APPENDIX F

INVESTIGATIVE DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

State of Ohio Environmental Protection Agency

Northeast District Office

2110 East Aurora Rd. Twinsburg, Ohio 44087

TELE: (330) 963-1200 FAX: (330) 487-0769 www.epa.state.oh.us Ted Strickland, Governor Lee Fisher, Lieutenant Governor Chris Korleski, Director

March 6, 2009

RE:

Mr. Mark Patterson Installation Manager Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna, OH 44266 RAVENNA ARMY AMMUNITION PLANT, PORTAGE/TRUMBULL COUNTIES, DRAFT, INVESTIGATION DERIVED WASTE AND DISPOSAL PLAN, FWGWMP, JANUARY 2009 SAMPLING EVENT REPORT

CERTIFIED MAIL 7008 2810 0000 5304 9647

Dear Mr. Patterson:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the "Draft, Investigation-Derived Waste Characterization and Disposal Plan (IDW), for the Facility-Wide Groundwater Monitoring Program, January 2009 Sampling Event, at the Ravenna Army Ammunition Plant, Ravenna, OH" document. This document was received at Ohio EPA, Northeast District Office (NEDO), Division of Emergency and Remedial response (DERR), on March 4, 2009 and is dated March 3, 2009. The document was prepared for the U.S. Army Corps of Engineers (USACE) – Louisville District, by Environmental Quality Management, Inc. (EQM), under contract no. W912QR-04-D-0036.

The report is approved and Ohio EPA concurs that the IDW from the January 2009 Sampling Event may be disposed of as non-hazardous waste.

If you have any questions, please call me at (330) 963-1207.

Sincerely,

field Deppser

Vicki Deppisch Project Coordinator Division of Emergency and Remedial Response

VD/kss

Printed on recycled paper.

cc: Bonnie Buthker, Ohio EPA, DERR, SWDO John Miller, EQM Maj. Ed Meade, OHARNG RTLS Mark Nichter, USACE Louisville

ec: Mike Eberle, Ohio EPA, NEDO, DERR Todd Fisher, Ohio EPA, NEDO, DERR Eileen Mohr, Ohio EPA, NEDO, DERR Katie Elgin, OHARNG RTLS Glen Beckham, USACE Louisville Mark Krivansky, AEC

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN JANUARY 2009 SAMPLING EVENT

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

MARC Contract Number W912QR-04-D-0036 Delivery Order No. 0006

Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by:

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati Ohio 45240

March 2009

1		CONTENTS					
2							
3		i					
4							
5	APPENDICES						
6		ii					
7		JCTION1					
8		IONAL HISTORY AND WASTE GENERATION1					
9		EMENT OF ENVIRONMENTAL MEDIA					
10		TION OF ANALYTICAL RESULTS					
11	5.0 RECOMMENDATIONS FOR DISPOSAL						
12							
13		ination Fluids					
14		of Disposal Recommendations4					
15	6.0 REFEREN	NCES					
16							
17							
18							
19		TABLES					
20							
21	Table 2.1	IDW Inventory of Drums					
22	Table 5.1	Detected Analytical Results When Compared to USEPA Regulatory					
23		Characteristic Levels (40 CFR 261.20 – 24)					
24	Table 5.2	Summary of Drum Containers, TCLP Criteria, and Disposal					
25		Recommendations					
26							
27							
28		• • • • • • • • • •					
29		APPENDICES					
30	A = 1! 1	Innertication Device AWarts Analytical Device					
31	Appendix 1	Investigation-Derived Waste Analytical Report					

i

2 ACRONYMS

1

3		
4	AOC	Area of Concern
5	EQM	Environmental Quality Management, Inc.
6	EPA	U.S. Environmental Protection Agency
7	IDW	Investigation-derived wastes
8	Ohio EPA	Ohio Environmental Protection Agency
9	PPE	Personal protective equipment
10	RCRA	Resource Conservation and Recovery Act
11	RVAAP	Ravenna Army Ammunition Plant
12	SAP	Sampling and Analysis Plan
13	SVOC	Semi-volatile organic compounds
14	TCLP	Toxicity Characteristic Leaching Procedure
15	USACE	US Army Corps of Engineers
16	VOC	Volatile organic compounds

1.0 INTRODUCTION 1 2 3 Investigative activities were conducted during the Facility Wide Groundwater Monitoring 4 Program sampling events in January 2009 at the Ravenna Army Ammunition Plant 5 (RVAAP), Ravenna, Ohio, resulting in the generation of investigation-derived wastes 6 (IDW) consisting of purge-water and equipment decontamination water wastes. The IDW 7 purge water was generated in the course of sampling each well. The IDW 8 decontamination waters were generated from the cleaning and decontamination activities 9 for non-dedicated equipment needed to sample the wells. The purpose of this report is to 10 characterize and classify the IDW for proper disposal. The report includes: 11 A summary of the IDW generated and its origin, A review of the analytical results used for waste characterization, 12 • Classification of the IDW per the Facility Wide Sampling and Analysis Plan, 13 • 14 ٠ Recommendations for disposal. 15 This document follows guidance established by the US Army Corps of Engineers 16 (USACE) and the Ohio EPA regarding IDW disposition at RVAAP. 17 18 2.0 OPERATIONAL HISTORY AND WASTE GENERATION 19 20 21 Information regarding the operational history and suspected contaminants for the Facility Wide Groundwater Monitoring Program Plan is presented in Section 1.2 of the Final Part 22 1- Sampling and Analysis Plan Addendum for the Facility-Wide Groundwater Monitoring 23 24 Program Plan at the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum) 25 (Portage, 2004). Section 4.6 of the SAP Addendum describes procedures used for 26 sampling and managing IDW at RVAAP. 27 28 Water (purged groundwater and decontamination water) IDW was generated during the 29 January 2009 sampling event. The purge water collected from the 20 AOCs sampled was 30 stored in drums labeled for purge water disposal, as opposed to previous events where each AOC had its own drum. The decision to composite the purge water was decided in 31 32 a telephone conference between M. Patterson (RVAAP), E. Mohr (OEPA) and V. 33 Deppisch (OEPA) on January 16, 2008. Purge water was generated in accordance with the Facility Wide Sampling and Analysis Plan (SAP), Section 4.3.4.2 (SAIC, 2001) under 34 35 the Micro-Purging criteria. Decontamination water was generated from the washing, 36 rinsing, and decontamination procedures used for all non-dedicated sampling equipment. 37 The decontamination water was stored in a drum separate from the purge water. These 38 decontamination procedures are described in Section 4.3.8 Decontamination Procedures 39 of the Facility Wide SAP. 40 41 The drum container label number, the type and size of drum container used, estimated volume within each drum, and the source of purge waste water or decontamination fluid 42 43 is presented in Table 2.1 below. 44 45

12

3

4

5

6 7 8

9

Table 2.1. IDW Inventory of Drums

Drum Label	Drum Type & Size	Contents	Estimated Volume	Location/Source
EQM 2009-1	55 Gal. Steel	Decontamination/Rinse	~40-	Equipment
		Water	gallons	Rinse/Decontamination
EQM 2009-2	55 Gal. Steel	Purge water	~50-	*
			gallons	
EQM 2009-3	55 Gal. Steel	Purge water	~50-	*
			gallons	
EQM 2009-4	55 Gal. Steel	Purge water	~50-	*
			gallons	

* = LL1, LLs 5-11, Central Burn Pits, Cobbs Pond, Erie Burning Grounds,, Winklepeck Burning Grounds, Open Demolition Area #2, Landfill N. of Winklepeck, Mustard Burial Site, NACA Test Run Area, Fuze & Booster Quarry, Ramsdell Quarry, Building 1200, C-Block.

3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA

All environmental media were managed in a manner that minimized potential risk to
human health and the environment. IDW was handled as nonhazardous material pending
waste characterization and classification based on analytical results. The Facility-Wide
SAP (SAIC, 2001) and the Final Part 1 Sampling and Analysis Plan (Portage, 2004)
describe approved procedures used for containerizing and handling IDW.

