               | • |      |
| GGG                  | 0. 0282            | 0.630/      |               |   |      |
| ннн                  | 0. 0285            | 0.029/      |               |   |      |
| nod                  | 0.0320             | 0.035/      | 0.012/0.099 U |   |      |
| <b>YY</b>            | 0.0166             | 0.045/      | 0.012/        |   |      |
| Ś                    | 0,0170             | 0.020/      | 0.012/        |   |      |
| ИИ                   | 0.0246             | 0.045/      | 0.022/        |   |      |
| ZZ                   | 0.0/22             | 0.033/      | 0.011/1       |   |      |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also gualified as not detected, "U".

Blank extraction date: 07/03/12 Blank analysis date: 07/12/18

### VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)



#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".  $\mathcal{Y}$  N/A Was a LCS required?

Y N N/A Y N N/A

A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

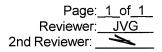
| #         | Date | LCS/LCSD ID          | Compound | LCS<br>%R (Limits) |     | LCSD<br>%R (Limits)                          |   | RPD (Limits)                                 |   | Associated Samples | Qualifications                        |
|-----------|------|----------------------|----------|--------------------|-----|----------------------------------------------|---|----------------------------------------------|---|--------------------|---------------------------------------|
|           |      | LCS/ 280-420756      | 123-A    | Ste ( att.         | con | ed (                                         | ) | (                                            | ) | 12 MBL             | J dets/P                              |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      | VCS 10 280- 420 9 46 | 23-Å H   |                    | )   | (                                            | ) | 21 (20                                       | ) | 3.4 1182           | J dets/p                              |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) | (Det = 3)          |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      | L                    |          | (                  | )   | ((                                           | ) | (                                            | 5 |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | . (                                          | ) |                    |                                       |
|           |      |                      |          | (                  | )   | • (                                          | ) | (                                            | ) |                    |                                       |
|           |      |                      | <br>     | (                  |     | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      |          |                    |     |                                              |   |                                              |   |                    |                                       |
| <u></u>   |      | ļ                    |          |                    |     |                                              |   |                                              |   |                    |                                       |
| <b>  </b> |      |                      | [        | (                  | )   | (                                            | ) | (                                            | ) |                    | · · · · · · · · · · · · · · · · · · · |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) | *****              |                                       |
|           |      |                      |          | (                  | )   | (                                            | ) | (                                            | ) |                    |                                       |
|           |      |                      | L        |                    | )   | <u>     (                               </u> | ) | <u>    (                                </u> | ) |                    |                                       |

#### FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Denver Job No.: 280-111421-1 SDG No.:

,

Matrix: Water Level: Low Lab File ID: F2459.D Lab ID: LCSD 280-420756/3-A Client ID:


|                        |     | SPIKE  | LCSD          | LCSD |     | QC LI | IMITS  |   |            |
|------------------------|-----|--------|---------------|------|-----|-------|--------|---|------------|
|                        |     | ADDED  | CONCENTRATION | 8    | 용   |       | 1      | # |            |
| COMPOUND               |     | (ug/L) | (ug/L)        | REC  | RPD | RPD   | REC    |   |            |
| Acenaphthene           |     | 0.900  | 0.758         | 84   | 11  | 20    | 48-114 |   |            |
| Acenaphthylene         |     | 0.900  | 0.625         | 69   | 6   | 20    | 35-121 |   | _          |
| Anthracene             | ٧V  | 0.900  | 0.939         | 104  | 38  | 20    | 53-119 | Q | (ND)       |
| Benzo[a]anthracene     | ici | 0.900  | 1.22          | 136  | 62  | 20    | 59-120 | Q |            |
| Benzo[b]fluoranthene   | 666 | 0.900  | 1.33          | 148  | 65  | 20    | 53-126 | Q |            |
| Benzo[k]fluoranthene   | HHH | 0.900  | 1.33          | 148  | 69  | 20    | 54-125 | Q |            |
| Benzo[g,h,i]perylene   | LLL | 0.900  | 1.33          | 148  | 61  | 20    | 44-128 | Q |            |
| Benzo[a]pyrene         | III | 0.900  | 0.973         | 108  | 51  | 20    | 53-120 | Q |            |
| Chrysene               | DDD | 0.900  | 1.54          | 171  | 67  | 20    | 57-120 | Q |            |
| Dibenz(a,h)anthracene  | KKK | 0.900  | 1.21          | 134  | 66  | 20    | 44-131 | Q |            |
| Fluoranthene           | YY  | 0.900  | 1.08          | 121  | 53  | 20    | 58-120 | Q | (Det)      |
| Fluorene               |     | 0.900  | 0.819         | 91   | 17  | 20    | 50-118 |   |            |
| Indeno[1,2,3-cd]pyrene | JJJ | 0.900  | 1.26          | 140  | 66  | 20    | 48-130 | Q | (10)       |
| Naphthalene            |     | 0.900  | 0.713         | 79   | 4   | 20    | 43-114 |   |            |
| Phenanthrene           | นน  | 0.900  | 1.02          | 113  | 32  | 20    | 53-115 | Q | (04)       |
| Pyrene                 | Z2  | 0.900  | 1.12          | 124  | 53  | 20    | 53-121 | Q | ] <i>V</i> |

 $\ensuremath{\texttt{\#}}$  Column to be used to flag recovery and RPD values FORM III 8270D SIM

.

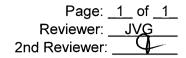
#### LDC#: <u>42791A2b</u>

#### VALIDATION FINDINGS WORKSHEET Field Duplicates



### METHOD: GCMS PAH (EPA SW 846 Method 8270D-SIM)

<u>Yn na</u> Yn na Were field duplicate pairs identified in this SDG?


Were target analytes detected in the field duplicate pairs?

|          | Concentrat | tion (ug/L) | RPD  | Difference | Limits                                        | Qualifications |  |
|----------|------------|-------------|------|------------|-----------------------------------------------|----------------|--|
| Compound | 1          | 2           | (≤%) | (ug/L)     | ( <loq)< th=""><th>(Parent Only)</th></loq)<> | (Parent Only)  |  |
| DD       | 0.042U     | 0.014       |      | 0.028      | (≤0.10)                                       |                |  |
| YY       | 0.025      | 0.027       |      | 0.002      | (≤0.10)                                       |                |  |
| S        | 0.022      | 0.025       |      | 0.003      | (≤0.10)                                       |                |  |
| UU       | 0.038      | 0.051       |      | 0.013      | (≤0.10)                                       |                |  |
| zz       | 0.015      | 0.021       |      | 0,006      | <u>(≤0.10)</u>                                |                |  |

|          | Concentrat | ion (ug/L) | RPD  | Difference | Limits                                        | Qualifications |
|----------|------------|------------|------|------------|-----------------------------------------------|----------------|
| Compound | 3          | 4          | (≤%) | (ug/L)     | ( <loq)< th=""><th>(Parent Only)</th></loq)<> | (Parent Only)  |
| w        | 0.015      | 0.040U     |      | 0.025      | (≤0.099)                                      |                |
| ссс      | 0.037      | 0.012U     |      | 0.025      | (≤0.099)                                      |                |
| GGG      | 0.030      | 0.012U     |      | 0.018      | (≤0.099)                                      |                |
| ннн      | 0.029      | 0.012U     |      | 0.017      | (≤0.099)                                      |                |
| 111      | 0.019      | 0.012U     |      | 0.007      | (≤0.099)                                      |                |
| DDD      | 0.035      | 0.012      |      | 0.023      | (≤0.11)                                       |                |
| YY       | 0.045      | 0.012      |      | 0.033      | (≤0.11)                                       |                |
| s        | 0.020      | 0.012      |      | 0.008      | (≤0.11)                                       |                |
| UU       | 0.045      | 0.022      |      | 0.023      | (≤0.11)                                       |                |
| ZZ       | 0.033      | 0.011      |      | 0.022      | (≤0.11)                                       |                |

V:\Josephine\FIELD DUPLICATES\42791A2b cardno ravenna.wpd

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification



#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ 

average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X)  $A_x$  = Area of Compound

 $C_x$  = Concentration of compound, S= Standard deviation of the RRFs,  $A_{is}$  = Area of associated internal standard  $C_{is}$  = Concentration of internal standard X = Mean of the RRFs

|   |             | Calibration |                |       | Reported<br>RRF | Recalculated<br>RRF | Reported<br>Average RRF | Recalculated<br>Average RRF | Reported<br>%RSD | Recalculated<br>%RSD |
|---|-------------|-------------|----------------|-------|-----------------|---------------------|-------------------------|-----------------------------|------------------|----------------------|
| # | Standard ID | Date        | Compound (     | IS)   | (600 std)       | (600 std)           | (Initial)               | (Initial)                   |                  |                      |
| 1 | ICAL        | 7/10/18     | Naphthalene    | (ANT) | 2.0502          | 2.0502              | 2.1060                  | 2.1060                      | 4.4              | 4.4                  |
|   | SMS F       |             | Phenanthrene   | (PHN) | 1.3230          | 1.3230              | 1.3927                  | 1.3927                      | 8.5              | 8.5                  |
|   |             |             | Benzo(a)pyrene | (CRY) | 1.2018          | 1.2018              | 1.2242                  | 1.2242                      | 10.5             | 10.5                 |

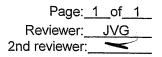
## VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1\_of\_1</u> Reviewer: <u>JVG</u> 2nd Reviewer: \_\_\_

#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)


The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound


Cx = Concentration of compound Ais = Area of associated internal standard Cis = Concentration of internal standard

\$

|   |             | Calibration |                |       | Ave RRF | Reported | Recalculated | Reported | Recalculated |
|---|-------------|-------------|----------------|-------|---------|----------|--------------|----------|--------------|
| # | Standard ID | Date        | Compound       |       |         | RRF      | RRF          | % D      | %D           |
| 1 | F2272       | 7/11/2018   | Naphthalene    | (ANT) | 2.106   | 1.982    | 1.982        | 5.9      | 5.9          |
|   |             |             | Phenanthrene   | (PHN) | 1.393   | 1.313    | 1.313        | 5.7      | 5.7          |
|   |             |             | Benzo(a)pyrene | (CRY) | 1.224   | 1.005    | 1.005        | 17.9     | 17.9         |
| 2 | F2299       | 7/12/2018   | Naphthalene    | (ANT) | 2.106   | 2.161    | 2.161        | 2.6      | 2.6          |
|   |             |             | Phenanthrene   | (PHN) | 1.393   | 1.282    | 1.282        | 7.9      | 7.9          |
|   |             |             | Benzo(a)pyrene | (CRY) | 1.224   | 0.979    | 0.979        | 20.0     | 20.0         |
| 3 | F2354       | 7/16/2018   | Naphthalene    | (ANT) | 2.106   | 2.226    | 2.226        | 5.7      | 5.7          |
|   |             |             | Phenanthrene   | (PHN) | 1.393   | 1.385    | 1.385        | 0.6      | 0.6          |
|   |             |             | Benzo(a)pyrene | (CRY) | 1.224   | 1.059    | 1.059        | 13.5     | 13.5         |
| 4 | F2456       | 7/19/2018   | Naphthalene    | (ANT) | 2.106   | 2.218    | 2.218        | 5.3      | 5.3          |
|   |             |             | Phenanthrene   | (PHN) | 1.393   | 1.412    | 1.412        | 1.4      | 1.4          |
|   |             |             | Benzo(a)pyrene | (CRY) | 1.224   | 1.100    | 1.100        | 10.1     | 10.2         |



# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification



#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

| %          | Recovery:    | SF/SS  | * | 100 |  |
|------------|--------------|--------|---|-----|--|
| <i>.</i> , | 1.0000 vory. | 01,000 |   | 100 |  |

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: +

|                  | Surrogate<br>Spiked | Percent<br>Surrogate Recovery<br>Found Reported |    | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |  |
|------------------|---------------------|-------------------------------------------------|----|-------------------------------------|-----------------------|--|
| Nitrobenzene-d5  | 500                 | 351.8                                           | 76 | 70                                  | 0                     |  |
| 2-Fluorobiphenyl | ]                   | 355,5                                           | 71 | 71                                  |                       |  |
| Terphenyl-d14    |                     | 483.4                                           | 97 | 97                                  | ł                     |  |

#### Sample ID:

|                  | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5  |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl |                     |                    |                                 |                                     | *****                 |
| Terphenyl-d14    |                     |                    |                                 |                                     |                       |

#### Sample ID:\_\_\_\_\_

|                  | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5  |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl |                     |                    |                                 |                                     |                       |
| Terphenyl-d14    |                     |                    |                                 |                                     |                       |

#### Sample ID:\_\_\_\_

|                  | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5  |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl |                     |                    |                                 |                                     |                       |
| Terphenyl-d14    |                     |                    |                                 |                                     |                       |

#### Sample ID:\_\_\_\_\_

|                  | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5  |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl |                     |                    |                                 |                                     |                       |
| Terphenyl-d14    |                     |                    |                                 |                                     |                       |

LDC #: 4279 A26

#### VALIDATION FINDINGS WORKSHEET

Page: 1\_of 1 Reviewer: JVG

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

2nd Reviewer:

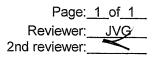
#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC)


LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: \_\_\_\_\_\_ US 10 280 - 420756/2, 3-A

|              | Spike<br>Addęd |                             | Spike<br>Concentration |       | I <u>cs</u> |                  |          |                  |          |              |  |
|--------------|----------------|-----------------------------|------------------------|-------|-------------|------------------|----------|------------------|----------|--------------|--|
| Compound     | ( 10           | $\mathcal{L}_{\mathcal{L}}$ | (49/1)                 |       | Percent     | Percent Recovery |          | Percent Recovery |          | RPD          |  |
|              |                |                             |                        |       | Reported    | Recalc           | Reported | Recalc           | Reported | Recalculated |  |
| Acenaphthene | 0,900          | 0.900                       | 0.68                   | 0.758 | 76          | 76               | 84       | 84               | 1)       | 1)           |  |
| Pyrene       |                | ł                           | 0.649                  | 1.12  | 72          | 72               | 124      | 124              | 53       | 53           |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             | ·                |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
|              |                |                             |                        |       |             |                  |          |                  |          |              |  |
| ·            |                |                             |                        |       |             |                  |          |                  |          |              |  |

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification



#### METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)

N N/A N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

V<sub>o</sub> = Volume or weight of sample extract in milliliters (ml) or grams (g).

 $V_1$  = Volume of extract injected in microliters (ul)

V<sub>t</sub> = Volume of the concentrated extract in microliters (ul) Df = Dilution Factor.

- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Naphthalene 4 Sample I.D.  $Conc. = (\frac{598}{(5497)})(\frac{600}{2.106})(\frac{1mL}{251.9m2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{251.9m2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac$ 0.012 ug/L =

| # | Sample ID | Compound                              | Reported<br>Concentration<br>( ഗ്ര /L) | Calculated<br>Concentration<br>( ) | Qualification |
|---|-----------|---------------------------------------|----------------------------------------|------------------------------------|---------------|
|   |           |                                       | 0.012                                  |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           | -                                     |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           | ***                                   |                                        |                                    |               |
|   |           | ·                                     |                                        |                                    |               |
|   | ·         |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           | · · · · · · · · · · · · · · · · · · · |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |
|   |           |                                       |                                        |                                    |               |

## LDC Report# 42791A3a

## Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: Ravenna, Oh |
|--------------------------------|
|--------------------------------|

LDC Report Date: August 3, 2018

Parameters: Chlorinated Pesticides

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| FBQmw-174-062518-GW   | 280-111421-1                        | Water  | 06/25/18           |
| DETmw-003-D-062618-GW | 280-111421-16                       | Water  | 06/26/18           |
| DETmw-003-062618-GW   | 280-111421-22                       | Water  | 06/26/18           |

1

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

| Date     | Standard | Column | Compound  | %D    | Associated<br>Samples           | Flag                 | A or P |
|----------|----------|--------|-----------|-------|---------------------------------|----------------------|--------|
| 07/20/18 | 07190034 | CLP 1  | Toxaphene | 30.38 | All samples in SDG 280-111421-1 | UJ (all non-detects) | А      |

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID          | Extraction<br>Date | Compound | Concentration | Associated<br>Samples                        |
|-------------------|--------------------|----------|---------------|----------------------------------------------|
| MB 280-421000/1-A | 07/02/18           | 4,4'-DDT | 0.0123 ug/L   | DETmw-003-D-062618-GW<br>DETmw-003-062618-GW |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

## VI. Field Blanks

Sample FBQmw-174-062518-GW was identified as a field blank. No contaminants were found.

## VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

## VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## X. Field Duplicates

Samples DETmw-003-D-062618-GW and DETmw-003-062618-GW were identified as field duplicates. No results were detected in any of the samples.

## XI. Compound Quantitation

All compound quantitations met validation criteria.

## XII. Target Compound Identification

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

### XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

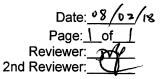
## Ravenna, Ohio Chlorinated Pesticides - Data Qualification Summary - SDG 280-111421-1

| Sample                                                              | Compound  | Flag                 | A or P | Reason                                   |
|---------------------------------------------------------------------|-----------|----------------------|--------|------------------------------------------|
| FBQmw-174-062518-GW<br>DETmw-003-D-062618-GW<br>DETmw-003-062618-GW | Toxaphene | UJ (all non-detects) | A      | Initial calibration verification<br>(%D) |

## Ravenna, Ohio

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG


Ravenna, Ohio

Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

LDC #: <u>42791A3a</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

## Stage 4



METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |       | Comments                       |
|-------|----------------------------------------|-------|--------------------------------|
| Ι.    | Sample receipt/Technical holding times | A/A   |                                |
| 11.   | GC Instrument Performance Check        | A     |                                |
| 111.  | Initial calibration/ICV                | A, SW | 141 6203 r2 1015203<br>CON5203 |
| IV.   | Continuing calibration                 | A     | CW 5 20/3                      |
| V.    | Laboratory Blanks                      | SW    |                                |
| VI.   | Field blanks                           | ND    | FB = 1                         |
| VII.  | Surrogate spikes /IS                   | A/A   |                                |
| VIII. | Matrix spike/Matrix spike duplicates   | N     | CS                             |
| IX.   | Laboratory control samples             | A     | LCS 1p                         |
| Х.    | Field duplicates                       | ND    | b = 2/3                        |
| XI.   | Compound quantitation/RL/LOQ/LODs      | A     |                                |
| XII.  | Target compound identification         | A     |                                |
| XIII. | System Performance                     | A     |                                |
| XIV   | Overall assessment of data             | A     |                                |

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|        | Client ID             |   |          | Lab ID        | Matrix | Date     |
|--------|-----------------------|---|----------|---------------|--------|----------|
| -<br>1 | FBQmw-174-062518-GW   |   |          | 280-111421-1  | Water  | 06/25/18 |
| 2      | DETmw-003-D-062618-GW | þ |          | 280-111421-16 | Water  | 06/26/18 |
| 3      | DETmw-003-062918-GW   | b |          | 280-111421-22 | Water  | 06/26/18 |
| 4      |                       |   |          |               |        |          |
| 5      |                       |   | <u>.</u> |               |        |          |
| 6      |                       |   |          |               |        |          |
| 7      |                       |   |          |               |        |          |
| 8      |                       |   |          |               |        |          |
| 9      |                       |   |          |               |        |          |
| 10     |                       |   |          |               |        |          |
| Note   | S:                    |   | L        |               |        |          |
| -1     | MB 280-420 760/1-A    |   |          |               |        |          |
| +2     | - 421000 / 1          |   |          |               |        |          |
|        |                       |   |          |               |        |          |
|        |                       |   |          |               |        |          |

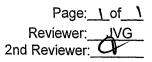
## Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

| Validation Area                                                                                                                  | Yes         | No       | NA | Findings/Comments |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----|-------------------|
| I. Technical holding times                                                                                                       |             |          |    |                   |
| Were all technical holding times met?                                                                                            | /           |          |    |                   |
| Was cooler temperature criteria met?                                                                                             |             |          |    |                   |
| II. GC/ECD Instrument performance check                                                                                          | 1 .         | r        | I  |                   |
| Was the instrument performance found to be acceptable?                                                                           | /           |          |    |                   |
| Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?                  | /           | <br>     |    |                   |
| Were endrin and 4,4'-DDT breakdowns $\leq$ 15% for individual breakdown in the Evaluation mix standards?                         | /           |          |    |                   |
| IIIa. Initial calibration                                                                                                        | T           | r        |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       | 1           |          |    |                   |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                      |             |          |    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? | /           |          |    |                   |
| Were the RT windows properly established?                                                                                        | /           | [        |    |                   |
| IIIb. Initial calibration verification                                                                                           | <b>1</b>    | r        | 1  | 8                 |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                    |             |          |    | P                 |
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                 |             |          |    |                   |
| IV. Continuing calibration                                                                                                       | T           |          |    |                   |
| Was a continuing calibration analyzed daily?                                                                                     |             |          |    |                   |
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                 |             |          | ļ  |                   |
| Were all the retention times within the acceptance windows?                                                                      |             | ł        |    |                   |
| V. Laboratory Blanks                                                                                                             | <del></del> |          | r  |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                 |             | <u> </u> | ļ  |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                               |             |          |    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.               | /           | •        |    |                   |
| VI. Field blanks                                                                                                                 |             |          |    |                   |
| Were field blanks identified in this SDG?                                                                                        | //          | 1        |    | -                 |
| Were target compounds detected in the field blanks?                                                                              |             |          | 1  |                   |
| VII. Surrogate spikes/Internal Standards                                                                                         |             |          |    |                   |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                   | /           | 1        |    |                   |

