

FINAL

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM

REPORT ON THE JANUARY 2007 SAMPLING EVENT (Sample Event No. 1)

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

PREPARED FOR

US ARMY CORPS OF ENGINEERS LOUISVILLE, KENTUCKY GSA CONTRACT NO. GS-10F-0448P

JULY 2007

FINAL FACILITY-WIDE GROUNDWATER MONITORING PROGRAM

REPORT ON THE JANUARY 2007 SAMPLING EVENT (Sample Event No. 1)

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

JULY 2007

Prepared for

U.S. Army Corps of Engineers Louisville, Kentucky GSA Contract No. GS-10F-0448P

Prepared by

Spec Pro, Inc. 8451 State Route 5 Ravenna, OH 44266

FWGWMP January 2007 Sampling Event Report Distribution List

RVAAP – 2 hard copies, 2 CDs USACE - 2 hard copies, 3 CDs USAEC – 1 CD Ohio EPA – 3 hard copies, 3 CDs OHARNG – 1 hard copy, 2 CDs SpecPro, Inc – 1 hard copy, 1 CD

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Facility Description	1
1.2	Project Description	
1.3	Scope of Work for the January 2007 Sampling Event	
1.4	Report Presentation	6
2.0	PROJECT ACTIVITIES	
2.1	Groundwater Level Monitoring	
2.2	Groundwater Sampling	
2.3	Laboratory Analysis	7
2.4	Data Verification/Validation	
2.5	Investigation Derived Waste	
	ESULTS1	
3.1	Groundwater Elevations1	
3.2	Summary of Analytical Results1	
	2.1 Explosives and Propellants1	
3.	2.2 Inorganic Elements	9
	2.3 Volatile Organic Compounds (VOCs)	
_	2.4 Semivolatile Organic Compounds (SVOCs)	
_	2.5 Pesticides and Polychlorinated Biphenyls (PCBs)	T T
	Data Verification/Validation7 FERENCES	
4.0 K	FERENCES	J
	List of Figures	
1-1	RVAAP General Location Map3	
1-2	RVAAP Facility Map4	
. –	Territoria i demograma i maprimi i martini i m	
	List of Tables	
Table	2-1 Analytical Methods	8
	3-1 January 2007 FWGWMP Monitoring Well Measurements1	
	3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results	
	1	
Table	3-3 FWGWMP January 2007 Inorganics Analytical Results2	1
	3-4 RVAAP Facility-wide Background Criteria3	
Table	3-5 FWGWMP January 2007 VOCs Analytical Results3	2
	3-6 FWGWMP January 2007 SVOCs Analytical Results4	
Table	3-7 FWGWMP January 2007 Pesticide and PCBs Analytical Results6	4

Appendices

- A Field Log Book Sheets
- B Laboratory Data Sheets
- C Data Verification/Validation Reports
- D IDW Report
- E Compounds That Do Not and Cannot Meet the RVAAP QAPP PQLs and/or Region 9 PRGs

PLATES

Plate 1 2006 RVAAP Potentiometric Map

LIST OF ACRONYMS

ADR Automatic Data Review

AOC Area of Concern

BRACO U.S. Army Base Realignment and Closure Office

DOD Department of Defense

FWGWMPP Facility-Wide Groundwater Monitoring Program Plan

FWSAP Facility-Wide Sampling and Analysis Plan

MS/MSD Matrix spike/matrix spike duplicate

NGB National Guard Bureau ODA2 Open Demolition Area 2

Ohio EPA Ohio Environmental Protection Agency

OHARNG Ohio Army National Guard
PCB Polychlorinated biphenyl
PQL project quantitation level
PRG preliminary remediation goal

QA Quality assurance QC Quality control

RQL Ramsdell Quarry Landfill

RTLS Ravenna Training and Logistics Site RVAAP Ravenna Army Ammunition Plant

SRC Site Related Contaminant

SVOC Semi-volatile organic compound USACE U.S. Army Corps of Engineers VOC Volatile organic compound

RVAAP Facility-Wide Groundwater Monitoring Program January 2007 Sampling Event Report
THIS PAGE LEFT INTENTIONALLY BLANK

1.0 INTRODUCTION

1.1 Facility Description

Past Department of Defense (DOD) activities at the Ravenna Army Ammunition Plant (RVAAP) date back to 1940 and include the manufacturing, loading, handling and storage of military explosives and ammunition. Up until 1999, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two year period 2002 and 2003 and the actual total acreage of the property was found to be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683 acre RVAAP have been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the OHARNG Ravenna Training and Logistics Site (RTLS). The RVAAP and the RTLS are collocated on contiguous parcels of property and the RTLS perimeter fence completely encloses the remaining parcels of the RVAAP. The RTLS is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 1-1). The RVAAP portions of the property are solely located within Portage County. The RTLS (inclusive of the RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east (see Figures 1-1 and 1-2). The RTLS is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the RVAAP was operational the RTLS did not exist and the entire 21,683acre parcel was a government-owned, contractor-operated (GOCO) industrial facility. The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP and therefore references to the RVAAP in this document are considered to be inclusive of the historical extent of the RVAAP, which is inclusive of the combined acreages of the current RTLS and RVAAP, unless otherwise specifically stated.

1.2 Project Description

In 2004 the U.S. Army and the Ohio EPA finalized the Facility-Wide Groundwater Monitoring Program (FWGWMP) Plan which details the requirements of the program. The FWGWMP was initiated in 2005 with three consecutive quarters of

FWGWMP well sampling, and four quarters of sampling in 2006. All FWGWMP wells are to be sampled once every quarter, with the exception of the Ramsdell Quarry Landfill wells RQLmw -007, -008, and -009, and two Demolition Area 2 wells, DA2mw-DET3 and –DET4. The RQL and DA2 wells will be sampled twice a year, during the second and fourth sampling events. The January 2007 event represents the first quarter of 2007 FWGWMP sampling.

Details of the program design and requirements are contained in the *RVAAP Facility-Wide Groundwater Monitoring Program Plan, Portage Environmental, September 2004.* This document contains the Sampling and Analysis, Site Safety and Health and Quality Assurance Project Plan addenda that pertain to the proposed work. Additional details pertaining to performance of field and laboratory activities are contained in the *RVAAP Facility- Wide Sampling and Analysis Plan/Quality Assurance Project Plan (FWSAP),* SAIC, March 2001. As detailed in the FWGWMPP, the initial monitoring program consists of the sampling of 36 wells specified in Table 4-1 of the FWGWMPP. Fourteen of these wells are "Background Wells" and the remainder are wells situated at various AOCs at RVAAP. The first sampling event for this project was conducted in April 2005. The results of the previous seven FWGWMP sampling events are reported in the following:

- "Facility- Wide Groundwater Monitoring Program, Report on the April 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio", dated August 2005,
- "Facility Groundwater Monitoring Program, Report on the July 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio", dated November 2005,
- "Facility-Wide Groundwater Monitoring Program, Annual Report for 2005, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio", dated May 2006.
- "Facility- Wide Groundwater Monitoring Program, Report on the March 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio", dated August 2006.
- "Facility- Wide Groundwater Monitoring Program, Report on the May 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio", dated September 2006.
- "Facility- Wide Groundwater Monitoring Program, Report on the July 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio", dated March 2007.
- "Facility- Wide Groundwater Monitoring Program, Report on the October 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio", dated March 2007.

This report presents the results for the 2007 first quarter sampling event.

RVAAP Facility-Wide Groundwater Monitoring Program January 2007 Sampling Event Report

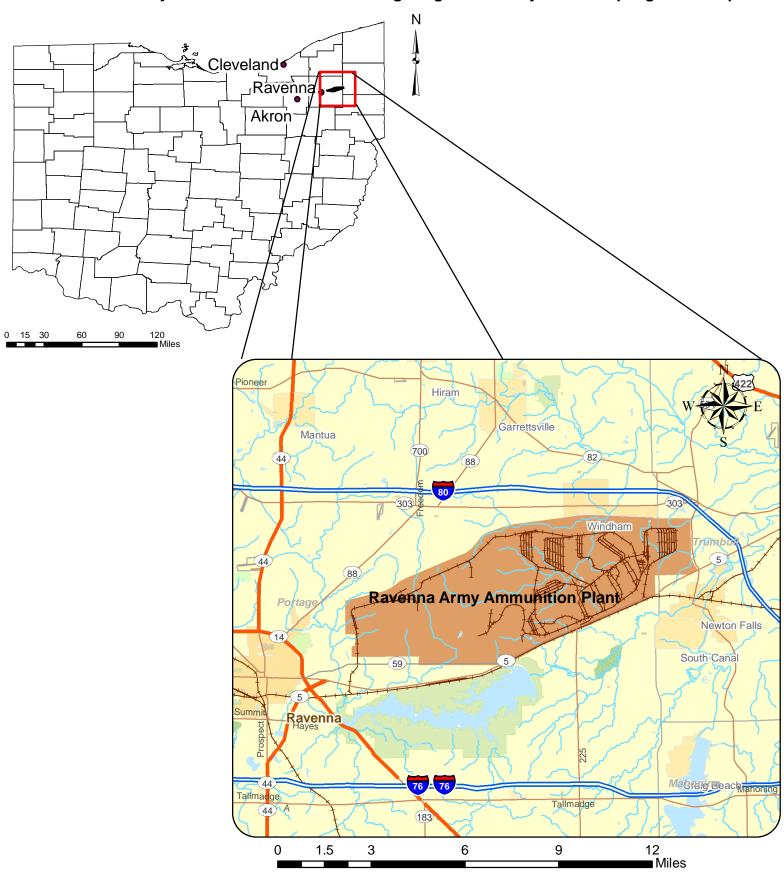


Figure 1-1 General location and Orientation of RVAAP.

1.3 Scope of Work for the January 2007 Sampling Event

SpecPro, Inc. was contracted (GSA Contract No. GS-10F-0448P) by the U.S. Army Corps of Engineers, Louisville District (USACE) to conduct the 2006 FWGWMP monitoring program. The objective of this project is to continue quarterly monitoring under the RVAAP Facility-Wide Groundwater Monitoring Program for an additional period of one (1) year, consisting of four quarterly monitoring events and related activities in 2006. In November 2006, a contract modification was instituted to perform an additional sampling event (and related activities) in January 2007. The following tasks were performed for the January 2007 Sampling event in accordance with specifications contained in the FWGWMPP, the FWSAP, and the Scope of Work written by the USACE in December 2005:

- **Task 1.** Perform groundwater sampling of select wells (36) for four consecutive quarters including the requisite IDW characterization, reporting and disposal. Sample the RQL (3 wells) and the DA2 wells (2 wells) only during two quarterly events in 2006. Obtain water level elevations in 237 on-site monitoring wells and analyze groundwater flow conditions during one of the quarterly monitoring events. For a one time event, clear brush around wells and along access pathways.
- **Task 2.** Perform select laboratory analyses and data validation for collected samples;
- **Task 3.** Reduce quarterly data and preparation of individual sampling event reports;
- **Task 4.** Prepare an annual report including the overall program review requirement, and
- **Task 5.** Perform maintenance on selected groundwater monitoring wells.

The 2007 first quarter sampling event consisted of the following subtasks:

- Collect and analyze groundwater samples from the 36 FWGWMP wells.
- Measure groundwater elevations at the 41 FWGWMP monitoring wells.
- Verify, validate, and reduce the laboratory analytical data produced for the event.
- Prepare and submit a report on the sampling event.

1.4 Report Presentation

This report presents the results of the 2007 first quarter sampling event, which was performed in January 2007. The report is structured in the following way:

- Section 1.0 Introduction
- Section 2.0 Description of Project Activities. This section describes project-specific details not contained in the FWSAP and FWGWMPP on how the tasks described above were performed.
- Section 3.0 Results of Investigation. The results of the fourth sampling event are summarized, groundwater elevation measurements, analytical results, data verification/validation information.
- Section 4.0 References

The appendices contain the following items:

- Appendix A Field Log Book Sheets, including daily activities, water level measurements, and purge records.
- Appendix B Laboratory Data Sheets, including all Quality Control (QC) data and information.
- Appendix C Data Verification/Validation Reports.
- Appendix D Investigation-Derived Waste (IDW) Report
- Appendix E Compounds That Do Not and Cannot Meet the RVAAP QAPP PQLs and/or Region 9 PRGs

2.0 PROJECT ACTIVITIES

2.1 Groundwater Level Monitoring

Depth to water from the top of the inner casing was measured in the 41 FWGWMP wells on January 17, 2007. Water level measurements were taken with a Herron Dipper-T electronic water level indicator. The depth to the bottom of the well from the top of the inner casing was also measured with the electronic water level indicator. Depth to water and depth to bottom measurements and groundwater elevations for the FWGWMP monitoring wells are presented in Table 3-1. The results of the groundwater level monitoring for the FWGWMP wells are presented in Section 3.1. A potentiometric map created from groundwater measurements from all RVAAP monitoring wells in April 2006 is presented on Plate 1.

2.2 Groundwater Sampling

All wells were sampled for this event between January 18 and 25, 2007. All wells were sampled using Micropurge techniques in accordance with the specifications contained in the FWGWMPP and FWSAP. The wells were micropurged until certain groundwater parameters (temperature, specific conductivity, pH, and dissolved oxygen) had stabilized. The groundwater parameters were measured with a Horiba U-22 Flow Cell. Groundwater parameter measurements obtained during micropurging are presented Appendix A.

Groundwater samples were collected with QED micropurge equipment. Equipment and sampling details are contained in Appendix A. Groundwater samples were collected in laboratory supplied containers and stored in iced coolers for shipment in accordance with FWSAP and FWGWMPP specifications.

2.3 Laboratory Analysis

Laboratory analyses on all regular, Quality Control (QC) and matrix spike/matrix spike duplicate (MS/MSD) samples were performed by Severn-Trent Laboratories, Inc. (STL) of North Canton, Ohio. Table 2-1 presents the analytical methods used to analyze the groundwater samples.

Table 2-1 Analytical Methods

METHOD	CONSTITUENTS
PCBs (8082)	GC Semivolatile Organics
	(Polychlorinated Biphenyls (PCBs))
Pesticides (8081A)	GC Semivolatile Organics
	(Pesticides)
Nitroaromatics & Nitramines:	GC Semivolatile Organics
Explosives (8330)	(Explosives/Propellant)
Organic Compounds by UV/HPLC	Nitroguanidine
Base/Neutrals and Acids (8270C)	GC/MS Semivolatile Organics
	(SVOCs)
Volatile Organics, GC/MS (8260B)	GC/MS Volatile Organics
	(VOCs)
Cyanide, Total	General Chemistry
	(Cyanide)
Nitrate – Nitrite	General Chemistry
Nitrocellulose as N by 353.2	General Chemistry
	(Explosive/Propellant)
Inductively Coupled Plasma	Metals
(6010B Trace)	(Arsenic, Lead, Selenium)
Inductively Coupled Plasma (6010B)	Metals (<i>Magnesium, Manganese,</i>
	Barium, Nickel, Potassium, Silver,
	Sodium, Vanadium, Chromium,
	Calcium, Cobalt, Copper)
Inductively Coupled Plasma Mass	Metals (Antimony, Iron, Beryllium,
Spectrometry (6020)	Thallium, Zinc, Cadmium, Aluminum)
Mercury (7470A, Cold Vapor) - Liquid	Metals (Mercury)

A QC sample was collected from each of four wells: BKGmw-008, BKGmw-016, LL12mw-182, and LL1mw-078. An MS/MSD sample was collected from each of four wells: LL4mw-199, LL2mw-059, LL1mw-083, and BKGmw-013. All samples were picked up from the facility and delivered to the laboratory in iced coolers by a STL courier under proper chain-of-custody procedures (Appendix B).

Laboratory analyses on all Quality Assurance (QA) samples were performed by GPL, LLC of Frederick, Maryland. Four QA samples were collected for this sampling event: BKGmw-008, BKGmw-016, LL12mw-182, and LL1mw-078. All QA samples were shipped in iced coolers via overnight delivery service under proper chain-of-custody procedures.

All groundwater samples were analyzed for Explosives, Propellants, Cyanide, Volatile Organic Compounds (VOCs), Semi-Volatile Compounds (SVOCs), Target Analyte List Metals (filtered), Pesticides, and Polychlorinated Biphenyls

(PCBs). Additionally, the groundwater samples collected from the monitoring wells at Load Line 12 (LL12mw-153, -182, -183, and -186) were analyzed for Nitrate-Nitrite.

Several analytical methods used to analyze a number of explosive, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and pesticides cannot meet the RVAAP QAPP Project Quantitation Levels (PQLs) or Region 9 preliminary remediation goals (PRGs). Tables listing these compounds that do not or cannot meet RVAAP PQLs and/or Region 9 PRGs are presented in Appendix E.

Laboratory results are summarized in Section 3.2. Laboratory data sheets, including QA/QC information is contained in Appendix B.

2.4 Data Verification/Validation

Data from STL and GPL, LLC was verified and validated in accordance with project specifications by an independent contractor, Valarie Mariola of Mariola's Data Validation Services and the ADR program. Data validation/verification is summarized in Section 3.3. The Data Verification/Validation Summary Reports are presented in Appendix C.

2.5 Investigation Derived Waste

Purge water was collected at each well location in 5-gallon buckets and transferred to 55-gallon drums located behind Building 1036. Drums were designated for storing purge water from each AOC, and drums were designated to store purge water from the background wells. No more than four gallons were purged from any well. Instruments and equipment were decontaminated after purging and sampling each monitoring well. Decon fluids were collected in separate 55-gallon drums stored behind Building 1036. The IDW fluids were stored until project completion and final disposal was in accordance with FWSAP requirements. The IDW report is presented in Appendix D.

3.0 RESULTS

3.1 Groundwater Elevations

Groundwater elevations for the FWGWMP monitoring wells were obtained on January 17, 2007 as described in Section 2.1. The groundwater elevations for the FWGWMP wells are presented in Table 3-1. A single facility-wide groundwater potentiometric map (Plate 1) based on all RVAAP groundwater measurements taken in April 2006 is also included in this report.

3.2 Summary of Analytical Results

Summaries of laboratory analytical results are presented in Tables 3-2, 3-3, 3-5, 3-6, and 3-7. Compounds and elements that were detected are presented in bold numbers. Appendix B presents the Laboratory Data Sheets. A brief summary of the detected compounds and elements are presented in the following sub-sections. The data presented in the tables is the ADR validated and verified data. Data verification and validation is discussed in Section 3.3 and Appendix C.

3.2.1 Explosives and Propellants

Explosive and propellant compound analytical results, including nitrate-nitrites, are summarized in Table 3-2. The following compounds were detected at concentrations above method detection limits:

- 1,3,5-Trinitrobenzene LL1mw-080 (0.22 ug/L), LL1mw-083 (7.2 ug/L), LL2mw-059 (1.1 ug/L), and LL3mw-238 (30 ug/L).
- 1,3-Dinitrobenzene LL1mw-083 (0.27 ug/L J).
- 2,4,6-Trinitrotoluene LL1mw-080 (0.15 ug/L), LL1mw-083 (6.5 ug/L), and LL3mw-238 (65 ug/L).
- 2,4-Dinitrotoluene LL1mw-083 (3.2 ug/L) and LL2mw-059 (0.20 ug/L).
- 2,6-Dinitrotoluene LL12mw-182 (0.059 ug/L J), LL1mw-083 (1.4 ug/L), and LL3mw-238 (0.49 ug/L)..
- 2-Amino-4,6-dinitrotoluene LL1mw-080 (1.4 ug/L), LL1mw-083 (18 ug/L J), LL2mw-059 (0.45 ug/L), and LL3mw-238 (13 ug/L).

Table 3-1 January 2007 FWGWMP Monitoring Well Measurements

Table 3-1 Jai	nuary 2007 FW	/GWMP Moni	toring Well Meas	urements				_					
Well	Monitoring Zone	Top of Casing (TOC) Elevation ^a (ft)	2005 Annual Groundwater Elevation (Sept. 2005)	2006 1st Quarter Groundwater Elevation (March 2006)	2006 2nd Quarter (Annual 2006) Groundwater Elevation (April 2006)	2006 3rd Quarter Groundwater Elevation (July 2006)	2006 4th Quarter Groundwater Elevation (Sept. 2006)	2007 1st Quarter Groundwater Elevation (Jan. 2007)	Depth to Water (ft below TOC) 01/2007	Reported Construction Depth from TOC ^a (ft)	1/2007 Measured Depth from TOC (ft)	1/2007 Sediment Accumulation (ft)	1/2007 Description of Bottom
						Facility-Wide Ba	ckground Wells	3					
BKGmw-004	U	967.66	953.24	953.93	954.08	954.59	953.74	955.35	12.31	22.00	22.34	-0.34	hard
BKGmw-005	U	1151.94	1137.82	1140.88	1141.86	1141.91	1138.54	1142.21	9.73	21.50	21.01	0.49	hard
BKGmw-006	В	1028.88	1005.66	1006.20	1006.33	1007.03	1006.20	1007.70	21.18	37.60	37.63	-0.03	soft
BKGmw-008	В	972.90	954.36	956.32	957.37	957.53	955.54	958.55	14.35	27.50	27.46	0.04	hard
BKGmw-010	В	1008.79	985.84	993.11	994.17	993.87	992.39	994.80	13.99	22.08 ^c	22.08	0.00	hard
BKGmw-012	В	1000.07	988.40	992.30	992.66	992.35	989.74	993.02	7.05	62.30	62.26	0.04	hard
BKGmw-013	U	989.09	976.26	977.03	977.35	977.50	976.68	978.00	11.09	28.00	28.07	-0.07	hard
BKGmw-015	В	1040.40	989.43	991.66	992.02	991.99	991.11	992.42	47.98	53.50	53.12	0.38	hard
BKGmw-016	U	1100.92	1093.73	1095.28	1095.71	1095.71	1094.04	1095.88	5.04	21.50	21.25	0.25	hard
BKGmw-017	U	1135.30	1115.02	1118.77	1119.08	1118.72	1116.16	1119.32	15.98	36.02 ^c	36.10	-0.08	hard
BKGmw-018	В	1045.56	1029.33	1029.69	1029.82	1030.16	1029.62	1030.39	15.17	27.20	27.64	-0.44	hard
BKGmw-019	U	1110.74	1090.06	1092.24	1092.67	1092.64	1091.02	1093.59	17.15	36.50	35.77	0.73	soft
BKGmw-020	В	1067.50	1055.92	1059.47	1060.28	1059.85	1057.25	1060.51	6.99	33.20	38.21	-5.01	hard
BKGmw-021	U	974.66	955.67	956.00	956.81	959.32	956.29	961.80	12.86	21.50	21.49	0.01	hard
LL1mw-078	В	995.84	964.46	963.39	963.99	965.80	965.05	966.85	28.99	41.14	41.34	-0.20	firm
LL1mw-078	В	995.64	984.78	986.07	986.97	987.04	985.60	987.15	9.12	22.04	22.45	-0.20	hard
LL1mw-083	В	995.20	962.67	961.76	962.27	964.12	963.36	965.35	29.85	41.70	41.59	0.11	hard
						Load	Line 2						
LL2mw-059	В	966.67	953.09	954.45	955.16	954.99	953.56	955.77	10.90	21.84	21.99	-0.15	hard
LL2mw-262	В	1012.62	1001.63	1005.65	1006.52	1006.01	1003.52	1006.20	6.42	22.70	22.72	-0.02	hard
LL2mw-263	В	1011.47	1000.50	1004.26	1005.08	1004.94	1002.79	1004.81	6.66	22.89 ^c	22.74	0.15	hard
LL3mw-238	P	1006.01	000.00	004.20	002.29	Load I		002.90	1411	22.96	22.40	0.54	hord
LL3mw-242	<u>В</u> В	1006.91 999.32	989.83 980.60	991.29 984.32	992.28 986.03	992.07 985.12	990.76 981.99	992.80 986.53	14.11 12.79	22.86 22.43	23.40 22.59	-0.54 -0.16	hard hard
LLJIIIW-Z4Z	D	333.32	300.00	304.32	900.03	Load		300.00	12.13	22.43	22.33	-0.10	Haiu
LL4mw-198	U	983.42	973.60	976.61	977.16	977.54	973.99	978.02	5.40	22.05 ^c	21.29	0.76	soft
LL4mw-199	U	977.28	969.47	970.36	970.79	970.96	969.83	971.78	5.50	23.26	23.34	-0.08	hard
		-	•		•	-		•	-			-	

Table 3-1 January 2007 FWGWMP Monitoring Well Measurements

Well	Monitoring Zone	Top of Casing (TOC) Elevation ^a (ft)	2005 Annual Groundwater Elevation (Sept. 2005)	2006 1st Quarter Groundwater Elevation (March 2006)	2006 2nd Quarter (Annual 2006) Groundwater Elevation (April 2006)	2006 3rd Quarter Groundwater Elevation (July 2006)	(Sept. 2006)	2007 1st Quarter Groundwater Elevation (Jan. 2007)	Depth to Water (ft below TOC) 01/2007	Reported Construction Depth from TOC ^a (ft)	1/2007 Measured Depth from TOC (ft)	1/2007 Sediment Accumulation (ft)	
						Load L	ine 11						
LL11mw-002	U	1080.00	1076.99	1078.30	1079.01	1079.10	1077.86	1079.08	0.92	16.52 ^c	16.52	0.00	hard
LL11mw-007	U	1082.00	1066.26	1068.31	1068.64	1068.66	1067.62	1069.00	13.00	25.37 ^c	25.39	0.00	hard
						Load L		•				•	
LL12mw-153	U	977.85	970.28	972.21	972.60	972.73	971.60	972.70	5.15	25.16 ^c	25.14	0.00	hard
LL12mw-182	U	984.42	971.90	975.51	975.93	975.90	974.10	976.54	7.88	38.32	38.25	0.07	hard
LL12mw-183	U	982.98	969.07	971.58	972.16	972.16	970.49	972.66	10.32	36.37 ^c	36.40	0.00	hard
LL12mw-186	U	978.31	970.92	972.91	973.19	973.25 Central B	972.28	973.73	4.58	21.11 ^c	21.12	0.00	hard
						Central B	urn Area						
CBPmw-005	U	971.59	958.58	960.20	960.67	960.84	959.46	961.50	10.09	27.76	27.54	0.22	firm
CBPmw-007	U	976.37	958.82	961.38	962.15	962.35 Demolitio	960.21	963.20	13.17	32.90	31.86	1.04	firm
DA2mw-107	U	1041.63	1032.75	1033.99	1034.68	1034.93	1033.62	1035.29	6.34	16.82	16.95	-0.13	hard
DA2mw- Det3	U	1036.81	1031.08	1027.53	1027.63	N/A	1026.86	1027.98	8.83	13.00	16.14	-3.14	firm
DA2mw- Det4	U	1039.68	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A
						Ramsdell Qu							
RQLmw-007 RQLmw-008	B B	965.91 966.08	959.95 960.06	958.74 959.14	959.13 959.69	N/A N/A	961.63 961.49	961.63 961.49	4.28 4.59	18.20 18.50	18.68 18.72	-0.48 -0.22	hard hard
RQLmw-009	В	964.58	959.84	958.78	959.20	N/A	961.27	961.27	3.31	18.40	18.89	-0.49	hard
						Winklepeck Bu	rning Grounds						
WBGmw- 006	U	1014.66	1005.56	1008.27	1009.41	1009.56	1006.87	1009.76	4.90	20.33 ^c	20.33	0.00	hard
WBGmw- 007	U	1000.59	981.96	983.54	983.76	984.06	982.53	984.47	16.12	26.48 ^c	26.48	0.00	hard
WBGmw- 009	U	1047.53	1032.50	1035.06	1036.03	1036.02	1033.64	1036.77	10.76	24.37 ^c	24.40	0.00	hard

^a Reported from SAIC/REIMS, 2005

c Remeasured after redevelopment June 2005

U = Unconsolidated well

B = Bedrock well

N/A = Not Applicable

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				BKGmw-004	BKGmw-005	BKGmw-006	BKGmw-008	BKGmw-010	BKGmw-012
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	004C-0357-GW	005C-0358-GW	006C-0359-GW	008C-0360-GW	010C-0361-GW	012C-0362-GW
Date Collected				1/25/2007	1/24/2007	1/22/2007	1/23/2007	1/23/2007	1/23/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
1,3-Dinitrobenzene	μg/L	NS	3.6	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
2,4-Dinitrotoluene	μg/L	NS	73	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
2,6-Dinitrotoluene	μg/L	NS	36	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
2-Nitrotoluene	μg/L	NS	110	0.50 U	0.48 U	0.48 U	0.49 U	0.50 U	0.49 U
3-Nitrotoluene	μg/L	NS	3.2	0.50 U	0.48 U	0.48 U	0.49 U	0.50 U	0.49 U
4-Nitrotoluene	μg/L	NS	3.2	0.50 U	0.48 U	0.48 U	0.49 U	0.50 U	0.49 U
HMX	μg/L	NS	1800	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
Nitrate-Nitrite	mg/L	10000	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	3.4	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
Nitrocellulose	mg/L	NS	NS	0.50 U	0.50 U	0.13 J	0.50 U	0.50 U	0.50 U
Nitroguanidine	μg/L	NS	NS	20 U					
RDX	μg/L	NS	0.61	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U
Tetryl	μg/L	NS	360	0.10 U	0.096 U	0.095 U	0.098 U	0.099 U	0.098 U

U = Indicates that the compound was analyzed for but not detected at or above

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				BKGmw-013	BKGmw-015	BKGmw-016	BKGmw-017	BKGmw-018	BKGmw-019
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	013C-0363-GW	015C-0364-GW	016C-0365-GW	017C-0366-GW	018C-0367-GW	019C-0368-GW
Date Collected				1/25/2007	1/22/2007	1/24/2007	1/24/2007	1/22/2007	1/25/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
1,3-Dinitrobenzene	μg/L	NS	3.6	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
2,4-Dinitrotoluene	μg/L	NS	73	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
2,6-Dinitrotoluene	μg/L	NS	36	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
2-Nitrotoluene	μg/L	NS	110	0.49 U	0.48 U				
3-Nitrotoluene	μg/L	NS	3.2	0.49 U	0.48 U				
4-Nitrotoluene	μg/L	NS	3.2	0.49 U	0.48 U				
HMX	μg/L	NS	1800	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
Nitrate-Nitrite	mg/L	10000	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	3.4	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
Nitrocellulose	mg/L	NS	NS	0.50 U					
Nitroguanidine	μg/L	NS	NS	20 U					
RDX	μg/L	NS	0.61	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U
Tetryl	μg/L	NS	360	0.098 U	0.096 U	0.097 U	0.097 U	0.097 U	0.096 U

U = Indicates that the compound was analyzed for but not detected at or above

J= estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				BKGmw-020	BKGmw-021	CBPmw-005	CBPmw-007	DA2mw-107	LL11mw-002
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGCBPMW-	FWGCBPMW-	FWGDA2MW-	FWGLL11MW-
Sample ID		MCL	PRG	020C-0369-GW	021C-0370-GW	005C-0371-GW	007C-0372-GW	107C-0373-GW	002C-0374-GW
Date Collected				1/22/2007	1/25/2007	1/24/2007	1/24/2007	1/22/2007	1/18/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
1,3-Dinitrobenzene	μg/L	NS	3.6	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
2,4-Dinitrotoluene	μg/L	NS	73	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
2,6-Dinitrotoluene	μg/L	NS	36	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
2-Nitrotoluene	μg/L	NS	110	0.50 U	0.48 U	0.48 U	0.49 U	0.48 U	0.49 U
3-Nitrotoluene	μg/L	NS	3.2	0.50 U	0.48 U	0.48 U	0.49 U	0.48 U	0.49 U
4-Nitrotoluene	μg/L	NS	3.2	0.50 U	0.48 U	0.48 U	0.49 U	0.48 U	0.49 U
HMX	μg/L	NS	1800	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
Nitrate-Nitrite	mg/L	10000	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	3.4	0.069 J	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
Nitrocellulose	mg/L	NS	NS	0.34 J	0.50 U	0.50 U	0.50 U	0.50 U	0.30 J
Nitroguanidine	μg/L	NS	NS	20 U					
RDX	μg/L	NS	0.61	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U
Tetryl	μg/L	NS	360	0.099 U	0.097 U	0.097 U	0.098 U	0.097 U	0.098 U

U = Indicates that the compound was analyzed for but not detected at or above

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				LL11mw-007	LL12mw-153	LL12mw-182	LL12mw-183	LL12mw-186	LL1mw-078
Ctation 12			Region 9	FWGLL11MW-	FWGLL12MW-	FWGLL12MW-	FWGLL12MW-	FWGLL12MW-	FWGLL1mw-078C
Sample ID		MCL	PRG	007C-0375-GW	153C-0376-GW	182C-0377-GW	183C-0378-GW	186C-0379-GW	0380-GW
Date Collected				1/18/2007	1/24/2007	1/24/2007	1/24/2007	1/24/2007	1/23/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
1,3-Dinitrobenzene	μg/L	NS	3.6	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
2,4-Dinitrotoluene	μg/L	NS	73	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
2,6-Dinitrotoluene	μg/L	NS	36	0.098 U	0.097 U	0.059 J	0.097 U	0.095 U	0.098 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
2-Nitrotoluene	μg/L	NS	110	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U
3-Nitrotoluene	μg/L	NS	3.2	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U
4-Nitrotoluene	μg/L	NS	3.2	0.49 U	0.48 U	0.31 J	0.48 U	0.48 U	0.49 U
HMX	μg/L	NS	1800	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.050 J
Nitrate-Nitrite	mg/L	10000	10000	N/A	0.1 U	0.1 UJ	0.1 U	0.1 U	N/A
Nitrobenzene	μg/L	NS	3.4	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U
Nitrocellulose	mg/L	NS	NS	0.50 U	0.50 U	0.12 UJ	0.50 U	0.50 U	0.13 J
Nitroguanidine	μg/L	NS	NS	20 U					
RDX	μg/L	NS	0.61	0.098 U	0.097 U	0.097 U	0.097 U	0.053 J	0.098 U
Tetryl	μg/L	NS	360	0.098 U	0.097 U	0.097 U	0.097 U	0.095 U	0.098 U

U = Indicates that the compound was analyzed for but not detected at or above

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				LL1mw-080	LL1mw-083	LL2mw-059	LL2mw-262	LL2mw-263	LL3mw-238
			Region 9	FWGLL1mw-080C	FWGLL1mw-083C	FWGLL2mw-059c-	FWGLL2mw-262C	FWGLL2mw-263C	FWGLL3mw-238C
Sample ID		MCL	PRG	0381-GW	0382-GW	0383-GW	0384-GW	0385-GW	0386-GW
Date Collected				1/25/2007	1/23/2007	1/22/2007	1/22/2007	1/22/2007	1/25/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.22	7.2	1.1	0.097 U	0.096 U	30
1,3-Dinitrobenzene	μg/L	NS	3.6	0.099 U	0.27 J	0.099 U	0.097 U	0.096 U	0.49 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.15	6.5	0.099 U	0.097 U	0.096 U	65
2,4-Dinitrotoluene	μg/L	NS	73	0.099 U	3.2	0.20	0.097 U	0.096 U	0.49 U
2,6-Dinitrotoluene	μg/L	NS	36	0.099 U	1.4	0.099 U	0.097 U	0.096 U	0.49
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	1.4	18 J	0.45	0.097 U	0.096 U	13
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	3.1	30 J	0.49	0.097 U	0.096 U	27
2-Nitrotoluene	μg/L	NS	110	0.50 U	2.5 U	0.50 U	0.48 U	0.48 U	2.5 U
3-Nitrotoluene	μg/L	NS	3.2	0.50 U	2.5 U	0.50 U	0.48 U	0.48 U	2.5 U
4-Nitrotoluene	μg/L	NS	3.2	0.14 J	2.5 U	0.50 U	0.48 U	0.48 U	2.5 U
HMX	μg/L	NS	1800	0.55	0.27 J	0.061 J	0.097 U	0.096 U	1.5
Nitrate-Nitrite	mg/L	10000	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	3.4	0.099 U	0.49 U	0.099 U	0.097 U	0.096 U	0.49 U
Nitrocellulose	mg/L	NS	NS	0.12 UJ	0.50 U	0.17 J	0.16 J	0.50 U	0.14 UJ
Nitroguanidine	μg/L	NS	NS	20 U	20 U	20 U	20 U	20 U	20 U
RDX	μg/L	NS	0.61	2.4	0.49 U	0.046 J	0.056 J	0.096 U	4.6
Tetryl	μg/L	NS	360	0.099 U	0.49 UJ	0.099 U	0.097 U	0.096 U	0.49 U

U = Indicates that the compound was analyzed for but not detected at or above

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

Table 3-2 FWGWMP January 2007 Explosive and Propellant Analytical Results

Station ID				LL3mw-242	LL4mw-198	LL4mw-199	WBGmw-006	WBGmw-007	WBGmw-009
			Region 9	FWGLL3MW-	FWGLL4MW-	FWGLL4MW-	FWGWBGMW-	FWGWBGMW-	FWGWBGMW-
Sample ID		MCL	PRG	242C-0387-GW	198C-0388-GW	199C-0389-GW	006C-0390-GW	007C-0391-GW	009C-0392-GW
Date Collected				1/25/2007	1/19/2007	1/19/2007	1/23/2007	1/23/2007	1/23/2007
Sample Type				Grab	Grab	Grab	Grab	Grab	Grab
Analyte	Units								
1,3,5-Trinitrobenzene	μg/L	NS	1100	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
1,3-Dinitrobenzene	μg/L	NS	3.6	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
2,4,6-Trinitrolouene	μg/L	NS	2.2	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	73	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	36	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	NS	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
4-Amino-2,6-dinitrotoluene	μg/L	NS	NS	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
2-Nitrotoluene	μg/L	NS	110	0.48 U	0.49 U	0.48 U	2.5 U	0.54 U	0.52 U
3-Nitrotoluene	μg/L	NS	3.2	0.48 U	0.49 U	0.48 U	2.5 U	0.54 U	0.52 U
4-Nitrotoluene	μg/L	NS	3.2	0.48 U	0.49 U	0.48 U	2.5 U	0.54 U	0.52 U
HMX	μg/L	NS	1800	0.097 U	0.098 U	0.096 U	13	0.11 U	1.3
Nitrate-Nitrite	mg/L	10000	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	μg/L	NS	3.4	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U
Nitrocellulose	mg/L	NS	NS	0.50 U	0.50 U	0.50 U	0.13 J	0.50 U	0.50 U
Nitroguanidine	μg/L	NS	NS	20 U					
RDX	μg/L	NS	0.61	0.097 U	0.098 U	0.096 U	53	0.11 U	3.8
Tetryl	μg/L	NS	360	0.097 U	0.098 U	0.096 U	0.50 U	0.11 U	0.10 U

U = Indicates that the compound was analyzed for but not detected at or above

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries

UJ = Indicates a nondetect at an estimated reporting limit

NA = Not analyzed

Bold = detected compounds

NS = no standard

- 4-Amino-2,6-dinitrotoluene LL1mw-080 (3.1 ug/L), LL1mw-083 (30 ug/L J), LL2mw-059 (0.49 ug/L), and LL3mw-238 (27 ug/L).
- 4-Nitrotoluene LL12mw-182 (0.31 ug/L J), LL1mw-080 (0.14 ug/L J).
- HMX LL1mw-078 (0.050 ug/L J), LL1mw-080 (0.55 ug/L),
 LL1mw-083 (0.27 ug/L J), LL2mw-059 (0.061 ug/L J), LL3mw-238 (1.5 ug/L), WBGmw-006 (13 ug/L), and WBGmw-009 (1.3 ug/L).
- Nitrobenzene BKGmw-020 (0.069 ug/L J).
- Nitrocellulose BKGmw-006 (0.13 ug/L J), BKGmw-020 (0.34 ug/L J), LL11mw-002 (0.30 ug/L J), LL1mw-078 (0.13 ug/L J), LL2mw-059 (0.17 ug/L J), LL2mw-262 (0.16 ug/L J), and WBGmw-006 (0.13 ug/L J).
- RDX LL12mw-186 (0.053 ug/L J), LL1mw-080 (2.4 ug/L), LL2mw-059 (0.046 ug/L J), LL2mw-262 (0.056 ug/L J), LL3mw-238 (4.6 ug/L), WBGmw-006 (53 ug/l), and WBGmw-009 (3.8 ug/L).

The results listed above that are qualified with a "J" indicate that the result is estimated due to either low MS/MSD percent recovery or method blank contamination.

3.2.2 Inorganic Elements

Inorganic elements analytical results are presented in Table 3-3. The inorganics detected in the samples included: aluminum, arsenic, barium, cadmium, calcium, cobalt, cyanide, iron, magnesium, manganese, nickel, potassium, and sodium. The inorganic elements that were detected were compared to facility-wide background levels, and against elements that are considered as essential nutrients to determine if they are to be considered as Site Related Contaminants (SRCs). Calcium, magnesium, iron, potassium, and sodium were eliminated as potential SRCs because they are considered as essential nutrients. Background levels for inorganic elements are presented in Table 3-4. The inorganic elements that were detected were compared to the appropriate background criteria to determine if they were SRCs. Elements not detected above reporting limits and facility-wide background levels include antimony, beryllium, chromium, copper, lead, mercury, selenium, silver, thallium, vanadium, and zinc. Inorganic constituent results detected below reporting limits are qualified with a "J" indicating that the result is estimated due to either low LCS recovery, low MS/MSD recovery, or method blank contamination. The following inorganic elements were detected above the reporting limits and appropriate background levels:

- Aluminum BKGmw-010 (136 ug/L J) and LL1mw-083 (612 ug/L).
 There is no MCL for aluminum.
- Arsenic
- Bedrock Aquifer –LL2mw-263 (15.7 ug/L.
- Unconsolidated Aquifer BKGmw-013 (13.4 ug/L), BKGmw-017 (20.4 ug/L), CBPmw-005 (24.6 ug/L), CBPmw-007 (18.8 ug/L), LL11mw-007 (16.0 ug/L), LL12mw-153 (12.7 ug/L), LL12mw-182 (26.6 ug/L), and LL12mw-183 (34.5 ug/L). The MCL for arsenic is 10 ug/L.
- Barium
- Bedrock Aquifer BKGmw-012 (343 ug/L) and BKGmw-015 (273 ug/L).
- Unconsolidated Aquifer BKGmw-013 (87.6 ug/L), LL11mw-007 (88.5 ug/L), LL12mw-182 (94.4 ug/L), LL12mw-183 (82.3 ug/L), and LL4mw-199 (129 ug/L). The MCL for barium is 2,000 ug/L.
- Cadmium LL11mw-002 (1.4 ug/L). The MCL for cadmium is 5 ug/L.
- Cobalt LL1mw-083 (6.4 ug/L). There is no MCL for cobalt.
- Cyanide BKGmw-006 (0.022 ug/L mg/L), BKGmw-016 (0.010 mg/L), BKGmw-018 (0.041 mg/L). The MCL for cyanide is 200 mg/L.
- Manganese
 - Bedrock Aquifer LL2mw-263 (1540 ug/L).
 - Unconsolidated Aquifer –LL4mw-198 (1480 ug/L), LL4mw-199 (1160 ug/L). The MCL for manganese is 50 ug/L.
- Nickel
- Bedrock Aquifer none.
- Unconsolidated Aquifer LL4mw-198 (32.2 ug/LJ).
 The MCL for nickel is 100 ug/L.
- Zinc Zinc was detected above facility-wide background levels in the Unconsolidated Aquifer at LL11mw-002 (92.9 ug/L J) and LL4mw-198 (91.3 ug/L J). Zinc was not detected above facilitywide background levels in the bedrock aquifer. The MCL for zinc is 5000 ug/L.

Station ID	T Jan	I	Inorganic	BKGmw-004	BKGmw-005	BKGmw-006	BKGmw-008
Otation ib			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	004C-0357-GF	005C-0358-GF	006C-0359-GF	008C-0360-GF
Date Collected				1/25/2007	1/24/2007	1/22/2007	1/23/2007
Sample Type				Grab	Grab	Grab	Grab
Analyte	Units						
Aluminum	μg/L	NS	36000	2.8 J	50.0 U	50.0 U	50.0 U
Antimony	μg/L	6	15	0.11 J	0.12 J	0.095 UJ	0.093 J
Arsenic	μg/L	10	0.045	5.0 U	5.0 U	5.0 U	5.0 U
Barium	μg/L	2000	2600	20.4	14.0	11.8	5.0 J
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	0.50 U	0.50 U	0.50 U
Calcium	μg/L	NS	NS	18000	77800	75800	27100 J
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	5.0 U	5.0 U	5.0 U
Copper	μg/L	1300	1500	5.0 U	5.0 U	5.0 U	1.8 J
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.022	0.010 U
Iron	μg/L	300	11000	68.2	312	587	114
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	6430	18700	23100	10700
Manganese	μg/L	50	880	1.1 J	0.73 J	384 J	0.74 J
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	10.0 U	10.0 U	10.0 U	10.0 U
Potassium	μg/L	NS	NS	685 U	391 U	1300 J	485 U
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	12700	3140	42000	9940
Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	6.3 UJ	5.5 UJ	3.1 J	6.7 UJ

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

	IVVIVIEF Jai	luary 2007	inorganic	s Analytical Nes			
Station ID				BKGmw-010	BKGmw-012	BKGmw-013	BKGmw-015
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	010C-0361-GF	012C-0362-GF	013C-0363-GF	015C-0364-GF
Date Collected				1/23/2007	1/23/2007	1/25/2007	1/22/2007
Sample Type	11.5			Grab	Grab	Grab	Grab
Analyte	Units						
Aluminum	μg/L	NS	36000	136	50.0 U	50.0 U	50.0 U
Antimony	μg/L	6	15	2.0 UJ	0.096 J	0.94 J	0.14 UJ
Arsenic	μg/L	10	0.045	5.0 U	5.0 U	13.4	5.0 U
Barium	μg/L	2000	2600	18.4	343	87.6	273
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.14 J	0.50 U	0.50 U	0.50 U
Calcium	μg/L	NS	NS	12100 J	35800 J	73500	30500
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	5.0 U	5.0 U	5.0 U
Copper	μg/L	1300	1500	5.0 U	5.0 U	5.0 U	5.0 U
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.0095 J	0.010 U
Iron	μg/L	300	11000	47.2	413	1170	213
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	14900	12000	24600	12700
Manganese	μg/L	50	880	838	49.8	432	25.6 J
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	76.3	10.0 U	10.0 U	10.0 U
Potassium	μg/L	NS	NS	591 U	4980 J	1870 J	4360 J
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	3590	36700	12100	13100
Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	12.3 U	9.0 UJ	5.6 UJ	9.9 J

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

 $\ensuremath{\mathsf{UJ}}$ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

Region 9 FWGBKGMW- FWGBKGM* FWGBKGM* FWGBKGM* FWGBKGM* FWGBKGM* FWGBKGM* FWGBKATA FWGBKATA	Table 3-3 FWG	VVIVIE Jai	luary 2007	inorganic				
Sample ID	Station ID			D : 0	BKGmw-016	BKGmw-017	BKGmw-018	BKGmw-019
Date Collected Sample Type								
Sample Type Units Grab Grab Grab Grab Analyte Units 36000 26.7 J 50.0 U 2.8 J 25.5 J Aluminum μg/L 6 15 0.92 J 0.073 J 0.12 UJ 0.074 J Arsenic μg/L 10 0.045 5.0 U 20.4 5.0 U 5.0 U Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadrium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730			MCL	PRG				
Analyte Units Aluminum μg/L NS 36000 26.7 J 50.0 U 2.8 J 25.5 J Antimony μg/L 6 15 0.92 J 0.073 J 0.12 UJ 0.074 J Arsenic μg/L 10 0.045 5.0 U 20.4 5.0 U 5.0 U Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadmium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copate μg/L NS 730 5.0 U 5.0 U 5.0 U								
Aluminum μg/L NS 36000 26.7 J 50.0 U 2.8 J 25.5 J Antimony μg/L 6 15 0.92 J 0.073 J 0.12 UJ 0.074 J Arsenic μg/L 10 0.045 5.0 U 20.4 5.0 U 5.0 U Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadmium μg/L 5 NS 0.50 U		Units			Glab	Grab	Grab	Glab
Antimony μg/L 6 15 0.92 J 0.073 J 0.12 UJ 0.074 J Arsenic μg/L 10 0.045 5.0 U 20.4 5.0 U 5.0 U Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadmium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Calcium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Calcium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Calcium μg/L 100 NS 5.0 U			NS	36000	26.7.1	50.011	281	25.5.1
Arsenic μg/L 10 0.045 5.0 U 20.4 5.0 U 5.0 U Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadmium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Chromium μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L 1300 1500 2.4 J 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 5.0 U 5.0 U Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>			_					
Barium μg/L 2000 2600 14.1 37.0 16.2 43.3 Beryllium μg/L 4 NS 1.0 U				-				
Beryllium μg/L 4 NS 1.0 U 1.0 U 1.0 U 1.0 U Cadmium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Cyanide mg/L 300 11000 80.5 1800 273 520 Lead μg/L 300 11000 80.5 1800 273 520 Lead μg/L		1	_					
Cadmium μg/L 5 NS 0.50 U 0.50 U 0.50 U 0.50 U Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 5.0 U 5.0 U Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L		<u> </u>						
Calcium μg/L NS NS 9600 101000 33300 114000 Chromium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 300 1500 2.4 J 5.0 U 2.0 J 5.0 U Copper μg/L 300 11000 80.5 1800 273 520 Lead μg/L NS NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L		<u> </u>						
Chromium μg/L 100 NS 5.0 U 5.0 U 5.0 U 5.0 U Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/		μg/L						
Cobalt μg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg	Calcium	μg/L	NS	NS	9600	101000	33300	114000
Copper μg/L 1300 1500 2.4 J 5.0 U 2.0 J 5.0 U Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg	Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cyanide mg/L 200 730 0.010 0.010 U 0.041 0.010 U Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium </td <td>Cobalt</td> <td>μg/L</td> <td>NS</td> <td>730</td> <td>5.0 U</td> <td>5.0 U</td> <td>5.0 U</td> <td>5.0 U</td>	Cobalt	μg/L	NS	730	5.0 U	5.0 U	5.0 U	5.0 U
Iron μg/L 300 11000 80.5 1800 273 520 Lead μg/L 15 NS 3.0 U 3.0 U 3.0 U 3.0 U Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U Silver μg/L 100 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L	Copper	μg/L	1300	1500	2.4 J	5.0 U	2.0 J	5.0 U
Lead μg/L 15 NS 3.0 U 3.0 U<	Cyanide	mg/L	200	730	0.010	0.010 U	0.041	0.010 U
Magnesium μg/L NS NS 4090 43200 4020 32600 Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U Silver μg/L 100 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L NS 36 10.0 U 10.0 U 10.0 U 10.0 U	Iron	μg/L	300	11000	80.5	1800	273	520
Manganese μg/L 50 880 9.6 J 211 45.6 J 146 Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0 U 10.0 U 10.0 U Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U Silver μg/L 100 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L 2 2.4 1.0 U 1.0 U 1.0 U 1.0 U 10.0 U	Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Mercury μg/L 2 11 0.091 J 0.20 U 0.20 U 0.20 U Nickel μg/L 100 730 10.0 U 10.0	Magnesium	μg/L	NS	NS	4090	43200	4020	32600
Nickel μg/L 100 730 10.0 U 5.0 U	Manganese	μg/L	50	880	9.6 J	211	45.6 J	146
Potassium μg/L NS NS 506 U 2340 J 835 J 1200 J Selenium μg/L 50 180 5.0 U 5.0 U<	Mercury	μg/L	2	11	0.091 J	0.20 U	0.20 U	0.20 U
Selenium μg/L 50 180 5.0 U 5.0 U 5.0 U 5.0 U Silver μg/L 100 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L 2 2.4 1.0 U 1.0 U 1.0 U 1.0 U Vanadium μg/L NS 36 10.0 U 10.0 U 10.0 U 10.0 U	Nickel	μg/L	100	730	10.0 U	10.0 U	10.0 U	10.0 U
Silver μg/L 100 180 5.0 U 5.0 U 5.0 U 5.0 U Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L 2 2.4 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Vanadium μg/L NS 36 10.0 U 10.0 U 10.0 U 10.0 U	Potassium	μg/L	NS	NS	506 U	2340 J	835 J	1200 J
Sodium μg/L NS NS 2350 22100 1960 8120 Thallium μg/L 2 2.4 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 10.0 U	Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Thallium μg/L 2 2.4 1.0 U 1.0 U 1.0 U 1.0 U Vanadium μg/L NS 36 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U	Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Vanadium μg/L NS 36 10.0 U 10.0 U 10.0 U 10.0 U	Sodium	μg/L	NS	NS	2350	22100	1960	8120
	Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	1.0 U
Zinc μg/L 5000 11000 6.4 UJ 5.1 UJ 4.2 J 4.4 UJ	Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
1 1 1 1	Zinc	μg/L	5000	11000	6.4 UJ	5.1 UJ	4.2 J	4.4 UJ

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above

the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

Sample ID MCL Region 9 PRG FWGBKGMW- 020C-0369-GF FWGBKGMW- 021C-0370-GF FWGBKGMW- 020C-0369-GF 021C-0370-GF 005C-005C-005C-005C-005C-005C-005C-005C	Pmw-005 CBPmw-007 GCBPMW- FWGCBPMW C-0371-GF 007C-0372-G 24/2007 1/24/2007 Grab Grab 50.0 U 50.0 U 0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U 0.50 U 0.50 U
Sample ID MCL PRG 020C-0369-GF 021C-0370-GF 005C Date Collected 1/22/2007 1/25/2007 1/2 Sample Type Grab Grab Analyte Units Sample Type Grab Aluminum μg/L NS 36000 3.1 J 50.0 U 50.0 U Antimony μg/L 6 15 0.92 J 0.19 J 0.19 J Arsenic μg/L 10 0.045 5.0 U 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	C-0371-GF 007C-0372-G 24/2007 1/24/2007 Grab Grab 50.0 U 50.0 U 0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Date Collected 1/22/2007 1/25/2007 1/2 Sample Type Grab Grab Grab Analyte Units Units 50.0 U 5 Aluminum μg/L 6 15 0.92 J 0.19 J 0 Arsenic μg/L 10 0.045 5.0 U 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	24/2007 1/24/2007 Grab Grab 50.0 U 50.0 U 0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Sample Type Grab Grab Analyte Units Grab Aluminum μg/L NS 36000 3.1 J 50.0 U 5 Antimony μg/L 6 15 0.92 J 0.19 J 0 Arsenic μg/L 10 0.045 5.0 U 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	Grab Grab 50.0 U 50.0 U 0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Analyte Units Aluminum μg/L NS 36000 3.1 J 50.0 U 5 Antimony μg/L 6 15 0.92 J 0.19 J 0 Arsenic μg/L 10 0.045 5.0 U 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	50.0 U 50.0 U 0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Aluminum μg/L NS 36000 3.1 J 50.0 U 5 Antimony μg/L 6 15 0.92 J 0.19 J 0 Arsenic μg/L 10 0.045 5.0 U 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Antimony μg/L 6 15 0.92 J 0.19 J 0.19 J Arsenic μg/L 10 0.045 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	0.11 J 0.12 J 24.6 18.8 36.4 12.9 1.0 U 1.0 U
Arsenic μg/L 10 0.045 5.0 U 5.0 U Barium μg/L 2000 2600 154 31.0	24.6 18.8 36.4 12.9 1.0 U 1.0 U
Barium μg/L 2000 2600 154 31.0	1.0 U 1.0 U
Pondlium val 4 NC 4011	
Beryllium	2.50.11 0.50.11
Cadmium μg/L 5 NS 0.50 U 0.50 U	0.50 0
Calcium μg/L NS NS 49600 88200 7	75600 198000
Chromium μg/L 100 NS 5.0 U 5.0 U	5.0 U 5.0 U
Cobalt μg/L NS 730 5.0 U 5.0 U	5.0 U 5.0 U
Copper μg/L 1300 1500 5.0 U 5.0 U	5.0 U 2.3 J
Cyanide mg/L 200 730 0.0090 J 0.010 U 0	0.010 U
Iron μg/L 300 11000 1950 296	1040 2290
Lead μg/L 15 NS 3.0 U 3.0 U	3.0 U 3.0 U
Magnesium μg/L NS NS 15900 50800 3	37400 104000
Manganese μg/L 50 880 744 J 0.47 J	51.7 73.6
Mercury μg/L 2 11 0.20 U 0.20 U	0.20 U 0.20 U
Nickel μg/L 100 730 10.0 U 10.0 U 1	10.0 U 10.0 U
Potassium μg/L NS 2630 J 695 U 4	4190 J 5070 J
	5.0 U 5.0 U
19	5.0 U 5.0 U
19	29400 136000
1. 3	1.0 U 1.0 U
1. 1.1.	10.0 U 10.0 U
Zinc μg/L 5000 11000 9.5 J 3.9 UJ	

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above

the reporting limit

- J = estimated result. Results have been qualified "J" for one or more of the following reasons:
- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

 $\ensuremath{\mathsf{UJ}}$ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

Table 3-3 FWG	VVIVIER Jai	luary 2001	morganic	s Analytical Nes			
Station ID				DA2mw-107	LL11mw-002	LL11mw-007	LL12mw-153
			Region 9	FWGDA2MW-	FWGLL11MW-	FWGLL11MW-	FWGLL12MW-
Sample ID		MCL	PRG	107C-0373-GF	002C-0374-GF	007C-0375-GF	153C-0376-GF
Date Collected				1/22/2007	1/18/2007	1/18/2007	1/24/2007
Sample Type	Units			Grab	Grab	Grab	Grab
Analyte	1						
Aluminum	μg/L	NS	36000	50.0 U	50.0 U	50.0 U	50.0 U
Antimony	μg/L	6	15	2.0 UJ	0.10 UJ	0.14 UJ	2.0 UJ
Arsenic	μg/L	10	0.045	5.0 U	5.0 U	16.0	12.7
Barium	μg/L	2000	2600	32.0	30.1	88.5	73.2
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	1.4	0.50 U	0.50 U
Calcium	μg/L	NS	NS	87000 J	96300 J	94300 J	133000
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	5.0 U	5.0 U	5.0 U
Copper	μg/L	1300	1500	5.0 U	5.0 U	5.0 U	5.0 U
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.010 U	0.010 U
Iron	μg/L	300	11000	786	337 J	523 J	4020
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	29300	27100	33600	72600
Manganese	μg/L	50	880	345	84.8 J	274 J	187
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	10.0 U	10.0 U	10.0 U	10.0 U
Potassium	μg/L	NS	NS	1440 J	1410 J	1420 J	1960 J
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	9810	9100	14400	24400
Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	4.7 UJ	92.9 J	5.1 UJ	6.9 UJ

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

	IVVIVIET Jai	ilual y 200 <i>1</i>	morganic	s Analytical Res			
Station ID				LL12mw-182	LL12mw-183	LL12mw-186	LL1mw-078
			Region 9	FWGLL12MW-	FWGLL12MW-	FWGLL12MW-	FWGLL1mw-078C
Sample ID		MCL	PRG	182C-0377-GF	183C-0378-GF	186C-0379-GF	0380-GF
Date Collected				1/24/2007	1/24/2007	1/24/2007	1/23/2007
Sample Type	11.5			Grab	Grab	Grab	Grab
Analyte	Units						
Aluminum	μg/L	NS	36000	5.4 J	50.0 U	50.0 U	50.0 U
Antimony	μg/L	6	15	0.34 J	0.12 J	0.17 J	0.067 J
Arsenic	μg/L	10	0.045	26.6	34.5	5.0 U	5.0 U
Barium	μg/L	2000	2600	94.4	82.3	47.3	8.0 J
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	0.50 U	0.50 U	0.50 U
Calcium	μg/L	NS	NS	73200	110000	141000	52200 J
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	5.0 U	1.4 J	3.9 J
Copper	μg/L	1300	1500	2.0 J	5.0 U	5.0 U	1.9 J
Cyanide	mg/L	200	730	0.0035 J	0.010 U	0.0086 J	0.010 U
Iron	μg/L	300	11000	292	1220	699	200
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	49700	44700	65000	7630
Manganese	μg/L	50	880	22.3	56.9	295	82.0
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	1.6 J	10.0 U	10.0 U	10.0 U
Potassium	μg/L	NS	NS	6140 J	4920 J	1520 J	1940 J
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	29200	20600	16600	6170
Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	0.10 J
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	4.8 UJ	6.3 UJ	5.2 UJ	10.3 U

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above

the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

Table 3-3 FWG	VVIVIER Jai	luary 2007	morganic	s Analytical Nes			
Station ID				LL1mw-080	LL1mw-083	LL2mw-059	LL2mw-262
			U	FWGLL1mw-080C			
Sample ID		MCL	PRG	0381-GF	0382-GF	0383-GF	0384-GF
Date Collected				1/25/2007	1/23/2007	1/22/2007	1/22/2007
Sample Type	Units			Grab	Grab	Grab	Grab
Analyte	1						
Aluminum	μg/L	NS	36000	50.0 U	612	5.0 J	50.0 U
Antimony	μg/L	6	15	0.21 J	0.95 J	0.93 J	0.31 UJ
Arsenic	μg/L	10	0.045	5.0 U	5.0 U	5.0 U	5.0 U
Barium	μg/L	2000	2600	10.0 U	15.6	23.1	15.3
Beryllium	μg/L	4	NS	1.0 U	0.27 J	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	0.34 J	0.50 U	0.50 U
Calcium	μg/L	NS	NS	45100	16100 J	40800	42900
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	6.4	1.3 J	5.0 U
Copper	μg/L	1300	1500	5.0 U	3.2 J	5.0 U	5.0 U
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.010 U	0.010 U
Iron	μg/L	300	11000	147	74.0	313	188
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	3180	4120	7850	30800
Manganese	μg/L	50	880	0.34 J	374	151 J	259 J
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	10.0 U	20.2	10.0 U	10.9
Potassium	μg/L	NS	NS	1500 J	2210 J	552 U	1670 J
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	722 J	12000	5980	8720
Thallium	μg/L	2	2.4	1.0 U	0.085 J	0.037 J	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	3.7 UJ	35.0 J	6.1 J	5.2 J

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

- J = estimated result. Results have been qualified "J" for one or more of the following reasons:
- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit Bold = detected compounds

NS = no standard

Table 3-3 FWG	VVIVIEE Jai	luary 2001	morganic	s Analytical Nes			
Station ID				LL2mw-263	LL3mw-238	LL3mw-242	LL4mw-198
			U	FWGLL2mw-263C-		FWGLL3MW-	FWGLL4MW-
Sample ID		MCL	PRG	0385-GF	0386-GF	242C-0387-GF	198C-0388-GF
Date Collected				1/22/2007	1/25/2007	1/25/2007	1/19/2007
Sample Type				Grab	Grab	Grab	Grab
Analyte	Units						
Aluminum	μg/L	NS	36000	50.0 U	50.0 U	9.8 J	15.7 J
Antimony	μg/L	6	15	0.17 UJ	0.13 J	2.0 UJ	0.11 UJ
Arsenic	μg/L	10	0.045	15.7	5.0 U	5.0 U	5.0 U
Barium	μg/L	2000	2600	18.1	5.6 J	7.5 J	13.7
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	0.50 U	0.50 U	0.091 J
Calcium	μg/L	NS	NS	29500	36600	11000	31100 J
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	3.0 J	5.0 U	5.0 U	1.2 J
Copper	μg/L	1300	1500	5.0 U	1.9 J	5.0 U	5.0 U
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.010 U	0.010 U
Iron	μg/L	300	11000	4800	120	36.0	4690 J
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	12600	3990	5640	14700
Manganese	μg/L	50	880	1540 J	0.79 J	5.3 J	1480 J
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	4.3 J	10.0 U	4.8 J	32.2
Potassium	μg/L	NS	NS	625 U	1620 J	768 J	1140 J
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	4170	1910	9750	10500
Thallium	μg/L	2	2.4	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	4.3 J	6.2 UJ	6.7 UJ	91.3 J

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above

the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compounds

NS = no standard

	VVIVIER Jai	luary 2007	morganic	s Analytical Nes			
Station ID				LL4mw-199	WBGmw-006	WBGmw-007	WBGmw-009
			Region 9	FWGLL4MW-	FWGWBGMW-	FWGWBGMW-	FWGWBGMW-
Sample ID		MCL	PRG	199C-0389-GF	006C-0390-GF	007C-0391-GF	009C-0392-GF
Date Collected				1/19/2007	1/23/2007	1/23/2007	1/23/2007
Sample Type	Units			Grab	Grab	Grab	Grab
Analyte	1						
Aluminum	μg/L	NS	36000	50.0 U	4.0 J	50.0 U	5.8 J
Antimony	μg/L	6	15	0.067 UJ	1.0 J	0.37 J	0.13 J
Arsenic	μg/L	10	0.045	4.8 J	5.0 U	5.0 U	5.0 U
Barium	μg/L	2000	2600	129	26.5	19.1	9.0 J
Beryllium	μg/L	4	NS	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5	NS	0.50 U	0.50 U	0.50 U	0.50 U
Calcium	μg/L	NS	NS	104000 J	66000 J	61900 J	39000 J
Chromium	μg/L	100	NS	5.0 U	5.0 U	5.0 U	5.0 U
Cobalt	μg/L	NS	730	5.0 U	5.0 U	5.0 U	5.0 U
Copper	μg/L	1300	1500	5.0 U	5.0 U	5.0 U	5.0 U
Cyanide	mg/L	200	730	0.010 U	0.010 U	0.010 U	0.010 U
Iron	μg/L	300	11000	5280 J	263	288	165
Lead	μg/L	15	NS	3.0 U	3.0 U	3.0 U	3.0 U
Magnesium	μg/L	NS	NS	26200	21800	14200	11900
Manganese	μg/L	50	880	1160 J	59.2	41.5	40.1
Mercury	μg/L	2	11	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	100	730	10.0 U	10.0 U	10.0 U	10.0 U
Potassium	μg/L	NS	NS	1760 J	812 J	938 J	453 U
Selenium	μg/L	50	180	5.0 U	5.0 U	5.0 U	5.0 U
Silver	μg/L	100	180	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	9380	6200	3400	3760
Thallium	μg/L	2	2.4	1.0 U	0.030 J	1.0 U	1.0 U
Vanadium	μg/L	NS	36	10.0 U	10.0 U	10.0 U	10.0 U
Zinc	μg/L	5000	11000	5.7 UJ	3.4 UJ	4.1 UJ	5.7 UJ

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- Method blank contamination
- Low MS/MSD percent recoveries
- low LCS

UJ = Indicates a nondetect at an estimated reporting limit Bold = detected compounds

NS = no standard

Table 3-4 RVAAP Facility-wide Background Criteria, (SAIC, 2001b)

Media Units	Surface Soil mg/kg	Subsurface Soil mg/kg	Sediment mg/kg	Surface Water ug/L	Groundwater Bedrock Zone Filtered ug/L	Groundwater Bedrock Zone Unfiltered ug/L	Groundwater Unconsolidated Zone Filtered ug/L	Groundwater Unconsolidated Unfiltered ug/L
Analyte								
Cyanide	0	0	0	0	0	0	0	0
Aluminum	17700	19500	13900	3370	0	9410	0	0
Antimony	0.96	0.96	0	0	0	0	0	0
Arsenic	15.4	19.8	19.5	3.2	0	19.1	11.7	11.7
Barium	88.4	124	123	47.5	256	241	82.1	82.1
Beryllium	0.88	0.88	0.38	0	0	0	0	0
Cadmium	0	0	0	0	0	0	0	0
Calcium	15800	35500	5510	41400	53100	48200	115000	115000
Chromium	17.4	27.2	18.1	0	0	19.5	7.3	7.3
Cobalt	10.4	23.2	9.1	0	0	0	0	0
Copper	17.7	32.3	27.6	7.9	0	17	0	0
Iron	23100	35200	28200	2560	1430	21500	279	279
Lead	26.1	19.1	27.4	0	0	23	0	0
Magnesium	3030	8790	2760	10800	15000	13700	43300	43300
Manganese	1450	3030	1950	391	1340	1260	1020	1020
Mercury	0.036	0.044	0.059	0	0	0	0	0
Nickel	21.1	60.7	17.7	0	83.4	85.3	0	0
Potassium	927	3350	1950	3170	5770	6060	2890	2890
Selenium	104	105	107	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0
Sodium	123	145	112	21300	51400	49700	45700	45700
Thallium	0	0.91	0.89	0	0	0	0	0
Vanadium	31.1	37.6	26.1	0	0	15.5	0	0
Zinc	61.8	93.3	532	42	52.3	193	60.9	60.9

3.2.3 Volatile Organic Compounds (VOCs)

VOC analytical results are summarized in Table 3-5. Benzene at BKGmw-012 (0.46 ug/L J) was the only VOC detected above reporting limits for this sampling event. The MCL for benzene is 5 ug/L. The "J" qualifier indicates that the result is estimated due to method blank contamination.