15

All liquid indigenous (purged groundwater) IDW generated from each monitoring well
micro-purging was placed into the 55-gallon drum as previously agreed upon by
RVAAP, USACE and Ohio EPA. The purge water was transferred daily from each well
location after sampling by closed-top 5-gallon buckets to the appropriately labeled 55gallon drum located and staged inside Building 1036.

- 21
- 22 23

24

4.0 DISCUSSION OF ANALYTICAL RESULTS

25 Per Section 7.4 of the Facility-Wide SAP (2001), IDW Characterization and 26 Classification for Disposal, all IDW indigenous wastes were characterized for disposal by taking composite samples collected from each of the segregated waste streams. There 27 28 were only two segregated waste streams that needed to be investigated: one for the purge 29 water generated, and one for the decontamination procedures. Each waste stream had a 30 composite sample taken by using a "drum thief" until a total of approximately 4 liters 31 was withdrawn in equal amounts from all drums of that particular waste stream. Each 32 waste stream composite sample was submitted to TestAmerica Laboratories, North 33 Canton for full toxicity characteristic leaching procedure (TCLP) analysis using the 34 following methods in accordance with the Facility-Wide SAP (SAIC, 2001):

- 35
- 36

37

• TCLP Mercury by SW846 1311/7470A

2

- TCLP Metals (Silver, arsenic, barium, cadmium, chromium, lead, and selenium) by SW846 1311/6010B
- TCLP Semi-volatile organic compounds (SVOCs) by SW846 1311/8270C
- TCLP Volatile organic compounds (VOCs) by SW846 1311/8260B
- Reactive Cyanide by SW846 7.3.3
- Reactive Sulfide by SW846 7.3.4
- Flash Point by SW846 1010
- pH by SW846 9040B

A trip blank was submitted with the samples and analyzed for Volatile Organic
Compounds. The IDW analytical results are presented in Appendix 1.

5.0 RECOMMENDATIONS FOR DISPOSAL

Table 7-1 in the *Facility-Wide SAP* (SAIC, 2001) presents all the maximum
concentration of contaminants for the toxicity characteristic for hazardous wastes as per
40 CFR 261.24. Analytical results for the January 2009 groundwater sampling event's
IDW were compared against these criteria to determine whether waste streams generated
were potentially hazardous or non-hazardous.

5.1 Groundwater

22 23

21

1 2

3

4

5

6

7

8

9

12 13

14 15

24 IDW was generated during the well sampling activities by micro-purging monitoring 25 wells associated with this investigation. After comparing the analytical data results 26 generated from groundwater sampling activities to the contaminants and their regulatory 27 levels from Table 7-1 1 in the Facility-Wide SAP (SAIC, 2001), the data indicated that no 28 regulatory criteria for Resource Conservation and Recovery Act (RCRA) hazardous 29 waste determinations were exceeded. Table 5.1 below presents the detected results 30 compared to the regulatory characteristic for hazardous wastes as per 40 CFR 261.24. 31 32 It is recommended that the drums containing purged groundwater be classified as

contaminated, but non-hazardous and that it be sent off-site for disposal to a permitted
water treatment facility in accordance with the Facility-Wide SAP (SAIC, 2001)
guidance under Section 7.0 "Investigation-Derived Waste".

36

37 5.2 Decontamination Fluids

38

A composite sample collected from decontamination fluids generated from cleaning of non-dedicated sampling equipment used during the investigation indicated that all analytes were below TCLP threshold values and therefore should be classified as nonhazardous. It is recommended that the water in this drum be classified as contaminated, non-hazardous, and be sent off-site for disposal to a permitted water treatment facility in

44 accordance with the *Facility-Wide SAP* (SAIC, 2001) guidance under Section 7.0

45 Investigation-Derived Waste.

Table 5.1 Detected Analytical Results

Sample ID	Detected	Detected Result	Regulatory	Above
*	Contaminant		1	Regulatory
			Level	Yes/No
	Barium	0.040mg/L J	100 mg/L	No
	Reactive	17.7 mg/kg J	See Table	No
FWG-IDW-MWPURGE	Sulfide		Notes	
JAN 09	Flashpoint	>180°F	<140°F	No
	pH	7.3	<2 or	No
			>12.5	
	Barium	0.0024 mg/L J	100 mg/L	No
	Cadmium	0.0025 mg/L J	1.0 mg/L	No
	Chromium	0.0029 mg/L J	5.0 mg/L	No
FWG-IDW-MWDECON-	Lead	0.0034 mg/L J	5.0 mg/L	No
JAN 09	Reactive	50.1 mg/kg J	See Table	No
JAIN 09	Sulfide		Notes	
	Flashpoint	>180°F	<140°F	No
	pH	7.8	<2 or	No
			>12.5	
Trin Dlonk	None	-	-	
Trip Blank	Detected			

4 J = Estimated result. Result is less than reporting limit.

5 Reactive Sulfide Note: Despite the presence of a low concentration of reactive sulfide

6 the waste streams are deemed nonhazardous as they do not meet the hazardous waste

7 criteria set forth in OAC 3725-51-23 (i.e., reacts violently with water or produces toxic

8 gases, fumes or vapors between the ph of 2 and 12.5).

9 Note that the flags used to qualify the data are consistent with USACE Laboratory

10 Chemistry Guidelines and the RVAAP quarterly groundwater reports.

11 1 = USEPA Regulatory Characteristic Levels (40 CFR 261.20 through 24).

12

13 **5.3 Summary of Disposal Recommendations**

14

15 It is recommended that all drums be classified as contaminated, but non-hazardous and

16 that they be sent off-site for disposal to a permitted water treatment facility. The

17 TCLP/Characteristic test results for both composite samples show that no chemical was

18 detected in levels that required a labeling of hazardous. Table 5.2 presents a summary of

19 each drum and the recommended disposal options for the waste streams presented and 20 previously discussed

20 previously discussed.

1 2 3

1 2

3

Table 5.2. Summary of Drum Containers, TCLP/Characteristic Waste Criteria, and Disposal Recommendations

Drum Container	Media	TCLP Criteria	Disposal
Label			Recommendation
EQM 2009-1	Water	Maximum Concentration of Contaminants	Off-Site Non-Hazardous
		NOT exceeded	Disposal
EQM 2009-2	Water	Maximum Concentration of Contaminants	Off-Site Non-Hazardous
		NOT exceeded	Disposal
EQM 2009-3	Water	Maximum Concentration of Contaminants	Off-Site Non-Hazardous
		NOT exceeded	Disposal
EQM 2009-4	Water	Maximum Concentration of Contaminants	Off-Site Non-Hazardous
		NOT exceeded	Disposal

4

5

6 7

6.0 REFERENCES

8 SAIC, 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio. 9

10

Portage Environmental, 2004, RVAAP Facility Wide Groundwater Monitoring Program 11 12 Plan.

2	
3	
4	
5	
6	
7	
8	
9	
10	APPENDIX 1
11	
12	INVESTIGATION-DERIVED WASTE
13	ANALYTICAL REPORT
14	

1

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 30240.0006

RVAAP RAVENNA, OH

Lot #: A9A290269

Erik Corbin

Environmental Quality Mgt., I 1800 Carillon Blvd Cincinnati, OH 45240

TESTAMERICA LABORATORIES, INC.

Mark J. Loeb Project Manager mark.loeb@testamericainc.com

Approved for release Mark J. Loeb Project Manager II 2/17/2009 9:56 AM

February 17, 2009

CASE NARRATIVE A9A290269

The following report contains the analytical results for two water samples and one quality control sample submitted to TestAmerica North Canton by Environmental Quality Mgt., Inc. from the RVAAP Ravenna, OH Site, project number 30240.0006. The samples were received January 29, 2009, according to documented sample acceptance procedures.

The Reactive Cyanide and Reactive Sulfide analyses were performed at the TestAmerica Buffalo Laboratory.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Angye Dragotta, Erik Corbin, and Jackie Doan on February 12, 2009. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

Any reference within this document to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.)

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Mark J. Loeb, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 4.1°C.

GC/MS VOLATILES

Sample(s) FWG-IDW-MWDECON JAN 09 had elevated reporting limits due to foaming.