#### VALIDATION FINDINGS CHECKLIST

|     | Page:_    | 2 | _of_ | 2 |   |
|-----|-----------|---|------|---|---|
|     | Reviewer: |   | 1    | G | _ |
| 2nd | Reviewer: | 7 | J    | C |   |
|     |           |   |      |   |   |

| Validation Area                                                                                                                                                                | Yes       | No | NA       | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----------|-------------------|
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        | •         |    | /        |                   |
| If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?                                                                               |           |    | /        |                   |
| Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration?                                                                      |           |    |          |                   |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      |           |    |          |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |           | (  |          |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |           | /  |          |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |           |    | /        |                   |
| IX. Laboratory control samples                                                                                                                                                 |           |    |          |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              | /         |    |          |                   |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | /         |    |          |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               | /         |    |          |                   |
| X. Field duplicates                                                                                                                                                            |           |    |          |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                             | /         |    |          |                   |
| Were target compounds detected in the field duplicates?                                                                                                                        | <u> </u>  |    | ĺ        |                   |
| XI. Compound quantitation                                                                                                                                                      |           | 1  | <b>r</b> |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?                    | /         |    |          |                   |
| Were relative percent difference (RPD) of the results between two columns $\leq$ 40%?                                                                                          | /         |    |          |                   |
| XII. Target compound identification                                                                                                                                            |           |    |          |                   |
| Were the retention times of reported detects within the RT windows?                                                                                                            | 1         |    |          |                   |
| XIII, Overall assessment of data                                                                                                                                               | T         | 1  | T        |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                         | $\square$ |    |          |                   |


## VALIDATION FINDINGS WORKSHEET

**METHOD:** Pesticide/PCBs (EPASW 846 Method 8081/8082)

| A. alpha-BHC          | K. Endrin             | U. Toxaphene     | EE. 2,4'-DDT              | 00. |
|-----------------------|-----------------------|------------------|---------------------------|-----|
| B. beta-BHC           | L. Endosulfan II      | V. Aroclor-1016  | FF. Hexachlorobenzene     | PP. |
| C. delta-BHC          | M. 4,4'-DDD           | W. Aroclor-1221  | GG. Chlordane             | QQ  |
| D. gamma-BHC          | N. Endosulfan sulfate | X. Aroclor-1232  | HH. Chlordane (Technical) | RR. |
| E. Heptachlor         | O. 4,4'-DDT           | Y. Aroclor-1242  | II. Aroclor 1262          | SS. |
| F. Aldrin             | P. Methoxychlor       | Z. Aroclor-1248  | JJ. Aroclor 1268          | TT. |
| G. Heptachlor epoxide | Q. Endrin ketone      | AA. Aroclor-1254 | KK. Oxychlordane          | UU. |
| H. Endosulfan I       | R. Endrin aldehyde    | BB. Aroclor-1260 | LL. trans-Nonachlor       | w   |
| I. Dieldrin           | S. alpha-Chlordane    | CC. 2,4'-DDD     | MM. cis-Nonachlor         | WW. |
| J. 4,4'-DDE           | T. gamma-Chlordane    | DD. 2,4'-DDE     | NN.                       | XX. |

Notes:\_\_\_\_\_

## VALIDATION FINDINGS WORKSHEET **Initial Calibration Verification**



#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

| Pleas<br>What<br>YN<br>YN | se see qua<br>t type of ini<br><u>N/A</u><br>N/A | lifications below for<br>tial calibration verifie<br>Was an initial calib<br>Did the initial calibr |                     | ed "N". Not applicables performed?%D<br>ndard analyzed after<br>ndards meet the %D | e questions are iden<br>or <u>%</u> R<br>each ICAL for each<br>/ %R validation crite | tified as "N/A".<br>instrument?<br>ria of <u>&lt;</u> 20.0% / 80-120%? |                                       |
|---------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|
| #                         | Date                                             | Standard ID                                                                                         | Detector/<br>Column | Compound                                                                           | %D<br>(Limit ≤ 20.0)                                                                 | Associated Samples                                                     | Qualifications                        |
|                           | 07/20/19                                         | 07190034                                                                                            | CLP1                | И                                                                                  | 30.38                                                                                | A11 (ND)                                                               | J/UJ/A                                |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
| <b> </b>                  |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           | ·                                                |                                                                                                     |                     | · · · · ·                                                                          |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  | ·<br>·                                                                                              |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  | <u></u>                                                                                             |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     | ·····               |                                                                                    |                                                                                      | · · · · · · · · · · · · · · · · · · ·                                  |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      | а.                                                                     |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    | ·                                                                                    |                                                                        | ·                                     |
|                           |                                                  |                                                                                                     |                     |                                                                                    | r                                                                                    |                                                                        |                                       |
| $\parallel$               |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      | [                                                                      |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                |                                                                        | · · · · · · · · · · · · · · · · · · · |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        | · · · · · · · · · · · · · · · · · · · |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  | <u> </u>                                                                                            |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    |                                                                                      |                                                                        |                                       |
|                           |                                                  |                                                                                                     |                     |                                                                                    | ·                                                                                    |                                                                        |                                       |

LDC #: 42791 A 3a

## VALIDATION FINDINGS WORKSHEET

23

ND

## <u>Blanks</u>

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Page:<u>l</u>of\_/ Reviewer:\_JVG 2nd Reviewer:\_Q

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>M N/A</u> Were all samples associated with a method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y/N\_N/A If extract clean-up was performed, were extract clean-up blanks analyzed at the proper frequencies?

 Y N N/A
 Was there contamination in the method blanks? If yes, please see the qualifications below.

 Blank extraction date:
 07/02/18

 Blank analysis date:
 07/25/18

Conc. units: WG /L

| Compound | Blank ID     |     | Sample Identification |  |  |  |   |  |     |  |  |
|----------|--------------|-----|-----------------------|--|--|--|---|--|-----|--|--|
|          | MB 280-42100 | 1-A |                       |  |  |  |   |  |     |  |  |
| 0        | 0.0123       |     |                       |  |  |  |   |  |     |  |  |
|          |              |     |                       |  |  |  |   |  | · . |  |  |
|          |              |     |                       |  |  |  |   |  |     |  |  |
|          |              |     |                       |  |  |  |   |  |     |  |  |
|          |              |     |                       |  |  |  | - |  |     |  |  |
|          |              |     |                       |  |  |  |   |  |     |  |  |

| Blank extraction date:<br>Conc. units: | nk extraction date: Blank analysis date: Associated samples:<br>nc. units: |   |                       |  |  |   |  |    |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------|---|-----------------------|--|--|---|--|----|--|--|--|
| Compound                               | Blank ID                                                                   |   | Sample Identification |  |  |   |  |    |  |  |  |
|                                        |                                                                            |   |                       |  |  | l |  |    |  |  |  |
|                                        |                                                                            |   |                       |  |  |   |  |    |  |  |  |
|                                        |                                                                            |   |                       |  |  |   |  |    |  |  |  |
|                                        |                                                                            |   |                       |  |  |   |  |    |  |  |  |
|                                        |                                                                            |   |                       |  |  |   |  | ;  |  |  |  |
| · · ·                                  |                                                                            |   |                       |  |  |   |  | ·. |  |  |  |
|                                        |                                                                            | l |                       |  |  |   |  |    |  |  |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

| Page:         | <u>  1  of  1  </u> |
|---------------|---------------------|
| Reviewer:     | JVG                 |
| 2nd Reviewer: | 4                   |

#### METHOD: GC Pesticides (EPA SW 846 Method 8081B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $A_x$  = Area of Compound

#### Where

average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X)

 $C_x$  = Concentration of compound, S= Standard deviation of the RRFs,

- A<sub>is</sub> = Area of associated internal standard
- C<sub>is</sub> = Concentration of internal standard
- X = Mean of the RRFs

|   |             |             |               |        | Reported | Recalculated | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|-------------|---------------|--------|----------|--------------|-------------|--------------|----------|--------------|
|   |             | Calibration |               |        | RRF      | RRF          | Average RRF | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound      |        | (25 std) | (25 std)     | (Initial)   | (Initial)    |          |              |
| 1 | ICAL        | 7/20/2018   | Dieldrin      | (CLP1) | 1.3270   | 1.3270       | 1.3747      | 1.3747       | 4.2      | 4.2          |
|   | SGC_P2      |             | Endrin ketone | (CLP1) | 1.3581   | 1.3581       | 1.4296      | 1.4296       | 4.7      | 4.7          |
|   |             |             | Dieldrin      | (CLP2) | 1.2900   | 1.2900       | 1.3142      | 1.3142       | 2.8      | 2.8          |
|   |             |             | Endrin ketone | (CLP2) | 1.4065   | 1.4065       | 1.4936      | 1.4936       | 8.0      | 8.0          |

IS= 1-Bromo-2-nitrobenzene - 75 ug/L

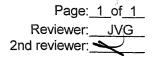
## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>\_\_\_</u>

METHOD: GC Pesticides (EPA SW 846 Method 8081B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:


% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx) ave. RRF = initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound,

Cx = Concentration of compound, Ais = Area of associated internal standard Cis = Concentration of internal standard

|   |             |             |                      |             | Reported | Recalculated | Reported | Recalculated |
|---|-------------|-------------|----------------------|-------------|----------|--------------|----------|--------------|
|   |             | Calibration |                      | Average RRF | RRF      | RRF          | % D      | % D          |
| # | Standard ID | Date        | Compound             | Conc        | (CC)     | (CC)         |          |              |
| 1 | 07250011    | 7/25/2018   | Dieldrin (CLP1)      | 25.0        | 21.2     | 21.2         | 15.4     | 15.4         |
|   |             |             | Endrin ketone (CLP1) | 25.0        | 21.8     | 21.8         | 12.8     | 12.8         |
|   |             |             | Dieldrin (CLP2)      | 25.0        | 21.5     | 21.5         | 14.0     | 14.0         |
|   |             |             | Endrin ketone (CLP2) | 25.0        | 20.8     | 20.8         | 16.7     | 16.7         |
| 2 | 07250023    | 7/25/2018   | Dieldrin (CLP1)      | 25.0        | 24.0     | 24.0         | 3.8      | 3.8          |
|   |             |             | Endrin ketone (CLP1) | 25.0        | 23.0     | 23.0         | 7.9      | 7.9          |
|   |             |             | Dieldrin (CLP2)      | 25.0        | 24.4     | 24.4         | 2.3      | 2.3          |
|   |             |             | Endrin ketone (CLP2) | 25.0        | 22.1     | 22.1         | 11.6     | 11.6         |

LDC #: 42.791 A 32

## VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**



#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

## Sample ID: \_ 2

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        | ľ                     |
| Tetrachloro-m-xylene | CUP 1  | 10.0                | 5.1)               | 51                  | 51                  | 2                     |
| Tetrachloro-m-xylene | 2      |                     | 4.77               | 48                  | 48                  |                       |
| Decachlorobiphenyl   | )      |                     | 6.80               | 68                  |                     |                       |
| Decachlorobiphenyl   | 7      | <u> </u>            | 6.35               | 63                  |                     |                       |

#### Sample ID:

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

# Sample ID:\_\_\_\_

| Sample ID:           | 8.<br>  | <del>.</del> |                     | ······································ |                     | ·····               |                       |
|----------------------|---------|--------------|---------------------|----------------------------------------|---------------------|---------------------|-----------------------|
| Surrogate            | 3<br>14 | Column       | Surrogate<br>Spiked | Surrogate<br>Found                     | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|                      |         |              |                     |                                        | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |         |              |                     |                                        |                     |                     |                       |
| Tetrachloro-m-xylene |         |              |                     |                                        |                     |                     |                       |
| Decachlorobiphenyl   |         |              |                     |                                        |                     |                     |                       |
| Decachlorobiphenyl   |         |              |                     |                                        |                     |                     |                       |

#### Sample ID:\_\_\_\_\_

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

Notes:

LDC #: 42791A3a

### VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1\_of\_1 Reviewer: \_JVG 2nd Reviewer: \_\_\_\_\_

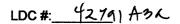
METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)


LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: US / 280- 421 0 60/2, 3-A

|              | Spike<br>Added<br>( 143/L) |      | Spiked Sample<br>Concentration |       | L                                 | .CS     | L        | CSD     | LCS      | /LCSD   |
|--------------|----------------------------|------|--------------------------------|-------|-----------------------------------|---------|----------|---------|----------|---------|
| Compound     |                            |      |                                | 19/1/ | Percent Recovery Percent Recovery |         | Recovery | RPD     |          |         |
|              | LCS                        | LCSD | LCS                            | LCSD  | Reported                          | Recalc. | Reported | Recalc. | Reported | Recalc. |
| gamma-BHC    | 2.00                       | 2.00 | 1.75                           | 1.54  | 88                                | 88      | 77       | 17      | 13       | 13      |
| 4,4'-DDT     | ł                          |      | 2.59                           | 2.15  | 129                               | 129     | 167      | 107     | 18       | 18      |
| Aroclor 1260 |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |
|              |                            |      |                                |       |                                   |         |          |         |          |         |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:         | <u>1_of_1</u> |
|---------------|---------------|
| Reviewer:     | JVG           |
| 2nd reviewer: | Ø             |

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)



Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: ND Dieldrin Sample I.D. VCS - 420000 Conc. = (1078476663) (75 ml) (5 ml) (644253174) (1.3747) (250 ml) = 1.827 2 1.83

| # | Sample ID | Compound                                                                                                        | Reported<br>Concentration<br>(%/レ)                                                                             | Calculated<br>Concentration<br>( ) | Qualification |
|---|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|
|   |           |                                                                                                                 | 1.83                                                                                                           |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |
|   |           | and for a second sec | delan in delan |                                    |               |
|   |           |                                                                                                                 |                                                                                                                |                                    |               |

Note:

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ravenna, Ohio

LDC Report Date: August 3, 2018

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| DETmw-003-D-062618-GW | 280-111421-16                       | Water  | 06/26/18           |
| DETmw-003-062618-GW   | 280-111421-22                       | Water  | 06/26/18           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination  $(r^2)$  was greater than or equal to 0.990.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

## III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

## IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## V. Field Blanks

No field blanks were identified in this SDG.

## VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

### IX. Field Duplicates

Samples DETmw-003-D-062618-GW and DETmw-003-062618-GW were identified as field duplicates. No results were detected in any of the samples.

## X. Compound Quantitation

All compound quantitations met validation criteria.

## XI. Target Compound Identification

All target compound identifications met validation criteria.

## XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Ravenna, Ohio Polychlorinated Biphenyls - Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

| <br>VALIDATION COMPLETENESS WORKSHEET |
|---------------------------------------|
| Stage 4                               |

LDC #: 42791A3b SDG #: 280-111421-1 Laboratory: Test America, Inc.

## Date: 08/02 Page: 1 of Reviewer: 2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|        | Validation Area                        |     | Comments   |         |
|--------|----------------------------------------|-----|------------|---------|
| 1.     | Sample receipt/Technical holding times | A/A |            |         |
| 11.    | Initial calibration/ICV                | AIA | ۲ <i>۲</i> | al 20 ? |
| - 111. | Continuing calibration                 | A   | CON = 207. |         |
| IV.    | Laboratory Blanks                      | A   |            |         |
| V.     | Field blanks                           | N   |            |         |
| VI.    | Surrogate spikes / IS                  | A/A |            |         |
| VII.   | Matrix spike/Matrix spike duplicates   | N   | CS         |         |
| VIII.  | Laboratory control samples             | A   | LCS        |         |
| IX.    | Field duplicates                       | ND  | b = 1/2    |         |
| Х.     | Compound quantitation/RL/LOQ/LODs      | A   |            |         |
| XI.    | Target compound identification         | A   |            |         |
|        | Overall assessment of data             | A   |            |         |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

|    | Client ID                                  | · · · · · · · · · · · · · · · · · · ·  | Lab ID        | Matrix   | Date     |
|----|--------------------------------------------|----------------------------------------|---------------|----------|----------|
| 1  | DETmw-003-D-062618-GW                      | Þ                                      | 280-111421-16 | Water    | 06/26/18 |
| 2  | <i>ل</i> و<br>DETmw-003-062 <b>9</b> 18-GW | Ъ                                      | 280-111421-22 | Water    | 06/26/18 |
| 3  |                                            | ,                                      |               |          |          |
| 4  |                                            |                                        |               |          |          |
| 5  |                                            | ······································ |               | <u> </u> |          |
| 6  |                                            |                                        |               |          |          |
| 7  |                                            |                                        |               |          |          |
| 8  |                                            |                                        |               |          |          |
| 9  |                                            | · · · · · · · · · · · · · · · · · · ·  |               |          |          |
| 10 |                                            |                                        |               |          |          |
| 11 |                                            |                                        |               |          |          |
| 12 |                                            |                                        |               |          | <br>     |

| N | ntae | • |
|---|------|---|
|   |      | ٠ |

| - | MB 280-421495/1-A |  |  |
|---|-------------------|--|--|
|   |                   |  |  |
|   |                   |  |  |
|   |                   |  |  |

## Method: Pesticides/PCBs (EPA SW 846 Method 8081/8082)

| Validation Area                                                                                                                  | Yes          | No      | NA       | Findings/Comments |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|---------|----------|-------------------|
| I. Technical holding times                                                                                                       | ·            |         |          |                   |
| Were all technical holding times met?                                                                                            |              |         |          |                   |
| Was cooler temperature criteria met?                                                                                             |              |         |          |                   |
| II. GC/ECD Instrument performance check                                                                                          | ·            |         | 1        |                   |
| Was the instrument performance found to be acceptable?                                                                           | •            |         | $\leq$   |                   |
| Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?                  |              |         |          |                   |
| Were endrin and 4,4'-DDT breakdowns $\leq$ 15% for individual breakdown in the Evaluation mix standards?                         |              |         |          |                   |
| IIIa. Initial calibration                                                                                                        | 1-2          | I       | I        |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       |              |         |          |                   |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                      | ļ            |         | /        |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? | /            |         |          |                   |
| Were the RT windows properly established?                                                                                        |              | Ł       |          |                   |
| IIIb. Initial calibration verification                                                                                           | ч            | 1       | T        |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                    |              |         |          |                   |
| Were all percent differences (%D) $\leq 20\%$ or percent recoveries (%R) 80-120%?                                                |              |         |          |                   |
| IV. Continuing calibration                                                                                                       | 1-2          | · · · · | r        |                   |
| Was a continuing calibration analyzed daily?                                                                                     |              |         |          |                   |
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                 | Ĺ            | ,<br>   | ļ        |                   |
| Were all the retention times within the acceptance windows?                                                                      |              |         |          |                   |
| V. Laboratory Blanks                                                                                                             | 1-2          | í       | 1        |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                 |              | ļ       | ļ        |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                               | $\downarrow$ | ļ       |          |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.               |              |         | ł        |                   |
| VI. Field blanks                                                                                                                 |              |         |          |                   |
| Were field blanks identified in this SDG?                                                                                        | <u> </u>     | /       | <u> </u> |                   |
| Were target compounds detected in the field blanks?                                                                              |              |         |          | t                 |
| VII. Surrogate spikes/Internal Standards                                                                                         | 1            | 1       | 1        |                   |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                   |              |         |          |                   |

## VALIDATION FINDINGS CHECKLIST

|     | Page:_    | 2  | of | 2 |   |
|-----|-----------|----|----|---|---|
|     | Reviewer: |    | K  | Ð | _ |
| 2nd | Reviewer: | _( |    | P |   |

| Validation Area                                                                                                                                                                | Yes | No | NA | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was<br>a reanalysis performed to confirm %R?                                                     | J.  | Ń  | /  |                   |
| If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?                                                                               |     |    | /  |                   |
| Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration?                                                                      |     |    |    |                   |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      |     |    |    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |     | /  |    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |     |    |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |     |    | /  |                   |
| IX. Laboratory control samples                                                                                                                                                 |     |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                              | /   |    |    |                   |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | /   |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               | /   |    |    |                   |
| X. Field duplicates                                                                                                                                                            |     |    |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                                                             | /   |    |    |                   |
| Were target compounds detected in the field duplicates?                                                                                                                        |     |    | 1  |                   |
| XI. Compound quantitation                                                                                                                                                      |     | 1  |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?                    | /   |    |    |                   |
| Were relative percent difference (RPD) of the results between two columns $\leq$ 40%?                                                                                          |     |    |    |                   |
| XII. Target compound identification                                                                                                                                            |     |    |    |                   |
| Were the retention times of reported detects within the RT windows?                                                                                                            | 1   |    |    | ·                 |
| XIII, Overall assessment of data                                                                                                                                               |     |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                                                         |     | 1  |    |                   |

## LDC#: <u>42791A3b</u>

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>1</u> of <u>2</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>\_</u>

METHOD: PCBs (EPA SW 846 Method 8082A)

Parameter: <u>1260-1</u>

Order of regression: Linear

| Date      | Instrument | Compound | Points  | x<br>Response ratio | y<br>Conc ratio |
|-----------|------------|----------|---------|---------------------|-----------------|
| 5/20/2018 | SGC P3     | 1260-1   | Point 1 | 0.01571             | 0.025           |
|           | CLP1       |          | Point 2 | 0.02859             | 0.050           |
|           |            |          | Point 3 | 0.05090             | 0.100           |
|           |            |          | Point 4 | 0.11745             | 0.250           |
|           |            |          | Point 5 | 0.22784             | 0.500           |
|           |            |          | Point 6 | 0.34479             | 0.750           |
|           |            |          | Point 7 | 0.44910             | 1.000           |
|           |            |          |         |                     |                 |

|                     | Regression Output: |         | Reported WLR |         |
|---------------------|--------------------|---------|--------------|---------|
| Constant            | b =                | 0.00591 | b =          | 5.2247  |
| Std Err of Y Est    |                    | 0.04    |              |         |
| R Squared           | r^2 =              | 0.99982 | r^2 =        | 1.00000 |
| No. of Observations |                    | 6.00    |              |         |
| Degrees of Freedom  |                    | 4.00    |              |         |
| X Coefficient(s)    | m =                | 0.44598 | m =          | 0.4478  |
| Std Err of Coef.    | 0.01               |         |              |         |

## LDC#: <u>42791A3b</u>

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: <u>2</u> of <u>2</u> Reviewer: <u>JVG</u> 2nd Reviewer: <u>\_\_\_\_</u>

METHOD: PCBs (EPA SW 846 Method 8082A)