3.2.4 Semivolatile Organic Compounds (SVOCs)

SVOC analytical results are summarized in Table 3-6. SVOCs were not detected above reporting limits for this sampling event.

3.2.5 Pesticides and Polychlorinated Biphenyls (PCBs)

Pesticides and PCBs analytical results are summarized in Table 3-7. Beta-BHC was detected above reporting limits at LL1mw-083 (0.086 ug/L J) and LL3mw-238 (0.17 ug/L J). Other pesticides were not detected above reporting limits. PCBs were not detected above reporting limits.

The results qualified with a "J" indicate that the results are estimated due to either low LCS recovery, low MS/MSD recovery, or low surrogate recovery.

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID	y 2007 VO			BKGmw-004	BKGmw-005	BKGmw-006
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	004C-0357-GW	005C-0358-GW	006C-0359-GW 1/22/2007
Date Collected Sample Type				1/25/2007 Grab	1/24/2007 Grab	1/22/2007 Grab
Analyte	Units			Glab	Glab	Giab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID		23 7 trialytice		BKGmw-008	BKGmw-010	BKGmw-012
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	008C-0360-GW	010C-0361-GW	012C-0362-GW
Date Collected Sample Type				1/23/2007 Grab	1/23/2007 Grab	1/23/2007 Grab
Analyte	Units			Glab	Grab	Olab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	0.46 J
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID	y 2007 VO			BKGmw-013	BKGmw-015	BKGmw-016
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	013C-0363-GW 1/25/2007	015C-0364-GW	016C-0365-GW 1/24/2007
Date Collected Sample Type				1/25/2007 Grab	1/22/2007 Grab	1/24/2007 Grab
Analyte	Units			Giab	Grab	Grab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID		55 7 trialytice		BKGmw-017	BKGmw-018	BKGmw-019
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGBKGMW-
Sample ID		MCL	PRG	017C-0366-GW	018C-0367-GW	019C-0368-GW
Date Collected Sample Type				1/24/2007 Grab	1/22/2007 Grab	1/25/2007 Grab
Analyte	Units			Gidb	Oldo	Oras
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				BKGmw-020	BKGmw-021	CBPmw-005
			Region 9	FWGBKGMW-	FWGBKGMW-	FWGCBPMW-
Sample ID		MCL	PRG	020C-0369-GW	021C-0370-GW	005C-0371-GW
Date Collected Sample Type				1/22/2007 Grab	1/25/2007 Grab	1/24/2007 Grab
Analyte	Units			Giab	Giab	Giab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U
O						

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID	,	<u> </u>		CBPmw-007	DA2mw-107	LL11mw-002
			Region 9	FWGCBPMW-	FWGDA2MW-	FWGLL11MW-
Sample ID		MCL	PRG	007C-0372-GW	107C-0373-GW	002C-0374-GW
Date Collected Sample Type				1/24/2007 Grab	1/22/2007 Grab	1/18/2007 Grab
Analyte	Units			Glab	Glab	Grab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				LL11mw-007	LL12mw-153	LL12mw-182
			Region 9	FWGLL11MW-	FWGLL12MW-	FWGLL12MW-
Sample ID		MCL	PRG	007C-0375-GW	153C-0376-GW	182C-0377-GW
Date Collected Sample Type				1/18/2007 Grab	1/24/2007 Grab	1/24/2007 Grab
Analyte	Units			Glab	Glab	Olab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				LL12mw-183	LL12mw-186	LL1mw-078
			Region 9	FWGLL12MW-	FWGLL12MW-	FWGLL1mw-078C-
Sample ID		MCL	PRG	183C-0378-GW	186C-0379-GW	0380-GW
Date Collected Sample Type				1/24/2007 Grab	1/24/2007 Grab	1/23/2007 Grab
Analyte	Units			Glab	Glab	Glab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U
O 10 D - 0 - 10						

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				LL1mw-080	LL1mw-083	LL2mw-059
Sample ID		MCI	Region 9	FWGLL1mw-080C-		FWGLL2mw-059c- 0383-GW
Sample ID Date Collected		MCL	PRG	0381-GW 1/25/2007	0382-GW 1/23/2007	1/22/2007
Sample Type				Grab	Grab	Grab
Analyte	Units					
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Sample ID Date Collected Sample Type Analyte Units	LL2mw-262	LL2mw-263	LL3mw-238
Date Collected Sample Type	gion 9 FWGLL2mw-262C PRG 0384-GW	FWGLL2mw-263C- 0385-GW	FWGLL3mw-238C- 0386-GW
Sample Type Analyte	1/22/2007	1/22/2007	1/25/2007
1,1,1-Trichloroethane µg/L NS 3 1,1,2,2-Tetrachloroethane µg/L NS 0 1,1,2-Trichloroethane µg/L NS 0 1,1-Dichloroethane µg/L NS 0 1,1-Dichloroethane µg/L NS 0 1,2-Dichloroethane µg/L NS 0 1,2-Dichloroethane µg/L NS 0 1,2-Dichloropropane µg/L NS 0 1,2-Dichloropropane µg/L NS 0 1,2-Dichloropropane µg/L NS 0 2-Butanone µg/L NS 0 1,2-Dichloropropane µg/L NS 0 2-Butanone µg/L NS 0 1,2-Dichloropropane µg/L NS 0 2-Hexanone µg/L NS 0 4-Methyl-2-pentanone µg/L NS 0 4-Methyl-2-pentanone µg/L NS 0 Bromochloromethane µg/L	Grab	Grab	Grab
1,1,2,2-Tetrachloroethane µg/L NS 0 1,1,2-Trichloroethane µg/L NS 0 1,1-Dichloroethane µg/L NS 0 1,1-Dichloroethane µg/L NS 0 1,2-Dichloroethane µg/L NS 0 1,2-Dichloroethane (total) µg/L NS 1 1,2-Dichloropropane µg/L NS 7 2-Butanone µg/L NS 7 2-Butanone µg/L NS 7 2-Hexanone µg/L NS 7 4-Methyl-2-pentanone µg/L NS 1 Acetone µg/L NS 5 Benzene µg/L NS 5 Benzene µg/L NS 5 Bromodichloromethane µg/L NS 6 Bromodichloromethane µg/L NS 6 Bromoform µg/L NS 1 Carbon disulfide µg/L NS 1 <td></td> <td></td> <td></td>			
1,1,2-Trichloroethane μg/L NS 0 1,1-Dichloroethane μg/L 7 1 1,1-Dichloroethane μg/L NS 8 1,2-Dichloroethane μg/L NS 0.0 1,2-Dichloroethane μg/L NS 0.0 1,2-Dichloropropane μg/L NS 0 1,2-Dichloropropane μg/L NS 0 2-Butanone μg/L NS 7 2-Hexanone μg/L NS 1 4-Methyl-2-pentanone μg/L NS 1 Bromochloromethane μg/L NS 1 Bromochloromethane μg/L <td>200 1.0 U</td> <td>1.0 U</td> <td>1.0 U</td>	200 1.0 U	1.0 U	1.0 U
1,1-Dichloroethane µg/L 7 1 1 1,1-Dichloroethene (total) µg/L NS 8 1,2-Dibromoethane µg/L NS 0.4 1,2-Dichloroethane µg/L NS 0.4 1,2-Dichloroethane µg/L NS 0.4 1,2-Dichloroethane µg/L NS 0.4 1,2-Dichloropropane µg/L NS 0.0 1,2-Dichloropropane µg/L NS 0.0 1,2-Dichloropropane µg/L NS 0.0 1,2-Dichloropropane µg/L NS 0.0 1,2-Dichloropropane 0.0 1,2-Dichloropropane µg/L NS 0.0 1,2-Dichloropropane 0.0 1,2-Dichloropropane 1,2-Dichloropro	.43 1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total) µg/L NS 8 1,2-Dibromoethane µg/L NS 0.0 1,2-Dichloroethane µg/L 5 0 1,2-Dichloropropane µg/L NS 1 1,2-Dichloropropane µg/L NS 1 1,2-Dichloropropane µg/L NS 1 2-Butanone µg/L NS 7 2-Hexanone µg/L NS 1 4-Methyl-2-pentanone µg/L NS 1 4-Methyl-2-pentanone µg/L NS 1 Acetone µg/L NS 1 Bromothyl-2-pentanone µg/L NS 1 Acetone µg/L NS 1 Bromothyl-2-pentanone µg/L NS 1 Bromodichloromethane µg/L NS 1 Bromodichloromethane µg/L NS 2 Bromodichloromethane µg/L NS 1 Carbon disulfide µg/L NS <td>0.2 1.0 U</td> <td>1.0 U</td> <td>1.0 U</td>	0.2 1.0 U	1.0 U	1.0 U
1,2-Dibromoethane µg/L NS 0.0 1,2-Dichloroethane µg/L 5 0 1,2-Dichloroethene (total) µg/L NS 0 1,2-Dichloropropane µg/L NS 0 2-Butanone µg/L NS 7 2-Hexanone µg/L NS 1 4-Methyl-2-pentanone µg/L NS 1 4-Methyl-2-pentanone µg/L NS 1 Acetone µg/L NS 1 Benzene µg/L NS 5 Bromochloromethane µg/L NS 0 Bromodichloromethane µg/L NS 0 Bromoform µg/L NS 0 Bromoform µg/L NS 0 Bromomethane µg/L NS 1 Carbon disulfide µg/L NS 1 Carbon tetrachloride µg/L NS 1 Chlorobenzene µg/L NS 1 <tr< td=""><td>NS 1.0 U</td><td>1.0 U</td><td>1.0 U</td></tr<>	NS 1.0 U	1.0 U	1.0 U
1,2-Dichloroethane μg/L 5 0 1,2-Dichloroethene (total) μg/L NS 1 1,2-Dichloropropane μg/L S 0 2-Butanone μg/L NS 7 2-Hexanone μg/L NS 1 4-Methyl-2-pentanone μg/L NS 1 Acetone μg/L NS 5 Benzene μg/L NS 5 Bromochloromethane μg/L NS 1 Bromodichloromethane μg/L NS 1 Bromoform μg/L NS 1 Bromoform μg/L NS 1 Carbon disulfide μg/L NS 1 Chlorobenzene μg/L NS 1	310 1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total) µg/L NS 1,2-Dichloropropane µg/L 5 2-Butanone µg/L NS 2-Hexanone µg/L NS 4-Methyl-2-pentanone µg/L NS Acetone µg/L NS Benzene µg/L NS Bromochloromethane µg/L NS Bromodichloromethane µg/L NS Bromoform µg/L NS Bromoform µg/L NS Bromomethane µg/L NS Carbon disulfide µg/L NS Carbon tetrachloride µg/L NS Chlorobenzene µg/L NS Chloroform µg/L NS Chloroform µg/L NS Chloromethane µg/L NS Cis-1,2-dichloroethene µg/L NS Cis-1,3-Dichloropropene µg/L NS Dibromochloromethane µg/L NS Ethylbenzene µg/L <t< td=""><td>0053 1.0 U</td><td>1.0 U</td><td>1.0 U</td></t<>	0053 1.0 U	1.0 U	1.0 U
1,2-Dichloropropane μg/L 5 0 2-Butanone μg/L NS 7 2-Hexanone μg/L NS 1 4-Methyl-2-pentanone μg/L NS 1 Acetone μg/L NS 5 Benzene μg/L NS 5 Bromochloromethane μg/L NS 1 Bromodichloromethane μg/L NS 0 Bromodichloromethane μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 1	.12 1.0 U	1.0 U	1.0 U
2-Butanone μg/L NS 7 2-Hexanone μg/L NS 1 4-Methyl-2-pentanone μg/L NS 1 Acetone μg/L NS 5 Benzene μg/L NS 5 Bromochloromethane μg/L NS 1 Bromodichloromethane μg/L NS 1 Bromoform μg/L NS 1 Bromoform μg/L NS 1 Bromomethane μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 1 Chloromethane μg/L NS 1 Cis-1,3-Dichloropropene μg/L NS 1 Dibromochlor	NS 1.0 U	1.0 U	1.0 U
2-Hexanone μg/L NS 1 4-Methyl-2-pentanone μg/L NS 1 Acetone μg/L NS 5 Benzene μg/L 5 0 Bromochloromethane μg/L NS 1 Bromodichloromethane μg/L NS 1 Bromoform μg/L NS 3 Bromomethane μg/L NS 3 Carbon disulfide μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 1 Chloromethane μg/L NS 1 Cis-1,3-Dichloropethene μg/L NS 1 Cis-1,3-Dichloropethene μg/L NS 1 Ethylbenzene μg/L NS 1 <	.16 1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone μg/L NS 1 Acetone μg/L NS 5 Benzene μg/L 5 0 Bromochloromethane μg/L NS 0 Bromodichloromethane μg/L NS 0 Bromoform μg/L NS 0 Bromomethane μg/L NS 0 Carbon disulfide μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 1 Chloroform μg/L NS 1 Chloromethane μg/L NS 1 Cis-1,2-dichloroethene μg/L NS 1 Cis-1,3-Dichloropropene μg/L NS 0 Ethylbenzene μg/L NS 1 <t< td=""><td>000 10 U</td><td>10 U</td><td>10 U</td></t<>	000 10 U	10 U	10 U
Acetone μg/L NS 5 Benzene μg/L 5 0 Bromochloromethane μg/L NS 0 Bromodichloromethane μg/L NS 0 Bromoform μg/L NS 0 Bromomethane μg/L NS 0 Carbon disulfide μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 0 Chloroform μg/L NS 0 Chloroform μg/L NS 0 Cis-1,2-dichloroethene μg/L NS 0 Cis-1,3-Dichloropropene μg/L NS 0 Ethylbenzene μg/L NS 0 Eth	NS 10 U	10 U	10 U
Benzene μg/L 5 0 Bromochloromethane μg/L NS 0 Bromodichloromethane μg/L NS 0 Bromoform μg/L NS 0 Bromomethane μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 0 Chloroform μg/L NS 0 Cis-1,2-dichloroethene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenese μg/L NS 1 0-xylene μg/L NS 1	NS 10 U	10 U	10 U
Bromochloromethane μg/L NS Image: NS	500 10 U	10 U	10 U
Bromodichloromethane μg/L NS 0 Bromoform μg/L NS 0 Bromomethane μg/L NS 1 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L NS 1 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroform μg/L NS 0 Chloromethane μg/L NS 0 Chloromethane μg/L NS 0 Cis-1,2-dichloroethene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 1 0-xylene μg/L NS 1 NS 1 1 1 0-xylene μg/L NS 1 NS 1 <td>.35 1.0 U</td> <td>1.0 U</td> <td>1.0 U</td>	.35 1.0 U	1.0 U	1.0 U
Bromoform μg/L NS 8 Bromomethane μg/L NS 3 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L 5 0 Chlorobenzene μg/L NS 1 Chlorobenzene μg/L NS 1 Chloroethane μg/L NS 0 Chloromethane μg/L NS 0 Chloromethane μg/L NS 0 cis-1,2-dichloroethene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetr	NS 1.0 U	1.0 U	1.0 U
Bromomethane μg/L NS 3 Carbon disulfide μg/L NS 1 Carbon tetrachloride μg/L 5 0 Chlorobenzene μg/L NS 1 Chlorobethane μg/L NS 1 Chloroform μg/L NS 0 Chloromethane μg/L NS 0 Cis-1,2-dichloroethene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 1000 1 Total Xylenes μg/L 1000 1	.13 1.0 U	1.0 U	1.0 U
Carbon disulfide µg/L NS 1 Carbon tetrachloride µg/L 5 0 Chlorobenzene µg/L NS 1 Chlorobenzene µg/L NS 1 Chlorobenzene µg/L NS 0 Chloroform µg/L NS 0 Chloromethane µg/L NS 0 Cis-1,2-dichloroethene µg/L NS 0 cis-1,3-Dichloropropene µg/L NS 0 Dibromochloromethane µg/L NS 0 Ethylbenzene µg/L NS 0 Ethylbenzene µg/L NS 1 Methylene chloride µg/L NS 1 0-xylene µg/L NS 1 Styrene µg/L 100 1 Tetrachloroethene µg/L 5 0 Total Xylenes µg/L 1000 1 Trans-1,2-dichloroethene µg/L 1000 1 <td>3.5 1.0 U</td> <td>1.0 U</td> <td>1.0 U</td>	3.5 1.0 U	1.0 U	1.0 U
Carbon tetrachloride μg/L 5 0 Chlorobenzene μg/L NS 1 Chloroethane μg/L NS 0 Chloroform μg/L NS 0 Chloromethane μg/L NS 0 Cis-1,2-dichloroethene μg/L NS 0 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzene μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 1	3.7 1.0 U	1.0 U	1.0 U
Chlorobenzene μg/L NS 1 Chloroethane μg/L NS 0 Chloroform μg/L NS 0 Chloromethane μg/L NS 0 Cis-1,2-dichloroethene μg/L 70 0 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L NS 0 Ethylbenzenes μg/L NS 1 Methylene chloride μg/L NS 1 0-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Toluene μg/L 1000 7 Total Xylenes μg/L 1000 10 trans-1,2-dichloroethene μg/L 100 1	000 1.0 U	1.0 U	1.0 U
Chloroethane μg/L NS Chloroform μg/L NS Chloromethane μg/L NS Cis-1,2-dichloroethene μg/L 70 cis-1,3-Dichloropropene μg/L NS Dibromochloromethane μg/L NS Ethylbenzene μg/L 700 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 0-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 6 Toluene μg/L 1000 7 Total Xylenes μg/L 1000 10 trans-1,2-dichloroethene μg/L 100 10	1.0 U	1.0 U	1.0 U
Chloroform μg/L NS 0 Chloromethane μg/L NS 0 cis-1,2-dichloroethene μg/L 70 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L 700 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	1.0 U	1.0 U	1.0 U
Chloromethane μg/L NS 1 cis-1,2-dichloroethene μg/L 70 1 cis-1,3-Dichloropropene μg/L NS 0 Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L 700 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 6 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	4.6 1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene µg/L 70 cis-1,3-Dichloropropene µg/L NS Dibromochloromethane µg/L NS Ethylbenzene µg/L 700 1 m&p-xylenes µg/L NS 1 Methylene chloride µg/L NS 1 o-xylene µg/L NS 1 Styrene µg/L 100 1 Tetrachloroethene µg/L 5 6 Total Xylenes µg/L 10000 10 trans-1,2-dichloroethene µg/L 100 10	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene µg/L NS 0 Dibromochloromethane µg/L NS 0 Ethylbenzene µg/L 700 1 m&p-xylenes µg/L NS 1 Methylene chloride µg/L NS 1 o-xylene µg/L NS 1 Styrene µg/L 100 1 Tetrachloroethene µg/L 5 0 Toluene µg/L 1000 7 Total Xylenes µg/L 10000 10 trans-1,2-dichloroethene µg/L 100 10	1.0 U	1.0 U	1.0 U
Dibromochloromethane μg/L NS 0 Ethylbenzene μg/L 700 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	61 1.0 U	1.0 U	1.0 U
Ethylbenzene μg/L 700 1 m&p-xylenes μg/L NS 1 Methylene chloride μg/L NS 1 o-xylene μg/L NS 1 Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	0.4 1.0 U	1.0 U	1.0 U
m&p-xylenes μg/L NS I Methylene chloride μg/L NS 1 o-xylene μg/L NS I Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	1.0 U	1.0 U	1.0 U
Methylene chloride μg/L NS 1 o-xylene μg/L NS I Styrene μg/L 100 1 Tetrachloroethene μg/L 5 6 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 7	300 1.0 U	1.0 U	1.0 U
o-xylene μg/L NS I Styrene μg/L 100 1 Tetrachloroethene μg/L 5 6 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 7	NS 2.0 U	2.0 U	2.0 U
Styrene μg/L 100 1 Tetrachloroethene μg/L 5 0 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 2	300 2.0 U	2.0 U	2.0 U
Tetrachloroethene μg/L 5 6 Toluene μg/L 1000 7 Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100 10	NS 2.0 U	2.0 U	2.0 U
	600 1.0 U	1.0 U	1.0 U
Total Xylenes μg/L 10000 10 trans-1,2-dichloroethene μg/L 100	0.1 1.0 U	1.0 U	1.0 U
trans-1,2-dichloroethene µg/L 100	720 1.0 U	1.0 U	1.0 U
	0000 2.0 U	2.0 U	2.0 U
	120 1.0 U	1.0 U	1.0 U
	0.4 1.0 U	1.0 U	1.0 U
	.028 1.0 U	1.0 U	1.0 U
	0.02 1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				LL3mw-242	LL4mw-198	LL4mw-199
			Region 9			FWGLL4MW-199C
Sample ID		MCL	PRG	0387-GW	0388-GW	0389-GW
Date Collected Sample Type				1/25/2007 Grab	1/19/2007 Grab	1/19/2007 Grab
Analyte	Units			Giab	Glab	Grab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.2	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	0.12	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-5 FWGWMP January 2007 VOCs Analytical results

Station ID				WBGmw-006	WBGmw-007	WBGmw-009
			Region 9	FWGWBGMW-	FWGWBGMW-	FWGWBGMW-
Sample ID		MCL	PRG	006C-0390-GW	007C-0391-GW	009C-0392-GW
Date Collected				1/23/2007 Grab	1/23/2007	1/23/2007
Sample Type Analyte	Units			Giab	Grab	Grab
1,1,1-Trichloroethane	μg/L	NS	3200	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	NS	0.43	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	7	NS	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene (total)	μg/L μg/L	NS	810	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	μg/L μg/L	NS	0.0053	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane		5	0.0033	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (total)	μg/L					
1,2-Dichloropropane	μg/L	NS 5	NS 0.40	1.0 U	1.0 U	1.0 U
	μg/L		0.16	1.0 U	1.0 U	1.0 U
2-Butanone	μg/L	NS	7000	10 U	10 U	10 U
2-Hexanone	μg/L	NS	NS	10 U	10 U	10 U
4-Methyl-2-pentanone	μg/L	NS	NS	10 U	10 U	10 U
Acetone	μg/L	NS	5500	10 U	10 U	10 U
Benzene	μg/L	5	0.35	1.0 U	1.0 U	1.0 U
Bromochloromethane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	NS	8.5	1.0 U	1.0 U	1.0 U
Bromomethane	μg/L	NS	8.7	1.0 U	1.0 U	1.0 U
Carbon disulfide	μg/L	NS	1000	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	0.17	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	NS	110	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	NS	4.6	1.0 U	1.0 U	1.0 U
Chloroform	μg/L	NS	0.17	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L	NS	160	1.0 U	1.0 U	1.0 U
cis-1,2-dichloroethene	μg/L	70	61	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	NS	0.13	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1300	1.0 U	1.0 U	1.0 U
m&p-xylenes	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Methylene chloride	μg/L	NS	1300	2.0 U	2.0 U	2.0 U
o-xylene	μg/L	NS	NS	2.0 U	2.0 U	2.0 U
Styrene	μg/L	100	1600	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	0.1	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1000	720	1.0 U	1.0 U	1.0 U
Total Xylenes	μg/L	10000	10000	2.0 U	2.0 U	2.0 U
trans-1,2-dichloroethene	μg/L	100	120	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	NS	0.4	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	0.028	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	0.02	1.0 U	1.0 U	1.0 U
Overliffer Definition or	µ9/∟		0.02	1.0 0	1.0 0	1.0 0

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit.

J = Estimated result due to method blank contamination.

Bold = detected compounds

NS = no standard

Table 3-6 FWGWMP January 2 Station ID	<u> </u>	<u>S Ariaiyiicai</u>	Results	BKGmw-004	BKGmw-005	BKGmw-006	BKGmw-008
			Region 9	FWGBKGMW-004C-	FWGBKGMW-005C-	FWGBKGMW-006C-	FWGBKGMW-008C-
Sample ID		MCL	PRG	0357-GW	0358-GW	0359-GW	0360-GW
Date Collected Sample Type				1/25/2007 Grab	1/24/2007 Grab	1/22/2007 Grab	1/23/2007 Grab
Analyte	Units			Grab	Grab	Giab	Glab
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 U	1.0 U	1.0 U	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Anthracene	μg/L	NS	1800	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U

Station ID				BKGmw-004	BKGmw-005	BKGmw-006	BKGmw-008
			Region 9	FWGBKGMW-004C-	FWGBKGMW-005C-	FWGBKGMW-006C-	FWGBKGMW-008C-
Sample ID		MCL	PRG	0357-GW	0358-GW	0359-GW	0360-GW
Date Collected				1/25/2007	1/24/2007	1/22/2007	1/23/2007
Sample Type	l leite			Grab	Grab	Grab	Grab
Analyte	Units						
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U	0.20 U	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 R	10 U	10 U	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	0.94 J	10 U	10 UJ	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	0.61 J	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U	1.0 U	1.0 U	0.95 J
Fluoranthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 R	10 U	10 U
Hexachloroethane	μg/L	NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 U	1.0 U	1.0 U	1.0 U
							0.20 U

Region PRG WGBKGMW-010C PWGBKGMW-013C PWGBKGMW-013C O381-GW O3	Table 3-6 FWGWMP January 2 IStation ID	<u>2007 SVOC</u>	<u>s Analytical</u> I	Results	BKGmw-010	BKGmw-012	BKGmw-013	BKGmw-015
Sample D	Station in			Region 9				
Sample Type	Sample ID		MCL		0361-GW			0364-GW
Analyse	Date Collected							
1,2,4-Trichlorobenzene µgL NS 7.2 1.0 U 1.0 U 1.0 U 1.0 U 1,2-Dichlorobenzene µgL NS 370 1.0 U 1.0 U <td></td> <td>11-26-</td> <td></td> <td></td> <td>Grab</td> <td>Grab</td> <td>Grab</td> <td>Grab</td>		11-26-			Grab	Grab	Grab	Grab
1.2-Dichlorobenzene µg/L NS 370 1.0 U 2.4 U 2.0 U	7							
1,3-Dichlorobenzene µg/L NS 180 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.4 U 1.4 Dichlorobenzene µg/L NS 0.5 1.0 U 1								
1,4-Dichlorobenzene µg/L NS 0.5 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2,2-oxybis (1-chloropropane) µg/L NS NS 1.0 U 2.0 U <	,							
2,2-oxybis (1-chloropropane)	,							
2,4,5-Trichlorophenol µg/L NS 3600 5.0 U 2.0 U		μg/L						
2,4,6-Trichlorophenol μg/L NS 3.6 5.0 U 5.0 U 5.0 U 5.0 U 2,4-Dichlorophenol μg/L NS 110 2.0 U 5.0 U 2.0 U <td>, , , , , , , , , , , , , , , , , , , ,</td> <td>μg/L</td> <td>NS</td> <td>NS</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td>	, , , , , , , , , , , , , , , , , , , ,	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4-Dichlorophenol μg/L NS 110 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 U 2.0 U 2.4 U 2.0 U 2.4 U 2.5 U 2.4 U 2.4 U 2.5 U 2.5 U 2.4 U 2.5	2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dimethylphenol μg/L NS 730 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4	2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrophenol μg/L NS 73 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.0 U 2.4-Dinitrotoluene μg/L NS 73 5.0 U 1.0 U	2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrotoluene μg/L NS 73 5.0 U 5.0 U 5.0 U 5.0 U 2.6 U 2.6 U 2.6 Dinitrotoluene μg/L NS 36 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.6 U 1.0 U 2.6 U 1.0 U 2.6 U 1.0 U	2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 U	2.0 U	2.0 U
2,6-Dinitrotoluene μg/L NS 36 5.0 U 5.0 U 5.0 U 5.0 U 2-Chloropaphthalene μg/L NS 490 1.0 U 2.0 U	2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene μg/L NS 36 5.0 U 5.0 U 5.0 U 5.0 U 2-Chlorophenol μg/L NS 490 1.0 U 2.0 U 4.0 U 4.0 U 2.0 U	2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene μg/L NS 490 1.0 U 2.0 U	2,6-Dinitrotoluene		NS	36	5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorophenol μg/L NS 30 1.0 U 0.20 U	2-Chloronaphthalene		NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U 2-Methylphenol μg/L NS 1800 1.0 U 2.0 U	2-Chlorophenol		NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylphenol μg/L NS 1800 1.0 U 2.0 U	2-Methylnaphthalene		NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Nitroaniline μg/L NS 110 2.0 U 3.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.0 U	2-Methylphenol		NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitrophenol μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 3.3"-Dichlorobenzidine μg/L NS 0.15 5.0 U 2.0 U 4.0 U 2.0 U <td>2-Nitroaniline</td> <td></td> <td>NS</td> <td>110</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td>	2-Nitroaniline		NS	110	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine μg/L NS 0.15 5.0 U 5.0 U 5.0 U 5.0 U 3-Nitroaniline μg/L NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Bromophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloro-3-methylphenol μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloroaniline μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Methylphenol μg/L NS NS 1.0 U 1.0 U 1.0 U 1.0 U 4-Nitroanaline μg/L NS NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 6.20 U	2-Nitrophenol		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Bromophenyl phenyl ether μg/L NS NS 2.0 U <	3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 U	5.0 U
4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Bromophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloro-3-methylphenol μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloroaniline μg/L NS 150 2.0 U 2.0 U 2.0 U 2.0 U 4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Chlorophenyl phenyl ether μg/L NS NS 1.0 U 1.0 U 1.0 U 2.0 U 2.0 U 4-Methylphenol μg/L NS NS 1.0 U 1.0 U <t< td=""><td>3-Nitroaniline</td><td>μg/L</td><td>NS</td><td>3.2</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td></t<>	3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Bromophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloro-3-methylphenol μg/L NS NS 2.0 U	4,6-Dinitro-2-methylphenol		NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloro-3-methylphenol μg/L NS NS 2.0 U	4-Bromophenyl phenyl ether		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline μg/L NS 150 2.0 U	4-Chloro-3-methylphenol		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Methylphenol μg/L NS NS 1.0 U 2.0 U 3.0 U <td>4-Chloroaniline</td> <td></td> <td>NS</td> <td>150</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td>	4-Chloroaniline		NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol μg/L NS NS 1.0 U 2.0 U 5.0 U 9.20 U <t< td=""><td>4-Chlorophenyl phenyl ether</td><td></td><td>NS</td><td>NS</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td></t<>	4-Chlorophenyl phenyl ether		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitroanaline μg/L NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U Acenaphthene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U	4-Methylphenol		NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitrophenol μg/L NS NS 5.0 U <	4-Nitroanaline		NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
Acenaphthene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U	4-Nitrophenol		NS					
Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U	Acenaphthene			NS				
Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U <td>Acenaphthylene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acenaphthylene							
Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.2	Anthracene							
Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U								
	. ,							
⊅6114010/11/11/16116 I NU/L I NO I V.092 I V.20 U	Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U

Region PRO Sample ID MCL PRO Sast-GW Sast	Table 3-6 FWGWMP January 2 Station ID	<u>2007 SVOC</u>	<u>s Analytical</u> I	Results I	BKGmw-010	BKGmw-012	BKGmw-013	BKGmw-015
Sample ID	Otation 15			Region 9				FWGBKGMW-015C-
Sample Type	Sample ID		MCL					
Benzo(g,h,i)perylene μg/L NS NS 0.20 U 0.20	Date Collected							
Benzo(g,h,i)perylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Benzo(k)fluoranthene μg/L NS 0.92 0.20 U 0		l linite			Grab	Grab	Grab	Grab
Benzo(k)fluoranthene µg/L NS 0.92 0.20 U 0.20 U 0.20 U 0.20 U Benzoic acid µg/L NS 150000 10 U 10 U 10 R 10 U Benzyl alcohol µg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U bis(2-Chloroethoxy)methane µg/L NS NS 1.0 U 1.0		l I						
Benzoic acid μg/L NS 150000 10 U 10 U 10 R 10 U Benzyl alcohol μg/L NS NS 5.0 U			_	_				
Benzyl alcohol μg/L NS NS 5.0 U 1.0 U								
bis(2-Chloroethoxy)methane μg/L NS NS 1.0 U 1.0 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
bis(2-Chloroethyl) ether μg/L NS 0.001 1.0 U 1.0		μg/L			5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Ethylhexyl) phthalate μg/L NS 4.8 10 UJ 10 UJ 3.0 J 10 U Butyl benzyl phthalate μg/L NS 7300 1.0 U 1.0 U <t< td=""><td>,</td><td>μg/L</td><td>NS</td><td>NS</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td></t<>	,	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Butyl benzyl phthalate μg/L NS 7300 1.0 U 0.20 U <	,	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole μg/L NS 3.4 1.0 U 0.20 U 0	bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 UJ	10 UJ	3.0 J	10 U
Chrysene μg/L NS 9.2 0.20 U 0.20 U 0.20 U 0.20 U Dibenzo(a,h)anthracene μg/L NS 0.0093 0.20 U 0.20 U 0.20 U 0.20 U Dibenzofuran μg/L NS 12 1.0 U 1.0 U 1.0 U 1.0 U Diethyl phthalate μg/L NS NS 1.0 U 1.0 U 1.0 U 1.0 U Dirn-butyl phthalate μg/L NS 360000 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Dirn-butyl phthalate μg/L NS NS 1.0 U <	Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Dibenzo(a,h)anthracene μg/L NS 0.0093 0.20 U 1.0	Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Dibenzofuran μg/L NS 12 1.0 U 1.0 U <t< td=""><td>Chrysene</td><td>μg/L</td><td>NS</td><td>9.2</td><td>0.20 U</td><td>0.20 U</td><td>0.20 U</td><td>0.20 U</td></t<>	Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Diethyl phthalate μg/L NS NS 1.0 U	Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dimethyl phthalate μg/L NS 360000 1.0 U 2.0 U 0.20 U <th< td=""><td>Dibenzofuran</td><td>μg/L</td><td>NS</td><td>12</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td></th<>	Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate μg/L NS 360000 1.0 U	Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate μg/L NS 1500 1.0 U 0.20 U	Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate μg/L NS 1500 1.0 U 0.20 U	Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Fluoranthene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Fluorene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorobenzene μg/L 1 0.042 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorobutadiene μg/L NS 0.86 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Hexachlorocyclopentadiene μg/L 50 220 10 U 10 U 10 U 10 R 10 U Hexachlorocyclopentadiene μg/L NS 4.8 1.0 U	Di-n-octyl phthalate		NS	1500	1.0 U	1.0 U	1.0 U	1.0 U
Fluorene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorobenzene μg/L 1 0.042 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorobutadiene μg/L NS 0.86 1.0 U 1.0 U 1.0 U 1.0 U Hexachlorocyclopentadiene μg/L 50 220 10 U 10 U 10 U 10 R 10 U Hexachlorocethane μg/L NS 4.8 1.0 U 1.	Fluoranthene		NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene μg/L 1 0.042 0.20 U 0.20 U 0.20 U 0.20 U Hexachlorobutadiene μg/L NS 0.86 1.0 U 1.0 U 1.0 U 1.0 U Hexachlorocyclopentadiene μg/L 50 220 10 U 10 U 10 R 10 U Hexachlorocyclopentadiene μg/L NS 220 10 U 10 U 10 U 10 R 10 U Hexachlorocyclopentadiene μg/L NS 4.8 1.0 U 1.0 U </td <td>Fluorene</td> <td></td> <td>NS</td> <td>NS</td> <td>0.20 U</td> <td>0.20 U</td> <td>0.20 U</td> <td>0.20 U</td>	Fluorene		NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene μg/L NS 0.86 1.0 U	Hexachlorobenzene		1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorocyclopentadiene μg/L 50 220 10 U 10 U 10 R 10 U Hexachloroethane μg/L NS 4.8 1.0 U 0.20 U 1.0 U 0.20 U 0.20 U 0.20 U 0.20 U	Hexachlorobutadiene		NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachloroethane μg/L NS 4.8 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Indeno(1,2,3-cd)pyrene μg/L NS 0.092 0.20 U 1.0 U 0.20 U 0.20 U 0.20 U	Hexachlorocyclopentadiene		50	220	10 U	10 U	10 R	10 U
Indeno(1,2,3-cd)pyrene μg/L NS 0.092 0.20 U <	Hexachloroethane		NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Isophorone μg/L NS 71 1.0 U 0.20 U <t< td=""><td>Indeno(1,2,3-cd)pyrene</td><td></td><td>NS</td><td>0.092</td><td>0.20 U</td><td>0.20 U</td><td>0.20 U</td><td>0.20 U</td></t<>	Indeno(1,2,3-cd)pyrene		NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Naphthalene μg/L NS 6.2 0.20 U 0.20 U 0.20 U 0.20 U Nitrobenzene μg/L NS 3.4 1.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 0.20 U 1.0 U	Isophorone		NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Nitrobenzene μg/L NS 3.4 1.0 U 5.0 U 9.20 U 0.20 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	Naphthalene		NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
N-Nitroso-di-n-propylamine μg/L NS 9600 1.0 U 5.0 U 9.20 U 9	Nitrobenzene		NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine μg/L NS 14 1.0 U 5.0 U 9.20 U 0.20 U 1.0 U	N-Nitroso-di-n-propylamine				1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol μg/L 1 0.56 5.0 U	N-Nitrosodiphenylamine				1.0 U	1.0 U	1.0 U	1.0 U
Phenanthrene μg/L NS NS 0.20 U 0.20 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Phenol μg/L NS 11000 1.0 U 1.0 U 1.0 U 1.0 U								
	Pyrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U

Region PRG WGBKGMW-018C- WGBKGMW-018C-	Table 3-6 FWGWMP January 2 IStation ID	<u>2007 SVOC</u>	<u>s Analytical</u> I	Results	BKGmw-016	BKGmw-017	BKGmw-018	BKGmw-019
Sample D	Station id			Region 9				
Sample Type	Sample ID		MCL		0365-GW	0366-GW	0367-GW	
Analyse	Date Collected							
1,2,4-Trichlorobenzene µgL NS 7.2 1.0 U 1.0 U 1.0 U 1.0 U 1,2-Dichlorobenzene µgL NS 370 1.0 U 1.0 U <td></td> <td>11-26-</td> <td></td> <td></td> <td>Grab</td> <td>Grab</td> <td>Grab</td> <td>Grab</td>		11-26-			Grab	Grab	Grab	Grab
1.2-Dichlorobenzene µg/L NS 370 1.0 U 2.0 U	7							
1,3-Dichlorobenzene µg/L NS 180 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.4-Dichlorobenzene µg/L NS 0.5 1.0 U 2.2 C-2 vxyls (1chloropropane) µg/L NS NS NS 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2.4,5-Trichlorophenol µg/L NS 3600 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.4 C-1 Trichlorophenol µg/L NS 3.6 5.0 U 5.0 U 5.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 D-1 Introphenol µg/L NS 1.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 D-1 Introphenol µg/L NS 730 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 D-1 Introphenol µg/L NS 730 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.4 D-1 Introphenol µg/L NS 73 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.4 D-1 Introphenol µg/L NS 73 5.0 U								
1,4-Dichlorobenzene µg/L NS 0.5 1.0 U 2.0 U	,							
2,2-oxybis (1-chloropropane)	,							
2,4,5-Trichlorophenol µg/L NS 3600 5.0 U 2.0 U		μg/L						
2,4,6-Trichlorophenol μg/L NS 3.6 5.0 U 5.0 U 5.0 U 5.0 U 2.4 Dichlorophenol μg/L NS 110 2.0 U 5.0 U 2.0	, , , , , , , , , , , , , , , , , , , ,	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4-Dichlorophenol μg/L NS 110 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.4 U 2.4 U 2.4 U 2.4 U 2.4 U 2.4 U 2.0 U 2.4 U 2.0 U 2.4 U 2.0 U 2.4 U 2.5 U 2.4 U 2.4 U 2.5 U 2.5 U 2.4 U 2.5 U 2.4 U 2.5	2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dimethylphenol	2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrophenol μg/L NS 73 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.4 Dinitrotoluene μg/L NS 73 5.0 U 2.0 U	2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrotoluene μg/L NS 73 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.6-Dinitrotoluene μg/L NS 36 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 2.2-Chloronaphthalene μg/L NS 490 1.0 U 2.2-Chlorophenol μg/L NS 30 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2.4 Wethylnaphthalene μg/L NS NS 0.20 U 0.	2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrotoluene μg/L NS 73 5.0 U 1.0 U	2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene µg/L NS 36 5.0 U 5.0 U 5.0 U 5.0 U 2-Chloroaphthalene µg/L NS 490 1.0 U 2.0 U	2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene μg/L NS 490 1.0 U 2.0 U 4.0 U 4.0 U 4.0 U 2.0 U 2.0 U 2.0 U 2.0 U	2,6-Dinitrotoluene		NS	36	5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorophenol μg/L NS 30 1.0 U 0.20 U 2.0 U	2-Chloronaphthalene		NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U 2-Methylphenol μg/L NS 1800 1.0 U 2.0 U	2-Chlorophenol		NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylphenol μg/L NS 1800 1.0 U 2.0 U	2-Methylnaphthalene		NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Nitroaniline μg/L NS 110 2.0 U	2-Methylphenol		NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitrophenol μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 3.3"-Dichlorobenzidine μg/L NS 0.15 5.0 U 2.0 U 4.0 U 2.0 U <td>2-Nitroaniline</td> <td></td> <td>NS</td> <td>110</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td>	2-Nitroaniline		NS	110	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine μg/L NS 0.15 5.0 U 5.0 U 5.0 U 5.0 U 3-Nitroaniline μg/L NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Bromophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloro-3-methylphenol μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloroaniline μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloroaniline μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 4-Methylphenol μg/L NS NS 1.0 U 1.0 U 1.0 U 1.0 U 4-Nitroanaline μg/L NS NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 4-Nitrophenol μg/L NS NS 0.20 U	2-Nitrophenol		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4.0 U 2.0 U </td <td>3,3'-Dichlorobenzidine</td> <td>μg/L</td> <td>NS</td> <td>0.15</td> <td>5.0 U</td> <td>5.0 U</td> <td>5.0 U</td> <td>5.0 U</td>	3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 U	5.0 U
4,6-Dinitro-2-methylphenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U 4-Bromophenyl phenyl ether μg/L NS NS 2.0 U	3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Bromophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Chloro-3-methylphenol μg/L NS NS 2.0 U	4,6-Dinitro-2-methylphenol		NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloro-3-methylphenol μg/L NS NS 2.0 U	4-Bromophenyl phenyl ether		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline μg/L NS 150 2.0 U	4-Chloro-3-methylphenol		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether μg/L NS NS 2.0 U 2.0 U 2.0 U 2.0 U 4-Methylphenol μg/L NS NS 1.0 U 2.0 U 3.0 U <td>4-Chloroaniline</td> <td></td> <td>NS</td> <td>150</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td> <td>2.0 U</td>	4-Chloroaniline		NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol μg/L NS NS 1.0 U 2.0 U	4-Chlorophenyl phenyl ether		NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitroanaline μg/L NS 3.2 2.0 U 2.0 U 2.0 U 2.0 U 4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U Acenaphthene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U	4-Methylphenol		NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitrophenol μg/L NS NS 5.0 U 5.0 U 5.0 U 5.0 U Acenaphthene μg/L NS NS 0.20 U 0.20 U <t< td=""><td>4-Nitroanaline</td><td></td><td>NS</td><td>3.2</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td><td>2.0 U</td></t<>	4-Nitroanaline		NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
Acenaphthene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U	4-Nitrophenol		NS					
Acenaphthylene μg/L NS NS 0.20 U 0.20 U 0.20 U 0.20 U Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U	Acenaphthene			NS				
Anthracene μg/L NS 1800 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U <td>Acenaphthylene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acenaphthylene							
Benzo(a)anthracene μg/L NS 0.092 0.20 U 0.20 U 0.20 U 0.20 U Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.2	Anthracene							
Benzo(a)pyrene μg/L 0.2 0.0092 0.20 U 0.20 U 0.20 U 0.20 U								
	` '							
	Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 Station ID	<u>2007 SVOC</u>	<u>s Analytical</u> I	Results I	BKGmw-016	BKGmw-017	BKGmw-018	BKGmw-019
Otation ID			Region 9	FWGBKGMW-016C-	FWGBKGMW-017C-	FWGBKGMW-018C-	FWGBKGMW-019C-
Sample ID		MCL	PRG	0365-GW	0366-GW	0367-GW	0368-GW
Date Collected				1/24/2007	1/24/2007	1/22/2007	1/25/2007
Sample Type Analyte	Units			Grab	Grab	Grab	Grab
	l I						
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U	0.20 U	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 U	10 U	10 U	10 R
Benzyl alcohol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 U	10 U	10 UJ	10 U
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U	1.0 U	0.54 J	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 R	10 U	10 R
Hexachloroethane	μg/L	NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 Station ID				BKGmw-020	BKGmw-021	CBPmw-005	CBPmw-007
			Region 9	FWGBKGMW-020C-	FWGBKGMW-021C-	FWGCBPMW-005C-	FWGCBPMW-007C-
Sample ID		MCL	PRG	0369-GW	0370-GW	0371-GW	0372-GW
Date Collected Sample Type				1/22/2007 Grab	1/25/2007 Grab	1/24/2007 Grab	1/24/2007 Grab
Analyte	Units			Olab	Olab	Giab	Glab
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 U	1.0 U	1.0 U	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Anthracene	μg/L	NS	1800	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 IStation ID	2007 SVOC	<u>s Analytical</u> I	Results	BKGmw-020	BKGmw-021	CBPmw-005	CBPmw-007
otation ib			Region 9	FWGBKGMW-020C-	FWGBKGMW-021C-	FWGCBPMW-005C-	FWGCBPMW-007C-
Sample ID		MCL	PRG	0369-GW	0370-GW	0371-GW	0372-GW
Date Collected				1/22/2007	1/25/2007	1/24/2007	1/24/2007
Sample Type	Heita			Grab	Grab	Grab	Grab
Analyte	Units						
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U	0.20 U	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 U	10 R	10 U	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 UJ	10 U	10 U	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U	1.0 U	1.0 U	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 U	10 R	10 R	10 R
Hexachloroethane	μg/L	NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 Station ID		,,		DA2mw-107	LL11mw-002	LL11mw-007	LL12mw-153
			Region 9	FWGDA2MW-107C-	FWGLL11MW-002C-	FWGLL11MW-007C-	FWGLL12MW-153C-
Sample ID Date Collected		MCL	PRG	0373-GW 1/22/2007	0374-GW 1/18/2007	0375-GW 1/18/2007	0376-GW 1/24/2007
Sample Type				1/22/2007 Grab	1/16/2007 Grab	Grab	1/24/2007 Grab
Analyte	Units			0.00	0.00	0.00	0.00
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U	1.0 UJ	1.0 UJ	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U	1.0 UJ	1.0 UJ	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 U	1.0 UJ	1.0 UJ	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 U	1.0 UJ	1.0 UJ	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 U	1.0 UJ	1.0 UJ	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 UJ	5.0 UJ	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 UJ	5.0 UJ	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 R	2.0 R	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 UJ	5.0 UJ	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 UJ	5.0 UJ	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U	5.0 UJ	5.0 UJ	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U	1.0 UJ	1.0 UJ	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U	1.0 R	1.0 R	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U	1.0 UJ	1.0 UJ	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U	2.0 UJ	2.0 UJ	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 UJ	5.0 UJ	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U	5.0 UJ	5.0 UJ	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U	1.0 UJ	1.0 UJ	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U	2.0 UJ	2.0 UJ	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Anthracene	μg/L	NS	1800	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 UJ	0.20 UJ	0.20 U

Sample ID Date Collected Sample Type Analyte Benzo(g,h,i)perylene Benzoic acid Benzoic acid Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane Dunits Units Lyg/L Lyg/L	MCL NS	Region 9 PRG NS 0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	DA2mw-107 FWGDA2MW-107C- 0373-GW 1/22/2007 Grab 0.20 U 0.20 U 10 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 1.0 U	LL11mw-002 FWGLL11MW-002C- 0374-GW 1/18/2007 Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ	LL11mw-007 FWGLL11MW-007C- 0375-GW 1/18/2007 Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ	LL12mw-153 FWGLL12MW-153C-0376-GW 1/24/2007 Grab 0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U
Date Collected Sample Type Analyte Benzo(g,h,i)perylene Benzoic acid Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dien-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Units Lyg/L Lyg/L Lyg/L Ditits Lyg/L	NS N	NS 0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	0373-GW 1/22/2007 Grab 0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U	0374-GW 1/18/2007 Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ	0375-GW 1/18/2007 Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ	0376-GW 1/24/2007 Grab 0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U
Sample Type Analyte Units Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Fluorene Hexachlorobutadiene Hexachlorocyclopentadiene µg/L Units Units Units Units Lug/L	NS N	0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	Grab 0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ	Grab 0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	Grab 0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U
Analyte Units Benzo(g,h,i)perylene µg/L Benzoic acid µg/L Benzyl alcohol µg/L bis(2-Chloroethoxy)methane µg/L bis(2-Chloroethyl) ether µg/L bis(2-Ethylhexyl) phthalate µg/L Butyl benzyl phthalate µg/L Carbazole µg/L Chrysene µg/L Dibenzo(a,h)anthracene µg/L Dibenzofuran µg/L Diethyl phthalate µg/L Din-butyl phthalate µg/L Di-n-butyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L Hexachlorocyclopentadiene µg/L Hexachlorocyclopentadiene µg/L	NS N	0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	0.20 UJ 0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	0.20 U 0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U
Benzo(g,h,i)perylene	NS N	0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ	0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U
Benzo(k)fluoranthene µg/L Benzoic acid µg/L Benzyl alcohol µg/L bis(2-Chloroethoxy)methane µg/L bis(2-Chloroethyl) ether µg/L bis(2-Ethylhexyl) phthalate µg/L Butyl benzyl phthalate µg/L Carbazole µg/L Chrysene µg/L Dibenzo(a,h)anthracene µg/L Dibenzofuran µg/L Diethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorocyclopentadiene µg/L Hexachlorocyclopentadiene µg/L	NS N	0.92 150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	0.20 UJ 10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ	0.20 U 10 U 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.20 U
Benzoic acid	NS N	150000 NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	10 U 5.0 U 1.0 U 1.0 U 10 UJ 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	10 UJ 5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ	10 U 5.0 U 1.0 U 1.0 U 10 U 1.0 U 1.0 U 0.20 U 0.20 U
Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Diethyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobyclopentadiene µg/L µg/L µg/L Hexachlorocyclopentadiene µg/L µg/L µg/L µg/L µg/L µg/L	NS	NS NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	5.0 U 1.0 U 1.0 U 10 UJ 1.0 U 1.0 U 0.20 U 0.20 U	5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	5.0 UJ 1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ	5.0 U 1.0 U 1.0 U 10 U 1.0 U 1.0 U 0.20 U
bis(2-Chloroethoxy)methane	NS	NS 0.001 4.8 7300 3.4 9.2 0.0093 12 NS	1.0 U 1.0 U 10 UJ 1.0 U 1.0 U 0.20 U 0.20 U	1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	1.0 UJ 1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ	1.0 U 1.0 U 10 U 1.0 U 1.0 U 0.20 U 0.20 U
bis(2-Chloroethyl) ether bis(2-Ethylhexyl) phthalate bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	NS	0.001 4.8 7300 3.4 9.2 0.0093 12 NS	1.0 U 10 UJ 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	1.0 UJ 10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	1.0 U 10 U 1.0 U 1.0 U 0.20 U 0.20 U
bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate Butyl benzyl phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Din-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	NS NS NS NS NS NS NS NS	4.8 7300 3.4 9.2 0.0093 12 NS	10 UJ 1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	10 UJ 1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	10 U 1.0 U 1.0 U 0.20 U 0.20 U
Butyl benzyl phthalate	NS NS NS NS NS NS	7300 3.4 9.2 0.0093 12 NS	1.0 U 1.0 U 0.20 U 0.20 U 1.0 U	1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	1.0 UJ 1.0 UJ 0.20 UJ 0.20 UJ	1.0 U 1.0 U 0.20 U 0.20 U
Carbazole	NS NS NS NS	3.4 9.2 0.0093 12 NS	1.0 U 0.20 U 0.20 U 1.0 U	1.0 UJ 0.20 UJ 0.20 UJ 1.0 UJ	1.0 UJ 0.20 UJ 0.20 UJ	1.0 U 0.20 U 0.20 U
Chrysene µg/L Dibenzo(a,h)anthracene µg/L Dibenzofuran µg/L Diethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorocyclopentadiene µg/L	NS NS NS	9.2 0.0093 12 NS	0.20 U 0.20 U 1.0 U	0.20 UJ 0.20 UJ 1.0 UJ	0.20 UJ 0.20 UJ	0.20 U 0.20 U
Dibenzo(a,h)anthracene µg/L Dibenzofuran µg/L Diethyl phthalate µg/L Dinethyl phthalate µg/L Din-butyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS NS NS	0.0093 12 NS	0.20 U 1.0 U	0.20 UJ 1.0 UJ	0.20 UJ	0.20 U
Dibenzofuran µg/L Diethyl phthalate µg/L Dimethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS NS	12 NS	1.0 U	1.0 UJ		
Diethyl phthalate µg/L Dimethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS	NS			1.0 UJ	1011
Dimethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L			1.0 U			1.00
Dimethyl phthalate µg/L Di-n-butyl phthalate µg/L Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS			1.0 UJ	1.0 UJ	1.0 U
Di-n-octyl phthalate		360000	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Di-n-octyl phthalate µg/L Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS	NS	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS	1500	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Hexachlorobenzene μg/L Hexachlorobutadiene μg/L Hexachlorocyclopentadiene μg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Hexachlorobutadiene µg/L Hexachlorocyclopentadiene µg/L	1	0.042	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Hexachlorocyclopentadiene μg/L	NS	0.86	1.0 U	1.0 UJ	1.0 UJ	1.0 U
	50	220	10 U	10 R	10 R	10 R
	NS	4.8	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Indeno(1,2,3-cd)pyrene µg/L	NS	0.092	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Isophorone µg/L	NS	71	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Naphthalene µg/L	NS	6.2	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Nitrobenzene µg/L	NS	3.4	1.0 U	1.0 UJ	1.0 UJ	1.0 U
N-Nitroso-di-n-propylamine µg/L	NS	9600	1.0 U	1.0 UJ	1.0 UJ	1.0 U
N-Nitrosodiphenylamine µg/L	NS	14	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Pentachlorophenol µg/L	1	0.56	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Phenanthrene µg/L	NS	NS	0.20 U	0.20 UJ	0.20 UJ	0.20 U
Phenol µg/L		11000	1.0 U	1.0 R	1.0 R	1.0 U
Pyrene µg/L	NS			0.20 UJ	0.20 UJ	0.20 U

Table 3-6 FWGWMP January 2 IStation ID	<u>2007 SVOC</u> I	s Analyticai I	Results	LL12mw-182	LL12mw-183	LL12mw-186	LL1mw-078
Cidion is			Region 9	FWGLL12MW-182C-	FWGLL12MW-183C-	FWGLL12MW-186C-	FWGLL1mw-078C-
Sample ID		MCL	PRG	0377-GW	0378-GW	0379-GW	0380-GW
Date Collected				1/24/2007	1/24/2007	1/24/2007	1/23/2007
Sample Type Analyte	Units			Grab	Grab	Grab	Grab
7		NO	7.0	4.011	4.011	4.011	4.0.11
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 U	1.0 U	1.0 U	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Anthracene	μg/L	NS	1800	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U

July 2007

Table 3-6 FWGWMP January 2 Station ID	007 SVOC	<u>s Analytical</u> I	Results	LL12mw-182	LL12mw-183	LL12mw-186	LL1mw-078
Glation ib			Region 9	FWGLL12MW-182C-	FWGLL12MW-183C-	FWGLL12MW-186C-	FWGLL1mw-078C-
Sample ID		MCL	PRG	0377-GW	0378-GW	0379-GW	0380-GW
Date Collected				1/24/2007	1/24/2007	1/24/2007	1/23/2007
Sample Type	I I a 't a			Grab	Grab	Grab	Grab
Analyte	Units						
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U	0.20 U	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 U	10 U	10 U	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 U	10 U	10 U	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U	1.0 U	1.0 U	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 R	10 R	10 U
Hexachloroethane	μg/L	NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 IStation ID	<u>2007 SVOC</u> I	<u>s Analytical</u> I	Results	LL1mw-080	LL1mw-083	LL2mw-059	LL2mw-262
Citation 12			Region 9	FWGLL1mw-080C-	FWGLL1mw-083C-	FWGLL2mw-059c-	FWGLL2mw-262C-
Sample ID		MCL	PRG	0381-GW	0382-GW	0383-GW	0384-GW
Date Collected				1/25/2007	1/23/2007	1/22/2007	1/22/2007
Sample Type	11.37.			Grab	Grab	Grab	Grab
Analyte	Units						
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 U	1.0 U	1.0 U	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U	1.4 J	5.0 U	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U	0.64 J	5.0 U	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U	5.0 U	5.0 UJ	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Anthracene	μg/L	NS	1800	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
201120(D)114014111110110	μ9/∟	110	0.032	0.20 0	0.20 0	0.20 0	0.20 0

Table 3-6 FWGWMP January 2 Station ID	<u>2007 SVOC</u> I	<u>s Analytical</u> I	Results	LL1mw-080	LL1mw-083	LL2mw-059	LL2mw-262
Otation ID			Region 9	FWGLL1mw-080C-	FWGLL1mw-083C-	FWGLL2mw-059c-	FWGLL2mw-262C-
Sample ID		MCL	PRG	0381-GW	0382-GW	0383-GW	0384-GW
Date Collected				1/25/2007	1/23/2007	1/22/2007	1/22/2007
Sample Type Analyte	Units			Grab	Grab	Grab	Grab
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U	0.20 U	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 R	10 U	10 U	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 U	10 UJ	10 UJ	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U	0.88 J	1.0 U	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 UJ	10 UJ	10 U
Hexachloroethane	μg/L	NS	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	μg/L	NS	NS	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 Station ID		7		LL2mw-263	LL3mw-238	LL3mw-242	LL4mw-198
			Region 9	FWGLL2mw-263C-	FWGLL3mw-238C-	FWGLL3MW-242C-	FWGLL4MW-198C-
Sample ID		MCL	PRG	0385-GW	0386-GW	0387-GW	0388-GW
Date Collected Sample Type				1/22/2007 Grab	1/25/2007 Grab	1/25/2007 Grab	1/19/2007 Grab
Analyte	Units			Olab	Olab	Grab	Glab
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 UJ	1.0 U	1.0 U	1.0 UJ
1,2-Dichlorobenzene	μg/L	NS	370	1.0 UJ	1.0 U	1.0 U	1.0 UJ
1,3-Dichlorobenzene	μg/L	NS	180	1.0 UJ	1.0 U	1.0 U	1.0 UJ
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 UJ	1.0 U	1.0 U	1.0 UJ
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U	1.0 UJ
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 UJ	5.0 U	5.0 U	5.0 UJ
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 UJ	5.0 U	5.0 U	5.0 UJ
2,4-Dichlorophenol	μg/L	NS	110	2.0 UJ	2.0 U	2.0 U	2.0 UJ
2,4-Dimethylphenol	μg/L	NS	730	2.0 UJ	2.0 U	2.0 U	2.0 R
2,4-Dinitrophenol	μg/L	NS	73	5.0 UJ	5.0 U	5.0 U	5.0 UJ
2,4-Dinitrotoluene	μg/L	NS	73	5.0 UJ	5.0 U	5.0 U	5.0 UJ
2,6-Dinitrotoluene	μg/L	NS	36	5.0 UJ	5.0 U	5.0 U	5.0 UJ
2-Chloronaphthalene	μg/L	NS	490	1.0 UJ	1.0 U	1.0 U	1.0 UJ
2-Chlorophenol	μg/L	NS	30	1.0 UJ	1.0 U	1.0 U	1.0 R
2-Methylnaphthalene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
2-Methylphenol	μg/L	NS	1800	1.0 UJ	1.0 U	1.0 U	1.0 UJ
2-Nitroaniline	μg/L	NS	110	2.0 UJ	2.0 U	2.0 U	2.0 UJ
2-Nitrophenol	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U	2.0 UJ
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 UJ	5.0 U	5.0 U	5.0 UJ
3-Nitroaniline	μg/L	NS	3.2	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U	5.0 UJ
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4-Chloroaniline	μg/L	NS	150	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4-Methylphenol	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U	1.0 UJ
4-Nitroanaline	μg/L	NS	3.2	2.0 UJ	2.0 U	2.0 U	2.0 UJ
4-Nitrophenol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U	5.0 UJ
Acenaphthene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Acenaphthylene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Anthracene	μg/L	NS	1800	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Benzo(a)anthracene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U	0.20 UJ

Table 3-6 FWGWMP January 2 Station ID	2007 SVOC	<u>s Analytical</u> I	Results	LL2mw-263	LL3mw-238	LL3mw-242	LL4mw-198
Glation ib			Region 9	FWGLL2mw-263C-	FWGLL3mw-238C-	FWGLL3MW-242C-	FWGLL4MW-198C-
Sample ID		MCL	PRG	0385-GW	0386-GW	0387-GW	0388-GW
Date Collected				1/22/2007	1/25/2007	1/25/2007	1/19/2007
Sample Type Analyte	Units			Grab	Grab	Grab	Grab
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Benzoic acid	μg/L	NS	150000	10 R	10 R	10 R	10 UJ
Benzyl alcohol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U	5.0 UJ
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U	1.0 UJ
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 UJ	1.0 U	1.0 U	1.0 UJ
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 UJ	10 U	10 U	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Carbazole	μg/L	NS	3.4	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Chrysene	μg/L	NS	9.2	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Dibenzofuran	μg/L	NS	12	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Diethyl phthalate	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Dimethyl phthalate	μg/L	NS	360000	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Di-n-butyl phthalate	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Di-n-octyl phthalate	μg/L	NS	1500	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Fluoranthene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Fluorene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Hexachlorobenzene	μg/L	1	0.042	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Hexachlorobutadiene	μg/L	NS	0.86	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 R	10 R	10 R
Hexachloroethane	μg/L	NS	4.8	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Isophorone	μg/L	NS	71	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Naphthalene	μg/L	NS	6.2	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Nitrobenzene	μg/L	NS	3.4	1.0 UJ	1.0 U	1.0 U	1.0 UJ
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 UJ	1.0 U	1.0 U	1.0 UJ
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 UJ	1.0 U	1.0 U	1.0 UJ
Pentachlorophenol	μg/L	1	0.56	5.0 UJ	5.0 U	5.0 U	5.0 UJ
Phenanthrene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ
Phenol	μg/L	NS	11000	1.0 UJ	1.0 U	1.0 U	1.0 R
Pyrene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U	0.20 UJ

Table 3-6 FWGWMP January 2 Station ID	1	<u>o 7 triaryticar</u>		LL4mw-199	WBGmw-006	WBGmw-007
			Region 9	FWGLL4MW-199C-	FWGWBGMW-006C-	FWGWBGMW-007C-
Sample ID		MCL	PRG	0389-GW	0390-GW	0391-GW
Date Collected Sample Type				1/19/2007 Grab	1/23/2007 Grab	1/23/2007 Grab
Analyte	Units			Olab	Grab	Glab
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 UJ	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 UJ	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	NS	180	1.0 UJ	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	NS	0.5	1.0 UJ	1.0 U	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 UJ	5.0 U	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 UJ	5.0 U	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 UJ	2.0 U	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 R	2.0 U	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 UJ	5.0 U	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 UJ	5.0 U	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 UJ	5.0 U	0.66 J
2-Chloronaphthalene	μg/L	NS	490	1.0 UJ	1.0 U	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 R	1.0 U	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 UJ	1.0 U	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 UJ	2.0 U	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 UJ	5.0 U	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 UJ	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 UJ	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 UJ	2.0 U	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 UJ	2.0 U	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
Anthracene	μg/L	NS	1800	0.20 UJ	0.20 U	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 UJ	0.20 U	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U