The matrix spike/matrix spike duplicate(s) for FWG-IDW-MWPURGE JAN 09 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 9035412. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

GC/MS SEMIVOLATILES

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 9035037. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

GENERAL CHEMISTRY

Sample(s) FWG-IDW-MWPURGE JAN 09 and FWG-IDW-MWDECON JAN 09 for pH were run outside of method recommended holding time due to analyst over-sight.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225), Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), OhioVAP (#CL0024), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA_CWA 061807.doc

EXECUTIVE SUMMARY - Detection Highlights

A9A290269

	1				· · ·
PARAMETER	· · ·	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
FWG-IDW-MWPURGE JAN	09 01/28/09 14:3		•		
Barium - TCLP Flashpoint pH (liquid)		0.040 B >180 7.3		mg/L deg F No Units	SW846 6010B SW846 1010 SW846 9040B
FWG-IDW-MWDECON JAN	09 01/28/09 14:0	0 002			
Barium - TCLP Cadmium - TCL Chromium - TC Lead - TCLP Flashpoint pH (liquid)	P	0.0024 B 0.0025 B 0.0029 B 0.0034 B >180 7.8	10.0 0.10 0.50 0.50	mg/L mg/L mg/L mg/L deg F No Units	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 1010 SW846 9040B

ANALYTICAL METHODS SUMMARY

A9A290269

PARAMETER	ANALY METHO	
	SW846	8260B
pH Aqueous	SW846	9040B
Inductively Coupled Plasma (ICP) Metals	SW846	6010B
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846	7470A
Pensky-Martens Method for Determining Ignitability	SW846	1010
Semivolatile Organic Compounds by GC/MS	SW846	8270C
Volatile Organics by GC/MS	SW846	8260B

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A9A290269

		OF TENE GANDLE TO			SAMPLED	SAMP
<u>WO # 5</u>	ЗАМРЪБ∄	CLIENT SAMPLE ID			DATE	TIME
K6F6K	001	FWG-IDW-MWPURGE JAN 09			01/28/09	14:30
K6F6R	002	FWG-IDW-MWDECON JAN 09			01/28/09	14:00
K6F6V	003	TRIP BLANK		· .	01/28/09	12:00
			а.			

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: FWG-IDW-MWPURGE JAN 09

TCLP GC/MS Volatiles

Lot-Sample #: A	9A290269-001 Wo	lork Ord	er #:	K6F6K1AA	Matrix	WG
Date Sampled: 0	1/28/09 14:30 Da	ate Rec	eived:	01/29/09	· .	
Leach Date: 0	2/03/09 Pi	rep Date	e:	02/04/09	Analysis Date:	02/04/09
Leach Batch #: P:	903404 Pi	rep Bat	ch #:	9035441		
Dilution Factor: 1						

Method..... SW846 8260B

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	0.025	mg/L	0.00013
2-Butanone (MEK)	ND	0.25	mg/L	0.00057
Carbon tetrachloride	ND	0.025	mg/L	0.00013
Chlorobenzene	ND	0.025	mg/L	0.00015
Chloroform	ND	0.025	mg/L	0.00016
1,2-Dichloroethane	ND	0.025	mg/L	0.00022
1,1-Dichloroethylene	ND	0.070	mg/L	0.00019
Tetrachloroethylene	ND	0.070	mg/L	0.00029
Trichloroethylene	ND	0.050	mg/L	0.00017
Vinyl chloride	ND	0.025	mg/L	0.00022
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	95	(86 - 12	5)	
1,2-Dichloroethane-d4	107	(80 - 12	2)	
Toluene-d8	102	(90 - 12	2)	
4-Bromofluorobenzene	96	(84 - 12	5)	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

Client Sample ID: FWG-IDW-MWPURGE JAN 09

TCLP GC/MS Semivolatiles

Lot-Sample #: A9A290269-001	Work Order #: K6F6K1AD	Matrix WG
Date Sampled: 01/28/09 14:30	Date Received: 01/29/09	
Leach Date: 02/03/09	Prep Date: 02/04/09	Analysis Date: 02/06/09
Leach Batch #: P903403	Prep Batch #: 9035037	
Dilution Factor: 1		·

Method.....: SW846 8270C

		REPORTING	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
o-Cresol	ND	0.0040	mg/L	0.00080	
m-Cresol & p-Cresol	ND	0.040	mg/L	0.00075	
1,4-Dichlorobenzene	ND	0.0040	mg/L	0.00034	
2,4-Dinitrotoluene	ND	0.020	mg/L	0.00027	
Hexachlorobenzene	ND	0.020	mg/L	0.00010	
Hexachlorobutadiene	ND	0.020	mg/L	0.00027	
Hexachloroethane	ND	0.020	mg/L	0.00080	
Nitrobenzene	ND	0.0040	mg/L	0.000040	
Pentachlorophenol	ND	0.040	mg/L	0.0024	
Pyridine	ND	0.020	mg/L	0.00035	
2,4,5-Trichloro- phenol	ND	0.020	mg/L	0.00030	
2,4,6-Trichloro- phenol	ND	0.020	mg/L	0.00080	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	66	(27 - 11)	0)		
2-Fluorobiphenyl	66	(20 - 11)	0)		
Terphenyl-d14	97	(44 - 11)	0)		
Phenol-d5	65	(10 - 110)	0)		
2-Fluorophenol	40	(10 - 110)	D)		

(28 - 110)

NOTE(S):

2,4,6-Tribromophenol

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

74

Client Sample ID: FWG-IDW-MWPURGE JAN 09

TCLP Metals

-	.: 01/28/09	-001 14:30 Date Received Leach Batch #			WG
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	
Prep Batch #	.: 9035020				
Mercury		0.0020 mg/L Dilution Factor: 1	SW846 7470A Mdl 0.0001		K6F6K1AN
Arsenic	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B Mdl 0.0032		K6F6K1AF
Barium	0.040 B	10.0 mg/L Dilution Factor: 1	SW846 6010B		K6F6K1AG
Cadmium	ND	0.10 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0006		K6F6K1AH
Chromium	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0022		K6F6K1AJ
Lead	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0019		K6F6K1AK
Selenium	ND	0.25 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0041		K6F6K1AL
Silver	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0022		K6F6K1AM

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

B Estimated result. Result is less than RL.

Client Sample ID: FWG-IDW-MWPURGE JAN 09

General Chemistry

 Lot-Sample #...: A9A290269-001
 Work Order #...: K6F6K
 Matrix..... WG

 Date Sampled...: 01/28/09 14:30
 Date Received..: 01/29/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
pH (liquid)	7.3		No Units	SW846 9040B	01/31/09	9031075
		Dilution Fac	tor: 1	MDL;		
Flashpoint	>180		deg F	SW846 1010	02/07/09	9038071
		Dilution Fac	tor: 1	MDL:		

Client Sample ID: FWG-IDW-MWDECON JAN 09

TCLP GC/MS Volatiles

Lot-Sample #:	A9A290269-002	Work Order #: K6F6R1AA	Matrix WG
Date Sampled:	01/28/09 14:00	Date Received: 01/29/09	
Leach Date:	02/03/09	Prep Date: 02/04/09	Analysis Date: 02/04/09
Leach Batch #:	P903404	Prep Batch #: 9035441	
Dilution Factor:	2.		

Method..... SW846 8260B

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	0.050	mg/L	0.00026
2-Butanone (MEK)	ND	0.50	mg/L	0.0011
Carbon tetrachloride	ND	0.050	mg/L	0.00026
Chlorobenzene	ND	0.050	mg/L	0.00030
Chloroform	ND	0.050	mg/L	0.00032
1,2-Dichloroethane	ND	0.050	mg/L	0.00044
1,1-Dichloroethylene	ND	0.050	mg/L	0.00038
Tetrachloroethylene	ND	0.050	mg/L	0.00058
Trichloroethylene	ND	0.050	mg/L	0.00034
Vinyl chloride	ND	0.050	mg/L	0.00044
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	98	(86 - 12	:5)	
1,2-Dichloroethane-d4	104	(80 - 12)	2)	
Toluene-d8	102	(90 - 12	2)	
4-Bromofluorobenzene	98	(84 - 12	5)	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

Elevated reporting limits due to matrix interference.