Parameter: <u>1260-1</u>

Order of regression: Linear

| Date      | Instrument | Compound | Points  | x<br>Response ratio | y<br>Conc ratio |
|-----------|------------|----------|---------|---------------------|-----------------|
| 5/20/2018 | SGC P3     | 1260-1   | Point 1 | 0.01796             | 0.025           |
|           | CLP2       |          | Point 2 | 0.03408             | 0.050           |
|           |            |          | Point 3 | 0.06217             | 0.100           |
|           |            | Ī        | Point 4 | 0.14558             | 0.250           |
|           |            | -        | Point 5 | 0.29219             | 0.500           |
|           |            |          | Point 6 | 0.43002             | 0.750           |
|           |            |          | Point 7 | 0.57516             | 1.000           |
|           |            |          |         |                     |                 |

|                     | Regression Output: |         | Reported WLR |         |
|---------------------|--------------------|---------|--------------|---------|
| Constant            | b =                | 0.00467 | b =          | 4.36800 |
| Std Err of Y Est    |                    | 0.04    |              |         |
| R Squared           | r^2 =              | 0.99994 | r^2 =        | 1.00000 |
| No. of Observations |                    | 6.00    |              |         |
| Degrees of Freedom  |                    | 4.00    |              |         |
| X Coefficient(s)    | m =                | 0.56991 | m =          | 0.57070 |
| Std Err of Coef.    | 0.01               |         |              |         |

LDC#: <u>42791A3b</u>

## VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

METHOD: GC HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

Percent difference (%D) = 100 \* (N - C)/N

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

|   |             | Calibration |             | CCV Conc | Reported<br>Conc | Recalculated<br>Conc | Reported<br>% D | Recalculated<br>%D |
|---|-------------|-------------|-------------|----------|------------------|----------------------|-----------------|--------------------|
| # | Standard ID | Date        | Compound    |          |                  |                      |                 |                    |
| 1 | 07111803    | 7/11/2018   | 1260-1 CLP1 | 500      | 481.2            | 481.2                | 3.7             | 3.8                |
|   |             |             | 1260-2 CLP2 | 500      | 491.4            | 491.4                | 1.7             | 1.7                |
|   |             |             |             |          |                  |                      |                 |                    |

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:         | 1 | _of_ | 1 |
|---------------|---|------|---|
| Reviewer:     |   | JV(  | G |
| 2nd reviewer: |   | λ    | 7 |
| -             |   | 77   |   |

#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

## Sample ID: # |

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene | up 2   | 20.0                | 16.3               | 87                  | 87                  | 9                     |
| Decachlorobiphenyl   |        | L                   | 18.3               | 92                  | 97                  |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

#### Sample ID:\_\_\_\_

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    | ·                   |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     | ·                   |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

#### Sample ID:\_\_

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        | L                   | 1                  | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     | 1                   |                       |

#### Sample ID:\_\_\_

| Surrogate            | Column | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|                      |        |                     |                    | Reported            | Recalculated        |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Tetrachloro-m-xylene |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |
| Decachlorobiphenyl   |        |                     |                    |                     |                     |                       |

Notes:

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page: 1\_of\_1 Reviewer: \_JVG 2nd Reviewer: \_\_\_\_\_

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA

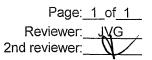
LDC #: 42791 A35

Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery


LCS/LCSD samples:

US 280- 421495 /2-A

|              |       | pike        | Spike | d Sample  | LCS      |          | L(                        | CSD     | LCS      | /LCSD   |
|--------------|-------|-------------|-------|-----------|----------|----------|---------------------------|---------|----------|---------|
| Compound     |       | dded<br>りん) |       | entration | Percent  | Recovery | Recovery Percent Recovery |         | RPD      |         |
|              | LCS   | LCSD        | LCS   | LCSD      | Reported | Recalc.  | Reported                  | Recalc. | Reported | Recalc. |
| gamma-BHC    |       |             |       |           |          |          |                           |         |          |         |
| 4,4'-DDT     |       |             |       |           |          |          |                           |         |          |         |
| Aroclor 1260 | 0.200 | MA          | 0.186 | NA        | 93       | 93       |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |
|              |       |             |       |           |          |          |                           |         |          |         |

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification



#### METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)



Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:  
Sample I.D. ND 1260: CAY  
1266-1  
Conc. 
$$\frac{(106922507)(1000)1 - (4.368)}{(1014150374)}$$
  
#  $(6.5767)$   
= 177.08  
1260 Total = 177.08 + 169.4 + 169.7 + 169.4 + 161.3  
= 186.0  
find conc. = (186.0)(1m1)  
(100 Dog1)  
= 0.186 hg fl

| # | Sample ID | Compound | Reported<br>Concentration<br>( <sup>い</sup> りル) | Calculated<br>Concentration<br>( ) | Qualification |
|---|-----------|----------|-------------------------------------------------|------------------------------------|---------------|
|   |           |          | 0.186                                           |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |
|   |           |          |                                                 |                                    |               |

Note:

## Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 3, 2018

Parameters: Metals

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

|                         | Laboratory Sample |        | Collection |
|-------------------------|-------------------|--------|------------|
| Sample Identification   | Identification    | Matrix | Date       |
| LL12mw-247-062618-GW    | 280-111421-4      | Water  | 06/26/18   |
| LL12mw-247-D-062618-GW  | 280-111421-5      | Water  | 06/26/18   |
| LL10mw-003-062618-GW    | 280-111421-7      | Water  | 06/26/18   |
| NTAmw-119-062518-GW     | 280-111421-8      | Water  | 06/25/18   |
| NTAmw-119-D-062518-GW   | 280-111421-9      | Water  | 06/25/18   |
| FWGmw-016-062518-GW     | 280-111421-13     | Water  | 06/25/18   |
| FWGmw-015-062518-GW     | 280-111421-14     | Water  | 06/25/18   |
| FWGmw-004-062518-GW     | 280-111421-15     | Water  | 06/25/18   |
| DETmw-003-D-062618-GW   | 280-111421-16     | Water  | 06/26/18   |
| DA2mw-115-062618-GW     | 280-111421-21     | Water  | 06/26/18   |
| DETmw-003-062618-GW     | 280-111421-22     | Water  | 06/26/18   |
| LL12mw-247-062618-GWMS  | 280-111421-4MS    | Water  | 06/26/18   |
| LL12mw-247-062618-GWMSD | 280-111421-4MSD   | Water  | 06/26/18   |
| LL10mw-003-062618-GWMS  | 280-111421-7MS    | Water  | 06/26/18   |
| LL10mw-003-062618-GWMSD | 280-111421-7MSD   | Water  | 06/26/18   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Methods 6010C/6020A Mercury by EPA SW 846 Method 7470A

All sample results were subjected to Stage 4 evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

## II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

## III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

## **IV. ICP Interference Check Sample Analysis**

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID | Analyte            | Maximum<br>Concentration  | Associated<br>Samples                                                                                                                                             |
|----------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICB/CCB  | Silver<br>Vanadium | 0.0380 ug/L<br>0.610 ug/L | All samples in SDG 280-11421-1                                                                                                                                    |
| ICB/CCB  | Antimony           | 0.617 ug/L                | LL12mw-247-062618-GW<br>LL12mw-247-D-062618-GW<br>LL10mw-003-062618-GW<br>NTAmw-119-062518-GW                                                                     |
| ICB/CCB  | Antimony           | 0.464 ug/L                | NTAmw-119-D-062518-GW<br>FWGmw-016-062518-GW<br>FWGmw-015-062518-GW<br>FWGmw-004-062518-GW<br>DETmw-003-D-062618-GW<br>DA2mw-115-062618-GW<br>DETmw-003-062818-GW |

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample                 | Analyte  | Reported<br>Concentration | Modified Final<br>Concentration |
|------------------------|----------|---------------------------|---------------------------------|
| LL12mw-247-D-062618-GW | Vanadium | 1.8 ug/L                  | 6.0U ug/L                       |

## VI. Field Blanks

No field blanks were identified in this SDG.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

| Spike ID<br>(Associated Samples) | Analyte | MS (%R)<br>(Limits) | MSD (%R)<br>(Limits) | Flag            | A or P |
|----------------------------------|---------|---------------------|----------------------|-----------------|--------|
| LL10mw-003-062618-GWMS/MSD       | Sodium  | 43 (87-115)         | 36 (87-115)          | J (all detects) | A      |
| (LL10mw-003-062618-GW)           | Iron    | -                   | (75-87-115)          | J (all detects) |        |

For LL12mw-247-062618-GWMS/MSD, no data were qualified for Manganese percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

For LL10mw-003-062618-GWMS/MSD, no data were qualified for Calcium percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits.

#### VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

## IX. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits with the following exceptions:

| Diluted Sample       | Analyte   | %D (Limits) | Associated<br>Samples | Flag            | A or P |
|----------------------|-----------|-------------|-----------------------|-----------------|--------|
| LL12mw-247-062618-GW | Manganese | 11 (≤10)    | LL12mw-247-062618-GW  | J (all detects) | А      |

## X. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## XI. Field Duplicates

Samples LL12mw-247-062618-GW and LL12mw-247-D-062618-GW, samples NTAmw-119-062518-GW and NTAmw-119-D-062518-GW, and samples DETmw-003-D-062618-GW and DETmw-003-062818-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|           | Concentration (ug/L) |                        |                 |                        |      |        |
|-----------|----------------------|------------------------|-----------------|------------------------|------|--------|
| Analyte   | LL12mw-247-062618-GW | LL12mw-247-D-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Aluminum  | 480                  | 1100                   | -               | 620 (≤300)             | -    |        |
| Calcium   | 92000                | 96000                  | 4 (≤20)         | -                      | -    | -      |
| Iron      | 1700                 | 2600                   | 42 (≤20)        | -                      | -    | -      |
| Magnesium | 50000                | 51000                  | 2 (≤20)         | -                      | -    | -      |
| Potassium | 2500                 | 2700                   | -               | 200 (≤3000)            | -    | -      |
| Sodium    | 22000                | 22000                  | -               | 0 (≤5000)              | -    | -      |
| Arsenic   | 8.3                  | 8.8                    | 1               | 0.5 (≤5.0)             | -    | -      |
| Barium    | 24                   | 30                     | 22 (≤20)        | -                      | -    | -      |
| Beryllium | 0.30U                | 0.11                   | -               | 0.19 (≤1.0)            | -    | -      |
| Chromium  | 0.72                 | 2.0                    | -               | 1.28 (≤10)             | -    | -      |
| Cobalt    | 0.80                 | 1.5                    | -               | 0.7 (≤1.0)             | -    | -      |
| Copper    | 1.8U                 | 1.0                    | -               | 0.8 (≤2.0)             | -    | -      |
| Lead      | 0.35                 | 0.84                   | -               | 0.49 (≤3.0)            | -    | -      |
| Manganese | 220                  | 250                    | 13 (≤20)        | -                      | -    | -      |
| Nickel    | 0.97                 | 2.4                    | -               | 1.43 (≤3.0)            | -    | -      |
| Vanadium  | 2.0U                 | 1.8                    | -               | 0.2 (≤6.0)             | -    | -      |

|         | Concentra            |                        |                 |                        |      |        |
|---------|----------------------|------------------------|-----------------|------------------------|------|--------|
| Analyte | LL12mw-247-062618-GW | LL12mw-247-D-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Zinc    | 3.0                  | 7.0                    | -               | 4 (≤20)                | -    | -      |

|           | Concentra           | tion (ug/L)           |                 |                        |      |        |
|-----------|---------------------|-----------------------|-----------------|------------------------|------|--------|
| Analyte   | NTAmw-119-062518-GW | NTAmw-119-D-062518-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Aluminum  | 100                 | 50                    | -               | 50 (≤300)              | -    | -      |
| Calcium   | 83000               | 83000                 | 0 (≤20)         | -                      | -    | -      |
| Iron      | 1100                | 1000                  | 10 (≤20)        | -                      | -    | -      |
| Magnesium | 21000               | 21000                 | 0 (≤20)         | -                      | -    | -      |
| Potassium | 1300                | 1400                  | -               | 100 (≤3000)            | -    | -      |
| Sodium    | 6700                | 6600                  | -               | 100 (≤5000)            | -    | -      |
| Arsenic   | 6.7                 | 6.1                   | -               | 0.6 (≤5.0)             | -    | -      |
| Barium    | 89                  | 84                    | 6 (≤20)         | -                      | -    | -      |
| Cobait    | 0.16                | 0.081                 |                 | 0.079 (≤1.0)           | -    | -      |
| Manganese | 360                 | 340                   | 6 (≤20)         | -                      | -    | -      |

|           | Concentra                                        |       |                 |                        |      |        |
|-----------|--------------------------------------------------|-------|-----------------|------------------------|------|--------|
| Analyte   | nalyte DETmw-003-D-062618-GW DETmw-003-062818-GW |       | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Calcium   | 88000                                            | 88000 | 0 (≤20)         | -                      | -    | -      |
| Iron      | 1800                                             | 1800  | 0 (≤20)         | -                      | -    | -      |
| Magnesium | 33000                                            | 32000 | 3 (≤20)         | -                      | -    | -      |
| Potassium | 2000                                             | 2000  | -               | 0 (≤3000)              | -    | -      |
| Sodium    | 12000                                            | 12000 | -               | 0 (≤5000)              | -    | -      |
| Arsenic   | 12                                               | 11    | -               | 1 (≤5.0)               | -    | -      |
| Barium    | 49                                               | 50    | 2 (≤20)         | -                      | -    | -      |

|           | Concentration (ug/L)  |                     |                 |                        |      |        |
|-----------|-----------------------|---------------------|-----------------|------------------------|------|--------|
| Analyte   | DETmw-003-D-062618-GW | DETmw-003-062818-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Cobalt    | 0.33                  | 0.35                | -               | 0.02 (≤1.0)            | -    | -      |
| Manganese | 270                   | 260                 | 4 (≤20)         | -                      | -    | -      |

## XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

#### XIII. Sample Result Verification

All sample result verifications were acceptable.

#### XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD %R and serial dilution, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

## Ravenna, Ohio Metals - Data Qualification Summary - SDG 280-111421-1

| Sample               | Analyte        | Flag                               | A or P | Reason                                      |
|----------------------|----------------|------------------------------------|--------|---------------------------------------------|
| LL10mw-003-062618-GW | Sodium<br>Iron | J (all detects)<br>J (all detects) | A      | Matrix spike/Matrix spike<br>duplicate (%R) |
| LL12mw-247-062618-GW | Manganese      | J (all detects)                    | A      | Serial dilution (%D)                        |

## Ravenna, Ohio Metals - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

| Sample                 | Analyte  | Modified Final<br>Concentration | A or P |
|------------------------|----------|---------------------------------|--------|
| LL12mw-247-D-062618-GW | Vanadium | 6.0U ug/L                       | A      |

## Ravenna, Ohio Metals - Field Blank Data Qualification Summary - SDG 280-111421-1

## No Sample Data Qualified in this SDG

## VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>42791A4a</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

#### Stage 4

Date: <u> $\partial$ [2]1</u>B Page: <u>1</u> of <u>2</u> Reviewer: <u>3</u> 2nd Reviewer: <u>5</u>

METHOD: Metals (EPA SW 846 Method 6010C/6020A/7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                              |       | Comments               |
|-------|----------------------------------------------|-------|------------------------|
| Ι.    | Sample receipt/Technical holding times       | A / A |                        |
| ١١.   | ICP/MS Tune                                  | A     |                        |
| 111.  | Instrument Calibration                       | A     |                        |
| IV.   | ICP Interference Check Sample (ICS) Analysis | A     |                        |
| V.    | Laboratory Blanks                            | SW    |                        |
| VI.   | Field Blanks                                 | N     |                        |
| VII.  | Matrix Spike/Matrix Spike Duplicates         | SW    |                        |
| VIII. | Duplicate sample analysis                    | N     |                        |
| IX.   | Serial Dilution                              | SW    |                        |
| Х.    | Laboratory control samples                   | A     | Les                    |
| XI.   | Field Duplicates                             | sw    | (1,2) $(4,5)$ $(9,11)$ |
| XII.  | Internal Standard (ICP-MS)                   | A     | , , , , ,              |
| XIII. | Sample Result Verification                   | A     |                        |
|       | Overall Assessment of Data                   | A     |                        |

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate        |  |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|--|
| TB = Trip blank      |  |  |  |  |  |  |  |
| EB = Equipment blank |  |  |  |  |  |  |  |

SB=Source blank OTHER:

|    | Client ID               | Lab ID          | Matrix | Date     |
|----|-------------------------|-----------------|--------|----------|
| 1  | LL12mw-247-062618-GW    | 280-111421-4    | Water  | 06/26/18 |
| 2  | LL12mw-247-D-062618-GW  | 280-111421-5    | Water  | 06/26/18 |
| 3  | LL10mw-003-062618-GW    | 280-111421-7    | Water  | 06/26/18 |
| 4  | NTAmw-119-062518-GW     | 280-111421-8    | Water  | 06/25/18 |
| 5  | NTAmw-119-D-062518-GW   | 280-111421-9    | Water  | 06/25/18 |
| 6  | FWGmw-016-062518-GW     | 280-111421-13   | Water  | 06/25/18 |
| 7  | FWGmw-015-062518-GW     | 280-111421-14   | Water  | 06/25/18 |
| 8  | FWGmw-004-062518-GW     | 280-111421-15   | Water  | 06/25/18 |
| 9  | DETmw-003-D-062618-GW   | 280-111421-16   | Water  | 06/26/18 |
| 10 | DA2mw-115-062618-GW     | 280-111421-21   | Water  | 06/26/18 |
| 11 | DETmw-003-062818-GW     | 280-111421-22   | Water  | 06/26/18 |
| 12 | LL12mw-247-062618-GWMS  | 280-111421-4MS  | Water  | 06/26/18 |
| 13 | LL12mw-247-062618-GWMSD | 280-111421-4MSD | Water  | 06/26/18 |
| 14 | LL10mw-003-062618-GWMS  | 280-111421-7MS  | Water  | 06/26/18 |
| 15 | LL10mw-003-062618-GWMSD | 280-111421-7MSD | Water  | 06/26/18 |

| ALIDATION COMPLETENESS WORKSHEE | ٩L |  |  | ON | COMPL | <b>ETENESS</b> | WORKSHEE |
|---------------------------------|----|--|--|----|-------|----------------|----------|
|---------------------------------|----|--|--|----|-------|----------------|----------|

LDC #: 42791A4a VA SDG #: 280-111421-1 Laboratory: Test America, Inc.

## Stage 4

Date: <u>9(2)1</u>9 Page: 20f 2 Reviewer: \_\_\_\_\_\_

METHOD: Metals (EPA SW 846 Method 6010C/6020A/7470A)

|       | Client ID | Lab ID | Matrix | Date |
|-------|-----------|--------|--------|------|
| 16    |           |        |        |      |
| 17    |           |        |        |      |
| 18    |           |        |        |      |
| Notes | S:        |        |        |      |
|       | S:        |        |        |      |

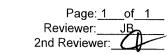
## Method:Metals (EPA SW 846 Method 6010/6020/7000)

| Validation Area                                                                                                                                                                                                                                                                                    | Yes          | No | NA | Findings/Comments                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|----|---------------------------------------|
| I. Technical holding times                                                                                                                                                                                                                                                                         |              |    |    | · · · · · · · · · · · · · · · · · · · |
| All technical holding times were met.                                                                                                                                                                                                                                                              |              |    |    |                                       |
| Cooler temperature criteria was met.                                                                                                                                                                                                                                                               |              |    |    |                                       |
| II. ICP/MS Tune                                                                                                                                                                                                                                                                                    |              |    |    |                                       |
| Were all isotopes in the tuning solution mass resolution within 0.1 amu?                                                                                                                                                                                                                           | $\checkmark$ |    |    |                                       |
| Were %RSD of isotopes in the tuning solution ≤5%?                                                                                                                                                                                                                                                  | /            |    |    |                                       |
| III. Calibration                                                                                                                                                                                                                                                                                   |              |    |    |                                       |
| Were all instruments calibrated daily, each set-up time?                                                                                                                                                                                                                                           | $\checkmark$ |    |    |                                       |
| Were the proper number of standards used?                                                                                                                                                                                                                                                          | 1            |    |    |                                       |
| Were all initial and continuing calibration verification %Rs within the 90-110% (80-<br>120% for mercury) QC limits?                                                                                                                                                                               |              |    |    |                                       |
| Were the low standard checks within 70-130%                                                                                                                                                                                                                                                        |              |    |    |                                       |
| Were all initial calibration correlation coefficients within limits as specified by the method?                                                                                                                                                                                                    | $\checkmark$ |    |    |                                       |
| IV. Blanks                                                                                                                                                                                                                                                                                         |              |    |    |                                       |
| Was a method blank associated with every sample in this SDG?                                                                                                                                                                                                                                       | $\checkmark$ |    |    |                                       |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                                                                                                                                     |              |    |    |                                       |
| V. ICP Interference Check Sample                                                                                                                                                                                                                                                                   |              |    |    |                                       |
| Were ICP interference check samples performed daily?                                                                                                                                                                                                                                               | $\checkmark$ |    |    |                                       |
| Were the AB solution percent recoveries (%R) with the 80-120% QC limits?                                                                                                                                                                                                                           | $\checkmark$ |    |    |                                       |
| VI. Matrix spike/Matrix spike duplicates                                                                                                                                                                                                                                                           |              |    |    |                                       |
| Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.                                                                                                                        | $\checkmark$ |    |    |                                       |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.                                                                        |              |    |    |                                       |
| Were the MS/MSD or duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were $\leq$ 5X the RL, including when only one of the duplicate sample values were $\leq$ 5X the RL. | /            |    |    |                                       |
| VII. Laboratory control samples                                                                                                                                                                                                                                                                    |              |    |    |                                       |
| Was an LCS anaylzed for this SDG?                                                                                                                                                                                                                                                                  | 1            |    |    |                                       |
| Was an LCS analyzed per extraction batch?                                                                                                                                                                                                                                                          | 7            |    |    |                                       |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?                                                                                                                          |              |    |    |                                       |