Table 3-6 FWGWMP January 2 IStation ID	2007 SVOC	<u>s Analytical</u> I	Results	LL4mw-199	WBGmw-006	WBGmw-007
Otation ID			Region 9	FWGLL4MW-199C-	FWGWBGMW-006C-	FWGWBGMW-007C-
Sample ID		MCL	PRG	0389-GW	0390-GW	0391-GW
Date Collected				1/19/2007	1/23/2007	1/23/2007
Sample Type Analyte	Units			Grab	Grab	Grab
		NO	NO	0.00.111	0.0011	0.00.11
Benzo(g,h,i)perylene	μg/L "	NS	NS	0.20 UJ	0.20 U	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 UJ	0.20 U	0.20 U
Benzoic acid	μg/L	NS	150000	10 UJ	10 U	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 UJ	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 UJ	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 UJ	10 UJ	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 UJ	1.0 U	1.0 U
Carbazole	μg/L	NS	3.4	1.0 UJ	1.0 U	1.0 U
Chrysene	μg/L	NS	9.2	0.20 UJ	0.20 U	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 UJ	0.20 U	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 UJ	1.0 U	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 UJ	1.0 U	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 UJ	1.0 U	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 UJ	1.0 U	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
Fluorene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 UJ	0.20 U	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 UJ	1.0 U	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 R	10 U	10 U
Hexachloroethane	μg/L	NS	4.8	1.0 UJ	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 UJ	0.20 U	0.20 U
Isophorone	μg/L	NS	71	1.0 UJ	1.0 U	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 UJ	0.20 U	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 UJ	1.0 U	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 UJ	1.0 U	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 UJ	1.0 U	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 UJ	5.0 U	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
Phenol	μg/L	NS	11000	1.0 R	1.0 U	1.0 U
Pyrene	μg/L	NS	NS	0.20 UJ	0.20 U	0.20 U
	⊬9′ -	. 10		0.20 00	0.200	0.200

Table 3-6 FWGWMP January 2 Station ID	2007 SVOC	is Analytica T	T Results	WBGmw-009
			Region 9	FWGWBGMW-009C-
Sample ID		MCL	PRG	0392-GW
Date Collected				1/23/2007
Sample Type Analyte	Units			Grab
1,2,4-Trichlorobenzene	μg/L	NS	7.2	1.0 U
1,2-Dichlorobenzene	μg/L	NS	370	1.0 U
1,3-Dichlorobenzene		NS NS	+	1.0 U
1,4-Dichlorobenzene	μg/L	NS NS	180	1.0 U
2,2-oxybis (1-chloropropane)	μg/L	NS	0.5 NS	1.0 U
,	μg/L			
2,4,5-Trichlorophenol	μg/L	NS	3600	5.0 U
2,4,6-Trichlorophenol	μg/L	NS	3.6	5.0 U
2,4-Dichlorophenol	μg/L	NS	110	2.0 U
2,4-Dimethylphenol	μg/L	NS	730	2.0 U
2,4-Dinitrophenol	μg/L	NS	73	5.0 U
2,4-Dinitrotoluene	μg/L	NS	73	5.0 U
2,6-Dinitrotoluene	μg/L	NS	36	5.0 U
2-Chloronaphthalene	μg/L	NS	490	1.0 U
2-Chlorophenol	μg/L	NS	30	1.0 U
2-Methylnaphthalene	μg/L	NS	NS	0.20 U
2-Methylphenol	μg/L	NS	1800	1.0 U
2-Nitroaniline	μg/L	NS	110	2.0 U
2-Nitrophenol	μg/L	NS	NS	2.0 U
3,3'-Dichlorobenzidine	μg/L	NS	0.15	5.0 U
3-Nitroaniline	μg/L	NS	3.2	2.0 U
4,6-Dinitro-2-methylphenol	μg/L	NS	NS	5.0 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	2.0 U
4-Chloro-3-methylphenol	μg/L	NS	NS	2.0 U
4-Chloroaniline	μg/L	NS	150	2.0 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	2.0 U
4-Methylphenol	μg/L	NS	NS	1.0 U
4-Nitroanaline	μg/L	NS	3.2	2.0 U
4-Nitrophenol	μg/L	NS	NS	5.0 U
Acenaphthene	μg/L	NS	NS	0.20 U
Acenaphthylene	μg/L	NS	NS	0.20 U
Anthracene	μg/L	NS	1800	0.20 U
Benzo(a)anthracene	μg/L	NS	0.092	0.20 U
Benzo(a)pyrene	μg/L	0.2	0.0092	0.20 U
Benzo(b)fluoranthene	μg/L	NS	0.092	0.20 U

Table 3-6 FWGWMP	.lanuar	/ 2007 SVOC	s Analytical Re	etlue
Table 5 0 1 VV G VV IVII	January	<i>,</i> 2001 0 0 0 0 0	, miaiviloai ixo	Julio

Table 3-6 FWGWMP January 2	<u>2007 SVOC</u>	<u>s Analytical</u>	Results	1 11/00 000
Station ID			Region 9	WBGmw-009 FWGWBGMW-009C-
Sample ID		MCL	PRG	0392-GW
Date Collected		IVICE	110	1/23/2007
Sample Type				Grab
Analyte	Units			
Benzo(g,h,i)perylene	μg/L	NS	NS	0.20 U
Benzo(k)fluoranthene	μg/L	NS	0.92	0.20 U
Benzoic acid	μg/L	NS	150000	10 U
Benzyl alcohol	μg/L	NS	NS	5.0 U
bis(2-Chloroethoxy)methane	μg/L	NS	NS	1.0 U
bis(2-Chloroethyl) ether	μg/L	NS	0.001	1.0 U
bis(2-Ethylhexyl) phthalate	μg/L	NS	4.8	10 UJ
Butyl benzyl phthalate	μg/L	NS	7300	1.0 U
Carbazole	μg/L	NS	3.4	1.0 U
Chrysene	μg/L	NS	9.2	0.20 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0093	0.20 U
Dibenzofuran	μg/L	NS	12	1.0 U
Diethyl phthalate	μg/L	NS	NS	1.0 U
Dimethyl phthalate	μg/L	NS	360000	1.0 U
Di-n-butyl phthalate	μg/L	NS	NS	1.0 U
Di-n-octyl phthalate	μg/L	NS	1500	1.0 U
Fluoranthene	μg/L	NS	NS	0.20 U
Fluorene	μg/L	NS	NS	0.20 U
Hexachlorobenzene	μg/L	1	0.042	0.20 U
Hexachlorobutadiene	μg/L	NS	0.86	1.0 U
Hexachlorocyclopentadiene	μg/L	50	220	10 U
Hexachloroethane	μg/L	NS	4.8	1.0 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.092	0.20 U
Isophorone	μg/L	NS	71	1.0 U
Naphthalene	μg/L	NS	6.2	0.20 U
Nitrobenzene	μg/L	NS	3.4	1.0 U
N-Nitroso-di-n-propylamine	μg/L	NS	9600	1.0 U
N-Nitrosodiphenylamine	μg/L	NS	14	1.0 U
Pentachlorophenol	μg/L	1	0.56	5.0 U
Phenanthrene	μg/L	NS	NS	0.20 U
Phenol	μg/L	NS	11000	1.0 U
Pyrene	μg/L	NS	NS	0.20 U
			_	

U = Indicates that the compound was analyzed for but not detected at J = estimated result. Results have been qualified "J" for one or more of the following reasons:

- holding time exceedances

- Low MS/MSD percent recoveries

- method blank contamination

elevated RPD criteria

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compound

R = Rejected data

NS = no standard

Table 3-7 FWGWMP January 2007 Pesticides and PCBs Analytical Results

Table 3-7 FWGWWP	January 20	Jur Pesticio	ies and PC				D.// 0	D1/0
Station ID			Danier 0	BKGmw-004	BKGmw-005 FWGBKGMW-005C-	BKGmw-006	BKGmw-008	BKGmw-010
Sample ID		MCL	Region 9 PRG	FWGBKGMW-004C- 0357-GW	0358-GW	FWGBKGMW-006C- 0359-GW	FWGBKGMW-008C- 0360-GW	FWGBKGMW-010C-
Date Collected		IVICL	PRG	1/25/2007	1/24/2007	1/22/2007	1/23/2007	0361-GW 1/23/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.28	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4,4'-DDE	μg/L	NS	0.2	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4,4'-DDT	μg/L	NS	0.2	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Aldrin	μg/L	NS	0.003	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-BHC	μg/L	NS	0.011	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-Chordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
beta-BHC	μg/L	NS	0.032	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
delta-BHC	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Dieldrin	μg/L	NS	0.0023	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endosulfan I	μg/L	NS	220	0.025 UJ	0.025 UJ	0.025 R	0.025 UJ	0.025 UJ
Endosulfan II	μg/L	NS	220	0.025 U	0.025 U	0.025 UJ	0.025 UJ	0.025 UJ
Endosulfan sulfate	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin	μg/L	2	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin aldehyde	μg/L	NS	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin ketone	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Gamma-BHC	μg/L	0.2	0.052	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
gamma-Chlordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor	μg/L	0.4	0.015	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Methoxychlor	μg/L	40	180	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Toxaphene	μg/L	3	0.061	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
PCB- 1016	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1221	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1232	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1242	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1248	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1254	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 U	0.50 U
PCB- 1260	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 UJ	0.50 U	0.50 U

Table 3-7 FWGWMP January 2007 Pesticides and PCBs Analytical Results

Table 3-7 FVVGVVIVIP	January 20	Jur Pesticio	ies and PC			DV0 045	DI/O 040	DI/O 047
Station ID			Dogion 0	BKGmw-012 FWGBKGMW-012C-	BKGmw-013 FWGBKGMW-013C-	BKGmw-015 FWGBKGMW-015C-	BKGmw-016 FWGBKGMW-016C-	BKGmw-017 FWGBKGMW-017C-
Sample ID		MCL	Region 9 PRG	0362-GW	0363-GW	0364-GW	0365-GW	0366-GW
Date Collected		IVICE	TRO	1/23/2007	1/25/2007	1/22/2007	1/24/2007	1/24/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.28	0.030 U				
4,4'-DDE	μg/L	NS	0.2	0.030 U				
4,4'-DDT	μg/L	NS	0.2	0.030 U				
Aldrin	μg/L	NS	0.003	0.030 U				
alpha-BHC	μg/L	NS	0.011	0.030 U				
alpha-Chordane	μg/L	NS	NS	0.030 U				
beta-BHC	μg/L	NS	0.032	0.030 U				
delta-BHC	μg/L	NS	NS	0.030 U				
Dieldrin	μg/L	NS	0.0023	0.030 U				
Endosulfan I	μg/L	NS	220	0.025 UJ	0.025 UJ	0.025 R	0.025 UJ	0.025 UJ
Endosulfan II	μg/L	NS	220	0.025 UJ	0.025 U	0.025 UJ	0.025 U	0.025 U
Endosulfan sulfate	μg/L	NS	NS	0.030 U				
Endrin	μg/L	2	11	0.030 U				
Endrin aldehyde	μg/L	NS	11	0.030 U				
Endrin ketone	μg/L	NS	NS	0.030 U				
Gamma-BHC	μg/L	0.2	0.052	0.030 U				
gamma-Chlordane	μg/L	NS	NS	0.030 U				
Heptachlor	μg/L	0.4	0.015	0.030 U				
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U				
Methoxychlor	μg/L	40	180	0.10 U				
Toxaphene	μg/L	3	0.061	2.0 U				
PCB- 1016	μg/L	0.5	0.034	0.50 U	0.50 R	0.50 UJ	0.50 R	0.50 R
PCB- 1221	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 R	0.50 R
PCB- 1232	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 R	0.50 R
PCB- 1242	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 R	0.50 R
PCB- 1248	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 R	0.50 R
PCB- 1254	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 R	0.50 R
PCB- 1260	μg/L	0.5	0.034	0.50 U	0.50 R	0.50 UJ	0.50 R	0.50 R
•		•	•	•		•	•	

Table 3-7 FWGWMP	January 20	Jur Pesticio	ies and PC					
Station ID			Dan's a	BKGmw-018	BKGmw-019	BKGmw-020	BKGmw-021	CBPmw-005
Sample ID		MCL	Region 9 PRG	FWGBKGMW-018C- 0367-GW	FWGBKGMW-019C- 0368-GW	FWGBKGMW-020C- 0369-GW	FWGBKGMW-021C- 0370-GW	FWGCBPMW-005C-
Sample ID Date Collected		IVICL	PKG	1/22/2007	1/25/2007	1/22/2007	1/25/2007	0371-GW 1/24/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.28	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4,4'-DDE	μg/L	NS	0.2	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4,4'-DDT	μg/L	NS	0.2	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Aldrin	μg/L	NS	0.003	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-BHC	μg/L	NS	0.011	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-Chordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
beta-BHC	μg/L	NS	0.032	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
delta-BHC	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Dieldrin	μg/L	NS	0.0023	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endosulfan I	μg/L	NS	220	0.025 R	0.025 UJ	0.025 R	0.025 UJ	0.025 UJ
Endosulfan II	μg/L	NS	220	0.025 UJ	0.025 U	0.025 UJ	0.025 U	0.025 U
Endosulfan sulfate	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin	μg/L	2	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin aldehyde	μg/L	NS	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin ketone	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Gamma-BHC	μg/L	0.2	0.052	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
gamma-Chlordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor	μg/L	0.4	0.015	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Methoxychlor	μg/L	40	180	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Toxaphene	μg/L	3	0.061	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
PCB- 1016	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 R	0.50 R
PCB- 1221	μg/L	0.5	0.034	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1232	μg/L	0.5	0.034	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1242	μg/L	0.5	0.034	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1248	μg/L	0.5	0.034	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1254	μg/L	0.5	0.034	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1260	μg/L	0.5	0.034	0.50 UJ	0.50 R	0.50 UJ	0.50 R	0.50 R

Station ID	ouridary 20	0011 0011010		CBPmw-007	DA2mw-107	LL11mw-002	LL11mw-007	LL12mw-153
			Region 9	FWGCBPMW-007C-	FWGDA2MW-107C-	FWGLL11MW-002C-	FWGLL11MW-007C-	FWGLL12MW-153C-
Sample ID		MCL	PRG	0372-GW	0373-GW	0374-GW	0375-GW	0376-GW
Date Collected				1/24/2007	1/22/2007	1/18/2007 Grab	1/18/2007	1/24/2007
Sample Type Analyte	Units			Grab	Grab	Grab	Grab	Grab
4.4'-DDD	μg/L	NS	0.28	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4,4'-DDE		NS NS	0.28	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
4.4'-DDT	μg/L	NS	0.2	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Aldrin	μg/L	NS	0.003	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-BHC	μg/L							
•	μg/L	NS	0.011	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
alpha-Chordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
beta-BHC	μg/L	NS	0.032	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
delta-BHC	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Dieldrin	μg/L	NS	0.0023	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endosulfan I	μg/L	NS	220	0.025 UJ	0.025 UJ	0.025 UJ	0.025 UJ	0.025 UJ
Endosulfan II	μg/L	NS	220	0.025 U	0.025 UJ	0.025 U	0.025 U	0.025 U
Endosulfan sulfate	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin	μg/L	2	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin aldehyde	μg/L	NS	11	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Endrin ketone	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Gamma-BHC	μg/L	0.2	0.052	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
gamma-Chlordane	μg/L	NS	NS	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor	μg/L	0.4	0.015	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Methoxychlor	μg/L	40	180	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Toxaphene	μg/L	3	0.061	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
PCB- 1016	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1221	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1232	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1242	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1248	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1254	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R
PCB- 1260	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 R

Table 3-7 FWGWMP	January 20	Jur Pesticio	ies and PC					
Station ID				LL12mw-182	LL12mw-183	LL12mw-186	LL1mw-078	LL1mw-080
0 1 10			Region 9	FWGLL12MW-182C-	FWGLL12MW-183C-	FWGLL12MW-186C-	FWGLL1mw-078C-	FWGLL1mw-080C-
Sample ID Date Collected		MCL	PRG	0377-GW 1/24/2007	0378-GW 1/24/2007	0379-GW 1/24/2007	0380-GW 1/23/2007	0381-GW 1/25/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units			Olas	Cido	Orab	Oldb	Giab
4,4'-DDD	μg/L	NS	0.28	0.030 U				
4,4'-DDE	μg/L	NS	0.2	0.030 U				
4,4'-DDT	μg/L	NS	0.2	0.030 U				
Aldrin	μg/L	NS	0.003	0.030 U				
alpha-BHC	μg/L	NS	0.011	0.030 U				
alpha-Chordane	μg/L	NS	NS	0.030 U				
beta-BHC	μg/L	NS	0.032	0.030 U	0.030 U	0.030 U	0.030 U	0.029 J
delta-BHC	μg/L	NS	NS	0.030 U				
Dieldrin	μg/L	NS	0.0023	0.030 U				
Endosulfan I	μg/L	NS	220	0.025 UJ				
Endosulfan II	μg/L	NS	220	0.025 U	0.025 U	0.025 U	0.025 UJ	0.025 U
Endosulfan sulfate	μg/L	NS	NS	0.030 U				
Endrin	μg/L	2	11	0.030 U				
Endrin aldehyde	μg/L	NS	11	0.030 U				
Endrin ketone	μg/L	NS	NS	0.030 U				
Gamma-BHC	μg/L	0.2	0.052	0.030 U				
gamma-Chlordane	μg/L	NS	NS	0.030 U				
Heptachlor	μg/L	0.4	0.015	0.030 U				
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U				
Methoxychlor	μg/L	40	180	0.10 U				
Toxaphene	μg/L	3	0.061	2.0 U				
PCB- 1016	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 R
PCB- 1221	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 UJ
PCB- 1232	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 UJ
PCB- 1242	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 UJ
PCB- 1248	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 UJ
PCB- 1254	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 UJ
PCB- 1260	μg/L	0.5	0.034	0.50 R	0.50 R	0.50 R	0.50 U	0.50 R

Ctation ID	January 20	Jur Pesticio	ies and PC	LL1mw-083	LL2mw-059	LL2mw-262	LL2mw-263	LL3mw-238
Station ID			Region 9	FWGLL1mw-083C-	FWGLL2mw-059c-	FWGLL2mw-262C-	FWGLL2mw-263C-	FWGLL3mw-238C-
Sample ID		MCL	PRG	0382-GW	0383-GW	0384-GW	0385-GW	0386-GW
Date Collected			11.0	1/23/2007	1/22/2007	1/22/2007	1/22/2007	1/25/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.28	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
4,4'-DDE	μg/L	NS	0.2	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
4,4'-DDT	μg/L	NS	0.2	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Aldrin	μg/L	NS	0.003	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
alpha-BHC	μg/L	NS	0.011	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
alpha-Chordane	μg/L	NS	NS	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
beta-BHC	μg/L	NS	0.032	0.086 J	0.030 U	0.030 U	0.030 U	0.17 J
delta-BHC	μg/L	NS	NS	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Dieldrin	μg/L	NS	0.0023	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Endosulfan I	μg/L	NS	220	0.25 UJ	0.025 R	0.025 R	0.025 R	0.25 UJ
Endosulfan II	μg/L	NS	220	0.25 UJ	0.025 UJ	0.025 UJ	0.025 UJ	0.25 U
Endosulfan sulfate	μg/L	NS	NS	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Endrin	μg/L	2	11	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Endrin aldehyde	μg/L	NS	11	0.30 UJ	0.030 U	0.030 U	0.030 U	0.30 U
Endrin ketone	μg/L	NS	NS	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Gamma-BHC	μg/L	0.2	0.052	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
gamma-Chlordane	μg/L	NS	NS	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Heptachlor	μg/L	0.4	0.015	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Heptachlor epoxide	μg/L	0.2	0.0074	0.30 U	0.030 U	0.030 U	0.030 U	0.30 U
Methoxychlor	μg/L	40	180	1.0 U	0.10 U	0.10 U	0.10 U	1.0 U
Toxaphene	μg/L	3	0.061	20 U	2.0 U	2.0 U	2.0 U	20 U
PCB- 1016	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
PCB- 1221	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ
PCB- 1232	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ
PCB- 1242	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ
PCB- 1248	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ
PCB- 1254	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ
PCB- 1260	μg/L	0.5	0.034	0.50 U	0.50 UJ	0.50 UJ	0.50 UJ	0.50 R
		•	•			•		

Table 3-7 FVVGVVIVIP	January 20	Jur Pesticio	ies and PC				14/00 000	WDQ 007
Station ID			Dogion 0	LL3mw-242 FWGLL3MW-242C-	LL4mw-198 FWGLL4MW-198C-	LL4mw-199 FWGLL4MW-199C-	WBGmw-006 FWGWBGMW-006C-	WBGmw-007 FWGWBGMW-007C-
Sample ID		MCL	Region 9 PRG	0387-GW	0388-GW	0389-GW	0390-GW	0391-GW
Date Collected		IVICL	FRG	1/25/2007	1/19/2007	1/19/2007	1/23/2007	1/23/2007
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.28	0.030 U				
4,4'-DDE	μg/L	NS	0.2	0.030 U				
4,4'-DDT	μg/L	NS	0.2	0.030 U				
Aldrin	μg/L	NS	0.003	0.030 U				
alpha-BHC	μg/L	NS	0.011	0.030 U				
alpha-Chordane	μg/L	NS	NS	0.030 U				
beta-BHC	μg/L	NS	0.032	0.030 U				
delta-BHC	μg/L	NS	NS	0.030 U				
Dieldrin	μg/L	NS	0.0023	0.030 U				
Endosulfan I	μg/L	NS	220	0.025 UJ				
Endosulfan II	μg/L	NS	220	0.025 U	0.025 U	0.025 U	0.025 UJ	0.025 UJ
Endosulfan sulfate	μg/L	NS	NS	0.030 U				
Endrin	μg/L	2	11	0.030 U				
Endrin aldehyde	μg/L	NS	11	0.030 U				
Endrin ketone	μg/L	NS	NS	0.030 U				
Gamma-BHC	μg/L	0.2	0.052	0.030 U				
gamma-Chlordane	μg/L	NS	NS	0.030 U				
Heptachlor	μg/L	0.4	0.015	0.030 U				
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U				
Methoxychlor	μg/L	40	180	0.10 U				
Toxaphene	μg/L	3	0.061	2.0 U				
PCB- 1016	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1221	μg/L	0.5	0.034	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1232	μg/L	0.5	0.034	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1242	μg/L	0.5	0.034	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1248	μg/L	0.5	0.034	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1254	μg/L	0.5	0.034	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
PCB- 1260	μg/L	0.5	0.034	0.50 R	0.50 U	0.50 U	0.50 U	0.50 U

Table 3-7 FWGWMP January 2007 Pesticides and PCBs Analytical Results

Papie 3-7 FVVGVVIVIP	January 20	JOT F ESTICIC	ies and FC	
Station ID			Region 9	WBGmw-009 FWGWBGMW-009C-
Sample ID		MCL	PRG	0392-GW
Date Collected		IVICL	110	1/23/2007
Sample Type				Grab
Analyte	Units			
4,4'-DDD	μg/L	NS	0.28	0.030 U
4,4'-DDE	μg/L	NS	0.2	0.030 U
4,4'-DDT	μg/L	NS	0.2	0.030 U
Aldrin	μg/L	NS	0.003	0.030 U
alpha-BHC	μg/L	NS	0.011	0.030 U
alpha-Chordane	μg/L	NS	NS	0.030 U
beta-BHC	μg/L	NS	0.032	0.030 U
delta-BHC	μg/L	NS	NS	0.030 U
Dieldrin	μg/L	NS	0.0023	0.030 U
Endosulfan I	μg/L	NS	220	0.025 UJ
Endosulfan II	μg/L	NS	220	0.025 UJ
Endosulfan sulfate	μg/L	NS	NS	0.030 U
Endrin	μg/L	2	11	0.030 U
Endrin aldehyde	μg/L	NS	11	0.030 U
Endrin ketone	μg/L	NS	NS	0.030 U
Gamma-BHC	μg/L	0.2	0.052	0.030 U
gamma-Chlordane	μg/L	NS	NS	0.030 U
Heptachlor	μg/L	0.4	0.015	0.030 U
Heptachlor epoxide	μg/L	0.2	0.0074	0.030 U
Methoxychlor	μg/L	40	180	0.10 U
Toxaphene	μg/L	3	0.061	2.0 U
PCB- 1016	μg/L	0.5	0.034	0.50 U
PCB- 1221	μg/L	0.5	0.034	0.50 U
PCB- 1232	μg/L	0.5	0.034	0.50 U
PCB- 1242	μg/L	0.5	0.034	0.50 U
PCB- 1248	μg/L	0.5	0.034	0.50 U
PCB- 1254	μg/L	0.5	0.034	0.50 U
PCB- 1260	μg/L	0.5	0.034	0.50 U

Qualifier Definitions:

U = Indicates that the compound was analyzed for but not detected at or above the reporting limit

J = estimated result. Results have been qualified "J" for one or

more of the following reasons:

- low LCS recovery

low MS/MSD recovery

- low surrogate recovery

UJ = Indicates a nondetect at an estimated reporting limit

Bold = detected compound

NS = no standard

R = rejected data

Please note: The data contained in this table has been subjected to the Threestep validation process. The resulting qualifiers are not necessarily identical to those listed in Appendix B. See Section 3.3 and Appendix C for further explanation.

3.3 Data Verification/Validation

As discussed in Sections 2.3 and 3.2, all chemical data was analyzed by STL and GPL. A three step process is then conducted which involves the lab, the ADR data program, and a data validator performing the data verification and validation of the data. The First Step is where each lab analyzes the data and assigns a qualifier as necessary in full accordance with USEPA and Louisville Chemistry (LCG) guidelines.

The data verification and validation process is continued with Step Two; when the data validator verifies all data received from STL and GPL, and validates greater than 10% of the data by running the lab data through the ADR program. The USACE-supplied ADR program assigned qualifiers to the data as necessary consistent with the programmed criteria of the ADR software. The Third Step is when the data validator then uses professional judgment to check the validity of the qualified data and either accepts, rejects, or re-qualifies the ADR results following strict LCG and USEPA guidelines.

After this three-step process has been completed, the resulting final ADR qualifiers may not match the original lab qualifiers which are presented in Appendix B. As a result of the data validation process, one or more of four possibilities listed occurs:

- 1. The lab assigns a B, J, or E to the data, and ADR and/or the data validator changes the qualifier to a J, UJ, U, or R.
- 2. The lab assigns no qualifier to the data, and ADR and/or the data validator assigns a J, UJ, U, or R to the data.
- 3. The lab assigns a B, J, or E to the data, and ADR and/or the data validator assigns no qualifier to the data.
- 4. The lab may assign a J qualifier or use no qualifier, and ADR and/or the data validator accepts the lab designation.

For the January 2007 Sampling Event Report, the lab data with laboratory derived qualifiers following USEPA and LGC criteria is presented in Appendix B. The verification/validation reports for the data are presented in Appendix C, which also includes the definitions of ADR qualifiers. The data presented in Tables 3-2, 3-3, 3-5, 3-6, and 3-7 is the result of the data that has been subjected to the Three Step Process of verification and validation. These Tables display the final assigned data qualifier in accordance with ADR and LCG criteria.

Thirty-six wells were sampled during a six day sampling event from January 18, 2007 through January 25, 2007. During this event, eight trip blanks were submitted for volatile analysis to both STL and GPL. No contamination was reported in any of the trip blanks for this sampling event at values greater than the standard reporting limit. STL uses third party prepared trip blanks which are certified clean for methylene chloride at 2.0 ug/L and for acetone 5.0 ug/L. Low

level contamination of methylene chloride and/or acetone was detected at values less than ½ the standard reporting limit in one or more of the trip blanks submitted. Acetone found in the trip blanks ranged from 1.7ug/L to 2.2ug/L. Methylene chloride found in the trip blanks ranged from 0.9ug/L to 1.4ug/L. The values detected and reported are estimated less than the standard reporting limit and have values that are lower than what is required to be certified clean. Since extensive cleaning had been performed on site for all refrigerators and transport coolers, it is apparent that the low level values being detected in the trip blanks, are a result of limiting factors in the prepared trip blanks. The manufacturer has set limits to the cleanliness of the trip blanks and these values were followed for standard reporting limits. Requiring reporting of concentrations below the cleanliness standards is showing erroneous values to the data. In most cases, where trip blank values were reported, all associated samples had undetectable levels of these compounds, therefore, sample results were not qualified following USEPA and LGC guideline criteria. When positive values were detected in samples at values within 10 times the value found in the blank, results were qualified estimated based on blank contamination.

Four field duplicates were collected on two separate days in order to assess the quality and consistency of sample collection. Project requirements of 10% field duplicates were met for this sampling event. In addition, four laboratory splits were collected and analyzed on two days of sampling in order to assess the quality and consistency of the laboratory analysis. The project requirements of taking 10% laboratory splits were met for this sampling event.

An equipment rinse blank was collected during the sampling event. No compounds were detected in the equipment rinse blank at values greater the standard reporting limit.

Laboratory analyses were performed in analytical batches in order to maximize efficiency and group quality control requirements. Method blanks, laboratory control samples, and laboratory control duplicates were analyzed at a frequency of 1:20 (5%) samples, or in each analytical batch whichever was greater. Sufficient volume was provided to the laboratory in order to assess matrix spike analysis on project samples at a frequency of 1:10 (10%) samples. Matrix spike/matrix spike duplicate analysis was performed by the laboratory as batch quality control at a frequency of 1:10 (10%).

Field quality control and laboratory quality control results were evaluated as part of the verification and validation assessment provided in Appendix C. Project requirements were met for the frequency and quality of these samples. Samples have been appropriately identified as trip blanks, field duplicates, and splits in the ADR software, and evaluation of these samples was performed by the validator as well as the ADR software.

All qualified data has been discussed in the Data Verification/Validation Reports contained in Appendix C. Ninety of the 9,685 results for this sampling period have been rejected due to low LCS percent recovery less than 30%. These compounds include: phenol, 2,4-dimethylphenol, 2-chlorophenol, hexachlorocyclopentadiene, benzoic acid, aroclor-1016, aroclor-1260, and endosulfan I. In most cases, samples were re-extracted and the re-analysis, performed outside of the seven day holding time has also been reported. Hexachlorocyclopentadiene and benzoic acid are historically poor performers. Most of these compounds are not considered particular analytes of concern at this site; therefore this has minimal impact on the overall project objectives. However, the laboratory has been informed of this occurrence.

All other data meets the requirements specified in the USACE Louisville Guidance Document and the QAPP associated with this site. All qualified data performed by the data validator is further discussed in the Data Verification/Validation Reports contained in Appendix C. The data presented in Tables 3-2, 3-3, 3-5, 3-6, and 3-7 presents only the final results of the qualified data.

4.0 REFERENCES

Portage Environmental, 2004. RVAAP Facility-Wide Groundwater Monitoring Program Plan.

SAIC, 2001. RVAAP Facility-Wide Sampling and Analysis Plan/Quality Assurance Project Plan.

SAIC, 2001b, Phase II Remedial Investigation report for the Winklepeck Burning Grounds at Ravenna Army Ammunition Plant, Ravenna, Ohio.

SAIC/REIMS, 2005. Table of Reported Construction Depths from REIMS Information.

SpecPro, Inc., 2005a. Facility-Wide Groundwater Monitoring Program Report on the April 2005 Sampling Event, Ravenna Training and Logistics Site / Ravenna Army Ammunition Plant, Ravenna, Ohio.

SpecPro, Inc., 2005b: Facility-Wide Groundwater Monitoring Program, Report on the July 2005 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006a, Facility-Wide Groundwater Monitoring Program, Annual Report for 2005, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006b, Facility-Wide Groundwater Monitoring Program, Report on the March 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006c, Facility-Wide Groundwater Monitoring Program, Report on the May 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2006d, (Draft) Facility-Wide Groundwater Monitoring Program, Annual Report for 2006, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007a, Facility-Wide Groundwater Monitoring Program, Report on the July 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

SpecPro, Inc. 2007b, Facility-Wide Groundwater Monitoring Program, Report on the October 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio

APPENDIX A

FIELD LOG BOOK SHEETS

SIGNATURE PAGE

Signature	Printed Name	Initials
al Bully	Al Brillinger	<u>AB</u>
Curtal Bailey	Crystal Brilay	CB_
Crik Pietrzak	Erik Pietrzak	EP
JE. Zuro CQ	Kyle Russell	KAR
Sail Harm	Gail Harris	att
Any Undurch	AMY HEIDENRFICH	auf

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program _SuM TuW /Th F Sa PAGE____OF ____ Date (mm/dd/yy): __ Task Team Members: Narrative (include time and location): Daily Weather Conditions: A.M. <u>YAR71 Y</u>

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

		0.40		-					
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
2	10:00	0	$\langle \rangle$	9.77	7.6	bal	9,99	272	13,11
Carlos 19 as house	10.0g	ć X	6.35	(N)	7.00	0//	6.04	290	8
	10:1	X	0,50	S.	9.5	No. 1 Sec. 1	65'8	32)	W/8/
Nigator Parish	0.0	5	650	, Q	60		3,56	S. S.	62
- 2852 281-481.0	10.13	0.15	0.80	1.40	30	<i>C//</i>	8.55	18 18 18	12.13
****************) (T. 1	10	The state of the s	9.23	6.0		000 K		200
David Bergins Berg with a	5	0.15		3,07	1.01	511	0,48	440	12.15
The second second	10.76	5110	1.25	3. H), 9,/		8.40	A.S.	2
V		W 0.15		327	9/		8,39	a surplement	2.7
D	10.18	\$ \$ \$	1,55	3,41	10,1	(1)	637	785	12.15
		-			•				
								Ĵ	
			*						
RECORDED BY:	DED B)	C. Aug.	Welling.	1881	5	QA CHECK BY:		20 Bright	1.26.07

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/4" tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program

Date (mm/dd/yy): 1-24-07 Su M Tu W Th F Sa PAGE OF Task Team Members:
Mike Reeder
Crystal Bailey
Narrative (include time and location):
11:07 Arrive @ Well BKG-005
10.11 Depth to water
toits Began Durging Well
11:35 Becan sampling sample # FWGRKGMU-1050-0358
11:35 Began sampling sample # FWGRKGMW-0050-0358 £ sample # FWGBKGMW-0050-0358-GF(TAL metals)
(exp. prop.CN, SVOC, PCB, PEST, VOC) <
11:58 Finish Sampling
11:59 Clean equipment & site
12:08 left site
TOTAL SILVE
Daily Weather Conditions: A.M. Cloudy, light 5000 30°F
Recorded By What Bouler QA Checked By My Mudwet

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL	NUMBEF	WELL NUMBER AND LOCATION: _	Ř	16,-00F		ı	⁄d	PAGEO	OF
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (#MHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
1-240	1-24-07 11:26	ئم	.50	10.53	3,10	. 434	7,39	4115	10.31
et 1849 Westerland	[1], 28	. 20	07.	4.53	3,28	, 437	7.20	676	10.40
W 0710, 1510, 181	11,30	. 20	96.	1,55	3,41	445	7,73	373	10.41
	11:3	.20	0	6.58	3,47	, 451	7.00	328	10.40
			-)		
						-			
						71. 30000			
								Ĵ	
RECO	RDED BY	RECORDED BY: C. M.S. L. Dan J.M.	Ballen	1-24-B		QA CHECK BY:	K BY: Chui	Mudwor	1/20/17

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2, tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): __/ Task Team Members: SuM Tu W Th F Sa PAGE____ OF ____ Narrative (include time and location): WELL SAMPLING EQUIPMENT Daily Weather Conditions: A.M. ____CLOUNY QA Checked By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

BK6-002

P

PAGE

		0.40	L							
DATE	TIME	REMOVED	GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (UMHOS/CM)	DISSOLVED OXYGEN (ma/l)	TURBIDITY	Depth to	
	1.3	0	9	16.21	5.4	Q00 0	13.37	De A	Water COMMEN IS	T
Amous, susya.	11:39	56.0	\$. \$	6.21	15.5	0,00	/2 6/2	190		
11000000000	7.1	56.0	0 : D				X 50	000		
41) (5.4 _{1) (5.4} 2)	11.43	0. X	VCO	17.0	6.7		13.0/	ter		T
· · · · · · · · · · · · · · · · · · ·	7/1	50.05	1,001	000	20%	0,000	0000	20%	7	1
7		50.0	1.35	(0°08)	7.8		29.9	0	21:40	T
			,)	•				4	T
										Т
										T-
								j		$\overline{}$
										7
										т
RECOF	RECORDED BY:	J	Marine	25		OACHECK	OA CHECK BY. () O By. 100 . 11.27.	32.00	1 C · 1	7
		(Signa	(Signature and Date)					(Signatur	e and Date)	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ½" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: _

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 1-22-07 Su M(Tu) W Th F Sa PAGE____OF___ Task Team Members: 9MUNDO ESPINOSA Narrative (include time and location): BKC -008 13:11 SPI: + & Duplicate WGBXLmw-008C-0394-Daily Weather Conditions: A.M. Clardy, light Smid 28°F QA Checked By My

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

P

PAGE

DATE	TIME	GALLONS	GALLONS	pH (Standard	TEMP (C)	SPECIFIC	DISSOLVED	TURBIDITY	Depth to
	1,36	0	NEWOVED ()	7,0%	7,87	249	(mg/L)	(NIU)	Water/COMMENTS
*****	11:38	. 25	.25	6.410	3.53	.250	8,02	66.0	13.62
-	1:40	.25	.50	04.7	2.09	.264	20.3	52.0	13.60
-	11:42	.25	.75	6.38	.93	.267		1,8%	13,60
	1.44	,25	1.00	6.36	.86	.271	8.07	39.7	13,61
	= . A	. 25	1.25	6.34	1.36	.264	7.78	47.3	13.66
	11:48	,25	1.50	6.32	08.1	.260	7.52	47.5	(3.66
	11:50	. 25	1.75	6.32	1.93	.258	7.37	47.0	13.65
					201 1 1 1 1 1 1 1 1 1 				
								,	
L									
	RECORDED BY:_		Bailey	1-23-67		QA CHECK BY:	(BY: Ouw	N. N.	
		(Sign	Signature and Date	ê				(Signatu	Signature and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ¼" tubing = 0.0026 gallons/ff)

WELL NUMBER AND LOCATION: BYG - COB

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 1-23-07 Su M (Tu) W Th F Sa PAGE____OF___ Task Team Members: YMUNDO ESPINOSA Narrative (include time and location): Arrive @ Well BKG-010 13.18 Daily Weather Conditions: A.M.

QA Checked By _

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL N	IUMBEF	R AND LOCAT	WELL NUMBER AND LOCATION: 0KG -C)	1-010		ı	/d	PAGEO	OF
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
1-23-07 15:07	15:07	0	0	5.16	3.56	,207	4.94	29.7	ſ
, and a state of the	15:09	0.25	, 25	4.94	3.57	,2/2	5.39	229	13.52
an 43000 300 400 400 000 a	11:5/	J. 20	0.45gB	4.88	3.28	. 2/2	4.49	21.3	13.62
ang a walking on an ang distribution of	21.91	0.20	1,65	4.83	3,27	.212	4.00	17.4	13.71
	15,15	0.20	1.85	4.81	3.26	,214	3,92	15,6	(3.79
e en university of the end. F	11.01	0.70	R	4.82	3.36	,214	3.28	12.6	13.84
az kilipirdi Manayer ndal	6/:(3)	0.20	1.25	4.92	3.43	, 2/3	3.24	7.	13.89
***************************************	15:21	0.30	1.45	4.82	3,42	.213	3, 23	-0.6	13.93
								Ĵ	
RECOR	RECORDED BY:	1.15(12)	- Marian	1-73-07		OA CHECK BY	- Andrewson		200

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2 tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME. RVAAP Facility-voide Gloundwater Monitoring Program
Date (mm/dd/yy): Su M Yu W Th F Sa PAGE OF Task Team Members:
AMY HEIDENREICH
MIKE REEDER
Narrative (include time and location):
13:42 ARRIVE @ WELL BKG-012
BECAN LUSTON
5.74 DEPTH TO WATER
14:00 BEGAN PURGING WELL
14:14 BEGAN SAMPLING SAMPLE #
FWGBKGMW-012C-0362-GW (EXP PROP,
CN, SVOC PLB, PEST (VOC): SAMPLE#
FWGBKGMW-012C-0362-GF(TALMETACS)
14:55 FINISH SAMPLING
14:56 CLEANED EQUIPMENT & SITE
15:02- LEFT ONE
· · · · · · · · · · · · · · · · · · ·
,
Daily Weather Conditions: A.M.
P.M. PARTLY SUNNY BD
Recorded By Aug Midwel QA Checked By Ol Brilling.

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

P

PAGE_

DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
030	14:03 14:03	0	0	61	20,4	22	00	6.21	7.65
ne.	14:02	Q . 9	Q 0	6.78	8.3	235	(,78	0.5-	7.67
iri 188 - 287 - 170 (28 (28 - 175)	3	0.20	6,40	CR	7	2334	7	15,0	8
ati Mirra i panini da ati	#: 68 #: 68	2	0. E	7.49	7	78B	00.0	SO	878
· Now declarate we	2	0,30	0,80	7,63	78	C.S.	00.00	021	80.00
->	だった	000	1,00	7.70	178	20 00 00	0.0	012	60:00
				:					
								ž	
			j						
RECOR	RECORDED BY	,	11/2	36 1	7	NA YOHLO KO		00 R. 00 .	1.26-0.7
))))		A. T. C.		+	21.2		Jan Jan	-

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2" tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

WELL NUMBER AND LOCATION: __

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 12 <u>26-07</u> Su M Tu W (Th) F Sa PAGE___OF ___ Task Team Members: ille Reedor Narrative (include time and location): MSD Daily Weather Conditions: A.M. QA Checked By __

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

														1
OF	Depth to Water/COMMENTS	Blackgrown and	V. Sections	3	8	**************************************	M					ñ		(Signature and Date)
PAGEC	TURBIDITY (NTU)	30	E	5	500	M	400			J		>		/ (Signatu
ď	DISSOLVED OXYGEN (mg/L)	19.27	9 5 0	1.52	0,0	8	8						(BY: AAA	
ı	SPECIFIC CONDUCTIVITY	,373	To the second se	187	194	2023	295						QA CHECK BY:	
	TEMP (C)	<u>.</u>	3.32	4:12	4.28	4.34	4.33						7	
9-013	pH (Standard Units)	99.6	-00 -00	2.7.	7,62	7.57	7,55						1-25-07	· ·
WELL NUMBER AND LOCATION: SKG-013	TOTAL GALLONS REMOVED	\bigcirc	3 25	S,	75	001	(25)						unk I Rally	ature and Date
R AND LOCAT	GALLONS REMOVED	0	,25	,25	,25	, 25	. 25							
UMBER	TIME	12.31	2.35	2.35	9.37	2.39	13.4						DED B)	
WELL N	DATE	1-25 ca	programming and the	, , , , , , , , , , , , , , , , , , ,	e en	grace floring to the second							RECORDED BY:	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/8" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): Su M Tu W Th F Sa PAGE___OF ___ Task Team Members: Narrative (include time and location): Daily Weather Conditions: A.M. QA Checked By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

S S

Я

PAGE

			ł)		l		HI TOTAL OF THE PARTY OF THE PA		
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
(35)	14:16	\bigcirc		6.96	7.60	159	11.20	61.2	8.7	
	17: 78	000	0,0	6.95	, 60°	168	4 68	51,0		
*********	S	0/10	0 30	5.3	φ m	60	·	40.0	7 0 0	1
	À	0/10		6.95	20,00	168		32.5	684	I
		98 0.10	0, 40	\ \ 2	, Ç	<u>5</u>	3,15	250	76.03	T
P	KH	9/10	0.80			62	1.95	98	75.07	ļ
	٠)	•)			
-										T
			80.							T
								j		
										T
				-						1
			and the second							T
RECOF	RECORDED BY:		Signature and Date)	[(S) (C) (C)		QA CHECK BY:		(Signature and Date)	- 1-26-07 re and Date)	1
		The state of the s))		

Purging Criteria: pH = 3 rdgs with 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ¾" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION:

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program 24CB Su M Tu W Th F Sa PAGE OF Date (mm/dd/yy): \(\) Task Team Members: Kerder Narrative (include time and location): Sample # FNGBKGMW-OlloC-0395-GWE e# FWGBKJMW-O16C-0395-GF Site BU1091 Daily Weather Conditions: A.M. Clouda, Light Snow QA Checked By Juy

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

								 	 	 	 		
OF	Depth to	water/commenis	7		Se Se		N. C. V. C.					1/1/67	(Signature and Date)
PAGE 0	TURBIDITY	(OIN)	\$ 0.6		300					1		Now Willy	(Signature
<u>a</u>	DISSOLVED OXYGEN	200 °		1		100						BY.	
1	SPECIFIC CONDUCTIVITY					CB-142						OA CHECK BY:	
	TEMP (C)	300	2001	2.80	900	200						2	
910-6	pH (Standard Units)	500	No.	C. C. S.	(C)							1-25-6-	
WELL NUMBER AND LOCATION: DAKG - COLO	TOTAL GALLONS REMOVED	$\vec{\Sigma}$	4	39)	06,	To What	5					nuskil Bailey	ture and Date)
AND LOCAT	GALLONS REMOVED	. 15	5			2 mm / mm/							[∤] (Signa
NUMBER	TIME	8:59	<u>م</u> ان	500	<u>0</u> 23	5						DED BY:	
WELL	DATE	JANA DI										RECORDED BY:	
nend	liγ Δ	\mathcal{E}						20					

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ¼" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: SKG-010

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 1-24-07 Su M Tu WTh F Sa PAGE____ OF ____ Task Team Members: Reelec Narrative (include time and location): 5,95 Daily Weather Conditions: A.M. Condu.

QA Checked By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

PAGEOF	DISSOLVED OXYGEN TURBIDITY Depth to (Mg/L) (NTU) Water/COMMENTS	(101.0	223.0	3340	284.0	4,10 2520 16,45					2		BY: Mari Muriciph 11810117
	SPECIFIC CONDUCTIVITY	5.4	.597	JT 2).		7	.722						OA CHECK BY:
	TEMP (C)	5.58	0.00		00.3	5 58	5, 78			100 mg			
<u> </u>	pH (Standard Units)	7.8/	7.52	7,25	7,23	7.23	7.23						1-24-07
ON: BKG	TOTAL GALLONS REMOVED	,50	. 70	06.	1. [0	1.30	50						Bailer
WELL NUMBER AND LOCATION: BK_{G-O}	GALLONS REMOVED	.50	.20	, 20	.20	,20	,20						Custal
UMBER	TIME	13:33	13, 35	13:37	13:39	13年	(3, 3	>					RECORDED BY:
WELL N	DATE	1-24-07 13:33											RECORI

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): ____ Su/M)Tu W Th F Sa PAGE___OF Task Team Members Narrative (include time and location):

Daily Weather Conditions: A.M. (LOUDY 32°

Recorded By Ang Mudach QA Checked By Al Bulley

10:56

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

OF

PAGE

			- 1						
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
1900 1900 1900 1900 1900 1900 1900 1900	7 1 1 M	0	0	1746	8,7	139	60,0	80.5	15.40
Colombia de la colomb	10.1	0.35	56,0	7,60	9		9.09	5,88	15.48
and the state of t	io : 18	0,35	6.50	69.9	200	80/	8,72	77.5	05'5/
**************************************	R.O.	X6,0	0,76	(0,52	9	100	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70	25. 5
P	SP W	0.25	8	0,10	63	107	8 80	- K	NS N
		,	}						
								Ĵ	
				,					
RECO	RECORDED BY:	Y:	Madrid	(J)&()	T T T T T T T T T T T T T T T T T T T	QA CHECK	DA CHECK BY: Of Bullens	Sulley	1.26.07

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/1" tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

WELL NUMBER AND LOCATION:

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program

Date (mm/dd/yy): 01/25/07 Su M Tu W (Th) F Sa PAGE OF Task Team Members:
Al Brillinger
Narrative (include time and location):
10:05 Arrive BKGmW-019
Sample # FWGBKGMW-019C-0368-GW
(Expl: prop. SVOC, VOC, pest: PCB, CN)
Sample # FWGBKGmW-019C-0368-GF (filtered TAL motor
Depth to water = 16.29
Thaving Prosen Johns
10.43 bassin pursing
10:55 finish purging
11:00 bogin sampling
11:35 finish sampling
dean pack up
11:45 IV site
Daily Weather Conditions: A.M. 22 H. Snew - Snow
Recorded By Brilleyin QA Checked By Jung fluctures
Recorded By W Drilling QA Checked By Wy flucing

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

DKANN-OIG

Р

PAGE_

				-					
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC TEMP (C) CONDUCTIVITY (2) (WHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
2	12507 1013)jn	in O	0712	7.8	751.0	00.00	7999	5.43
A Marie and a section	20.02	Ó	٥	0	7.9	5352	00'0	550C	650
PRO BOTO SE POR A POPULAÇÃO	で ら	0	6,3	7.03	8.1		00.0	5666	The same of the sa
-\	1000	5)			\ \ \ \ \	0.748	00'0	6864	
								1	
, ,									
			,						
RECO	RECORDED BY:		20 Bulling	100 m	6	QA CHECK BY:	KBY: Must	7	Toloki na
	:		(Signature and Date)	(é				(Signatu	(Signature and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/4 tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: __

oate (mm/dd/yy): oi/22/67 Su(M) Tu W Th F Sa PAGEOF
Chantelle Carroll
Gail Harris
arrative (include time and location):
9.35 Arrive @ BKG-020
7,00 Depth to water
10:19 Began Parging well
10:34 Began Sampling
Sampling # 10: FWEBKG-MW-CROC-0369-GW
FWG BKG MW - 0200-0369- GF
FUEBREMU CASE COLLANDAMS
11,06 Finish Sampling
1:07 Clean Equipment 4 Site
11:11 Left Site
SAMPLED SAMPLE # FWGBKGMW-0200-6319 (EXP
PROP, (N, SVOC, PLB, PEST = VOC) & SAMPLE
FWGBK17MW-020c-0369-GF (TAL METALS)
1 WCHISA THUS CASE CAST GI CITIC METHOS
aily Weather Conditions: (A.M.) 9.35 OUP (65-, MISTY 376
P.M.
ecorded By San Han QA Checked By Juduan 1/240,

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

DATE	TIME	GALLONS	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
1-22	12 01 (0 12C	0	9	7	3.28	0.416	4.54	35.2	7.4	Г
. Constitution of	10:32	:15:	5).	7.05	79.17	995,	50.72	30 B		
**************************************	1634	115 to	, 36°	7.02	5.21	,34	かみ,の	5-3.2	gran.	T
	98', 91	Ž,	.45	7,00	5.48	425	20.20	67.5		T
	05.73	* J >	9,	6.49	55.5	398.	0:0	506	<i>∽</i>	I
>	14.38	. 30	O Charles	007	57.53	198 *	5.47	787		T
										1
										I
							-			
								Ĵ		T
										T
RECO	RECORDED BY:	r. Jan Hon)	01-22-07		QA CHECK BY:	(BY: (Aug)	7	- 100 M	1
								the second second second second	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/8" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program ∑ Su M Tu W (Th) F Sa Date (mm/dd/yy): _ PAGE____ OF ____ Task Team Members Narrative (include time and location): Daily Weather Conditions: A.M. JNW, DG. COLD P.M. Recorded By QA Checked By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL	NUMBEF	WELL NUMBER AND LOCATION:	NON:	XG -03		1	Α	PAGE0	OF
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
		0		3.32	オビ	Samuel Common Co	10,37	See and	10,54
The Parallel State of the State	, 00 E	235	550	00	7,5	CC 5	からい	3	13. Sto
HAY I WAS SEEN SHEET ST	, <u>o</u>		· 6		5.	K	6.97	-XX	77 77
11839) E877H	9:03	7	X	50	7,9	121	6.89	æ3	12,57
e Propri y page y	9:5		8	2,96	\ \ -	OBH	6.87	500	12,57
***************************************	9:07	250	1,28	3.28	4	40	6.8	47.0	25.01
⁹²⁸ # 23 # 24 * 34 * X * 34 9 23	£1,83	0.15	1,40	3,41	8.2	2116	6819	45,1	12, KB
)	PiB	8,15	155	3,53	(C)	Ho	689	5,00	10 Se
			\$			· .			
								ŗ	
RECO	RECORDED BY:	53	Ling	2000	7	QA CHECK BY:)	20 Bulling 1-26	1.26-07
		Signs	(Signature and Date)	· · · · · · · · · · · · · · · · · · ·				(Signatu	re and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ¼" tubing = 0.0026 gallons/ft)

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 01/24/07 Su M Tu WTh F Sa PAGE____OF___ Task Team Members Narrative (include time and location): 08:55 unsite a CBPmw-005 Sample # FWGCBPMW-005C-0371-GW (Expl: prop., SVOC, VOC pest ! PCB, CN) Sample # FWGCBPmW-005c-0371- GF (filtered TAL metals) to water = 10.18 decon packup 10:00 N site Daily Weather Conditions: A.M. 31° light Recorded By Bull QA Checked By My Hudu

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

ور.' لا

WELL		WELL NUMBER AND LOCATION:				-	ì	PAGEC	- 	
DATE	TIME	GALLONS	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
		is C	ار ان	327	الله المسلمانيون المائلة المعاشريون المقال الميائية المعاشرة	108	50	7 999	10.39	
, construction and	Quanto .	0.25	00	000	4	1.08	2.50	といって	<i>₩9,</i>	
	32.0	570	1.15	859	17	1.09	7.95	>999	10,39	Ţ
	27:6	52.0	(<u>)</u>	8	- 1 martin	7,0%	7.86	799	039	Γ
										Γ
										T
										
										Т
										· · · ·
										Τ
										1
								j		Γ
										T -
										1
									,	r
RECO	RECORDED BY:		De Brein	may 1124/67	Fo	QA CHECK BY:	K BY:	Milde	1/36/1 hav	
			ature and Date						Signature and Date)	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ½" tubing = 0.0026 gallons/ft)

Date (mm/dd/yy): 01/24/07 Su M Tu W Th F Sa PAGEOF Task Team Members: Al Brillings	
Roymundo Espinosa	mulanamentaria.
Narrative (include time and location):	
10:03 Arrive CBPmw-007	
Sample # FWGCBPMW-007C-0372-GW	
(Explépage, VOC, SVOC, pest: PCB CN)	
Sample # FWGCBPMW. OUTC-0372-GF Cfiller	ral meters
Depth to water = 10,20	
10:20 begin purging	
10:32 finish purging	
BUSS regin sampling	
11:10 finish sampling	Constitution of the Consti
doven pack gean	
11.15 IV site	
ъ	
	
	<u> </u>

	MATERIAL STATE OF THE STATE OF
Daily Weather Conditions: A.M. <u>31, 19ht Snow</u>	
P.M	
Recorded By Bully QA Checked By Amy Huding	-

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

OF	TY Depth to Water/COMMENTS		5.16									
PAGE	VED TURBIDITY (NTU)	- 4.	907. O	72.0	0 175					1		e de la constanta de la consta
	ITY DISSOLVED OXYGEN (Mg/L)		00'0	Ø.00	Ç00'₽						-	_
ı	SPECIFIC CONDUCTIVITY (#MHOS/CM)	0	2,21	72.2	2,23							
komor de la comor	TEMP (C)	1.01		σ <u>.</u>	5							
CBPmw-007	pH (Standard Units)	7,08	LO. L	3,5	70%				-			
1	TOTAL GALLONS REMOVED	0	٥ 5	0000	0							
WELL NUMBER AND LOCATION:	GALLONS REMOVED	r Ö	0,25	0	Ď							
IUMBER	TIME	10:25	18.31	\$7.70	70:01							
WELL N	DATE	2		·								

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2 tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 1-22-07 Su (M) Tu W Th F Sa PAGE____OF___ Task Team Members: Narrative (include time and location): arrive @ DA2-107

Daily Weather Conditions: A.M.

Recorded By Crustel Banky QA Checked By My Audursh

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

QF.

PAGE

DATE	TIME	GALLONS	TOTAL GALLONS REMOVED	pH (Standard	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN	TURBIDITY	Depth to	
1-22-C)	1-22-07 15:46	0.1		(0.77	0	.588		1 2	Vater/COMMEN S	
	15:48	0 52	10	7.04	Lib	593	1.44	676	25.	
	15.50	.5.	2.0	オニ	9.6	(n)	1,20	5	9	T
	13. 13.	00	2.5	0.20	9.6	S	Z		Constitution of the Consti	T
	Ň M	v C	κ Ø	Section of the sectio	Recognition of the second	309	000	A second	10	
elekartik libraria esa esa esa	. R.	io O	3.5	121		7	3	の る		
	5.56	(C)	Ø; †	7.24	9.9	ずる。	8	3.00		T
										T
										Γ
										T
										1
								1		T
										1
	-									T
										1
RECOF	RDED BY	RECORDED BY: (105/4)	9	1-22-07		OA CHECK BY	BY:	7	Chuch dion	7
		(Signature	otilize and Data							

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/4" tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

WELL NUMBER AND LOCATION:

Date (mm/dd/yy): 1/23/67 Su M Tu W Th F Sa PAGE OF Task Team Members:
Al Brillinger
The state of the s
Narrative (include time and location): 11:05 Arrive a LLI mw-078
11:05 Arrive a LL/mw-078
Sample # FWGLLI mw. 078c-0380-GW
(Expl: prop., SVOC, VOC, pest: PCB, CN)
Sample # FWGLLIMW-078C-0380-4F (filtered TAL metal)
Sample # FWGLLIMW-018C-0397-GW
(Expl: prop., Voc. svoc. pest: pcB (N)
Sample # FWGLLIMW-078C-0397 - GF (Filtered TAL metal)
Doubth to water = 28.10
A- problem w/ pump - replace w/ 10258 (problem w/ 1026). missing screen fifting
12:26 begin purging screen fiffi
12:35 finish purging
12:40 begin sampling
14:35 finish sampling
decon, pack gear
14:45 IV sife
_
Daily Weather Conditions: A.M. 30° overcast
P.M. 30° overcast-partly sunny
P.M. 30° overcast P.M. 30° overcast - partly sunny Recorded By Bulling QA Checked By My fluctual

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

		ſ~~~~	1				T		Ι	Т		Γ	Γ	т	Т	1	
Depth to Water/COMMENTS	28.18	28.17	28.19													0/00/	Signature and Date)
TURBIDITY (NTU)	>999	7999	7 999									ŗ			300	7	(Signatur
DISSOLVED OXYGEN (mg/L)	6.59	19.9	6.53													BV.	
SPECIFIC CONDUCTIVITY (####################################	0.340	0.34/	0.340													OACHECK	
TEMP (C) $_{\mathscr{A}}$	8.9	9.0	9.3														
pH (Standard Units)	6.48	6.42	6.37													11236	(
TOTAL GALLONS REMOVED	0 /3	0.75	1.0													Dan	(Signature and Date)
GALLONS REMOVED	o. v.	0.25	0.25													So of	(Signa
TIME	12:30	12:32	hE:21													DED BY	
DATE	1/23/07															RECORI	
	GALLONS TOTAL PH SPECIFIC DISSOLVED TEMP (C) CONDUCTIVITY OXYGEN TURBIDITY CONDUCTIVITY CONTOUR TURBIDITY CONDUCTIVITY CONDUCTIVITY CONTOUR CONDUCTIVITY CONTOUR CONDUCTIVITY CONTOUR CONTOU	GALLONS	GALLONS TOTAL pH SPECIFIC DISSOLVED TURBIDITY REMOVED GALLONS (Standard Units) TEMP (C) CONDUCTIVITY OXYGEN TURBIDITY 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.42 9.0 0.347 6.67 >999	GALLONS TOTAL PH REMOVED PH SPECIFIC CONDUCTIVITY OXYGEN TURBIDITY (MIGH) SPECIFIC CONDUCTIVITY OXYGEN TURBIDITY (MIGH) CONDUCTIVITY (MIGH) OXYGEN TURBIDITY (MIGH) TURBIDITY (MIGH) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.42 9.0 0.347 6.67 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL PH (Standard REMOVED) PH (C) (CONDUCTIVITY (Mg/L)) SPECIFIC (CONDUCTIVITY (Mg/L)) DISSOLVED (NTBIDITY (Mg/L)) 0.5 0.5 6.48 8.9 0.340 6.59 > 999 0.25 0.75 6.42 9.0 0.347 6.67 > 999 0.25 1.0 6.37 9.3 0.340 6.53 > 999	GALLONS TOTAL pH (Standard REMOVED) PH (C) (CONDUCTIVITY (Mg/L)) SPECIFIC (CONDUCTIVITY (Mg/L)) DISSOLVED (NTU) (Mg/L) TURBIDITY (Mg/L) (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.42 9.0 0.347 6.67 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL PH REMOVED (Standard Note) PH (CONDUCTIVITY OXYGEN (NTU)) SPECIFIC OXYGEN (NTU) TURBIDITY (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 1.0 6.37 9.3 0.340 6.66/ >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL pH REMOVED PH CONDUCTIVITY CONDUCTIVITY CONDUCTIVITY CONDUCTIVITY (Mg/L) (NTU) SPECIFIC OXYGEN TURBIDITY (Mg/L) (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 1.0 6.37 9.3 0.340 6.66 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL pH Removed ph SPECIFIC CONDUCTIVITY COXYGEN (NTU) REMOVED GALLONS (Standard Dunits) COMPUCTIVITY COXYGEN (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.42 9.0 0.340 6.66 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL PH PH SPECIFIC CONDUCTIVITY (Mg/L) DISSOLVED (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.48 9.0 0.347 6.67 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL PH (Standard Now Permoved) PH (C) (CONDUCTIVITY OXYGEN (Mg/L) (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 >999 0.25 0.75 6.42 9.0 0.340 6.59 >999 0.25 1.0 6.37 9.3 0.340 6.5 >999 0.25 1.0 6.37 9.3 0.340 6.5 >999	GALLONS TOTAL PH (Standard Name) PH (C) CONDUCTIVITY (MIND) SPECIFIC (CONDUCTIVITY (MIND) CONTROL (GALLONS TOTAL PH CSPECIFIC CONDUCTIVITY OXYGEN Units) PH CSPECIFIC CONDUCTIVITY OXYGEN (NTU) 0.5 0.5 6.48 8.9 0.340 6.59 > 999 0.25 1.0 6.37 9.3 0.340 6.53 > 999 0.25 1.0 6.37 9.3 0.340 6.53 > 999 0.25 1.0 6.37 9.3 0.340 6.53 > 999	GALLONS TOTAL PH (Standard RemoveD) PH (CONDUCTIVITY CONDUCTIVITY OXYGEN Units) PEMOVED Units) PH (CONDUCTIVITY OXYGEN UNIT) PH (CONDUCTIVITY OXYGEN UNIT) 0.5 0.5 0.48 8.9 0.34D 6.59 >999 0.25 1.0 6.42 9.3 0.34D 6.61 >999 0.25 1.0 6.37 9.3 0.34D 6.53 >999 0.25 1.0 6.37 9.3 0.34D 6.53 >999	GALLONS TOTAL REMOVED GALLONS PH (C) CONDUCTIVITY OXYGEN (mg/L) (mg/L) TURBIDITY (mg/L) (mg/L) 0.5 0.5 6.48 89 0.340 6.59 >999 0.25 0.7 6.42 9.0 0.347 6.67 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999 0.25 1.0 6.37 9.3 0.340 6.53 >999	GALLONS TOTAL PH CSTANDOWN PH CSTANDOWN CONDUCTIVITY CONDUCTIVITY CONTROL CONTROL TURBIDITY CONTROL 0.5 0.5 6.4% 8.9 0.340 6.57 >999 0.25 1.0 6.37 9.3 0.340 6.5 >999 0.25 1.0 6.37 9.3 0.340 6.5 >999	CONDUCTIVITY COND

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program __SuM TuW (Th) F Sa PAGE____OF ____ Date (mm/dd/yy): _ Task Team Members HEIDENA Narrative (include time and location): TUBINO Daily Weather Conditions: A.M. QA Checked By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL	NUMBEF	WELL NUMBER AND LOCATION:	NOI:			-	/d	PAGEO	OF
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
Soft Soft	\$ 'S	O	Ø	3,04	8	146	8011	100	9.55
Manage of a parameter	<u>发</u>	56.0	0,33	Ch &	45/	<i>HH</i>	9.88	25	25.0
	3:36	56,0	0,50 475	43.05	LH	titi	6	101	9,49
**************************************	33	0,05	0.75/	3, M	5.0	143	9,09	1.06	9,46
	13:30	0.35	1,00	399	53	MZ	9,05	74.3	9,45
>	18132	0,35	1,35	3.82	いい	17-1	86.88	611	676
)		
							-		
								ĵ	
RECO	RECORDED BY:	C. C.	Michigh	1/25/07		QA CHECK BY:	KBY: Old	Bulle	Meller 1-26-07
		(Sight)	(Signature and Date)	, , (6				(Signatu	re and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/8" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): _ 163/07 Su M (Fu) W Th F Sa PAGE____ OF ____ Task Team Members EIDENREICH Narrative (include time and location): EQUIPMENT P.M. QA Checked By _ Recorded By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL	NUMBEF	WELL NUMBER AND LOCATION:	TION: CLL	-083		ı	/d	PAGEO	OF
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
28		0	0	5.30	\$	36	200	0,2	28.55
	13	X	10.35	4,96	8.5	136	5,40	-5,0	28.95
e George and a second s	2	,,,	6.8	4 23	6	1	4,97	27	36,88
the property is a significant for a	11.29	0,25	25	4.60	7.3	2-2	27 43	12.5	38,98
MMARTINES -2 April 1999	11:31	0,25	001/	465	8	2	8	787	75.08
	11:33	200	135	19 h	0	20) 0	20T	200
)								
				٠					
								,	
RECOF	RECORDED BY:	Y:	Undrigh	1/33/0	7	QA CHECK BY:		00 By 00.	1.26-07
		(C)	4.0	1	1			X.	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/8" tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

Date (mm/dd/yy): <u>o1/22/o7</u> Su M Tu W Th F Sa PAGEOF Task Team Members:
Al Brillinger
Mike Raeder
Narrative (include time and location):
09:20 Arrive (1 LZmw-059
Sample # FWGLL2mw-059c-0383C-GW
(Eypl: prop. Svoc, voc. pest: PCB, CN) (MC/
Sample # FWGUZMW-059C-0383-GF (13/MSL
(filtered TAL metals)
Depth towater = 10.20'
- broken air fitting - adapter - raplace of new one
10:14 begin purging
10:30 end purging
10:35 kegin Sampling
11:15 finish sampling
11:30 decon, pack up lu site
Daily Weather Conditions: A.M. 30°, closdy
Recorded By Am Hudub

1

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

P

PAGE

L										
	DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (AUMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
	1/22/01	1/22/01 10:16	0.0	0.N	6.82	σ	0.422	5.8b	915	10 12
	<	87:01	کر (0	o.	P.1.0	9,6	72 Kig	30	4999	10.80
		10:20	0.0	Ŋ	T. 4. 0	10.0	0.420	5.12	7999	10.90
		10:22	Ø. 'v'	5.0	6.24	10.0	5)1:0	4.94	7999	1°0, 9°8
	Part to the same of the same o	10:24	ø. 8	2.5	6.45	70.07	517.0	4.43	116	10.95
		10:26	Ø.0	ъ. С	6 .50	10,0	0.419	4.21	439	11.00
		10:28	6.5	i,	6.47	0.01	a distribution	3.80	770	11.20
,		10:30	0.5	4.0	ر ا ا	10.0	0,415	3.75	709	11.10
		16:01	0.25	4.25	6 43	0	6,413	3.6	7.3	07.77
									Ţ	
1										

	RECOR	RECORDED BY:)	20 Bullin	1/22/07	<u> </u>	QA CHECK BY:	(BY:	7	F 1136/17
			(Sign:	ature and Date	(6				(Signatur	(Signature and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ½" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: LL2 mm -0 59

Date (mm/dd/yy): 1/22/07 Su M Tu W Th F Sa PAGE OF Task Team Members:
Al Brillinger
Mike Reader
Narrative (include time and location):
13:30 Arrive C LL2mw·2b2
Sample # FWGLL2mw-262C-0384-GW
(Expl: prop. SVOC, VOC pest: PCB (N)
Sample # FWGLLZMW-262C-0384-GF
(filtered TAL metals)
5.85 Depth to water
13:41 begin purging
13:51 finish purging
(· · · · · · · · · · · · · · · · · · ·
decon packup
14:30 IV site
Daily Weather Conditions: A.M.
P.M. 33 light snow cloydy
Recorded By QO Bully QA Checked By Wy fluduch

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

ALCONS (SI REMOVED USE SI								•		
1.0 1.0 5.56 16.8 0.4PC. 2.66 170 0.5 1.5 2.16 170 0.5 1.5 2.16 170 0.5 1.5 2.16 170 0.5 2.5 2.5 2.5 190 0.5 2.5 2.5 5.52 10.8 0.489 2.5 145 145 145 145 145 145 145 145 145 14	DATE		GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY		TURBIDITY	
0.5 1.5 5.45 10.7 0.492 2.52 190 0.5 2.5 5.52 10.8 0.489 2.37 143 1 0.5 2.5 5.52 10.8 0.489 2.37 143 1 0.5 2.5 5.52 10.8 0.489 2.37 143 1 0.5 2.5 5.52 10.8 0.489 2.37 143 1 0.6 3.20 1 1 1 2 1 0 1 1 2 1 0 1 1 1 1 1 1 1 1	1/22/07	13:45	0.	0.1	J.56	1	0.48		170	
0.5 2.5 5.2 10.8 0.489 2.37 145 0.5 0.5 0.5 0.489 2.37 145 0.5 0.5 0.489 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	,,,milantinis	12.0		n;	The second	0	1231.0	3 60	000	36.09
0.5 2.5 5.2 10.8 0.429 2.37 143 0.5 2.5 5.2 10.8 0.429 2.37 143	,	75.27		Q	S. 40	् ् े	3	230	\$ -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	
Of Bully 122107 Of Substitute and Date)	4	10	0 0	20	5,52	30.8	0.489	2.37	100	0 0
Of Butter and Date)										
Of Bull 1/22/07 Of Ganature and Date)										
Ox Bull 1/22/07 Ox Bull 1/22/07 Ox CHECK BY: Many Many Many Many Many Many Many Many					-					4
Of Bull 1/22/07 (Signature and Date)										-
Of Bull 122/07 Of Signature and Date)										
Out But 1 22/67 QA CHECK BY: May 1										
Of Bulling 1/22/07 QA CHECK BY: May (Signature and Date)										
Of Bulling 1/22/67 QA CHECK BY: May 1 (Signature and Date)									1	
Of Bulling 1/22/07 QA CHECK BY: May My (Signature and Date)										
Of Bulling 1/22/67 QA CHECK BY: May My Signature and Date)										
(Signature and Date)		·								
(Signature and Date)	RECOR	DED BY		Section	1	107	YOUR VO			12.60
				Iture and Date)		7	2012	3	Signatur	2/ / / / / / / / / / / / / / / / / / /

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ¼" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: LL2mm-262

Date (mm/dd/yy): OI 22/07 Su M Tu W Th F Sa PAGE OF OF
Al Brillinger
Miko Reeder
Narrative (include time and location):
12:30 Arrive LL2 mw-263
Sample # FWGLL2mw-263C-0385-GW
(Expl: prop voc, svoc, pest: PCB CN)
Sample # FWGLL2mw-263c-0385, GF
(filtered TAL metals)
Depth to water = 6.21
•
12:42 begin purging 12:52 and purging
12:55 begin sampling
B 12:20 finish sampling
B12:20 decon lu site
Daily Weather Conditions: A.M
P.M. 31° light snow clouda
P.M. 31° light snow cloudy Recorded By OBrillian QA Checked By My fluxures

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

LL2mw.263

WELL	NUMBEF	WELL NUMBER AND LOCATION:		LL2mw . 263		ı	ď	PAGEC	OF	
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
1/22/07	3h:Z/	0.7	0.7	6.27	1:01	0,265	00.0	73	6.35	
No. of the last of	9;21	Ö.Ö	1.5	6.37	10.3	O.206	00.0	<i>hb)</i>	04.9	
William Company to the Company of th	05:21	0.5	2.0	6.14	10.3	0.264	00.0	549	0/7.9	
-	12:52	0.1	2.5	6.10	7.01	(25.0	0.00	255	54.0	
									*	
,										· · · · · · · · · · · · · · · · · · ·
								Ĵ		
								60		
RECO	RECORDED BY:		10 Buldin	1-72-07		OA CHECK BY:	BV.		1000	-
	 		ature and Date			; ; ;	}	(Signatu	Signature and Date)	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2 tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwatter Monitoring Program 25°B Date (mm/dd/yy): 1-2to-07 Su M Tu W Th F Sa PAGE____ OF ____ Task Team Members: vo Reedox Narrative (include time and location): 10:25 10:26 10:3/0 Daily Weather Conditions: A.M. Cloudy P.M.