Client Sample ID: FWG-IDW-MWDECON JAN 09

TCLP GC/MS Semivolatiles

Lot-Sample #: A9A290269-002	Work Order #: K6F6R1AD	Matrix WG
Date Sampled: 01/28/09 14:00	Date Received: 01/29/09	
Leach Date: 02/03/09	Prep Date: 02/04/09	Analysis Date: 02/11/09
Leach Batch #: P903403	Prep Batch #: 9035037	· .
Dilution Factor: 1		

Method..... SW846 8270C

		REPORTING	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
o-Cresol	ND	0.0040	mg/L	0.00080	
m-Cresol & p-Cresol	ND	0.040	mg/L	0.00075	
1,4-Dichlorobenzene	ND	0.0040	mg/L	0.00034	
2,4-Dinitrotoluene	ND	0.020	mg/L ·	0.00027	
Hexachlorobenzene	ND	0.020	mg/L	0.00010	
Hexachlorobutadiene	ND	0.020	mg/L	0.00027	
Hexachloroethane	ND	0.020	mg/L	0.00080	
Nitrobenzene	ND	0.0040	mg/L	0.000040	
Pentachlorophenol	ND	0.040	mg/L	0.0024	
Pyridine	ND	0.020	mg/L	0.00035	
2,4,5-Trichloro-	ND	0.020	mg/L	0.00030	
phenol					
2,4,6-Trichloro-	ND	0.020	mg/L	0.00080	
phenol					
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	66	(27 - 11)	<u>)</u>		
2-Fluorobiphenyl	71	(20 - 110)	D)		
Terphenyl-d14	92	(44 - 11)))		
Phenol-d5	63	(10 11)	0)		
2-Fluorophenol	38	(10 - 110)	D)		
2,4,6-Tribromophenol	83	(28 - 110	D)		

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

Client Sample ID: FWG-IDW-MWDECON JAN 09

TCLP Metals

-	: 01/28/09 1	-002 14:00 Date Received Leach Batch #		Matrix: WG
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	• 9035020			
Mercury	ND	0.0020 mg/L Dilution Factor: 1		02/04-02/06/09 K6F6R1AN
Arsenic	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B MDL 0.0032	02/04-02/06/09 K6F6R1AF 2
Barium	0.0024 B	10.0 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6F6R1AG
Cadmium	0.0025 в	0.10 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6F6R1AH
Chromium	0.0029 B	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6F6R1AJ
Lead	0.0034 B	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6F6R1AK
Selenium	ND	0.25 mg/L Dilution Factor: 1	SW846 6010B MDL 0.004	02/04-02/06/09 K6F6R1AL
Silver	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B MD1 0.0022	02/04-02/06/09 K6F6R1AM 2

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

B Estimated result. Result is less than RL.

Client Sample ID: FWG-IDW-MWDECON JAN 09

General Chemistry

 Lot-Sample #...: A9A290269-002
 Work Order #...: K6F6R
 Matrix..... WG

 Date Sampled...: 01/28/09 14:00
 Date Received..: 01/29/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	7.8 Dil	lution Fact	No Units	SW846 9040B	01/31/09	9031075
Flashpoint	>180 Dil	lution Fact	deg F	SW846 1010	02/07/09	9038071

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #:	A9A290269-003	Work Order #:	K6F6V1AA	Matrix WQ
Date Sampled:	01/28/09 12:00	Date Received:	01/29/09	
Prep Date	02/04/09	Analysis Date:	02/04/09	
Prep Batch #:	9035412			
Dilution Factor:	1	Method:	SW846 8260B	

		REPORTIN	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Benzene	ND	5.0	ug/L	0.13	
2-Butanone (MEK)	ND	20	ug/L	0.57	
Carbon tetrachloride	ND	5.0	ug/L	0.13	
Chlorobenzene	ND	5.0	ug/L	0.15	
Chloroform	ND	5.0	ug/L	0.16	
1,2-Dichloroethane	ND	5.0	ug/L	0.22	
1,1-Dichloroethylene	ND	5.0	ug/L	0.19	
Tetrachloroethylene	ND	5.0	ug/L	0.29	
Trichloroethylene	ND	5.0	ug/L	0.17	
Vinyl chloride	ND	5.0	ug/L	0.22	
	PERCENT	RECOVERY	r.		
SURROGATE	RECOVERY	LIMITS	<u>.</u>		
Dibromofluoromethane	98	(78 - 11	.5)		
1,2-Dichloroethane-d4	109	(77 - 12	:0)		
Toluene-d8	102	(78 - 11	.1)		
4-Bromofluorobenzene	98	(80 - 11	4)		

THE LEADER IN ENVIRONMENTAL TESTING

QUALITY CONTROL SECTION

GC/MS Volatiles

Client Lot #: A9A290269	Work Order #: K6H	PN61AA Matrix WATER
MB Lot-Sample #: A9B040000-412		· · · ·
	Prep Date 02,	/03/09
Analysis Date: 02/03/09	Prep Batch #: 903	35412

Analysis Date..: 02/03/09 Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	5.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/L	SW846 8260B
Chlorobenzene	ND	5.0	ug/L	SW846 8260B
Chloroform	ND	5.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/L	SW846 8260B
1,1-Dichloroethylene	ND	5.0	ug/L	SW846 8260B
Tetrachloroethylene	ND	5.0	ug/L	SW846 8260B
Trichloroethylene	ND	5.0	ug/L	SW846 8260B
Vinyl chloride	ND	5.0	ug/L	SW846 8260B
2-Butanone (MEK)	ND	20	ug/L	SW846 8260B
	PERCENT	RECOVERY	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	96	(78 - 1)	15)	
1,2-Dichloroethane-d4	104	(77 - 12)	20)	
Toluene-d8	103	(78 - 11	11)	
4-Bromofluorobenzene	97	(80 - 13	14)	

NOTE(S):

TCLP GC/MS Volatiles

Client Lot #: A9A290269	Work Order #: K6LAK1AA	Matrix WATER
MB Lot-Sample #: A9B030000-085		· · · · · · · · · · · · · · · · · · ·
Leach Date: 02/03/09	Prep Date: 02/04/09	Analysis Date: 02/04/09
Leach Batch #: P903404	Prep Batch #: 9035441	
Dilution Factor: 1		

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	0.025	mg/L	SW846 8260B
2-Butanone (MEK)	ND	0.25	mg/L	SW846 8260B
Carbon tetrachloride	ND	0.025	mg/L	SW846 8260B
Chlorobenzene	ND	0.025	mg/L	SW846 8260B
Chloroform	ND	0.025	mg/L	SW846 8260B
1,2-Dichloroethane	ND	0.025	mg/L	SW846 8260B
1,1-Dichloroethylene	ND	0.025	mg/L	SW846 8260B
Tetrachloroethylene	ND	0.025	mg/L	SW846 8260B
Trichloroethylene	ND	0.025	mg/L	SW846 8260B
Vinyl chloride	ND	0.025	mg/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	94	(86 - 12	25)	
1,2-Dichloroethane-d4	102	(80 - 1	22)	
Toluene-d8	102	(90 - 12	22)	
4-Bromofluorobenzene	96	(84 - 1)	25)	•

NOTE(S):

TCLP GC/MS Semivolatiles

Client Lot #: A9A290269	Work Order #: K6NFG1AA	Matrix: WATER
MB Lot-Sample #: A9B040000-037		
Leach Date: 02/03/09	Prep Date: 02/04/09	Analysis Date: 02/06/09
Leach Batch #: P903403	Prep Batch #: 9035037	_
Dilution Factor: 1		