#### **VALIDATION FINDINGS CHECKLIST**

| Validation Area                                                                                                                                                 | Yes          | No           | NA | Findings/Comments |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----|-------------------|
| VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)                                                                                                     |              |              |    |                   |
| Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration? | /            |              |    |                   |
| If the %Rs were outside the criteria, was a reanalysis performed?                                                                                               |              |              |    |                   |
| IX. ICP Serial Dilution                                                                                                                                         |              |              |    |                   |
| Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?                                                   | $\checkmark$ |              |    |                   |
| Were all percent differences (%Ds) < 10%?                                                                                                                       |              | $\checkmark$ |    |                   |
| Was there evidence of negative interference? If yes, professional judgement will be<br>used to qualify the data.                                                |              | /            |    |                   |
| X. Sample Result Verification                                                                                                                                   |              |              |    |                   |
| Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                     | /            |              |    |                   |
| XI. Overall assessment of data                                                                                                                                  |              |              |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                                          | /            |              |    |                   |
| XII. Field duplicates                                                                                                                                           |              |              |    |                   |
| Field duplicate pairs were identified in this SDG.                                                                                                              | 1            |              |    |                   |
| Target analytes were detected in the field duplicates.                                                                                                          | 7            | ,            |    |                   |
| XIII. Field blanks                                                                                                                                              |              |              |    |                   |
| Field blanks were identified in this SDG.                                                                                                                       |              |              |    |                   |
| Target analytes were detected in the field blanks.                                                                                                              |              |              | 7  |                   |

## VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference


| Page:_        | of |   |
|---------------|----|---|
| Reviewer:     | AB |   |
| 2nd reviewer: |    | _ |

All circled elements are applicable to each sample.

| Sample ID | Matrix  | Target Analyte List (TAL)                                                                                   |
|-----------|---------|-------------------------------------------------------------------------------------------------------------|
| 1-11      | W       | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V; Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
| 00        |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
| 12-15     | W       | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
| 5 m 2     |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
| <br>      |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U, |
|           |         | Analysis Method                                                                                             |
| ICP       |         | A), Sb, As, Ba, Be, Cd, 🚑, Cr, Co, Cu, 🕞, Pb, Mg, Mn, Hg, Ni, K), Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, U,  |
| CP-MS     |         | AI, Sb, As, Ba, Ba, Cd, Ca, Cr) Cd, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, TJ, V, Zn Mo, B, Sn, Ti, U,  |
| GEAA      |         | Al, Sh, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Ph, Mg, Mn, Hg, Ni, K, Se, Ag, Na, TI, V, Zn, Mo, R, Sn, Ti, U  |
| comments: | Mercury | by CVAA if performed                                                                                        |

#### VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

**METHOD:** Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L Soil preparation factor applied: NA Associated Samples: All



| Analyte | Maximum<br>PB <sup>ª</sup><br>(mg/Kg) | Maximum<br>PBª<br>(ug/l) | Maximum<br>ICB/CCB <sup>a</sup><br>(ug/L) | Action<br>Level | 2         |  |  |  |  |
|---------|---------------------------------------|--------------------------|-------------------------------------------|-----------------|-----------|--|--|--|--|
| Ag      |                                       |                          | 0.0380 J                                  |                 |           |  |  |  |  |
| /       |                                       |                          | 0.610 J                                   |                 | 1.8 / 6.0 |  |  |  |  |
|         |                                       |                          |                                           |                 |           |  |  |  |  |
|         |                                       |                          |                                           |                 |           |  |  |  |  |

Sample Concentration units, unless otherwise noted: ug/L

Associated Samples: 1 - 4

| Analyte | Maximum<br>PB <sup>ª</sup><br>(mg/Kg) | Maximum<br>PBª<br>(ug/L) | Maximum<br>ICB/CCB <sup>a</sup><br>(ug/L) | Action<br>Level |  |  |  |  |  |
|---------|---------------------------------------|--------------------------|-------------------------------------------|-----------------|--|--|--|--|--|
| Sb      |                                       |                          | 0.617 J                                   |                 |  |  |  |  |  |
|         |                                       |                          |                                           |                 |  |  |  |  |  |
|         |                                       |                          |                                           |                 |  |  |  |  |  |

Sample Concentration units, unless otherwise noted: ug/L

Associated Samples: 5 - 11

| Analyte | Maximum<br>PB <sup>a</sup><br>(mg/Kg)_ | Maximum<br>PBª<br>(ug/L) | Maximum<br>ICB/CCB <sup>a</sup><br>(ug/L) | Action<br>Level |      |      |      |      |  |
|---------|----------------------------------------|--------------------------|-------------------------------------------|-----------------|------|------|------|------|--|
| Sb      |                                        |                          | 0.464 J                                   |                 |      | <br> |      |      |  |
|         |                                        |                          |                                           |                 | <br> | <br> | <br> | <br> |  |
|         |                                        |                          | ·                                         |                 |      |      |      |      |  |

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

| Page: 1       | of         | 1 |
|---------------|------------|---|
| Reviewer:     | J <u>B</u> |   |
| 2nd Reviewer: | D          |   |

**METHOD**: Trace metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

Y N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

(Y) N N/A Were all duplicate sample relative percent differences (RPD)  $\leq$  20% for samples?

LEVEL IV ONLY:

<u>() N N/A</u> Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

| # | MS/MSD ID | Matrix | Analyte | MS<br>%Recovery | MSD<br>%Recovery | RPD (Limits) | Associated Samples | Qualifications |
|---|-----------|--------|---------|-----------------|------------------|--------------|--------------------|----------------|
|   | (14,15)   | W      | Na      | 43 (87-115)     | 36 (87-115)      |              | 3                  | JIWIA (Det)    |
|   | )         |        | Fe      |                 | 75 (87-115)      |              | 3                  | 4              |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              | A. 490             |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        |         |                 |                  |              |                    |                |
|   |           |        | L       | l               |                  | ·            |                    |                |

Comments:\_

(12,13). Mn>44 (14,15). Ca>4×

## VALIDATION FINDINGS WORKSHEET ICP Serial Dilution

| Page:_        | <u>/_of/</u>   |
|---------------|----------------|
| Reviewer:     | 23             |
| 2nd Reviewer: | $\overline{A}$ |

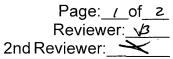
METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y) N/A If analyte concentrations were > 50X the MDL (ICP) or >100X the MDL (ICP/MS), was a serial dilution analyzed?

Y WN/A Were ICP serial dilution percent differences (%D)  $\leq 10\%$ ?

Y (N) N/A Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

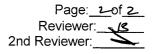

LEVEL IV ONLY:

<u>(V)N\_N/A</u> Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

| # | Diluted Sample ID | Matrix | Analyte | 7. ?<br>RPD (Limits) | Associated Samples | Qualifications |
|---|-------------------|--------|---------|----------------------|--------------------|----------------|
|   |                   | W      | mn      | 11 (10)              | <u> </u>           | J/UJ/A- (Det)  |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   | l                 |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         |                      |                    |                |
|   |                   |        |         | and the state        |                    |                |
|   |                   |        |         |                      |                    |                |

Comments:\_\_\_\_\_

## LDC#: <u>42791A4a</u> VALIDATION FINDINGS WORKSHEET **Field Duplicates**




## METHOD: Metals (EPA Method 6010C/6020A/7470A)

|           | Concentra | tion (ug/L) |              |            |         | · · · · · · · · · · · · · · · · · · · |
|-----------|-----------|-------------|--------------|------------|---------|---------------------------------------|
| Analyte   | 1         | 2           | RPD<br>(≤30) | Difference | Limits  | Qualifiers                            |
| Aluminum  | 480       | 1100        |              | 620        | (≤300)  | Jdet/A                                |
| Calcium   | 92000     | 96000       | 4            |            |         |                                       |
| Iron      | 1700      | 2600        | 42           |            |         | Jdet/A                                |
| Magnesium | 50000     | 51000       | 2            |            |         |                                       |
| Potassium | 2500      | 2700        |              | 200        | (≤3000) |                                       |
| Sodium    | 22000     | 22000       |              | 0          | (≤5000) |                                       |
| Arsenic   | 8.3       | 8.8         |              | 0.5        | (≤5.0)  |                                       |
| Barium    | 24        | 30          | 22           |            |         |                                       |
| Beryllium | 0.30U     | 0.11        |              | 0.19       | (≤1.0)  |                                       |
| Chromium  | 0.72      | 2.0         |              | 1.28       | (≤10)   |                                       |
| Cobalt    | 0.80      | 1.5         |              | 0.7        | (≤1.0)  |                                       |
| Copper    | 1.8U      | 1.0         |              | 0.8        | (≤2.0)  |                                       |
| Lead      | 0.35      | 0.84        |              | 0.49       | (≤3.0)  |                                       |
| Manganese | 220       | 250         | 13           |            |         |                                       |
| Nickel    | 0.97      | 2.4         |              | 1.43       | (≤3.0)  |                                       |
| Vanadium  | 2.0U      | 1.8         |              | 0.2        | (≤6.0)  |                                       |
| Zinc      | 3.0       | 7.0         |              | 4          | (≤20)   |                                       |

|          | Concentra | tion (ug/L) |              |            |        |            |
|----------|-----------|-------------|--------------|------------|--------|------------|
| Analyte  | 4         | 5           | RPD<br>(≤20) | Difference | Limits | Qualifiers |
| Aluminum | 100       | 50          |              | 50         | (≤300) |            |
| Calcium  | 83000     | 83000       | 0            |            |        |            |

#### VALIDATION FINDINGS WORKSHEET \_\_<u>Field Duplicates</u>



#### METHOD: Metals (EPA Method 6010/6020/7000)

|           | Concentra | tion (ug/L) |              |            |         |            |
|-----------|-----------|-------------|--------------|------------|---------|------------|
| Analyte   | 4         | 5           | RPD<br>(≤20) | Difference | Limits  | Qualifiers |
| Iron      | 1100      | 1000        | 10           |            |         |            |
| Magnesium | 21000     | 21000       | 0            |            |         |            |
| Potassium | 1300      | 1400        |              | 100        | (≤3000) |            |
| Sodium    | 6700      | 6600        |              | 100        | (≤5000) |            |
| Arsenic   | 6.7       | 6.1         |              | 0.6        | (≤5.0)  |            |
| Barium    | 89        | 84          | 6            |            |         |            |
| Cobalt    | 0.16      | 0.081       |              | 0.079      | (≤1.0)  |            |
| Manganese | 360       | 340         | 6            |            |         |            |

|           | Concentra | tion (ug/L) |              |            |         |            |
|-----------|-----------|-------------|--------------|------------|---------|------------|
| Analyte   | 9         | 11          | RPD<br>(≤20) | Difference | Limits  | Qualifiers |
| Calcium   | 88000     | 88000       | 0            |            |         |            |
| Iron      | 1800      | 1800        | 0            |            |         |            |
| Magnesium | 33000     | 32000       | 3            |            |         |            |
| Potassium | 2000      | 2000        |              | 0          | (≤3000) |            |
| Sodium    | 12000     | 12000       |              | 0          | (≤5000) |            |
| Arsenic   | 12        | 11          |              | 1          | (≤5.0)  |            |
| Barium    | 49        | 50          | 2            |            |         |            |
| Cobalt    | 0.33      | 0.35        |              | 0.02       | (≤1.0)  |            |
| Manganese | 270       | 260         | 4            |            |         |            |

V:\FIELD DUPLICATES\Field Duplicates\FD\_inorganic\2018\42791A4a.wpd

LDC #: 42791 AYa

## VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

#### METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

|             |                                             |         |               |              | Recalculated | Reported |                     |
|-------------|---------------------------------------------|---------|---------------|--------------|--------------|----------|---------------------|
| Standard ID | Type of Analysis                            | Element | Found (ug/L)  | True (ug/L)  | %R           | %R       | Acceptable<br>(Y/N) |
| ICVL        | ICP (Low Level calibration)<br>チ/と いろうつ     | К       | 2.773320 mg/  | 3000 ug 1L   | 927.         | 927.     | Ч                   |
| CRI         | ICP/MS (Low Level calibration)<br>チョム の9:51 | Sb      | 1.058 ug 1-   | 1.00 mg/     | 1067.        | 1067.    | Y                   |
| ICV         | ICP (Initial calibration)<br>구 ( 9 13 : 3 4 | Mg      | 10.016700mg/L | - 10000 mg/L | 1007.        | 1007.    | Y                   |
| ICV         | ICP/MS (Initial calibration)<br>구 / 나       | Se      | 40. USOUgh    | 40.0 ug/L    | 10170        | 1017.    | 7                   |
| ICV         | CVAA (Initial calibration)<br>キノローロ けつの     | Hq      | 3.943 mg1-    | 4.00 ug12    | 997.         | 997.     | 7                   |
| CCV         | ICP (Continuing calibration)<br>チリチ ロビ:45   | Ca      | 5-011288 mg/L | 5000 ug 12   | 1007-        | 1007.    | Y                   |
| Cc√         | ICP/MS (Continuing calibration)<br>子し 23:5( | Pb      | 52. 441 ug1-  | 50.0 upil    | 1057-        | 1057.    | 7                   |
| Gev         | CVAA (Continuing calibration)<br>೭୦୯୮ ୩     | Hq      | 5.038 ug 1-   | 5.00 ug/L    | 1017.        | 1017.    | Υ.                  |

| ICP-MS<br>TUNE | Calculation | Mass | Actual<br>(Mean Counts / Axis) | Required (Counts / Axis) | Recalculated /Found<br>%RSD / X% | Acceptable<br>(Y/N) |
|----------------|-------------|------|--------------------------------|--------------------------|----------------------------------|---------------------|
|                | Mass Axis   | 208  | 208.000                        | ± 0.1 AMU                | NA                               | Y                   |
|                | %RSD        | 59   | 14765                          | ≤ 5% RSD                 | 1.217.                           | Y                   |

Comments:

Page: <u>1</u> of <u>1</u> Reviewer: <u>JB</u> 2nd Reviewer:

## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

| Page:_1       | _of | 1 |
|---------------|-----|---|
| Reviewer:     | JB  |   |
| 2nd Reviewer: | C   |   |

#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

| %R = <u>Found_</u> x 100 | Where, | Found = | Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, |
|--------------------------|--------|---------|---------------------------------------------------------------------------------------------------------|
| True                     |        |         | Found = SSR (spiked sample result) - SR (sample result).                                                |
|                          |        |         | True = Concentration of each analyte in the source.                                                     |

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

| RPD = <u> S-D </u> x 100 | Where, | S = Original sample concentration  |
|--------------------------|--------|------------------------------------|
| (S+D)/2                  |        | D = Duplicate sample concentration |

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 %D = <u>|I-SDR|</u> x 100
 Where, I = Initial Sample Result (mg/L)

 I
 SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

| Sample ID | Type of Analysis                           | Element | Found / S / I<br>(units)    | True / D / SDR (units)        | Recalculated<br>%R / RPD / %D | Reported<br>%R / RPD / %D | Acceptable<br>(Y/N) |
|-----------|--------------------------------------------|---------|-----------------------------|-------------------------------|-------------------------------|---------------------------|---------------------|
| ICSAB     | ۲۵۵ /۱۵<br>ICP interference check<br>ا۵:۵۹ |         | 104.245 ug K                | loougic                       | 1007-                         | 1047.                     | У                   |
| LCS       | Laboratory control sample                  | Fe      | 1.026895 mg1                | 1000 mg/L                     | 1037.                         | 1037.                     | <br>                |
| MS        | Matrix spike<br>19:54 – 4                  | Ħq      | ND<br>(SSR-SR)<br>5.10 ug1L | 5.00 vg/L                     | 1027.                         | 1027.                     | Y                   |
| MSD       | Duplicate -4                               | Hq      | 5.447 ugl                   | Found:<br>5.10 ugl            | 7 RPD                         | 7 RPD                     | 1                   |
| PDS       | Post digestion spike _ 4                   | Aq      | 53.007 ug 1-                | SR = ND<br>$SA = 50.0 \ uylL$ | 1067.                         | 1067.                     | 7                   |
| SD        | ICP serial dilution                        | Ca      | 92004 ug1-                  | SR = 92000 ug lL              | 07.7                          | ج ۲۰۱۰۶                   | Ý                   |

Comments: \_\_\_\_\_\_

#### LDC #: 4279144~ SDG #: 280 - 111421-1

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:of           |  |
|-------------------|--|
| Reviewer: UB      |  |
| 2nd reviewer: 🔜 🗙 |  |
|                   |  |

## METHOD: Trace metals (EPA CLP SOW ILM02.1)

| $\left  \underline{\mathbf{Y}} \right  \mathbf{N}$ | <u>N/A</u> Have results b<br><u>N/A</u> Are results wit | w for all questions answered "N". No<br>been reported and calculated correct<br>hin the calibrated range of the instr<br>on limits below the CRDL? | xtly?                                   |                                           |                          |
|----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------|
| Detec<br>equat                                     | ted analyte results for<br>ion:                         | Mg +10                                                                                                                                             | were recalculated                       | d and verified usir                       | ng the following         |
| Concer                                             | ntration = <u>(RD)(FV)(Dil)</u><br>(In. Vol.)           | Recalculat                                                                                                                                         |                                         |                                           |                          |
| RD<br>FV<br>In. Vol.<br>Dil                        |                                                         | ration Ma<br>or weight (G)                                                                                                                         | #10 From Row Do                         | zta= 29.456<br>= 2945                     | 300 mg/L<br>le. 300 mg/L |
| #                                                  | Sample ID                                               | Analyte                                                                                                                                            | Reported<br>Concentration<br>( لنوا ب ) | Calculated<br>Concentration<br>( الم إيس) | Acceptable<br>(Y/N)      |
| 28:04                                              | 1                                                       | Zh                                                                                                                                                 | 3.0                                     | 3.0                                       | Y                        |
| 2:31                                               | 2                                                       | · Fe                                                                                                                                               | 2600                                    | 2600                                      | Y                        |
| 23:37                                              | 3                                                       | Ba                                                                                                                                                 | 1.3                                     | 2.3                                       | Y                        |
| 2:53                                               | 4                                                       | AI                                                                                                                                                 | 100                                     | 100                                       | Y                        |
| 00:01                                              | 5                                                       | Mn                                                                                                                                                 | 340                                     | 340                                       | Y                        |
| 3:05                                               | 6                                                       | K                                                                                                                                                  | 2300                                    | 2300                                      | Ŷ                        |
| 03                                                 | 7                                                       | Co                                                                                                                                                 | 0.25                                    | 0.25                                      | Y                        |
| 3:12                                               | 8                                                       | Na                                                                                                                                                 | 4400                                    | 4400                                      | Y                        |
| 15                                                 | 9                                                       | As                                                                                                                                                 | 12                                      | 12                                        | . 4                      |
| +110<br>1:13                                       | 10                                                      | Mg                                                                                                                                                 | 29000                                   | 29000                                     | <u> </u>                 |
| 3:27                                               |                                                         | Ca                                                                                                                                                 | 88000                                   | 88000                                     |                          |
|                                                    |                                                         |                                                                                                                                                    |                                         |                                           |                          |
|                                                    |                                                         |                                                                                                                                                    |                                         |                                           |                          |
|                                                    |                                                         |                                                                                                                                                    |                                         |                                           |                          |
|                                                    |                                                         |                                                                                                                                                    |                                         |                                           |                          |

Note:

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Ravenna, Ohio     |
|--------------------|-------------------|
| LDC Report Date:   | August 3, 2018    |
| Parameters:        | Wet Chemistry     |
| Validation Level:  | Stage 4           |
| Laboratory:        | TestAmerica, Inc. |

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification   | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-------------------------|-------------------------------------|--------|--------------------|
| FBQmw-174-062518-GW     | 280-111421-1                        | Water  | 06/25/18           |
| FBQmw-175-062518-GW     | 280-111421-2                        | Water  | 06/25/18           |
| FBQmw-176-062518-GW     | 280-111421-3                        | Water  | 06/25/18           |
| LL12mw-247-062618-GW    | 280-111421-4                        | Water  | 06/26/18           |
| LL12mw-247-D-062618-GW  | 280-111421-5                        | Water  | 06/26/18           |
| LL4mw-193-062618-GW     | 280-111421-6                        | Water  | 06/26/18           |
| NTAmw-117-062518-GW     | 280-111421-10                       | Water  | 06/25/18           |
| NTAmw-118-062518-GW     | 280-111421-11                       | Water  | 06/25/18           |
| DETmw-003-D-062618-GW   | 280-111421-16                       | Water  | 06/26/18           |
| FWGmw-010-062618-GW     | 280-111421-17                       | Water  | 06/26/18           |
| DA2mw-115-062618-GW     | 280-111421-21                       | Water  | 06/26/18           |
| DETmw-003-062818-GW     | 280-111421-22                       | Water  | 06/26/18           |
| NTAmw-120-062618-GW     | 280-111421-23                       | Water  | 06/26/18           |
| NTAmw-120-D-062618-GW   | 280-111421-24                       | Water  | 06/26/18           |
| LL12mw-247-062618-GWMS  | 280-111421-4MS                      | Water  | 06/26/18           |
| LL12mw-247-062618-GWMSD | 280-111421-4MSD                     | Water  | 06/26/18           |
| LL12mw-247-062618-GWDUP | 280-111421-4DUP                     | Water  | 06/26/18           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Sulfide by Environmental Protection Agency (EPA) SW 846 Method 9034 Chloride, Sulfate, and Nitrate as Nitrogen by EPA SW 846 method 9056A Total Cyanide by EPA SW 846 Method 9012B Nitrocellulose by EPA Method 353.2

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

### II. Initial Calibration

All criteria for the initial calibration of each method were met.