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

								1					
OF	Depth to Water/COMMENTS		15,55	5	5.92								Hucking 120
PAGE 0	TURBIDITY (NTU)	30	72	0	太					ļ		5	
4	DISSOLVED OXYGEN (mg/L)	14.45	14.32	2	15.52								BY: Chung
ı	SPECIFIC CONDUCTIVITY	.210	2010		,208								QA CHECK BY:
	TEMP (C)	4.5	4,37	200	4.4								
-238	pH (Standard Units)	S. 25.3	53	700	050)	a.							1-25-07
10N: 1-1-3	TOTAL GALLONS REMOVED	SL.	0	1.25	1.50								Signature and Date)
WELL NUMBER AND LOCATION: LL3-238	GALLONS REMOVED	.75	2	, 25	.25							C	3
UMBER	TIME	9.05	, roj	9.69	15								DED BY
WELL N	DATE	1.8-01 9:05	nguar nga hiệ a Lie	i i-r ^a n-yra y nggyonin da	and the second								RECORDED BY:

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2", tubing = 0.0026 gallons/ft)

Date (mm/dd/yy): 1-25-07 Su M Tu W Th F Sa PAGE OF Task Team Members:	
Mile Reador	
Crustal Bailly	
Linguist with any	
Narrative (include time and location):	
10: 48 Arrive @ well LL3-242	
13.88 Depth to water	
11:05 Began purang well	
1116 Began sampling samplett FWGLL3mw-242C-0387-6	W
(EXP, PROP, CN, SVOC, PCB, PEST, VOC) &	
sample# FWGLL3mw-242C-0387-GF(TAL motals)	
Danjoueti 1 MIJEE SIIM 2 120 CODT GI CITE HEROS)	
11145 Finish samding	
11:46 Clean eavinment é site	
11:53 left site	
Daily Weather Conditions: A.M. Cloudy light SWW, 33%	
O I P.M.	
Recorded By Crystal Bay (ay QA Checked By My Huding)	

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

	WELL	VUMBER	NAND LOCAT	WELL NUMBER AND LOCATION: 1-1-3-	-242		ı	/d	PAGEO	OF	
A	DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
	[0.52-1	1-25-07 11 106	7	0	e. SS	2.64	<u>.</u> 40	<u>3</u>	310,0	13.42	
	may be seen and	8	,23	.25	63	M.O.C.	, 155	12.42	/84.0		
		9:	. 20	34.	10 100 100 100	10 4 2	Ţ	500	124.0	500	·
		2	000	.65	K)	3.72	, 145	5 5	0.50	<u>5</u> <u>60</u>	
	general producer medicil section		2007	<u>ئ</u>	r	5.65	S	72	8 F5	10	T
		5	120	39.	7 L6	369		10.76	2.30	また	
										1	1
											Γ
					-						1
							-		J		r
									· J	- Common of the	
	RECOF	RECORDED BY:		WAR Devices	1-25-67		QA CHECK BY:	KBY: Oww /	Muchania	LAMEII Y	ī

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/8 tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

Date (mm/dd/yy): Su M Tu W Th B Sa PAGE OF Task Team Members:
Al Brillinger
Mike Reador
Reymundo Fapinasa
Narrative (include time and location):
10:05 Arrive @ LL+1mw-198
Sample # FWGLL4mw-198C-0388-GW
(Explopage, VOCS, SVOCS, pest of PCB CN)
Sample # FNALLYMW-198C-0388- GF (filtered The metals)
Depth to water: 4.95"
Problem w/ compressor - ? Switch from 21444
10 21445
11:00 finish jurying
11:10 begin scampling
11:35 finish Sampling
down padagean out
11:55 iv site
Daily Weather Conditions: A.M. Cloudy light Snew 30
Recorded By Archecked By Aug Hudush

WELL	NUMBEF	R AND LOCAT	WELL NUMBER AND LOCATION: CC → WW	50		ı	ď	PAGEO	OF
DATE	TIME	GALLONS	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
70	8	o O	S)	3.76	5	2500	3	100 C	10°
C. manufacture and the			S. J	000	(5 <u>.</u>	0.833	000	56	12.5
	S. J.	\^ \si	157	N. S.	9.0	70	٥, ۵	Service Services	
)		o Vo	Q	3 'A' '0'	S. C.	プ 介的 - 0	000	576	52 m
						,			1
		A. 							
		N. V.							
								j	
RECO	RECORDED BY: _				Section 2 st	QA CHECK BY:	< BY: Uni	Hunin	1/26/1 AS
		(Sign	(Signature and Date)	æ.			and graves	(Signatu	(Signature and Daté) /

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2 tubing = 0.0026 gallons/ft)

Date (mm/dd/yy): <u>/- /9-0-7</u> Su M Tu W Th F Sa PAGE OF Task Team Members:
Al Brillinger
Mike Roycles
Regmonde Espinosa
Narrative (include time and location):
13:25 Arrive a 214 mw-19
Sample 4 FWGILYMW-1996-0389-GW
(pest pcB, svocs vocs, prop. expl. (N) (MS/MSD)
Sample # FWGLLYMW. 1990-0981-GF
Gilteral TAC Metals
Depth to water = 5.30
1340 regin brown
13'52 and purying
13:55 bookin sampling
14:50 end sampling
decon, pack up gear
15:00 ly site
TO OTTE
Daily Weather Conditions: A.M. Show 7 25 AB
P.M. Sriowy 28°
Recorded By QR Brilling: QA Checked By Wy Hudur
an oncorous by Through
\bigvee

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

WELL NUMBER AND LOCATION: LLGWOOD AGE OF	GALLONS TOTAL pH SPECIFIC DISSOLVED CONDUCTIVITY Depth to (mg/L) E REMOVED Units) Units) (mg/L) (mg/L) (mg/L) (mg/L)	0.5 C.5 C.0.3 C.0.2 0.0.87 C.0.0	0.5 154 154 5.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	15 CS 15 COC 0 0 0 COC	0.05 2.0 6.91 10 C.						 DA CHECK BY.
MBER AND LO	GALLON TIME REMOVI			10 0 35 85							ED BY:
WELL NU	DATE	400 mm		April 1999							RECORDED BY:

*

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2, tubing = 0.0026 gallons/ft)

Date (mm/dd/yy): O1 18 07 Su M Tu W Tb F Sa PAGE OF OF
Al Brillinger
Narrative (include time and location):
11:45 Arrive e LLIIMW.002
Sample # FWGLLIIMW-002C-0374-GW
(Expl.: pest, PCBs, prop., VOCS, SVOCS, CN)
Sample # FWGLLIIMW-002C-0374-GF (TAL filtered metals)
Depth to water = 1.09'
12:05 begin purging
12:23 end purging
12:25 begin sampling
12:55 finish sampling
decon, pack up
13:05 IV site
Daily Weather Conditions: A.M.
P.M. Cloudy 20°
Recorded By Ol Brillings QA Checked By Aug Hudur

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

Q

PAGE_

Signature and Date)	(Signatu				(6	(Signature and Date)			
C110011 1/K	J. Jak	K BY:	OA CHECK BY		1-8-01	de Breeze		RECORDED BY:	RECOR
***		<					`		
	J								
5.08	m co	1.72	0.640	e.	7.15	3.5 40	a so All	12:23	
5.)0	σ	1.70	263.0	4.2	7.02		Soto	12:21	
2. C-	82	7.80	T 9. 0	6.3	7.13		S 5 9 5	12:18	
4.92	16	1.52	9.64S	8.8	7.12	2.0 AB 0.20	an som	12:17	oca orași a tribin culti
7.80	80 80	181	0.010	4.5	7.2.2 7.2.2.2	1.5 AB	790 0-0-5	12:15	1000-140-140-140-140-140-140-140-140-140
3.80	145	2.48	0.6 th	6.6	7.09	1.0 48	0.5 AB	12:12	440am nganga
w -0	437	2.41	7.647	1.01	7.13	0.5 AB	0.5 AB	80:21	1/18/07 12:04
Depth to Water/COMMENTS	TURBIDITY (NTU)	DISSOLVED OXYGEN (mg/L)	SPECIFIC CONDUCTIVITY WALMHOS/CM)	TEMP (C)	pH (Standard Units)	TOTAL GALLONS REMOVED	GALLONS	TIME	DATE

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/11 tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: 2411 MW - 002

Date (mm/dd/yy): 1-18-07 Su M Tu W 🛱 F Sa PAGE OF Task Team Members:
Al Brillinger
Narrative (include time and location):
13:10 Arrive a LLII mw-007
Sample # FWGLLIIMW. 007C-0375-GW
(Expl. : prop. SVOCS, VOCS, pest. : PCBS, CN)
Sample # FWGLLIIMW-007c. 0375-GF (TAL filtered metals)
Depth to water = 12.78
begin purging 13:33
finish purging 13:43
beain sampling 13:48
begin sampling 13:48 finish sampling 14:16
decon pack up
14:33 N site
7 5/16
needs more tubing?
- Tulas more 400ing

Daily Weather Conditions: A.M.
P.M. <u>Cloudy 33°</u> Recorded By <u>OR Brilanger</u> QA Checked By <u>Any Muchus</u>
The colded by Talmy Talmy
V

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

9

PAGE_

(Signature and Date)	(Signatur				(1)	ature and Date			
Chach A	Lingus	(BY: Cour	QA CHECK BY:		1.18.07	De Bridamin		RECORDED BY:	RECOF
	Ĵ								
		•							
13.25	5.7	00.0	S64.0	7.01	7.29	4.2.2 4.2.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13:43	
13.20	6 5	0 0 0	5,69.0	10.7	7.30	20.40	0.5 AB	13.41	
13.24	ზ ს	0.0	459.0	8.0	7.30	,	0.5 48	13:39	Michiel emparents deservate
13.20	00 N	0.0	0.693	0.00	7.33		0.5 48	13:37	Charleston
13.05	47	0.32	769.0	9.0	152			/3:35	1-18.01
Depth to Water/COMMENTS	TURBIDITY (NTU)	DISSOLVED OXYGEN (mg/L)	SPECIFIC CONDUCTIVITY Aut (#MHOS/CM)	TEMP (C)	pH (Standard Units)	TOTAL GALLONS REMOVED	GALLONS REMOVED	TIME	DATE

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/1, tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: LLIIMW-007

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): _ 194/07 Su M Tu W Th F Sa PAGE___ OF ___ Task Team Members: HEIDENREICH Narrative (include time and location): SAMPLINY. Daily Weather Conditions: A.M. ____ QA Checked By _ Recorded By

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

-6177

P

PAGE

						ı			
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
19/10	5.3	Ð	0	5.43	7,0	627	10.50	758	7.8.7
Towns, prosect NOTE of	13:40	8	13/	スズ		10HO	ħΩ '/	30	5.38
Colory phone is desired.	Bala	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0,50	5.50	. pc	630	2.0	286	8,69
The contract of the contract of	13.4H	0.05	20,74	5,53	Se	(050)	8	2	12. 27
Arte description de service produce	13:40	250		5,56	5	655	8,0	5	6.58
	13:48	500	1.3	20.	- C	635	00 \ a	125	200
	oreso								
								1	
RECOF	RECORDED BY:	(;	Malnigh	12 V 10		QA CHECK	OA CHECK BY OD BALDEN 1-2	Bridge	1-26-07
			Signature and Date)), (6		†		(Signatu	re and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/1" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION:

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program	
Date (mm/dd/yy): 104/07 Su M Tu W Th F Sa PAGEOF Task Team Members:	
AMY HEIDENREICH	
GAIL HARRIS	
Narrative (include time and location):	
8:42 ARRIVE Q WELL 1112-182	
8.23 DEPTH TO WATER	
8:59 BEGAN PORGING	
9:17 BEGAN SAMPLING SAMPLE -#	
FWGLL12mw-1821-0377-GW(EXP, PROP, CN)	
NITEATE, SVOLPCB. PEST VOI) : FWGILDMW-1820-	
0877 GF (TAL METALS).	
Espaid?	
10:31 FINISH SAMPLING	
10:39 CLEANED EQUIPMENT + SITE	
10141 LEFT SITE	
X SPLIT : DUPLICATE TAKEN:	
-FWARKSomw gut FWGLLIAMW 1826-0377	
Gaut 1640 1010)	
FWGLU2MW-1820-0396-GW:	
FWGU12 MW-182C-0396-GF	
,	
- " " " " " " " " " " " " " " " " " " "	27
Daily Weather Conditions: A.M. <u>CLOUDY</u> ^a <u>COCD</u> <u>LIGHT</u> <u>FLUREIES</u>	LE
Recorded By My Muduch QA Checked By Bulling	
O	
Pulled tubing)	
ppendix A 63	

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

800

WELL NUMBER AND LOCATION: LL/2-

Q F

PAGE_

		GALLONS		Hđ		SPECIFIC	DISSOLVED		
DATE	TIME		GALLONS	(Standard Units)	TEMP (C)	CONDUCTIVITY (µMHOS/CM)	OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
25.5	0018 BY	0	0	18, 9	7.0	Charles Co.	· · · · · · · · · · · · · · · · · · ·	239	5,75
	79.6	38	35	7,00	10.5	337	4.18	225	9.09
and the second s	F0.8	ي يخير	05.	7.11	10.7	307	3.23	ナムー	88.6
Party ggyer (min.	30.0	SE	.75	7,14	10.7	320	2,63	150	10.47
PAPERT POST SERVICES	8916	,75	· managage	7,12	10.8	352	2.05	143	rV V
Trong or yanggi pik teoritoria	9:10		1.35	7.09	ارد ا ا	378	1.75	5	\(\frac{1}{2}\)
graphic of the second of the s	4:12	.25	C.	7.63	, O ×	8	25'	Paris -	0.7
Þ	51.6	,25		6.9	Comment of the second	0%7	Jan	Q Vin	3 70
								3	
RECOF	RECORDED BY:	r: Sa		1.20	10-62.	QA CHECK BY:	BY: OLD	Br. 0 a.	1.26-07
		(Sign	(Signature and Date)	(;				(Signatu	(Signature and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/11 tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): __/_ Task Team Members: Su M Tu W Th F Sa PAGE____ OF ____ Narrative (include time and location): 11:22 SAMPLING Daily Weather Conditions: (A.M. P.M. Recorded By QA Checked By

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

P

PAGE_

DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
(340)	0 = 0	0	0	5-62	6.9	83	12.80	K'S 0)	10,17
\	11:12	,25	75	5.83	ر بی	463	3.08	81.4	94:01
	2	, 25	525	5.85	ر مي مي	29%	28.	83.5	10.95
	11:16	,25	-7/2	5.84	20	472	I.	したる	0-
adadayya caddidd y Es	70	,25	0	5.86	6.3	474	0.0	95.0	11,62
	3.3	کړ.	1.25	5.86	5.6	475	0.0	102,0	11, 83
>	11:32	رځک'	1,70	5.87	5.6	9115	0.0	5.99	12.02
								Ĵ	
			-						
RECC	RECORDED BY:	3	Signature and Date)	1-24-0]	67	QA CHECK BY: _		Brell. (Signatu	Of Brilling 1-26-07 (Signature and Date)
							,		

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ½" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION: __

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): Su M Tu W Th F Sa PAGE____ OF ____ Task Team Members: Narrative (include time and location): EQUIPMEN 11 A Daily Weather Conditions: A.M. QA Checked By

TASK TEAM ACTIVITY LOG SHEET

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

								ANNAL And dismunishment or properties Annal Anna	
DATE	TIME	GALLONS REMOVED	TOTAL GALLONS REMOVED	pH (Standard Units)	TEMP (C)	SPECIFIC CONDUCTIVITY (µMHOS/CM)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS
19#B	14:48	0	\mathcal{C}	5,19	7,9	185	_	578	28
	1413	0,35	520	5.81	8,3	569	١,	JE H	5.70
	からみ		0519	5, 37	7.8	585	7 4 6	561	5,7%
	7. 24	6,35	0.75	5, 38	& (X)	588	たの、な	5.5	5,77
or transcondition of the last	M.50	6,35	00	5, 38	56	593	1,84	72	648
	14.58		1.35	5,39	9.6	185	1.78	756	708
)							4	
,									
ø.						The state of the s		Ĵ	
RECOF	RECORDED BY:	Jan J	My Sall	1/24/6		OA CHECK BY:		00 B. 00 1:	1-26-07
			Signature and Date)	(6)				(Signatu	re(and Date)

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, ½" tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program Date (mm/dd/yy): 102 Task Team Members: Su M (Tu) W Th F Sa PAGE____OF Narrative (include time and location):

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

3

Q

PAGE

		GALLONS	TOTAL	Hd		SPECIFIC	DISSOLVED			
DATE	TIME	REMOVED		(Standard Units)	TEMP (C)	CONDUCTIVITY (µMHOS/CM)	OXYGEN (mg/L)	TURBIDITY (NTU)	Depth to Water/COMMENTS	
18/07	9:4	0	0	4.000 S	15	0	18.17	0 8 8	8.86	Γ
***************************************	2.3	0,35	0.35	6.54	800	0	13.61	0/HB	5,30	
	2. 7.	. o X	2,5	fo. 58	080	\mathcal{Q}	13.21	0/8/18	5,36	
aga a gani ja emanta ite e	9.47	X 0	0.75	6.59	9.3	0	· · · · · · · · · · · · · · · · · · ·	213.0	00,000	I
->	<u>\$</u>	50,0	00'	Ğ. (G.	9.6	0	13.04	213, 0	5,3/	T
							*15-			
										Т
										T
				,						T
	÷									T
										Т
								J	, :	Т
										T
										1
									* 1 .	Τ
RECOR	RECORDED BY:	C:	Mahin	1/23/1		QA CHECK	DA CHECK BY: OU BALLEM 1.26.	Brelen	1.26-07	1
		(Sign	(Signature and Date)	(6				(Signafu	re and Date)	

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/4" tubing = 0.0026 gallons/ft)

WELL NUMBER AND LOCATION:

TASK TEAM ACTIVITY LOG SHEET PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program 1-23-07 Su MyTu W Th F Sa Date (mm/dd/yy): 122 07 PAGE____ OF ____ Task Team Members: USPINOSA Narrative (include time and location): well WBG-00 sample 10:25 0:30 10:35 160/16 Daily Weather Conditions: A.M. Chock P.M.

QA Checked By (Juy

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2, tubing = 0.0026 gallons/ft)

TASK TEAM ACTIVITY LOG SHEET

PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program

Date (mm/dd/yy): 1 3 Su M Tu W Task Team Members:	Th F Sa PAGEOF
Gail Harry	
Al Brilliance	
Narrative (include time and location):	- G∦ - Z - Za
3:58 Am Arrive at Site	Five WBG MW-COSC - 6342
Sample # Flue in 2	6 mw - 2170-03926W
•	Summodiff 6392 6F
10:17 Depth to buster	
9:10 bean Paraina	
9:10 begin Parajina 9:23 Finali Parajina	
9:25 begin Sampling	
9:50 finish Sampling	
9:55 decon	,
10:01 leine site	
SAMPLED SAMPLE # FR	W6WB/2MW -0091-0392-
GW (EXP PROP.CN.	SVOC, PCB PEST & VOC):
SAMPLE # FWEWBGMU	1
(TAL METALS)	
Daily Weather Conditions: A.M	st 30°
P.M	

WELL PURGE RECORD

PROJECT NAME: Facility-Wide Groundwater Monitoring Program

NA III	TIME	GALLONS	TOTAL	pH (Standard	TEMP (C)	SPECIFIC	DISSOLVED	TURBIDITY	Depth to	
	5	*	C KEMOVED	Units)		CACH (HIMHOS/CM)	(mg/L)	(NTU)	Water/COMMENTS	
		. ?	10							
	3	() ()	(1) 10 mm	N X	30		3		0	T
	7	Ç V	-	302	5.0		3	10 mm	M K	T
	fine ex	1.3 1.5° 9	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W.	Notes:				in in	T
	(L)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	iya Cil	S.	S	1. Com 1.	0	1000 P	7.7	1
										Τ
										1
										T
										T
								Ų		T
										T
										1
			-				-			

Purging Criteria: pH = 3 rdgs within 0.2 pH; Specific Conductivity = 3 rdgs with 10% umhos/cm; Temperature = 3 rdgs with 0.5° C; Dissolved Oxygen = 3 rdgs within 10%, OR 2 pump and tubing volumes (SamplePro pump volume = 0.3 gallons, 1/2 tubing = 0.0026 gallons/ft)

(Signature and Date)

(Signature and Date)

		COMF	REHENSIV	COMPREHENSIVE WATER LEVEL MEASUREMENTS	SUREMENT	9	
PROJECT NAM	ME: RVAAP	Facility-Wic	le Groundwa	PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program	0 1		
WELL NUMBER	DATE	TIME	DEPTH TO WATER*	INSTRUMENT	SERIAL NO.	DTB = Depth to the trepsing REMARKS	
2A2-107	1-17-2066	3:26	(e.34	Heron Dippu-T	05769	DTB= 16.83 +0.12 (han)=16.95	6
D42-Det3		3,30	8,83			DIB= 16.02 +0.12 (5.2) = 16.14	7
700-111		3:40	0.92			DTB = 16.40 +0.12 Chan = 16.52	A
1711-001		3:44	13.60				34
12-153		3:01%	5.15			DTB-25.02 +0.12 (had)=25.14	5.74
182-182		2:51	7.88			DTB=38.13 +0.12 (head)=38	8.25
22- 183	escoppis de partir de la constanta de la const	3:01 cl	10-35-ch			DIO= 36.28 CH + 0,12 (hour) 20,75:14	38.40 18.40
713- 186	1-17-2066	117:11	4.58	Heron Digger - T	65769	DTB = 21.00 +0.12 Chan = 210 12	7
١٦١ - 078		2:61	28.99			DTB=41.22 +0.12 (fin)=41.84	7
١٦٦ - 080		1:56	9.12			DTB=22,33 +0.12 (Lm)=22,45	ما .
171-083	~~~	2:05	29.85			DTB = 41.47 +0.12 (had)=41.59	9
175-059		2:34	10.90			DTB = 21,89 +0.12 (hours=21,99	0
775-265	**************************************	2:27	6.42			DTB = 22.60 + 0.12 (how) = 22.72	72
42.203		2:24	99.9			DTB = 22.62 + 6.12 (hall = 22.74	.
LL3-238		9:58	14.11			DTB-23.28+0.12 (had)=23.40	40
113-242	-1	2:40	12,79	-1	-(DTB = 22.47 \$ 0.12 (SM)=22,59	29
*All measurements from top of casing.	s from top of c	asing.					

			COMF	REHENSIV	COMPREHENSIVE WATER LEVEL MEASUREMENTS	SUREMENT	S	
	PROJECT NAM	IE: RVAAP	Facility-Wic	de Groundwa	PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program	g g		
	WELL NUMBER	DATE	TIME	DEPTH TO WATER*	INSTRUMENT	SERIAL NO.	OTE Depth to Cotton REMARKS	# #
L1	BKG-004	(C)	16:43	12.31	Trans O range	05769	DTE = 22, 22 + 0.1264 hard) =	4 22.34
	BKG-005	ng d Yang a	9:53	9.73	**** • • •••••••		OTE - 20.89 + 2012 (ho,) =	21.61
1	344-006	incide graphyce and the North Co	(0:19	21.18			DTB -37,51 + 0.126 (5.65+) 7	= 37.63
	1384-008	Fire a especial	10:48	14,38	** Francis of State o			= 27.46
	1344-010	go godina karajan karajan k	11:10	13.99			DIE - 21.96 + 0.12 (hand) = 22.08	+22.08
	384-012		11:24	7.05			018 = 62.14 + 0.12 of (may) = 62.26	= 62.26
1	BKG-013	elisen () y esse <u>n</u> g ga	3:11	11:69	Marie de la descri		1 2 27.95 + 4.4+2 (nan)= 28.07	28.07
	BK4-015	r bucksunge (beend)	(0:30	47.98	and the state of t		573 - 53.0 + 6.12 ct (han) = 53.12	53.12
1	1344-016	ightyr genne film hann	97:6	5.04			DIB-21.13 + 6.12 ct/my = 21.25	21.25
	BK6-017	m regil to robbins	9:58	15.98		,	1 = 35.98 + 0.12 Ch.) = 36.10	-36.10
	1314-018	egg at gyng no o d ddoll	0):01	15.17	gert Private de la Private de		078-27.52 + COLD (BM) = 27.64	27.64
	13KG-019	generalise to large on the large	9:37	17.15			5 = 35.65 + 0.12 6 (504) = 35.77	=35.77
	BK4-020	Lib to * 10% das produges 52	3:18	(e.99	* ANT May reduce good		0 7 8 = 38.19 + 0.126# (hr.) = 38.21	38.21
1	B146-021	NAC 18 CONTRACT OF THE SECOND AND A SECOND ASSESSMENT OF THE SECOND ASS	16:35	13.86			0139 + 0137 + 014 (hard) = 21.49	21.49
,L	CBP-005	والموادة والمعاولة الموادة الم	11:30	10.09			0 7 8 - 27.42+ O12 (Firm) = 27.54	27.54
	CBP-007	Marie on the supple and	11:34	13.17	age and the second seco	-	31.86 SI.74 + 31.86	=31.86
	*All measurements from top of casing.	from top of c	asing.					

Appendix A

76

RECORDED BY: _

			COM	PREHENSIV	COMPREHENSIVE WATER LEVEL MEASUREMENTS	SUREMENT	S
	PROJECT NAM	ME: RVAAP	, Facility-Wi	de Groundwa	PROJECT NAME: RVAAP Facility-Wide Groundwater Monitoring Program	7	
Append	WELL NUMBER	DATE	TIME	DEPTH TO WATER*	INSTRUMENT	SERIAL NO.	DTE Devith to Berthung REMARKS
	661-h77	1 0 - 2 2 - 2 1 - 3	12:13	5.50	Heron Disper-T	05764	DTB = 23,22 + O12 CH (Jan) = 23.34
	261-477	gegrafik fi filozof	(12:03	5.40	**************************************	05769	578 = 21,17 + 0.12 Ch (6,64) = 21.26
	RQL-007	-ezvolgeki (n.) (statili (n.)	99:11	4.18	**************************************		18.68 = 18.56 + 0.12 64 (hard) = 18.68
	Rar- 008	t Standard van St. der St.	11:62	4.59	763 Sec. Manage	05769	DIB - 14.60 + .012 clt had)= 18.72
	Aqt-009	Maria Sara - para garan si	11:05	3.31	a kida ka magaya kanga.	05769	= (had) = + . 472 (had)=
	WBG-006	econocerent and goal pa	8:28	4.90	Mary and the latest	05769	DT B = 20.21 + OIZ (hard) = 20.3
	WB4-007	innerval and the state of the s	8:64	16.12	a way sing of the Section of the Sec	57750	DT B = 26.36 + Otz (hard) = 26.48
	WBS -009	and the second	9:03	10.76	and the state of t	05769	
77							
						3	
		-					
							<i>J</i>
							
	*All measurements from top of casing	s from top of c	asing.				

RECORDED BY: (Signature and D

LA CHECK BY: WOUNDED! (Chrystal

nature and Date)

APPENDIX B LABORATORY DATA SHEETS

Appendix B Page 1

ANALYTICAL METHODS

METHOD	CONSTITUENTS
PCBs (8082)	GC Semivolatile Organics
	(Polychlorinated Biphenyls (PCBs))
Pesticides (8081A)	GC Semivolatile Organics
	(Pesticides)
Nitroaromatics & Nitramines:	GC Semivolatile Organics
Explosives (8330)	(Explosives/Propellant)
Organic Compounds by UV/HPLC	Nitroguanidine
Base/Neutrals and Acids (8270C)	GC/MS Semivolatile Organics
	(SVOCs)
Volatile Organics, GC/MS (8260B)	GC/MS Volatile Organics
	(VOCs)
Cyanide, Total	General Chemistry
	(Cyanide)
Nitrate – Nitrite	General Chemistry
Nitrocellulose as N by 353.2	General Chemistry
	(Explosive/Propellant)
Inductively Coupled Plasma	Metals
(6010B Trace)	(Arsenic, Lead, Selenium)
Inductively Coupled Plasma (6010B)	Metals (Magnesium, Manganese,
	Barium, Nickel, Potassium, Silver,
	Sodium, Vanadium, Chromium,
	Calcium, Cobalt, Copper)
Inductively Coupled Plasma Mass	Metals (Antimony, Iron, Beryllium,
Spectrometry (6020)	Thallium, Zinc, Cadmium, Aluminum)
Mercury (7470A, Cold Vapor) - Liquid	Metals (<i>Mercury</i>)

Note – Analytical Methods reflects sequence on report

Appendix B Page 2

CASE NARRATIVE

A7A200106

The following report contains the analytical results for eight water samples and one quality control sample submitted to STL North Canton by Spec Pro from the FWGWMP RVAAP Site, project number 001074.0001. The samples were received January 19, 2007, according to documented sample acceptance procedures.

The 8330 Explosives, Nitroguanidine, and 353.2 Nitrocellulose as N analyses were performed at the STL West Sacramento laboratory. Refer to STL West Sacramento narrative included in their data package for additional information.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carroll and Valarie Ann Mariola on February 06, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT"

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at temperatures ranging from 1.5 to 3.1°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL4mw-199C-0374-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate(s) for batch(es) 7025123 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL4mw-199C-0374-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The LCS associated with batch(es) 7022041 had an acid surrogate recovery <10%. Upon reextraction and reanalysis, all QC met acceptance criteria; however, sample holding times had been exceeded. Both sets of data have been reported.

Appendix B

CASE NARRATIVE (continued)

PESTICIDES-8081

The analytical results met the requirements of the laboratory's QA/QC program.

POLYCHLORINATED BIPHENYLS-8082

The matrix spike/matrix spike duplicate(s) for batch(es) 7021020 had RPD's outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

Serial dilution of a sample in this lot indicates that physical and chemical interferences were present. Refer to the sample report pages for the affected analytes flagged with "E".

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes for FWGLL4mw-199C-0374-GF due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which will be flagged with "NC, MSB".

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is repreped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be repreped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),
Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#QUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence – Participating Lab Status Award (#82)

 $C: \label{locals} \begin{tabular}{ll} C: \label{locals-1} Armans \label{locals-1} LOCALS-1 \label{locals-1} Temp \label{locals-1} Narrative \begin{tabular}{ll} 040306. doc Revised 04/03/06 DJL \end{tabular}$

Appendix B

Sample ID:

FWGLL11mw-007C-0375-GW

Lab ID:

A7A200106-001

Receipt Date:

01/19/07 5:00PM

Sampling Date:

01/18/07 1:48PM

Matrix:

WATER

Sampling Date: 01/18/0/ 1:4	8 PM	matrix:		Prep-	
Parameter	Result	<u>Units</u>	RL	Analysis Date	Analyst
	GC Ser	mivolatile Organics			
PCBs (8082) Aroclor 1016	ND	· ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1221	ND	ug/L	0.50	01/21 01/23/07	LH
Aroclor 1232	ND	ug/L	0.50	01/21- 01/23/07	LH
				01/21- 01/23/07	LH
Aroclor 1242	ND	ug/L	0.50		
Aroclor 1248	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1254	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1260	ND	ug/L	0.50	01/21- 01/23/07	LH
Pesticides (8081A) Dieldrin	ND	ug/L	0.030	01/23- 01/25/07	csv
Endosulfan I	ND	ug/L	0.025	01/23- 01/25/07	csv
Endosulfan II	ND	ug/L	0.025	01/23- 01/25/07	CSV
Endosulfan sulfate	ND	ug/L	0.030	01/23- 01/25/07	csv
Endrin	ND	ug/L	0.030	01/23- 01/25/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/23- 01/25/07	csv
Endrin ketone	ND	ug/L	0.030	01/23- 01/25/07	csv
Heptachlor	ND	ug/L	0.030	01/23- 01/25/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/23- 01/25/07	CSV
Methoxychlor	ND	ug/L	0.10	01/23- 01/25/07	csv
alpha-BHC	ND	ug/L	0.030	01/23- 01/25/07	csv
beta-BHC	ND	ug/L	0.030	01/23- 01/25/07	csv
delta-BHC	ND	ug/L	0.030	01/23- 01/25/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/23- 01/25/07	csv
Toxaphene	ND	ug/L	2.0	01/23- 01/25/07	csv
alpha-Chlordane	ND	ug/L	0.030	01/23- 01/25/07	csv
gamma-Chlordane	ND	ug/L	0.030	01/23- 01/25/07	csv
Aldrin	ND	ug/L	0.030	01/23- 01/25/07	CSV
4,4'-DDD	ND	ug/L	0.030	01/23- 01/25/07	CSV
4,4'-DDE	ND	ug/L	0.030	01/23- 01/25/07	CSV
4,4'-DDT	ND	ug/L	0.030	01/23- 01/25/07	CSV

Sample ID:

FWGLL11mw-007C-0375-GW

Lab ID:

Hexachlorobutadiane Appendix B

A7A200106-001

Receipt Date:

01/19/07 5:00PM

Sampling Date:	01/18/07	1:48PM	Ma	trix:	WATER Prep	·	
Parame	ter	Resul	t <u>Units</u>	RL	Analysi		st
Nitroaromatics &	Nitramines:	Explosives	(8330)				
1,3-Dinitrobenze		ND	ug/L	0.098	01/25-	01/30/07 FK	
2,4-Dinitrotolue	ne	ND	ug/L	0.098	01/25-	01/30/07 FK	
2,6-Dinitrotolue	ne	ND	ug/L	0.098	01/25-	01/30/07 FK	
Nitrobenzene		ND	ug/L	0.098	01/25-	01/30/07 FK	
1,3,5-Trinitrobe	nzene	ND	ug/L	0.098	01/25-	01/30/07 FK	
2,4,6-Trinitroto	luene	ND	ug/L	0.098	01/25-	01/30/07 FK	
HMX		ND	ug/L	0.098	01/25-	01/30/07 FK	
RDX		ND	ug/L	0.098	01/25-	01/30/07 FK	
Tetryl		ND	ug/L	0.098	01/25-	01/30/07 FK	
2-Nitrotoluene		ND	ug/L	0.49	01/25-	01/30/07 FK	
3-Nitrotoluene		ND	ug/L	0.49	01/25-	01/30/07 FK	
4-Nitrotoluene		ND	ug/L	0.49	01/25-	01/30/07 FK	
4-Amino-2,6-dini	trotoluene	ND	ug/L	0.098	01/25-	01/30/07 FK	
2-Amino-4,6-dini	trotoluene	ND	ug/L	0.098	01/25-	01/30/07 FK	
Organic Compound	a her INI/UDI C	Dissolved					
Nitroguanidine	S DY OV/HELC	ND	ug/L	20	01/26-	01/30/07 FK	
			- GC/MS Semivolatile Or	ganics			
Base/Neutrals an Diethyl phthalat		OC)	ug/L	1.0	01/22-	01/31/07 JMG	
2,4-Dimethylphen	ol	ND	ug/L	2.0	01/22-	01/31/07 JMG	
Dimethyl phthala	te	ND	ug/L	1.0	01/22-	01/31/07 JMG	
Di-n-octyl phtha	late	ND	ug/L	1.0	01/22-	01/31/07 JMG	
4,6-Dinitro-2-me	thylphenol	ND	ug/L	5.0	01/22-	01/31/07 JMG	
2,4-Dinitropheno	1	ND	ug/L	5.0	01/22-	01/31/07 JMG	
2,4-Dinitrotolue	ne	ND	ug/L	5.0	01/22-	01/31/07 JMG	
2,6-Dinitrotolue	ne	ND	ug/L	5.0	01/22-	01/31/07 JMG	
Anthracene		ND	ug/L			01/31/07 JMG	
Fluoranthene		ND	ug/L			01/31/07 JMG	
Fluorene		ND	ug/L			01/31/07 JMG	
Hexachlorobenzen	e	ND	ug/L			01/31/07 JMG	
	-	2,2	49,2	3.20	02,22	,,	

Page 4^{ug/L}

1.0

01/22- 01/31/07

JMG

ND

 Sample ID:
 FWGLL11mw-007C-0375-GW

 Lab ID:
 A7A200106-001

 Sampling Date:
 01/18/07 1:48PM

Receipt Date: 01/19/07 5:00PM Matrix:

WATER

Sampling Date: 01/	18/07 1:48PM	Ma	crix:	WATER Prep-	
Parameter_	Res	ult Units	RL	Analysis Date	Analyst
Base/Neutrals and Acid	s (8270C)				
Hexachlorocyclopentadie		ug/L	10	01/22- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/22- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/22- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/22- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/22- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/22- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/22- 01/31/07	JMG
N-Nitrosodi-n-propylami	ne ND	ug/L	1.0	01/22- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/22- 01/31/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/22- 01/31/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Carbazole Appendix B	ND	Page 5 ^{ug/L}	1.0	01/22- 01/31/07	JMG

Sample ID:

FWGLL11mw-007C-0375-GW A7A200106-001

Lab ID:

Receipt Date:

01/19/07 5:00PM

nau	AIAZUUIUU	001	MCCCIPC Date.	01/13/07	J. OULH
Sampling Date:	01/18/07	1:48PM	Matrix:	WATER Prep	<u>-</u>
				3 1 ·	

Parameter	Result	Units	, RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/22- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/22- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/22- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/22- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/22- 01/31/07	JMG
Butyl benzyl phthalate	· ND	ug/L	1.0	01/22- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/22- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/22- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/22- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/22- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/22- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/22- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,4-Dichlorophenol	ND	ug/L	2.0	01/22- 01/31/07	JMG
Base/Neutrals and Acids (8270C) Diethyl phthalate	Re-extract ND	ug/L	1.0	01/31- 02/05/07	JMG
2,4-Dimethylphenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
Dimethyl phthalate	ND	ug/L	1.0	01/31- 02/05/07	JMG
Di-n-octyl phthalate	ND	ug/L	1.0	01/31- 02/05/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/31- 02/05/07	JMG
Anthracene Appendix B	ND	ug/L Page 6	0.20	01/31- 02/05/07	JMG

Sample ID:

FWGLL11mw-007C-0375-GW A7A200106-001

Lab ID:

Sampling Date:

Receipt Date: 01/19/07 5:00PM

01/18/07	1:48PM	Matrix:	WATER

Parameter	Result	<u>Units</u>	RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Fluoranthene	Re-extract	ug/L	0.20	01/31- 02/05/07	JMG
Fluorene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/31- 02/05/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/31- 02/05/07	JMG
Hexachloroethane	ND .	ug/L	1.0	01/31- 02/05/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Isophorone	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
Naphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
3-Nitroaniline	ND	ug/L	. 2.0	01/31- 02/05/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/31- 02/05/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Benzoic acid	ND	ug/L	10	01/31- 02/05/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Phenanthrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Phenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
Pyrene Appendix B	ND	Page 7 ug/L	0.20	01/31- 02/05/07	JMG

Sample ID:

FWGLL11mw-007C-0375-GW

Lab ID: Sampling Date:

A7A200106-001 01/18/07 1:48PM Receipt Date:

01/19/07 5:00PM

rap in:	A/A200106-001		Kecerpt Da	ice.	01/19/07 5:00FM	
Sampling Date:	01/18/07 1:48	PM	Matrix:		WATER Prep-	
Parame	eter_	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals an	d Acids (8270C)	Re-extract				
1,2,4-Trichlorob	enzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2,4,5-Trichlorop	henol	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4,6-Trichlorop	henol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Carbazole		ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroetho	xy)methane	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroethy	l) ether	ND	ug/L	1.0	01/31- 02/05/07	JMG
2,2'-Oxybis(1-Ch	loropropane)	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/31- 02/05/07	JMG
4-Bromophenyl ph	enyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Butyl benzyl pht	halate	ND	ug/L	1.0	01/31- 02/05/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/31- 02/05/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Chloro-3-methy	lphenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
2-Chloronaphthal	ene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/31- 02/05/07	JMG
4-Chlorophenyl p	henyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Chrysene		ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenz(a,h)anthr	acene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/31- 02/05/07	JMG
Di-n-butyl phtha	alate	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,2-Dichlorobenz	ene	ИД	ug/L	1.0	01/31- 02/05/07	JMG
1,3-Dichlorobenz	ene	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,4-Dichlorobenz	zene	ND	ug/L	1.0	01/31- 02/05/07	JMG
3,3'-Dichloroben	nzidine	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4-Dichlorophen	nol	ND	ug/L	2.0	01/31- 02/05/07	JMG
		GC/MS V	Olatile Organics			
Volatile Organic trans-1,3-Dichlo	cs, GC/MS (8260B) propropene	ND	ug/L	1.0	01/24/07	LEE
Acetone	- -	ND	ug/L	10	01/24/07	LEE
			<u>.</u> .			

Appendix B

Ethylbenzene

Page 8

ND

ug/L

1.0 01/24/07

LEE

Sample ID:

FWGLL11mw-007C-0375-GW A7A200106-001

nan in:	A/AZUUIUU-	-001	Receipt Date.	OI.
Sampling Date:	01/18/07	1:48PM	Matrix:	WA'

Lab ID:	A7A200106-001	Receipt Date:		ate:	01/19/07 5:00PM		
Sampling Date:	01/18/07 1:48PM		Matrix:		WATER Prep-		
Parameter	<u>r</u> _	Result	Units	RL	Analysis Date	Analyst	
Volatile Organics,	GC/MS (8260B)						
2-Hexanone		ND	ug/L	10	01/24/07	LEE	
Methylene chloride		ND	ug/L	2.0	01/24/07	LEE ·	
4-Methyl-2-pentanor	ne	ND	ug/L	10	01/24/07	LEE	
Benzene		ND	ug/L	1.0	01/24/07	LEE	
Styrene		ND	ug/L	1.0	01/24/07	LEE	
1,1,2,2-Tetrachloro	oethane	ND	ug/L	1.0	01/24/07	LEE	
Tetrachloroethene		ND	ug/L	1.0	01/24/07	LEE	
Toluene		ND	ug/L	1.0	01/24/07	LEE	
1,1,1-Trichloroetha	ane	ND	ug/L	1.0	01/24/07	LEE	
1,1,2-Trichloroetha	ane	ND	ug/L	1.0	01/24/07	LEE	
Trichloroethene	·	ND	ug/L	1.0	01/24/07	LEE	
Vinyl chloride		ND	ug/L	1.0	01/24/07	LEE	
Xylenes (total)		ND	ug/L	2.0	01/24/07	LEE	
Bromochloromethane		ND	ug/L	1.0	01/24/07	LEE	
Bromodichloromethan	ne	ND	ug/L	1.0	01/24/07	LEE	
Bromoform		ND	ug/L	1.0	01/24/07	LEE	
Bromomethane		ND	ug/L	1.0	01/24/07	LEE	
2-Butanone		ND	ug/L	10	01/24/07	LEE	
Carbon disulfide		ND	ug/L	1.0	01/24/07	LEE	
Carbon tetrachloric	de	ND	ug/L	1.0	01/24/07	LEE	
Chlorobenzene		ND	ug/L	1.0	01/24/07	LEE	
Dibromochloromethan	ne	ND	ug/L	1.0	01/24/07	LEE	
Chloroethane		ND	ug/L	1.0	01/24/07	LEE	
Chloroform		ND	ug/L	1.0	01/24/07	LEE	
Chloromethane		ND	ug/L	1.0	01/24/07	LEE	
1,2-Dibromoethane		ND	ug/L	1.0	01/24/07	LEE	
1,1-Dichloroethane		ND	ug/L	1.0	01/24/07	LEE	
1,2-Dichloroethane		ND	ug/L	1.0	01/24/07	LEE	
1,1-Dichloroethene		ND	ug/L	1.0	01/24/07	LEE	
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/24/07	LEE	
1,2-Dichloropropan Appendix	e B	ND	Page 9 ug/L	1.0	01/24/07	LEE	

Sample ID:

FWGLL11mw-007C-0375-GW

Lab ID:

A7A200106-001

Receipt Date: 01/19/07 5:00PM

01/18/07 1:48PM

Sampling Date:	01/18/07 1:	48PM	Matrix:		WATER	
Parameter	<u>-</u>	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics, cis-1,3-Dichloropro) ND	ug/L	1.0	01/24/07	LEE
		Ge	neral Chemistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/24/07	SS
Nitrocellulose as N Nitrocellulose	1 by 353.2	ND	mg/L	0.50	01/26- 02/01/07	DTA

Sample ID:

FWGLL11mw-007C-0375-GF

Lab ID:

A7A200106-002

Receipt Date:

01/19/07 5:00PM

Lab ID:	A7A200106	-002		Receipt	: Date:	01/19/07	5:00PM	
Sampling Date:	01/18/07	1:48PM		Matrix:		WATER Prep	>-	
	Parameter_	Result		Units	RL	Analysi		Analyst
			Met	als				
Inductively Arsenic	Coupled Plasma ((6010B Trace) 16.0		ug/L	5.0	01/22-	01/25/07	LRW
Lead		ND		ug/L	3.0	01/22-	01/25/07	LRW
Selenium		ND		ug/L	5.0	01/22-	01/25/07	LRW
Inductively Magnesium	Coupled Plasma ((6010B) 33600		ug/L	1000	01/22-	01/25/07	LRW
Manganese		274	J	ug/L	10.0	01/22-	01/25/07	LRW
Barium		88.5		ug/L	10.0	01/22-	01/25/07	LRW
Nickel		ND		ug/L	10.0	01/22-	01/25/07	LRW
Potassium		1420	J	ug/L	1000	01/22-	01/25/07	LRW
Silver		ND		ug/L	5.0	01/22-	01/25/07	LRW
Sodium		14400		ug/L	1000	01/22-	01/25/07	LRW
Vanadium		ND		ug/L	10.0	01/22-	01/25/07	LRW
Chromium		ND		ug/L	5.0	01/22-	01/25/07	LRW
Calcium		94300	J	ug/L	1000	01/22-	01/25/07	LRW
Cobalt		ND		ug/L	5.0	01/22-	01/25/07	LRW
Copper		ND .		ug/L	5.0	01/22-	01/25/07	LRW
Inductively	· Coupled Plasma N	Mass Spectrometry(6	020)					
Antimony		0.14	ВЈ	ug/L	2.0	01/22-	01/23/07	BD
Iron		523	J	ug/L	20.0	01/22-	01/23/07	BD
Beryllium		ND		ug/L	1.0	01/22-	01/23/07	BD
Thallium		ND		ug/L	1.0	01/22-	01/23/07	BD
Zinc		5.1	ВЈ	ug/L	10.0	01/22-	01/23/07	BD
Cadmium		ND		ug/L	0.50	01/22-	01/23/07	BD
Aluminum		ND		ug/L	50.0	01/22-	01/23/07	BD
Mercury (74 Mercury	70A, Cold Vapor)	- Liquid ND		ug/L	0.20	01/22-	01/23/07	RKT

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID:

A7A200106-003

Receipt Date:

01/19/07

5:00PM

01/23- 01/25/07

CSV

0.030

01/19/07 11:10AM Matrix: WATER Sampling Date: Prep-Analysis Date Result Units RL Analyst Parameter ----- GC Semivolatile Organics ------PCBs (8082) Aroclor 1016 ND ug/L 0.50 01/21- 01/23/07 LH Aroclor 1221 ND ug/L 0.50 01/21- 01/23/07 LΗ Aroclor 1232 0.50 01/21- 01/23/07 ND ua/L LΗ Aroclor 1242 ND ug/L 0.50 01/21- 01/23/07 T_iH Aroclor 1248 0.50 01/21- 01/23/07 ug/L ND LH 01/21- 01/23/07 Aroclor 1254 0.50 ug/L MD T.H 01/21- 01/23/07 Aroclor 1260 0.50 ND ug/L LH Pesticides (8081A) Dieldrin ND ug/L 0.030 01/23- 01/25/07 CSV Endosulfan I ND ug/L 0.025 01/23- 01/25/07 CSV Endosulfan II 0.025 01/23- 01/25/07 CSV ND ug/L Endosulfan sulfate ND ug/L 0.030 01/23- 01/25/07 CSV ug/L Endrin 0.030 01/23- 01/25/07 CSV ND 01/23- 01/25/07 Endrin aldehyde 0.030 CSV ИD ug/L 01/23- 01/25/07 Endrin ketone ND ug/L 0.030 CSV 0.030 01/23- 01/25/07 Heptachlor ND ug/L CSV Heptachlor epoxide ·ND ug/L 0.030 01/23- 01/25/07 CSV Methoxychlor 0.10 01/23- 01/25/07 CSV ug/L 0.030 01/23- 01/25/07 alpha-BHC ND ug/L CSV beta-BHC ND 0.030 01/23- 01/25/07 CSV ug/L 01/23- 01/25/07 delta-BHC ND ug/L 0.030 CSV gamma-BHC (Lindane) 0.030 01/23- 01/25/07 ΝD ug/L CSV Toxaphene ND ug/L 2.0 01/23- 01/25/07 CSV alpha-Chlordane ND ug/L 0.030 01/23- 01/25/07 CSV gamma-Chlordane ND ug/L 0.030 01/23- 01/25/07 CSV Aldrin ND ug/L 0.030 01/23- 01/25/07 CSV 4,4'-DDD 01/23- 01/25/07 ND ug/L 0.030 CSV 4.4'-DDE ND ug/L 0.030 01/23- 01/25/07 CSV

4,4'-DDT

-----Page 12

ug/L

ND

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID:

A7A200106-003

Receipt Date: 01/19/07 5:00PM

Sampling Date: 01/19/07	11:10AM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Nitroaromatics & Nitramines	: Explosives (8330)				
1,3-Dinitrobenzene	ND	ug/L	0.098	01/25- 01/30/07	FK
2,4-Dinitrotoluene	ND	ug/L	0.098	01/25- 01/30/07	FK
2,6-Dinitrotoluene	ND	ug/L	0.098	01/25- 01/30/07	FK
Nitrobenzene	ND	ug/L	0.098	01/25- 01/30/07	FK
1,3,5-Trinitrobenzene	ND	ug/L	0.098	01/25- 01/30/07	FK
2,4,6-Trinitrotoluene	ND	ug/L	0.098	01/25- 01/30/07	FK
HMX	ND	ug/L	0.098	01/25- 01/30/07	FK
RDX	ND	ug/L	0.098	01/25- 01/30/07	FK
Tetryl	ND	ug/L	0.098	01/25- 01/30/07	FK
2-Nitrotoluene	ND	ug/L	0.49	01/25- 01/30/07	FK
3-Nitrotoluene	ND	ug/L	0.49	01/25- 01/30/07	FK
4-Nitrotoluene	ND	ug/L	0.49	01/25- 01/30/07	FK
4-Amino-2,6-dinitrotoluene	ND	ug/L	0.098	01/25- 01/30/07	FK
2-Amino-4,6-dinitrotoluene	ND	ug/L	0.098	01/25- 01/30/07	FK
Organic Compounds by UV/HPLO	C Dissolved ND	ug/L	20	01/26- 01/30/07	FK
NI CLOG MANIALINC	242	49, 1	20	02,20 02,00,0	
	GC/MS Se	mivolatile Organics	3		
Base/Neutrals and Acids (82	· ·	-			
Diethyl phthalate	ND	ug/L	1.0	01/22- 01/31/07	JMG
2,4-Dimethylphenol	ND	ug/L	2.0	01/22- 01/31/07	JMG
Dimethyl phthalate	ND	ug/L	1.0	01/22- 01/31/07	JMG
Di-n-octyl phthalate	ND	ug/L	1.0	01/22- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,6-Dinitrotoluene	. ND	ug/L	5.0	01/22- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/22- 01/31/07	JМG
Hexachlorobutadiene Appendix B	ND	Page 13 ^{ug/L}	1.0	01/22- 01/31/07	JMG

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID:

Sampling Date:

A7A200106-003

01/19/07 11:10AM

Receipt Date: 01/19/07 5:00PM

Matrix: WATER
PrepAnalysis Date

Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Hexachlorocyclopentadiene	ND	ug/L	10	01/22- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/22- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/22- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/22- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/22- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/22- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/22- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/22- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/22- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/22- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/22- 01/31/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/22- 01/31/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
Phenol	ИD	ug/L	1.0	01/22- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/22- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/22- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/22- 01/31/07	JMG
Carbazole Appendix B	ND	Page 14	1.0	01/22- 01/31/07	JMG

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID:

A7A200106-003

Receipt Date:

5.0

5.0

5.0

0.20

ug/L

ug/L

ug/L

ug/L

01/31- 02/05/07

01/31- 02/05/07

01/31- 02/05/07

01/31- 02/05/07

JMG

JMG

JMG

JMG

01/19/07 5:00PM

Sampling	Date
----------	------

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Appendix B

Anthracene

Lab ID:	A7A200106-003		Receipt I	Date:	01/19/0/ 5:00PM	
Sampling Date:	01/19/07 11:10A	M	Matrix:		WATER Prep-	
Paramet	cer_	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and bis(2-Chloroethox		ND	ug/L	1.0	01/22- 01/31/0	7 JMG
·			-			
bis(2-Chloroethyl		ND	ug/L	1.0	01/22- 01/31/0	
2,2'-Oxybis(1-Chl	oropropane)	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/22- 01/31/0	7 JMG
4-Bromophenyl phe	nyl ether	ND	ug/L	2.0	01/22- 01/31/0	7 JMG
Butyl benzyl phth	alate	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
Acenaphthylene		ND	ug/L	0.20	01/22- 01/31/0	7 JMG
4-Chloroaniline		ND	ug/L	2.0	01/22- 01/31/0	7 JMG
4-Chloro-3-methyl	phenol	ND .	ug/L	2.0	01/22- 01/31/0	7 JMG
2-Chloronaphthale	ne	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
2-Chlorophenol		ND	ug/L	1.0	01/22- 01/31/0	7 JMG
4-Chlorophenyl ph	enyl ether	ND	ug/L	2.0	01/22- 01/31/0	7 JMG
Chrysene		ND	ug/L	0.20	01/22- 01/31/0	7 JMG.
Dibenz(a,h)anthra	cene	ир	ug/L	0.20	01/22- 01/31/0	7 JMG
Dibenzofuran		ND	ug/L	1.0	01/22- 01/31/0	7 JMG
Di-n-butyl phthal	ate	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
1,2-Dichlorobenze	ne	ИД	ug/L	1.0	01/22- 01/31/0	7 JMG
1,3-Dichlorobenze	ene	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
1,4-Dichlorobenze	ne	ND	ug/L	1.0	01/22- 01/31/0	7 JMG
3,3'-Dichlorobenz	idine	ND	ug/L	5.0	01/22- 01/31/0	7 JMG
2,4-Dichloropheno	ol .	ND	ug/L	2.0	01/22- 01/31/0	7 JMG
Base/Neutrals and	1 Acids (8270C)	Re-extract				
Diethyl phthalate		ND	ug/L	1.0	01/31- 02/05/0	7 JMG
2,4-Dimethylpheno	ol .	ND	ug/L	2.0	01/31- 02/05/0	7 JMG
Dimethyl phthalat	e	ND	ug/L	1.0	01/31- 02/05/0	7 JMG
Di-n-octyl phthal	.ate	ND	ug/L	1.0	01/31- 02/05/0	7 JMG
4,6-Dinitro-2-met	chylphenol	ND	ug/L	5.0	01/31- 02/05/0	7 JMG

Page 15

ND

ND

ND

ND

Sample ID:

Appendix B

FWGLL4mw-198C-0388-GW

Lab ID:

A7A200106-003

Receipt Date: 01/19/07 5:00PM

Matrix: WATER Sampling Date: 01/19/07 11:10AM Prep-Analysis Date Units RL Analyst Result Parameter Base/Neutrals and Acids (8270C) Re-extract 0.20 01/31- 02/05/07 JMG Fluoranthene ND ug/L ND 0.20 01/31- 02/05/07 JМG Fluorene ug/L ug/L 0.20 01/31- 02/05/07 TMG Hexachlorobenzene ND Hexachlorobutadiene ND ug/L 1.0 01/31- 02/05/07 TMC 01/31- 02/05/07 Hexachlorocyclopentadiene ND ug/L 10 JMG Hexachloroethane ND ug/L 1.0 01/31- 02/05/07 JMG 0.20 01/31- 02/05/07 JMG Indeno(1,2,3-cd)pyrene ND ug/L 01/31- 02/05/07 1.0 JMG Isophorone ND ug/L 0.20 01/31- 02/05/07 JMG ug/L 2-Methylnaphthalene ND 01/31- 02/05/07 ND ug/L 1.0 JMG 2-Methylphenol 01/31- 02/05/07 1.0 JMG 4-Methylphenol MD ug/L 0.20 01/31- 02/05/07 Naphthalene ND ug/L JMG 2-Nitroaniline ND ug/L 2.0 01/31- 02/05/07 JMG 3-Nitroaniline 2.0 01/31- 02/05/07 JMG ND uq/L 01/31- 02/05/07 JMG 4-Nitroaniline ND ug/L 2.0 01/31- 02/05/07 1.0 JMG Nitrobenzene ug/L ND 2.0 01/31- 02/05/07 JMG 2-Nitrophenol ND ug/L 01/31- 02/05/07 5.0 JMG 4-Nitrophenol ND ug/L 0.20 01/31- 02/05/07 ·TMG Benzo(a) anthracene ND ug/L 01/31- 02/05/07 N-Nitrosodi-n-propylamine ND ug/L 1.0 JMG N-Nitrosodiphenylamine ND ug/L 1.0 01/31- 02/05/07 JMG 0.20 01/31- 02/05/07 JMG Benzo(b) fluoranthene ND ug/L 01/31- 02/05/07 Benzo(k) fluoranthene ND ug/L 0.20 JMG 10 01/31- 02/05/07 JMG Benzoic acid NΩ ug/L 01/31- 02/05/07 0.20 Benzo(ghi)perylene ND ug/L JMG 01/31- 02/05/07 0.20 Benzo(a)pyrene ND ug/L JMG 01/31- 02/05/07 Pentachlorophenol ND ug/L 5.0 JMG Benzyl alcohol ND 5.0 01/31- 02/05/07 JMG ug/L Phenanthrene 0.20 01/31- 02/05/07 JMG ND uq/L 01/31- 02/05/07 JMG Phenol ND ug/L 1.0 Page 16^{ug/L} 01/31- 02/05/07 ND 0.20 JMG Pyrene

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID: Sampling Date:

A7A200106-003 01/19/07 11:10AM Receipt Date: 01/19/07 5:00PM
Matrix: WATER
Prep-

Parameter	Result	Units	RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C)	Re-extract				
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Carbazole	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/31- 02/05/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/31- 02/05/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/31- 02/05/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/31- 02/05/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/31- 02/05/07	JMĢ
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Chrysene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenz (a, h) anthracene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/31- 02/05/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4-Dichlorophenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
	GC/MS V	olatile Organics ·			
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/24/07	LEE
Acetone	ND	ug/L	10	01/24/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/24/07	LEE

Appendix B

Page 17

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID: Sampling Date: A7A200106-003 01/19/07 11:10AM Receipt Date:

01/19/07 5:00PM

Matrix:	WATER

Sampling Date: 01/19/07	11:10AM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, GC/MS (82	60B)				
2-Hexanone	ND	ug/L	10	01/24/07	LEE
Methylene chloride	ND	ug/L	2.0	01/24/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/24/07	LEE
Benzene	ND	ug/L	1.0	01/24/07	LEE
Styrene	ND	ug/L	1.0	01/24/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/24/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/24/07	LEE
Toluene	ND	ug/L	1.0	01/24/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/24/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/24/07	LEE
Trichloroethene	ND	ug/L	1.0	01/24/07	LEE
Vinyl chloride	ИD	ug/L	1.0	01/24/07	LEE
Xylenes (total)	ИD	ug/L	2.0	01/24/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/24/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/24/07	LEE
Bromoform	ND	ug/L	1.0	01/24/07	LEE
Bromomethane	ND	ug/L	1.0	01/24/07	LEE
2-Butanone	ND	ug/L	10	01/24/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/24/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/24/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/24/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/24/07	LEE
Chloroethane	ND	ug/L	1.0	01/24/07	LEE
Chloroform	ND	ug/L	1.0	01/24/07	LEE
Chloromethane	ND	ug/L	1.0	01/24/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethene (total)	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloropropane Appendix B	ND	Page 18 ^{ug/L}	1.0	01/24/07	LEE

Sample ID:

FWGLL4mw-198C-0388-GW

Lab ID:

A7A200106-003

Receipt Date:

01/19/07 5:00PM

01/19/07 11:10AM

sampling pare:	01/19/0/ 11:10AM		Matrix:	WA:	LEK	
Parameter		Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics, G cis-1,3-Dichloroprop		ND	ug/L	1.0	01/24/07	LEE
		General Ch	emistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/24/07	SS
Nitrocellulose as N Nitrocellulose	by 353.2	ND	mg/L	0.50	01/26- 02/01/07	DTA

Sample ID: Lab ID:

FWGLL4mw-198C-0388-GF

A7A200106-004

Receipt Date:

01/19/07 5:00PM

Sampling Date:

01/19/07 11:10AM

Matrix:

WATER

Sampling Date: 01/19/07 11:10AM	I		Matrix:	WA	TER Prep-	
Parameter	Result		Units	RL	Analysis Date	Analyst
		Meta	ls			
Inductively Coupled Plasma (6010B ! Arsenic	Frace) ND		ug/L	5.0	01/22- 01/25/07	LRW
Lead	ND		ug/L	3.0	01/22- 01/25/07	LRW
Selenium	ND		ug/L	5.0	01/22- 01/25/07	LRW
Inductively Coupled Plasma (6010B) Magnesium	14700		ug/L	1000	01/22- 01/25/07	LRW
Manganese	1480	J	ug/L	10.0	01/22- 01/25/07	LRW
Barium	13.7		ug/L	10.0	01/22- 01/25/07	LRW
Nickel	32.2		ug/L	10.0	01/22- 01/25/07	LRW
Potassium	1140	J	ug/L	1000	01/22- 01/25/07	LRW
Silver	ND		ug/L	5.0	01/22- 01/25/07	LRW
Sodium	10500		ug/L	1000	01/22- 01/25/07	LRW
Vanadium	ND		ug/L	10.0	01/22- 01/25/07	LRW
Chromium	ND		ug/L	5.0	01/22- 01/25/07	LRW
Calcium	31100	J	ug/L	1000	01/22- 01/25/07	LRW
Cobalt	1.2	В	ug/L	5.0	01/22- 01/25/07	LRW
Copper	ND		ug/L	5.0	01/22- 01/25/07	LRW
Inductively Coupled Plasma Mass Spe Antimony	0.11)20) B J	ug/L	2.0	01/22- 01/23/07	BD
Iron	4690	J	ug/L	20.0	01/22- 01/23/07	BD
Beryllium	ND		ug/L	1.0	01/22- 01/23/07	BD
Thallium	ND		ug/L	1.0	01/22- 01/23/07	BD
Zinc	91.3	J	ug/L	10.0	01/22- 01/23/07	BD
Cadmium	0.091	В	ug/L	0.50	01/22- 01/23/07	BD
Aluminum	15.7	В	ug/L	50.0	01/22- 01/23/07	BD
Mercury (7470A, Cold Vapor) - Liqu Mercury	id ND		ug/L	0.20	01/22- 01/23/07	RKT

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

 Sample ID:
 FWGLL11mw-002C-0374-GW

 Lab ID:
 A7A200106-005

Receipt Date: 01/19/07 5:00PM

Sampling Date:	01/18/07	12:25PM

Lab ID:	A7A200106-005		Rec	eipt Date:	01/19/07	5:00PM	
Sampling Date:	01/18/07 12:25PM		Mat	rix:	WATER Prep	_	
Parameter	<u>-</u>	Result	Units	RL	Analysi	s Date	Analyst
		(GC Semivolatile Orga	nics			
PCBs (8082)					•		
Aroclor 1016		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1221		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1232		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1242		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1248		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1254		ND	ug/L	0.50	01/21-	01/23/07	LH
Aroclor 1260		ND	ug/L	0.50	01/21-	01/23/07	LH
Pesticides (8081A)							
Dieldrin		ND	ug/L	0.030	01/23-	01/25/07	CSV
Endosulfan I		ND	ug/L	0.025	01/23-	01/25/07	csv
Endosulfan II		ND	ug/L	0.025	01/23-	01/25/07	csv
Endosulfan sulfate		ND	ug/L	0.030	01/23-	01/25/07	CSV
Endrin		ND	ug/L	0.030	01/23-	01/25/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/23-	01/25/07	csv
Endrin ketone		ND	ug/L	0.030	01/23-	01/25/07	csv
Heptachlor		ND	ug/L	0.030	01/23-	01/25/07	csv
Heptachlor epoxide		$-\mathbf{M}\mathbf{D}$	ug/L	0.030	01/23-	01/25/07	CSV
Methoxychlor		ND	ug/L	0.10	01/23-	01/25/07	csv
alpha-BHC		ND	ug/L	0.030	01/23-	01/25/07	csv
beta-BHC		ND	ug/L	0.030	01/23-	01/25/07	csv
delta-BHC		ND	ug/L	0.030	01/23-	01/25/07	csv
gamma-BHC (Lindane)		ND	ug/L	0.030	01/23-	01/25/07	csv
Toxaphene		ND	ug/L	2.0	01/23-	01/25/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/23-	01/25/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/23-	01/25/07	csv
Aldrin		ND	ug/L	0.030	01/23-	01/25/07	csv
4,4'-DDD		ND	ug/L	0.030	01/23-	01/25/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/23-	01/25/07	csv
4,4'-DDT		ND	ug/L	0.030	01/23-	01/25/07	CSV

Sample ID:

FWGLL11mw-002C-0374-GW

Lab ID:	A7A200106-005	-0574-GW	Receir	ot Date:	01/19/07	5:00PM	
Sampling Date:	01/18/07 12:25	5PM	Matrix		WATER		
					Prep Analysi		3 1
Parameter		Result	<u>Units</u>	<u>RL</u>			Analyst
Nitroaromatics & Ni	itramines: Expl	losives (8330)					
1,3-Dinitrobenzene	-	ND	ug/L	0.098	01/25-	01/31/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.098	01/25-	01/31/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.098	01/25-	01/31/07	FK
Nitrobenzene		ND	ug/L	0.098	01/25-	01/31/07	FK
1,3,5-Trinitrobenze	ne	ND	ug/L	0.098	01/25-	01/31/07	FK
2,4,6-Trinitrotolue	ne·	ND	ug/L	0.098	01/25-	01/31/07	FK
нмх		ND	ug/L	0.098	01/25-	01/31/07	FK
RDX		ND	ug/L	0.098	01/25-	01/31/07	FK
Tetryl		ND	ug/L	0.098	01/25-	01/31/07	FK
2-Nitrotoluene		ND	ug/L	0.49	01/25-	01/31/07	FK
3-Nitrotoluene		ND	ug/L	0.49	01/25-	01/31/07	FK
4-Nitrotoluene		ND	ug/L	0.49	01/25-	01/31/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.098	01/25-	01/31/07	FK
2-Amino-4,6-dinitro	toluene	ND	ug/L	0.098	01/25-	01/31/07	FK
Organic Compounds h	oy UV/HPLC Dia	ssolved ND	ug/L	20	01/26-	01/30/07	FK
*** AND		GC/MS	Semivolatile Organi	ics			
Base/Neutrals and P Diethyl phthalate	Acids (8270C)	ND	ug/L	1.0	01/22-	01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/22-	01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/22-	01/31/07	JMG
Di-n-octyl phthalat	:e	ND	ug/L	1.0	01/22-	01/31/07	JMG
4,6-Dinitro-2-methy	phenol	ND	ug/L	5.0	01/22-	01/31/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/22-	01/31/07	JMG
2,4-Dinitrotoluene		ND	ug/L	5.0	01/22-	01/31/07	JMG
2,6-Dinitrotoluene		ND	ug/L	5.0	01/22-	01/31/07	JМG
Anthracene		ND	ug/L	0.20	01/22-	01/31/07	JMG
Fluoranthene		ND	ug/L	0.20	01/22-	01/31/07	JMG
Fluorene		ND	ug/L	0.20	01/22-	01/31/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/22-	01/31/07	JМG
Hexachlorobutadiene Appendix	B	ND	Page 22 ^{ng/L}	1.0	01/22-	01/31/07	JMG
, appendix i	_		. 490 <u></u>				

Receipt Date:

01/19/07

5:00PM

Sample ID:

FWGLL11mw-002C-0374-GW

Lab ID:

A7A200106-005

Sampling Date: 01/18/07 12:25PM

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Carbazole Appendix B

ND

ND.