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
o-Cresol	ND	0.0040	mg/L	SW846 8270C
m-Cresol & p-Cresol	ND	0.040	mg/L	SW846 8270C
1,4-Dichlorobenzene	ND	0.0040	mg/L	SW846 8270C
2,4-Dinitrotoluene	ND	0.020	mg/L	SW846 8270C
Hexachlorobenzene	ND	0.020	mg/L	SW846 8270C
Hexachlorobutadiene	. ND	0.020	mg/L	SW846 8270C
Hexachloroethane	ND	0.020	mg/L	SW846 8270C
Nitrobenzene	ND	0.0040	mg/L	SW846 8270C
Pentachlorophenol	ND	0.040	mg/L	SW846 8270C
Pyridine	ND	0.020	mg/L	SW846 8270C
2,4,5-Trichloro- phenol	ND	0.020	mg/L	SW846 8270C
2,4,6-Trichloro- phenol	ND	.0.020	mg/L	SW846 8270C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	78	(27 - 11)	0)	
2-Fluorobiphenyl	79	(20 - 11	0)	
Terphenyl-d14	103	. (44 - 11	0)	
Phenol-d5	75	(10 - 11	0)	
2-Fluorophenol	64	(10 - 11		
2,4,6-Tribromophenol	70	(28 ~ 11	-	

NOTE (S):

TCLP Metals

Client Lot #...: A9A290269

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MB Lot-Sample Leach Date Mercury		-084 Prep Batch # Leach Batch # 0.0020 mg/L		02/04-02/06/09 K6LAH1AK
1		Dilution Factor: 1		
Arsenic	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AC
Barium	0.0017 B	10.0 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AD
Cadmium	ND	0.10 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AE
Chromium	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AF
Lead	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AG
Selenium	0.0089 B	0.25 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AH
Silver	ND	0.50 mg/L Dilution Factor: 1	SW846 6010B	02/04-02/06/09 K6LAH1AJ

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

TCLP Metals

Client Lot #...: A9A290269

Matrix..... WATER

PARAMETER	RESULT	REPORTING	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample Mercury	#: A9B04000 ND	0-020 Prep Ba 0.0020 Dilution Fact	mg/L	9035020 SW846 7470A	02/04-02/06/09	K6NEN1AJ
Arsenic	ND	0.50 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AA
Barium	ND	10.0 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AC
Cadmium	ND	0.10 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AD
Chromium	ND	0.50 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AE
Lead	ND	0.50 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AF
Selenium	ND	0.25 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AG
Silver	ND	0.50 Dilution Fact	mg/L or: 1	SW846 6010B	02/04-02/06/09	K6NEN1AH

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #:	A9A290269	Work Order #:	K6PN61AC-LCS	Matrix WATER
LCS Lot-Sample#:	A9B040000-412		K6PN61AD-LCSD	
Prep Date:	02/03/09	Analysis Date:	02/03/09	
Prep Batch #:	9035412			
Dilution Factor:	1			

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Vinyl chloride	101	(55 - 121)		- <u>-</u>	SW846 8260B
	86	(55 - 121)	17	(0-30)	SW846 8260B
1,1-Dichloroethylene	99	(65 - 119)			SW846 8260B
	84	(65 - 119)	16	(0-20)	SW846 8260B
Chloroform	109	(87 - 119)			SW846 8260B
	100	(87 - 119)	8.8	(0-30)	SW846 8260B
1,2-Dichloroethane	116	(83 - 122)			SW846 8260B
	105	(83 - 122)	9.5	(0-30)	SW846 8260B
2-Butanone (MEK)	154	(53 - 173)			SW846 8260B
	139	(53 - 173)	10	(0-40)	SW846 8260B
Carbon tetrachloride	90	(81 - 126)			SW846 8260B
	78 a	(81 - 126)	14	(0-30)	SW846 8260B
Trichloroethylene	107	(80 - 122)			SW846 8260B
	97	(80 - 122)	9.6	(0-20)	SW846 8260B
Benzene	109	(79 - 116)			SW846 8260B
	100	(79 - 116)	8.4	(0-20)	SW846 8260B
Tetrachloroethylene	113	(83 - 116)			SW846 8260B
	103	(83 - 116)	8.6	(0-30)	SW846 8260B
Chlorobenzene	104	(81 - 115)			SW846 8260B
	97	(81 - 115)	7.2	(0-20)	SW846 8260B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	99	(78 - 115)
	99	(78 - 115)
1,2-Dichloroethane-d4	105	(77 - 120)
	103	(77 - 120)
Toluene-d8	105	(78 - 111)
	107	(78 - 111)
4-Bromofluorobenzene	105	(80 - 114)
	103	(80 - 114)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

 Client Lot #...: A9A290269
 Work Order #...: K6P0P1AA
 Matrix....: WATER

 LCS Lot-Sample#: A9B040000-441
 Analysis Date..: 02/04/09
 Matrix....: WATER

 Prep Date.....: 02/04/09
 Analysis Date..: 02/04/09
 Prep Batch #...: 9035441

 Dilution Factor: 1
 0
 0

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	92	(76 - 118)	SW846 8260B
2-Butanone (MEK)	127 a	(40 - 110)	SW846 8260B
Carbon tetrachloride	70 a	(71 - 124)	SW846 8260B
Chlorobenzene	89	(76 - 113)	SW846 8260B
Chloroform	91	(82 - 117)	SW846 8260B
1,2-Dichloroethane	99	(78 - 122)	SW846 8260B
1,1-Dichloroethylene	82	(67 - 128)	SW846 8260B
Tetrachloroethylene	102	(64 - 121)	SW846 8260B
Trichloroethylene	92	(76 - 119)	SW846 8260B
Vinyl chloride	84	(47 - 123)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		97	(86 - 124)
		100	100 1001

DIDIONOTIGOTONECHANE	51	(00 124)
1,2-Dichloroethane-d4	109	(80 - 122)
Toluene-d8	105	(90 - 122)
4-Bromofluorobenzene	100	(84 - 125)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC/MS Semivolatiles

Client Lot #:	A9A290269	Work Order #:	K6NFG1AC-LCS	Matrix WATER
LCS Lot-Sample#:	A9B040000-037		K6NFG1AD-LCSD	
Prep Date:	02/04/09	Analysis Date:	02/06/09	
Prep Batch #:	9035037			
Dilution Factor:	1			

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
o-Cresol	74	(23 - 110)		<u></u>	SW846 8270C
	75	(23 - 110)	1.6	(0-30)	SW846 8270C
m-Cresol & p-Cresol	71	(28 - 110)			SW846 8270C
	73	(28 - 110)	3.6	(0-30)	SW846 8270C
1,4-Dichlorobenzene	80	(13 - 110)			SW846 8270C
	81	(13 - 110)	0.19	(0-30)	SW846 8270C
2,4-Dinitrotoluene	85	(45 - 119)			SW846 8270C
	89	(45 - 119)	3.7	(0-30)	SW846 8270C
Hexachlorobenzene	81	(46 - 112)			SW846 8270C
	82	(46 - 112)	2.0	(0-30)	SW846 8270C
Hexachlorobutadiene	50	(10 - 110)			SW846 8270C
	50	(10 - 110)	0.45	(0-30)	SW846 8270C
Hexachloroethane	56	(10 - 110)			SW846 8270C
	58	(10 - 110)	3.2	(0-30)	SW846 8270C
Nitrobenzene	87	(29 - 118)			SW846 8270C
	88	(29 - 118)	0.82	(0-30)	SW846 8270C
Pentachlorophenol	54	(10 - 116)			SW846 8270C
	68	(10 - 116)	22	(0-30)	SW846 8270C
Pyridine	65	(15 - 110)			SW846 8270C
	63	(15 - 110)	4.1	(0-30)	SW846 8270C
2,4,5-Trichloro- phenol	74	(36 - 110)			SW846 8270C
	78	(36 - 110)	5.5	(0-30)	SW846 8270C
2,4,6-Trichloro- phenol	70	(32 - 110)			SW846 8270C
	74	(32 - 110)	5.3	(0-30)	SW846 8270C

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	81	$(27 - \overline{110})$
	82	(27 - 110)
2-Fluorobiphenyl	79	(20 - 110)
	80	(20 - 110)
Terphenyl-d14	99	(44 - 110)
	102	(44 - 110)
Phenol-d5	77	(10 - 110)
	79	(10 - 110)
2-Fluorophenol	57	(10 - 110)