## III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

#### IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID        | Analyte                           | Maximum<br>Concentration          | Associated<br>Samples                                                                                                                                                                                                                    |
|-----------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PB (prep blank) | Chloride<br>Sulfate<br>Alkalinity | 627 ug/L<br>520 ug/L<br>2.21 mg/L | FBQmw-174-062518-GW<br>FBQmw-175-062518-GW                                                                                                                                                                                               |
| ICB/CCB         | Sulfate<br>Alkalinity             | 0.493 ug/L<br>1.69 ug/L           | FBQmw-174-062518-GW<br>FBQmw-175-062518-GW                                                                                                                                                                                               |
| PB (prep blank) | Cyanide                           | 2.77 ug/L                         | FBQmw-176-062518-GW<br>LL12mw-247-062618-GW<br>LL12mw-247-D-062618-GW<br>LL4mw-193-062618-GW<br>NTAmw-117-062518-GW<br>NTAmw-118-062518-GW<br>DETmw-003-D-062618-GW<br>FWGmw-010-062618-GW<br>DA2mw-115-062618-GW<br>DETmw-003-062818-GW |
| ICB/CCB         | Chloride                          | 0.619 ug/L                        | FBQmw-174-062518-GW                                                                                                                                                                                                                      |
| ICB/CCB         | Chloride                          | 0.669 ug/L                        | FBQmw-175-062518-GW                                                                                                                                                                                                                      |

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample                 | Analyte                | Reported<br>Concentration | Modified Final<br>Concentration |
|------------------------|------------------------|---------------------------|---------------------------------|
| FBQmw-174-062518-GW    | Chloride               | 1400 ug/L                 | 3000U ug/L                      |
| FBQmw-175-062518-GW    | Chloride<br>Alkalinity | 2000 ug/L<br>4.9 mg/L     | 3000U ug/L<br>5.0U mg/L         |
| FBQmw-176-062518-GW    | Cyanide                | 6.1 ug/L                  | 20U ug/L                        |
| LL12mw-247-062618-GW   | Cyanide                | 2.1 ug/L                  | 10U ug/L                        |
| LL12mw-247-D-062618-GW | Cyanide                | 3.0 ug/L                  | 10U ug/L                        |
| LL4mw-193-062618-GW    | Cyanide                | 2.8 ug/L                  | 10U ug/L                        |
| NTAmw-117-062518-GW    | Cyanide                | 2.7 ug/L                  | 10U ug/L                        |
| NTAmw-118-062518-GW    | Cyanide                | 3.9 ug/L                  | 10U ug/L                        |
| FWGmw-010-062618-GW    | Cyanide                | 2.6 ug/L                  | 10U ug/L                        |

### V. Field Blanks

Samples FBQmw-174-062518-GW, FBQmw-175-062518-GW, and FBQmw-176-062518-GW were identified as field blanks. No contaminants were found with the following exceptions:

| Blank ID            | Collection<br>Date | Analyte                                      | Concentration                                   | Associated<br>Samples                                                                                                                                                                                             |
|---------------------|--------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FBQmw-174-062518-GW | 06/25/18           | Chloride<br>Sulfate<br>Alkalinity            | 1400 ug/L<br>12000 ug/L<br>5.5 mg/L             | No associated samples in this SDG                                                                                                                                                                                 |
| FBQmw-175-062518-GW | 06/25/18           | Sulfide<br>Chloride<br>Sulfate<br>Alkalinity | 800 ug/L<br>2000 ug/L<br>17000 ug/L<br>4.9 mg/L | No associated samples in this SDG                                                                                                                                                                                 |
| FBQmw-176-062518-GW | 06/25/18           | Cyanide                                      | 6.1 ug/L                                        | LL12mw-247-062618-GW<br>LL12mw-247-D-062618-GW<br>LL4mw-193-062618-GW<br>NTAmw-117-062518-GW<br>NTAmw-118-062518-GW<br>DETmw-003-D-062618-GW<br>FWGmw-010-062618-GW<br>DA2mw-115-062618-GW<br>DETmw-003-062818-GW |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

| Sample                 | Analyte | Reported<br>Concentration | Modified Final<br>Concentration |
|------------------------|---------|---------------------------|---------------------------------|
| LL12mw-247-062618-GW   | Cyanide | 2.1 ug/L                  | 10U ug/L                        |
| LL12mw-247-D-062618-GW | Cyanide | 3.0 ug/L                  | 10U ug/L                        |
| LL4mw-193-062618-GW    | Cyanide | 2.8 ug/L                  | 10U ug/L                        |
| NTAmw-117-062518-GW    | Cyanide | 2.7 ug/L                  | 10U ug/L                        |
| NTAmw-118-062518-GW    | Cyanide | 3.9 ug/L                  | 10U ug/L                        |
| FWGmw-010-062618-GW    | Cyanide | 2.6 ug/L                  | 10U ug/L                        |

#### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

#### VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### IX. Field Duplicates

Samples LL12mw-247-062618-GW and LL12mw-247-D-062618-GW, samples DETmw-003-D-062618-GW and DETmw-003-062818-GW, and samples NTAmw-120-062618-GW and NTAmw-120-D-062618-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|         | Concentration (ug/L) |                        |                 |                        |      |        |
|---------|----------------------|------------------------|-----------------|------------------------|------|--------|
| Analyte | LL12mw-247-062618-GW | LL12mw-247-D-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| Cyanide | 2.1                  | 3.0                    | -               | 0.9 (≤10)              | -    | -      |

## X. Sample Result Verification

All sample result verifications were acceptable.

#### XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in nine samples.

Due to field blank contamination, data were qualified as not detected in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

## Ravenna, Ohio Wet Chemistry - Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

#### Ravenna, Ohio Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

| Sample                 | Analyte                | Modified Final<br>Concentration | A or P |
|------------------------|------------------------|---------------------------------|--------|
| FBQmw-174-062518-GW    | Chloride               | 3000U ug/L                      | A      |
| FBQmw-175-062518-GW    | Chloride<br>Alkalinity | 3000U ug/L<br>5.0U mg/L         | A      |
| FBQmw-176-062518-GW    | Cyanide                | 20U ug/L                        | A      |
| LL12mw-247-062618-GW   | Cyanide                | 10U ug/L                        | A      |
| LL12mw-247-D-062618-GW | Cyanide                | 10U ug/L                        | A      |
| LL4mw-193-062618-GW    | Cyanide                | 10U ug/L                        | A      |
| NTAmw-117-062518-GW    | Cyanide                | 10U ug/L                        | A      |
| NTAmw-118-062518-GW    | Cyanide                | 10U ug/L                        | А      |
| FWGmw-010-062618-GW    | Cyanide                | 10U ug/L                        | A      |

## Ravenna, Ohio Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-111421-1

| Sample                 | Analyte | Modified Final<br>Concentration | A or P |
|------------------------|---------|---------------------------------|--------|
| LL12mw-247-062618-GW   | Cyanide | 10U ug/L                        | A      |
| LL12mw-247-D-062618-GW | Cyanide | 10U ug/L                        | A      |
| LL4mw-193-062618-GW    | Cyanide | 10U ug/L                        | A      |
| NTAmw-117-062518-GW    | Cyanide | 10U ug/L                        | A      |
| NTAmw-118-062518-GW    | Cyanide | 10U ug/L                        | А      |

| Sample              | Analyte | Modified Final<br>Concentration | A or P |
|---------------------|---------|---------------------------------|--------|
| FWGmw-010-062618-GW | Cyanide | 10U ug/L                        | A      |

## VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: <u>8/2//9</u> Page: <u>\_\_\_\_\_</u>of <u>2</u> Reviewer: <u>\_\_\_\_9</u> 2nd Reviewer: <u>\_\_\_\_</u>

METHOD: (Analyte) Alkalinity (SM 2320B), Sulfide (EPA SW846 Method 9034), Chloride, Sulfate, Nitrate as N (EPA SW846 Method 9056A) Total Cyanide (EPA SW846 Method 9012B), Nitrocellulose (EPA Method 353.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |     | Comments              |
|-------|----------------------------------------|-----|-----------------------|
| ١.    | Sample receipt/Technical holding times | AIA |                       |
| 11    | Initial calibration                    | A   |                       |
| III.  | Calibration verification               | +   |                       |
| ١V    | Laboratory Blanks                      | SW  |                       |
| v     | Field blanks                           | SW  | FB= 1-3               |
| VI.   | Matrix Spike/Matrix Spike Duplicates   | A   | (15,16)               |
| VII.  | Duplicate sample analysis              | A   | 17                    |
| VIII. | Laboratory control samples             | A   | LCSID                 |
| IX.   | Field duplicates                       | SW  | (4,5) (9,12* (13,14)* |
| Х.    | Sample result verification             | A   |                       |
| XL    | Overall assessment of data             | A   |                       |

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

LDC #: 42791A6

SDG #: 280-111421-1

Laboratory: Test America, Inc.

✓ ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|     | Client ID               | Lab ID          | Matrix | Date     |
|-----|-------------------------|-----------------|--------|----------|
| 1   | FBQmw-174-062518-GW     | 280-111421-1    | Water  | 06/25/18 |
| 2   | FBQmw-175-062518-GW     | 280-111421-2    | Water  | 06/25/18 |
| 3   | FBQmw-176-062518-GW     | 280-111421-3    | Water  | 06/25/18 |
| 4   | LL12mw-247-062618-GW    | 280-111421-4    | Water  | 06/26/18 |
| 5   | LL12mw-247-D-062618-GW  | 280-111421-5    | Water  | 06/26/18 |
| 6   | LL4mw-193-062618-GW     | 280-111421-6    | Water  | 06/26/18 |
| 7   | NTAmw-117-062518-GW     | 280-111421-10   | Water  | 06/25/18 |
| 8   | NTAmw-118-062518-GW     | 280-111421-11   | Water  | 06/25/18 |
| 9   | DETmw-003-D-062618-GW   | 280-111421-16   | Water  | 06/26/18 |
| 10  | FWGmw-010-062618-GW     | 280-111421-17   | Water  | 06/26/18 |
| 11  | DA2mw-115-062618-GW     | 280-111421-21   | Water  | 06/26/18 |
| 12  | DETmw-003-062818-GW     | 280-111421-22   | Water  | 06/26/18 |
| 13  | NTAmw-120-062618-GW     | 280-111421-23   | Water  | 06/26/18 |
| 14  | NTAmw-120-D-062618-GW   | 280-111421-24   | Water  | 06/26/18 |
| 15  | LL12mw-247-062618-GWMS  | 280-111421-4MS  | Water  | 06/26/18 |
| 16_ | LL12mw-247-062618-GWMSD | 280-111421-4MSD | Water  | 06/26/18 |
| 17  | LL12mw-247-062618-GWDUP | 280-111421-4DUP | Water  | 06/26/18 |

LDC #: <u>42791A6</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

## Stage 4

Date: <u>81218</u> Page: <u>2</u>of <u>2</u> Reviewer: <u>47</u> 2nd Reviewer: <u>47</u>

METHOD: (Analyte) Alkalinity (SM 2320B), Sulfide (EPA SW846 Method 9034), Chloride, Sulfate, Nitrate as N (EPA SW846 Method 9056A)Total Cyanide (EPA SW846 Method 9012B), Nitrocellulose (EPA Method 353.2)

|      | Client ID | Lab ID                                 | Matrix | Date |
|------|-----------|----------------------------------------|--------|------|
| 18   |           |                                        |        |      |
| 19   |           |                                        |        |      |
| 20   |           |                                        |        |      |
| Note | S:        | ······································ | ······ |      |

## VALIDATION FINDINGS CHECKLIST

| Yes          | No    | NA        | Findings/Comments |
|--------------|-------|-----------|-------------------|
|              |       |           | ·                 |
| 1            |       |           |                   |
|              |       |           |                   |
| $\checkmark$ |       |           |                   |
| /            | -     |           |                   |
| 1            |       |           |                   |
| $\checkmark$ |       |           |                   |
| $\checkmark$ |       | <b></b> , |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
| /            |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
|              |       |           |                   |
| /            |       |           |                   |
|              | ····· | -         |                   |
|              | .     |           |                   |
| ·            |       |           |                   |
|              |       |           |                   |

## VALIDATION FINDINGS CHECKLIST

Page: 1\_of 2 Reviewer: JB 2nd Reviewer:\_\_\_\_

| Validation Area                                                                                             | Yes          | No | NA | Findings/Comments                      |
|-------------------------------------------------------------------------------------------------------------|--------------|----|----|----------------------------------------|
| VII. Sample Result Verification                                                                             |              |    |    |                                        |
| Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | 1            |    |    |                                        |
| Were detection limits < RL?                                                                                 | 1            |    |    | `````````````````````````````````````` |
| VIII. Overall assessment of data                                                                            |              |    |    |                                        |
| Overall assessment of data was found to be acceptable.                                                      | ~            |    |    |                                        |
| IX. Field duplicates                                                                                        |              |    |    |                                        |
| Field duplicate pairs were identified in this SDG.                                                          | ~            |    |    |                                        |
| Target analytes were detected in the field duplicates.                                                      | . <b>/</b> 1 |    |    |                                        |
| X. Field blanks                                                                                             |              |    |    |                                        |
| Field blanks were identified in this SDG.                                                                   | 1            |    |    |                                        |
| Target analytes were detected in the field blanks.                                                          |              | •  |    |                                        |

Validation Findings WS.wpd version 1.0

LDC #: 42791A4

F

## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1\_of 1 Reviewer: JB 2nd reviewer: \_\_\_\_\_

All circled methods are applicable to each sample.

| Sample ID                | Parameter                                                                                                                                       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2                      | pH TDS (CI) F NO <sub>3</sub> NO <sub>2</sub> (SO <sub>4</sub> )O-PO <sub>4</sub> (Alk CN NH <sub>3</sub> TKN TOC Cr6+ CIO <sub>4</sub> $S^2$ ) |
| 3,10-12                  | pH TDS CI F NO3 NO2 SO4 O-PO4 Alle CN NH3 TKN TOC Cr6+ CIO4                                                                                     |
| 4,5                      | pH TDS CI F NO2 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
| 13,14                    | pH TDS CI F NO3 NO, SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 Wittro cellulor                                                                      |
|                          | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>              |
| OC .                     | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
| 15,16                    | pH TDS CI F NO, NO, SO, O-PO, AIK ON NH, TKN TOC Cr6+ CIO,                                                                                      |
| 17                       | pH TDS CI F NO, NO, SO O-PO Alk CN NH, TKN TOC Cr6+ Clo                                                                                         |
| •                        | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>              |
| -                        | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO, SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
| יי<br>ניג<br>ארביים ביים | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO, SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>              |
|                          | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>              |
|                          | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>              |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
| •                        | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
|                          | pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4                                                                                      |
|                          | DH TDS CI F NO. NO. SO. O-PO. Alk CN NH. TKN TOC Cr6+ CIO.                                                                                      |

Comments:\_\_\_\_

J

LDC #: 42791A6

## VALIDATION FINDINGS WORKSHEET Blanks

#### METHOD: Inorganics, Method See Cover

| Conc. units          | Conc. units: ug/L Associated Samples1, 2  |                   |              |             |             |                                       |                                       |          |          |          |   |  |
|----------------------|-------------------------------------------|-------------------|--------------|-------------|-------------|---------------------------------------|---------------------------------------|----------|----------|----------|---|--|
| Analyte              | Blank ID                                  | Blank ID          | Blank        |             |             |                                       | · · · · · · · · · · · · · · · · · · · |          |          |          | - |  |
|                      | РВ                                        | ICB/CCB<br>(mg/L) | Action Limit | 1           | 2           |                                       |                                       |          |          |          |   |  |
| Chloride             | 627 J                                     |                   |              | 1400 / 3000 | 2000 / 3000 |                                       |                                       |          |          |          |   |  |
| Sulfate              | 520 J                                     | 0.493 J           |              |             |             |                                       |                                       |          |          |          |   |  |
| Alkalinity<br>(mg/L) | 2.21 J                                    | 1.69 J            |              |             | 4.9 / 5.0   |                                       |                                       |          |          |          |   |  |
| Conc. units          | Conc. units:ug/LAssociated Samples:3 - 12 |                   |              |             |             |                                       |                                       |          |          |          |   |  |
| Analyte              | Blank ID                                  | Blank ID          | Blank        |             |             |                                       |                                       |          |          |          |   |  |
|                      | РВ                                        | ICB/CCB<br>(mg/L) | Action Limit | 3           | 4           | 5                                     | 6                                     | 7        | 8        | 10       |   |  |
| Cyanide              | 2.77 J                                    |                   |              | 6.1 / 20    | 2.1 / 10    | 3.0 / 10                              | 2.8 / 10                              | 2.7 / 10 | 3.9 / 10 | 2.6 / 10 |   |  |
| Conc. units          | s: <u>      ug/L</u>                      |                   |              |             | Asso        | ociated Sar                           | nples:                                | 1        |          |          |   |  |
| Analyte              | Blank ID                                  | Blank ID          | Blank        |             |             |                                       |                                       |          |          |          |   |  |
|                      | РВ                                        | ICB/CCB<br>(mg/L) | Action Limit | 1           |             |                                       |                                       |          |          |          |   |  |
| Chloride             |                                           | 0.619 J           |              | 1400 / 3000 |             |                                       |                                       |          |          |          |   |  |
| Conc. units          | s: ug/L                                   |                   |              |             | Asso        | ociated Sar                           | nples:                                | 2        |          |          |   |  |
| Analyte              | Blank ID                                  | Blank ID          | Blank        |             |             |                                       |                                       |          |          |          |   |  |
|                      | РВ                                        | ICB/CCB<br>(mg/L) | Action Limit | 2           |             |                                       |                                       |          |          |          |   |  |
| Chloride             |                                           | 0.669 J           |              | 2000 / 3000 |             | · · · · · · · · · · · · · · · · · · · |                                       |          |          |          |   |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

## VALIDATION FINDINGS WORKSHEET **Field Blanks**

| Page:/        | _of | 1      |
|---------------|-----|--------|
| Reviewer:     | AB  |        |
| 2nd Reviewer: | 4   | $\leq$ |

| METHOD: Inorganics, E<br>Blank units:ug/L<br>Sampling date: <u>6/25</u><br>Field blank type: (circle | Associated sam                                | n <b>ple units:<u>ug</u><br/>or applied <u>NA</u></b> | <u> </u> |                       | Associated Sa    | amples: <u>NO</u> | <u>NE</u>    |          |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------|-----------------------|------------------|-------------------|--------------|----------|--|--|--|
| Analyte                                                                                              | Blank ID                                      | Action Limit                                          |          | Sample Identification |                  |                   |              |          |  |  |  |
|                                                                                                      | 1                                             |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Chloride                                                                                             | 1400 J                                        |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Sulfate                                                                                              | 12000                                         |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Alkalinity (mg/L)                                                                                    | 5.5                                           |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Field blank type: (circle<br>Analyte                                                                 | Blank ID                                      | Action Limit                                          |          |                       | Associated Sa    |                   | entification |          |  |  |  |
|                                                                                                      | 2                                             |                                                       |          | 1                     |                  |                   |              |          |  |  |  |
| Sulfide                                                                                              | 800 J                                         |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Chloride                                                                                             | 2000 J                                        |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Sulfate                                                                                              | 17000                                         |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Alkalinity (mg/L)                                                                                    | 4.9 J                                         |                                                       |          |                       |                  |                   |              | L        |  |  |  |
| Sampling date: 6/25                                                                                  | Blank units:ug/LAssociated sample units:_ug/L |                                                       |          |                       |                  |                   |              |          |  |  |  |
| Analyte                                                                                              | Blank ID                                      | Action Limit                                          |          | -                     |                  | Sample Ide        | entification |          |  |  |  |
|                                                                                                      | 3                                             |                                                       | 4        | 5                     | 6                | 7                 | 8            | 10       |  |  |  |
| Cyanide                                                                                              | 6.1 J                                         |                                                       | 2.1 / 10 | 3.0 / 10              | <u>2</u> .8 / 10 | 2.7 / 10          | 3.9 / 10     | 2.6 / 10 |  |  |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

#### VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: /\_of\_I Reviewer: \_\_\_\_\_ 2nd Reviewer: \_\_\_\_\_

Inorganics, Method See Cover

|         | Concentration (ug/L) |     |           |            |        | Qualification |  |
|---------|----------------------|-----|-----------|------------|--------|---------------|--|
| Analyte | 4                    | 5   | RPD (≤30) | Difference | Limits | (Parent only) |  |
| Cyanide | 2.1                  | 3.0 |           | 0.9        | (≤ 10) |               |  |

V:\FIELD DUPLICATES\Field Duplicates\FD\_inorganic\2018\42791A6.wpd

#### LDC #: 42791A4

## Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

| Page:     | 1   | _of _ |   |
|-----------|-----|-------|---|
| Reviewe   | r:_ | V.    | 6 |
| 2nd Revie | ew  | er:   |   |

Method: Inorganics, Method \_\_\_\_\_\_\_

The correlation coefficient (r) for the calibration of  $\underline{CN}$  was recalculated.Calibration date:  $\underline{6/29/19}$ 

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

|                          |         |          |              |             | Recalculated        | Reported            | Acceptable |
|--------------------------|---------|----------|--------------|-------------|---------------------|---------------------|------------|
| Type of analysis         | Analyte | Standard | Conc. (ug/L) | Response    | r or r <sup>2</sup> | r or r <sup>2</sup> | (Y/N)      |
| Initial calibration      |         | s1       | 0            | 315.564972  |                     |                     |            |
|                          |         | s2       | 10           | 7565.687012 | 0.999956            | 0.999956            |            |
|                          |         | s3       | 20           | 14719.72949 |                     |                     |            |
|                          | CN-     | s4       | 50           | 36849.75    |                     |                     |            |
|                          |         | s5       | 100          | 72742.10938 |                     |                     |            |
|                          |         | s6       | 200          | 143567.4219 |                     |                     | 7          |
|                          |         | s7       | 400          | 282311.3438 |                     |                     |            |
| 6120                     |         |          | TOUND :      | TRUE        |                     |                     |            |
| Calibration verification | ND3     | Icv      | 3. 8432 mg k | 4.00 mg 12  | ૧૯૧.                | 967.                | 7          |
|                          |         |          | FourD:       | TRUE :      | _                   |                     |            |
| Calibration verification | AIK-    | cc√      | 201mg1-      | 200 mg/L    | 1017.               | 1017.               | Υ          |
|                          |         |          |              | 0           |                     | -                   |            |
| Calibration verification |         |          |              |             |                     |                     |            |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.\_\_\_\_\_

LDC #: 42791A4

## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 1 of 1 Reviewer: JB 2nd Reviewer:

METHOD: Inorganics, Method See Cover

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 Where, Found = True True = o

Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

| RPD = <u> S-D </u> | x 100 | Where, |  |
|--------------------|-------|--------|--|
| (S+D)/2            |       | ·      |  |