ND

ND

Matrix: WATER Prep-Analysis Date Parameter Result Units RL Analyst Base/Neutrals and Acids (8270C) Hexachlorocyclopentadiene ND ug/L 10 01/22- 01/31/07 JMG Hexachloroethane ND ug/L 1.0 01/22- 01/31/07 JMG 0.20 01/22- 01/31/07 Indeno(1,2,3-cd)pyrene ND ug/L -TMG Isophorone ND ug/L 1.0 01/22- 01/31/07 .TMG 01/22- 01/31/07 2-Methylnaphthalene ND ug/L 0.20 JMG 2-Methylphenol ND ug/L 1.0 01/22- 01/31/07 -JMG 4-Methylphenol 1.0 01/22~ 01/31/07 ND ug/L JMG 0.20 01/22- 01/31/07 Naphthalene ND ug/L JMG 2-Nitroaniline 2.0 01/22- 01/31/07 ND ug/L JMG 3-Nitroaniline 2.0 01/22- 01/31/07 ND ug/L JMG 4-Nitroaniline 2.0 01/22- 01/31/07 ND ug/L JMG 1.0 01/22- 01/31/07 Nitrobenzene ND ug/L JMG 2-Nitrophenol ND ug/L 2.0 01/22- 01/31/07 JMG 4-Nitrophenol ND ug/L 5.0 01/22- 01/31/07 JMG Benzo(a) anthracene 0.20 01/22- 01/31/07 JMG ND ug/L N-Nitrosodi-n-propylamine ND uq/L 1.0 01/22- 01/31/07 JMG N-Nitrosodiphenylamine ND ug/L 1.0 01/22- 01/31/07 TMG 0.20 01/22- 01/31/07 Benzo(b) fluoranthene ND ug/L TMG 01/22- 01/31/07 Benzo(k) fluoranthene 0.20 ND ug/L TMC Benzoic acid 10 01/22- 01/31/07 ND ug/L JMG Benzo(ghi)perylene ND ug/L 0.20 01/22- 01/31/07 JMG Benzo(a)pyrene 0.20 01/22- 01/31/07 JMG ND ug/L 01/22- 01/31/07 Pentachlorophenol ND ug/L 5.0 JMG Benzyl alcohol 5.0 01/22- 01/31/07 ND ug/L JMG Phenanthrene 01/22- 01/31/07 0.83 0.20 ug/L JMG 01/22- 01/31/07 Phenol ND 1.0 ug/L JMG 01/22- 01/31/07 0.20 Pyrene ND ug/L JMG

ug/L

ug/L

ug/L

Page 23 ug/L

1.0

5.0

5.0

1.0

01/22- 01/31/07

01/22- 01/31/07

01/22- 01/31/07

01/22- 01/31/07

JMG

JMG

JMG

JMG

Sample ID:

FWGLL11mw-002C-0374-GW

Lab ID:

Appendix B

A7A200106-005

Receipt Date:

01/19/07 5:00PM

Matrix: Sampling Date: 01/18/07 12:25PM WATER Prep-Analysis Date RLAnalyst Result Units Parameter Base/Neutrals and Acids (8270C) 1.0 01/22- 01/31/07 JMG bis(2-Chloroethoxy)methane ND ug/L 1.0 01/22- 01/31/07 JMG bis(2-Chloroethyl) ether ND ug/L 1.0 01/22- 01/31/07 TMG 2,2'-Oxybis (1-Chloropropane) ND ug/L bis(2-Ethylhexyl) phthalate 1.2 J ug/L 10 01/22- 01/31/07 JMG 4-Bromophenyl phenyl ether ND ug/L 2.0 01/22- 01/31/07 JMG Butyl benzyl phthalate MD ug/L 1.0 01/22- 01/31/07 JMG 0.20 01/22- 01/31/07 JMG Acenaphthylene ND ug/L 2.0 01/22- 01/31/07 JMG 4-Chloroaniline ND uq/L ug/L 2.0 01/22- 01/31/07 JMG 4-Chloro-3-methylphenol ND 1.0 01/22- 01/31/07 ug/L JMG 2-Chloronaphthalene ND 01/22- 01/31/07 1.0 JMG 2-Chlorophenol ND ug/L 01/22- 01/31/07 4-Chlorophenyl phenyl ether ND ug/L 2.0 JMG Chrysene ND ug/L 0.20 01/22- 01/31/07 JMG 0.20 01/22- 01/31/07 JMG Dibenz (a, h) anthracene ND uq/L 01/22- 01/31/07 JMG Dibenzofuran ND ug/L 1.0 1.0 01/22- 01/31/07 JMG Di-n-butyl phthalate ND uq/L 1.0 01/22- 01/31/07 -TMC 1,2-Dichlorobenzene MD ug/L 01/22- 01/31/07 1.0 .TMC 1,3-Dichlorobenzene ND ug/L 01/22- 01/31/07 1,4-Dichlorobenzene ND ug/L 1.0 JMG 01/22- 01/31/07 3,3'-Dichlorobenzidine ND ug/L 5.0 JMG 2,4-Dichlorophenol ND ug/L 2.0 01/22- 01/31/07 JMG Base/Neutrals and Acids (8270C) Re-extract 01/31- 02/05/07 JMG Diethyl phthalate ND ug/L 1.0 2.0 01/31- 02/05/07 JMG 2,4-Dimethylphenol ND ug/L 01/31- 02/05/07 ug/L 1.0 JMG Dimethyl phthalate MD Di-n-octyl phthalate 01/31- 02/05/07 ND ug/L 1.0 JMG 01/31- 02/05/07 4,6-Dinitro-2-methylphenol ND ug/L 5.0 JMG 01/31- 02/05/07 2,4-Dinitrophenol ND ug/L 5.0 JMG 2,4-Dinitrotoluene 5.0 01/31- 02/05/07 JMG ND ug/L 01/31- 02/05/07 JMG 2,6-Dinitrotoluene ND ug/L 5.0 01/31- 02/05/07 JMG Anthracene ND ug/L 0.20

Page 24

Sample ID:

FWGLL11mw-002C-0374-GW

Lab ID:

A7A200106-005 01/18/07 12:25PM

Receipt Date: Matrix:

01/19/07 5:00PM

WATER	
	•

Sampling Date: 01/18/07 12:	25PM	Matrix:		WATER Prep-	
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)	Re-extract				
Fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Fluorene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/31- 02/05/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/31- 02/05/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/31- 02/05/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Isophorone	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
Naphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Benzo(a) anthracene	ND	ug/L	0.20	01/31- 02/05/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Benzoic acid	ND	ug/L	10	01/31- 02/05/07	JMG
Benzo(ghi)perylene	ИД	ug/L	0.20	01/31- 02/05/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Phenanthrene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Phenol	ND	ug/L	1.0	01/31- 02/05/07	JMG
Pyrene Appendix B	ND	Page 25 ^{ug/L}	0.20	01/31- 02/05/07	JMG

Sample ID:	FWGLL11mw-002C-	.0374_CW				
Lab ID:	A7A200106-005		Receipt	Date:	01/19/07 5:00PM	
Sampling Date:	01/18/07 12:25		Matrix:		WATER <u>Prep-</u> Analysis Date	
Paramet	er	Result	<u>Units</u>	<u>RL</u>	22027 222 2406	Analyst
Base/Neutrals and 1,2,4-Trichlorober		Re-extract ND	ug/L	1.0	01/31- 02/05/07	JMG
2,4,5-Trichlorophe	enol	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4,6-Trichlorophe	enol	ND	ug/L	5.0	01/31- 02/05/07	JMG
Carbazole		ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroethox	y)methane	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Chloroethyl)) ether	ND	ug/L	1.0	01/31~ 02/05/07	JMG
2,2'-Oxybis(1-Chlo	oropropane)	ND	ug/L	1.0	01/31- 02/05/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/31- 02/05/07	JMG
4-Bromophenyl phen	nyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Butyl benzyl phtha	alate	ND	ug/L	1.0	01/31- 02/05/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/31- 02/05/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/31- 02/05/07	JMG
4-Chloro-3-methyl	phenol	ND	ug/L	2.0	01/31- 02/05/07	JMG
2-Chloronaphthale	ne	ND	ug/L	1.0	01/31- 02/05/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/31- 02/05/07	JMG
4-Chlorophenyl pho	enyl ether	ND	ug/L	2.0	01/31- 02/05/07	JMG
Chrysene		ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenz(a,h)anthra	cene	ND	ug/L	0.20	01/31- 02/05/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/31~ 02/05/07	JMG
Di-n-butyl phthal	ate	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,2-Dichlorobenze	ne	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,3-Dichlorobenze	ne	ND	ug/L	1.0	01/31- 02/05/07	JMG
1,4-Dichlorobenze	ne	ND	ug/L	1.0	01/31- 02/05/07	JMG
3,3'-Dichlorobenz	idine	ND	ug/L	5.0	01/31- 02/05/07	JMG
2,4-Dichloropheno	ı	ND	ug/L	2.0	01/31- 02/05/07	JMG
J Estimated resu	ult. Result is les	s than RL.				
		GC/MS V	olatile Organics			
Volatile Organics trans-1,3-Dichlore	•	ND	ug/L	1.0	01/24/07	LEE

Appendix B

Acetone

Ethylbenzene

ND

ND

ug/L

ug/L

10

1.0

01/24/07

01/24/07

LEE

LEE

Sample ID:

FWGLL11mw-002C-0374-GW A7A200106-005

Lab ID:

Receipt Date:

Matrix:

01/19/07 5:00PM WATER Prep-

Sampling Date:	01/18/07	12:25PM

Parameter	Result	<u>Units</u>	<u>RL</u>	Analysis Date	Analyst
Volatile Organics, GC/MS (8260B) 2-Hexanone	ND	ug/L	10	01/24/07	LEE
Methylene chloride	ND	ug/L	2.0	01/24/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/24/07	LEE
Benzene	ND	ug/L	1.0	01/24/07	LEE
Styrene	ND	ug/L	1.0	01/24/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/24/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/24/07	LEE
Toluene	ND	ug/L	1.0	01/24/07	LEE
1,1,1-Trichloroethane	ND .	ug/L	1.0	01/24/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/24/07	LEE
Trichloroethene	ND	ug/L	1.0	01/24/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/24/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/24/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/24/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/24/07	LEE
Bromoform	ND	ug/L	1.0	01/24/07	LEE
Bromomethane	ND	ug/L	1.0	01/24/07	LEE
2-Butanone	ND	ug/L	10	01/24/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/24/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/24/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/24/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/24/07	LEE
Chloroethane	ND	ug/L	1.0	01/24/07	LEE
Chloroform	ND	ug/L	1.0	01/24/07	LEE
Chloromethane	ND	ug/L	1.0	01/24/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethene (total)	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloropropane Appendix B	ND	Page 27	1.0	01/24/07	LEE

Sample ID:

FWGLL11mw-002C-0374-GW

Lab ID:

A7A200106-005

Receipt Date:

01/19/07 5:00PM

Sampling Date: 01/18/07 12:25PM Matrix: WATER

sampring bace.	01/10/0/ 12.23FM			Maciin.	WAT	Prep-	
Parameter	_	Result	<u>u</u>	Jnits	RL	Analysis Date	Analyst
Volatile Organics, cis-1,3-Dichloropro		ND		ug/L	1.0	01/24/07	LEE
		Ge	neral Cher	mistry			
Cyanide, Total Cyanide, Total		ND		mg/L	0.010	01/24/07	SS
Nitrocellulose as N	1 by 353.2	0.30	В	mg/L	0.50	01/26- 02/01/07	DTA

Estimated result. Result is less than RL.

Sample ID:

FWGLL11mw-002C-0374-GF

Lab ID:

A7A200106-006

Receipt Date:

01/19/07 5:00PM

Sampling Date:

01/18/07 12:25PM

Matrix:

WATER

Sampling Date: 01/10/0/ 12:23	12:25PM		Macrix.		Prep-		
Parameter	Result		Units	<u>RL</u>	Analysis Date	Analyst	
	ي الله كبيرة ومين منيا بنين فين عمد عبي عبية عبين عبد عمد عمد	Met	als				
Inductively Coupled Plasma (6010) Arsenic	B Trace) ND		ug/L	5.0	01/22- 01/25/07	LRW	
Lead	ND		ug/L	3.0	01/22- 01/25/07	LRW	
Selenium	ИД		ug/L	5.0	01/22- 01/25/07	LRW	
Inductively Coupled Plasma (6010) Magnesium	B) 27100		ug/L	1000	01/22- 01/25/07	LRW	
Manganese	84.8	J	ug/L	10.0	01/22- 01/25/07	LRW	
Barium	30.1		ug/L	10.0	01/22- 01/25/07	LRW	
Nickel	ND		ug/L	10.0	01/22- 01/25/07	LRW	
Potassium	1410	J	ug/L	1000	01/22- 01/25/07	LRW	
Silver	ND		ug/L	5.0	01/22- 01/25/07	LRW	
Sodium	9100		ug/L	1000	01/22- 01/25/07	LRW	
Vanadium	ND		ug/L	10.0	01/22- 01/25/07	LRW	
Chromium	ND		ug/L	5.0	01/22- 01/25/07	LRW	
Calcium	96300	J	ug/L	1000	01/22- 01/25/07	LRW	
Cobalt	ND		ug/L	5.0	01/22- 01/25/07	LRW	
Copper	ИD		ug/L	5.0	01/22- 01/25/07	LRW	
Inductively Coupled Plasma Mass	Spectrometry	(6020)					
Antimony	0.10	ВЈ	ug/L	2.0	01/22- 01/23/07	BD	
Iron	337	J	ug/L	20.0	01/22- 01/23/07	BD	
Beryllium	ND		ug/L	1.0	01/22- 01/23/07	BD	
Thallium	ND		ug/L	1.0	01/22- 01/23/07	BD	
Zinc	92.9	J	ug/L	10.0	01/22- 01/23/07	BD	
Cadmium	1.4		ug/L	0.50	01/22- 01/23/07	BD	
Aluminum	ND		ug/L	50.0	01/22- 01/23/07	BD	
Mercury (7470A, Cold Vapor) - Li Mercury	quid ND		ug/L	0.20	01/22- 01/23/07	RKT	

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

01/19/07 5:00PM

 Sample ID:
 FWGLL4mw-199C-0374-GW

 Lab ID:
 A7A200106-007

 Sampling Date:
 01/19/07
 1:55PM

 Receipt Date: WATER Prep-Matrix:

Parameter	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
	GC S	emivolatile Organics -			
PCBs (8082) Aroclor 1016	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1221	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1232	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1242	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1248	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1254	ND	ug/L	0.50	01/21- 01/23/07	LH
Aroclor 1260	ND	ug/L	0.50	01/21- 01/23/07	LH
Pesticides (8081A)					
Dieldrin	ND	ug/L	0.030	01/23- 01/25/07	CSV
Endosulfan I	ND	ug/L	0.025	01/23- 01/25/07	csv
Endosulfan II	ND	ug/L	0.025	01/23- 01/25/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/23- 01/25/07	CSV
Endrin	ND	ug/L	0.030	01/23- 01/25/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/23- 01/25/07	csv
Endrin ketone	ND	ug/L	0.030	01/23- 01/25/07	CSV
Heptachlor	ND	ug/L	0.030	01/23- 01/25/07	csv
Heptachlor epoxide	· ND	ug/L	0.030	01/23- 01/25/07	csv
Methoxychlor	ND	ug/L	0.10	01/23- 01/25/07	CSV
alpha-BHC	ND	ug/L	0.030	01/23- 01/25/07	CSV
beta-BHC	ND	ug/L	0.030	01/23- 01/25/07	CSV
delta-BHC	ND	ug/L	0.030	01/23- 01/25/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/23- 01/25/07	CSV
Toxaphene	ND	ug/L	2.0	01/23- 01/25/07	csv
alpha-Chlordane	ND	ug/L	0.030	01/23- 01/25/07	csv
gamma-Chlordane	ND	ug/L	0.030	01/23- 01/25/07	csv
Aldrin	ND	ug/L	0.030	01/23- 01/25/07	csv
4,4'-DDD	ND	.ug/L	0.030	01/23- 01/25/07	CSV
4,4'-DDE	ND	ug/L	0.030	01/23- 01/25/07	CSV
4,4'-DDT	ND	ug/L	0.030	01/23- 01/25/07	CSV

Sample ID: FWGLL4mw-199C-0374-GW Lab ID: A7A200106-007 Receipt Date: 01/19/07 5:00PM 01/19/07 Matrix: Sampling Date: 1:55PM WATER Prep-Analysis Date Units RL Analyst Result Parameter Nitroaromatics & Nitramines: Explosives (8330) 0.096 01/25- 01/31/07 FΚ 1,3-Dinitrobenzene ug/L MD 0.096 01/25- 01/31/07 FΚ 2,4-Dinitrotoluene ug/L 0.096 01/25- 01/31/07 2,6-Dinitrotoluene ug/L ਸਾਲ ND Nitrobenzene ND ug/L 0.096 01/25- 01/31/07 FK 1,3,5-Trinitrobenzene ND ug/L 0.096 01/25- 01/31/07 FΚ 2,4,6-Trinitrotoluene ND ug/L 0.096 01/25- 01/31/07 FΚ 0.096 01/25- 01/31/07 ND ug/L FK RDX ND 0.096 01/25- 01/31/07 FK ug/L 0.096 01/25- 01/31/07 ND ug/L FΚ Tetrvl 0.48 01/25- 01/31/07 2-Nitrotoluene ND uq/L FΚ 01/25- 01/31/07 ND 0.48 3-Nitrotoluene ug/L FΚ 4-Nitrotoluene ND ug/L 0.48 01/25- 01/31/07 FK 4-Amino-2,6-dinitrotoluene ND ug/L 0.096 01/25- 01/31/07 FΚ 2-Amino-4,6-dinitrotoluene 0.096 01/25- 01/31/07 FΚ uq/L Organic Compounds by UV/HPLC Dissolved Nitroguanidine uq/L 20 01/26- 01/30/07 FK ------ GC/MS Semivolatile Organics ---------Base/Neutrals and Acids (8270C) 1.0 01/22- 01/31/07 Diethyl phthalate ND ug/L JMG 01/22- 01/31/07 2,4-Dimethylphenol ND ug/L 2.0 JMG Dimethyl phthalate ND ug/L 1.0 01/22- 01/31/07 JMG Di-n-octyl phthalate ND ug/L 1.0 01/22- 01/31/07 JMG 4,6-Dinitro-2-methylphenol ND ug/L 5.0 01/22- 01/31/07 JMG 2,4-Dinitrophenol ND ug/L 5.0 01/22- 01/31/07 JMG 2,4-Dinitrotoluene ND ug/L 5.0 01/22- 01/31/07 JMG 2,6-Dinitrotoluene 5.0 01/22- 01/31/07 ND ug/L JMG Anthracene 0.20 01/22- 01/31/07 ND ug/L JMG Fluoranthene 0.20 01/22- 01/31/07 ND ug/L JMG Fluorene ND ug/L 0.20 01/22- 01/31/07 JMG

ug/L

Page 31^{ng/L}

0.20

1.0

01/22- 01/31/07

01/22- 01/31/07

JMG

JMG

ND

ND

Hexachlorobenzene

Hexachlorobutadiene Appendix B

Sample ID:

FWGLL4mw-199C-0374-GW

Lab ID:

A7A200106-007

Receipt Date: Matrix:

01/19/07 5:00PM

Lab ID:	A/A200106-007			eipt Date:	01/19/0/ WAMED	5:00PM	
Sampling Date:	01/19/07 1:55PM	1	Mat	rix:	WATER Prep-		
Paramet	er	Result	Units	RL	Analysis	Date	Analyst
Base/Neutrals and Hexachlorocycloper		ND	ug/L	10	01/22-	01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/22-	01/31/07	JMG
Indeno(1,2,3-cd)py	yrene	ND	ug/L	0.20	01/22-	01/31/07	JMG
Isophorone		ND	ug/L	1.0	01/22-	01/31/07	JMG
2-Methylnaphthaler	ne	ND	ug/L	0.20	01/22-	01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/22-	01/31/07	JМG
4-Methylphenol		ND	ug/L	1.0	01/22-	01/31/07	JMG
Naphthalene		ND	ug/L	0.20	01/22-	01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/22-	01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/22-	01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/22-	01/31/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/22-	01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/22-	01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/22-	01/31/07	JMG
Benzo(a)anthracene	е	ND	ug/L	0.20	01/22-	01/31/07	JMG
N-Nitrosodi-n-prop	pylamine	ND	ug/L	1.0	01/22-	01/31/07	JMG
N-Nitrosodiphenyl	amine	ND	ug/L	1.0	01/22-	01/31/07	JMG
Benzo(b)fluoranthe	ene	ND	ug/L	0.20	01/22-	01/31/07	JMG
Benzo(k)fluorantho	ene	ND	· ug/L	0.20	01/22-	01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/22-	01/31/07	JMG
Benzo(ghi)perylen	е	ND	ug/L	0.20	01/22-	01/31/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	01/22-	01/31/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/22-	01/31/07	JMG
Benzyl alcohol	•	ND	ug/L	5.0	01/22-	01/31/07	JMG
Phenanthrene		ND	ug/L	0.20	01/22-	01/31/07	JMG
Phenol		ND	ug/L	1.0	01/22-	01/31/07	JMG
Pyrene		ND	ug/L	0.20	01/22-	01/31/07	JMG
1,2,4-Trichlorobe	nzene	ND	ug/L	1.0	01/22-	01/31/07	JMG
2,4,5-Trichloroph	enol	ND	ug/L	5.0	01/22-	01/31/07	JMG
2,4,6-Trichloroph	enol	ND	ug/L	5.0	01/22-	01/31/07	JMG
Carbazole Append i	х В	ND	Page 32 ug/L	1.0	01/22-	01/31/07	JMG

Sample ID: FWGLL4mw-199C-0 Lab ID: A7A200106-007				Receipt Matrix:		01/19/07 WATER		
Sampling Date:	01/19/07 1:55F	Result		Units	<u>RL</u>	Prep Analysi		Analyst
Base/Neutrals am								
bis(2-Chloroetho	oxy)methane	ND		ug/L	1.0	01/22-	01/31/07	JMG
bis(2-Chloroethy	yl) ether	ND		ug/L	1.0	01/22-	01/31/07	JMG
2,2'-0xybis(1-Ch		ND		ug/L	1.0	01/22-	01/31/07	JMG
bis(2-Ethylhexy)	l) phthalate	0.99	J	ug/L	10	01/22-	01/31/07	JMG
4-Bromophenyl ph	nenyl ether	ND		ug/L	2.0	01/22-	01/31/07	JMG
Butyl benzyl pht	thalate	ND		ug/L	1.0	01/22-	01/31/07	JMG
Acenaphthylene		ND		ug/L	0.20	01/22-	01/31/07	JMG
4-Chloroaniline		ND		ug/L	2.0	01/22-	01/31/07	JMG
4-Chloro-3-methy	ylphenol	ND		ug/L	2.0	01/22-	01/31/07	JMG
2-Chloronaphthal	lene	ND		ug/L	1.0	01/22-	01/31/07	JMG
2-Chlorophenol		ND		ug/L	1.0	01/22-	01/31/07	JMG
4-Chlorophenyl p	phenyl ether	ND		ug/L	2.0	01/22-	01/31/07	JMG
Chrysene		ND		ug/L	0.20	01/22-	01/31/07	JMG
Dibenz(a,h)anth	racene	ND		ug/L	0.20	01/22-	01/31/07	JMG
Dibenzofuran		ND		ug/L	1.0	01/22-	01/31/07	JMG
Di-n-butyl phtha	alate	ND		ug/L	1.0	01/22-	01/31/07	JMG
1,2-Dichloroben	zene	ND		ug/L	1.0	01/22-	01/31/07	JMG
1,3-Dichloroben:	zene	ND		ug/L	1.0	01/22-	01/31/07	JMG
1,4-Dichloroben	zene	ND		ug/L	1.0	01/22-	01/31/07	JMG
3,3'-Dichlorober	nzidine	ND		ug/L	5.0	01/22-	01/31/07	JMG
2,4-Dichloropher	nol	ND		ug/L	2.0	01/22-	01/31/07	JMG [']
Base/Neutrals an		Re-extract		ug/L	1.0	01/31-	02/05/07	JMG
2,4-Dimethylpher	nol	ND		ug/L	2.0	01/31-	02/05/07	JMG
Dimethyl phthal	ate	ND		ug/L	1.0	01/31-	02/05/07	JMG
Di-n-octyl phtha	alate	ND		ug/L	1.0	01/31-	02/05/07	JMG
4,6-Dinitro-2-me	ethylphenol	ND		ug/L	5.0	01/31-	02/05/07	JMG
2,4-Dinitropheno	ol	ND		ug/L	5.0	01/31-	02/05/07	JMG
2,4-Dinitrotolue	ene	ND		ug/L	5.0	01/31~	02/05/07	JMG
2,6-Dinitrotolue	ene	ND		ug/L	5.0	01/31-	02/05/07	JMG
Anthracene Append	dix B	ND	Page	ug/L e 33	0.20	01/31-	02/05/07	JMG

Sample ID:

FWGLL4mw-199C-0374-GW

Lab ID:

A7A200106-007

Receipt Date: 01/19/07 5:00PM

A/A200106-00/		Receipt 1	Date:	01/19/0/ 5:00PM		
Sampling Date: 01/19/07 1:55	OPM	Matrix:		WATER Prep-		
Parameter	Result	Units	RL	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Fluoranthene	Re-extract	ug/L	0.20	01/31- 02/05/07	JMG	
Fluorene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Hexachlorobenzene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Hexachlorobutadiene	ND	ug/L	1.0	01/31- 02/05/07	JMG	
Hexachlorocyclopentadiene	ND	ug/L	10	01/31- 02/05/07	JMG	
Hexachloroethane	ND	ug/L	1.0	01/31- 02/05/07	JMG	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Isophorone	ND	ug/L	1.0	01/31- 02/05/07	JMG	
2-Methylnaphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
2-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG	
4-Methylphenol	ND	ug/L	1.0	01/31- 02/05/07	JMG	
Naphthalene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
2-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG	
3-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG	
4-Nitroaniline	ND	ug/L	2.0	01/31- 02/05/07	JMG	
Nitrobenzene	ND	ug/L	1.0	01/31- 02/05/07	JMG	
2-Nitrophenol	ND	ug/L	2.0	01/31- 02/05/07	JMG	
4-Nitrophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG	
Benzo(a) anthracene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG	
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/31- 02/05/07	JMG	
Benzo(b) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Benzo(k) fluoranthene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Benzoic acid	ND	ug/L	10	01/31- 02/05/07	JMG	
Benzo(ghi)perylene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Benzo(a)pyrene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Pentachlorophenol	ND	ug/L	5.0	01/31- 02/05/07	JMG	
Benzyl alcohol	ND	ug/L	5.0	01/31- 02/05/07	JMG	
Phenanthrene	ND	ug/L	0.20	01/31- 02/05/07	JMG	
Phenol	ND	ug/L	1.0	01/31- 02/05/07	JMG	
Pyrene Appendix B	ND	Page 34 ^{ug/L}	0.20	01/31- 02/05/07	JMG	

Sample ID: FWGLL4mw-199C-0374-GW Lab ID: A7A200106-007 Receipt Date: 01/19/07 5:00PM Sampling Date: 01/19/07 1:55PM Matrix: Prep-Analysis Date Parameter Result Units RLAnalyst Base/Neutrals and Acids (8270C) Re-extract 01/31- 02/05/07 1.0 1,2,4-Trichlorobenzene ND ug/L JMG 01/31- 02/05/07 2,4,5-Trichlorophenol ND ug/L 5.0 JMG 2,4,6-Trichlorophenol ND ug/L 5.0 01/31- 02/05/07 JMG Carbazole 01/31- 02/05/07 ИD ug/L 1.0 JMG bis (2-Chloroethoxy) methane ND 1.0 01/31- 02/05/07 JMG ua/L bis(2-Chloroethyl) ether 1.0 01/31- 02/05/07 ND ug/L TMG 01/31- 02/05/07 2,2'-Oxybis(1-Chloropropane) ND 1.0 ug/L JMG JВ 01/31- 02/05/07 bis(2-Ethylhexyl) phthalate 10 2.0 ug/L .TMC 01/31- 02/05/07 4-Bromophenyl phenyl ether ND ug/L 2.0 TMG Butyl benzyl phthalate ND ug/L 1.0 01/31- 02/05/07 JMG Acenaphthylene ND ug/L 0.20 01/31- 02/05/07 JMG 4-Chloroaniline 2.0 01/31- 02/05/07 ΝD uq/L JMG 4-Chloro-3-methylphenol ND 2.0 01/31- 02/05/07 JMG ua/L 2-Chloronaphthalene 01/31- 02/05/07 ND 1.0 JMG ua/L 01/31- 02/05/07 2-Chlorophenol 1.0 ND ug/L TMG 01/31- 02/05/07 4-Chlorophenyl phenyl ether 2.0 ND ug/L JMG Chrysene ND ug/L 0.20 01/31- 02/05/07 JMG Dibenz (a, h) anthracene ND 0.20 01/31- 02/05/07 JMG ug/L Dibenzofuran 1.0 01/31- 02/05/07 ND ug/L JMG Di-n-butvl phthalate 01/31- 02/05/07 ND ua/L 1.0 JMG 1,2-Dichlorobenzene ND 1.0 01/31- 02/05/07 JMG ug/L 01/31- 02/05/07 1,3-Dichlorobenzene 1.0 ND ug/L JMG 01/31- 02/05/07 1,4-Dichlorobenzene ND ug/L 1.0 JMG 3,3'-Dichlorobenzidine ND ug/L 5.0 01/31- 02/05/07 JMG 2,4-Dichlorophenol ND ug/L 2.0 01/31- 02/05/07 JМG Method blank contamination. The associated method blank contains the target analyte at a reportable level. Estimated result. Result is less than RL. Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/24/07 LEE

ug/L

Page 35g/L

10

1.0

01/24/07

01/24/07

LEE

LEE

ND

ND

Acetone

Ethylbenzene Appendix B

 Sample ID:
 FWGLL4mw-199C-0374-GW

 Lab ID:
 A7A200106-007

 Sampling Date:
 01/19/07 1:55PM

Receipt Date: 01/19/07 5:00PM Matrix:

	WAT	E.

Lab ID: Sampling Date:	A/A200106-00/ 01/19/07 1:55PM		Receipt Matrix:	Date:	01/19/07 5:00PM WATER	
Paramete		Result	Units	RL	Prep- Analysis Date	Analyst
				==		<u>,</u>
Volatile Organics, 2-Hexanone	GC/MS (8260B)	ND	ug/L	10	01/24/07	LEE
Methylene chloride		ND	ug/L	2.0	01/24/07	LEE
4-Methyl-2-pentanor	ne	ND	ug/L	10	01/24/07	LEE
Benzene		ND	ug/L	1.0	01/24/07	LEE
Styrene		ND	ug/L	1.0	01/24/07	LEE
1,1,2,2-Tetrachloro	oethane	ND	ug/L	1.0	01/24/07	LEE
Tetrachloroethene		ND	ug/L	1.0	01/24/07	LEE
Toluene		ND	ug/L	1.0	01/24/07	LEE
1,1,1-Trichloroetha	ane	ND	ug/L	1.0	01/24/07	LEE
1,1,2-Trichloroetha	ane	ND	ug/L	1.0	01/24/07	LEE
Trichloroethene		ND	ug/L	1.0	01/24/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/24/07	LEE
Xylenes (total)		ND	ug/L	2.0	01/24/07	LEE
Bromochloromethane		ND	ug/L	1.0	01/24/07	LEE
Bromodichloromethar	ne	ND	ug/L	1.0	01/24/07	LEE
Bromoform		ND	ug/L	1.0	01/24/07	LEE
Bromomethane		ND	ug/L	1.0	01/24/07	LEE
2-Butanone		ND	ug/L	10	01/24/07	LEE
Carbon disulfide	·	ND	ug/L	1.0	01/24/07	LEE
Carbon tetrachlorio	de	ND	ug/L	1.0	01/24/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/24/07	LEE
Dibromochloromethan	ne	ND	ug/L	1.0	01/24/07	LEE
Chloroethane		ND	ug/L	1.0	01/24/07	LEE
Chloroform		ND	ug/L	1.0	01/24/07	LEE
Chloromethane		ND	ug/L	1.0	01/24/07	LEE
1,2-Dibromoethane		ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethane		ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethane		ND	ug/L	1.0	01/24/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloropropand Appendix	e B	ND	Page 36 ^{ug/L}	1.0	01/24/07	LEE

Sample ID:

FWGLL4mw-199C-0374-GW A7A200106-007 01/19/07 1:55PM

Lab ID:

Receipt Date:

01/19/07 5:00PM

Sampling Date:

Matrix:

WATER

Sampling Date:	01/19/0/ 1:55PM		Matrix:	WA	TER	
Parameter	_	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics, cis-1,3-Dichloropro		ND	ug/L	1.0	01/24/07	LEE
		General Ch	emistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/24/07	SS
Nitrocellulose as N	1 by 353.2	ND	mg/L	0.50	01/26- 02/01/07	DTA

Sample ID:

FWGLL4mw-199C-0374-GF

Lab ID: Sampling Date: A7A200106-008

01/19/07 1:55PM

Receipt Date:

Matrix:

01/19/07

5:00PM

WATER

Prep-Analysis Date <u>Parame</u>ter Result Units Analyst RL ----- Metals -----Inductively Coupled Plasma (6010B Trace) 5.0 01/22- 01/25/07 Arsenic В uq/L LRW ND ug/L 3.0 01/22- 01/25/07 LRW Lead ND uq/L 5.0 01/22- 01/25/07 LRW Selenium Inductively Coupled Plasma (6010B) 26200 ug/L 1000 01/22- 01/25/07 LRW Magnesium 10.0 01/22- 01/25/07 LRW 1160 ıΤ ug/L Manganese 01/22- 01/25/07 129 ug/L 10.0 T.RW Barium 01/22- 01/25/07 ug/L 10.0 T.RW Nickel ND Potassium 1760 JE ug/L 1000 01/22- 01/25/07 T.RW Silver ND ug/L 5.0 01/22- 01/25/07 LRW 9380 1000 01/22- 01/25/07 LRW Sodium ug/L 10.0 01/22- 01/25/07 Vanadium ND uq/L LRW 01/22- 01/25/07 5.0 LRW Chromium MΩ ug/L 1000 01/22- 01/25/07 LRW 104000 Calcium ug/L 01/22- 01/25/07 LRW Cobalt ND ug/L 5.0 5.0 01/22- 01/25/07 TIRW Copper ND ug/L Inductively Coupled Plasma Mass Spectrometry (6020) 0.067 ug/L 2.0 01/22- 01/23/07 BD Antimony Iron 5280 ug/L 20.0 01/22- 01/23/07 BD ND ug/L 1.0 01/22- 01/23/07 ВD Beryllium Thallium ND ug/L 1.0 01/22- 01/23/07 ВD ВЈ 10.0 01/22- 01/23/07 Zinc 5.7 ug/L BD 0.50 01/22- 01/23/07 BD Cadmium ND ug/L 01/22- 01/23/07 Aluminum ND ug/L 50.0 BD Mercury (7470A, Cold Vapor) - Liquid

Mercury

ug/L

0.20

01/22- 01/23/07

RKT

B Estimated result. Result is less than RL.

E Matrix interference.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

 Sample ID:
 FWG-TB-0398-GW

 Lab ID:
 A7A200106-009

 Sampling Date:
 01/19/07 12:00AM

Receipt Date:

01/19/07 5:00PM

Lab ID:	A7A200106-009			Receipt D	ate: (01/19/07 5:00PM	
Sampling Date:	01/19/07 12:00AM	I		Matrix:	Ţ	VATER Prep-	
Paramete	er	Result		Units	<u>RL</u>	Analysis Date	Analyst
		GC/M	S Volati	le Organics			
Volatile Organics	, GC/MS (8260B)						
trans-1,3-Dichlord		ND		ug/L	1.0	01/24/07	LEE
Acetone	·	1.7	J	ug/L	10	01/24/07	LEE
Ethylbenzene		ND		ug/L	1.0	01/24/07	LEE
2-Hexanone		ND		ug/L	10	01/24/07	LEE
Methylene chloride	2	1.4	JВ	ug/L	2.0	01/24/07	LEE
4-Methyl-2-pentanc	one	ND		ug/L	10	01/24/07	LEE
Benzene		ND		ug/L	1.0	01/24/07	LEE
Styrene		ND		ug/L	1.0	01/24/07	LEE
1,1,2,2-Tetrachlor	coethane	ND		ug/L	1.0	01/24/07	LEE
Tetrachloroethene		ND		ug/L	1.0	01/24/07	LEE
Toluene		ND		ug/L	1.0	01/24/07	LEE
1,1,1-Trichloroeth	nane	ND		ug/L	1.0	01/24/07	LEE
1,1,2-Trichloroeth	nane	ND		ug/L	1.0	01/24/07	LEE
Trichloroethene		ND		ug/L	1.0	01/24/07	LEE
Vinyl chloride		ND		ug/L	1.0	01/24/07	LEE
Xylenes (total)		ND		ug/L	2.0	01/24/07	LEE
Bromochloromethane		ND		ug/L	1.0	01/24/07	LEE
Bromodichlorometha	ane	ND		ug/L	1.0	01/24/07	LEE
Bromoform		ND		ug/L	1.0	01/24/07	LEE
Bromomethane		ND		ug/L	1.0	01/24/07	LEE
2-Butanone		ND		ug/L	10	01/24/07	LEE
Carbon disulfide		ND		ug/L	1.0	01/24/07	LEE
Carbon tetrachlori	Lde	ND		ug/L	1.0	01/24/07	LEE
Chlorobenzene		ND		ug/L	1.0	01/24/07	LEE
Dibromochlorometha	ane	ND		ug/L	1.0	01/24/07	LEE
Chloroethane		ND		ug/L	1.0	01/24/07	LEE
Chloroform		ND		ug/L	1.0	01/24/07	LEE
Chloromethane		ND		ug/L	1.0	01/24/07	LEE
1,2-Dibromoethane		ND		ug/L	1.0	01/24/07	LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/24/07	LEE
Appendix	¢В		Page	e 39			

Sample ID: Lab ID: Sample ID:

FWG-TB-0398-GW

A7A200106-009

Receipt Date: 01/19/07 5:00PM

Sampling Date:	01/19/07 12:00AM		Matrix:		WATER Prep-	
Parameter	<u>:</u>	Result	Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics, 1,2-Dichloroethane	GC/MS (8260B)	ND	ug/L .	1.0	01/24/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/24/07	LEE
1,2-Dichloropropane	•	ND	ug/L	1.0	01/24/07	LEE
cis-1,3-Dichloropro	pene	ND	ug/L	1.0	01/24/07	LEE

Method blank contamination. The associated method blank contains the target analyte at a reportable

Estimated result. Result is less than RL.

Chain of Custody Record

Severn Trent Laboratories, Inc.

Chain of Custody Record

Severn Trent Laboratories, Inc. TRENT

17

18

Chain of Custody

Record

	TRENT	SEVERN
١. '		
	U	מ
	-	-]
		4
	Ļ	(A)

Severn Trent Laboratories, Inc.

STL4149 (1202)	٠	*	C	. 7 7 .	0	- 4	*			
Client Spec Pro		-		Project Manager Chantelle	er e Carroll			Date -047,	01/11/2007 \-\9-2607	Page Page
Address 8451 State Route 5				Telephone Nur (000)	Telephone Number (Area Code)/Fax Number (000) / (000)	ode)/Fax Number (000)		Lab ST	Lab Location STL North Canton	Analysis
City Ravenna	State OH	Zip Code 44266		Site Contact Chantel	te Contact Chantelle Carroil					8 C 0 C C C N 6
Project Number/Name Ravenna				Carrier/Waybill Number	Number					2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :									QUOTE: 63240	7 8 0 2 D
Sample I.D. Number and Description	on .	Date	Time	Sample Type	Co Volume	Containers Type	No.	Preservative	Condition on Receipt/Comments	Г
FWGLL11MW-007C-03/5-GW		1-18-07	12.00	WATER	71,	AMBER	2	None		XX
FWGLL11MW-007C-0375-GW		- [-		11	AMBER	22	None		×
FWGLL11mw-007C-03/5-GW				WATER	11	AMBER	2	None		×
FWGLL11mW-007C-0375-GW				WATER	11.	AMBER	2	None		×
FWGLL11mw-007C-0375-GW				WATER	11	AMBER	2	None		3
EMG-11-144-0070 0075-0W			1	WATER	10#1	ADML WIA	d	HC		k
FWGLL11mw-007C-0375-GW		-		WATER	250mL	PLASTIC	_	NaOH		×
FWGLL11mw-007C-0375-GF		}-	+	WATER	1000mL	PLASTIC	_	Conc HNO3		×
* Only 8 Ambers										
Special Instructions										
Possible Hazard Identification Non-Hazard Flammable	Skin Irritant		□ Poison B	3 ☐ Unknown	Sample Disposal Wn Return To Client	iposal To Client	☐ Disp	Oisposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
ne Requ	Other_					Project	Specific	15 (S	specify)	В
1. Reinquished By	-			Date 1-19-2007	7 =:15	1. Received By	ived By	Nic 1	(Rossessi p	FIFOT Time
2. Relinquished By	3	JASSEO		J-19-07	57 1700	2. Received By	ived By		X	Date 1-19-57 Time 7
3. Relinquished By			-	Date	Time	3. Received By	ived By			Date Time
Comments								· 1		O mental man

19

Severn Trent Laboratories, Inc.

STL4149 (1202)

Record

Chain of Custody

Client			Project Manager Chantelle Carroll	Carroll			Date	Date 01/11/2007- 1-19-07	Page 32 of 37	•
Address			Telephone Num	Telephone Number (Area Code)/Fax Number	/Fax Number		Lab	Ι.	rage	
451 State Route 5			(000)	/ (0	(000)		ST	STL North Canton	Analysis	
City State	Zip Code		Site Contact						M G B L N L C M	
avenna OH	44266		Chantelle Carroll	Carroll						
Project Number/Name		i	Carrier/Waybill Number	Vumber					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
avenna									2 0 1 3 L G L 1	
Contract/Purchase Order/Quote Number									7 8 3 1 1 0	
ONTRACT / PURCHASE ORDER # :								QUOTE: 63240	200110	
Sample I.D. Number and Description	Date	Time	Sample Type	Cor	Containers		Preservative	Condition on Receipt/Comments	C	
1000 0388 00			MATER	Volume	AMRER	ું હ	None		1 1 1 X X	+
- TOPO - 0280 - 08			MATER	-	AMRER	v	None		_	-
TRUET + 300 0000 011									1	-
FWGLL4mw-198C-0388-GW			WAIEH	71.	AMBEX	K	2000		>	
FWGLL4mw-198C-0388-GW			WATER	11	AMBER	2	None		*	
FWGLL4mw-198C-0388-GW			MATER	11	AMBER	2	None		×	4
FWGLL4mw 1886 0308 0W			MATER	40mL	ACML VIA	3	HCL		*	4
FWGLL4mw-198C-0388-GW			WATER	250mL	PLASTIC	1	NaOH		×	age
FWGLL4mw-198C-0388-GF			WATER	1000mL	PLASTIC	-1	Conc HNO3		×	Pi
A Cult X Harbers										
Special instructions										
Possible Hazard Identification Non-Hazard	_	□ Poison B	□ Unknown	Sample Disposal Return To Client	ō –	☐ Disp	nt 🔲 Disposal By Lab 🔲 Arc	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)	
ne Requ			QC Lavel		Project S	Specific	Requirements (S	(pecify)		on
ned By			Date 1-19-1	12:45	1. Received By	ved By	21/51	DUSTRAZ	9/ 6-0-1	/6@Cant
2. Relinquished By	1 × 5 × 5		Date / - / 9- 07	Time	2. Received By	ved By		XCX	Date Time	h (
			Date	Time	3. Received By	ved By			Date	ort
							((N
Comments					٠					TL
		2		N District					The state of the s	5

Chain of Custody Record

Carrier Turned	TRENT	SEVERN
·	O L L	DHT ®
7		

Severn Trent Laboratories, Inc.

Page 45									
Special Instructions/ Conditions of Receipt	× PCB/Pest more space is needed × TAL TAL	× svoc	× Exp	HCI Servative	○ Unpres.	Sed. Sall Number	Chantel & Carrier/Waybill Number Time Air Aqueous Aqueous Sed.	Date Time	City CAN EMM (C) Project Name and Location (State) Contract/Purchase Order/Quote No. Sample 1.D. No. and Description (Containers for each sample may be combined on one line) FNG LL 4 mw - 199C - D389-mS/ms 1-/9-
Chain of Custody Number 272416	Date - 9 - 0 7 Lab Number	Date		nber	Carro Code)/Fax Number	Project Manager Chanhall C Cayro Telephone Number (Area Code)/Fax Number	Project Manager Chan+ Chan+ Telephone Numbe		STL-4124 (0901) Client Spec Pro Inc Address

STL Cooler Receipt Fo	rm/Narratiye Lot Ni	imber: 17/1260100	Call and the top
		ericus est de la companya de la comp	
North Canton Facility	The late A control of the control of	Ouote# 12324	3
Client: Spec Pro	Project: Opened on: 1/20/07	by A Burne	(Signature)
Cooler Received on: 1/19/0	F F T T T T T T T T T T T T T T T T T T	ranger and the control of the contro	The state of the s
Fedx Client Drop Off		inter Avanga in Albaro a sak	
Stetson US Cargo	Other:	1 CAL	Reference of the second
STL Cooler No# See 60	Foam Box Client Co		NIA []
	utside of the cooler? Yes 🔀 No 🗌	Intact? Yes 🔀 No	
If YES, Quantity <u>\C</u>		N	
Were the custody seals sign	ed and dated?	Yes No No NA	\vdash
Shipper's packing slip attac	hed to this form?	Yes No NA	
Did custody papers accomp	any the samples?Yes No 🗌	Relinquished by client?	Yes 🖂 No 🗀 📗
4. Did you sign the custody pa	pers in the appropriate place?	Yes 🔀 No 🗌	
5. Packing material used: Bub	ble Wrap 🔀 Foam 🔀 None 📙	Other:	
6. Cooler temperature upon re	ceipt °C (see back of form for mu		· .
METHOD: Temp Vial		☐ IR 🔼 ICE/H	I ₂ 0 Slurry
COOLANT: Wet Ice	Blue Ice Dry Ice Water	None	
7. Did all bottles arrive in goo	d condition (Unbroken)?	Yes 🔼 No 🔲	•
8 Could all bottle labels and/o	or tags be reconciled with the COC?	Yes 🔀 No 🔲	·
9. Were samples at the correct	pH upon receipt?	Yes ⊠ No 🔲 N	[A 🗌 🔠
10. Were correct bottles used for	or the tests indicated?	Yes 🔼 No 🗌	
11. Were air bubbles >6 mm in		Yes ☐ No 🔼 N	IA 🗌 💮 📗
12 Sufficient quantity received	I to perform indicated analyses?	Yes ⊠ No □	y <u>a na a√una 40</u> milian na mana ang 1981. Managan
12. Was a Trin Blank present	n the cooler? Yes \ No \ Were VO		No □
			-
Contacted DM	Date: bv: VI	Noice Mail Verbal	Other
	Date: by: via	a Voice Mail Verbal	Other
Contacted PM	Date: by: via	a Voice Mail Verbal	Other
Concerning:	Date: by: via	a Voice Mail ∐ Verbal ∟	Other
Concerning: √			Other
Concerning: √	Date: by: via		Other
Concerning: √			Other
Concerning: √			Other
Concerning: √			Other
Concerning: 1. CHAIN OF CUSTODY The following discrepance:			Other
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION	es occurred:		
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s)	es occurred: were received after	the recommended holding ti	
Concerning: J	es occurred: were received after were received in		
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) 3. SAMPLE PRESERVATION	es occurred: were received after were received in	the recommended holding to a broken container.	me had expired.
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s)	were received after were received in N were furt	the recommended holding to a broken container. her preserved in sample rece	me had expired.
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) Sample(s) recommended pH level(s)	were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805.	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12	me had expired.
Concerning: J	es occurred: were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH	me had expired. iving to meet 2805 -NaOH;
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) recommended pH level(s) Hydrochloric Acid Lot # 100504 Sample(s)	es occurred: were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12	me had expired. iving to meet 2805 -NaOH;
Concerning: J	es occurred: were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH	me had expired. iving to meet 2805 -NaOH;
Concerning: J	es occurred: were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH	me had expired. iving to meet 2805 -NaOH;
Concerning: J	es occurred: were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH	me had expired. iving to meet 2805 -NaOH;
Concerning:	were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805. HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604. were received with bu	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH bble > 6 mm in diameter (cc	me had expired. iving to meet 2805 -NaOH; : PM)
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) recommended pH level(s) Hydrochloric Acid Lot # 100504 Sample(s) 4. Other (see below or back) Client ID	were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805 HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604 were received with bu	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH bble > 6 mm in diameter (cc	me had expired. iving to meet 2805 -NaOH; : PM)
Concerning: J	were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805. HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604 were received with bu	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH bble > 6 mm in diameter (cc	me had expired. iving to meet 2805 -NaOH; : PM)
Concerning: 1. CHAIN OF CUSTODY The following discrepance: 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) recommended pH level(s) Hydrochloric Acid Lot # 100504 Sample(s) 4. Other (see below or back) Client ID 375 2 388	were received after were received in N were furt Nitric Acid Lot #110106 - Sulfuric Acid Lot # 071805. HCl; Sodium Hydroxide and Zinc Acetate Lot # 071604 were received with bu	the recommended holding ti a broken container. her preserved in sample rece -H2SO4; Sodium Hydroxide Lot # -12 -CH3COO2ZN/NaOH bble > 6 mm in diameter (cc	me had expired. iving to meet 2805 -NaOH; : PM)

STL Cooler Receipt Form/Narrative North Canton Facility

Client ID	<u>pH</u>	<u>Date</u>	<u>Initials</u>
			1
			ļ ·
<u>ooler</u>	Temp	Method	Coolant
TL no #	3.1	IR	wet ice
Ti_no#	1.5	18	wet ice
# 000 []	18	1Ř	iver ice
TI no#	2.6	IR	wet ice
TL no#	2.1	18	wet ice
			4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

Discrepancies Cont.

CASE NARRATIVE

A7A230101

The following report contains the analytical results for fourteen water samples and one quality control sample submitted to STL North Canton by Spec Pro from the FWGWMP RVAAP Site, project number 001074.0001. The samples were received January 23, 2007, according to documented sample acceptance procedures.

The Explosives, Nitroguanidine, and Nitrocellulose as N analyses were performed at STL Sacramento. Refer to STL Sacramento narrative included in their data package for additional information.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carroll and Valarie Ann Mariola on February 07, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at temperatures ranging from 1.2 to 2.8°C.

Appendix B

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL2mw-059C-0383-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate(s) for batch(es) 7026072 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL2mw-059C-0383-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate(s) for batch(es) 7024063 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

Surrogate recoveries were out in sample FWGLL2mw-263C-0385-GW. Reextraction and/or reanalysis performed in accordance with exceeded criteria corrective action required by QAPjP. Reextraction and/or reanalysis resulted in all surrogate recoveries within QC limits, but the reextraction was performed outside of holding time. Both sets of data are reported.

Appendix B

CASE NARRATIVE (continued)

GC/MS SEMIVOLATILES (continued)

Batch 7033055 had RPD's outside QC criteria in the LCS/LCSD, but recoveries were within QC criteria; therefore, no corrective action was required.

PESTICIDES-8081

The analytical results met the requirements of the laboratory's QA/QC program.

POLYCHLORINATED BIPHENYLS-8082

The original batch failed the LCS for batch 7024056. The batch was re-extracted outside of recommended holding time; therefore, both sets of data have been reported. Both batches were extracted to two different final volumes. Both batches support the client requested reporting limit.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDs that exceed 20%.

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is repreped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be repreped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#QUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence – Participating Lab Status Award (#82)

 $C: \label{locals} \begin{tabular}{ll} C: \label{locals-1} Armans \label{locals-1} LOCALS-1 \label{locals-1} Temp \label{locals-1} Narrative \begin{tabular}{ll} 040306. doc Revised 04/03/06 DJL \end{tabular}$

Appendix B

Sample ID:

FWGLL2mw-059C-0383-GW

Lab ID:

A7A230101-001

Appendix B

Receipt Date:

01/23/07

8:00AM

Sampling Date: 01/22/07 10:35AM Matrix: WATER Prep-Analysis Date Parameter Result Units RLAnalyst ----- GC Semivolatile Organics ------PCBs (8082) Aroclor 1016 0.50 ND ug/L 01/24- 01/26/07 ADS Aroclor 1221 ND ug/L 0.50 01/24- 01/26/07 ADS Aroclor 1232 ND ug/L 0.50 01/24- 01/26/07 ADS Aroclor 1242 ND ug/L 0.50 01/24- 01/26/07 ADS Aroclor 1248 ND uq/L 0.50 01/24- 01/26/07 ADS Aroclor 1254 ND ug/L 0.50 01/24- 01/26/07 ADS Aroclor 1260 ND ug/L 0.50 01/24- 01/26/07 ADS PCBs (8082) Re-extract Aroclor 1016 0.50 MD ug/L 01/30- 02/01/07 SJJ Aroclor 1221 ND ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1232 ND ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1242 ND 0.50 01/30- 02/01/07 ug/L SJJ Aroclor 1248 ND uq/L 0.50 01/30- 02/01/07 SJJ Aroclor 1254 ND 0.50 01/30- 02/01/07 uq/L SJJ Aroclor 1260 ND 0.50 01/30- 02/01/07 ug/L SJJ Pesticides (8081A) Dieldrin ND 0..030 01/24- 01/25/07 ug/L CSV Endosulfan T ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan sulfate 0.030 01/24- 01/25/07 ND ug/L CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV 01/24- 01/25/07 Endrin aldehyde ND 0.030 ug/L CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor 01/24- 01/25/07 ND ug/L 0.030 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND 0.030 01/24- 01/25/07 ug/L CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND 01/24- 01/25/07 ug/L 0.030 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV

Page 48

Sample ID: Lab ID:	FWGLL2mw-05			Receipt	Date:	01/23/07	8:00AM	
Sampling Date:	01/22/07 1	.0:35AM		Matrix:		WATER Prep	, _	
Paramet	er	Result		Units	RL	Analysi		Analyst
Pesticides (8081A Toxaphene)	ND		ug/L	2.0	01/24-	01/25/07	csv
alpha-Chlordane		ND		ug/L	0.030	01/24-	01/25/07	csv
gamma-Chlordane		ND		ug/L	0.030	01/24-	01/25/07	CSV
Aldrin		ND		ug/L	0.030	01/24-	01/25/07	CSV
4,4'-DDD		ND		ug/L	0.030	01/24-	01/25/07	CSV
4,4'-DDE		ND		ug/L	0.030	01/24-	01/25/07	CSV
4,4'-DDT		ND		ug/L	0.030	01/24-	01/25/07	CSV
Witness 5 1		T1i (9220)		related band some firms, large stead some offert about stead offers to			عدد هند و بدن بدن الله الله الله الله الله الله الله الل	
Nitroaromatics & 1,3-Dinitrobenzene		ND ND		ug/L	0.099	01/25-	01/31/07	FK
2,4-Dinitrotoluene	е	0.20		ug/L	0.099	01/25-	01/31/07	FK
2,6-Dinitrotoluene	е	ND		ug/L	0.099	01/25-	01/31/07	FK
Nitrobenzene		ND		ug/L	0.099	01/25-	01/31/07	FK
1,3,5-Trinitroben	zene	1.1		ug/L	0.099	01/25-	01/31/07	FK
2,4,6-Trinitrotolu	uene	ND		ug/L	0.099	01/25-	01/31/07	FK
HMX		0.061	J	ug/L	0.099	01/25-	01/31/07	FK
RDX		0.046	J	ug/L	0.099	01/25-	01/31/07	FK
Tetryl		ND		ug/L	0.099	01/25-	01/31/07	FK
2-Nitrotoluene		ND		ug/L	0.50	01/25-	01/31/07	FK
3-Nitrotoluene	•	ND .		ug/L	0.50	01/25-	01/31/07	FK
4-Nitrotoluene		ND		ug/L	0.50	01/25-	01/31/07	FK
4-Amino-2,6-dinit:	rotoluene	0.49		ug/L	0.099	01/25-	01/31/07	FK
2-Amino-4,6-dinit	rotoluene	0.45		ug/L	0.099	01/25-	01/31/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC	Dissolved ND		ug/L	20	01/26-	01/30/07	FK
J Estimated resu	ılt. Result i	s less than RL.						
		GC/MS	Semivo	olatile Organic	s			
Base/Neutrals and Diethyl phthalate		ND		ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylpheno	1	ND		ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalat	е	ND		ug/L	1.0	01/24-	01/31/07	JMG
Appendi	ix B	• • •	, P	age 49				

Sample ID:

FWGLL2mw-059C-0383-GW

Lab ID: Sampling Date: A7A230101-001 01/22/07 10:35AM Receipt Date: 01/23/07 8:00AM
Matrix: WATER
Prep-

Sampring Date. 01/22/07 10:33F	71.1	MACLIA.		Prep-	
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	ND ·	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	J M G
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/24- 01/31/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	.ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene Appendix B	ND	Page 50 ^{g/L}	0.20	01/24- 01/31/07	JMG

Sample ID:

FWGLL2mw-059C-0383-GW

Lab ID: Sampling Date: A7A230101-001 01/22/07 10:35AM *Receipt Date: 01/23/07 8:00AM

Matrix: WATER Prep-

Sampling Date. 01/22/07 10.55A	ri.	ra cii.		Prep-	
Parameter_	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	.ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND .	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	2.5 JB	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ИD	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol Appendix B	ND P	age 51	2.0	01/24- 01/31/07	JMG

Sample ID:

FWGLL2mw-059C-0383-GW

Result

Lab ID:

A7A230101-001

Receipt Date:

<u>RL</u>

01/23/07 8:00AM

Analyst

Sampling Date:

Parameter

Appendix B

01/22/07 10:35AM

Matrix:

Units

WATER
PrepAnalysis Date

Method blank contamination. T	he associated metho	od blank contains th	ne target ana	lyte at a reportabl	e
level. Estimated result. Result is l					
	GC/MS	Volatile Organics			
latile Organics, GC/MS (8260B trans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone	ND	ug/L	10	01/25/07	LEE
Methylene chloride	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE
Benzene	ND	ug/L	1.0	01/25/07	LEE
Styrene	ND	ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
Toluene	ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
Jinyl chloride	ND	ug/L	1.0	01/25/07	LEE
Kylenes (total)	ND	ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
3romodichloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromoform	ND	ug/L	1.0	01/25/07	LEE
Bromomethane	ND	ug/L	1.0	01/25/07	LEE
2-Butanone	ND	ug/L	10	01/25/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Chloroethane	ND	ug/L	1.0	01/25/07	LEE
Chloroform	ND	ug/L	1.0	01/25/07	LEE
Chloromethane	ND	ug/L	1.0	01/25/07	LEE

Page 52

Sample ID:

FWGLL2mw-059C-0383-GW

Lab ID:

A7A230101-001

Receipt Date:

01/23/07 8:00AM

Sampling Date:	01/22/07 10:35AM			Matrix:	W	ATER Prep-	
Parameter	<u>-</u>	Result		Units	<u>rl</u>	Analysis Date	Analyst
Volatile Organics, 1,2-Dibromoethane	GC/MS (8260B)	ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	(total)	.ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane	2	ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropro	ppene	ND		ug/L	1.0	01/25/07	LEE
	· · · · · · · · · · · · · · · · · · ·	Ge	eneral Ch	emistry			
Cyanide, Total Cyanide, Total		ND		mg/L	0.010	01/25/07	SS
Nitrocellulose as I	N by 353.2	0.17	В	mg/L	0.50	01/26- 02/01/07	DTA

Estimated result. Result is less than RL.