(Continued on next page)

GC/MS Semivolatiles

Client Lot #...: A9A290269Work Order #...: K6NFG1AC-LCSMatrix.... WATERLCS Lot-Sample#: A9B040000-037K6NFG1AD-LCSD

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
	70	(10 - 110)	
2,4,6-Tribromophenol	79	(28 - 110)	
	79	(28 - 110)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

TCLP Metals

Client Lot #:	A9A290269			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Mercury	A9B040000- 103	-	t ch #: 9035020 SW846 7470A pr: 1	02/04-02/06/09	K6NEN1AT
Arsenic	103	(50 - 150) Dilution Facto	SW846 6010B pr: 1	02/04-02/06/09	K6NEN1AK
Barium	103	(50 - 150) Dilution Facto	SW846 6010B pr: 1	02/04-02/06/09	K6NEN1AL
Cadmium	109	(50 - 150) Dilution Facto	SW846 6010B pr: 1	02/04-02/06/09	K6NEN1AM
Chromium	102	(50 - 150) Dilution Facto	SW846 6010B	02/04-02/06/09	K6NEN1AN
Lead	104	(50 - 150) Dilution Facto	SW846 6010B pr: 1	02/04-02/06/09	K6NEN1AP
Selenium	105	(50 - 150) Dilution Facto	SW846 6010B	02/04-02/06/09	K6NEN1AQ
Silver	118	(50 - 150) Dilution Facto	SW846 6010B or: 1	02/04-02/06/09	K6NEN1AR

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #	.: A9A290269	9		Matrix	: WATER	
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #	
pH (liquid)	99	Work Order (97 - 103) Dilution Fact	SW846 9040B	Lot-Sample#: A9A31000 01/31/09	90-075 9031075	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TCLP GC/MS Volatiles

Client Lot #:	A9A290269	Work	Order #:	K6F6K1CE-MS	Matrix WG
MS Lot-Sample #:	A9A290269-001			K6F6K1CF-MSD	
Date Sampled:	01/28/09 14:30	Date	Received:	01/29/09	
Leach Date:	02/03/09	Prep	Date:	02/04/09	Analysis Date: 02/04/09
Leach Batch #:	P903404	Prep	Batch #:	9035441	
Dilution Factor:	1				

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	94	(76 - 117)			SW846 8260B
	97	(76 - 117)	3.3	(0-30)	SW846 8260B
2-Butanone (MEK)	131 a	(37 - 110)			SW846 8260B
	138 a	(37 - 110)	5.0	(0-30)	SW846 8260B
Carbon tetrachloride	69 a	(72 - 124)		-	SW846 8260B
	69 a	(72 - 124)	0.69	(0-30)	SW846 8260B
Chlorobenzene	89	(72 - 114)			SW846 8260B
	93	(72 - 114)	5.1	(0-30)	SW846 8260B
Chloroform	95	(82 - 117)			SW846 8260B
	97	(82 - 117)	1.8	(0-30)	SW846 8260B
1,2-Dichloroethane	101	(80 - 120)			SW846 8260B
	105	(80 - 120)	3.7	(0-30)	SW846 8260B
1,1-Dichloroethylene	85	(67 - 129)			SW846 8260B
	80	(67 - 129)	5.5	(0-30)	SW846 8260B
Tetrachloroethylene	104	(60 - 119)			SW846 8260B
	106	(60 - 119)	2.0	(0-30)	SW846 8260B
Trichloroethylene	94	(72 - 121)			SW846 8260B
	98	(72 - 121)	5.0	(0-30)	SW846 8260B
Vinyl chloride	91	(54 - 118)			SW846 8260B
	88	(54 - 118)	3.0	(0-30)	SW846 8260B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	96	(86 - 125)
	97	(86 - 125)
1,2-Dichloroethane-d4	109	(80 - 122)
	109	(80 - 122)
Toluene-d8	103	(90 - 122)
	103	(90 - 122)
4-Bromofluorobenzene	97	(84 - 125)
	101	(84 - 125)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TCLP Metals

Client Lot f Date Sampled	-	Matrix	: WG		
PARAMETER	PERCENT RECOVERY	RECOVERY RI LIMITS RPD L	PD IMITS METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sampl Leach Date.,		00269-001 Prep Bat 3/09 Leach Ba t	ch #: 9035020 tch #: P903403		
Mercury	99 99	(50 - 150)	SW846 7470A 0-20) SW846 7470A :: 1	02/04-02/06/09 02/04-02/06/09	
Arsenic	107 105	(50 - 150) (50 - 150) 1.6 (0 Dilution Factor	,	02/04-02/06/09 02/04-02/06/09	
Barium	107 105	(50 - 150) (50 - 150) 1.2 (6 Dilution Factor		02/04-02/06/09 02/04-02/06/09	
Cadmium	115 113	(50 - 150) (50 - 150) 1.9 (0 Dilution Factor		02/04-02/06/09 02/04-02/06/09	
Chromium	108 106	(50 - 150) (50 - 150) 1.9 ((Dilution Factor		02/04-02/06/09 02/04-02/06/09	
Lead	110 107	(50 - 150) (50 - 150) 2.1 (Dilution Factor	0-20) SW846 6010B	02/04-02/06/09 02/04-02/06/09	
Selenium	108 106	(50 - 150) (50 - 150) 2.3 (1 Dilution Factor		02/04-02/06/09 02/04-02/06/09	
Silver	113 112	(50 - 150) (50 - 150) 1.5 (4 Dilution Factor		02/04-02/06/09 02/04-02/06/09	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #: A9A29	0269 Work Order	#: K6JGG-SMP K6JGG-DUP	Matrix:	WATER
Date Sampled: 01/29	/09 13:00 Date Receiv	ved: 01/31/09		
DIIPI.	TCATE	RPD	PREPARATI	ON- PREP

	DUPLICATE			RPD		PREPARATION-	FREF
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
pH (liquid)	,				SD Lot-Sample #:	A9A310128-001	
5.9	5.9	No Units	0.0	(0-20)	SW846 9040B	01/31/09	9031075
		Dilution Fact	or: 1				

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #:	A9A290269	Work Order		SF6K-SMP Matr: SF6K-DUP	i x: WG	
Date Sampled:	01/28/09 14	:30 Date Recei				
	DUPLICATE		RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Flashpoint				SD Lot-Sample #:	A9A290269-001	
>180	>180	deg F 👘 0.0	(0-20)	SW846 1010	02/07/09	9038071
		Dilution Factor: 1				
pH (liquid)				SD Lot-Sample #:	A9A290269-001	
7.3	7.4	No Units 0.14	(0-20)	SW846 9040B	01/31/09	9031075