S = Original sample concentration D = Duplicate sample concentration

Recalculated. Reported. Found / S True / D Acceptable Sample ID **Type of Analysis** Element (units) (units) %R / RPD %R/RPD (Y/N)Laboratory control sample 5.0599mg1-5.00mg/L NO2 LCS 6127 1017. 1017. Ч 2.1 (SSR-SR) 997. Matrix spike sample 997. CN 100 vale -loough MS Ч 100.9407 49/4 JB () -SK= 98.860745 FOUND . Duplicate sample MSD CN 100.680 ugl 100.9607ugk ORPD ORPD Y

Comments: \_

Validation Findings 2a.wpd

| LDC #          | <u>u27914</u> 4                                                                                                 | VALIDATION FINDINGS WO<br>Sample Calculation Veri                                                                                                                |                                            |                                       | :_1_of_1<br>r:JB<br>wer: |
|----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|--------------------------|
| METH           | IOD: Inorganics, Metho                                                                                          | dJee Cover                                                                                                                                                       |                                            |                                       | •                        |
|                | <u>N/A</u> Have results<br><u>N/A</u> Are results w                                                             | bw for all questions answered "N". Not appleten reported and calculated correctly?<br>ithin the calibrated range of the instrument<br>ion limits below the CRQL? | • •                                        | e identified as "N/                   | A".                      |
| Comp<br>recalc | ound (analyte) results four the second se | or <u>SOy ++ (</u><br>g the following equation:                                                                                                                  | repc                                       | orted with a positiv                  | ve detect were           |
| Concen         | tration =                                                                                                       | Recalculation:                                                                                                                                                   | •                                          | •                                     |                          |
| S              | $\partial \mu - \gamma = nx+b$<br>$\gamma = 4794781$<br>m = 4117419<br>b = -170                                 | 5<br>9.242<br>0644. 386                                                                                                                                          | 7419.242+ 1700<br>4117419.2<br>12-057 mg1L | = 120574                              | بوال                     |
| #              | Sample ID                                                                                                       | Analyte                                                                                                                                                          | Reported<br>Concentration<br>(ug IL)       | Calculated<br>Concentration<br>(      | Acceptable<br>(Y/N)      |
|                | . 1                                                                                                             | Soy                                                                                                                                                              | 12000                                      | 12000                                 | y                        |
|                | 2                                                                                                               | SL                                                                                                                                                               | 800                                        | රිගට                                  | Y                        |
|                |                                                                                                                 | AIK-                                                                                                                                                             | 4.9 mg 1-                                  | 4.9 mg 1                              | · y                      |
|                | .3                                                                                                              | CN                                                                                                                                                               | 6.1                                        | 6.1                                   | <u> </u>                 |
|                | 4                                                                                                               | <u> </u>                                                                                                                                                         | 2.1                                        | 2.1                                   | Y                        |
|                | 5                                                                                                               | CN-                                                                                                                                                              | 3.0                                        | 3.0                                   | <u> </u>                 |
|                | le                                                                                                              | CN-                                                                                                                                                              | 2.8                                        | 28                                    | Y                        |
|                | - 7                                                                                                             | CN <sup>-</sup>                                                                                                                                                  | 2.7                                        | 2.7                                   | Y Y                      |
|                | 8                                                                                                               | CN-                                                                                                                                                              | 3.9                                        | 3.9                                   | Y                        |
|                | סן                                                                                                              | CN-                                                                                                                                                              | 2.4                                        | 2.6                                   |                          |
| <b> </b>       |                                                                                                                 |                                                                                                                                                                  |                                            |                                       |                          |
|                |                                                                                                                 |                                                                                                                                                                  |                                            |                                       |                          |
|                |                                                                                                                 |                                                                                                                                                                  |                                            |                                       |                          |
|                | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                                                                                                                                  |                                            |                                       |                          |
| <b> </b>       |                                                                                                                 |                                                                                                                                                                  |                                            |                                       |                          |
|                |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                            |                                            |                                       |                          |
| <b> </b>       |                                                                                                                 |                                                                                                                                                                  |                                            | · · · · · · · · · · · · · · · · · · · |                          |
|                |                                                                                                                 |                                                                                                                                                                  | L                                          | L                                     |                          |

ŝ

Note:

Validation Findings 2b.wpd

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Ravenna, Ohio     |
|--------------------|-------------------|
| LDC Report Date:   | August 3, 2018    |
| Parameters:        | Explosives        |
| Validation Level:  | Stage 4           |
| Laboratory:        | TestAmerica, Inc. |

Sample Delivery Group (SDG): 280-111421-1

|                         | Laboratory Sample | T      | Collection |
|-------------------------|-------------------|--------|------------|
| Sample Identification   | Identification    | Matrix | Date       |
| FBQmw-174-062518-GW     | 280-111421-1      | Water  | 06/25/18   |
| LL12mw-247-062618-GW    | 280-111421-4      | Water  | 06/26/18   |
| LL12mw-247-D-062618-GW  | 280-111421-5      | Water  | 06/26/18   |
| NTAmw-119-062518-GW     | 280-111421-8      | Water  | 06/25/18   |
| NTAmw-119-D-062518-GW   | 280-111421-9      | Water  | 06/25/18   |
| FWGmw-016-062518-GW     | 280-111421-13     | Water  | 06/25/18   |
| FWGmw-015-062518-GW     | 280-111421-14     | Water  | 06/25/18   |
| FWGmw-004-062518-GW     | 280-111421-15     | Water  | 06/25/18   |
| DETmw-003-D-062618-GW   | 280-111421-16     | Water  | 06/26/18   |
| DA2mw-115-062618-GW     | 280-111421-21     | Water  | 06/26/18   |
| DETmw-003-062618-GW     | 280-111421-22     | Water  | 06/26/18   |
| NTAmw-120-062618-GW     | 280-111421-23     | Water  | 06/26/18   |
| NTAmw-120-D-062618-GW   | 280-111421-24     | Water  | 06/26/18   |
| LL12mw-247-062618-GWMS  | 280-111421-4MS    | Water  | 06/26/18   |
| LL12mw-247-062618-GWMSD | 280-111421-4MSD   | Water  | 06/26/18   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0% with the following exceptions:

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

Retention time windows were established as required by the method.

## III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

## IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## V. Field Blanks

Sample FBQmw-174-062518-GW was identified as a field blank. No contaminants were found with the following exceptions:

| Blank ID            | Collection<br>Date | Compound                                                                                                | Concentration                               | Associated<br>Samples                                                                                                                                                                                             |
|---------------------|--------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FBQmw-174-062518-GW | 06/26/18           | 2,4-Dinitrotoluene<br>2-Amino-4,6-dinitrotoluene<br>4-Amino-2,6-dinitrotoluene<br>2,4,6-Trinitrotoluene | 0.29 ug/L<br>9.1 ug/L<br>26 ug/L<br>28 ug/L | LL12mw-247-062618-GW<br>LL12mw-247-D-062618-GW<br>NTAmw-119-062518-GW<br>FWGmw-016-062518-GW<br>FWGmw-015-062518-GW<br>FWGmw-004-062518-GW<br>FWGmw-003-D-062618-GW<br>DA2mw-115-062618-GW<br>DETmw-003-062618-GW |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks.

## VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

## IX. Field Duplicates

Samples LL12mw-247-062618-GW and LL12mw-247-D-062618-GW, samples NTAmw-119-062518-GW and NTAmw-119-D-062518-GW, samples DETmw-003-D-062618-GW and DETmw-003-062618-GW, and samples NTAmw-120-062618-GW and NTAmw-120-D-062618-GW were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

|                | Concentr            | ation (ug/L)          |                 |                        |      |        |
|----------------|---------------------|-----------------------|-----------------|------------------------|------|--------|
| Compound       | NTAmw-119-062518-GW | NTAmw-119-D-062518-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| 4-Nitrotoluene | 0.58                | 0.41U                 | -               | 0.17 (≤1.0)            | -    | -      |

|                | Concentr            | ation (ug/L)          |                 |                        |      |        |
|----------------|---------------------|-----------------------|-----------------|------------------------|------|--------|
| Compound       | NTAmw-120-062618-GW | NTAmw-120-D-062618-GW | RPD<br>(Limits) | Difference<br>(Limits) | Flag | A or P |
| 4-Nitrotoluene | 0.40                | 0.60                  | -               | 0.2 (≤1.0)             | -    | -      |

## X. Compound Quantitation

All compound quantitations met validation criteria.

## XI. Target Compound Identifications

All target compound identifications met validation criteria.

## XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Ravenna, Ohio Explosives - Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Explosives - Laboratory Blank Data Qualification Summary - SDG 280-111421-1


No Sample Data Qualified in this SDG

Ravenna, Ohio Explosives - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

LDC #: <u>42791A40a</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

# Stage 4



METHOD: HPLC Explosives (EPA SW 846 Method 8330B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|        | Validation Area                        |       |                         | Comments |            |
|--------|----------------------------------------|-------|-------------------------|----------|------------|
| ١.     | Sample receipt/Technical holding times | AIA   |                         |          |            |
| 11.    | Initial calibration/ICV                | A / A | 1CAL 6 15%              | r٧       | 1015202    |
| - 111. | Continuing calibration                 | A     | 1CAL 6 15%<br>CON 6 20% |          |            |
| IV.    | Laboratory Blanks                      | A     |                         |          |            |
| V.     | Field blanks                           | ŚŴ    | FB = 1                  |          |            |
| VI.    | Surrogate spikes                       | A     |                         |          |            |
| VII.   | Matrix spike/Matrix spike duplicates   | A     |                         |          |            |
| VIII.  | Laboratory control samples             | A     | us *                    |          | V          |
| IX.    | Field duplicates                       | ŚW    | p = 2/3                 | 4/5      | 9/11 14/15 |
| Х.     | Compound quantitation RL/LOQ/LODs      | A     |                         |          |            |
| XI.    | Target compound identification         | A     |                         |          |            |
| XII    | Overall assessment of data             | A     |                         |          |            |

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ゲ ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|                | Client ID                               | Lab ID          | Matrix | Date     |
|----------------|-----------------------------------------|-----------------|--------|----------|
| +<br>1         | FBQmw-174-062518-GW                     | 280-111421-1    | Water  | 06/25/18 |
| 2              | LL12mw-247-062618-GW Ŋ                  | 280-111421-4    | Water  | 06/26/18 |
| -<br>3         | LL12mw-247-D-062618-GW                  | 280-111421-5    | Water  | 06/26/18 |
| 44             | NTAmw-119-062518-GW $\mathcal{D}_{r}$   | 280-111421-8    | Water  | 06/25/18 |
| 5              | NTAmw-119-D-062518-GW $\mathcal{D}_{r}$ | 280-111421-9    | Water  | 06/25/18 |
| <b>ē</b>       | FWGmw-016-062518-GW                     | 280-111421-13   | Water  | 06/25/18 |
| 7              | FWGmw-015-062518-GW                     | 280-111421-14   | Water  | 06/25/18 |
| ~<br>8         | FWGmw-004-062518-GW                     | 280-111421-15   | Water  | 06/25/18 |
| <u>9</u>       | DETmw-003-D-062618-GW D3                | 280-111421-16   | Water  | 06/26/18 |
| 10             | DA2mw-115-062618-GW                     | 280-111421-21   | Water  | 06/26/18 |
| <b>*</b><br>11 | DETmw-003-062818-GW                     | 280-111421-22   | Water  | 06/26/18 |
| 12             | LL12mw-247-062618-GWMS                  | 280-111421-4MS  | Water  | 06/26/18 |
| 13             | LL12mw-247-062618-GWMSD                 | 280-111421-4MSD | Water  | 06/26/18 |
| 14_            | NTAMW-120-062618-GN D4                  | - 23            |        |          |
|                | NTA MW - 120-D-662618-GW D4             | <u> </u>        |        | ł        |
| -              | MB 250-420700/1-A                       |                 |        |          |

#### VALIDATION FINDINGS CHECKLIST

NA

I

No

| Page:_        | <u>1_of_</u> | 2 |
|---------------|--------------|---|
| Reviewer:     | JVC          | ) |
| 2nd Reviewer: | 0            | _ |

Findings/Comments

| Method:GC HPLC                                                                                                                   |     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| Validation Area                                                                                                                  | Yes |  |  |  |  |
| I. Technical holding times                                                                                                       |     |  |  |  |  |
| Were all technical holding times met?                                                                                            | /   |  |  |  |  |
| Was cooler temperature criteria met?                                                                                             |     |  |  |  |  |
| IIa. Initial calibration                                                                                                         |     |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       |     |  |  |  |  |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                      | /   |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? | /   |  |  |  |  |
| Were the RT windows properly established?                                                                                        | /   |  |  |  |  |
| IIb. Initial calibration verification                                                                                            |     |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                    | /   |  |  |  |  |
|                                                                                                                                  |     |  |  |  |  |

| Was an initial calibration verification standard analyzed after each initial<br>calibration for each instrument?                                                               | <           |   |   |                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|---|------------------------------------------|--|
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                                                               |             |   |   |                                          |  |
| III. Continuing calibration                                                                                                                                                    | <b>X</b>    | ć |   |                                          |  |
| Was a continuing calibration analyzed daily?                                                                                                                                   |             |   |   | ······································   |  |
| Were all percent differences (%D) $\leq$ 20% or percent recoveries (%R) 80-120%?                                                                                               |             |   |   |                                          |  |
| Were all the retention times within the acceptance windows?                                                                                                                    |             |   |   |                                          |  |
| IV. Laboratory Blanks                                                                                                                                                          | ,           |   |   |                                          |  |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                               | $\lfloor 1$ |   |   |                                          |  |
| Was a laboratory blank analyzed for each matrix and concentration?                                                                                                             |             |   |   |                                          |  |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                                             |             |   |   |                                          |  |
| V. Field Blanks                                                                                                                                                                |             |   |   |                                          |  |
| Were field blanks identified in this SDG?                                                                                                                                      |             |   |   |                                          |  |
| Were target compounds detected in the field blanks?                                                                                                                            |             |   |   | a an |  |
| VI. Surrogate spikes                                                                                                                                                           | 1           |   |   |                                          |  |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                                                                 |             |   |   |                                          |  |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        |             |   | / |                                          |  |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                                                  |             |   | / | ·                                        |  |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      |             |   |   |                                          |  |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |             |   |   |                                          |  |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |             |   | [ |                                          |  |

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

## VALIDATION FINDINGS CHECKLIST

Page: <u>2</u> of <u>2</u> Reviewer: <u>VG</u> 2nd Reviewer:

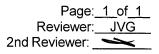
| Validation Area                                                                                                                       | Yes             | No | NA | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|----|-------------------|
| VIII. Laboratory control samples                                                                                                      |                 |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                     |                 |    |    |                   |
| Was an LCS analyzed per extraction batch?                                                                                             |                 |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      | ~               |    |    |                   |
| IX. Field duplicates                                                                                                                  |                 |    |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                    | /               |    |    |                   |
| Were target compounds detected in the field duplicates?                                                                               |                 |    |    |                   |
| X. Compound quantitation                                                                                                              |                 |    |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |                 |    |    |                   |
| XI. Target compound identification                                                                                                    |                 |    |    |                   |
| Were the retention times of reported detects within the RT windows?                                                                   | $\left \right $ |    |    |                   |
| XIII. Overall assessment of data                                                                                                      |                 |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                |                 |    |    |                   |

# VALIDATION FINDINGS WORKSHEET

METHOD: \_\_\_\_GC \_\_\_HPLC

| 8310                      | 8330                          | 8151                 | 8141                | 8141(Con't)           | 8021B             |
|---------------------------|-------------------------------|----------------------|---------------------|-----------------------|-------------------|
| A. Acenaphthene           | A. HMX                        | A. 2,4-D             | A. Dichlorvos       | X. EPN                | V. Benzene        |
| B. Acenaphthylene         | B. RDX                        | B. 2,4-DB            | B. Mevinphos        | Y. Azinphos-methyl    | CC. Toluene       |
| C. Anthracene             | C. 1,3,5-Trinitrobenzene      | C. 2,4,5-T           | C. Demeton-O        | Z. Coumaphos          | EE. Ethyl Benzene |
| D. Benzo(a)anthracene     | D. 1,3-Dinitrobenzene         | D. 2,4,5-TP          | D. Demeton-S        | AA. Parathion         | SSS. O-Xylene     |
| E. Benzo(a)pyrene         | E. Tetryl                     | E. Dinoseb           | E. Ethoprop         | BB. Trichloronate     | RRR. MP-Xylene    |
| F. Benzo(b)fluoranthene   | F. Nitrobenzene               | F. Dichlorprop       | F. Naled            | CC. Trichlorinate     | GG. Total Xylene  |
| G. Benzo(g,h,i)perylene   | G. 2.4.6-Trinitrotoluene      | G. Dicamba           | G. Sulfotep         | DD. Trifluralin       |                   |
| H. Benzo(k)fluoranthene   | H. 4-Amino-2,6-dinitrotoluene | H. Dalapon           | H. Phorate          | EE. Def               | 8315A             |
| I. Chrysene               | I. 2-Amino-4,6-dinitrotoluene | I. MCPP              | I. Dimethoate       | FF. Prowl             | A. Formaldehyde   |
| J. Dibenz(a,h)anthracene  | J. 2,4-Dinitrotoluene         | J. MCPA              | J. Diazinon         | GG. Ethion            | B. Acetaldehyde   |
| K. Fluoranthene           | K. 2,6-Dinitrotoluene         | K. Pentachlorophenol | K. Disulfoton       | HH. Famphur           | C. Benzaldehyde   |
| L. Fluorene               | L. 2-Nitrotoluene             | L. 2,4,5-TP (silvex) | L. Parathion-methyl | II. Phosmet           | D. Butyraldehyde  |
| M. indeno(1,2,3-cd)pyrene | M. 3-Nitrotoluene             | M. Silvex            | M. Ronnel           | JJ. Tetrachlorvinphos |                   |
| N. Naphthalene            | N. 4-Nitrotoluene             | N                    | N. Malathion        | KK. Demeton (total)   |                   |
| O, Phenanthrene           | O. Nitroglycerin              | 0.                   | O. Chlorpyrifos     |                       |                   |
| P. Pyrene                 | P. Picric acid                | Ρ.                   | P. Fenthion         |                       |                   |
| Q.                        | Q. 2,4-Dinitrophenol          | Q.                   | Q. Parathion-ethyl  |                       |                   |
| R.                        | R. 3,5-Dinitroaniline         |                      | R. Trichlornate     |                       |                   |
| S.                        | S. 2-Nitrophenol              |                      | S. Merphos          |                       |                   |
|                           | T. 4-Nitrophenol              |                      | T. Stirofos         |                       |                   |
|                           | U. Picramic acid              |                      | U. Tokuthion        |                       |                   |
|                           | V. PETN                       |                      | V. Fensulfothion    | •                     |                   |
|                           |                               |                      | W. Bolstar          |                       |                   |

Notes:


| METHOD:      CCHPLC      Zhi Reviewer         YN N/A       Were target compounds detected in the field blanks?      Associated sample units:A         Sampling date:      LY_A      Associated Samples:      M ! except 1 (Mp)         Rinsate / Equipment Rinsate / Equipment Blank / Antospheric Blank / Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LDC #: 4279                                                                                                | Atoa                                                                                            |                                                         | VALI                            |                                       | NDINGS W<br>Id Blanks | ORKSHEET   |               |           | Revie    | Page: <u> </u> of_]<br>ewer: <b>//</b> © |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------|-----------------------|------------|---------------|-----------|----------|------------------------------------------|
| I         I         I           J         0.2q         I         I           I         9.1         I         I         I           H         26         I         I         I         I           G         28         I         I         I         I         I           I         I         I         I         I         I         I         I           G         28         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y <u>N N/A</u><br>Y <u>N N/A</u><br>Blank units: <u></u><br>Sampling date: <u></u><br>Field blank type: (o | /ere field blanks<br>/ere target com<br>//Associa<br>0.6./26./18<br>circle one) f <u>ield E</u> | pounds detecte<br>ted sample units<br>Bank / Trip Blank | d in the field b<br>s: <u> </u> | Blank / Ambient                       |                       | Asso       | ciated Sample | s: All ex | 2nd Revi | ewer:                                    |
| I       9.1       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Compound                                                                                                   | Blank ID                                                                                        | Blank ID                                                |                                 | · · · · · · · · · · · · · · · · · · · |                       | Sample Ide | entification  |           |          |                                          |
| I       9.1       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            | 1                                                                                               |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| H       26       Image: Second | J                                                                                                          | 0.29                                                                                            |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| G         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                                                                                          | 1                                                                                               |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| CRQL     Blank units:        Associated sample units:     Sampling date:     Field blank type: (circle one) Field Blank / Atmospheric Blank/ Ambient Blank   Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:     Compound   Blank ID     Blank ID     Sample Identification     Compound     Blank ID     Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                          | 26                                                                                              |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| Blank units:   Sampling date:   Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Associated Samples:   Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ģ                                                                                                          | 28                                                                                              |                                                         | · .                             |                                       |                       | -          |               |           |          | · .                                      |
| Blank units:   Sampling date:   Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Associated Samples:   Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| Blank units:   Sampling date:   Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Associated Samples:   Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| Sampling date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRQL                                                                                                       |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sampling date:<br>Field blank type: (d                                                                     | circle one) Field E                                                                             | Blank / Trip Blank                                      | / Atmospheric E                 |                                       |                       | Associate  | ed Samples:   |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compound                                                                                                   | Blank ID                                                                                        | Blank ID                                                |                                 |                                       |                       | Sample Ide | entification  |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       | <u> </u>              |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |
| CRQL     I     I     I     I     I       CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:     I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRQL                                                                                                       |                                                                                                 |                                                         |                                 |                                       |                       |            |               |           |          |                                          |

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

.