Sample ID:

FWGLL2mw-059C-0383-GF

Lab ID:

Sampling Date:

A7A230101-002

01/22/07 10:35AM

Receipt Date:

01/23/07 8:00AM

WATER Prep-Matrix:

Jamping Date. 01/22/07	10.55A1				Prep-	
Parameter	Result		Units	RL	Analysis Date	Analyst
		Met	als	~~~~~~~		
Inductively Coupled Plasma Arsenic	(6010B Trace) ND		ug/L	5.0	01/24- 01/25/07	LRW
Lead	ND		ug/L	3.0	01/24- 01/25/07	LRW
Selenium	ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma Magnesium	(6010B) 7850		ug/L	1000	01/24- 01/25/07	LRW
Manganese	151	J	ug/L	10.0	01/24- 01/25/07	LRW
Barium	23.1		ug/L	10.0	01/24- 01/25/07	LRW
Nickel	ND		ug/L	10.0	01/24- 01/25/07	LRW
Potassium	552	ВЈ	ug/L	1000	01/24- 01/25/07	LRW
Silver	ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium	5980		ug/L	1000	01/24- 01/25/07	LRW
Vanadium	ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium	ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium	40800		ug/L	1000	01/24- 01/25/07	LRW
Cobalt	1.3	В	ug/L	5.0	01/24- 01/25/07	LRW
Copper	ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma Antimony	Mass Spectrometry (60)20) B J	ug/L	2.0	01/24- 01/30/07	BD
Iron	313		ug/L	20.0	01/24- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium	0.037	В	ug/L	1.0	01/24- 01/30/07	BD
Zinc	6.1	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium	c ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum	5.0	В	ug/L	50.0	01/24- 01/30/07	BD
Mercury (7470A, Cold Vapor) Mercury	- Liquid ND		ug/L	0.20	01/24- 01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-020C-0369-GW

Lab ID:

A7A230101-003

Appendix B

Receipt Date:

01/23/07 8:00AM

Dab ID:	A/A230101-003			eipt Date:	01/23/07 6:00AM	
Sampling Date:	01/22/07 10:34AN	4	Mat	rix:	WATER Prep-	
Parame	ter	Result	Units	RL	Analysis Date	Analyst
		(GC Semivolatile Orga	nics		·
PCBs (8082)						
Aroclor 1016		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1221		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1232		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1242		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1248		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1254		ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1260		ND	ug/L	0.50	01/24- 01/26/07	ADS
PCBs (8082) R	e-extract					
Aroclor 1016		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1221		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1232		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1242		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1248		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1254		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1260		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081	A)					
Dieldrin		ND	ug/L	0.030	01/24- 01/25/07	CSV
Endosulfan I		ND	ug/L	0.025	01/24- 01/25/07	CSV
Endosulfan II		ND	ug/L	0.025	01/24- 01/25/07	CSV
Endosulfan sulfa	te	ND	ug/L	0.030	01/24- 01/25/07	CSV
Endrin		ND	ug/L	0.030	01/24- 01/25/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/24- 01/25/07	CSV
Endrin ketone		ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor		ND	ug/L	0.030	01/24- 01/25/07	CSV
Heptachlor epoxi	de	ND	ug/L	0.030	01/24- 01/25/07	csv
Methoxychlor		ND	ug/L	0.10	01/24- 01/25/07	CSV
alpha-BHC		ND	ug/L	0.030	01/24- 01/25/07	csv
beta-BHC		ND	ug/L	0.030	01/24- 01/25/07	csv
delta-BHC		ND	ug/L	0.030	01/24- 01/25/07	CSV
gamma-BHC (Linda	ne)	ND	ug/L	0.030	01/24- 01/25/07	CSV

Page 55

Sample ID: Lab ID: Sampling Date:	FWGBKGmw- A7A230101 01/22/07	-003	-GW			Recei Matri:	pt Date:	01/23 WATER		MA00:8	
Paramete		10:34AM	Result			Units	RL		Prep	s Date	Analyst
Pesticides (8081A)											
Toxaphene			ND			ug/L	2.0	01	./24-	01/25/07	CSV
alpha-Chlordane			ND			ug/L	0.030	01	./24-	01/25/07	CSV
gamma-Chlordane			ND .			ug/L	0.030	01	./24-	01/25/07	CSV
Aldrin			ND			ug/L	0.030	01	./24-	01/25/07	CSV
4,4'-DDD	44.		.ND			ug/L	0.030	0.1	./24-	01/25/07	CSV
4,4'-DDE			ND			ug/L	0.030	01	./24-	01/25/07	CSV
4,4'-DDT			ND			ug/L	·0.030	01	./24-	01/25/07	csv
	and there that had been fined from the state of the						· 				
Nitroaromatics & N 1,3-Dinitrobenzene	itramines	Explos	ives (833	30)		ug/L	0.099	01	./25-	01/31/07	FK
2,4-Dinitrotoluene			ND			ug/L	0.099	01	./25-	01/31/07	FK
2,6-Dinitrotoluene			ND			ug/L	0.099	01	./25-	01/31/07	FK
Nitrobenzene			0.069	Ċ	J.	ug/L	0.099	01	./25-	01/31/07	FK
1,3,5-Trinitrobenze	ene		ND			ug/L	0.099	01	./25-	01/31/07	FK
2,4,6-Trinitrotolu	ene		ND			ug/L	0.099	01	./25-	01/31/07	FK
HMX			ND			ug/L	0.099	. 01	./25-	01/31/07	FK
RDX		-	ND			ug/L	0.099	01	_/25-	01/31/07	FK
Tetryl			ND			ug/L	0.099	01	1/25-	01/31/07	FK
2-Nitrotoluene			ND			ug/L	0.50	01	L/25-	01/31/07	FK
3-Nitrotoluene			ND			ug/L	050	01	L/25-	01/31/07	FK
4-Nitrotoluene			ND			ug/L	0.50	01	L/25 -	01/31/07	FK
4-Amino-2,6-dinitr	otoluene		ND			ug/L	0.099	01	L/25-	01/31/07	FK
2-Amino-4,6-dinitr	otoluene		ND			ug/L	0.099	. 01	l/25 -	01/31/07	FK
Organic Compounds Nitroguanidine	by UV/HPL	C Disso	lved ND			ug/L	20	01	L/26-	01/30/07	FK
J Estimated resul											
			GC/	/MS Ser	nivolat	ile Organ	ics				
Base/Neutrals and Diethyl phthalate	Acids (82	70C)	ND			ug/L	1.0	01	L/24-	01/31/07	JMG
2,4-Dimethylphenol			ND			ug/L	2.0	01	L/24-	01/31/07	JMG
Dimethyl phthalate			ND			ug/L	1.0	01	L/24-	01/31/07	JMG
Appendix	άB				Page	56					

Sample ID:

FWGBKGmw-020C-0369-GW

Lab ID:	A7A230101-003		Rec	eipt Date:	01/23/07	8:00AM	
Sampling Date:	01/22/07 10:34	1AM	Mat	rix:	WATER Prep		
Paramete:	<u>-</u>	Result	Units	<u>RL</u>	Analysi	s Date	Analyst
Base/Neutrals and	Acids (8270C)						
Di-n-octyl phthalat	ce	ND	ug/L	1.0		01/31/07	JMG
4,6-Dinitro-2-methy	ylphenol	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrotoluene		ND	ug/L	5.0	01/24-	01/31/07	JMG
2,6-Dinitrotoluene		ND.	ug/L	50	01/24-	01/31/07	JMG
Anthracene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Fluoranthene		ND	ug/L	0.20	01/24-	01/31/07	JMG [°]
Fluorene		ИD	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobutadiene	• · .	ИD	ug/L	1.0	01/24-	01/31/07	JMG
Hexachlorocyclopent	adiene	ND	ug/L	. 10	01/24-	01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/24-	01/31/07	JMG
Indeno(1,2,3-cd)py:	cene	ND	ug/L	0.20	01/24-	01/31/07	JMG
Isophorone		ND	ug/L	1.0	01/24-	01/31/07	JMG
2-Methylnaphthalene	e :	ND	ug/L	0.20	01/24-	01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/24-	01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24-	01/31/07	JMG
Naphthalene		ND	ug/L	0.20	01/24-	01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/24-	01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/24-	01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/24-	01/31/07	JMG
Benzo(a)anthracene		ND	ug/L	0.20	01/24-	01/31/07	JMG
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/24-	01/31/07	JMG
N-Nitrosodiphenyla	mine	ND	ug/L	1.0	01/24-	01/31/07	JMG
Benzo(b) fluoranthe	ne	ND	ug/L	0.20	01/24-	01/31/07	JMG
Benzo(k)fluoranthe	ne	ND	ug/L	0.20	01/24-	01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24-	01/31/07	JMG
Benzo(ghi)perylene Appendix	В	ND	Page 57 ^{g/L}	0.20	01/24-	01/31/07	JMG

Sample ID:

FWGBKGmw-020C-0369-GW

Lab ID:

A7A230101-003 01/22/07 10:34AM Receipt Date: Matrix:

01/23/07 8:00AM

W	А	Ι.	Ľ.	К	

MAD 1D: A/A230101-003		recerpt	Date.	01/23/07 0:00AM	
Sampling Date: 01/22/07 10:34A	M	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)		,			
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ИD	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	020	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
.2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JМG
Carbazole	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	4.3	JB ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 58	2.0	01/24- 01/31/07	JMG
Appointing		i age oo			

Sample ID:

FWGBKGmw-020C-0369-GW

Result

Lab ID:

A7A230101-003

Receipt Date:

RL

01/23/07 8:00AM

Analyst

Sampling Date:

Parameter

Appendix B

01/22/07 10:34AM

Matrix:

Units

WATER
PrepAnalysis Date

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. J Estimated result. Result is less than RL.							
		Volatile Organics					
olatile Organics, GC/MS (8260 trans-1,3-Dichloropropene	B) ND	ug/L	1.0	01/25/07	LEE		
Acetone	ND	ug/L	10	01/25/07	LEE		
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE		
2-Hexanone	ND	ug/L	10	01/25/07	LEE		
Methylene chloride	иD	ug/L	2.0	01/25/07	LEE		
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE		
Benzene	ND	ug/L	1.0	01/25/07	LEE		
Styrene	ND	ug/L	1.0	01/25/07	LEE		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE		
Tetrachloroethene	ND	_ ug/L	1.0	01/25/07	LEE		
Toluene	ND	ug/L	1.0	01/25/07	LEE		
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE		
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE		
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE		
Vinyl chloride	ND .	ug/L	1.0	01/25/07	LEE		
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE		
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE		
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE		
Bromoform	ND	ug/L	1.0	01/25/07	LEE		
Bromomethane	ND	ug/L	1.0	01/25/07	LEE		
2-Butanone	ND	ug/L	10	01/25/07	LEE		
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE		
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE		
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE		
Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE		
Chloroethane	ND .	ug/L	1.0	01/25/07	LEE		
Chloroform	ND	ug/L	1.0	01/25/07	LEE		
Chloromethane	ND	ug/L	1.0	01/25/07	LEE		

Page 59

Sample ID:	FWGBKGmw-020C-0369	-GW						
Lab ID:	A7A230101-003			Receipt Date	e:	01/23/07	8:00AM	
Sampling Date:	01/22/07 10:34AM			Matrix:		WATER Pre		
Parameter	_	Result	•	Units	RL		sis Date	Analyst
Volatile Organics, 1,2-Dibromoethane	GC/MS (8260B)	ND		ug/L	1.0	01/25,	/07	LEE
1,1-Dichloroethane		ИD		ug/L	1.0	01/25	/07	LEE
1,2-Dichloroethane		'ND		ug/L	1.0	01/25	/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/25	/07	LEE
1,2-Dichloroethene	(total)	ND		ug/L	1.0	01/25,	/07	LEE
1,2-Dichloropropane		ND		ug/L	1.0	01/25,	/07	LEE
cis-1,3-Dichloroprop	pene	ND		ug/L	1.0	01/25	/07	LEE
General Chemistry								
Cyanide, Total Cyanide, Total		0.0090	В	mg/L	0.010	01/25	/07	SS
Nitrocellulose as N Nitrocellulose	1 by 353.2	0.34	В	mg/L	0.50	01/26	- 02/01/07	DTA

B Estimated result. Result is less than RL.

Sample ID:

Sampling Date:

FWGBKGmw-020C-0369-GF

Lab ID:

A7A230101-004

01/22/07 10:34AM

Receipt Date:

Matrix:

01/23/07 8:00AM

WATER Prep-

Sampling Date. 01/22/07 10.34An					Prep-	
Parameter	Result		Units	RL	Analysis Date	Analyst
		Met	als			
Inductively Coupled Plasma (6010 Arsenic	B Trace)		ug/L	5.0	01/24- 01/25/07	LRW
Lead	ND		ug/L	3.0	01/24- 01/25/07	LRW
Selenium	3.0	В	ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma (6010 Magnesium	PB) 15900		ug/L	1000	01/24- 01/25/07	LRW
Manganese	744	J	ug/L	10.0	01/24- 01/25/07	LRW
Barium	154		ug/L	10.0	01/24- 01/25/07	LRW
Nickel	ND		ug/L	10.0	01/24- 01/25/07	LRW
Potassium	2630	Ţ	ug/L	1000	01/24- 01/25/07	LRW
Silver	ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium	8000		ug/L	1000	01/24- 01/25/07	LRW
Vanadium	ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium	ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium	49600		ug/L	1000	01/24- 01/25/07	LRW
Cobalt	ND		ug/L	5.0	01/24- 01/25/07	LRW
Copper	ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma Mass Antimony	Spectrometry	(6020) B J	ug/L	2.0	01/24- 01/30/07	BD
Tron	1950		ug/L	20.0	01/24- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc	9.5	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum	3.1	В	ug/L	50.0	01/24- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Li	lquid ND		ug/L	0.20	01/24- 01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL2mw-262C-0384-GW

Lab ID:

A7A230101-005

Sampling Date: 0

01/22/07 1:55PM

Receipt Date:

Matrix:

01/23/07 8:00AM

WATER Prep-

Analysis Date RL Analyst Parameter Result ----- GC Semivolatile Organics -----PCBs (8082) Aroclor 1016 ND ug/L 0.50 01/24- 01/26/07 ADS 0.50 01/24- 01/26/07 ND ADS Aroclor 1221 ug/L 0.50 01/24- 01/26/07 Aroclor 1232 ND ug/L ADS 0.50 01/24- 01/26/07 Aroclor 1242 ND ug/L ADS Aroclor 1248 ND ug/L 0.50 01/24- 01/26/07 ADS 0.50 01/24- 01/26/07 ADS Aroclor 1254 ND ug/L 0.50 01/24- 01/26/07 ADS Aroclor 1260 ND ua/L PCBs (8082) Re-extract ND ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1016 0.50 01/30- 02/01/07 ND ug/L SJJ Aroclor 1221 0.50 01/30- 02/01/07 Aroclor 1232 ND ug/L SJJ 0.50 01/30- 02/01/07 Aroclor 1242 ND ug/L SJJ Aroclor 1248 ug/L 0.50 01/30- 02/01/07 SJJ ND 0.50 01/30- 02/01/07 SJJ Aroclor 1254 ND uq/L Aroclor 1260 ND uq/L 0.50 01/30- 02/01/07 SJJ Pesticides (8081A) 0.030 01/24- 01/25/07 CSV ND ug/L Dieldrin 0.025 01/24- 01/25/07 CSV Endosulfan I ND ug/L 01/24- 01/25/07 0.025 Endosulfan II ND ug/L CSV Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ug/L 0.030 01/24- 01/25/07 CSV ND 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND uq/L 01/24- 01/25/07 0.030 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ug/L ND 0.10 01/24- 01/25/07 CSV Methoxychlor ND ug/L 01/24- 01/25/07 alpha-BHC ND ug/L 0.030 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC 0.030 01/24- 01/25/07 CSV ND ug/L gamma-BHC (Lindane) 0.030 01/24- 01/25/07 CSV ND uq/L

Appendix B Page 62

Sample ID: Lab ID: Sampling Date:	FWGLL2mw-262C A7A230101-005 01/22/07 1:	-0384-GW		ceipt Date: trix:	01/23/07 WATER	8:00AM	
Parameter		Result	Units	RL	Prer Analysi		Analyst
Pesticides (8081A) Toxaphene		ND	ug/L	2.0	01/24-	01/25/07	CSV
alpha-Chlordane		ND	ug/L	0.030		01/25/07	csv
gamma-Chlordane		ND	ug/L	0.030		01/25/07	csv
Aldrin	·	ND	ug/L	0.030		01/25/07	csv
4,4'-DDD		ND	ug/L	0.030		01/25/07	CSV
•		ND	ug/L	0.030		01/25/07	CSV
4,4'-DDE			-	0.030		01/25/07	csv
4,4'-DDT		ND	ug/L	0.030	01/24-	01/25/07	CSV
Nitroaromatics & Ni 1,3-Dinitrobenzene	tramines: Ex	plosives (8330) ND	ug/L	0.097	01/25-	01/31/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.097	01/25-	01/31/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.097	01/25-	01/31/07	FK
Nitrobenzene		ND	ug/L	0.097	01/25-	01/31/07	FK
1,3,5-Trinitrobenze	ne	ND	ug/L	0.097	01/25-	01/31/07	FK
2,4,6-Trinitrotolue	ne	ND	ug/L	0.097	01/25-	01/31/07	FK
нмх		ND	ug/L	0.097	01/25-	01/31/07	FK
RDX		0.056	J ug/L	0.097	01/25-	01/31/07	FK
Tetryl		ND	ug/L	0.097	01/25-	01/31/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/25-	01/31/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/25-	01/31/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/25-	01/31/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.097	01/25-	01/31/07	FK
2-Amino-4,6-dinitro	toluene	ND	ug/L	0.097	01/25-	01/31/07	FK
Organic Compounds h	oy UV/HPLC D	issolved ND	ug/L	20	01/26-	01/30/07	FK
J Estimated result	t. Result is	less than RL.					
		GC/MS S	emivolatile Or	ganics			
Base/Neutrals and A Diethyl phthalate	Acids (8270C)	ND	ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/24-	01/31/07	JMG
Appendix	В		Page 63				

Sample ID:

FWGLL2mw-262C-0384-GW

Lab ID: Sampling Date: A7A230101-005 01/22/07 1:55PM
 Receipt Date:
 01/23/07
 8:00AM

 Matrix:
 WATER

Sampling Date: 01/22/07 1:55PM		Ī	Matrix:	WA	WATER Prep-		
Paramete	e <u>r</u>	Result	<u>Units</u>	<u>RL</u>	Analysis Date	Analyst	
Base/Neutrals and							
Di-n-octyl phthala	te	ND	ug/L	1.0	01/24- 01/31/07	JMG	
4,6-Dinitro-2-meth	ylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dinitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG .	
2,4-Dinitrotoluene		ND	ug/L	.5.0	01/24- 01/31/07	JMG	
2,6-Dinitrotoluene		ND	ug/L	:5., 0	01/24- 01/31/07	JMG	
Anthracene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluoranthene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluorene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Hexachlorobenzene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Hexachlorobutadien	e	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Hexachlorocyclopen	tadiene	ND	ug/L	10	01/24- 01/31/07	JMG	
Hexachloroethane		ND	ug/L	1.0	01/24- 01/31/07	JMG	
Indeno(1,2,3-cd)py	rene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Isophorone		ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Methylnaphthalen	e .	ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG	
4-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG	
Naphthalene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG	
3-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG	
Nitrobenzene		ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Nitrophenol		ир	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitrophenol		ИD	ug/L	5.0	01/24- 01/31/07	JMG	
Benzo(a)anthracene	:	ND	ug/L	0.20	01/24- 01/31/07	JMG	
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG	
N-Nitrosodiphenyla	mine	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Benzo(b)fluoranthe	ene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzo(k)fluoranthe	ene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzoic acid		ND	ug/L	10	01/24- 01/31/07	JMG	
Benzo(ghi)perylene Append i	č, p	ПD	Page 64	0.20	01/24- 01/31/07	JMG	
Appendi	X D	***	raye 04				

Sample ID:

FWGLL2mw-262C-0384-GW

Lab ID: Sampling Date: A7A230101-005

01/22/07 1:55PM

Receipt Date: Matrix: 01/23/07

8:00AM

WATER

Sampling Date: 01/22/07	1:55PM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270)	C)				
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND ·	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	8.6	JB ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND .	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	. ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 65 ^{Hg/L}	2.0	01/24- 01/31/07	JМĞ
Appendix D		raye oo		$\mathbf{v}_{i} = \mathbf{v}_{i} + \mathbf{v}_{i} + \mathbf{v}_{i} + \mathbf{v}_{i}$	-

Sample ID:

FWGLL2mw-262C-0384-GW

Result

Lab ID:

A7A230101-005

Parameter

Appendix B

01/22/07 1:55PM

Receipt Date:

RL

01/23/07

8:00AM

Analyst

Sampling Date:

Matrix:

Units

WATER
PrepAnalysis Date

	GC/MS V	olatile Organics			
latile Organics, GC/MS (8260B)	ND.	/T	1.0	01/25/07	LEI
rans-1,3-Dichloropropene	ND	ug/L			
cetone	ND	ug/L	10	01/25/07	LEI
thylbenzene	ND	ug/L	1.0	01/25/07	LEI
-Hexanone	ND	ug/L	10	01/25/07	LE
ethylene chloride	ND	ug/L	2.0	01/25/07	LE:
-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LE
enzene	ND	ug/L	1.0	01/25/07	LE
tyrene	ND	ug/L	1.0	01/25/07	LE.
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LE
etrachloroethene	ND	ug/L	1.0	01/25/07	LE
oluene	ND	ug/L	1.0	01/25/07	LE
,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LE
,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LE
richloroethene	ND	ug/L	1.0	01/25/07	LE
inyl chloride	ND	ug/L	1.0	01/25/07	LE
ylenes (total)	ND	ug/L	2.0	01/25/07	LE
romochloromethane	ND	ug/L	1.0	01/25/07	LE
romodichloromethane	ND	ug/L	1.0	01/25/07	LE
romoform	ND	ug/L	1.0	01/25/07	LE
romomethane	ND	ug/L	1.0	01/25/07	LE
-Butanone	ND .	ug/L	10	01/25/07	LE
arbon disulfide	ND	ug/L	1.0	01/25/07	LE
arbon tetrachloride	ND	ug/L	1.0	01/25/07	LE
hlorobenzene	ND	ug/L	1.0	01/25/07	LE
ibromochloromethane	ND	ug/L	1.0	01/25/07	LE
hloroethane	ND	ug/L	1.0	01/25/07	LE
hloroform	ND	ug/L	1.0	01/25/07	LE
Chloromethane	ND	ug/L	1.0	01/25/07	LE

Page 66

Sample ID: Lab ID:

FWGLL2mw-262C-0384-GW

A7A230101-005

Receipt Date:

01/23/07

8:00AM

nan in.	A/AZ30101-	,002			vecerbo	. Date.	01/23/01 0.00AM	
Sampling Date:	01/22/07	1:55PM			Matrix:		WATER Prep-	
Parameter	-		Result		Units	RL	Analysis Date	Analyst
Volatile Organics, 1,2-Dibromoethane	GC/MS (82	60B)	ND .		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane			ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		•	ЙD		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene			ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	(total)		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane			ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropro	pene		ND		ug/L	1.0	01/25/07	LEE
				- General	Chemistry			
Cyanide, Total Cyanide, Total			ND		mg/L	0.010	01/25/07	SS
Nitrocellulose as M	1 by 353.2		0.16	В	mg/L	0.50	01/26- 02/01/07	DTA

Estimated result. Result is less than RL.

Sample ID:

FWGLL2mw-262C-0384-GF

Lab ID:

A7A230101-006

Receipt Date:

01/23/07 8:00AM

Sampling Date:

01/22/07 1:55PM

Matrix:

WATER Prepa

Samping Date. 01/22/07 1.55	· FM		Ma or rw.		Prep-	*
Parameter	Result		Units	RL	Analysis Date	Analyst
		Met	als			
Inductively Coupled Plasma (6010E Arsenic	B Trace) ND		ug/L	5.0	01/24- 01/25/07	LRW
Lead	ND		ug/L	.3.0	01/24- 01/25/07	LRW
Selenium	ND	2	ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma (6010B	3) 30800		/T	1000	01/24- 01/25/07	LRW
Magnesium		_	ug/L			
Manganese	259	J.	ug/L	10.0	01/24- 01/25/07	LRW
Barium	15.3		ug/L	10.0	01/24- 01/25/07	LRW .
Nickel	10.9		ug/L	10.0	01/24- 01/25/07	LRW
Potassium	1670	J	ug/L	1000	01/24- 01/25/07	LRW
Silver	ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium	8720		ug/L	1000	01/24- 01/25/07	LRW
Vanadium	ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium	ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium	42900		ug/L	1000	01/24- 01/25/07	LRW
Cobalt	ND		ug/L	5.0	01/24- 01/25/07	LRW
Copper	ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Coupled Plasma Mass S	Spectrometry	(6020)				
Antimony	0.31	ВJ	ug/L	2.0	01/24- 01/30/07	BD
Iron	188		ug/L	20.0	01/24- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc	5.2	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/24- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Lic			/T	0.30	01/04 01/05/07	MT
Mercury	ND		ug/L	0.20	01/24- 01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL2mw-263C-0385-GW

Lab ID:

A7A230101-007

Receipt Date:

8:00AM 01/23/07

Paramater Para	A/AZ30101-00/		Motorius	ace.	MAMED		
PCBs (6082) ND	Sampling Date: Parame	01/22/07 12:55PM	·	Matrix: <u>Units</u>	<u>rl</u>		Analyst
Arcolor 1016 ND	~~~~		GC Se	emivolatile Organics -			- w w m
Arcolor 1016 ND	PCBs (8082)						
Arcolor 1232 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1242 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1248 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1254 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1254 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1260 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1260 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1260 ND Ug/L 0.50 01/24- 01/26/07 ADS Arcolor 1261 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1212 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1221 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1242 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1248 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1248 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1256 ND Ug/L 0.50 01/30- 02/01/07 SJJ Arcolor 1260 ND Ug/L 0.50 01/30- 02/01/07 SJJ Bendosulfan I ND Ug/L 0.00 01/24- 01/25/07 CSV Endosulfan I ND Ug/L 0.00 01/24- 01/25/07 CSV Endosulfan I ND Ug/L 0.00 01/24- 01/25/07 CSV Endosulfan I ND Ug/L 0.00 01/24- 01/25/07 CSV Endrin aldehyde ND Ug/L 0.00 01/24- 01/25/07 CSV Endrin ketone ND Ug/L 0.00 01/24- 01/25/07 CSV Heptachlor epoxide ND Ug/L 0.00 01/24- 01/25/07 CSV			ND	ug/L	0.50	01/24- 01/26/07	ADS
Arcelor 1242 ND Ug/L 0.50 01/24-01/26/07 ADS Arcelor 1248 ND Ug/L 0.50 01/24-01/26/07 ADS Arcelor 1254 ND Ug/L 0.50 01/24-01/26/07 ADS Arcelor 1254 ND Ug/L 0.50 01/24-01/26/07 ADS Arcelor 1260 ND Ug/L 0.50 01/24-01/26/07 ADS Arcelor 1260 ND Ug/L 0.50 01/24-01/26/07 ADS PCBS (8082) Re-extract Arcelor 1016 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1221 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1222 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1242 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1248 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1248 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1254 ND Ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1260 ND Ug/L 0.00 01/24-01/25/07 CSV Endosulfan I ND Ug/L 0.025 01/24-01/25/07 CSV Endosulfan I ND Ug/L 0.030 01/24-01/25/07 CSV Endosulfan I ND Ug/L 0.030 01/24-01/25/07 CSV Endrin Aldebyde ND Ug/L 0.030 01/24-01/25/07 CSV Endrin ladebyde ND Ug/L 0.030 01/24-01/25/07 CSV Endrin ketone ND Ug/L 0.030 01/24-01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24-01/25/07 CSV Nethoxychlor ND Ug/L 0.030 01/24-01/25/07 CSV Deta-BHC ND Ug/L 0.030 01/24-01/25/07 CSV Deta-BHC ND Ug/L 0.030 01/24-01/25/07 CSV	Aroclor 1221		ND	ug/L	0.50	01/24- 01/26/07	ADS
Arcelor 1248 ND ug/L 0.50 01/24-01/26/07 ADS Arcelor 1254 ND ug/L 0.50 01/24-01/26/07 ADS Arcelor 1260 ND ug/L 0.50 01/24-01/26/07 ADS PCBs (8082) Re-extract Arcelor 1016 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1221 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1222 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1242 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1242 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1244 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1254 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1254 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ Arcelor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ Endosulfan I ND ug/L 0.50 01/30-02/01/07 SJJ Endosulfan I ND ug/L 0.030 01/24-01/25/07 CSV Endrin Albertone ND ug/L 0.030 01/24-01/25/07 CSV Endrin aldebyde ND ug/L 0.030 01/24-01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24-01/25/07 CSV Heptachlor ND ug/L 0.030 01/24-01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24-01/25/07 CSV	Aroclor 1232		ND	ug/L	0.50	01/24- 01/26/07	ADS
Arcelor 1254 Arcelor 1260 ND	Aroclor 1242		ND	ug/L	0.50	01/24- 01/26/07	ADS
### Arcolor 1260 ND ug/L 0.50 01/24- 01/26/07 ADS PCBs (8082)	Aroclor 1248		ND	ug/L	0.50	01/24- 01/26/07	ADS
### PCBs (8082) Re-extract Arcolor 1016 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1221 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1232 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1232 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1242 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1248 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1248 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1254 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ Arcolor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ PCST SJJ Arcolor 1260 ND ug/L 0.50 01/30-02/01/07 SJJ ND Ug/L 0.50 01/30-02/01/07 SJJ ND Ug/L 0.030 01/24-01/25/07 CSV Endosulfan I ND ug/L 0.025 01/24-01/25/07 CSV Endosulfan II ND ug/L 0.025 01/24-01/25/07 CSV Endosulfan Sulfate ND ug/L 0.030 01/24-01/25/07 CSV Endrin Aldehyde ND ug/L 0.030 01/24-01/25/07 CSV Endrin Aldehyde ND ug/L 0.030 01/24-01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24-01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24-01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24-01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24-01/25/07 CSV elpha-BHC ND	Aroclor 1254		ND	ug/L	0.50	01/24- 01/26/07	ADS
Arcelor 1016 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1221 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1232 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1242 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1242 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1248 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1254 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1254 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1260 ND Ug/L O.50 01/30- 02/01/07 SJJ Arcelor 1260 ND Ug/L O.50 01/30- 02/01/07 SJJ Dieldrin ND Ug/L O.030 01/24- 01/25/07 CSV Endosulfan I ND Ug/L O.030 01/24- 01/25/07 CSV Endosulfan II ND Ug/L O.030 01/24- 01/25/07 CSV Endrin ND Ug/L O.030 01/24- 01/25/07 CSV Endrin ND Ug/L O.030 01/24- 01/25/07 CSV Endrin aldehyde ND Ug/L O.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L O.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L O.030 01/24- 01/25/07 CSV Endrin etone ND Ug/L O.030 01/24- 01/25/07 CSV Methoxychlor ND Ug/L O.030 01/24- 01/25/07 CSV Endrin-BHC ND Ug/L O.030 01/24- 01/25/07 CSV	Aroclor 1260		ND	ug/L	0.50	01/24- 01/26/07	ADS
Arcelor 1221 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1232 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1242 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1248 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1254 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1260 ND ug/L 0.50 01/30- 02/01/07 SJJ Arcelor 1260 ND ug/L 0.50 01/30- 02/01/07 SJJ Dieldrin ND ug/L 0.00 01/30- 02/01/07 SJJ CSV Endsulfan I ND ug/L 0.030 01/24- 01/25/07 CSV Endsulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endsulfan Sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV Alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV End-BHC ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV	PCBs (8082) Re	e-extract					
Aroclor 1232 ND Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1242 ND Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1248 ND Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1254 ND Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1254 ND Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1260 ND Ug/L 0.50 01/30- 02/01/07 SJJ Dieldrin ND Ug/L 0.50 01/30- 02/01/07 SJJ Dieldrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan I ND Ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND Ug/L 0.025 01/24- 01/25/07 CSV Endosulfan Suifate ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin Aldehyde ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24- 01/25/07 CSV Alepha-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV Deta-BHC ND U	Aroclor 1016		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1242 ND ND ND ND ND ND ND ND ND N	Aroclor 1221		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 ND Ug/L Ug/L 0.50 01/30- 02/01/07 SJJ Aroclor 1260 ND Ug/L 0.50 01/30- 02/01/07 SJJ Pesticides (8081A) Dieldrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan II ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan Sulfate ND Ug/L 0.030 01/24- 01/25/07 CSV Endorin aldehyde ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV GSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV GSV delta-BHC (Lindane) ND Ug/L 0.030 01/24- 01/25/07 CSV CSV GSW GSW GSW GSW GSW GSW GSW G	Aroclor 1232		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1254 Aroclor 1260 ND Ug/L 0.50 01/30- 02/01/07 SJJ Pesticides (8081A) Dieldrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan II ND Ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan Sulfate ND Ug/L 0.030 01/24- 01/25/07 CSV Endosulfan Sulfate ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND Ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND Ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND Ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND Ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND Ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV GSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV GSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV CSV GSV delta-BHC ND Ug/L 0.030 01/24- 01/25/07 CSV GSV GSV GSV GSV GSV GSV GSV	Aroclor 1242		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1260 ND ug/L 0.50 01/30- 02/01/07 SJJ Pesticides (8081A) Dieldrin ND ug/L 0.030 01/24- 01/25/07 CSV Endosulfan I ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan Sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC (Lindane) ND ug/L 0.030	Aroclor 1248		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081A) ND ug/L 0.030 01/24- 01/25/07 CSV Endosulfan I ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Aroclor 1254		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081A) ND ug/L 0.030 01/24- 01/25/07 CSV Endosulfan I ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Aroclor 1260		ND	ug/L	0.50	01/30- 02/01/07	SJJ
Dieldrin ND ug/L 0.030 01/24- 01/25/07 CSV Endosulfan I ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV							
Endosulfan II ND ug/L 0.025 01/24- 01/25/07 CSV Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV	The state of the s	A)	ND	ug/L	0.030	01/24- 01/25/07	csv
Endosulfan sulfate ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endosulfan I		ND	ug/L	0.025	01/24- 01/25/07	CSV
Endrin ND ug/L 0.030 01/24- 01/25/07 CSV Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.030 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endosulfan II		ND	ug/L	0.025	01/24- 01/25/07	CSV
Endrin aldehyde ND ug/L 0.030 01/24- 01/25/07 CSV Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endosulfan sulfa	te	ND	ug/L	0.030	01/24- 01/25/07	CSV
Endrin ketone ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endrin		ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor ND ug/L 0.030 01/24- 01/25/07 CSV Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endrin aldehyde		.ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor epoxide ND ug/L 0.030 01/24- 01/25/07 CSV Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Endrin ketone		ND	ug/L	0.030	01/24- 01/25/07	csv
Methoxychlor ND ug/L 0.10 01/24- 01/25/07 CSV alpha-BHC ND ug/L 0.030 01/24- 01/25/07 CSV beta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV delta-BHC ND ug/L 0.030 01/24- 01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	Heptachlor		ND	ug/L	0.030	01/24- 01/25/07	csv
alpha-BHC ND ug/L 0.030 01/24-01/25/07 CSV beta-BHC ND ug/L 0.030 01/24-01/25/07 CSV delta-BHC ND ug/L 0.030 01/24-01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24-01/25/07 CSV	Heptachlor epoxi	de	ND	ug/L	0.030	01/24- 01/25/07	csv
beta-BHC ND ug/L 0.030 01/24-01/25/07 CSV delta-BHC ND ug/L 0.030 01/24-01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24-01/25/07 CSV	Methoxychlor		ИD	ug/L	0.10	01/24- 01/25/07	csv
delta-BHC ND ug/L 0.030 01/24-01/25/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/24-01/25/07 CSV	alpha-BHC		ND	ug/L	0.030	01/24- 01/25/07	csv
gamma-BHC (Lindane) ND ug/L 0.030 01/24- 01/25/07 CSV	beta-BHC		ND	ug/L	0.030	01/24- 01/25/07	csv
	delta-BHC		ND	ug/L	0.030	01/24- 01/25/07	CSV
Appendix B Page 69	gamma-BHC (Linda:	ne)	ND	ug/L	0.030	01/24- 01/25/07	csv
	Append	dix B		Page 69			

Lab ID: A	WGLL2mw-263C-0 7A230101-007 1/22/07 12:55		Receipt Matrix:	Date:	01/23/07 8:00AM WATER _	
Parameter		Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Pesticides (8081A)						·
Toxaphene		ND	ug/L	2.0	01/24- 01/25/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/24- 01/25/07	CSV
gamma-Chlordane		ND	ug/L	0.030	01/24- 01/25/07	csv
Aldrin		ND	ug/L	0.030	01/24- 01/25/07	csv
4,4'-DDD		ND	ug/L	0.030	01/24- 01/25/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/24- 01/25/07	csv
4,4'-DDT		ND	ug/L	0.030	01/24- 01/25/07	csv
	·					
Nitroaromatics & Nitr 1,3-Dinitrobenzene	amines: Expl	osives (8330) ND	ug/L	0.096	01/25- 01/31/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.096	01/25- 01/31/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.096	01/25- 01/31/07	FK
Nitrobenzene		ND	ug/L	0.096	01/25- 01/31/07	FK
1,3,5-Trinitrobenzene		ND	ug/L	0.096	01/25- 01/31/07	FK
2,4,6-Trinitrotoluene		ND	ug/L	0.096	01/25- 01/31/07	FK
HMX		ND	ug/L	0.096	01/25- 01/31/07	FK
RDX		ND	ug/L	0.096	01/25- 01/31/07	FK
Tetryl		ND	ug/L	0.096	01/25- 01/31/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
4-Amino-2,6-dinitroto	luene	ND	ug/L	0.096	01/25- 01/31/07	FK
2-Amino-4,6-dinitroto	luene	ND	ug/L	0.096	01/25- 01/31/07	FK
Organic Compounds by Nitroguanidine	UV/HPLC Dis	solved ND	ug/L	20	01/26- 01/30/07	FK
		GC/MS S	emivolatile Organic:	s		
Base/Neutrals and Aci Diethyl phthalate	lds (8270C)	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/24- 01/31/07	JMG
Appendix B		and the second of the second	Page 70	e e e e e e e e e e e e e e e e e e e		

Sample ID:

FWGLL2mw-263C-0385-GW

Sample ID:	1.,02222 2000 0.00						
Lab ID:	A7A230101-007			ipt Date:	01/23/07	MA00:8	•
Sampling Date:	01/22/07 12:55	PM	Matri	ix:	WATER Prep		
Parame	ter	Result	Units	RL	Analysi	s Date	Analyst
Base/Neutrals an							
Di-n-octyl phtha	late	ND	ug/L	1.0		01/31/07	JMG
4,6-Dinitro-2-me	thylphenol	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitropheno	1	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrotolue	ne	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,6-Dinitrotolue	ne	ND	ug/L	5-0	01/24-	01/31/07	JMG
Anthracene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Fluoranthene	•	ND	ug/L	0.20	01/24-	01/31/07	JMG
Fluorene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobenzen	е	ND	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobutadi	ene	ND	ug/L	1.0	01/24-	01/31/07	JMG
Hexachlorocyclop	entadiene	ND	ug/L	10	01/24-	01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/24-	01/31/07	JMG
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20	01/24-	01/31/07	JMG
Isophorone	•	ND	ug/L	1.0	01/24-	01/31/07	JMG
2-Methylnaphthal	ene	ND	ug/L	0.20	01/24-	01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/24-	01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24-	01/31/07	JMG
Naphthalene		ND .	ug/L	0.20	01/24-	01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/24-	01/31/07	JMG
Nitrobenzene		ND .	ug/L	1.0	01/24-	01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/24-	01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/24-	01/31/07	JMG
Benzo(a)anthrace	ne	ND	ug/L	0.20	01/24-	01/31/07	JMG
N-Nitrosodi-n-pr	opylamine	ND	ug/L	1.0	01/24-	01/31/07	. JMG
N-Nitrosodipheny	lamine	ND	ug/L	1.0	01/24-	01/31/07	JMG
Benzo(b)fluorant	hene	ND	ug/L	0.20	01/24-	01/31/07	JMG
Benzo(k)fluorant	hene	ND	ug/L	0.20	01/24-	01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24-	01/31/07	JMG
Benzo(ghi)peryle Appen	ne Bix B	ND	Page 7 ^{lg/L}	0.20	01/24-	01/31/07	JMG
Λρροπ		A Committee of the Comm	1 490 / 1				

Sample ID:

FWGLL2mw-263C-0385-GW

Lab ID: Sampling Date: A7A230101-007 01/2

Receipt Date:

01/23/07

8:00AM

22/07	12:55PM	Matrix:	WATE

Lab ID:	A7A230101-007			Receip	ot Date	e:	01/	23/07	8:00AM	
Sampling Date:	01/22/07 12:55PM			Matri	к:		rAW	ER Prep	<u>>-</u>	
Paramete	er	Result		<u>Units</u>		RL		Analysi	s Date	Analyst
Base/Neutrals and Benzo(a)pyrene	Acids (8270C)	ND		ug/L		0.20	:	01/24-	01/31/07	JMG
Pentachlorophenol	•	ND		ug/L		5.0		01/24-	01/31/07	JMG
Benzyl alcohol	•	ND		ug/L		5.0		01/24-	01/31/07	JMG
Phenanthrene		ND		ug/L		0.20		01/24-	01/31/07	JMG
Phenol		ND	+ 1	ug/L		10		01/24-	01/31/07	JMG
Pyrene		ND .		ug/L		0.20		01/24-	01/31/07	JMG
1,2,4-Trichloroben	ızene	ND		ug/L		1.0		01/24-	01/31/07	JMG
2,4,5-Trichlorophe	nol	ND		ug/L		5.0		01/24-	01/31/07	JMG
2,4,6-Trichlorophe	enol	ND		ug/L		5.0		01/24-	01/31/07	JMG
Carbazole		ND		ug/L		1.0		01/24-	01/31/07	JMG
bis(2-Chloroethoxy	methane	ND		ug/L		1.0		01/24-	01/31/07	JMG
bis(2-Chloroethyl)	ether	ND		ug/L		1.0		01/24-	01/31/07	JMG
2,2'-Oxybis(1-Chlo	propropane)	. ND		ug/L		1.0		01/24-	01/31/07	JMG
bis(2-Ethylhexyl)	phthalate	1.8	JВ	ug/L		10		01/24-	01/31/07	JMG
4-Bromophenyl phen	nyl ether	ND		ug/L		2.0		01/24-	01/31/07	JMG
Butyl benzyl phtha	alate	ND		ug/L		1.0		01/24-	01/31/07	JMG
Acenaphthylene		ND		ug/L		0.20		01/24-	01/31/07	JMG
4-Chloroaniline		ND		ug/L		2.0	,	01/24-	01/31/07	JMG
4-Chloro-3-methylp	phenol	ND		ug/L		2.0		01/24-	01/31/07	JMG
2-Chloronaphthalen	ne	ND		ug/L		1.0		01/24-	01/31/07	JMG
2-Chlorophenol		ND		ug/L		1.0		01/24-	01/31/07	JMG
4-Chlorophenyl phe	enyl ether	ND		ug/L		2.0		01/24-	01/31/07	JMG
Chrysene		ND		ug/L		0.20		01/24-	01/31/07	JMG
Dibenz(a,h)anthrac	cene	ND		ug/L		0.20		01/24-	01/31/07	JMG
Dibenzofuran		ND		ug/L		1.0		01/24-	01/31/07	JMG
Di-n-butyl phthala	ate	ND		ug/L		1.0		01/24-	01/31/07	JMG
1,2-Dichlorobenzer	ne	ND		ug/L		1.0		01/24-	01/31/07	JMG
1,3-Dichlorobenzer	ne	ND		ug/L		1.0		01/24-	01/31/07	JMG
1,4-Dichlorobenzer	ne	ND		ug/L		1.0		01/24-	01/31/07	JMG
3,3'-Dichlorobenzi	idine	ND		ug/L		5.0		01/24-	01/31/07	JMG
2,4-Dichlorophenol Appendi	x B	ND	Pag	e 72 ^{g/L}		2.0		01/24-	01/31/07	JMG

Sample ID:

FWGLL2mw-263C-0385-GW

Lab ID: Sampling Date: A7A230101-007 01/22/07 12:55PM Receipt Date: Matrix:

01/23/07

8:00AM

	7A230101-007 1/22/07 12:55E	om.		Matrix		WATER	6:UUAM	
Samping Date: 0.	1/22/07 12:55			Macti		Prep Analysi		
Parameter		Result		Units	RL	***********	<u> </u>	Analyst
Base/Neutrals and Aci	ds (8270C)	Re-extract		ug/L	1.0	02/02-	02/05/07	JMG
2,4-Dimethylphenol		ND		ug/L	2.0	02/02-	02/05/07	JMG
Dimethyl phthalate		ND		ug/L	1.0	02/02-	02/05/07	JMG .
Di-n-octyl phthalate		1.0	В	ug/L	1.0	02/02-	02/05/07	JMG
4,6-Dinitro-2-methylph	nenol	ND		ug/L	5 0	02/02-	02/05/07	JMG
2,4-Dinitrophenol		ND		ug/L	5.0	02/02-	02/05/07	JMG
2,4-Dinitrotoluene		· ND		ug/L	5.0	02/02-	02/05/07	JMG
2,6-Dinitrotoluene		ND		ug/L	5.0	02/02-	02/05/07	JMG
Anthracene		ND		ug/L	0.20	02/02-	02/05/07	JMG
Fluoranthene		ND		ug/L	0.20	02/02-	02/05/07	JMG
Fluorene		, ND		ug/L	0.20	02/02-	02/05/07	JMG
Hexachlorobenzene		ND		ug/L	0.20	02/02-	02/05/07	JMG
Hexachlorobutadiene		ND		ug/L	1.0	02/02-	02/05/07	JMG
Hexachlorocyclopentad	iene	ND		ug/L	10	02/02-	02/05/07	JMG
Hexachloroethane		ND		ug/L	1.0	02/02-	02/05/07	JMG
Indeno(1,2,3-cd)pyrene	e .	ND		ug/L	0.20	02/02-	02/05/07	JMG
Isophorone		ND		ug/L	1.0	02/02-	02/05/07	JMG
2-Methylnaphthalene	• •	ND		ug/L	0.20	02/02-	02/05/07	JMG
2-Methylphenol		ND		ug/L	1.0	02/02-	02/05/07	JMG
4-Methylphenol		ND		ug/L	1.0	02/02-	02/05/07	JMG
Naphthalene		ND		ug/L	0.20	02/02-	02/05/07	JMG
2-Nitroaniline		ND		ug/L	2.0	02/02-	02/05/07	JMG
3-Nitroaniline		ND		ug/L	2.0	02/02-	02/05/07	JMG
4-Nitroaniline		ND		ug/L	2.0	02/02-	02/05/07	JMG
Nitrobenzene		ND		ug/L	1.0	02/02-	02/05/07	JMG
2-Nitrophenol		ND		ug/L	2.0	02/02-	02/05/07	JMG
4-Nitrophenol		ND		ug/L	5.0	02/02-	02/05/07	JMG
Benzo(a)anthracene		ND		ug/L	0.20	02/02-	02/05/07	JMG
N-Nitrosodi-n-propyla	mine	ND		ug/L	1.0	02/02-	02/05/07	JMG
N-Nitrosodiphenylamin	е	ND		ug/L	1.0	02/02-	02/05/07	JMG
Benzo(b) fluoranthene Appendix B	er en en en en en	ND	Page	e 73 ^{g/L}	0.20	02/02-	02/05/07	JMG

Sample ID:

FWGLL2mw-263C-0385-GW

Lab ID:

A7A230101-007

Receipt Date: Matrix:

01/23/07 8:00AM

Sampling Date:	01/22/07	12:55PM
Sampling Date:	01/22/07	12:55F

Lab ID:	A7A230101-007		Rec	eipt Date:	01/23/07 8:00AM	
Sampling Date:	01/22/07 12:559	PM	Mat	rix:	WATER Prep-	
Parame	eter	Result	Units	RL	Analysis Date	Analyst
.Base/Neutrals an Benzo(k)fluorant		Re-extract	ug/L	0.20	02/02- 02/05/07	JMG
Benzoic acid		ND	ug/L	10	02/02- 02/05/07	JMG
Benzo(ghi)peryle	ne	ND	ug/L	0.20	02/02- 02/05/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	02/02- 02/05/07	JMG
Pentachloropheno	1	ND	ug/L	5.0	02/02- 02/05/07	JMG
Benzyl alcohol		ND .	ug/L	5.0	02/02- 02/05/07	JMG
Phenanthrene		ND	ug/L	0.20	02/02- 02/05/07	JMG
Phenol		ND	ug/L	1.0	02/02- 02/05/07	JMG
Pyrene		ND	ug/L	0.20	02/02- 02/05/07	JMG
1,2,4-Trichlorob	enzene	ND	ug/L	1.0	02/02- 02/05/07	JMG
2,4,5-Trichlorop	henol	ND	ug/L	5.0	02/02- 02/05/07	JMG
2,4,6-Trichlorop	henol	ND	ug/L	5.0	02/02- 02/05/07	JMG
Carbazole		ND	ug/L	1.0	02/02- 02/05/07	JMG
bis(2-Chloroetho	xy)methane	ND	ug/L	1.0	02/02- 02/05/07	JMG
bis(2-Chloroethy	1) ether	ND	ug/L	1.0	02/02- 02/05/07	JMG
2,2'-Oxybis(1-Ch	loropropane)	ND	ug/L	1.0	02/02- 02/05/07	JMG
bis(2-Ethylhexyl) phthalate	2.6	JB ug/L	10	02/02- 02/05/07	JMG
4-Bromophenyl ph	enyl ether	ND	ug/L	2.0	02/02- 02/05/07	JMG
Butyl benzyl pht	halate	ИD	ug/L	1.0	02/02- 02/05/07	JMG
Acenaphthylene		ND	ug/L	0.20	02/02- 02/05/07	JMG
4-Chloroaniline		ND	ug/L	2.0	02/02- 02/05/07	JMG
4-Chloro-3-methy	lphenol	ND	ug/L	2.0	02/02- 02/05/07	JMG
2-Chloronaphthal	ene	ND ·	ug/L	1.0	02/02- 02/05/07	JMG
2-Chlorophenol		ND	ug/L	1.0	02/02- 02/05/07	JMG
4-Chlorophenyl p	henyl ether	ND	ug/L	2.0	02/02- 02/05/07	JMG
Chrysene		ND	ug/L	0.20	02/02- 02/05/07	JMG
Dibenz(a,h)anthr	racene	ND	ug/L	0.20	02/02- 02/05/07	JMG
Dibenzofuran		ND	ug/L	1.0	02/02- 02/05/07	JMG
Di~n-butyl phtha	late	ND	ug/L	1.0	02/02- 02/05/07	JMG
1,2-Dichlorobenz	ene	ND	ug/L	1.0	02/02- 02/05/07	JMG
1,3-Dichlorobenz Appen	dix B	ND	Page 74 ^{g/L}	1.0	02/02- 02/05/07	JMG

Sample ID: FWGLL2mw-263C-0385-GW Lab ID: A7A230101-007 Receipt Date: 01/23/07 8:00AM Sampling Date: 01/22/07 12:55PM Matrix: WATER Prep-Analysis Date Analyst Parameter Result Units RLBase/Neutrals and Acids (8270C) Re-extract 02/02- 02/05/07 1,4-Dichlorobenzene ND ug/L 1.0 JMG 3,3'-Dichlorobenzidine ND 5.0 02/02- 02/05/07 JMG ug/L 02/02- 02/05/07 2,4-Dichlorophenol ND ua/L 2.0 JMG Method blank contamination. The associated method blank contains the target analyte at a reportable Estimated result. Result is less than RL. ----- GC/MS Volatile Organics Volatile Organics, GC/MS (8260B) 1.0 01/25/07 LEE trans-1,3-Dichloropropene MΠ ug/L 10 01/25/07 LEE Acetone ND ug/L Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ND ug/L 10 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 01/25/07 4-Methyl-2-pentanone ND ug/L 10 LEE ND 1.0 01/25/07 LEE Benzene uq/L 1.0 01/25/07 LEE Styrene ND ug/L 01/25/07 1,1,2,2-Tetrachloroethane ND ug/L 1.0 LEE Tetrachloroethene ND ug/L 1.0 01/25/07 LEE Toluene ND ug/L 1.0 01/25/07 LEE 1,1,1-Trichloroethane 1.0 01/25/07 LEE ND ug/L 01/25/07 LEE 1,1,2-Trichloroethane ND uq/L 1.0 Trichloroethene ND 1.0 01/25/07 LEE ug/L 01/25/07 LEE Vinyl chloride 1.0 ND ug/L 01/25/07 Xylenes (total) ИD 2:.0 TARK ug/L 01/25/07 Bromochloromethane ND ug/L 1.0 LEE Bromodichloromethane ND ug/L 1.0 01/25/07 LEE ND 1.0 01/25/07 LEE Bromoform ug/L Bromomethane ND uq/L 1.0 01/25/07 LEE 2-Butanone ND 10 01/25/07 LEE ug/L Carbon disulfide 1.0 01/25/07 LEE ИD ug/L 01/25/07 LEE Carbon tetrachloride ND ug/L 1.0

ug/L

Page 75g/L

1.0

1.0

01/25/07

01/25/07

LEE

LEE

ND

ND

Chlorobenzene

Dibromochlaromethan B

Sample ID:	FWGLL2mw-263C-038	5-GW				
Lab ID:	A7A230101-007		Receipt Dat	e:	01/23/07 8:00AM	
Sampling Date:	01/22/07 12:55PM	1	Matrix:		WATER Prep-	
Paramete	er_	Result	Units	<u>.RL</u>	Analysis Date	Analyst
Volatile Organics, Chloroethane	GC/MS (8260B)	ND	ug/L	1.0	01/25/07	LEE
Chloroform		ND	ug/L	1.0	01/25/07	LEE
Chloromethane		ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane		ND .	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane		ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropan	e ·	ND	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropr	opene	ND	ug/L	1.0	01/25/07	LEE
	•					
			General Chemistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/25/07	SS
Nitrocellulose as Nitrocellulose	N by 353.2	ND	mg/L	0.50	01/26- 02/01/07	DTA

Sample ID:

FWGLL2mw-263C-0385-GF

Lab ID:

A7A230101-008

Receipt Date:

01/23/07

8:00AM

Sampling Date:	01/22/07	12. EE DW		Matrix:		WATER	
•						Prep- Analysis Date	2
<u>.</u>	Parameter	Result		<u>Units</u>	<u>RL</u>		Analyst
			Met	als			
Inductively Arsenic	Coupled Plasma	(6010B Trace) 15.7		ug/L	5.0	01/24- 01/25/07	LRW
Lead		ND		ug/L	3.0	01/24- 01/25/07	LRW
Selenium		ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Magnesium	Coupled Plasma	(6010B) 12600		ug/L	1000	01/24- 01/25/07	LRW
Manganese		1540	. J	ug/L	10.0	01/24- 01/25/07	LRW
Barium	•	18.1		ug/L	10.0	01/24- 01/25/07	LRW
Nickel		4.3	В	ug/L	10.0	01/24- 01/25/07	LRW
Potassium		625	вЈ	ug/L	1000	01/24- 01/25/07	LŖW
Silver		ND		ug/L	50	01/24- 01/25/07	LRW
Sodium		4170		ug/L	1000	01/24- 01/25/07	LRW
Vanadium		ИД		ug/L	10.0	01/24- 01/25/07	LRW
Chromium		ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium		29500		ug/L	1000	01/24- 01/25/07	LRW
Cobalt		3.0	В	ug/L	5.0	01/24- 01/25/07	LRW
Copper	and the second s	ND		ug/L	5.0	01/24- 01/25/07	LRW
Inductively	Coupled Plasma	Mass Spectrometry	(6020)				
Antimony	•	0.17	ВĴ	ug/L	2.0	01/24- 01/30/07	BD
Iron		4800		ug/L	20.0	01/24- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc		4.3	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum		ND .		ug/L	50.0	01/24- 01/30/07	BD
Mercury (747	/OA, Cold Vapor)	- Liquid		ua/T.	0.20	01/24- 01/25/07	MT.

Estimated result. Result is less than RL.

ND

Mercury

ug/L

0.20

01/24- 01/25/07

ML

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

Sampling Date:

FWGBKGmw-018C-0367-GW

Lab ID:

A7A230101-009

01/22/07 10:25AM

Receipt Date:

01/23/07 8:00AM

Matrix:

WATER

Sampling Date: 01/22/0/ 10:2	25AM	Matrix:		Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
	GC .Se	emivolatile Organics			
PCBs (8082) Aroclor 1016	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1221	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1232	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1242	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1248	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1254	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1260	ND	ug/L	0.50	01/24- 01/26/07	ADS
PCBs (8082) Re-extract		•			
Aroclor 1016	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1221	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1232	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1242	ЙД	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1248	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1254	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1260	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081A)	*				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dieldrin	ND	ug/L	0.030	01/24- 01/25/07	CSV
Endosulfan I	ND	ug/L	0.025	01/24- 01/25/07	CSV
Endosulfan II	ND	ug/L	0.025	01/24- 01/25/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin ketone	ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor	ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/24- 01/25/07	csv
Methoxychlor	ND	ug/L	0.10	01/24- 01/25/07	csv
alpha-BHC	ND	ug/L	0.030	01/24- 01/25/07	CSV .
beta-BHC	ND	ug/L	0.030	01/24- 01/25/07	csv
delta-BHC	ND	ug/L	0.030	01/24- 01/25/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/24- 01/25/07	csv
Appendix B		Page 78		· · · · · · · · · · · · · · · · · · ·	an en a la companya de la companya d

Sample ID: Lab ID:	FWGBKGmw-018C-036 A7A230101-009	7-GW	Receipt Da	te:	01/23/07	8:00AM	
Sampling Date:	01/22/07 10:25AM		Matrix:		WATER Prep	>-	
Parameter	· -	Result	<u>Units</u>	RL	Analysi	s Date	Analyst
Pesticides (8081A)							
Toxaphene		ND	ug/L	2.0	01/24-	01/25/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/24-	01/25/07	CSV
gamma-Chlordane		ND	ug/L	0.030	01/24-	01/25/07	CSV
Aldrin		ND	ug/L	0.030	01/24-	01/25/07	csv
4,4'-DDD		ND	ug/L	0.030	01/24-	01/25/07	csv
4,4'-DDE		ND	ug/L	0.030	01/24-	01/25/07	csv
4,4'-DDT		ND	ug/L	0.030	01/24-	01/25/07	csv
			•				
Nitroaromatics & Ni 1,3-Dinitrobenzene	tramines: Explos	sives (8330) ND	ug/L	0.097	01/25-	01/31/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.097		01/31/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.097		01/31/07	FK
Nitrobenzene		ND .		0.097		01/31/07	FK
			ug/L		•		
1,3,5-Trinitrobenzer	* *	ND	ug/L	0.097	•	01/31/07	FK
2,4,6-Trinitrotoluer	ne .	ND .	ug/L	0.097		01/31/07	FK
HMX		ND	ug/L	0.097	•	01/31/07	FK
RDX		ND	ug/L	0.097	01/25-	01/31/07	FK
Tetryl		ND	ug/L	0.097	01/25-	01/31/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/25-	01/31/07	FK
3-Nitrotoluene		ND ·	ug/L	0.48	01/25-	01/31/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/25-	01/31/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.097	01/25-	01/31/07	FK
2-Amino-4,6-dinitro	toluene	ND	ug/L	0.097	01/25-	01/31/07	FK
Organic Compounds b	y UV/HPLC Disso		<i>t</i> -		07./05	04 /04 /07	
Nitroguanidine		ND	ug/L	20	01/26-	01/31/07	FK
		GC/MS S	emivolatile Organics -	·			
Base/Neutrals and A							
Diethyl phthalate	(02/00)	ND	ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylphenol		ИD	ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/24-	01/31/07	JMG
Appendix	В		Page 79				

Sample ID:

FWGBKGmw-018C-0367-GW

Lab ID: Sampling Date: A7A230101-009 01/22/07 10:25AM Receipt Date: Matrix: 01/23/07

8:00AM

WATER

Sampling Date: 01/22/07 10:25AM		Matrix:	WA	TER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	0.54	J ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	.0.20	01/24- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG -
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/24- 01/31/07	JMG
Hexachlorocyclopentadiene	ND.	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
.2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo (ghi) Rerylene Appendix B	ND	Page 80g/L	0.20	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-018C-0367-GW

Lab ID: Sampling Date: A7A230101-009 01/22/07 10:25AM Receipt Date: Matrix: 01/23/07

8:00AM

WATER

Sampling Date: 01/22/07 10:25	AM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)					
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG ·
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	. 1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND.	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	. ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	3.7	JB ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 8 dg/L	2.0	01/24- 01/31/07	JMG
Appendix B		Page 81		Contract to the second of the second	4 · *

Sample ID:

FWGBKGmw-018C-0367-GW

Result

Lab ID:

A7A230101-009

Receipt Date:

01/23/07

MA00:8

Analyst

Sampling Date:

Parameter

01/22/07 10:25AM

Matrix:

RL

Units

WATER
PrepAnalysis Date

					-
Method blank contamination. The a		nk contains th	e target ana	lyte at a reportable	
Estimated result. Result is less					
	GC/MS VOIAT	ile Organics			
latile Organics, GC/MS (8260B) crans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
thylbenzene	ND	ug/L	1.0	01/25/07	LEE
-Hexanone	ND	ug/L	10	01/25/07	LEI
ethylene chloride	ND	ug/L	2.0.	01/25/07	LEI
-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LE
enzene	ND	ug/L	1.0	01/25/07	LEI
tyrene	ND	ug/L	1.0	01/25/07	LE
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEI
etrachloroethene	ND	ug/L	1.0	01/25/07	LE
oluene	ND	ug/L	1.0	01/25/07	LE
,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LE
,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LE
richloroethene	ND	ug/L	1.0	01/25/07	LE
inyl chloride	ND	ug/L	1.0	01/25/07	LE
ylenes (total)	ND	ug/L	2.0	01/25/07	LE
romochloromethane	ND	ug/L	1.0	01/25/07	LE
romodichloromethane	ND	ug/L	1.0	01/25/07	LE
romoform	ND	ug/L	1.0	01/25/07	LE
romomethane	ND	ug/L	1.0	01/25/07	LE
-Butanone	ND	ug/L	10	01/25/07	LE
arbon disulfide	ND	ug/L	1.0	01/25/07	LE
arbon tetrachloride	ND	ug/L	1.0	01/25/07	LE
hlorobenzene	ND	ug/L	1.0	01/25/07	LE
bromochloromethane	ND	ug/L	1.0	01/25/07	LE
nloroethane	ND	ug/L	1.0	01/25/07	LE
hloroform	ND	ug/L	1.0	01/25/07	LE
hloromethane	ND	ug/L	1.0	01/25/07	LE

Sample ID:	FWGBKGmw-018C-036	7-GW					
Lab ID: A7A230101-009			Receipt Date:			01/23/07 8:00AM	
Sampling Date:	01/22/07 10:25AM			Matrix	· · · · · · · · · · · · · · · · · · ·	ATER Prep-	
Parameter		Result		Units	RL	Analysis Date	Analyst
Volatile Organics, 1,2-Dibromoethane	GC/MS (8260B)	ND		ug/L	1.0	01/25/07	· LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		ND	÷	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	(total)	.ND	*	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane		ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropro	pene	ND		ug/L	1.0	01/25/07	LEE
			- General	Chemistry			
Cyanide, Total Cyanide, Total		0.041		ma /T	0.010	01/25/07	SS
Cyanitue, iocai		0.041		mg/L	0.010	01/23/07	55
Nitrocellulose as Nitrocellulose	N by 353.2	ND		mg/L	0.50	01/26- 02/01/07	DTA

Sample ID:

FWGBKGmw-018C-0367-GF

Lab ID:

A7A230101-010 01/22/07 10:25AM Receipt Date:

01/23/07

8:00AM

Lab ID:	A7A230101-010			Receipt	: Date: (01/23/07 8:00AM	
Sampling Date:	01/22/07 10:25A	MI .		Matrix:		ATER Prep-	
Para	ameter	Result		Units	RL	Analysis Date	Analyst
			Met	als			
Industinals Co	upled Plasma (6010B	Trace)					
Arsenic	upied riasma (0010B	ND		ug/L	5.0	01/24- 01/25/07	LRW
Lead		ND		ug/L	3.0	01/24- 01/25/07	LRW
Selenium		ND		ug/L	5.0	01/24- 01/25/07	LRW
Industrials Co.	upled Plasma (6010B)	ang ang kanalang sa					
Magnesium	dbred trasma (00109)	4020		ug/L	1000	01/24- 01/25/07	LRW
Manganese		45.6	J	ug/L	10.0	01/24- 01/25/07	LRW
Barium	•	16.2		ug/L	10.0	01/24- 01/25/07	LRW
Nickel		ND		ug/L	10.0	01/24- 01/25/07	LRW
Potassium		835	ВJ	ug/L	1000	01/24- 01/25/07	LRW
Silver		ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium		1960		ug/L	1000	01/24- 01/25/07	LRW
Vanadium		ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium		ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium		33300		ug/L	1000	01/24- 01/25/07	LRW
Cobalt		ND		ug/L	5.0	01/24- 01/25/07	LRW
Copper		2.0	В	ug/L	5.0	01/24- 01/25/07	LRW
Industively Co	upled Plasma Mass Sp	ectrometry (6020)				
Antimony	upica riabha habb sp	0.12	В Ј	ug/L	2.0	01/24- 01/30/07	BD
Iron		273		ug/L	20.0	01/24- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/24- 01/30/07	BD .
Thallium		ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc		4.2	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum		2.8	В	ug/L	50.0	01/24- 01/30/07	BD
Mercury (7470A	, Cold Vapor) - Liqu	ıid				•	
	-	3773		/ -	0 00	01/04 01/05/07	D.CT

Estimated result. Result is less than RL.