Dilution Factor: 1

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4142 (0408)		L																								
client EQM	Proje	ct May		M	Il	e	•.									E	Dati		8	-0	9		"	Chain of Custody		
Address 1800 Curillion Blud	Telep	hone	Numl	ber (An 325	ea Co	150 750	ax Ni DD	11	49	5	- ,	•				all all	1 ah	Nun	nhar			93	96	 Page/	of	•
Cancinnati State Zip Code Gincinnati Off 4524	Site C	Contac	*	16,		La	b do	gtact	L	e e	6				Q	An more	Nsis	(Att	ach.	list i	if i					
Project Name and Location (State), Ravenna, OH	Carrie	ar/Way	vbill N	lumbei	<u>,</u>	-		<u> </u>			_		IJ	9	K K	174	and	11.	Ł	•				Caselo	Instruction	/
Contract/Purchase Order/Quote No.	•			Matrix					ntaine serva				SVOCS	Ĕ	1	20	N N			.				Conditio	ons of Rece	is/ vipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time	4	Aqueous	Sed.	100	Unpres:	HESON	HNO3	HCI	NeOH	ZnAc/ NaOH		Tech	20	Met	Phenc	Kac 4	24	R.	\$				Cooler	ID	
FWG-IDW-MWINGE JANG 1-28	09 1430		X			4	1						X	x	\boldsymbol{x}	$\langle \rangle$	()	$\langle \mathbf{x} \rangle$							71	2
FWG-IDW-MWDECONJAN 09 /	1400		X			4							X	X	×	Xy	$\langle \rangle$	$\langle \rangle$	ĸ						7/:	2
TRIPBlank 7	1200	ļ	X			<u> </u>	<u> </u>		1					\times				_	<u>_</u>				_		71	2
		-			· 	_			<u> </u>			•		_		<u> </u>					-					
		-					-									_			<u> </u>			\bot				
		<u> </u> .				<u> </u>											_		_	1		<u> </u>	·			
					<u> </u>	<u> </u>														_	_	Ĺ	1_			·
					-	Ĺ								· .			-						_	· · ·		<u> </u>
							\vdash	<u> </u>							-			Ĺ			_		<u> </u> .	·		
		-			-	<u> </u>	 	ļ					-	<u>-</u>	_					·	· .		\bot			
						Ľ.	ļ									-		+	+	┶			<u> </u>			
Possible Hazard Identification	<u> </u>						[Ĺ						ŀ		Ľ	\mathbb{L}	<u> </u>		
Non-Hazard Definitiation	Unknow			e Displ tum To		nt .		Dispa	osal B	V La	ab		Irchie	ie Fa	v		_ Mo	nths					ssess onth)	sed if samples ar	e retained	
	-		DE	1 6	 			-				əcity)											<i></i>			
Image: Constraint of the second se	Days 🗌 Or	her_	1	Time			1. F	Recei	ived L	3v						>			<u>.</u>	- 1	-			Date	Time	
Myn trage		ZG	loi		97	2		٦			ſ	ĨĊ	•	/		σž	31	ح	مرد	~	1		·	129-09	093	2 2
2. Rolling Using PC I CBUSON	2 1-2	-1 9-0	5	Time	/3:	5	2. F.	lecei	ived E	34	7	17	74	1	2	Ø	(-			Date 1/19/00	Time 11.35	,
3. Relinquished By	Date	<u> </u>		Time			3. F	Recei	ived L	sy/	<i>t</i> -		<u>r (</u>										ł	Date	Time	
Comments				1			<u> </u>			*. <u>.</u>	·· .	·		i									<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u></u>
			· ·																							

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

TestAmerica Cooler	Receipt Form/Narrative	Lot Number: A44210269
North Canton Facilit	у 	an dia
Client <u>FQM</u>	Project	By: Chidy
Cooler Received on		29-09 (Signature)
FedEx 🔲 UPS 🛄 DHL	FAS Stetson Client Drop Off	TestAmerica Courier [X] Other
TestAmerica Cooler #	712 Multiple Coolers [] Foan	n Box [] Client Cooler [] Other
	n the outside of the cooler(s)? Yes 🕅 🕅	
	Quantity Unsalvage	
-	n the outside of cooler(s) signed and date	
Were custody seals of		Yes 🗔 No 🔯
If YES, are there any	attached to the cooler(s)?	Yes 🗔 No 🕅
	scompany the sample(s)? Yes \mathbf{X} No	
	ers signed in the appropriate place?	Yes X No
5. Packing material used	I: Bubble Wrap	
6. Cooler temperature ut	pon receipt <u> </u>	of form for multiple coolers/temps
		ater 🔲 None 🔲
	n good condition (Unbroken)?	Yes 🖄 No 🗖
	be reconciled with the COC?	Yes 🔼 No 🗔
9. Were sample(s) at the	correct pH upon receipt?	Yes 🛄 No 🔲 NA 🖄
10. Were correct bottle(s)	used for the test(s) indicated?	Yes 🗹 No 🎵
11. Were air bubbles >6 n		Yes 🗍 No 🕅 NA 🗍
	eived to perform indicated analyses?	Yes 🖾 No 🛄
13. Was a trip blank prese	ent in the cooler(s)? Yes ଯ No 🔲 🕚	Were VOAs on the COC? Yes 🖄 No 🗌
Contacted PM	Date by	via Verbal 🔲 Voice Mail 🛄 Other 🗌
Concerning		
14 CHAIN OF CUSTOD	CONTRACTOR AND A	
The following discrepancie	es occurred:	
·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	·	
		· · · · · · · · · · · · · · · · · · ·

••••••••••••••••••••••••••••••••••••••		
· · · · · · · · · · · · · · · · · · ·		
15. SAMPLE CONDITIO	N	
Sample(s)	were receive	d after the recommended holding time had expired
Sample(s)		were received in a broken container.
Sample(s)		ceived with bubble >6 mm in diameter. (Notify PM
16 SAMPLE PRESERVA	ATION	
Sample(s)		were further preserved in Sample
		8-HNO ₃ ; Sulfuric Acid Lot# 100108-H ₂ SO ₄ ; Sodium
	DH; Hydrochloric Acid Lot# 092006-HCI; Sodi at time was preservative added to sample	ium Hydroxide and Zinc Acetate Lot# 050205-
		e(s)?Date Initials
Sherit ID	<u>Hq</u>	
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
i		

SOP: NC-SC-0005, Sample Receiving N:\QAQC\NARRATIV/TestAmerica\Cooler Receipt TestAmerica\COOLER_TestAmerica_Rev 69 112808.doc

35 of 49

North Canton Facili	Receipt Form/Narrative		
<u>Client ID</u>	Ha	Date	Initials
			. <u>. </u>
		· ·	
			·
		· · · · · · · · · · · · · · · · · · ·	
		· · · · ·	
	· · · · · · · · · · · · · · · · · · ·		
Cooler #	Temp. °C	Method	Coolant
<u>Cooler #</u>	Temp. °C	Method	Coolant
<u>Cooler #</u>		<u>Method</u>	Coolant
<u>Cooler #</u>	<u>Temp. °C</u>	Method	
<u>Cooler #</u>		Method	
<u>Cooler #</u>			
<u>Cooler #</u>			
<u>Cooler #</u>			
Cooler #			

BUFFALO DATA

Analytical Report

SDG Number: A9A290269

Work Order Description: Reactive Cyanide / Reactive Sulfide

For:

Project Manager TestAmerica North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Saccy & York

Sally Hoffman Project Manager Sally.Hoffman@testamericainc.com

Thursday, February 12, 2009

The test results in this report meet all NELAP requirments for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

TestAmerica North Canton 4101 Shuffel Drive NW North Canton, OH 44720 SDG Number: A9A290269

Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269

TestAmerica Buffalo Current Certifications

As of 1/27/2009

01/30/09

02/12/09 09:31

Received:

Reported:

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
Californía*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	· PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas *	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana *	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0 04 4
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania *	NELAP CWA,RCRA	68-00281
Tenness ee	SDWA	02970
Texas *	NELAP CWA, RCRA	T10470441208-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virgínia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginía	CWA,RCRA	252

*As requiredunder the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica North Canton 4101 Shuffel Drive NW North Canton, OH 44720

SDG Number: A9A290269

Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report. I page, is included and is an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

01/30/09

02/12/09 09:31

Received:

Reported:

TestAmerica North Canton 4101 Shuffel Drive NW	SDG Number: A9A290269	Received: Reported:	01/30/09 02/12/09 09:31
North Canton, OH 44720	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269	- -	
Yana anan manana ang kalapanja pang pang pang ang ang ang ang ang ang ang ang ang	• • • • • • • • • • • • • • • • • • •		<u>alalanin (kunstila), ling mpini kihili mpopili (k</u>

		Execut	ive Summ	ary - D	etectio	ns				
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0969-01 (FWG-I	DW-MWPURGE	JAN 09 - Wa	ter)		S	ampled: 01	/28/09 14:30	Rec	vd: 01/30/	09 09:30
General Chemistry Parameters										
HCN Released From Waste	17.7		10.0		mg/L	1.00	02/04/09 20:35	RJP	9B04088	Section 7.3
Sample ID: RSA0969-02 (FWG-I	DW-MWDECON	JAN 09 - Wa	ter)		S	ampled: 01	/28/09 14:00	Rec	vd: 01/30/	09 09:30
General Chemistry Parameters										
H2S Roicased From Waste	50.1		10.0		mg/L	1.00	02404/09 20:35	RIP	9B04089	Section 7.3