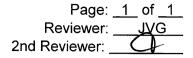
#### LDC#:<u>42791A40a</u>

#### VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>



## METHOD: HPLC Exposives (EPA SW 846 Method 8330B)




Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

|          | Concentrat | ion (ug/L) | RPD<br>(≤%) | Difference<br>(ug/L) | Limits<br>( <loq)< th=""><th>Qualifications<br/>(Parent Only)</th></loq)<> | Qualifications<br>(Parent Only) |
|----------|------------|------------|-------------|----------------------|----------------------------------------------------------------------------|---------------------------------|
| Compound | 4 5        |            |             |                      |                                                                            |                                 |
| N        | 0.58       | 0.41U      |             | 0.17                 | (≤1.0)                                                                     |                                 |

|          | Concentrat | ion (ug/L) | RPD<br>(≤ %) | Difference | Limits                                                    | Qualifications |  |
|----------|------------|------------|--------------|------------|-----------------------------------------------------------|----------------|--|
| Compound | 14 15      |            | (≤%)         | (ug/L)     | ( <loq)< th=""><th colspan="2">(Parent Only)</th></loq)<> | (Parent Only)  |  |
| N        | 0.40       | 0,60       |              | 0.2        | (≤1.0)                                                    |                |  |

V:\Josephine\FIELD DUPLICATES\42791A40a cardno ravenna.wpd

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

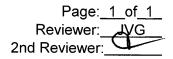


METHOD: GC \_\_\_\_\_ HPLC \_\_\_\_

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 \* (S/X) Where:

A = Area of compound


C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

|   |             |             | 1         |               | Reported   | Recalculated | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|-------------|-----------|---------------|------------|--------------|-------------|--------------|----------|--------------|
|   |             | Calibration |           |               | CF         | CF           | Average RRF | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Com       | npound        | (0.10 std) | (0.10 std)   | (Initial)   | (Initial)    |          |              |
| 1 | ICAL        | 5/18/2018   | HMX       | (Ultracarb5u) | 81370      | 81370        | 84945.63    | 84945.63     | 3.5      | 3.5          |
|   | HPLC X3     |             | 2-4,6-TNT | (Ultracarb5u) | 210707     | 210707       | 214477.88   | 214477.88    | 2.8      | 2.8          |
| 2 | ICAL        | 7/10/2018   | HMX       | (Luna-phenyl) | 182750     | 182750       | 179938.11   | 179938.11    | 1.6      | 1.6          |
|   | G2_Luna     |             | 2-4,6-TNT | (Luna-phenyl) | 420857     | 420857       | 416300.99   | 416300.99    | 9.9      | 9.9          |

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification



METHOD: GC\_\_\_\_HPLC\_\_\_\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 \* (N - C)/N

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

|   |             |             |           |               |          | Reported | Recalculated | Reported | Recalculated |
|---|-------------|-------------|-----------|---------------|----------|----------|--------------|----------|--------------|
|   |             | Calibration |           |               | CCV Conc | Conc     | Conc         | % D      | %D           |
| # | Standard ID | Date        | Comp      | ound          |          |          |              |          |              |
| 1 | 07030007    | 7/3/2018    | НМХ       | (Ultracarb5u) | 0.2500   | 0.2577   | 0.2577       | 3.1      | 3.1          |
|   | X3          |             | 2-4,6-TNT | (Ultracarb5u) | 0.2500   | 0.2603   | 0.2603       | 4.1      | 4.1          |
|   |             |             |           |               |          |          | -            |          |              |
| 2 | 07030007    | 7/3/2018    | НМХ       | (Ultracarb5u) | 0.2500   | 0.2578   | 0.2578       | 3.1      | 3.1          |
|   | X3          |             | 2-4,6-TNT | (Ultracarb5u) | 0.2510   | 0.2602   | 0.2602       | 3.7      | 3.7          |
|   |             |             |           |               |          |          |              |          |              |
| 3 | 07110026    | 7/12/2018   | HMX       | (Luna-phenyl) | 0.2500   | 0.2526   | 0.2526       | 1.0      | 1.0          |
|   | G2          |             | 2-4,6-TNT | (Luna-phenyl) | 0.2510   | 0.2621   | 0.2621       | 4.4      | 4.4          |
|   |             |             |           |               |          |          |              |          |              |

LDC #: \_\_\_\_\_\_\_ +2791A4a

# VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

## METHOD: \_\_\_\_ GC \_\_\_ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

| Sample ID: |           |                 |                     |                    |                     |                     |                       |
|------------|-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|            | Surrogate | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|            |           |                 |                     |                    | Reported            | Recalculated        |                       |
|            | FF        | ultracarb       | 0.200               | 0.1934             | 97                  | Q7                  | 6                     |
|            |           |                 |                     |                    |                     |                     |                       |
|            |           |                 |                     |                    | ·                   |                     | •                     |

## Sample ID:\_\_\_\_\_

| Surrogate | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|           |                 |                     |                    | Reported            | Recalculated        |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     | ·                   |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |

|   | Surrogate Compound         |   | Surrogate Compound  |   | Surrogate Compound                |    | Surrogate Compound            |    | Surrogate Compound |
|---|----------------------------|---|---------------------|---|-----------------------------------|----|-------------------------------|----|--------------------|
| A | Chlorobenzene (CBZ)        | н | Ortho-Terphenyl     | 0 | Decachlorobiphenyl (DCB)          | V  | Tri-n-propyltin               | сс | 2,5-Dibromotoluene |
| В | 4-Bromofluorobenzene (BFB) | I | Fluorobenzene (FBZ) | Р | 1-methylnaphthalene               | w  | Tributyl Phosphate            | DD | n-Nonatriacontane  |
| С | a,a,a-Trifluorotoluene     | J | n-Triacontane       | Q | Dichlorophenyl Acetic Acid (DCAA) | x  | Triphenyl Phosphate           | EE | 1,2-Dibromopropane |
| D | Bromochiorobenene          | к | Hexacosane          | R | 4-Nitrophenol                     | Y  | Tetrachloro-m- xylene         | FF | 1,2-Dinitrobenzene |
| Е | 1,4-Dichlorobutane         | L | Bromobenzene        | S | 1-Chloro-3-Nitrobenzene           | z  | 2-Bromonaphthalene            | GG | 2-Nitro-m-xylene   |
| F | 1,4-Difluorobenzene (DFB)  | м | Benzo(e)Pyrene      | т | 3,4-Dinitrotoluene                | AA | 1-Chlorooctadecane            | нн | p-Terphenyl        |
| G | Octacosane                 | N | Terphenyl-D14       | U | Tripentvltin                      | BB | 2.4-Dichlorophenvlacetic acid |    |                    |

# VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: 1\_of\_1 Reviewer:\_\_\_JVG 2nd Reviewer: C

### METHOD: \_\_\_\_GC /\_\_\_HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

SA = Spike added

%Recovery = 100 \* (SSC - SC)/SA

Where

SC = Sample concentration

SSC = Spiked sample concentration

MS = Matrix spike MSD = Matrix spike duplicate

RPD =(({SSCMS - SSCMSD} \* 2) / (SSCMS + SSCMSD))\*100 12/13 MS/MSD samples:

|                                       |           |               | pike            | Sample<br>Conc. |                    | Sample           | Matrix         | spike                 | Matrix Spik   | e Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS/N            | /ISD        |  |
|---------------------------------------|-----------|---------------|-----------------|-----------------|--------------------|------------------|----------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--|
| Compound                              |           | ( 40          | Added<br>(45/L) |                 | Concentration      |                  | Percent        | Percent Recovery      |               | Percent Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | RPD         |  |
|                                       |           | MS            | MSD             |                 | MS                 | MSD              | Reported       | Recalc.               | Reported      | Recalc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reported        | Recalc.     |  |
| Gasoline                              | (8015)    |               |                 |                 |                    |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| Diesel                                | (8015)    |               |                 |                 |                    | -                |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| Benzene                               | (8021B)   |               |                 |                 |                    |                  |                |                       |               | - 2000 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 |                 |             |  |
| Methane                               | (RSK-175) |               |                 |                 |                    |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| 2,4-D                                 | (8151)    |               |                 |                 |                    |                  |                | -                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| Dinoseb                               | (8151)    |               |                 |                 |                    |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · ·         |  |
| Naphthalene                           | (8310)    |               |                 |                 |                    |                  |                | · ·                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| Anthracene                            | (8310)    |               |                 |                 |                    |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| НМХ                                   | (8330)    | 2.09          | 2.14            | D               | 2.01               | 1.99             | 96             | 96                    | 93            | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | 1           |  |
| 2,4,6-Trinitrotoluen                  | e (8330)  |               | l               | I               | 2.63               | 1.99             | 97             | 97                    | 93            | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2               | 2           |  |
| Phorate                               | (8141A)   |               |                 |                 | • •• • • ••. ••. • |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| Malathion                             | (8141A)   |               |                 | 1               |                    |                  |                |                       |               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             |  |
| Formaldehyde                          | (8315A)   |               |                 |                 |                    |                  |                | · · · · · · · · · · · |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
|                                       |           |               |                 |                 |                    |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| · · · · · · · · · · · · · · · · · · · |           |               |                 |                 | ÷ .                |                  |                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |  |
| comments: <u>Refer</u>                |           | e/Matrix Spik | e Duplicates fi | ndings works    | heet for list o    | of qualification | ns and associa | ted samples           | when reported | results do no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ot agree within | 10.0% of th |  |

LDC #: 42791 A409

#### VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: TWG

Page: 1 of 1

# METHOD: \_\_\_\_GC // HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 \* (SSC/SA) RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:

LIS 250-420700/2-A

| Compound                                   |           |                 | pike                | Spike          | Sample           | LC            | CS                 | LC               | SD             | LCS/           | LCSD                                                                                                                 |
|--------------------------------------------|-----------|-----------------|---------------------|----------------|------------------|---------------|--------------------|------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------|
|                                            |           | ( <sup>Ac</sup> | Added Concentration |                | Percent Recovery |               | Percent Recovery   |                  | RPD            |                |                                                                                                                      |
|                                            |           | LCS             | LCSD                | LCS            | LCSD             | Reported      | Recalc.            | Reported         | Recalc.        | Reported       | Recalc.                                                                                                              |
| Gasoline                                   | (8015)    |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Diesel                                     | (8015)    |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Benzene                                    | (8021B)   |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Methane                                    | (RSK-175) |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| 2,4-D                                      | (8151)    |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Dinoseb                                    | (8151)    | -               |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Naphthalene                                | (8310)    |                 |                     |                |                  |               |                    |                  |                |                | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>- |
| Anthracene                                 | (8310)    |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| НМХ                                        | (8330)    | 2.00            | VA                  | 1.91           | NA               | 96            | 46                 |                  |                |                |                                                                                                                      |
| 2,4,6-Trinitrotolue                        | ne (8330) |                 |                     | 1.94           | l                | 47            | 97                 |                  |                |                |                                                                                                                      |
| Phorate                                    | (8141A)   |                 | <b>-</b>            |                |                  |               | /                  |                  |                |                | Land                                                                                                                 |
| Malathion                                  | (8141A)   |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
| Formaldehyde                               | (8315A)   |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
|                                            |           |                 |                     |                |                  |               |                    |                  |                |                |                                                                                                                      |
|                                            |           |                 |                     |                | Durlingto        |               |                    |                  |                |                |                                                                                                                      |
| Comments: <u>Refe</u><br>ot agree within 1 |           |                 |                     | Jontrol Sample | Duplicate find   | ngs worksheet | t for list of qual | ifications and a | associated sam | ples when repo | ted results do                                                                                                       |

## VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: 1 of 1 Reviewer: JAG 2nd Reviewer: \_

METHOD: \_\_ GC \_\_ HPLC

Ν

Were all reported results recalculated and verified for all level IV samples? N N/A Were all recalculated results for detected target compounds within 10% of the reported results? N/A

| Concentration= (A)(Fv)(Df)                                                      | Example:                                  |           |
|---------------------------------------------------------------------------------|-------------------------------------------|-----------|
| (RF)(Vs or Ws)(%S/100)                                                          | Sample ID Compound Name 2,4 G - TNT       |           |
| A= Area or height of the compound to be measured<br>Fv= Final Volume of extract |                                           |           |
| Df= Dilution Factor                                                             | Concentration = (59673) (5ml) (10) (1000) |           |
| RF= Average response factor of the compound                                     |                                           | = 28 ug/L |
| In the initial calibration<br>Vs= Initial volume of the sample                  | (214477.88) (493.7mL)                     | •         |
| Ws= Initial weight of the sample<br>%S= Percent Solid                           |                                           |           |

| # | Sample ID | Compound | Reported<br>Concentrations<br>( <sup> </sup> | Recalculated Results<br>Concentrations<br>() | Qualifications                        |
|---|-----------|----------|----------------------------------------------|----------------------------------------------|---------------------------------------|
|   |           |          | 28                                           |                                              |                                       |
|   |           |          |                                              |                                              | · · · · · · · · · · · · · · · · · · · |
|   |           |          |                                              |                                              |                                       |
|   |           |          |                                              |                                              |                                       |
|   |           |          |                                              |                                              |                                       |
|   |           |          |                                              |                                              |                                       |
|   |           |          |                                              |                                              |                                       |
|   |           |          |                                              |                                              |                                       |

Comments: \_\_\_\_\_

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ravenna, Ohio

LDC Report Date: August 3, 2018

Parameters: Nitroguanidine

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| NTAmw-120-062618-GW   | 280-111421-23                       | Water  | 06/26/18           |
| NTAmw-120-D-062618-GW | 280-111421-24                       | Water  | 06/26/18           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Nitroguanidine by Environmental Protection Agency (EPA) SW 846 Method 8330

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

| Sample                                       | Compound       | Total Days From<br>Sample Collection<br>Until Extraction | Required Holding Time<br>(in Days) From Sample<br>Collection Until Extraction | Flag                 | A or P |
|----------------------------------------------|----------------|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|--------|
| NTAmw-120-062618-GW<br>NTAmw-120-D-062618-GW | Nitroguanidine | 16                                                       | 7                                                                             | UJ (all non-detects) | Ρ      |

## II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

Retention time windows were established as required by the method.

## III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

Retention times of all compounds in the calibration standards were within the established retention time windows.

## IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## V. Field Blanks

No field blanks were identified in this SDG.

## VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

#### IX. Field Duplicates

Samples NTAmw-120-062618-GW and NTAmw-120-D-062618-GW were identified as field duplicates. No results were detected in any of the samples.

## X. Compound Quantitation

All compound quantitations met validation criteria.

#### XI. Target Compound Identifications

All target compound identifications met validation criteria.

#### XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to technical holding time, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

# Ravenna, Ohio Nitroguanidine - Data Qualification Summary - SDG 280-111421-1

| Sample                                       | Compound       | Flag                 | A or P | Reason                  |
|----------------------------------------------|----------------|----------------------|--------|-------------------------|
| NTAmw-120-062618-GW<br>NTAmw-120-D-062618-GW | Nitroguanidine | UJ (all non-detects) | Р      | Technical holding times |

Ravenna, Ohio Nitroguanidine - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Nitroguanidine - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

## VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>42791A40b</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

## Stage 4

| Date:         | 08/02/18   |
|---------------|------------|
| Page:_        |            |
| Reviewer:     | <u>D/6</u> |
| 2nd Reviewer: |            |

METHOD: HPLC Nitroguanidine (EPA SW 846 Method 8330)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|            | Validation Area                        |       | Comments                 |           |
|------------|----------------------------------------|-------|--------------------------|-----------|
| ١.         | Sample receipt/Technical holding times | A /SW |                          |           |
| 11.        | Initial calibration/ICV                | A / A | 1CAL = 152<br>CON 5 207. | 1015 2075 |
| 111.       | Continuing calibration                 | A     | CW 5 207.                |           |
| IV.        | Laboratory Blanks                      | Á     |                          |           |
| <u>v</u> . | Field blanks                           | N     |                          |           |
| VI.        | Surrogate spikes                       | N     |                          |           |
| VII.       | Matrix spike/Matrix spike duplicates   | N     | cs                       |           |
| VIII.      | Laboratory control samples             | A     | ИS                       |           |
| IX.        | Field duplicates                       | ND    | $\mathcal{P} = 1/\gamma$ |           |
| <b>X</b> . | Compound quantitation RL/LOQ/LODs      | Α     |                          |           |
| XI.        | Target compound identification         | A     |                          |           |
|            | Overall assessment of data             | A     |                          |           |

Note:

-

ſĒ

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate        |
|----------------------|
| TB = Trip blank      |
| EB = Equipment blank |

SB=Source blank OTHER:

Ĩ

|                            | Client ID                             | Lab ID        | Matrix | Date     |
|----------------------------|---------------------------------------|---------------|--------|----------|
| 1<br>2<br>3<br>4<br>5<br>6 | NTAmw-120-062618-GW                   | 280-111421-23 | Water  | 06/26/18 |
| 2                          | NTAmw-120-D-062618-GW                 | 280-111421-24 | Water  | 06/26/18 |
| 3                          |                                       |               |        |          |
| 4                          |                                       |               |        |          |
| 5                          |                                       |               |        |          |
| 6                          |                                       |               |        |          |
| 7                          | · · · · · · · · · · · · · · · · · · · |               |        |          |
| 8                          |                                       |               |        |          |
| 9                          |                                       |               |        |          |
| 7<br>8<br>9<br>10<br>11    |                                       |               |        |          |
|                            |                                       |               |        |          |
| Note                       | S:                                    |               |        |          |

| - | MB 320- 233710/-A |  |  |  |
|---|-------------------|--|--|--|
|   |                   |  |  |  |
|   |                   |  |  |  |
|   |                   |  |  |  |

# VALIDATION FINDINGS CHECKLIST

| Page:_        | <u>1_</u> 0 | f_2_ |
|---------------|-------------|------|
| Reviewer:     | Å           | /G   |
| 2nd Reviewer: | C           |      |
|               | 1           |      |

| Method: GC HPLC                                                                                                                                                                |                 |      |    | 2nd Reviewer.     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|----|-------------------|
| Validation Area                                                                                                                                                                | Yes             | No   | NA | Findings/Comments |
| I. Technical holding times                                                                                                                                                     |                 |      |    |                   |
| Were all technical holding times met?                                                                                                                                          | W               |      |    |                   |
| Was cooler temperature criteria met?                                                                                                                                           |                 |      |    |                   |
| IIa. Initial calibration                                                                                                                                                       |                 |      |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     |                 |      |    |                   |
| Were all percent relative standard deviations (%RSD) < 20%? らん                                                                                                                 | $\left \right $ |      |    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?                                               |                 |      | _  |                   |
| Were the RT windows properly established?                                                                                                                                      |                 |      |    |                   |
| IIb Initial calibration verification                                                                                                                                           |                 |      |    |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                                  |                 | ·    |    |                   |
| Were all percent differences (%D) < 20% or percent recoveries (%R) 80-120%?                                                                                                    |                 |      |    |                   |
| III. Continuing calibration                                                                                                                                                    |                 |      |    |                   |
| Was a continuing calibration analyzed daily?                                                                                                                                   |                 |      |    |                   |
| Were all percent differences (%D) < 20% or percent recoveries (%R) 80-120%?                                                                                                    |                 |      |    |                   |
| Were all the retention times within the acceptance windows?                                                                                                                    |                 |      |    |                   |
| IV. Laboratory Blanks                                                                                                                                                          |                 | r    | r  |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                               |                 |      |    |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                                                                             | $\left \right $ |      |    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                                             |                 |      |    |                   |
| V. Field Blanks                                                                                                                                                                | !               |      | 1  |                   |
| Were field blanks identified in this SDG?                                                                                                                                      |                 |      |    |                   |
| Were target compounds detected in the field blanks?                                                                                                                            |                 |      | /  |                   |
| VI. Surrogate spikes                                                                                                                                                           | 1               |      | í  |                   |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                                                                 |                 |      |    |                   |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        | ļ               | <br> | /  |                   |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?<br>VII. Matrix spike/Matrix spike duplicates                                                     |                 |      |    | [<br>             |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |                 | /    |    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |                 |      |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |                 |      |    |                   |

LDC #: 42791 A 40 b

#### VALIDATION FINDINGS CHECKLIST

Page: <u>2\_of\_2</u> Reviewer:\_\_<del>\_/∀G</del> 2nd Reviewer:\_\_\_\_

| Validation Area                                                                                                                       | Yes | No       | NA | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----|-------------------|
| VIII. Laboratory control samples                                                                                                      |     |          |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                     | /   |          |    |                   |
| Was an LCS analyzed per extraction batch?                                                                                             | /   | <u> </u> |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      |     |          |    |                   |
| IX. Field duplicates                                                                                                                  |     |          |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                    |     |          |    |                   |
| Were target compounds detected in the field duplicates?                                                                               |     |          |    |                   |
| X. Compound quantitation                                                                                                              |     |          |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | 1   |          |    |                   |
| XI. Target compound identification                                                                                                    |     |          |    |                   |
| Were the retention times of reported detects within the RT windows?                                                                   |     |          |    |                   |
| XIII. Overall assessment of data                                                                                                      |     |          |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                |     |          |    |                   |

## VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: \_ \_ of \_ \_ \_ Reviewer: \_ JVG 2nd Reviewer: \_\_\_\_\_

| All circle | d dates have exceeded the technical holding times.      |   |
|------------|---------------------------------------------------------|---|
| Y)N N//    | Were all cooler temperatures within validation criteria | ? |

| METHOD    | : <u> </u>                            | HPLC      | ·             |                 |               |                    |           |
|-----------|---------------------------------------|-----------|---------------|-----------------|---------------|--------------------|-----------|
| Sample ID | Matrix                                | Preserved | Sampling Date | Extraction date | Analysis date | Total # of<br>Days | Qualifier |
| AII       | W                                     | N         | 06/24/2       | 67/12/18        | 07 /3/18      | 16                 | J/UJ/P    |
| (ND)      |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       | ·         |               |                 |               |                    |           |
|           |                                       |           | ļ             |                 |               |                    |           |
|           |                                       |           |               |                 |               | <u> </u>           |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           | <u> </u>      |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           | ·                                     |           |               |                 |               |                    |           |
| ·         |                                       |           | <u>.</u>      |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           | ·             |                 |               |                    | 1         |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           | · · · · · · · · · · · · · · · · · · · |           |               |                 |               |                    |           |
|           |                                       | ,         |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |
|           |                                       |           |               |                 |               |                    |           |

#### TECHNICAL HOLDING TIME CRITERIA VOLATILES: Water unpreserved:

Water unpreserved: Water preserved: Soils:

EXTRACTABLES:

Water: Soil: Aromatic within 7 days, non-aromatic within 14 days of sample collection. Both within 14 days of sample collection. Both within 14 days of sample collection.