ND

Mercury

ug/L

0.20

01/24- 01/25/07

ML

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-006C-0359-GW

Lab ID: Sampling Date: A7A230101-011 01/22/07 11:49AM Receipt Date:

01/23/07 8:00AM

Matrix:

WATER

Sampling Date: 01/22/07	11:49AM		*********		Prep-	
Parameter	Res	<u>ult</u>	<u>Units</u>	RL	Analysis Date	Analyst
		GC Semiv	volatile Organics			
PCBs (8082) Aroclor 1016	ND		ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1221	ND	•	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1232	ND		ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1242	ND		ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1248	ND		ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1254	ND		ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1260	ND		ug/L	0.50	01/24- 01/26/07	ADS
PCBs (8082) Re-extract			/ 	0.50	01/20 02/01/07	0.77
Aroclor 1016	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1221	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1232	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1242	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1248	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1254	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1260	ND		ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081A)				0.000	01/04 01/05/07	
Dieldrin	ND		ug/L	0.030	01/24- 01/25/07	csv
Endosulfan I	ND		ug/L	0.025	01/24- 01/25/07	CSV
Endosulfan II	ND		ug/L	0.025	01/24- 01/25/07	CSV .
Endosulfan sulfate	ND		ug/L	0.030	01/24- 01/25/07	CSV
Endrin	ND		ug/L	0.030	01/24- 01/25/07	CSV
Endrin aldehyde	ND		ug/L	0.030	01/24- 01/25/07	csv
Endrin ketone	ND		ug/L	0.030	01/24- 01/25/07	CSV
Heptachlor	ND		ug/L	0.030	01/24- 01/25/07	csv
Heptachlor epoxide	ND		ug/L	0.030	01/24- 01/25/07	CSV
Methoxychlor	ND		ug/L	0.10	01/24- 01/25/07	csv
alpha-BHC	ND		ug/L	0.030	01/24- 01/25/07	csv
beta-BHC	ND	,	ug/L	0.030	01/24- 01/25/07	csv
delta-BHC	ND		ug/L	0.030	01/24- 01/25/07	csv
gamma-BHC (Lindane)	ND		ug/L	0.030	01/24- 01/25/07	csv
Appendix B		=	Page 85		and the second of the second o	

Lab ID:	FWGBKGmw-	-011	∂-GW		Receipt Date:		01/23/07	MA00:8	
Sampling Date:	01/22/07	11:49AM			Matrix:		WATER <u>Prep</u> Analysi		
Parameter			Result	Unit	<u>s</u>	<u>RL</u>		<u> </u>	Analyst
Pesticides (8081A) Toxaphene			ND	· ug,	/L	2.0	01/24-	01/25/07	csv
alpha-Chlordane			ND	ug,	/L	0.030	01/24-	01/25/07	csv
gamma-Chlordane			ND	ug,	/ L	0.030	01/24-	01/25/07	csv
Aldrin			ND	ug,	/ L	0.030	01/24-	01/25/07	csv
4,4'-DDD			ND /	ug,	/L	0.030	01/24-	01/25/07	csv
4,4'-DDE			ND	ug,	'L	0.030	01/24-	01/25/07	CSV
4,4'-DDT			ND	ug,	/L	0.030	.01/24-	01/25/07	CSV
Nitroaromatics & Nit	ramines:	Explos	ives (8330) ND	ug,	/L	0.095	01/25-	01/31/07	FK
2,4-Dinitrotoluene			ND	ug,	'L	0.095	01/25-	01/31/07	FK
2,6-Dinitrotoluene			ND	, ug,	/L	0.095	01/25-	01/31/07	FK
Nitrobenzene			ND	ug,	'L	0.095	. 01/25-	01/31/07	FK
1,3,5-Trinitrobenzene	е		ND	ug,	/ L	0.095	01/25-	01/31/07	FK
2,4,6-Trinitrotoluene	е		ND .	ug,	/L ,	0.095	01/25-	01/31/07	FK
НМХ			ND	ug,	/L	0.095	01/25-	01/31/07	FK
RDX			ND	ug,	/L	0.095	01/25-	01/31/07	FK
Tetryl			ND .	ug,	/L	0.095	01/25-	01/31/07	FK
2-Nitrotoluene			ND	ug,	/L	0.48	01/25-	01/31/07	FK
3-Nitrotoluene			ND	ug,	/L	0.48	01/25-	01/31/07	FK
4-Nitrotoluene			ND	ug,	/L	0.48	01/25-	01/31/07	FK
4-Amino-2,6-dinitrot	oluene		ND	ug,	/L	0.095	01/25-	01/31/07	FK
2-Amino-4,6-dinitrot	oluene		ND	ug,	/L	0.095	01/25-	01/31/07	FK
Organic Compounds by Nitroguanidine	y UV/HPLO	C Disso	lved ND	ug,	/L	20	01/26-	01/31/07	FK
			GC/MS S	emivolatile (Organics				
Base/Neutrals and Ac	eids (827	70C)	ND ·	ug	/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylphenol			ND	ug	/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalate			ND	ug	/L	1.0	01/24-	01/31/07	JMG
Appendix E	3		ga office a con-	Page 86					

Sample ID:

FWGBKGmw-006C-0359-GW

Lab ID: Sampling Date: A7A230101-011 01/22/07 11:49AM Receipt Date: 01/23/07 8:00AM
Matrix: WATER Prep-

Parameter	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5 0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	50	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/24- 01/31/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ир	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a) anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo (ghi) Appendix B	ND	Page 87g/L	0.20	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-006C-0359-GW

Lab ID: Sampling Date:

01/22/07 11:49AM

A7A230101-011

Receipt Date: Matrix:

01/23/07 8:00AM

WATER Prep-

Parameter	Result		<u>Units</u>	RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	· ND .		ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND		ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND		ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND		ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND		ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JМG
2,4,5-Trichlorophenol	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND		ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND		ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	4.6	JВ	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND		ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND		ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG ·
Chrysene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND		ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	0.61	J	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol B	ND	Page	88 ^g /L	2.0	01/24- 01/31/07	JMG

Units

Sample ID:

FWGBKGmw-006C-0359-GW

Lab ID:

Sampling Date:

Parameter

A7A230101-011

01/22/07 11:49AM

Receipt Date:

01/23/07

8:00AM

Analyst

22/07 11:49AM

Result

Matrix:

RL

WATER
PrepAnalysis Date

	GC/MS	Volatile Organics			
latile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone	ND .	ug/L	10	01/25/07	LEE
Methylene chloride	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE
Benzene	ND	ug/L	1.0	01/25/07	LEE
Styrene	ND	ug/L	1.0	01/25/07	LEF
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEI
Toluene	ND	ug/L	1.0	01/25/07	LEI
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEI
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEI
Trichloroethene	ND	ug/L	1.0	01/25/07	LEI
Vinyl chloride	.ND	ug/L	1.0	01/25/07	LEI
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEI
Bromochloromethane '	ŃD	ug/L	1.0	01/25/07	LEI
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LE
Bromoform	ND	ug/L	1.0	01/25/07	LEI
Bromomethane	ND .	ug/L	1.0	01/25/07	LEI
2-Butanone	ND	ug/L	10	01/25/07	LE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LE
Dibromochloromethane	ND	ug/L	1.0	01/25/07	LE:
Chloroethane	ND	ug/L	1.0	01/25/07	LE
Chloroform	ND	ug/L	1.0	01/25/07	LE
Chloromethane	ND	ug/L	1.0	01/25/07	LE

Sample ID:	FWGBKGmw-006C-035	9-GW					
Lab ID:	A7A230101-011			Receipt Dat	e:	01/23/07 8:00AM	
Sampling Date:	01/22/07 11:49AM	I		Matrix:		WATER Prep-	
Paramete	<u>r</u>	Result		Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics, 1,2-Dibromoethane	GC/MS (8260B)	ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	(total)	ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloropropan	e	ND	•	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropr	opene	ND		ug/L	1.0	01/25/07	LEE
			General Ch	emistry			·
Cyanide, Total Cyanide, Total		0.022		mg/L	0.010	01/25/07	SS
Nitrocellulose as Nitrocellulose	N by 353.2	0.13	В	mg/L	0.50	01/26- 02/01/07	DTA

Estimated result. Result is less than RL.

Sample ID:

Sampling Date:

FWGBKGmw-006C-0359-GF

Lab ID:

A7A230101-012

01/22/07 11:49AM

Receipt Date:

01/23/07 8:00AM

Matrix:

WATER Prep-

	Parameter		Result		Units	RL	Analysis Date	Analyst
				Meta	als			
Inductively Arsenic	7 Coupled Plasma	a (6010B T	race) ND		ug/L	5.0	01/24- 01/25/07	LRW
Lead			ND		ug/L	3.0	01/24- 01/25/07	LRW
Selenium		,	ND .		ug/L	5.0	01/24- 01/25/07	LRW
Inductively Magnesium	7 Coupled Plasma	a (6010B)	23100		ug/L	1000	01/24- 01/25/07	LRW
Manganese			384	J	ug/L	10.0	01/24- 01/25/07	LRW
Barium			11.8		ug/L	10.0	01/24- 01/25/07	LRW
Nickel			ND		ug/L	10.0	01/24- 01/25/07	LRW
Potassium			1300	J	ug/L	1000	01/24- 01/25/07	LRW
Silver			ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium			42000		ug/L	1000	01/24- 01/25/07	LRW
Vanadium			ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium			ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium			75800		ug/L	1000	01/24- 01/25/07	LRW
Cobalt			ND		ug/L	5.0	01/24- 01/25/07	LRW
Copper	100		ND		ug/L	50	01/24- 01/25/07	LRW
				,,,,,,,,		•		
Antimony	y Coupled Plasma	a Mass Spec	0.095	(6020) B J	ug/L	2.0	01/24- 01/30/07	BD ·
Iron			587		ug/L	20.0	01/24- 01/30/07	BD
Beryllium			ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium			ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc			3.1	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium			иD		ug/L	0.50	01/24- 01/30/07	BD
Aluminum			ND		ug/L	50.0	01/24- 01/30/07	BD
Mercury (74	470A, Cold Vapo:	r) - Liqui	d ND		ug/L	0.20	01/24- 01/25/07	ML

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-015C-0364-GW

Lab ID:

Sampling Date:

A7A230101-013 01/22/07 2:29PM Receipt Date:

01/23/07 8:00AM

Matrix:

WATER Prep-

Parameter Parameter	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
·	GC Se	mivolatile Organics -			
PCBs (8082) Aroclor 1016	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1221	ND .	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1232	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1242	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1248	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1254	ND	ug/L	0.50	01/24- 01/26/07	ADS
Aroclor 1260	ND	ug/L	0.50	01/24- 01/26/07	ADS
(0000)				•	
PCBs (8082) Re-extract Aroclor 1016	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1221	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1232	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1242	ND	ug/L	0.50	01/30- 02/01/07	· SJJ
Aroclor 1248	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1254	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Aroclor 1260	ND	ug/L	0.50	01/30- 02/01/07	SJJ
Pesticides (8081A)	en e	en e	and the second		
Dieldrin	ND	ug/L	0.030	01/24- 01/25/07	csv
Endosulfan I	ND	ug/L	0.025	01/24- 01/25/07	csv
Endosulfan II	ND	ug/L	0.025	01/24- 01/25/07	CSV
Endosulfan sulfate	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/24- 01/25/07	csv
Endrin ketone	ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor	ND	ug/L	0.030	01/24- 01/25/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/24- 01/25/07	csv
Methoxychlor	ИD	ug/L	0.10	01/24- 01/25/07	CSV
alpha-BHC	ND	ug/L	0.030	01/24- 01/25/07	CSV
beta-BHC	ND	ug/L	0.030	01/24- 01/25/07	csv
delta-BHC	ND	ug/L	0.030	01/24- 01/25/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/24- 01/25/07	CSV
Appendix B		Page 92	and the second	· · · · · · · · · · · · · · · · · · ·	

Sample ID:	FWGBKGmw-0: A7A230101-	15C-0364-GW	Rec	eipt Date:	01/23/07 8:00AM	
Sampling Date:	01/22/07	2:29PM		rix:	WATER Prep-	
Parameter	_	Result	Units	RL	Analysis Date	Analyst
Pesticides (8081A) Toxaphene		ND	ug/L	2.0	01/24- 01/25/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/24- 01/25/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/24- 01/25/07	csv
Aldrin		ND	· ug/L	0.030	01/24- 01/25/07	csv
4,4'-DDD		.ND	ug/L	0030	01/24- 01/25/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/24- 01/25/07	CSV
4,4'-DDT		ND	ug/L	0.030	01/24- 01/25/07	CSV
Nitroaromatics & Ni	tramines:	-		0.096	01/25- 01/31/07	 FK
1,3-Dinitrobenzene		ND	ug/L			
2,4-Dinitrotoluene		ND	ug/L	0.096	01/25- 01/31/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.096	01/25- 01/31/07	FK
Nitrobenzene		ND	ug/L	0.096	01/25- 01/31/07	FK
1,3,5-Trinitrobenze		ND .	ug/L	0.096	01/25- 01/31/07	FK
2,4,6-Trinitrotolue	ne	ND	ug/L	0.096	01/25- 01/31/07	FK
HMX		ND	ug/L	0.096	01/25- 01/31/07	FK
RDX		ND	ug/L	0.096	01/25- 01/31/07	FK
Tetryl		ND	ug/L	0.096	01/25- 01/31/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/25- 01/31/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.096	01/25- 01/31/07	FK
2-Amino-4,6-dinitro	toluene	ND	ug/L	0.096	01/25- 01/31/07	FK
Organic Compounds I Nitroguanidine	OY UV/HPLC	Dissolved ND	ug/L	20	01/26- 01/31/07	FK
		GC/MS	Semivolatile Org	anics		
Base/Neutrals and Diethyl phthalate	Acids (827	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/24- 01/31/07	JMG
Appendix	B		Page 93	and the second		For the second

Sample ID:

FWGBKGmw-015C-0364-GW

Lab ID: Sampling Date: A7A230101-013 01/22/07 2:29PM Receipt Date: Matrix: 01/23/07

8:00AM

WATER

Sampling Date: 01/22/07 2:29Pl	1	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JМG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/24- 01/31/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG (
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo (ghi) Appendix B	ND	Page 94 ^{g/L}	0.20	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-015C-0364-GW

Lab ID: Sampling Date: A7A230101-013 01/22/07 2:29PM Receipt Date: 01/23/07 8:00AM Matrix: WATER

Sampling Date: 01/22/07	2:29PM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (827	70C)				
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	, JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 95 ^{g/L}	2.0	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-015C-0364-GW

Lab ID:

A7A230101-013

Receipt Date:

01/23/07

8:00AM

Lab ID:	A7A230101-013	_	Receipt	Date:	01/23/07 8:00AM	
Sampling Date:	01/22/07 2:29PM		Matrix:		WATER Prep-	
Parame	ter	Result	<u>Units</u>	RL	Analysis Date	Analyst
		GC/MS	Volatile Organics -			
Volatile Organic trans-1,3-Dichlo		ND	ug/L	1.0	01/25/07	LEE
Acetone		ND	ug/L	10	01/25/07	LEE
Ethylbenzene	•	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone		ND	ug/L	10	01/25/07	LEE
Methylene chloric	de	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentar	none	ND ·	ug/L	10	01/25/07	LEE
Benzene		ND	ug/L	1.0	01/25/07	LEE
Styrene		ND	ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachlo	oroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethen	e	ND	ug/L	1.0	01/25/07	LEE
Toluene		ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroe	thane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroe	thane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene		ND	ug/L	1.0	01/25/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/25/07	LEE
Xylenes (total)		ND	ug/L	2.0	01/25/07	LEE
Bromochlorometha	ne	ND	ug/L	1.0	01/25/07	LEE
Bromodichloromet	hane	ND	ug/L	1.0	01/25/07	LEE
Bromoform		ND	ug/L	1.0	01/25/07	LEE
Bromomethane		ND	ug/L	1.0	01/25/07	LEE
2-Butanone		ND	ug/L	10	01/25/07	LEE
Carbon disulfide	÷	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachlo	ride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/25/07	LEE
Dibromochloromet	hane	ND	ug/L	1.0	01/25/07	LEE
Chloroethane		ND	ug/L	1.0	01/25/07	LEE
Chloroform		ND	ug/L	1.0	01/25/07	LEE
Chloromethane		ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethan	е	ND	ug/L	1.0	01/25/07	LEE
Appen	dix B		Page 96			

Sample ID:	FWGBKGmw-015C-036	4-GW				
Lab ID:	A7A230101-013		Receipt D	ate:	01/23/07 8:00AM	
Sampling Date:	01/22/07 2:29PM		Matrix:		WATER Prep-	
Paramet	er_	Result	Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics 1,1-Dichloroethand		ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	е	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	e	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	e (total)	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropa	ne	ND	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichlorop	ropene	ND	ug/L	1.0	01/25/07	LEE
		Cono	ral Chemistry			
		Gene	rai chemistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/25/07	SS
Nitrocellulose as	N by 353.2	ND	mg/L	0.50	01/26- 02/01/07	DTA

Sample ID:

FWGBKGmw-015C-0364-GF

Lab ID:

A7A230101-014

Receipt Date:

01/23/07

8:00AM

Sampling Date:	01/22/07 2:29PM	I		Matrix:	WA	TER Prep-	
Paramete	er_	Result		Units	RL	Analysis Date	Analyst
			Meta	ls			
Inductively Couple	ed Plasma (6010B !	Frace)		ug/L	5.0	01/24- 01/25/07	LRW
Arsenic		ND .			3.0	01/24 01/25/07	LRW
Lead				ug/L		•	LRW
Selenium		ND		ug/L	5.0	01/24- 01/25/07	LIKW
Inductively Couple Magnesium	ed Plasma (6010B)	12700		ug/L	1000	01/24- 01/25/07	LRW
Manganese		25.6	J	ug/L	10.0	01/24- 01/25/07	LRW
Barium		273		ug/L	10.0	01/24- 01/25/07	LRW
Nickel		ND		ug/L	10.0	01/24- 01/25/07	LRW
Potassium	e de	4360	. J	ug/L	1000	01/24- 01/25/07	LRW
Silver		ND		ug/L	5.0	01/24- 01/25/07	LRW
Sodium		13100		ug/L	1000	01/24- 01/25/07	LRW
Vanadium		ND		ug/L	10.0	01/24- 01/25/07	LRW
Chromium		ND		ug/L	5.0	01/24- 01/25/07	LRW
Calcium		30500	•	ug/L	1000	01/24- 01/25/07	LRW
Cobalt		ND		ug/L	5.0	01/24~ 01/25/07	LRW
Copper		ND		ug/L	50	01/24- 01/25/07	LRW
To do object les Court	ad Dinama Maga Ca	oatnomotru (60	201				
Inductively Couple Antimony	ed riasma mass sp	0.14	В Ј	ug/L	2.0	01/24- 01/30/07	BD
Iron	•	213	•	ug/L	20.0	01/24- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/24- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/24- 01/30/07	BD
Zinc		9.9	В	ug/L	10.0	01/24- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/24- 01/30/07	BD
Aluminum		ND		ug/L	50.0	01/24- 01/30/07	BD
Mercury (7470A, C	old Vapor) - Liqu	id ND		ug/L	0.20	01/24- 01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID: Lab ID:

FWG-TB-0398-GW

A7A230101-015

Receipt Date:

01/23/07

MA00:8

Sampling Date:

01/22/07 12:00AM

Matrix:

WATER _

Sampling Date: 01/22/07 12:00AM			Matrix:	W.	ATER Prep-	
Parameter	Result		<u>Units</u>	RL	Analysis Date	Analyst
	GC/1	MS Volat	ile Organics			
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND		ug/L	1.0	01/25/07	LEE
Acetone	1.8	J	ug/L	10	01/25/07	LEE
Ethylbenzene	ND		ug/L	1.0	01/25/07	LEE
2-Hexanone	ND	•.	ug/L	10	01/25/07	LEE
Methylene chloride	1.4	J	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND		ug/L	10	01/25/07	LEE
Benzene	ND		ug/L	1.0	01/25/07	LEE
Styrene	ND		ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachloroethane	ND	ř	ug/L	.1.0	01/25/07	LEE
Tetrachloroethene	ND		ug/L	1.0	01/25/07	LEE
Toluene	ND		ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND		ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND		ug/L	1.0	01/25/07	LEE
Trichloroethene	ND		ug/L	1.0	01/25/07	LEE
Vinyl chloride	ND		ug/L	1.0	01/25/07	LEE
Xylenes (total)	ND		ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND		ug/L	1.0	01/25/07	LEE
Bromodichloromethane	, ND		ug/L	1.0	01/25/07	LEE
Bromoform	ND		ug/L	1.0	01/25/07	LEE
Bromomethane	ИD		ug/L	1.0	01/25/07	LEE
2-Butanone	ND		ug/L	10	01/25/07	LEE
Carbon disulfide	ИD		ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND		ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND		ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND		ug/L	1.0	01/25/07	LEE
Chloroethane	ND		ug/L	1.0	01/25/07	LEE
Chloroform	ND		ug/L	1.0	01/25/07	LEE
Chloromethane	ND		ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane	ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane Appendix B	ND	Pa	ug/L ge 99	1.0	01/25/07	LEE

Sample ID:

FWG-TB-0398-GW

Lab ID:

A7A230101-015

Receipt Date:

01/23/07

8:00AM

Sampling Date:	01/22/07 12:00AM			Matrix	::	WATER Prep-	
Parame	ter	Result		Units	<u>rl</u>	Analysis Date	Analyst
Volatile Organic: 1,2-Dichloroethar		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroether	ne	ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroether	ne (total)	ND	٠.	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropa	ane	ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloro	propene	ND		ug/L	1.0	01/25/07	LEE

Estimated result. Result is less than RL.

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)			
Spec fro Inc	Chantille Carroll	Date 1-22-07	Chain of Custody Number 272424
Address	200	Lab Number	Page of 1
City State Zip Code	Sile Contact Lab Contact	Analysis (Attach list if more space is needed)	
⊦	21	<u>s+</u>	Special Instructions/
Contract/Purchase Order/Quote No.	Matrix Containers & Preservatives	e 3/fe nide	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Air Aqueous Sed. Soil Unpres. H2SO4 HNO3 HCI NaOH ZnAC/ NaOH	Exp POI Cya TA Vo	
FWGKL2 MW-059C-0383-15/191 1-22-07 1	10:35 X 8 131	Y X X X X X X	
FWG HLZ MW-059C-0383-GW	16:35 X	×	
	10:34 X	×	
	13:55 X	У)1
		54	e 10
TWC BKG MW 013C-0363 GW	X - 3	*	Pag
FWG M2 NW - 107C - 0373 GW		*	
	16:25 X	×	
FWGBKG-NW-606C-6359-CW	J):44 x	*	
FWGBKGMW-015C-0364-GF	14:24 X	×.	
FWG-78-0398-GW 1	-	×	
Possible Hazard Identification	Sample Disposal	(A fee may be ass)	ssed if samples are retained
□ Non:Hazard □ Flammable □ Skin Irritant □ Poison 8 □ Turn Around Time Required	Unknown Return To Client Disposal By Lab Archive For	Months	longer than 1 month)
24 Hours 48 Hours 7 Days 14 Days 21 Days	Other		n
1. Recognished By Hours	Time 1.	· Toose	1-22-07 100-1X
2 Relinquished By RKK ROBISS	1-22 ET 18 OC TROOPER BY	Mitter	Date Time OF
3. Relinquished By	Time A Received B	4	19167 Time
Comments			

Chain of Custody Record

STL4149 (1202)

ដ

TRENT STL®

Severn
Trent La
boratorie
s, Inc.

Client			Project Manager	7			Date	\$				-
Spec Pro			Chantelle Carroll	Carroll			P	11/2007	1-22-07	Page	‡- =	4-
Address			Telephone Number (Area Code)/Fax Number	ber (Area Code,	VFax Number		La.					
8451 State Route 5		:	(000)) ((000)		<u> </u>	STL North Canton			Analysis	
	Zip Code		Site Contact) 						2 G S L	. C	
DAVEL IN CO.	44200		טוומוונפו ופ טמי וטוו	var or						0 0	. α	
Project Number/Name Ravenna			Carrier/Waybill Number	Number						8 8 8 8 E	G Z 	
On the still make an Outstand on the Millian by										7	·	
CONTRACT / PURCHASE ORDER # :								QUOTE: 63240		0 2 0	D C	-
	2	1	Samala Tima	Co	Containers					C	Г	
Sample I.D. Number and Description	Date	ime	Sample Type	Volume	Туре	No.	Preservative	Condition on Receipt/Comments	comments	LASL		
FWGLL2mw-059C-0383-GW	1-22-07	<i>\</i> 0:35	WATER	14	AMBER	Ŋ	None			×	×	
FWGLL2mw-059C-0383-GW		-	WATER	11	AMBER	2	Hone			×		
FWGLLZmw-059C-0383-GW			WATER	17	AMBER	2	None			×		
FWGLL2mw-059C-0383-GW		7	WATER	7	AMBER	Ŋ	None			×		+
FWGLL2mw-059C-0383-GW		_	WATER	71	AMBER	72	None			×		
EMG1 1.2mm-0550-0382-/(M			WATER	4 0mL	40ML VIA	4	HI		\ \	1		02
FWGLL2mw-0590-0383-GW		-	WATER	250mL	PLASTIC	_	NaOH	-			×	e í
FWGLL2mw-059C-0383~GF	}	+	WATER	1000mL	PLASTIC		Canc HIIO3		:		×	'ag
												F
* Only & Ambers												
Special Instructions												
Possible Hazard Identification Non-Hazard	Skin tritant	Poison B	□ Unknown	Sample Disposal Return To Client	ent	□ Disp	🗋 Disposal By Lab	Archive For	Months	(A fee may be assessed if samples are retained longer than 3 months)	ssessed if samp. han 3 months)	les are
Turn Around Time Required Normal Rush Other.	1er		OC Lave!	□ <i>III.</i>	Project S	Specific F	Project Specific Requirements (Specify)	Specifyl				B con
1. Relinquished By			1-22-07	_) 1. Received By	ved By	X1.518	186	O)-32	Time	dix dix
shed By X/C/	103154x	Ò	1-22-U7	time 80	2. Rece) ved. 9	K.	N		1/1/2 Just	7 Time	~
3. Relinquished By	-		Date	Time	3. Rece	ked By				Date	Time	1
Comments												TL
סוכידות של היינים הייני												\$

Record Chain of Custody

ß

TRENT STL®

Severn	
Trent Laboratorie	
s, inc.	

STL4149 (1202)		*	7 2 9 5	α	1 3	*					
Client Spec Pro			Project Manager Chantelle Carroll	e Carroli			Date	Date -22-07	Page	or	4-
Address 8451 State Route 5			Telephone Nun (000)	Telephone Number (Area Code)/Fax Number (000) / (000)	odeJ/Fax Number (000)		s. La	Lab Location STL North Canton		9	
City State Ravenna OH	Zip Code 44266		Sile Contact Chantell	e Contact Chantelle Carroll					8 S C O C C	0 r 0 x 0 x	
Project Number/Name Ravenna			Carrier/Waybill Number	Number					22 88 22 88 0 88 1 88 2 88 E E	Ω Z 0 Z ω	
CONTRACT / PURCHASE ORDER # :								QUOTE: 63240	6 7 8 3 ; 0 0 2 D 0 L	L 0 0	
Sample I.D. Number and Description	Date	Time	Sample Type	Col	Containers	₹	Preservative	Condition on Receipt/Comments	ents L L A S L	Г	
FWG8KGMW-020C-0369-GW	1-22). 	WATER	1	AMBÉR		None		×	×	+
FWGBKGMW~020C~0369~GW	- 8	\dashv	WATER	17	AMBER	2	None		×		
FWGBKGMW-020C-0369-GW		_	WAIEH	11	AMBER	2	None		×		
	_		WATER	11	AMBER	2	None		×		
FWGBKGMW-0200-0369-GW			WATER	11	AMBER		None		X		3
		+	WAIFR	40m2	AOML VIA	14	HCT		*-		10:
FWGBKGMW-020C-0369-GW			WATER	250mL	PLASTIC	_	NaoH			×	е
FWGBKGMW-020C-0369-GF	I -	 -	WATER	1000mL	PLASTIC		Conc HNO3			×	ag
											F
* Only & Ambers											
Special Instructions											
Possible Hazard Identification Non-Hazard Flammable Skir	Skin Irritant	☐ Poison B	□ Unknown	Sample Disposal Return To Client	ent	☐ Dispo	🔲 Disposal By Lab	Archive For Mo	(A fee may be a Months retained longer t	(A fee may be assessed if samples are retained longer than 3 months!	es are
Turn Around Time Required Normal Rush Other	e/		QC Level ☐ #.		Project S	pecific F	Project Specific Requirements (Specify)	Specify)			on
			1-11-0)) Time	1. Received By	ed By .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tasisa	Pate 22	4	Time Cix
•	8		Date 22:07	7 1 808	S (2 Rece)	7 √8⁄ √8⁄	-Megan	tus	Date 73	Time	
3 Relinquished By			Date	Time	3. Haarli	ed By			Date	Time	Nor
Comments					 - 				_		TL
		2		200							\$

Record Chain of Custody

STL4149 (1202)

CHAIN OF CUSTODY NUMBER

Severn Trent Laboratories, Inc.

Spec Pro				Project Manager Chantelle Carroli	Carroll			Pare Date	04/14/2007 /- 12 - A	5	} -	<i>¥</i> _
Address				Telephone Num	Telephone Number (Area Code)/Fax Number	Fax Number		Lab		0/	rage or	
8451 State Route 5				(000)	(000) /	00)		ST	STL North Canton		Analysis	
City Ravenna	State OH	Zip Code 44266		Site Contact Chantelle	Carroll						S	
Project Number/Name Ravenna				Carrier/Waybill Number	Vumber						8 8 8 8 E N 1 0 3 E N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER #	e Number RDER # :								QUOTE: 63240		6 7 8 3 ; ; I 0 0 0 2 0 0 L L Q ; 2	
Sample I.D. Number and Description	nd Description	Date	Time	Sample Type	Cor		Pre	Preservative	Condition on Receipt/Comments	comments	F	
FWGLL2mw-2620-0384-GW	GW	CO-17-1	3:57	WATER		AMBER	2 None	ne			×	
FWGLL2mw-2620-0384-GW	GW	- 8	-	WATER	11	AMBER	2 None	ne e			×	
FWGLL2mw-262C-0384-GW	GW.	-	+	WATER	11	AMBER	2 None	ne e			×	
FWGLL2mw-262C-0384-GW	QW WD		+	WATER	7	AMBER	2 None	ne			×	
PWCHEWOLT2mw-262C-0384-GW	CW		-	WATER	<u></u>	AMBER	2 None	3e			×	
-FMGLL2mw-262C-0384-GW	CM.		+	WATER	40ml	THOM NOT	TOH E	Г		1	×	04
FWGLL2mw-262C-0384-GW	GM		4	WATER	250mL	PLASTIC	1 NaOH	오			×	e 1
FWGLL2mw-262C-0384-GF	GF	H	۲	WATER	1000mL	PLASTIC	1 Conc	nc HNO3			×	ag
												F
* 0 1/4 & A	Ambers											
Special Instructions												
Possible Hazard Identification Non-Hazard Flai	ication Skin Irritant		☐ Poison B	В 🔲 Илкломп	Sample Disposal Return To Client	loo' l	☐ Disposal By Lab	By Lab (Archive For	Months	(A fee may be assessed if samples are retained longer than 3 months!	es are
Turn Around Time Required Normal Rush	h Other			GC Lavel	□ <i>III</i> .	Project S _i	pecific Requ	Project Specific Requirements (Specify)	(pecify)			B on
S F				Date 1-22-5	Time 11, 144	1. Received By		X/CK	RAWISTA	0	1-22-47 Time	ndix ant
2 Relinquished By XICL	· Rose	EC C		P2207	Time 8 cd		Sums	5			1/23/07 08C	O ppe
3. Relinquished By		_		Date	Time	3. Received By	ed By				Date	Nor
Comments Comments Comments Comments Comments	is with the Sample: CA	NARY - Patroneo	Office of the control	t with Boond: DIM	K - Field Cook							STL
		ことてく ししこうかつ	5		7.00							

Chain of Custody Record

CHAIN OF CUSTODY NUMBER

* 0 1 2 9 5 8 - 0 2 9 *

Sovern Trant I	TRENT	SEVERN
shorstories l	TIC	フィー フィー・

ഗ
Α.
"
- 2
æ
~
3
Severn Ti
_
rent
æ
=
Laborat
נפ
X
\simeq
7.
, w
=
<u>9</u>
₩.
32
atories,
-
=
7
Inc
•

STL4149 (1202)		*	7 2	φ 1	2 9	*							
Client Spec Pro			Project Manager Chantelle Carroll	e Carroi:			Date 01	Date 01/11/2007	1-22-07	Page	ē	29 of	4-
Address 8451 State Route 5	:		Telephone Num (000)	Telephone Number (Area Code)/Fax Number (000) / (000)	de)/Fax Number (000)		Lat S1	Lab Location STL North Canton	anton			Analysis	
City State Ravenna OH	Zip Code 44266		Site Contact Chantelle	e Carroll						<u>ນ ≭</u> ດ ດ	0 C	C	
Project Number/Name Ravenna			Carrier/Waybill Number	Number						2 8 8	8 -3 8	F G Z 0 3	
CONTRACT / PURCHASE ORDER # :								QUOTE: 63240	240	6 7 8 0 0 2	D 3	L L 0 0	
Sample I.D. Number and Description	Date	Time	Sample Type		Containers Type	\vdash	Preservative	Condition o	Condition on Receipt/Comments	Г В	S -	Г	
FWGLL2MW-263C-0385-GW	1-22-07	12:53	WA LER	= =	AMBER	2 1	None			+	×	×	
FWGLLZMW-Z63C-0385-GW		_	WATER	11	AMBER	+	None				X		
FWGLLZMW-Z63C-O385-GW			WATER	11	AMBER	72	None						
FWGLL2MW-263C-0385-GW			WATER	11.	AMBER		None			x			5
EWIG1 L 20W-263C-0385=C9		7	MA TEN	40mL	ONL VIX	-	HCE.			*			10
FWGLL2mw-263C-0385-GW			WATER	250mL	PLASTIC		NaOH					×	je
FWGLLZmw-Z63C-0385-GF	}	1	WATER	1000mL	PLASTIC	_	Conc HNO3					×	Pag
6						-				 	\pm		
The Charles of the Control of the Co						-							
						_							
					:								
Special Instructions													
Possible Hazard Identification Non-Hazard Flammable Skin Irritant		☐ Poison B	☐ Unknown	Sample Disposal Return To Client	ent	☐ Disposal	sal By Lab	Archive For	Months	(A fee retains	may be a	(A fee may be assessed if samples are retained longer than 3 months)	nples are ;)
Turn Around Time Required Normal Rush Other	¥(OC Lavel	□ <i>III</i> .	Project S	pecific R	Project Specific Requirements (Specify)	specify)					В
1. Reginquished By Ham			1-22-0	Time 1		ed By	Nox Nox	Take	asoul		Date 2	7 7	Time X
2 Relinquished By S/C/(SSSY + 3 Relinquished By	7.43		F22 A	Time of	2. Receive		ALON TO THE	hitus			3	A 1	
3. Relinquished By	_		Date	Time	3. Кесети	ed By	ı	•		تــ	Date	7.	Time -

23

Record Chain of Custody

STL4149 (1202)

ü

TRENT	SEVERN
JIL	。 TH の TH

Severn Trent Laboratories, Inc.

Client		Project Manager	,			Date	afe	٠.,	-
Spec Pro		Chantelle Carroll	Carro+				10-66-1 +003/11/10	Pageof	4 -
Address		Telephone Number (Area Code)/Fax Number	ber (Area Code)	/Fax Number		La	Lab Location	Analy	
		Care,	, ,	(000)		L	CIT ROLLING CONTINUES	B	
Ravenna OH 44266		Chantelle	Carroll						
Project Number/Name Ravenna		Carrier/Waybill Number	vumber					2 8 8 8 8 E Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :							QUOTE: 63240	6 7 8 3 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
Sample I D. Number and Description Date	Time	Sample Type	Co	Containers		Prosenzative	Condition on Receint/Comments) —	
Description	⊢	Sample Type	Volume	Туре	8	roser valive	\vdash		
1-42-07	16:25	WATER	1	AMBET		None		× ×	
FINGER CHARLES TO SO FIGH	-	7 0 0	ř	AMBOO	_	ā		*	
TWGBXGMX-0160-0467-GX		WAIEK	ŕ	AMBIT	-	None		×	
FWGBKGMW-018C-036/-GW		WATER	11	AMBER		None		×	
-WGBKGmw-018C-0367-GW		WATER	1 L	AMBER	\vdash	None		×	5
THUBICANT OTHE GUET CM	1	MALER	40m-	40ML VIA	d	#		*	100
FWGBKGmw~018C~036/~GW		WATER	250mL	PLASTIC		NaOH		X	je
FWGBKGMW-018C-0367-GF	+	WATER	TWOOOL	PLASTIC		Conc HNO3		×	aç
									F
					_				
					_				
* Only & Ambers									
Special Instructions									
Possible Hazard Identification Non-Hazard	Poison B	□ Олкпошп	Sample Disposal Return To Client	ent	☐ Dispo	Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)	oles are
Turn Around Time Required Normal Rush Other		OC Lavel	□ <i>#</i> !.	Project S	pecific R	Project Specific Requirements (Specify)	Specify)		B on
1. Relinquished By		Date 1-22-07	Nime (0'146	1. Received By	/ed By	Tick	Townson	122-07 1	Time padix Cala
2. Relinquished By TICIL TORISING		12207	1808	2. Received By	Q ed By	Swas	Ś	2300	OSOO th
3. Relinquished By		Date	Time	3. Received By	/ed By			Date	 Nor
Comments									STL
THE PARTY OF THE P									(

Record Chain of Custody

STL4149 (1202)

Severn Trent Laboratories, Inc.

Client			Project Manager	,			מ	Date		-	-
pec Pro			Chantelle Carroll	Carroli			0	01/11/2007 1-22-07	Page	of _	\$ -
			Telephone Number (Area Code)/Fax Number	ber (Area Code).	/Fax Number		La	Lab Location		A	
451 State Route 5		<u> </u>	(000)	/ (0	(000)		S	STL North Canton		Analysis	
City State	Zip Code		Site Contact						æ Ω	г С	
avenna OH	44266		Chantelle Carroll	Carroll					S C 0	C C N 6	
Project Number/Name		•	Carrier/Waybill Number	vumber					0 B 0 B 1 B	- m - z - 0	
									7 1	- r	
Contract/Purchase Order/Quote Number ONTRACT / PURCHASE ORDER # :								QUOTE: 63240	N 60	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Sample I.D. Number and Description	Date	Time	Sample Type	Cor	Containers		Preservative	Condition on Receipt/Comments	· –		
			WALL .	Volume	Туре	, ŏ			+ -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
T 7 4 5 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-07	1.44	WAICK	-	13007	,	MOTION			>	
FRGBKGMW-006C-0359-GW		_	WAINT	7	ASBUT	N	None			×	
+WGBKGMW-006C-0359-GW			WATER	11	AMBER	72	None		×		
FWGBKGMW-006C-0359-GW			HAIER	11	ANBER	N	None		×		
FWGBKGmw-006C-0359-GW			WATER	11	AMBER	2	None		×		,
- I MODROM - 806C-0359-1W			MATER	40m	THE THE	3	\neg		*		10]
FWGBKGMW-006C-0359-GW		_	WATER	250mL	PLASTIC	_	NaOH			×	е
FWGBKGMW-006C-0359-GF	1-	+	WATER	1000mL	PLASTIC	_	Conc HND3			×	ag
											F
* ONLY & Ambers											
-						†			+		
Special Instructions											
Possible Hazard Identification Non-Hazard Flammable Skin Initant		□ Poisan B	□ Uпкпоwп	Sample Disposal Return To Client	osal o Client	□ Dis	☐ Disposal By Lab	Archive For Months	(A fee may i retained fon	(A fee may be assessed if samples are retained longer than 3 months)	nples are
Turn Around Time Required Rush Other_	7		OC Lavel	□ #.	Project	Specific	Project Specific Requirements (Specify)	Specify)			B on
1. Relinquished By			Date Co-CC-1	Time 1, . 4	1. Reco	1. Received By	X > X	Tookshill	→ Dat	Date ナ2シーロブ	endix ant
2 Relinquished By \[\text{NCY TOBIC_V.}	ゾベン	:	1-22-57	(80e)		2. Received By	BANK		.][] Jeg	1 CO[52][1508 8U
3. Relinquished By	,		Date	Time	3. Recu	3. Received By			Date		Time No r
Comments											STL
			:)	1							

Record Chain of Custody

Severn Trent Laboratories, Inc. SEVERN

STL4149 (1202)		*	С	1 2 9 5	o=	0	*					
Client				Project Manager	1			Date				
Spec Pro				Chantelle Carroll	e Carroli			<u>_</u>	0-66-1-2002-1-46-0	Page	400	1
Address				Telephone Nun	Telephone Number (Area Code)/Fax Number	/Fax Number		Lab	Lab Location			
8451 State Route 5				(000)	/ (000)	00)		ST	STL North Canton		Analysis	
Слу	State Z	Zip Code		Site Contact				•		N N	3 8 LINICOMINI 9 5	\exists
Ravenna	오	44266		Chantelle Carroll	e Carroll					S	0 C C C N 6 0	
Project Number/Name				Carrier/Waybill Number	Number					C0 C0	8 8 E 2 - 0 3	
Ravenna										2 2 0	131611	
Contract/Purchase Order/Quote Number										7	3 - 0	
CONTRACT / PURCHASE ORDER # :								_	QUOTE: 63240	0 0 2	2 D O L L Q : 2	
Sample I.D. Number and Description		Date	Time	Sample Type	Cor	↓	1	Preservative	Condition on Receipt/Comments	 - C	(n	
	_				Volume	Ľ	+			1	(F
FWGBKGmw-015C-0364-GW	_	-22-07	14:24	WATER	1L	AMSER		None			XX	
FWGBKGmw-015C-0364-GW		_	_	WATER	ř	AMBER	N	None			×	
FWGBKGmw-015C-0364-GW			_	WATER	11	AMBER	22	None			×	\dashv
FWGBKGmw~015C-0364-GW	-		_	WATER	11	AMBER	2	None		×		\dashv
FWGBKGmw-015C-0364-GW		_	_	WATER	11	AMBER	N	None		×		
EWGBKGmw 0150-6361 GW			-	WATER	40m)	VIA INOP	lu u	HCL		*		80
FWGBKGmw-015C-0364-GW			J	MATER	250mL	PLASTIC		NaOH			×	e.
FWGBKGmw-0150-0364-GF		1-)-	MATER	1000mL	PLASTIC		Conc HN03			×	Pag
										_		
										-		
												F
Special Instructions												}

Comments 3 Relinquished By Possible Hazard Identification ☐ Normal Turn Around Time Required ☐ Non-Hazard ☐ Rush ☐ Flammable Other_ Skin Irritant (08 15 W/P Paison B QC Lavel ☐ Unknown Return To Client Sample Disposal Project Specific Requirements (Specify) Disposal By Lab Archive For Months (A fee may be assessed if samples are retained longer than 3 months) Time 6 Panton STL North

STL Cooler Receip	t Form/Narrative	Lot Numb	er:1742301	01
North Canton Facil				
Client: Spec PM	Project: Pavle	nna	Quote# 6324 ()
Cooler Received on: 1/2	3/07 Opened on: 1/2	3107	by: J Burns	(Signature)
Fedx Client Drop Off		S STL Courier		
Stetson US Cargo	Other:	_	• • • • • • • • • • • • • • • • • • •	
STL Cooler No#	Foam Box	Client Cooler		<u> </u>
1. Were custody seals on	the outside of the cooler? Yes	No 📙	Intact? Yes 🔼 No 🗀	NA □
If YES, Quantity	\mathcal{Q}_{-}			¬
Were the custody seals	_		Yes 🔼 No 🗌 NA 🖺	
2. Shipper's packing slip			Yes No NA L	
	company the samples?Yes \(\sime\) No		Relinquished by client? Ye Yes ⊠'No □	s th no l
	dy papers in the appropriate place		Yes K NO K	
	Bubble Wrap Foam Foam	-		-
	on receipt °C (see back of Coolant & Sample A	gainst Bottles		Slurry 🔲
COOLANT: Wet Ice		¥ —	None None	
	good condition (Unbroken)?		Yes No	
	and/or tags be reconciled with the	COC?	Yes No	
9. Were samples at the co		000;		
10. Were correct bottles us			Yes No	
11. Were air bubbles >6 m			Yes . No NA	
	eived to perform indicated analys	es?	Yes No	
	sent in the cooler? Yes No			
Contacted PM		via V	oice Mail 🔲 Verbal 🔲 (Other 🗌
Concerning:				
√.				
1. CHAIN OF CUSTOD				
The following discrep	pancies occurred:	/	1. 1.11 1.4	. /.
	3-GW is morted to	". motal.	s. Will 105	me tals
6x 059C-3	383-GF	is masker	1 for 106s. W	11 /20
	F on COC 272424			/// /*3
2. SAMPLE CONDITION	,	AS MOTOR VI	n COC 78020.	
Sample(s)		received after the	recommended holding time	e had expired.
Sample(s)		ere received in a br		
3. SAMPLE PRESERVA		***		
Sample(s)		were further p	reserved in sample receivi	ng to meet
	el(s). Nitric Acid Lot #110106 - Sulfuric A		_	-
	0504-HCl; Sodium Hydroxide and Zinc Acet	ate Lot # 071604-CH3C	OO2ZN/NaOH	
Sample(s)		eived with bubble	> 6 mm in diameter (cc: P	M)
4. Other (see below or bo	ick)			
			4.00	
Chart ID	~Ш	·	Date	Initials
Client ID	<u>pH</u> ∠2. →	13	1/23/07	JB
0384		12	1125/01	<u> </u>
0.367		/ 3	 	
0383	42 62 71			

STL Cooler Receipt Form/Narrative **North Canton Facility Initials** Client ID 710 Method Coolant Cooler Temp N NO# STL VBOOL Discrepancies Cont.

CASE NARRATIVE

A7A240102

The following report contains the analytical results for twenty-two water samples and one quality control sample submitted to STL North Canton by Spec Pro from the FWGWMP RVAAP Site, project number 001074.0001. The samples were received January 24, 2007, according to documented sample acceptance procedures.

The Explosives, Nitroguanidine, and Nitrocellulose as N analyses were performed at STL Sacramento. Refer to STL Sacramento narrative included in their data package for additional information.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carroll and Valarie Ann Mariola on February 12, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at temperatures ranging from 1.7 to 3.1°C.

Appendix B

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL1mw-083C-0382-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate(s) for batch(es) 7026072 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL1mw-083C-0382-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate(s) for batch(es) 7024063 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

Samples FWGWBGmw-007C-0391-GW and FWGLL1mw-078C-0297-GW had up to one surrogate recovery per fraction outside acceptance limits. However, since the recovery was greater than 10% and all associated QC met criteria, no corrective action was taken.

Appendix B

CASE NARRATIVE (continued)

PESTICIDES-8081

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGLL1mw-083C-0382-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The reporting limits are elevated due to matrix interference for sample FWGLL1mw-083C-0382-GW.

POLYCHLORINATED BIPHENYLS-8082

The analytical results met the requirements of the laboratory's QA/QC program.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

Serial dilution of a sample in this lot indicates that physical and chemical interferences were present. Refer to the sample report pages for the affected analytes flagged with "E".

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDs that exceed 20%.

CASE NARRATIVE (continued)

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

OUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is repreped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be repreped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#QUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence – Participating Lab Status Award (#82)

Appendix B

C:\DOCUME~1\armans\LOCALS~1\Temp\Narrative 040306.docRevised 04/03/06 DJL

Page C - 6

Sample ID:

FWGLL1mw-083C-0382-GW

Lab ID:

A7A240102-001

01/23/07 11·56AM

Receipt Date:

01/24/07 7:15AM

Sampling Date:	01/23/07 11:56AM			Matrix	: 1	NATER Prep-	
Parameter	<u>:</u>	Result		Units	RL	Analysis Date	Analyst
			GC Semivola	tile Organic	s		
PCBs (8082)				4-			
Aroclor 1016		ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1221		ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1232		ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1242		ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1248	And the second second	121D	to the second	ug/L	050	01/25- 01/30/07	LH
Aroclor 1254		ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1260		ND		ug/L	0.50	01/25- 01/30/07	LH
Pesticides (8081A)							
Dieldrin		ND		ug/L	0.30	01/25- 01/30/07	CSV
Endosulfan I		ND		ug/L	0.25	01/25- 01/30/07	csv
Endosulfan II	T.	ND		ug/L	0.25	01/25- 01/30/07	CSV
Endosulfan sulfate	•	ND		ug/L	0.30	01/25- 01/30/07	CSV
Endrin		ND		ug/L	0.30	01/25- 01/30/07	csv
Endrin aldehyde		ND		ug/L	0.30	01/25~ 01/30/07	csv
Endrin ketone	,	ND		ug/L	0.30	01/25- 01/30/07	csv
Heptachlor		ND		ug/L	0.30	01/25- 01/30/07	csv
Heptachlor epoxide		ND		ug/L	0.30	01/25- 01/30/07	csv
Methoxychlor		ND		ug/L	1.0	01/25- 01/30/07	csv
alpha-BHC		ND		ug/L	0.30	01/25- 01/30/07	csv
beta-BHC		0.086	J	ug/L	0.30	01/25- 01/30/07	CSV
delta-BHC		ND		ug/L	0.30	01/25- 01/30/07	csv
gamma-BHC (Lindane)		ND		ug/L	0.30	01/25- 01/30/07	csv
Toxaphene		ND ·		ug/L	20	01/25- 01/30/07	csv
alpha-Chlordane		ND		ug/L	0.30	01/25- 01/30/07	csv
gamma-Chlordane		ND		ug/L	0.30	01/25- 01/30/07	csv
Aldrin		ND		ug/L	0.30	01/25- 01/30/07	csv
4,4'-DDD		ND		ug/L	0.30	01/25- 01/30/07	csv
4,4'-DDE		ND		ug/L	0.30	01/25- 01/30/07	csv
4,4'-DDT		ND		ug/L	0.30	01/25- 01/30/07	CSV
J Estimated resul	t. Result is less t	han RL.					

			Speci	TO THE				
Sample ID: Lab ID: Sampling Date:	FWGLL1mw-083C- A7A240102-001 01/23/07 11:5			Receipt Matrix:		01/24/07 WATER	7:15AM	
Paramet	er	Result		Units	<u>RL</u>	Analysis	_	Analyst
Nitroaromatics & 1,3-Dinitrobenzen	_	losives (8330))	ug/L	0.49	01/29-	02/03/07	FK
2,4-Dinitrotoluen	e	3.2		ug/L	0.49	01/29-	02/03/07	FK
2,6-Dinitrotoluen	e	1.4		ug/L	0.49	01/29-	02/03/07	FK
Nitrobenzene		ND .	-	ug/L	0.49	01/29-	02/03/07	FK
1,3,5-Trinitroben	zene	7.2		ug/L	0.49	01/29-	02/03/07	FK
2,4,6-Trinitrotol	uene	6.5		ug/L	0.49	01/29-	02/03/07	FK
нмх		0.27	J	ug/L	0.49	01/29-	02/03/07	FK
RDX		ND	,	ug/L	0.49	01/29-	02/03/07	FK
Tetryl	•	ND		ug/L	0.49	01/29-	02/03/07	FK
2-Nitrotoluene		ND		ug/L	2.5	01/29-	02/03/07	FK
3-Nitrotoluene		ND		ug/L	2.5	01/29-	02/03/07	FK
4-Nitrotoluene		ND		ug/L	2.5	01/29-	02/03/07	FK
4-Amino-2,6-dinit	rotoluene	30		ug/L	0.49	01/29-	02/03/07	FK
2-Amino-4,6-dinit	rotoluene	18		ug/L	0.49	01/29-	02/03/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC Di	ssolved ND		ug/L	20	02/02-	02/03/07	FK
J Estimated resu	ult. Result is le	ess than RL.						
		GC/M	S Semivol	atile Organio	cs			
Base/Neutrals and Diethyl phthalate		ND	Ť	ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylpheno	1	ND		ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalat	e	ND		ug/L	1.0	01/24-	01/31/07	JMG
Di-n-octyl phthal	ate	0.88	J	ug/L	1.0	01/24-	01/31/07	JMG
4,6-Dinitro-2-met	hylphenol	ND		ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrophenol		ND		ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrotoluen	е	1.4	J	ug/L	5.0	01/24-	01/31/07	JMG
2,6-Dinitrotoluen	е	0.64	J	ug/L	5.0	01/24-	01/31/07	JMG
Anthracene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Fluoranthene		ND.		ug/L	0.20	01/24-	01/31/07	JMG
Fluorene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobenzene		ND		ug/L	0.20	01/24-	01/31/07	JMG

Page 112 /L

1.0

01/24- 01/31/07

JMG

ND

Hexachlorobutadiene Appendix B

Receipt Date:

01/24/07

7:15AM

Sample ID: Lab ID:

FWGLL1mw-083C-0382-GW

A7A240102-001

WATER Sampling Date: 01/23/07 11:56AM Matrix: Prep-Analysis Date Units Result RLAnalyst Parameter Base/Neutrals and Acids (8270C) 10 01/24- 01/31/07 Hexachlorocyclopentadiene ND ug/L JMG 1.0 01/24- 01/31/07 Hexachloroethane ND ug/L JMG 0.20 01/24- 01/31/07 Indeno(1,2,3-cd)pyrene ND ug/L JMG Isophorone ND ug/L 1.0 01/24- 01/31/07 JMG 2-Methylnaphthalene ND ug/L 0.20 01/24- 01/31/07 JMG 2-Methylphenol ND ug/L 1.0 01/24- 01/31/07 JMG 01/24- 01/31/07 4-Methylphenol ND ug/L 1.0 JMG 0.20 01/24- 01/31/07 Naphthalene ND ug/L TMG 2.0 01/24- 01/31/07 2-Nitroaniline NΠ JMG ug/L 3-Nitroaniline 2.0 01/24- 01/31/07 ND ug/L JMG 4-Nitroaniline ND ug/L 2.0 01/24- 01/31/07 JMG Nitrobenzene ND ug/L 1.0 01/24- 01/31/07 JMG 2-Nitrophenol 2.0 01/24- 01/31/07 JMG ND ug/L 01/24- 01/31/07 4-Nitrophenol ND ug/L 5.0 JMG Benzo(a)anthracene 0.20 01/24- 01/31/07 JMG ND ug/L N-Nitrosodi-n-propylamine 1.0 01/24- 01/31/07 JMG ND ug/L 01/24- 01/31/07 1.0 JMG N-Nitrosodiphenylamine ND ug/L 01/24- 01/31/07 Benzo(b) fluoranthene ND ug/L 0.20 JMG Benzo(k) fluoranthene ND ug/L 0.20 01/24- 01/31/07 JMG Benzoic acid ND 10 01/24- 01/31/07 JMG uq/L Benzo(ghi)perylene ND 0.20 01/24- 01/31/07 JМG ug/L ug/L 0.20 01/24- 01/31/07 JMG Benzo(a)pyrene ND Pentachlorophenol 5.0 01/24- 01/31/07 ND .TMG uq/L 5.0 01/24- 01/31/07 JMG Benzyl alcohol ND ug/L Phenanthrene ND ug/L 0.20 01/24- 01/31/07 JMG Phenol ND 1.0 01/24- 01/31/07 JMG ug/L Pyrene ND ug/L 0.20 01/24- 01/31/07 JMG 01/24- 01/31/07 1,2,4-Trichlorobenzene ND ug/L 1.0 JMG 2,4,5-Trichlorophenol ND 5.0 01/24- 01/31/07 JMG ug/L 2,4,6-Trichlorophenol 01/24- 01/31/07 ND 5.0 JMG ug/L Page 113 01/24- 01/31/07 Carbazole ND 1.0 JMG Appendix B

Sample ID:

FWGLL1mw-083C-0382-GW

Lab ID: A7A240102-001

01/23/07 11·56AM

Receipt Date:

01/24/07 7:15AM

Sampling Date:	01/23/07 11:56A	M.		Matrix:		WATER Prep-	
Parame	ter	Result		Units	RL	Analysis Date	Analyst
Base/Neutrals and bis(2-Chloroethox		ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethy)	l) ether	ND		ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chl	Loropropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl)	phthalate	5.3	JВ	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phe	enyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phti	nalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene		ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline		ND		ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methyl	Lphenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthale	ene	ND		ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol		ND		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl ph	nenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Chrysene		ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthra	acene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran		ND		ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthal	Late	ND		ug/L	1.0	01/24- 01/31/07	JМG
1,2-Dichlorobenze	ene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenze	ene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenze	ene	ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenz	zidine	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichloropheno	ol	ND		ug/L	2.0	01/24- 01/31/07	JMG
						•	

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

------ GC/MS Volatile Organics ------Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE Acetone ND ug/L 10 01/25/07 LEE Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ND ug/L 10 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND 10 01/25/07 LEE Page 114 Page 114 Benzene 1.0 01/25/07 LEE Appendix B

Estimated result. Result is less than RL.

Sample ID:

FWGLL1mw-083C-0382-GW

Lab ID:

A7A240102-001

Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER _

Sampling Date: 01/23/0/ 11:50	DAM	Matrix:	MATER Prep-		
Parameter_	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, GC/MS (8260B)					
Styrene	ND	ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
Toluene	ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromoform	ND	ug/L	1.0	01/25/07	LEE
Bromomethane	ND	ug/L	1.0	01/25/07	LEE
2-Butanone	ND	ug/L	10	01/25/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND ·	ug/L	1.0	01/25/07	LEE
Chloroethane	ND	ug/L	1.0	01/25/07	LEE
Chloroform	ND	ug/L	1.0	01/25/07	LEE
Chloromethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene (total)	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE

----- General Chemistry -----

Sample ID:

FWGLL1mw-083C-0382-GW

Lab ID:

A7A240102-001

.Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER Prep

Parameter	Result	Units	RL	Prep- Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND .	mg/L	0.010	01/25/07	SS
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGLL1mw-083C-0382-GF

Lab ID:

A7A240102-002

Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER Prep-

	Parameter			Result		Units	RL	Prep- Analysis Date	Analyst
					Metal	.s			
Inductively Arsenic	Coupled	Plasma	(6010B T	race) ND		ug/L	5.0	01/25/07	LRW
Lead				ND		ug/L	3.0	01/25/07	LRW
Selenium				ND	i	ug/L	5.0	01/25/07	LRW
Inductively Magnesium	Coupled	Plasma	(6010B)	4120	E	ug/L	1000	01/25/07	LRW
Manganese				374	E	ug/L	10.0	01/25/07	LRW
Barium				15.6		ug/L	10.0	01/25/07	LRW
Nickel				20.2		ug/L	10.0	01/25/07	LRW
Potassium				2210	JE	ug/L	1000	01/25/07	LRW
Silver				ND		ug/L	5.0	01/25/07	LRW
Sodium				12000		ug/L	1000	01/25/07	LRW
Vanadium				ND		ug/L	10.0	01/25/07	LRW
Chromium				ND		ug/L	5.0	01/25/07	LRW
Calcium				16100	J E	ug/L	1000	01/25/07	LRW
Cobalt				6.4		ug/L	5.0	01/25/07	LRW
Copper				3.2	В	ug/L	5.0	01/25/07	LRW
Inductively	Coupled	Plasma	Mass Spe	ctrometry(60)	20)				
Antimony			.	0.95	В	ug/L	2.0	01/25- 01/30/07	BD
Iron	•			74.0		ug/L	20.0	01/25- 01/30/07	BD
Beryllium				0.27	В	ug/L	1.0	01/25- 01/30/07	BD
Thallium				0.085	В	ug/L	1.0	01/25- 01/30/07	BD
Zinc				35.0	J	ug/L	10.0	01/25- 01/30/07	BD
Cadmium				0.34	В	ug/L	0.50	01/25- 01/30/07	. BD
Aluminum				612		ug/L	50.0	01/25- 01/30/07	BD
Mercury (74 Mercury	70A, Colo	d Vapor)	- Liqui	d ND		ug/L	0.20	01/25/07	ML

Estimated result. Result is less than RL.