TestAmerica North Canton 4101 Shuffel Drive NW North Canton, OH 44720

SDG Number: A9A290269

Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269

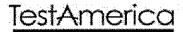
Sample Summary

SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
FWG-IDW-MWPURGE JAN 09	RSA0969-01	Water	01/28/09 14:30	01/30/09 09:30
FWG-IDW-MWDECON JAN 09	RSA0969-02	Water	01/28/09 14:00	01/30/09 09:30

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com 42 of 49 Reported

01/30/09 02/12/09 09:31

Received: 01/3 Reported: 02/1


<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica North Canton	SDG Number: A9A290269		Received:	01/30/09
4101 Shuffel Drive NW		,	Reported:	02/12/09 09:31
North Canton, OH 44720	Project: Reactive Cyanide / Reactive Sulfide			

Project Number: A9A290269

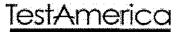
			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0969-01 (FWG-II	W-MWPURG	E JAN 09 - W	ater)		s	ampled: 0	1/28/09 14:30	Rec	vd: 01/30/	09 09:30
General Chemistry Parameters										
HCN Released From Waste	17.7		19,0		mg/L	1.09	02/04/09 20:35	RÆ	9B04088	Section 7.3
H2S Released From Waste	ND		16.0		mg/L	1.60	02/04/09 20:35	RР	9B04089	Section 7.3
Sample ID: RSA0969-02 (FWG-II	W-MWDECO	N JAN 09 - W	/ater)		S	ampled: 0	1/28/09 14:00	Rec	vd: 01/30/	09 09:30
General Chemistry Parameters										
HCN Released From Waste	ND		10.0		mg/L	1.00	02/04/09 20:35	RJP	9804088	Section 7.3
H2S Released From Waste	50.1		10.0		mg/L	1.00	02/04/09 20:35	RJP	9804089	Section 7.3

TestAmerica North Canton 4101 Shuffel Drive NW North Canton, OH 44720

SDG Number: A9A290269

Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269

SAMPLE EXTRACTION DATA


Parameter	Batch .	Lab Number	Wt/Vol Extracted	Extracted Volume	Date	Analysi	Extraction Method	· .
General Chemistry Parameters		· · ·				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Section 7.3	9B04089	RSA0969-01	1.00	1.00	02/04/09 20:35	RJP	No prep Reactivity	· .
Section 7.3	9B04088	RSA0969-01	50.00	50.00	02/04/09 20:35	RJP	No prep Reactivity	
Section 7.3	9E04089	RSA0969-02	1.00	1.00	02/04/09 20:35	RЛP	No prep Reactivity	
Section 7.3	9B04088	RSA0969-02	50.00	50.00	02/04/09 20:35	RIP	No prep Reactivity	

01/30/09

02/12/09 09:31

Received:

Reported:

H2S Released From Waste

9B04089

	SI)G Numbe	r: A9A290	269					Receiv	ed:	01/30/09	
									Repor	ted:	02/12/09 09	た31
	Pr	oject: Rea	ctive Cvani	de / Reactiv	ve Sulfide							
	Pr	oject Num	ber: A9.	4290269								
	L	ABOR	ATORY	BLAN	KOCD	АТА						
•			~~ ~~~~									
Seq/	Spike					Dup	%	Dup	% REC		RPD	
Batch	Level	MRL	MDL	Units	Result	Result	REC	%REC	Limits	RPD	Limit	Q
PS									· .			
9B04088		10.0	N/A	mg/L	ND							
		Pr Pr L Seq/ Spike	Project: Read Project Num LABOR Seq/ Spike Batch Level MRL	Project: Reactive Cyani Project Number: A9. LABORATORY Seq/ Spike Batch Level MRL MDL	Project Number: A9A290269 LABORATORY BLANI Seq/ Spike Batch Level MRL MDL Units	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC D. Seq/ Spike Batch Level MRL MDL Units Result	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup Batch Level MRL MDL Units Result Result	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup % Batch Level MRL MDL Units Result Result REC	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup % Dup Batch Level MRL MDL Units Result REC %REC	Repor Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup % Dup % REC Batch Level MRL MDL Units Result REC %REC Limits	Reported: Reported: Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup % Dup % REC Batch Level MRL MDL Units Result REC %REC Limits RPD	Reported: 02/12/09 09 Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269 LABORATORY BLANK QC DATA Seq/ Spike Dup % REC RPD Batch Level MRL MDL Units Result REC %REC Limits RPD Limit

mg∕l.

ND

10.0

N/A

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica North Canton 4101 Shuffel Drive NW

North Canton, OH 44720

SDG Number: A9A290269

Received: 01/30/09 Reported: 02/12/09 09:31

Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269

LABORATORY DUPLICATE QC DATA												
Analyte	Seq/ Batch	Source Result	Spike Level	MRL	MDL	Units	Result	% Dup REC %REC	% REC Limits	RPD	RPD Limit	Q
General Chemistry Parameter QC Source Sample: RSA0969-01 9B04088-DUP1 HCN Released From Waste	<u>\$</u> 9B04088	17.7		10.0	N/A	mg/l.	17.8			1.	25	
QC Source Sample: RSA0969-01 9B04089-DUP1 H2S Released From Waste	9B04089	10.0		10.0	N/A	mg/l_	10.0			Ó.	20	

Project: Reactive Cvanide (Reactive Sulfide

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica North Canton 4101 Shuffel Drive NW	SDG Number: A9A290269							Received: Reported:		01/30/09 02/12/09 09:31			
North Canton, OH 44720	Project: Reactive Cyanide / Reactive Sulfide Project Number: A9A290269												
	, , , , , , , , , , , , , , , , , , ,]	LCS/LC	S DUPI	ЛСАТИ	E QC DA	TA						
Analyte	Seq/ Batch	Spike Level	MRL	MDL	Units	Result	Dup Result	% REC	Dup %REC	% REC Limits	RPD	RPD Limit	Q
General Chemistry Paramete 9B04088-BS1	<u>918</u>												
HCN Released From Waste 9B04089-BS1	9B04088	1000	10,0	· N/A	mg/l.	319		32		10-100		20	
H2S Released From Waste	9B04089	570	10.0	NVA	mg/L	331		58		10-100		20	

Laboratory Sample I.D. Please send a signed copy of Need detection limit and analysis date inclusion in report A9A290269-2 A9A290269-2 A9A290269-1 A9A290269-1 Received for lab by: Relinquished by: Relinquished by: TestAmerica Buffalo 10 Hazelwood Drive, Suite 106 Seveni Trent Laboratories Anducist, NY K6F6R K6P6K K6F6R K6F6K Client Code: Wark Order Number in-the recort • • • • 14091 at completion of analysis PLEASE RETURN ORIGINAL SAMPLE ANALYSIS REQUISITION at the TAL North Canton Laboratory Call MARK LOEB with questions at 330-497-9396 Please use Client Sample ID for report Date Fine: 1/3d/07 Date/Time: Date/Finic: J4228 FWG-IDW-MWDECON JAN 09 FWG-IDW-MWDECON JAN 69 FWG-IDW-MWPURGE JAN 09 FWG-HJW-MWPURGE JAN 09 Client Sample 10 1-23-9 5:00 Lab Request SAMPLE ANALYSIS REQUISTION 0530 TextAmerica Labsratories, inc. • • • • SR109556 ž 14 0 Need Analytical Report 2009-01-28 14:00 2009-01-28 14:00 2009-01-28 14:30 Sampling Date Shipping Method: 2009-01-28 14:30 Project Manager: Report Package: **FED EX** WATER, 7.3.4, Reactive Sulfide (Buffalo) WATER, 7.3.3, Reactive Cyanide (Buffalo) MARK LOEB WATER, 7.3.4, Reactive Sulfide (Buffalo) Report WATER, 7.3.3, Reactive Cyanide (Buffalo) 2009-02-12 Analysis Required 48 of 49

· · · · · ·

END OF REPORT