Extracted within 7 days, analyzed within 40 days. Extracted within 14 days, analyzed within 40 days.

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

| Page:         | 1 | of           | 1      |
|---------------|---|--------------|--------|
| Reviewer:     |   | <b>∕</b> *\( | 3      |
| 2nd Reviewer: |   | Y            | $\leq$ |

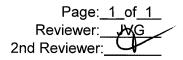
## METHOD: HPLC Nitroguanidine (EPA SW 846 Method 8330

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

Where:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 \* (S/X) A = Area of compound

C = Concentration of compound


S = Standard deviation of calibration factors

X = Mean of calibration factors

|   |             |             |                | Reported  | Recalculated | Reported   | Recalculated | Reported | Recalculated |
|---|-------------|-------------|----------------|-----------|--------------|------------|--------------|----------|--------------|
|   |             | Calibration |                | CF        | CF           | Average CF | Average CF   | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound       | (100 std) | (100 std)    | (Initial)  | (Initial)    |          |              |
| 1 | ICAL        | 6/5/2018    | Nitroguanidine | 65.650    | 65.650       | 63.754     | 63.754       | 3.8      | 3.8          |
|   | LC12        |             |                |           |              |            |              |          |              |
|   |             |             |                |           |              |            |              |          |              |

Percent difference (%D) = 100 \* (N - C)/N

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification



METHOD: HPLC Nitroguanidine (EPA SW 846 Method 8330)

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

|   |             |             |                |        | Reported | Recalculated | Reported | Recalculated |
|---|-------------|-------------|----------------|--------|----------|--------------|----------|--------------|
|   |             | Calibration |                | Ave CF |          |              | % D      | %D           |
| # | Standard ID | Date        | Compound       |        | (CCV)    | (CCV)        |          |              |
| 1 | M00003      | 7/13/2018   | Nitroguanidine | 63.754 | 66.255   | 66.255       | 3.9      | 3.9          |
|   |             |             |                |        |          |              |          |              |
|   |             |             |                |        |          |              |          |              |
| 2 | M00009      | 7/13/2018   | Nitroguanidine | 63.754 | 66.790   | 66.790       | 4.8      | 4.8          |
|   |             |             |                |        |          |              |          |              |
|   |             |             |                |        |          |              |          |              |

LDC #: 42791 A40b

#### VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: <u>A/G</u> 2nd Reviewer:

Page: 1\_of\_1\_

# METHOD: \_\_\_\_GC \_\_\_HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 \* (SSC/SA) RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: VCS 320 - 233710/2-A

|                                              |           |                 | pike | Spike         | Sample                 | L              | CS                 | LC               | SD               | LCS/            | LCSD           |
|----------------------------------------------|-----------|-----------------|------|---------------|------------------------|----------------|--------------------|------------------|------------------|-----------------|----------------|
| Compo                                        | und       | Added<br>(Ug/V) |      |               | Concentration<br>(いん)) |                | Percent Recovery   |                  | Percent Recovery |                 | PD             |
|                                              |           | LCS             | LCSD | LCS           | LCSD                   | Reported       | Recalc.            | Reported         | Recalc.          | Reported        | Recalc.        |
| Gasoline                                     | (8015)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Diesel                                       | (8015)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Benzene                                      | (8021B)   |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Methane                                      | (RSK-175) |                 |      |               |                        |                |                    |                  |                  |                 |                |
| 2,4-D                                        | (8151)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Dinoseb                                      | (8151)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Naphthalene                                  | (8310)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Anthracene                                   | (8310)    |                 |      | · ·           | 1                      |                |                    |                  |                  |                 | <u></u>        |
| НМХ                                          | (8330)    |                 |      |               |                        |                |                    |                  |                  |                 |                |
| 2,4,6-Trinitrotoluen                         | e (8330)  |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Phorate                                      | (8141A)   |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Malathion                                    | (8141A)   |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Formaldehyde                                 | (8315A)   |                 |      |               |                        |                |                    |                  |                  |                 |                |
| hitoguanidin                                 | e (8770)  | 200             | NA   | 195           | NA                     | 97             | 97                 |                  |                  |                 |                |
| /                                            |           |                 |      |               |                        |                |                    |                  |                  |                 |                |
| Comments: <u>Refer</u><br>ot agree within 10 |           |                 |      | Control Sampl | e Duplicate find       | lings workshee | t for list of qual | ifications and a | ssociated sam    | ples when repor | ted results do |

LDC #: 42791 A40 b

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>WG</u> 2nd Reviewer: \_\_\_\_

METHOD: \_\_\_\_GC \_\_\_ HPLC



Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

| Concentration= (A)(Fv)(Df)                                                                                              | Example:                               |            |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| (RF)(Vs or Ws)(%S/100)                                                                                                  | Sample ID Nt Compound Name Witroguani. | time       |
| A= Area or height of the compound to be measured<br>Fv= Final Volume of extract                                         | 45                                     |            |
| Df= Dilution Factor<br>RF= Average response factor of the compound                                                      | Concentration = (124 28) (10 ml)       | = 194.9    |
| In the initial calibration<br>Vs= Initial volume of the sample<br>Ws= Initial weight of the sample<br>%S= Percent Solid | (63.752) (10 ml)                       | 2 195 mg/L |

| # | Sample ID | Compound | Reported<br>Concentrations<br>( m./L) | Recalculated Results<br>Concentrations<br>() | Qualifications |
|---|-----------|----------|---------------------------------------|----------------------------------------------|----------------|
|   |           |          | 165                                   |                                              |                |
|   |           |          |                                       |                                              |                |
|   |           |          |                                       |                                              |                |
|   |           |          |                                       |                                              |                |
|   |           |          |                                       |                                              |                |
|   |           |          |                                       |                                              |                |
|   | ,         |          |                                       |                                              |                |
|   |           |          |                                       |                                              |                |

Comments:

## Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 3, 2018

Parameters: Perchlorate

Validation Level: Stage 4

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 280-111421-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| NTAmw-120-062618-GW   | 280-111421-23                       | Water  | 06/26/18           |
| NTAmw-120-D-062618-GW | 280-111421-24                       | Water  | 06/26/18           |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with The Final Remedial Investigation Work Plan for Groundwater and Environmental Investigation Services for RVAAP-66 Facility-Wide Groundwater Former Ravenna Army Ammunition Plant Portage and Trumbull Counties, Ohio (December 20, 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perchlorate by Environmental Protection Agency (EPA) SW 846 Method 6860

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination  $(r^2)$  was greater than or equal to 0.990.

The isotope ratios were within QC limits.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0%.

## **IV.** Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 15.0%.

The percent differences (%D) of the limit of detection verification (LODV) standard were less than or equal to 30.0%.

The isotope ratios were within QC limits.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

No field blanks were identified in this SDG.

## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## IX. Interference Check Samples

Interference check samples (ICS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

## X. Field Duplicates

Samples NTAmw-120-062618-GW and NTAmw-120-D-062618-GW were identified as field duplicates. No results were detected in any of the samples.

## XI. Internal Standards

All internal standard recoveries (%R) were within QC limits.

## XII. Compound Quantitation

All compound quantitations were within validation criteria.

## XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

## XIV. System Performance

The system performance was acceptable.

## XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Ravenna, Ohio Perchlorate - Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Perchlorate - Laboratory Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

Ravenna, Ohio Perchlorate - Field Blank Data Qualification Summary - SDG 280-111421-1

No Sample Data Qualified in this SDG

## VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>42791A87</u> SDG #: <u>280-111421-1</u> Laboratory: <u>Test America, Inc.</u>

## Stage 4

| Date: <u>68/02/15</u> |   |
|-----------------------|---|
| Page: 1_of_/          |   |
| Reviewer: <u></u>     |   |
| 2nd Reviewer:         | - |

METHOD: LC/MS Perchlorate (EPA SW846 Method 6860)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|        | Validation Area                        |                                     | <u>Comments</u> |                                                        |                                       |           |  |  |  |
|--------|----------------------------------------|-------------------------------------|-----------------|--------------------------------------------------------|---------------------------------------|-----------|--|--|--|
| 1.     | Sample receipt/Technical holding times | A,A                                 |                 |                                                        |                                       |           |  |  |  |
| ١١.    | LC/MS Instrument performance check     | *A                                  | ++              |                                                        |                                       |           |  |  |  |
| 111.   | Initial calibration/ICV                | AIA                                 | ~~~             |                                                        | 10                                    | N 6153    |  |  |  |
| IV.    | Continuing calibration                 | A                                   | CWS             | 157.                                                   |                                       |           |  |  |  |
| V.     | Laboratory Blanks                      | A                                   |                 |                                                        |                                       |           |  |  |  |
| VI.    | Field blanks                           | A                                   |                 |                                                        |                                       |           |  |  |  |
| VII.   | Surrogate spikes                       | N                                   |                 |                                                        |                                       |           |  |  |  |
| VIII.  | Matrix spike/Matrix spike duplicates   | N                                   | دح              |                                                        |                                       |           |  |  |  |
| IX.    | Laboratory control samples             | A                                   | LCS             | 10                                                     |                                       |           |  |  |  |
| Х.     | Interference check sample              | A                                   |                 |                                                        |                                       |           |  |  |  |
| XI.    | Field duplicates                       | ND                                  | D =             | 1/2                                                    |                                       |           |  |  |  |
| XII.   | Internal standards                     | A                                   |                 | <u></u>                                                |                                       |           |  |  |  |
| XIII.  | Compound quantitation RL/LOQ/LODs      | A                                   |                 |                                                        | · · · · · · · · · · · · · · · · · · · |           |  |  |  |
| XIV.   | Target compound identification         | Α                                   |                 | · · · · · · · · · · · · · · · · · · ·                  |                                       |           |  |  |  |
| xv.    | System performance                     | A                                   |                 |                                                        | ·····                                 |           |  |  |  |
| XVI.   | Overall assessment of data             | A                                   |                 |                                                        |                                       |           |  |  |  |
| Note:  | N = Not provided/applicable R = Rin    | lo compounds<br>nsate<br>ield blank | s detected      | D = Duplicate<br>TB = Trip blank<br>EB = Equipment bla | OTHER:                                | rce blank |  |  |  |
|        | Client ID                              |                                     |                 | Lab ID                                                 | Matrix                                | Date      |  |  |  |
| -<br>1 | NTAmw-120-062618-GW り                  |                                     |                 | 280-111421-23                                          | Water                                 | 06/26/18  |  |  |  |
| 2      | NTAmw-120-D-062618-GW b                |                                     |                 | 280-111421-24                                          | Water                                 | 06/26/18  |  |  |  |
| 3      |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
| 4      |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
| 5      |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
| 6      |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
| z      |                                        |                                     | www.com         |                                                        |                                       |           |  |  |  |
| Notes  |                                        |                                     |                 |                                                        | <u> </u>                              |           |  |  |  |
| F+     | M\$ 280-420424 /3                      |                                     |                 |                                                        |                                       |           |  |  |  |
|        |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
|        |                                        |                                     |                 |                                                        |                                       |           |  |  |  |
|        |                                        |                                     |                 |                                                        |                                       |           |  |  |  |

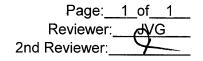
LDC #: 42791487

#### VALIDATION FINDINGS CHECKLIST

| Page:_        | <u>1_of_2_</u> |
|---------------|----------------|
| Reviewer:     | JVQ            |
| 2nd Reviewer: | 4              |

# Method: Perchlorate (EPA SW 846 Method 6850)

| Validation Area                                                                                                                                                                | Yes    | No        | NA                 | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--------------------|-------------------|
| 1. Technical holding times                                                                                                                                                     |        |           |                    |                   |
| Were all technical holding times met?                                                                                                                                          | /      |           |                    |                   |
| Was cooler temperature criteria met?                                                                                                                                           |        |           |                    |                   |
| II: LC/MS Instrument performance check                                                                                                                                         |        |           |                    |                   |
| Were the instrument performance reviewed and found to be within the specified criteria?                                                                                        | ŵ      |           | _                  |                   |
| Were the Perchlorate ions within ±0.3 m/z of mass 99,101 and 107?                                                                                                              |        |           |                    |                   |
| IIIa: Initial calibration                                                                                                                                                      |        |           |                    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     | /      |           |                    |                   |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                                                                    |        |           |                    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq$ 0.990?                                                          |        |           |                    |                   |
| Was the isotope ratio of <sup>35</sup> Cl/ <sup>37</sup> Cl or m/z 99/101 within 2.3 to 3.8?                                                                                   |        |           | ALC: NO CONTRACTOR |                   |
| IIIb. Initial Calibration Verification                                                                                                                                         |        |           |                    |                   |
| Was an initial calibration verification standard analyzed after each initial<br>calibration for each instrument?                                                               | /      |           |                    |                   |
| Were all percent differences (%D) < 15%?                                                                                                                                       |        |           | The second second  |                   |
| IV. Continuing calibration                                                                                                                                                     |        | an se     |                    |                   |
| Was a continuing calibration analyzed daily?                                                                                                                                   | /      |           |                    |                   |
| Were all percent differences (%D) of the mid-range continuing calibration < 15%?                                                                                               | /      |           |                    | ¥.                |
| Were all percent differences (%D) of the low-range continuing calibration < 50%?                                                                                               |        |           |                    |                   |
| Was the isotope ratio of <sup>35</sup> Cl/ <sup>37</sup> Cl or m/z 99/101 within 2.3 to 3.8?                                                                                   |        |           |                    |                   |
| V. Laboratory Blanks                                                                                                                                                           |        |           |                    |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                               | /      |           |                    |                   |
| Was a laboratory blank analyzed for each matrix and concentration?                                                                                                             | $\leq$ |           |                    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.                                                             |        | /         |                    |                   |
| VI. Field blanks                                                                                                                                                               |        |           |                    |                   |
| Were field blanks identified in this SDG?                                                                                                                                      |        | /         | [                  |                   |
| Were target compounds detected in the field blanks?                                                                                                                            |        |           |                    |                   |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                     |        |           |                    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. |        | 1         |                    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |        | $\langle$ |                    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |        |           |                    |                   |


LDC # 42791 487

### VALIDATION FINDINGS CHECKLIST

| Page:         | 20 | f_2_   |
|---------------|----|--------|
| Reviewer:     | Jγ | G      |
| 2nd Reviewer: | C  | $\geq$ |

| Validation Area                                                                                                                       | Yes      | No | NA | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|----|----|-------------------|
| IX. Laboratory control samples                                                                                                        |          |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                     | 1        |    |    |                   |
| Was an LCS analyzed per extraction batch?                                                                                             | /        |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      |          |    |    |                   |
| X. Field duplicates                                                                                                                   |          |    |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                    |          |    |    |                   |
| Were target compounds detected in the field duplicates?.                                                                              |          | /  |    |                   |
| XI. Internal standards                                                                                                                |          |    |    |                   |
| Were internal standard area counts within <u>+</u> 50% of the associated calibration standard?                                        | /        |    |    |                   |
| Were retention times of m/z 89 ( $Cl^{18}O_3^{-1}$ ) within 0.2 minutes of m/z 83 ( $ClO_3^{-1}$ )?                                   | /        |    |    |                   |
| XII. Compound quantitation.                                                                                                           |          |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?         |          |    |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | 10       |    |    |                   |
| XIII. Target compound identification                                                                                                  |          |    |    |                   |
| Were relative retention times (RRTs) within 0.98 to 1.02?                                                                             | <u> </u> |    |    |                   |
| Was the isotope ratio of <sup>35</sup> Cl/ <sup>37</sup> Cl or m/z 99/101 within 2.3 to 3.8?                                          |          |    |    |                   |
| XIV. System performance                                                                                                               |          |    |    |                   |
| System performance was found to be acceptable.                                                                                        | /        |    |    |                   |
| XIII. Overall assessment of data                                                                                                      |          |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                |          |    |    |                   |

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification



## Method: LCMS Perchlorate (EPASW 846 Method 6860)

| Calibration |        |             |          | (Y)        | (X)        |
|-------------|--------|-------------|----------|------------|------------|
| Date        | System | Compound    | Standard | Area ratio | Conc ratio |
| 6/28/2018   | LCMS8  | Perchlorate | 1        | 0.13830    | 0.10       |
|             |        |             | 2        | 0.32451    | 0.25       |
|             |        |             | 3        | 0.62099    | 0.49       |
|             |        |             | 4        | 1.22267    | 0.98       |
|             |        |             | 5        | 3.13559    | 2.45       |
|             |        |             | 6        | 6.25560    | 4.90       |
|             |        |             |          |            |            |

| Regression Output                                             |            | Calculated           | Reported WLR |
|---------------------------------------------------------------|------------|----------------------|--------------|
| Constant                                                      | b =        | 0.000513             | 2.144400     |
| R Squared                                                     | r2 =       | 0.999957             | 1.000000     |
| X Coefficient(s)                                              | <i>m</i> = | 1.275773             | 1.26920      |
| Correlation Coefficient<br>Coefficient of Determination (r^2) |            | 0.999979<br>0.999957 | 1.000000     |

## VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>JVG</u> 2nd Reviewer:

Method: LCMS Perchlorate (EPASW 846 Method 6860)

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration percent difference (%D) values were recalculated for the compounds identified below using the following calculation:

Percent difference (%D) = 100 \* (N - C)/N

Where:

N = Initial Calibration Factor or Nominal Amount

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount

| # | Standard ID | Calibration<br>Date | Compound    | CCV Conc | Reported<br>Conc | Recalculated<br>Conc | Reported<br>% D | Recalculated<br>%D |
|---|-------------|---------------------|-------------|----------|------------------|----------------------|-----------------|--------------------|
| 1 | IC818F28032 | 6/28/2018           | Perchlorate | 0.200    | 0.180            | 0.180                | 9.9             | 9.9                |

## LDC #: 42791 A87

### VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewer: JVG 2nd Reviewer:

Page: 1 of 1

#### METHOD: LC/MS Perchlorate (EPA SW 846 Method 6850/6860)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* (SC/SA

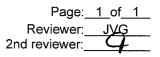
Where: SSC = Spike concentration SA = Spike added

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: \_\_\_\_\_ LCS / b 280- 420424 /14,15


|             | Spike<br>Added |                             | Spi                                   | Spike LCS |                  | ic     | SD               |         | CSD      |        |
|-------------|----------------|-----------------------------|---------------------------------------|-----------|------------------|--------|------------------|---------|----------|--------|
| Compound    |                | $\frac{1}{2}$ ( $\lambda$ ) |                                       | M         | Percent Recovery |        | Percent Recovery |         | RPD      |        |
|             |                |                             | <u> </u>                              |           | Reported         | Recalc | Reported         | Recalc  | Reported | Recalc |
| Perchlorate | 0.0500         | 0.0500                      | 0.045                                 | 0.0457    | 90               | 90     | 90               | 90      | б        | 6      |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |
|             |                |                             | · · · · · · · · · · · · · · · · · · · |           |                  |        |                  |         |          |        |
|             |                |                             |                                       |           |                  |        |                  | <b></b> |          |        |
|             |                |                             |                                       |           |                  |        |                  |         |          |        |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Concentration =  $(A_x)(I_s)(V_t)(DF)(2.0)$ 

 $(A_{is})(RRF)(V_{o})(V_{i})(\%S)$ 

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

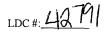


#### METHOD: LCMS Perchlorate (EPA SW 846 Method 6850/6860)



Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

#### 


- V<sub>1</sub> = Volume of extract injected in microliters (ul)
- V<sub>t</sub> = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.

2.0 = Factor of 2 to account for GPC cleanup

Example: Sample I.D. Perchlorate : (610004) (204) (2.1449) Conc. 2094795) . 115

final conc. = 
$$\frac{(45,115)}{(1000)} = 0.045115 \text{ mg/L}$$

| # | Sample ID | Compound | Reported<br>Concentration<br>(火) | Calculated<br>Concentration<br>( ) | Qualification |
|---|-----------|----------|----------------------------------|------------------------------------|---------------|
|   |           |          | 0.0451                           |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |
|   |           |          |                                  |                                    |               |



## EDD POPULATION COMPLETENESS WORKSHEET



.

<u>d</u> The LDC job number listed above was entered by \_\_\_\_\_ Entered from Body or Summary

|       | EDD Process                                                                                                      |      | Comments/Action                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------|
| I.    | EDD Completeness                                                                                                 | -    |                                                                                                                |
| Ia.   | - All methods present?                                                                                           | И    |                                                                                                                |
| Ib    | - All samples present/match report?                                                                              | J    |                                                                                                                |
| Ic.   | - All reported analytes present?                                                                                 | Y    |                                                                                                                |
| Id.   | - (10% or 100% verification of EDD?                                                                              | 9    |                                                                                                                |
|       |                                                                                                                  |      | the second s |
| II.   | EDD Preparation/Entry                                                                                            | -    |                                                                                                                |
| IIa.  | - Carryover U/J?                                                                                                 | N    |                                                                                                                |
| IIb.  | - Reason Codes used? If so, note which codes.                                                                    | Y    | LDC                                                                                                            |
| IIc.  | - Additional Information (QC Level, Validator, Validated Y/N, etc.)                                              | N    |                                                                                                                |
|       |                                                                                                                  |      |                                                                                                                |
| III.  | Reasonableness Checks                                                                                            | -    |                                                                                                                |
| IIIa. | - Do all qualified ND results have ND qualifier (e.g. UJ)?                                                       | y    |                                                                                                                |
| IIIb. | - Do all qualified detect results have detect qualifier (e.g. J)?                                                | ý    |                                                                                                                |
| IIIc. | - If reason codes are used, do all qualified results have reason code field populated, and vice versa?           | y    |                                                                                                                |
| IIId. | -Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?                  | -1-  |                                                                                                                |
| IIIe. | - Do blank concentrations in report match EDD where data was qualified due to blank contamination?               | y    |                                                                                                                |
| IIIf. | - Were multiple results reported due to<br>dilutions/reanalysis? If so, were results qualified<br>appropriately? | N/WA |                                                                                                                |
| IIIg. | -Are there any discrepancies between the data packet and the EDD?                                                | N    |                                                                                                                |

Notes: \_\_\_\_\_ \*see discrepancy sheet \_\_\_\_\_