Matrix interference.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGWBGmw-006C-0390-GW

Lab ID:

A7A240102-003

Sampling Date:

01/23/07 9:52AM

Receipt Date:

01/24/07 7:15AM

Matrix:

Sampling Date:	01/23/07	9:52AM		Matrix:		WATER Prep-	
Parameter	<u>r_</u>		Result	Units	RL	Analysis Date	Analyst
			GC Semiv	olatile Organics			
PCBs (8082)							
Aroclor 1016			ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1221			ND	ug/L	0.50	01/25~ 01/30/07	LH
Aroclor 1232			ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1242			ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1248			ND	ug/L	050	01/25- 01/30/07	LH
Aroclor 1254			ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1260		•	ND	ug/L	0.50	01/25- 01/30/07	LH
Pesticides (8081A)							
Dieldrin			ND	ug/L	0.030	01/25- 01/27/07	csv
Endosulfan I			ND	ug/L	0.025	01/25- 01/27/07	csv
Endosulfan II			ND	ug/L	0.025	01/25- 01/27/07	csv
Endosulfan sulfate			ND	ug/L	0.030	01/25- 01/27/07	csv
Endrin			ND	ug/L	0.030	01/25- 01/27/07	csv
Endrin aldehyde			ND	ug/L	0.030	01/25- 01/27/07	CSV
Endrin ketone			ND	ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor			ND	ug/L	0.030	01/25- 01/27/07	csv
Heptachlor epoxide		•	ND	ug/L	0.030	01/25- 01/27/07	csv
Methoxychlor			ND	ug/L	0.10	01/25- 01/27/07	csv
alpha-BHC			ND	ug/L	0.030	01/25- 01/27/07	csv
beta-BHC			ND	ug/L	0.030	01/25- 01/27/07	csv
delta-BHC			ND	ug/L	0.030	01/25- 01/27/07	csv
gamma-BHC (Lindane))		ND	ug/L	0.030	01/25- 01/27/07	csv
Toxaphene			ND	ug/L	2.0	01/25- 01/27/07	csv
alpha-Chlordane			ND	ug/L	0.030	01/25- 01/27/07	CSV
gamma-Chlordane			ND	ug/L	0.030	01/25- 01/27/07	csv
Aldrin			ND	ug/L	0.030	01/25- 01/27/07	CSV
4,4'-DDD			ND	ug/L	0.030	01/25- 01/27/07	CSV
4,4'-DDE			ND	ug/L	0.030	01/25- 01/27/07	CSV
4,4'-DDT			ND	ug/L	0.030	01/25- 01/27/07	CSV

----Appendix B

----Page 1118

Sample ID: Lab ID: Sampling Date:

FWGWBGmw-006C-0390-GW

A7A240102-003 01/23/07 9:52AM Receipt Date:

01/24/07 7:15AM

Matr	ix:	WATER

Sampling Date: 01/23/07 9:	52AM	Matrix:		WATER Prep-		
Parameter	Result	Units	RL	Analysis Date	Analyst	
Nitroaromatics & Nitramines: Ex	plosives (8330) ND	ug/L	0.50	01/29- 02/03/07	FK	
2,4-Dinitrotoluene	ND	ug/L	0.50	01/29- 02/03/07	FK	
2,6-Dinitrotoluene	ND	ug/L	0.50	01/29- 02/03/07	FK	
Nitrobenzene	ND	ug/L	0.50	01/29- 02/03/07	FK	
1,3,5-Trinitrobenzene	ND	ug/L	0.50	01/29- 02/03/07	FK	
2,4,6-Trinitrotoluene	ND	ug/L	0.50	01/29- 02/03/07	FK	
нмх	13	ug/L	0.50	01/29- 02/03/07	FK	
RDX	53	ug/L	0.50	01/29- 02/03/07	FK	
Tetryl	ND	ug/L	0.50	01/29- 02/03/07	FK	
2-Nitrotoluene	ND	ug/L	2.5	01/29- 02/03/07	FK	
3-Nitrotoluene	ND	ug/L	2.5	01/29- 02/03/07	FK	
4-Nitrotoluene	ND	ug/L	2.5	01/29- 02/03/07	FK	
4-Amino-2,6-dinitrotoluene	ND	ug/L	0.50	01/29- 02/03/07	FK	
2-Amino-4,6-dinitrotoluene	ND	ug/L	0.50	01/29- 02/03/07	FK	
Organic Compounds by UV/HPLC D Nitroguanidine	issolved ND	ug/L	20	02/02- 02/03/07	FK	
	GC/MS Se	emivolatile Organics	s	·		
Base/Neutrals and Acids (8270C)	170		1.0	01/04 01/01/05	77.0	
Diethyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2,4-Dimethylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG	
Dimethyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG	
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,6-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Hexachlorobutadiene Appendix B	ND	Page 119 ^{/L}	1.0	01/24- 01/31/07	JMG	
• •		•				

Sample ID:

FWGWBGmw-006C-0390-GW

Lab ID: Sampling Date: A7A240102-003

01/23/07 9:52AM

Receipt Date: Matrix:

01/24/07 7:15AM

WATER

Sampling Date: 01/23/07 9:52A	M	Matrix:		WATER Prep-		
<u>Parameter</u>	Result	<u>Units</u>	<u>RL</u>	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C)			4			
Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG	
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG	
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG	
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG	
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Benzo(a) anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG	
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Benzo(b) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzo(k)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG	
Benzo(ghi)perylene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Carbazole Appendix B	ND	Page 120	1.0	01/24- 01/31/07	JMG	

Sample ID:

FWGWBGmw-006C-0390-GW

Lab ID:

A7A240102-003

Receipt Date:

01/24/07 7:15AM

Sampling Date:	01/23/07 9:52AM			Matrix:	WA	TER	
Paramet	er_	Result		Units	<u>RL</u>	<u>Prep-</u> Analysis Date	Analyst
Base/Neutrals and bis(2-Chloroethoxy		ND	·	ug/L	10	01/24- 01/31/07	JMG
bis(2-Chloroethyl)	ether	ND		ug/L	1.0	01/24- 01/31/07	JMG .
2,2'-0xybis(1-Chlo	oropropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl)	phthalate	3.1	J В	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl pher	nyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phtha	alate	ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene		ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline		ND		ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylr	phenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthaler	ie ,	ND .		ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol		ND		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phe	enyl ether	ND	•	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene		ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthrac	cene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran		ND		ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthala	ate	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzer	ne	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzer	ne	ND		ug/L	1.0	01/24- 01/31/07	JМG
1,4-Dichlorobenzer	ne	ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenz	idine	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol	L .	ND		ug/L	2.0	01/24- 01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable В level.

ND

Benzene

Appendix B

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE ug/L 10 01/25/07 LEE Acetone ND ND ug/L 1.0 01/25/07 LEE Ethylbenzene 10 01/25/07 LEE 2-Hexanone ND ug/L LEE Methylene chloride ND ug/L 2.0 01/25/07 10 LEE 4-Methyl-2-pentanone ND ug/L 01/25/07

Page 12^{ug/L}

1.0

01/25/07

LEE

------ GC/MS Volatile Organics ------

[·]J Estimated result. Result is less than RL.

Sample ID:

FWGWBGmw-006C-0390-GW

Result

ND

ND

ND

ND

ND

ND

ND

ND

ИD

ND

ND

ND

ND

ND

ND

ND

MD

ND

Lab ID:

Styrene

Toluene

A7A240102-003

Receipt Date:

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

10

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

01/25/07

01/25/07

01/25/07

LEE

LEE

LEE

01/24/07

7:15AM

Sampling Date:

Parameter

Volatile Organics, GC/MS (8260B)

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Vinyl chloride

Xylenes (total)

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

1,2-Dibromoethane

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

cis-1,3-Dichloropropene

1,2-Dichloroethene (total)

Chloroform

Carbon tetrachloride

Dibromochloromethane

2-Butanone

Bromochloromethane

Bromodichloromethane

01/23/07 9:52AM

Matrix:

Units

ug/L

WATER _	
Prep- Analysis Date	Analyst
01/25/07	LEE
01/25/07	LEE .
01/25/07	LEE

----- General Chemistry -----

Sample ID:

FWGWBGmw-006C-0390-GW

Lab ID:

A7A240102-003

Receipt Date:

01/24/07

7:15AM

Sampling Date:	01/23/07	9:52AM		Matrix:	1	WATER Prep-	
Paramete	<u>r.</u>	Result		Units	RL	Analysis Date	Analyst
Cyanide, Total Cyanide, Total		ND		mg/L	0.010	01/26/07	BLW
Nitrocellulose as Nitrocellulose	N by 353.2	0.13	В.	mg/L	0.50	02/02- 02/07/07	DTA

Estimated result. Result is less than RL.

Sample ID:

FWGWBGmw-006C-0390-GF

Lab ID: Sampling Date: A7A240102-004

01/23/07 9:52AM

Receipt Date:

01/24/07 7:15AM

Matrix:

WATER Prep-

	Parameter			Result		Units	RL	Prep- Analysis Date	Analyst
				· · · · · · · · · · · · · · · · · · · ·	Met	als			
Inductively Arsenic	Coupled	Plasma	(6010B T	race) ND		ug/L	5.0	01/25/07	LRW
Lead				ND		ug/L	3.0	01/25/07	LRW
Selenium				ND		ug/L	5.0	01/25/07	LRW
Inductively Magnesium	Coupled	Plasma	(6010B)	.21800		ug/L	1000	01/25/07	LRW
Manganese				59.2		ug/L	10.0	01/25/07	LRW
Barium				26.5		ug/L	10.0	01/25/07	LRW
Nickel				ND		ug/L	10.0	01/25/07	LRW
Potassium				812	вЈ	ug/L	1000	01/25/07	LRW
Silver			•	.ND		ug/L	5.0	01/25/07	LRW
Sodium	*			6200		ug/L	1000	01/25/07	LRW
Vanadium				ND		ug/L	10.0	01/25/07	LRW
Chromium				ND		ug/L	5.0	01/25/07	LRW
Calcium				66000	J	ug/L	1000	01/25/07	LRW
Cobalt				ND	•	ug/L	5.0	01/25/07	LRW
Copper				ND		ug/L	5.0	01/25/07	LRW
Inductively	Coupled	Plasma	Mass Spe	ctrometry(6020)	•.			
Antimony	-			1.0	В	ug/L	2.0	01/25- 01/30/07	BD
Iron				263		ug/L	20.0	01/25- 01/30/07	BD
Beryllium				ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium				0.030	В	ug/L	1.0	01/25- 01/30/07	BD
Zinc				3.4	ВЈ	ug/L	10.0	01/25- 01/30/07	BD ·
Cadmium				ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum				4.0	В	ug/L	50.0	01/25- 01/30/07	BD
Mercury (74 Mercury	70A, Col	d Vapor) - Liqui	d ND		ug/L	0.20	01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGWBGmw-007C-0391-GW

Lab ID:

A7A240102-005

01/23/07 9:58AM

Receipt Date:

01/24/07

7:15AM

Matrix:

Sampling Date:	01/23/07	9:58AM			Matri	ix:	WATER Prep-	
Parameter	<u>:</u>		Result		Units	<u>RL</u>	Analysis Date	Analyst
				GC	Semivolatile Organi	lcs		
PCBs (8082)								
Aroclor 1016			ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1221			ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1232			ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1242			ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1248	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ND	1.7	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1254			ND		ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1260			ND		ug/L	0.50	01/25- 01/30/07	LH
Pesticides (8081A)								•
Dieldrin			ND		ug/L	0.030	01/25- 01/27/07	CSV
Endosulfan I	•		ND		ug/L	0.025	01/25- 01/27/07	CSV
Endosulfan II			ИĎ		ug/L	0.025	01/25- 01/27/07	CSV
Endosulfan sulfate		•	ND		ug/L	0.030	01/25- 01/27/07	CSV
Endrin			ND		ug/L	0.030	01/25- 01/27/07	CSV
Endrin aldehyde			ND		ug/L	0.030	01/25- 01/27/07	CSV
Endrin ketone			ND		ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor			ND		ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor epoxide			ND		ug/L	0.030	01/25- 01/27/07	CSV
Methoxychlor			ND		ug/L	0.10	01/25- 01/27/07	CSV
alpha-BHC			ND		ug/L	0.030	01/25- 01/27/07	CSV
beta-BHC			ND		ug/L	0.030	01/25- 01/27/07	CSV
delta-BHC			ND		ug/L	0.030	01/25- 01/27/07	csv
gamma-BHC (Lindane)			ND		ug/L	0.030	01/25- 01/27/07	CSV
Toxaphene			ND		ug/L	2.0	01/25- 01/27/07	csv
alpha-Chlordane			ND		ug/L	0.030	01/25- 01/27/07	csv
gamma-Chlordane			ND		ug/L	0.030	01/25- 01/27/07	csv
Aldrin			ND		ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDD			ND		ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDE			ND		ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDT			ND		ug/L	0.030	01/25- 01/27/07	csv

----Appendix-B--

------Page 125-

Analyst

FK

FΚ

FK

FK

FK

FΚ

FK

Sample ID: FWGWBGmw-007C-0391-GW Lab ID: A7A240102-005 Receipt Date: 01/24/07 Sampling Date: 01/23/07 9:58AM Matrix: WATER ER
<u>Prep-</u>
Analysis Date Parameter Units Result RL Nitroaromatics & Nitramines: Explosives (8330) 1,3-Dinitrobenzene ug/L 0.11 01/29- 02/02/07 2,4-Dinitrotoluene ND ug/L 0.11 01/29- 02/02/07 0.11 01/29- 02/02/07 2,6-Dinitrotoluene ND ug/L ug/L 0.11 01/29- 02/02/07 Nitrobenzene ND 1,3,5-Trinitrobenzene ND ug/L 0.11 01/29- 02/02/07 2,4,6-Trinitrotoluene ug/L 0.11 01/29- 02/02/07 ND HMX ND ug/L 0.11 01/29- 02/02/07

RDX	ND	ug/L	0.11	01/29- 02/02/07	FK
Tetryl	ND	ug/L	0.11	01/29- 02/02/07	FK
2-Nitrotoluene	ND	ug/L	0.54	01/29- 02/02/07	FK
3-Nitrotoluene	ND	ug/L	0.54	01/29- 02/02/07	FK
4-Nitrotoluene	ND	ug/L	0.54	01/29- 02/02/07	FK
4-Amino-2,6-dinitrotoluene	ND	ug/L	0.11	01/29- 02/02/07	FK
2-Amino-4,6-dinitrotoluene	ND	ug/L	0.11	01/29- 02/02/07	FK
Organic Compounds by UV/HPLC Nitroguanidine	Dissolved ND	ug/L	20	02/02- 02/03/07	FK
	GC/1	MS Semivolatile Organ	nics	·	
Base/Neutrals and Acids (8270) Diethyl phthalate	C) ND	ug/L	1.0	01/24- 01/31/07	JMG
· · · · · · · · · · · · · · · · · · ·		-			
2,4-Dimethylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	0.66	J ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene	ИD	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene Appendix B	ND	Page 12 ^{hg/L}	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGWBGmw-007C-0391-GW

Lab ID: Sampling Date: A7A240102-005

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-005		Receipt Da	ate:	01/24/07 7:15AM	
Sampling Date:	01/23/07 9:58AM		Matrix:		WATER Prep-	
Paramete	er_	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and						
Hexachlorocyclopen	tadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)py	rene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalen	е	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	- 120 - 4 -	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene		ND .	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline		ИD	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene		ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenyla	mine	ND	ug/L	1.0	01/24- 01/31/07	, JMG
Benzo(b)fluoranthe	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthe	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	·	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichloroben	zene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophe	nol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophe	enol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole	. D	ND	Page 127	1.0	01/24- 01/31/07	JMG
Appendix	(R		Page 12/			

Sample ID:

FWGWBGmw-007C-0391-GW

Lab ID: Sampling Date: A7A240102-005 01/23/07 9:58AM Receipt Date:

01/24/07 7:15AM

Matrix:

WATER _

Jun	pring Date. 01/25/07 5.50AM		macrin.		WAILK	
	Parameter	Result	<u>Units</u>	RL	Prep- Analysis Date	Analyst
Ba	se/Neutrals and Acids (8270C)					
b	ois(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
þ	ois(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2	2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG
þ	ois(2-Ethylhexyl) phthalate	3.0 J	B ug/L	10	01/24- 01/31/07	JMG
4	-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
E	Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
P	acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4	-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4	-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2	-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2	2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4	-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
C	Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
I	Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
I	Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
D	Di-n-butyl phthalate	ND ·	ug/L	1.0	01/24- 01/31/07	JMG
1	,2-Dichlorobenzene	ND .	ug/L	1.0	01/24- 01/31/07	JMG
1	.,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1	.,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3	3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2	2,4-Dichlorophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable В level.

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene 1.0 ND ug/L 01/25/07 LEE Acetone ug/L 10 ND 01/25/07 LEE Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ND ug/L 10 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND ug/L 10 01/25/07 LEE Page 128/L Benzene ND 1.0 01/25/07 LEE Appendix B

------ GC/MS Volatile Organics -----

Estimated result. Result is less than RL.

Sample ID:

FWGWBGmw-007C-0391-GW

Lab ID:

A7A240102-005

Sampling Date:

01/23/07 9:58AM

Receipt Date:

01/24/07 7:15AM

Matrix:

WATER _

3	ampling Date: 01/25/0/ 9	1/23/0/ 9:36AM		Mac	EIX:	WATER Prep-		
	Parameter		Result	Units	RL	Analysis Date	Analyst	
V	olatile Organics, GC/MS (8260	в)						
	Styrene		ND	ug/L	1.0	01/25/07	LEE	
	1,1,2,2-Tetrachloroethane		ND	ug/L	1.0	01/25/07	LEE	
	Tetrachloroethene		ND	ug/L	1.0	01/25/07	LEE	
	Toluene		ND	ug/L	1.0	01/25/07	TEE	
	1,1,1-Trichloroethane		ND	ug/L	1.0	01/25/07	LEE	
	1,1,2-Trichloroethane		ND	ug/L	1.0	01/25/07	LEE	
	Trichloroethene		ND .	ug/L	1.0	01/25/07	LEE	
	Vinyl chloride		ND	ug/L	1.0	01/25/07	LEE	
	Xylenes (total)		ND	ug/L	2.0	01/25/07	LEE	
	Bromochloromethane		ND	ug/L	1.0	01/25/07	LEE	
	Bromodichloromethane		ND	ug/L	1.0	01/25/07	LEE	
	Bromoform		ND	ug/L	1.0	01/25/07	LEE	
	Bromomethane		ND	ug/L	1.0	01/25/07	LEE	
	2-Butanone		ND	ug/L	10	01/25/07	LEE	
	Carbon disulfide		ND	ug/L	1.0	01/25/07	LEE	
	Carbon tetrachloride		ND	ug/L	1.0	01/25/07	LEE	
	Chlorobenzene		ND	ug/L	1.0	01/25/07	LEE	
	Dibromochloromethane		ИD	ug/L	1.0	01/25/07	LEE	
	Chloroethane		ND	ug/L	1.0	01/25/07	LEE	
	Chloroform		ND	ug/L	1.0	01/25/07	LEE	
	Chloromethane		ND	ug/L	1.0	01/25/07	LEE	
	1,2-Dibromoethane		ND	ug/L	1.0	01/25/07	LEE	
	1,1-Dichloroethane		ND	ug/L	1.0	01/25/07	LEE	
	1,2-Dichloroethane	•	ND	ug/L	1.0	01/25/07	LEE	
	1,1-Dichloroethene		ИD	ug/L	1.0	01/25/07	LEE	
	1,2-Dichloroethene (total)		ND	ug/L	1.0	01/25/07	LEE	
	1,2-Dichloropropane		ND	ug/L	1.0	01/25/07	LEE	
	cis-1,3-Dichloropropene		ND	ug/L	1.0	01/25/07	LEE	
			•					

----- General Chemistry ------

Sample ID:

FWGWBGmw-007C-0391-GW

Lab ID:

A7A240102-005

01/23/07 9:58AM

Receipt Date:

7:15AM

Sampling Date:	01/23/07	9:58AM		fatrix:	WATER Prep-	
Paramete	<u>r</u>	Resi	ult Units	<u>RL</u>	Analysis Date	Analyst
Cyanide, Total Cyanide, Total	·	ND	mg/:	L 0.010	01/26/07	BLW
Nitrocellulose as	N by 353.2	nd.	mg/:	L 0.50	02/02- 02/07	/07 DTA

Sample ID:

FWGWBGmw-007C-0391-GF

Lab ID:

A7A240102-006

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-006			Receipt	Date:	01/24/07 7:15AM	
Sampling Date:	01/23/07 9:58AM	I		Matrix:		WATER Prep-	
Paramete	er_	Result		Units	RL	Analysis Date	Analyst
			Met	ale			
			Mec	.a			
Inductively Couple Arsenic	ed Plasma (6010B 5	Crace) ND		ug/L	5.0	01/25/07	LRW
Lead		ND		ug/L	3.0	01/25/07	LRW
Selenium		ND		ug/L	5.0	01/25/07	LRW
Inductively Couple Magnesium	ed Plasma (6010B)	14200		ug/L	, 1000	01/25/07	LRW
Manganese	·	41.5		ug/L	10.0	01/25/07	LRW
Barium		19.1		ug/L	10.0	01/25/07	LRW
Nickel		ND		ug/L	10.0	01/25/07	LRW
Potassium		938	ВЈ	ug/L	1000	01/25/07	LRW
Silver		ND		ug/L	5.0	01/25/07	LRW
Sodium		3400		ug/L	1000	01/25/07	LRW
Vanadium		ND		ug/L	10.0	01/25/07	LRW
Chromium	•	ND		ug/L	5.0	01/25/07	LRW
Calcium		61900	J	ug/L	1000	01/25/07	LRW
Cobalt		ND	•	ug/L	5.0	01/25/07	LRW
Copper		ND		ug/L	5.0	01/25/07	LRW
Tadmatimala Camal	ed Dieses Moss Co.		:020)				
Inductively Couple Antimony	ed riasma mass spe	0.37	B	ug/L	2.0	01/25- 01/30/07	BD
Iron		288		ug/L	20.0	01/25- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/25- 01/30/07	BD
Zinc		4.1	вЈ	ug/L	10.0	01/25- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum		ND		ug/L	50.0	01/25- 01/30/07	BD
Mercury (7470A, Co	old Vapor) - Liqu	id ND		ug/L	0.20	01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGWBGmw-009C-0392-GW

Lab ID: Sampling Date: A7A240102-007

01/23/07 9:25AM

Receipt Date:

Matrix:

01/24/07 7:15AM

Prep-Analysis Date Parameter Result Units RL Analyst ----- GC Semivolatile Organics -PCBs (8082) 0.50 uq/L 01/25- 01/30/07 Aroclor 1016 ND LH 0.50 Aroclor 1221 ND ug/L 01/25- 01/30/07 LH Aroclor 1232 ND ug/L 0.50 01/25- 01/30/07 LН 0.50 01/25- 01/30/07 Aroclor 1242 ug/L LHAroclor 1248 -ND 0.50 01/25- 01/30/07 LН uq/L Aroclor 1254 ND 0.50 01/25- 01/30/07 ug/L T.H Aroclor 1260 0.50 01/25- 01/30/07 MD ug/L LΗ Pesticides (8081A) Dieldrin ND ug/L 0.030 01/25- 01/27/07 CSV Endosulfan I ND ug/L 0.025 01/25- 01/27/07 CSV Endosulfan II 0.025 01/25- 01/27/07 CSV ND ug/L Endosulfan sulfate 0.030 01/25- 01/27/07 CSV ND ug/L Endrin ND uq/L 0.030 01/25- 01/27/07 CSV 0.030 01/25- 01/27/07 CSV Endrin aldehyde ND ug/L Endrin ketone 0.030 01/25- 01/27/07 ND ug/L CSV Heptachlor 0.030 01/25- 01/27/07 CSV ND ug/L Heptachlor epoxide ND ug/L 0.030 01/25- 01/27/07 CSV Methoxychlor ND 0.10 01/25- 01/27/07 CSV ug/L alpha-BHC 0.030 01/25- 01/27/07 ND uq/L CSV beta-BHC 0.030 01/25- 01/27/07 CSV ND ug/L delta-BHC 0.030 ND ug/L 01/25- 01/27/07 CSV gamma-BHC (Lindane) 01/25- 01/27/07 ND ug/L 0.030 CSV Toxaphene ND uq/L 2.0 01/25- 01/27/07 CSV alpha-Chlordane ND ug/L 0.030 01/25- 01/27/07 CSV gamma-Chlordane ND ug/L 0.030 01/25- 01/27/07 CSV Aldrin ND ug/L 0.030 01/25- 01/27/07 CSV 4,4'-DDD 01/25- 01/27/07 ND ug/L 0.030 CSV 4.4'-DDE ND ug/L 0.030 01/25- 01/27/07 CSV 4,4'-DDT 01/25- 01/27/07 ND ug/L 0.030 CSV

Appendix B

-Page-132

Sample ID:	FWGWBGmw-009C- A7A240102-007	0392-GW	Receip	t Date:	01/24/07	7:15AM	
Sampling Date:	01/23/07 9:2	5AM	Matrix	::	WATER Prep	>-	
Parameter	<u>:_</u>	Result	Units	RL	Analysi	s Date	Analyst
Nitroaromatics & N:	itramines: Exp	losives (8330)					
1,3-Dinitrobenzene	_	ND	ug/L	0.10	01/29-	02/02/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.10	01/29-	02/02/07	FK
2,6-Dinitrotoluene		ир .	ug/L	0.10	01/29-	02/02/07	FK
Nitrobenzene		ND	ug/L	0.10	01/29-	02/02/07	FK
1,3,5-Trinitrobenze	ne	ND	ug/L	0.10	01/29-	02/02/07	FK
2,4,6-Trinitrotolue	ene	ND	ug/L	0.10	01/29-	02/02/07	FK
НМХ		1.3	ug/L	0.10	01/29-	02/02/07	FK
RDX		3.8	ug/L	0.10	01/29-	02/02/07	FK
Tetryl		ND	ug/L	0.10	01/29-	02/02/07	FK
2-Nitrotoluene		ND	ug/L	0.52	01/29-	02/02/07	FK
3-Nitrotoluene		ND	ug/L	0.52	01/29-	02/02/07	FK
4-Nitrotoluene		ND	ug/L	0.52	01/29-	02/02/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.10	01/29-	02/02/07	FK
2-Amino-4,6-dinitro	otoluene	ND .	ug/L	0.10	01/29-	02/02/07	FK
Organic Compounds l	b IN/UDIC Di	ago]rrod					
Nitroguanidine	by OV/HELIC DI	ND	ug/L	20	02/02-	02/03/07	FK
·		GC/MS	Semivolatile Organi	.cs			
Base/Neutrals and A Diethyl phthalate	Acids (8270C)	ND	ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/24-	01/31/07	JMG
Di-n-octyl phthalat	:e	ND	ug/L	1.0	01/24-	01/31/07	JMG
4,6-Dinitro-2-methy	phenol	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrotoluene		ND	ug/L	5.0	01/24-	01/31/07	JMG
2,6-Dinitrotoluene		ND	ug/L	5.0	01/24-	01/31/07	JMG
Anthracene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Fluoranthene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Fluorene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobutadiene Appendix	· B	ND	Page 13 ^{ug/L}	1.0	01/24-	01/31/07	JMG
Appendix	D		Taye 133				

Sample ID:

FWGWBGmw-009C-0392-GW

Lab ID:

A7A240102-007

Sampling Date:

01/23/07 9:25AM

Receipt Date: 01/24/07 7:15AM

Matrix: WATER

Prep-

Parameter	Result	Units	RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthene	· ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ир	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ИD	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole Appendix B	ND	Page 134	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGWBGmw-009C-0392-GW

Lab ID:

A7A240102-007

Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 9:25AM

Matrix:

WATER Prep-

Parameter	Result		Units	<u>RL</u>	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) bis(2-Chloroethoxy)methane	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND		ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	4.7	JВ	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND		ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND		ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND		ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol	ND .		ug/L	2.0	01/24- 01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE ND 10 01/25/07 LEE Acetone ug/L Ethylbenzene ND ug/L 1.0 01/25/07 LEE ND 01/25/07 2-Hexanone ug/L 10 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND ug/L 10 01/25/07 LEE Page 135 Page 135 Benzene ND 1.0 01/25/07 LEE Appendix B

Estimated result. Result is less than RL.

Sample ID:

FWGWBGmw-009C-0392-GW

Lab ID: Sampling Date: A7A240102-007

01/23/07 9:25AM

Receipt Date:

01/24/07 7:15AM

WATER Prep-Matrix:

Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics, GC/MS (8260B) Styrene	ND	ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
Toluene	ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromoform	ND	ug/L	1.0	01/25/07	LEE
Bromomethane	ND	ug/L	1.0	01/25/07	LEE
2-Butanone	ND	ug/L	10	01/25/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Chloroethane	ND	ug/L	1.0	01/25/07	LEE
Chloroform	ND	ug/L	1.0	01/25/07	LEE
Chloromethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene (total)	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
				•	

----- General Chemistry -----

Sample ID:

FWGWBGmw-009C-0392-GW

Lab ID:

A7A240102-007

01/23/07 9:25AM

Receipt Date:

01/24/07

7:15AM

sampring Date:	01/23/0/ 9:25A	2		Matrix:		WATER Prep-	
Parameter	<u>:</u>	Result	•	Units	<u>RL</u>	Analysis Date	Analyst
Cyanide, Total Cyanide, Total		ND .		mg/L	0.010	01/26/07	BLW
Nitrocellulose as I	N by 353.2	ND		mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGWBGmw-009C-0392-GF

Lab ID:

A7A240102-008

Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 9:25AM

Matrix:

WATER

Sampling Date: 01/23/07 9:2	JAM		MACLIA.		Prep-		
Parameter	Result		Units	RL	Analysis Date	Analyst	
		Meta	als				
Inductively Coupled Plasma (6010 Arsenic	DB Trace) ND		ug/L	5.0	01/25/07	LRW	
Lead	ND		ug/L	3.0	01/25/07	LRW	
Selenium	ND		ug/L	5.0	01/25/07	LRW	
Inductively Coupled Plasma (6010 Magnesium	DB)	,	ug/L	1000	01/25/07	LRW	
Manganese	40.1		ug/L	10.0	01/25/07	LRW	
Barium	9.0	В	ug/L	10.0	01/25/07	LRW	
Nickel	ИĎ		ug/L	10.0	01/25/07	LRW	
Potassium	453	вЈ	ug/L	1000	01/25/07	LRW	
Silver	ND		ug/L	5.0	01/25/07	LRW	
Sodium	3760		ug/L	1000	01/25/07	LRW	
Vanadium	ND		ug/L	10.0	01/25/07	LRW	
Chromium	ND		ug/L	5.0	01/25/07	LRW	
Calcium	39000	J	ug/L	1000	01/25/07	LRW	
Cobalt	ND		ug/L	5.0	01/25/07	LRW	
Copper	ND		ug/L	5.0	01/25/07	LRW	
Inductively Coupled Plasma Mass Antimony	Spectrometry 0.13	(6020) B	ug/L	2.0	01/25- 01/30/07	BD	
Iron	165		ug/L	20.0	01/25- 01/30/07	BD ·	
Beryllium	ND		ug/L	1.0	01/25- 01/30/07	BD	
Thallium	ND		ug/L	1.0	01/25- 01/30/07	BD	
Zinc	5.7	вј	ug/L	10.0	01/25- 01/30/07	. BD	
Cadmium	ND		ug/L	0.50	01/25- 01/30/07	BD	
Aluminum	5.8	В	ug/L	50.0	01/25- 01/30/07	BD	
Mercury (7470A, Cold Vapor) - Li Mercury	lquid ND		ug/L	0.20	01/25/07	ML	

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID:

A7A240102-009

01/23/07 11:56AM

Appendix B

Receipt Date:

01/24/07 7 - 15 AM

Sampling Date: Matrix: Prep-Analysis Date Units Parameter Result RL Analyst ----- GC Semivolatile Organics -----PCBs (8082) Aroclor 1016 ND 0.50 01/25- 01/30/07 uq/L LH Aroclor 1221 ND ug/L 0.50 01/25- 01/30/07 TiH Aroclor 1232 ND 0.50 01/25- 01/30/07 uq/L T.H Aroclor 1242 ND 0.50 01/25- 01/30/07 ug/L T.H Aroclor 1248 ND 0.50 ug/L 01/25- 01/30/07 LH Aroclor 1254 ND ug/L 0.50 01/25- 01/30/07 LΗ Aroclor 1260 ND ug/L 0.50 01/25- 01/30/07 LН Pesticides (8081A) Dieldrin ND 0.030 01/25- 01/27/07 uq/L CSV Endosulfan I ND ug/L 0.025 01/25- 01/27/07 CSV Endosulfan II ND ug/L 0.025 01/25- 01/27/07 CSV Endosulfan sulfate ND ug/L 0.030 01/25- 01/27/07 CSV Endrin MD ug/L 0.030 01/25- 01/27/07 CSV Endrin aldehyde ND ug/L 0.030 01/25- 01/27/07 CSV Endrin ketone ND ug/L 0.030 01/25- 01/27/07 CSV Heptachlor ND ug/L 0.030 01/25- 01/27/07 CSV Heptachlor epoxide ND ug/L 0.030 01/25- 01/27/07 CSV Methoxychlor ND 0.10 01/25- 01/27/07 ug/L CSV alpha-BHC ug/L 0.030 01/25- 01/27/07 ND CSV beta-BHC 0.030 01/25- 01/27/07 ND ug/L CSV delta-BHC ND ug/L 0.030 01/25- 01/27/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/25- 01/27/07 CSV Toxaphene 2.0 01/25- 01/27/07 ND uq/L CSV alpha-Chlordane ND 0.030 01/25- 01/27/07 ug/L CSV gamma-Chlordane 01/25- 01/27/07 ND 0.030 ug/L CSV Aldrin 0.030 01/25- 01/27/07 ND ug/L CSV 4,4'-DDD ND 0.030 01/25- 01/27/07 ug/L CSV 4,4'-DDE ND ug/L 0.030 01/25- 01/27/07 CSV 4,4'-DDT ND ug/L 0.030 01/25~ 01/27/07 CSV

Page 139

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID:

A7A240102-009

Receipt Date:

01/24/07 7:15AM

Lab ID: A7A240102-009				Receipt Da	te:	01/24/07 7:15AM			
Sampling Date:	01/23/07 11:56A	M		Matrix:		WATER Prep	_		
Parame	eter_	Result	<u>U</u>	nits	RL	Analysi		Analyst	
Nitroaromatics &	Nitramines: Explo	sives (8330)		ug/L	0.098	01/29-	02/03/07	FK	
·				-					
2,4-Dinitrotolue		ND		ug/L	0.098		02/03/07	FK	
2,6-Dinitrotolue	ene	ND		ug/L	0.098	·	02/03/07	FK	
Nitrobenzene		ND		ug/L	0.098		02/03/07	FK	
1,3,5-Trinitrobe	enzene	ND		ug/L	0.098	01/29-	02/03/07	FK	
2,4,6-Trinitroto	oluene	ND		ug/L	0.098	01/29-	02/03/07	FK	
HMX		ND		ug/L	0.098	01/29-	02/03/07	FK	
RDX		ND		ug/L	0.098	01/29-	02/03/07	FK	
Tetryl		ND		ug/L	0.098	01/29-	02/03/07	FK	
2-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK	
3-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK	
4-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK	
4-Amino-2,6-dini	trotoluene	ND		ug/L	0.098	01/29-	02/03/07	FK	
2-Amino-4,6-dini	trotoluene	ND		ug/L	0.098	01/29-	02/03/07	FK	
Organic Compound Nitroguanidine	ds by UV/HPLC Diss	olved ND		ug/L	20	02/02-	02/03/07	FK	
		GC/MS	Semivolatil	e Organics -					
Base/Neutrals an									
Diethyl phthalat	e	ND		ug/L	1.0	01/24-	01/31/07	JMG	
2,4-Dimethylphen	nol	ND		ug/L	2.0	01/24-	01/31/07	JMG	
Dimethyl phthala	ite	ND		ug/L	1.0	01/24-	01/31/07	JMG	
Di-n-octyl phtha	alate	0.95	J	ug/L	1.0	01/24-	01/31/07	JMG	
4,6-Dinitro-2-me	ethylphenol	ND		ug/L	5.0	01/24-	01/31/07	JMG	
2,4-Dinitropheno	ol	ND		ug/L	5.0	01/24-	01/31/07	JMG	
2,4-Dinitrotolue	ene	ND		ug/L	5.0	01/24-	01/31/07	JMG	
2,6-Dinitrotolue	ene	ND	•	ug/L	5.0	01/24-	01/31/07	JMG	
Anthracene		ND		ug/L	0.20	01/24-	01/31/07	JMG	
Fluoranthene		ND		ug/L	0.20	01/24~	01/31/07	JMG	
Fluorene		ND		ug/L	0.20	01/24-	01/31/07	JMG	
Hexachlorobenzer	ne	ND		ug/L	0.20	01/24-	01/31/07	JMG	
Hexachlorobutadi Appe n	ene p	ND	Page 1	μg/L	1.0	01/24-	01/31/07	JMG	
Appen	IUIX B		Page 1	4 0					

Receipt Date:

01/24/07

7:15AM

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID:

A7A240102-009

01/23/07 11:56AM Sampling Date: Matrix: WATER Prep-Analysis Date Result Units RLAnalyst Parameter Base/Neutrals and Acids (8270C) 10 01/24- 01/31/07 Hexachlorocyclopentadiene ND ug/L JMG 01/24- 01/31/07 Hexachloroethane MΩ 1.0 JMG ug/L 0.20 Indeno(1,2,3-cd)pyrene 01/24~ 01/31/07 ND ug/L JMG Isophorone ND ug/L 1.0 01/24- 01/31/07 JMG 2-Methylnaphthalene ND 0.20 01/24- 01/31/07 JMG ug/L 2-Methylphenol ND ug/L 1.0 01/24- 01/31/07 JMG 4-Methylphenol ND 1.0 01/24- 01/31/07 JMG ug/L 0.20 01/24- 01/31/07 Naphthalene ND uq/L TMC 2.0 01/24- 01/31/07 2-Nitroaniline ИD JMG uq/L 3-Nitroaniline 2.0 01/24- 01/31/07 ND ug/L JMG 4-Nitroaniline ND ug/L 2.0 01/24- 01/31/07 JMG Nitrobenzene ND 1.0 01/24- 01/31/07 JMG ug/L 2-Nitrophenol 2.0 01/24- 01/31/07 ND ug/L JMG 01/24- 01/31/07 4-Nitrophenol ND 5.0 JMG ug/L Benzo(a) anthracene ND 0.20 01/24- 01/31/07 ug/L JMG N-Nitrosodi-n-propylamine 1.0 01/24- 01/31/07 ND ug/L TMG N-Nitrosodiphenylamine 1.0 01/24- 01/31/07 MD ug/L JMG 0.20 01/24- 01/31/07 Benzo(b) fluoranthene ND ug/L JMG Benzo(k) fluoranthene ND ug/L 0.20 01/24- 01/31/07 JMG Benzoic acid ND 10 01/24- 01/31/07 JMG uq/L Benzo(ghi)perylene ND 0.20 01/24- 01/31/07 JMG ug/L 0.20 01/24- 01/31/07 Benzo(a)pyrene ND JMG ug/L Pentachlorophenol 5.0 01/24- 01/31/07 ND JMG ug/L Benzyl alcohol 5.0 01/24- 01/31/07 ND ug/L JMG Phenanthrene ND ug/L 0.20 01/24- 01/31/07 JMG Phenol ND ug/L 1.0 01/24- 01/31/07 JMG Pyrene ND ug/L 0.20 01/24- 01/31/07 JMG 01/24- 01/31/07 1,2,4-Trichlorobenzene ND ug/L 1.0 JMG 2,4,5-Trichlorophenol ND 5.0 01/24- 01/31/07 JMG ug/L 2,4,6-Trichlorophenol 01/24- 01/31/07 ND 5.0 JMG ua/L Carbazole Page 141 01/24- 01/31/07 ND 1.0 JMG Appendix B

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID: Sampling Date: A7A240102-009

01/23/07 11:56AM

Receipt Date:

01/24/07 7:15AM

-		,,	
Matrix:		WATER	
Units	RL	Prep- Analysis Date	

Parameter	Result		<u>Units</u>	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)						
bis(2-Chloroethoxy)methane	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND		ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	5.1	JB	ug/L	10	01/24- 01/31/07	< JMG
4-Bromophenyl phenyl ether	ND	•	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND		ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND		ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND .		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND.		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND		ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol	ND		ug/L	2.0	01/24- 01/31/07	JMG
· ·						

Method blank contamination. The associated method blank contains the target analyte at a reportable

------ GC/MS Volatile Organics -----

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone	ND	ug/L	10	01/25/07	LEE
Methylene chloride	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE
Benzene Appendix B	ND	Page 142 ^{/L}	1.0	01/25/07	LEE

Estimated result. Result is less than RL.

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID:

A7A240102-009

Receipt Date:

01/24/07 7:15AM

Matrix:	WATER

Sampling Date: (01/23/07 11:56AM			Matrix	:	WATER	
Parameter		Result		Units	RL	Prep- Analysis Date	Analyst
					<u>:=</u>		
Volatile Organics, G Styrene	C/MS (8260B)	ND		ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachloroet	thane	ND		uġ/L	1.0	01/25/07	LEE
Tetrachloroethene		ND		ug/L	1.0	01/25/07	LEE
Toluene		ND		ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane		ND .		ug/L	1.0	01/25/07	LEE
Trichloroethene		ND		ug/L	1.0	01/25/07	LEE
Vinyl chloride		ND		ug/L	1.0	01/25/07	LEE
Xylenes (total)		ND	•	ug/L	2.0	01/25/07	LEE
Bromochloromethane		ND		ug/L	1.0	01/25/07	LEE
Bromodichloromethane		ND		ug/L	1.0	01/25/07	LEE
Bromoform		ND		ug/L	1.0	01/25/07	LEE
Bromomethane		ND		ug/L	1.0	01/25/07	LEE
2-Butanone		ND		ug/L	10	01/25/07	LEE
Carbon disulfide		ND		ug/L	1.0	01/25/07	LEE
Carbon tetrachloride		ND		ug/L	1.0	01/25/07	LEE
Chlorobenzene		ND .		ug/L	1.0	01/25/07	LEE
Dibromochloromethane		ND		ug/L	1.0	01/25/07	LEE
Chloroethane		ND		ug/L	1.0	01/25/07	LEE
Chloroform		ND		ug/L	1.0	01/25/07	LEE
Chloromethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene (t	cotal)	ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane		ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloroprope	ene	ND		ug/L	1.0	01/25/07	LEE

----- General Chemistry

Sample ID:

FWGBKGmw-008C-0360-GW

Lab ID:

A7A240102-009

Receipt Date:

01/24/07

7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER

01,20,0, 11,001				Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/26/07	BLW
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGBKGmw-008C-0360-GF

Lab ID:

A7A240102-010

Receipt Date:

01/24/07

7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER

Sampling Date: 01/23/0/ 11	ling Date: 01/23/0/ 11:36AM		Matrix:		Prep-	Prep-	
Parameter	Result		Units	RL	Analysis Date	Analyst	
		Met	als				
Inductively Coupled Plasma (60			/T	F 0	01 /05 /07	TDU	
Arsenic	· ND		ug/L	5.0	01/25/07	LRW	
Lead	. ND		ug/L	3.0	01/25/07	LRW	
Selenium	ND		ug/L	5.0	01/25/07	LRW	
Inductively Coupled Plasma (60 Magnesium	10B)		ug/L	.1000	01/25/07	LRW	
						·	
Manganese	0.74	В _	ug/L	10.0	01/25/07	LRW	
Barium	5.0	В	ug/L	10.0	01/25/07	LRW	
Nickel	ND		ug/L	10.0	01/25/07.	LRW	
Potassium	485	ВЈ	ug/L	1000	01/25/07	LRW	
Silver	ND		ug/L	5.0	01/25/07	LRW	
Sodium	9940		ug/L	1000	01/25/07	LRW	
Vanadium	ND		ug/L	10.0	01/25/07	LRW	
Chromium	ND		ug/L	5.0	01/25/07	LRW	
Calcium	27100	J	ug/L	1000	01/25/07	LRW	
Cobalt	ND		ug/L	5.0	01/25/07	LRW	
Copper	1.8	В	ug/L	5.0	01/25/07	LRW	
Inductively Coupled Plasma Mas	s Spogtrometry	60201					
Antimony	0.093	В	ug/L	2.0	01/25- 01/30/07	BD	
Iron	114		ug/L	20.0	01/25- 01/30/07	BD	
Beryllium	ND		ug/L	1.0	01/25- 01/30/07	BD	
Thallium	ND		ug/L	1.0	01/25- 01/30/07	BD	
Zinc	6.7	вЈ	ug/L	10.0	01/25- 01/30/07	BD	
Cadmium	ND		ug/L	0.50	01/25- 01/30/07	BD	
Aluminum	ND		ug/L	50.0	01/25- 01/30/07	BD	
Mercury (7470A, Cold Vapor) -			/T	0.20	01/25/07	MT	
Mercury	ND		ug/L	0.20	01/25/07	ML	

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID:

A7A240102-011

Receipt Date:

01/24/07 7:15AM

Lab ID: Sampling Date:	A7A240102-011 01/23/07 11:56AM		Receipt I Matrix:	Date:	01/24/07 7:15AM WATER Prep-	
Paramet	er	Result	Units	RL	Analysis Date	Analyst
		GC Semi	volatile Organics			
PCBs (8082)		275	/=	0.50	01 (05 01 (00 (07	
Aroclor 1016		ND	ug/L	0.50	01/25- 01/30/07	LH .
Aroclor 1221		ND .	ug/L	0.50	01/25- 01/30/07	TH
Aroclor 1232		ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1242	,	ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1248		ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1254		ND	ug/L	0.50	01/25- 01/30/07	ΓΉ
Aroclor 1260		ИD	ug/L	0.50	01/25- 01/30/07	LH
Pesticides (8081A	a)		•			
Dieldrin		ND	ug/L	0.030	01/25- 01/27/07	CSV
Endosulfan I		ND	ug/L	0.025	01/25- 01/27/07	CSV
Endosulfan II		ND	ug/L	0.025	01/25- 01/27/07	CSV
Endosulfan sulfat	е	ИD	ug/L	0.030	01/25- 01/27/07	CSV
Endrin		ND	ug/L	0.030	01/25- 01/27/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/25- 01/27/07	CSV
Endrin ketone		ND	ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor		ND	ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor epoxid	e .	ND	ug/L	0.030	01/25- 01/27/07	CSV
Methoxychlor		ND	ug/L	0.10	01/25- 01/27/07	CSV
alpha-BHC		ND	ug/L	0.030	01/25- 01/27/07	CSV
beta-BHC		ND	ug/L	0.030	01/25- 01/27/07	csv
delta-BHC		ND	ug/L	0.030	01/25- 01/27/07	CSV
gamma-BHC (Lindan	ie)	ND	ug/L	0.030	01/25- 01/27/07	CSV
Toxaphene		ND	ug/L	2.0	01/25- 01/27/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/25- 01/27/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/25- 01/27/07	CSV
Aldrin		ND	ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDD		ND	ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDE		ND	ug/L	0.030	01/25- 01/27/07	CSV ·
4,4'-DDT		ND	ug/L	0.030	01/25- 01/27/07	csv

----Appendix-B-

-----Page 146-

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID:

A7A240102-011

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-011		Receipt	Date:	01/24/07 7:15AM	
Sampling Date:	01/23/07 11:56	AM	Matrix:		WATER Prep-	
Parame	eter	Result	Units	RL	Analysis Date	Analyst
Nitroaromatics & 1,3-Dinitrobenze	Nitramines: Expl	osives (8330)	ug/L	0.097	01/29- 02/03/07	FK
2,4-Dinitrotolue	ne	ND	ug/L	0.097	01/29- 02/03/07	FK
2,6-Dinitrotolue	ne	ND	ug/L	0.097	01/29- 02/03/07	FK
Nitrobenzene		ND	ug/L	0.097	01/29- 02/03/07	FK
1,3,5-Trinitrobe	nzene	ND	ug/L	0.097	01/29- 02/03/07	FK
2,4,6-Trinitroto	luene	ND	ug/L	0.097	01/29- 02/03/07	FK
HMX		ND	ug/L	0.097	01/29- 02/03/07	FK
RDX		ND	ug/L	0.097	01/29- 02/03/07	FK
Tetryl		ND	ug/L	0.097	01/29- 02/03/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/29- 02/03/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/29- 02/03/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/29- 02/03/07	FK
4-Amino-2,6-dini	trotoluene	ND	ug/L	0.097	01/29- 02/03/07	FK
2-Amino-4,6-dini	trotoluene	ND	ug/L	0.097	01/29- 02/03/07	FK
Organic Compound	s by UV/HPLC Dis	solved				•
Nitroguanidine		ND	ug/L	20	02/02- 02/03/07	FK
		GC/MS S	emivolatile Organics	3		
4		. 55,552				
Base/Neutrals an Diethyl phthalat		ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4-Dimethylphen	ol	ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthala	te	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-octyl phtha	late	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-me	thylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitropheno	ı	ир	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotolue	ne	ИD	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotolue	ne	ND	·ug/L	5.0	01/24- 01/31/07	JMG
Anthracene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzen	ıe	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadi Appen	dîx B	ND	Page 147	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID:

A7A240102-011

Receipt Date: Matrix:

01/24/07 7:15AM

Lab ID: A7A240102-011		Receipt	Date:	01/24/07 7:15AM			
Sampling Date: 01/23/07 11:56AM		M	Matrix:		WATER Prep-		
Parame	eter	Result	Units	RL	Analysis Date	Analyst	
Base/Neutrals an	d Acids (8270C)			·			
Hexachlorocyclopentadiene		ND	ug/L	10	01/24- 01/31/07	JMG	
Hexachloroethane	•	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Isophorone		ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Methylnaphthalene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG	
4-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG	
Naphthalene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
2-Nitroaniline	•	ND	ug/L	2.0	01/24- 01/31/07	JMG	
3-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitroaniline		ИD	ug/L	2.0	01/24- 01/31/07	JMG	
Nitrobenzene		ND.	ug/L	1.0	01/24- 01/31/07	JMG	
2-Nitrophenol		ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Nitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG	
Benzo(a)anthrace	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG	
N-Nitrosodi-n-pr	opylamine	ND .	ug/L	1.0	01/24- 01/31/07	JMG	
N-Nitrosodipheny	lamine	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Benzo(b)fluorant	hene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzo(k)fluorant	hene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzoic acid		ND	ug/L	10	01/24- 01/31/07	JMG	
Benzo(ghi)peryle	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Benzo(a)pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Pentachloropheno	1	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Benzyl alcohol		ND	ug/L	5.0	01/24- 01/31/07	JMG	
Phenanthrene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Phenol		ND	ug/L	1.0	01/24- 01/31/07	JMG	
Pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
1,2,4-Trichlorob	penzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2,4,5-Trichlorop	phenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4,6-Trichlorop	phenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Carbazole Appendix B		ND	Page 148	1.0	01/24- 01/31/07	JMG	
, (ppc)	41. D		i ago i to				

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID: Sampling Da A7A240102-011

Receipt Date:

Matrix:

01/24/07 7:15AM

WATER

sambring pare:	U1/23/U/ 11:56AM	Matrix		Matrix:				
Parameter	<u>=</u> .	Result	<u> </u>	<u>Jnits</u>	<u>RL</u>	Prep- Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) bis(2-Chloroethoxy)methane		ND		ug/L	1.0	01/24- 01/31/07	JMG	
bis(2-Chloroethyl)	ether	ND		ug/L	1.0	01/24- 01/31/07	JMG ⁻	
2,2'-Oxybis(1-Chlor	copropane)	ND		ug/L	1.0	01/24- 01/31/07	JMG	
bis(2-Ethylhexyl) p	hthalate	3.1	J В	ug/L	10	01/24- 01/31/07	JMG	
4-Bromophenyl pheny	ol ether	ND		ug/L	2.0	01/24- 01/31/07	JMG	
Butyl benzyl phthal	ate	ND	* 2	ug/L	1.0	01/24- 01/31/07	JMG	
Acenaphthylene		ND		ug/L	0.20	01/24- 01/31/07	JMG	
4-Chloroaniline		ND		ug/L	2.0	01/24- 01/31/07	JMG	
4-Chloro-3-methylph	nenol	ND		ug/L	2.0	01/24- 01/31/07	JMG	
2-Chloronaphthalene	•	ND		ug/L	1.0	01/24- 01/31/07	JMG	
2-Chlorophenol		ND		ug/L	1.0	01/24- 01/31/07	JMG	
4-Chlorophenyl pher	nyl ether	ND		ug/L	2.0	01/24- 01/31/07	JMG	
Chrysene		ND		ug/L	0.20	01/24- 01/31/07	JMG	
Dibenz(a,h)anthrace	ene	ND		ug/L	0.20	01/24- 01/31/07	JMG	
Dibenzofuran		ND		ug/L	1.0	01/24- 01/31/07	JMG	
Di-n-butyl phthalat	ce ·	ND		ug/L	1.0	01/24- 01/31/07	JMG	
1,2-Dichlorobenzene	:	ND		ug/L	1.0	01/24- 01/31/07	JMG	
1,3-Dichlorobenzene	2	ND	•	ug/L	1.0	01/24- 01/31/07	JMG	
1,4-Dichlorobenzene	2	ND		ug/L	1.0	01/24- 01/31/07	JMG	
3,3'-Dichlorobenzio	line	ND		ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dichlorophenol		ND		ug/L	2.0	01/24- 01/31/07	JMG	

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Appendix B

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE Acetone ND ug/L 10 01/25/07 LEE Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ND ug/L 10 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND 10 01/25/07 LEE Page 149^{LL} Benzene 1.0 01/25/07 LEE

------ GC/MS Volatile Organics -------

Estimated result. Result is less than RL.

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID:

A7A240102-011

Receipt Date:

01/24/07 7:15AM

Sampling Date:

01/23/07 11:56AM

Matrix:

WATER Prep-

5ampiing Date: 01/23/0/ 11.30A	41			Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, GC/MS (8260B)	ND	ug/L	1.0	01/25/07	LEE
Styrene		₹			
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
Toluene	ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromoform	ND	ug/L	1.0	01/25/07	LEE
Bromomethane	ND	ug/L	1.0	01/25/07	LEE
2-Butanone	ND	ug/L	10	01/25/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND .	ug/L	1.0	01/25/07	LEE
Chloroethane	ND	ug/L	1.0	01/25/07	LEE
Chloroform	ND	ug/L	1.0	01/25/07	LEE
Chloromethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane	ИD	ug/L	,1.0	01/25/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene (total)	ИД	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
		-			

ug/L 1.0 01/25/07

cis-1,3-Dichloropropene

ND

Sample ID:

FWGBKGmw-008C-0394-GW

Lab ID:

A7A240102-011

Receipt Date:

01/24/07

7:15AM

Sampling Date:	01/23/07 11:56AM		Matrix:		WATER Prep-	
Paramete	<u>r</u>	Result	Units	RL	Analysis Date	Analyst
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/26/07	BLW
Nitrocellulose as	N by 353.2	ND	mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGBKGmw-008C-0394-GF

Lab ID:

A7A240102-012

Receipt Date:

01/24/07

7:15AM

Sampling Date: 01/23/07 11:56AM Matrix: WATER Prep-

	Parameter	Result		Units	RL	Analysis Date	Analyst
·			Meta	ls			
Inductively Arsenic	Coupled Plasma (6010B T	race) ND		ug/L	5.0	01/25/07	LRW
Lead	•	ND		ug/L	3.0	01/25/07	LRW
Selenium		ND		ug/L	5.0	01/25/07	LRW
Inductively Magnesium	Coupled Plasma (6010B)	11300		ug/L	1000	01/25/07	LRW
Manganese		0.93	В	ug/L	10.0	01/25/07	LRW
Barium		5.7	В	ug/L	10.0	01/25/07	LRW
Nickel		ND		ug/L	10.0	01/25/07	LRW
Potassium		510	вЈ	ug/L	1000	01/25/07	LRW
Silver		ND		ug/L	5.0	01/25/07	LRW
Sodium		10600		ug/L	1000	01/25/07	LRW
Vanadium		ND		ug/L	10.0	01/25/07	LRW
Chromium		ND		ug/L	5.0	01/25/07	LRW
Calcium		28700	J	ug/L	1000	01/25/07	LRW
Cobalt		ND		ug/L	5.0	01/25/07	LRW
Copper		2.0	В	ug/L	5.0	01/25/07	LRW
Inductively	Coupled Plasma Mass Spe	ctrometry(602	20)				
Antimony		0.067	В	ug/L	2.0	01/25- 01/30/07	BD
Iron		105		ug/L	20.0	01/25- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/25- 01/30/07	BD.
Zinc		3.8	вЈ	ug/L	10.0	01/25- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum		ND		ug/L	50.0	01/25- 01/30/07	BD
Mercury (74'	70A, Cold Vapor) - Liqui	d ND		ug/L	0.20	01/25/07	ML

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID:

A7A240102-013

Receipt Date:

01/24/07 7:15AM

			-	
Sampling Date:	01/23/07	12:40PM	Matrix:	WATER Prep-
				3 Date

	Parameter	Result	Units	RL	Analysis Date	Analyst
		GC Semivolati	le Organics			
Ε	PCBs (8082)	ND	ng/T	0.50	01/25- 01/30/07	LH
	Aroclor 1016		ug/L	0.50		
	Aroclor 1221	ND	ug/L		01/25- 01/30/07	LH
	Aroclor 1232	ND	ug/L	0.50	01/25- 01/30/07	LH
	Aroclor 1242	ND	ug/L	0.50	01/25- 01/30/07	LH
	Aroclor 1248	ND	ug/L	0.50	01/25- 01/30/07	LH
	Aroclor 1254	ND	ug/L	0.50	01/25- 01/30/07	LH
	Aroclor 1260	ND	ug/L	0.50	01/25- 01/30/07	LH
1	Pesticides (8081A)		,			
	Dieldrin	ND .	ug/L	0.030	01/25- 01/27/07	CSV
	Endosulfan I	ND	ug/L	0.025	01/25- 01/27/07	CSV
	Endosulfan II	ND	ug/L	0.025	01/25- 01/27/07	CSV
	Endosulfan sulfate	ND .	ug/L	0.030	01/25- 01/27/07	CSV
	Endrin	ND	ug/L	0.030	01/25- 01/27/07	CSV
	Endrin aldehyde	ND	ug/L	0.030	01/25- 01/27/07	CSV
	Endrin ketone	ND .	ug/L	0.030	01/25- 01/27/07	CSV
	Heptachlor	ND	ug/L	0.030	01/25- 01/27/07	CSV
	Heptachlor epoxide	ND	ug/L	0.030	01/25- 01/27/07	CSV
	Methoxychlor	ND	ug/L	0.10	01/25- 01/27/07	CSV
	alpha-BHC	ND	ug/L	0.030	01/25- 01/27/07	CSV
	beta-BHC	ND	ug/L	0.030	01/25- 01/27/07	csv
	delta-BHC	ND	ug/L	0.030	01/25- 01/27/07	csv
	gamma-BHC (Lindane)	ND	ug/L	0.030	01/25- 01/27/07	CSV
	Toxaphene	ND	ug/L	2.0	01/25- 01/27/07	csv
	alpha-Chlordane	ND	ug/L	0.030	01/25- 01/27/07	CSV
	gamma-Chlordane	ND	ug/L	0.030	01/25- 01/27/07	csv
	Aldrin	ND	ug/L	0.030	01/25- 01/27/07	csv
	4,4'-DDD	ND	ug/L	0.030	01/25- 01/27/07	csv
	4,4'-DDE	ND	ug/L	0.030	01/25- 01/27/07	CSV
	4,4'-DDT	ND	ug/L	0.030	01/25- 01/27/07	csv
				-		

Appendix B

Page 153

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID: Sampling Date:	1	Receipt Date: Matrix:			01/24/07 7:15AM WATER			
Paramete	er_	Result	!	Units	<u>RL</u>	Prep Analys		Analyst
Nitroaromatics & N	_							
1,3-Dinitrobenzene	1	ND		ug/L	0.098	01/29-	02/03/07	FK
2,4-Dinitrotoluene	·	ИD		ug/L	0.098	01/29-	02/03/07	FK
2,6-Dinitrotoluene	:	ND		ug/L	0.098	01/29-	02/03/07	FK
Nitrobenzene		ND		ug/L	0.098	01/29-	02/03/07	FK
1,3,5-Trinitrobenz	ene	ND		ug/L	0.098	01/29-	02/03/07	FK
2,4,6-Trinitrotolu	iene	ND		ug/L	0098	01/29-	02/03/07	FK
HMX		0.050	J	ug/L	0.098	01/29-	02/03/07	FK
RDX		ND		ug/L	0.098	01/29-	02/03/07	FK
Tetryl		ND		ug/L	0.098	01/29-	02/03/07	FK
2-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK
3-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK
4-Nitrotoluene		ND		ug/L	0.49	01/29-	02/03/07	FK
4-Amino-2,6-dinitr	otoluene	ND		ug/L	0.098	01/29-	02/03/07	FK
2-Amino-4,6-dinitr	otoluene	ND		ug/L	0.098	01/29-	02/03/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC Disse	olved ND		ug/L	20	02/02-	02/03/07	FK
	lt. Result is less			, ,			s * .	
		GC/MS	Semivolati	le Organics -				
Base/Neutrals and Diethyl phthalate	Acids (8270C)	ND		ug/L	1.0	01/24-	01/31/07	JMG
2,4-Dimethylphenol		ND		ug/L	2.0	01/24-	01/31/07	JMG
Dimethyl phthalate		ND		ug/L	1.0	01/24-	01/31/07	JMG
Di-n-octyl phthala	ite .	ND		ug/L	1.0	01/24-	01/31/07	JMG
4,6-Dinitro-2-meth	ylphenol	ND		ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrophenol	•	ND		ug/L	5.0	01/24-	01/31/07	JMG
2,4-Dinitrotoluene	:	ND		ug/L	5.0	01/24-	01/31/07	JMG
2,6-Dinitrotoluene		ND		ug/L	5.0	01/24-	01/31/07	JMG
Anthracene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Fluoranthene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Fluorene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobenzene		ND		ug/L	0.20	01/24-	01/31/07	JMG
Hexachlorobutadien Appendi	х [°] В	ND	Page 1	154 ⁷ L	1.0	01/24-	01/31/07	JMG

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID:

A7A240102-013

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-013		Receipt	Date:	01/24/07 7:15AM	
Sampling Date:	01/23/07 12:40PM	M.	Matrix:		WATER Prep-	
Paramete	er	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Hexachlorocyclopen		ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	•	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)py	rene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalen	ne	ND ·	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene		ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol		ND	ug/L	. 2.0	01/24- 01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	2	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenyla	umine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthe	ene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthe	ene	ИD	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene	.	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol		ИD	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichloroben	nzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophe	enol	ND	ug/L	5.0	01/24- 01/31/07	JМG
2,4,6-Trichlorophe	enol	ND .	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole Append iz	хВ	ND	Page 155	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID: Sampling Date: A7A240102-013

Receipt Date:

01/24/07 7:15AM

140 12 ·	11/112 10 102	010					01/24/07 7:15/11	
Sampling Date:	01/23/07	12:40PM			Matrix	:	WATER Prep-	•
Paramet	ter		Result		Units	RL	Analysis Date	Analyst
Base/Neutrals and	d Acids (827	70C)			•			
bis(2-Chloroethox	y)methane		ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl	.) ether		ND		ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chl	.oropropane)		ND		ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl)	phthalate		2.8	JВ	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phe	nyl ether		ND	,	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phth	alate		ND		ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene			ND		ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline			ND	•	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methyl	phenol		ND		ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthale	ene		ND	•	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol			ND		ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl ph	enyl ether		ND		ug/L	2.0	01/24- 01/31/07	JMG
Chrysene			ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthra	icene		ND		ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran			ND		ug/L	1.0	01/24- 01/31/07	ĴMG
Di-n-butyl phthal	.ate		ND		ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenze	ene		ND ·		ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenze	ene		ND		ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenze	ene		ND		ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenz	idine:		ND		ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichloropheno	ol		ND		ug/L	2.0	01/24- 01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE Acetone ND ug/L 10 01/25/07 LEE Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ug/L 10 01/25/07 LEE ND Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND ug/L 10 01/25/07 LEE Page 156 L Benzene ND 1.0 01/25/07 LEE Appendix B

------ GC/MS Volatile Organics -----

Estimated result. Result is less than RL.

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID:

A7A240102-013

Receipt Date:

01/24/07 7:15AM

trix:	WATER

5	Sampling Date: 01/23/07 12:40PM		Matrix: WATER Prep-			
	Parameter	Result	Units	RL	Analysis Date	Analyst
7	Olatile Organics, GC/MS (8260B)	•				
	Styrene	ND	ug/L	1.0	01/25/07	LEE
	1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
	Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
	Toluene	ND	ug/L	1.0	01/25/07	LEE
	1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
	Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
	Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
	Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
	Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
	Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
	Bromoform	ND	ug/L	1.0	01/25/07	LEE
	Bromomethane	ND	ug/L	1.0	01/25/07	LEE
	2-Butanone	ND .	ug/L	10	01/25/07	LEE
	Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
	Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
	Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
	Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE
	Chloroethane	ND .	ug/L	1.0	01/25/07	LEE
	Chloroform	ND	ug/L	1.0	01/25/07	LEE
	Chloromethane	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dibromoethane	ND	ug/L	1.0	01/25/07	LEE
	1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,1-Dichloroethene	ND ·	ug/L	1.0	01/25/07	LEE
	1,2-Dichloroethene (total)	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
	cis-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE

Sample ID:

FWGLL1mw-078C-0380-GW

Lab ID:

A7A240102-013

01/23/07 12:40PM

Receipt Date:

01/24/07

7:15AM

Samping Date. 01/25/07 12.40FM			me on an .	VV F	77.TV	
Parameter	Result		Units	<u>RL</u>	Prep- Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND		mg/L	0.010	01/26/07	BLW
Nitrocellulose as N by 353.2 Nitrocellulose	0.13	В	mg/L	0.50	02/02- 02/07/07	DTA

Estimated result. Result is less than RL.

Sample ID:

FWGLL1mw-078C-0380-GF

Lab ID: Sampling Date: A7A240102-014

Receipt Date:

01/24/07 7:15AM

Lab ID:		A7A24010	2-014			Receip	t Date:	01/24/07 7:15AM	
Sampling Date:	01/23/07 12:40PM					Matrix	:	WATER Prep-	
<u> F</u>	arameter			Result		<u>Units</u>	RL	Analysis Date	Analyst
					Þ	Metals			·
Inductively	Coupled	Plasma	(6010B T	race)					
Arsenic	_			ND		ug/L	5.0	01/25/07	LRW
Lead				ND		ug/L	3.0	01/25/07	LRW
Selenium				ND		ug/L	5.0	01/25/07	LRW
Inductively	Coupled	TDI nama	(6010 0)		·				
	Conbred		(80108)	7630		ug/L	1000	01/25/07	LRW
Manganese				82.0		ug/L	10.0	01/25/07	LRW
Barium				8.0	В	ug/L	10.0	01/25/07	LRW
Nickel				ND		ug/L	10.0	01/25/07	LRW
Potassium				1940	J	ug/L	1000	01/25/07	LRW
Silver				ND		ug/L	5.0	01/25/07	LRW
Sodium				6170		ug/L	1000	01/25/07	LRW
Vanadium				ND		ug/L	10.0	01/25/07	LRW
Chromium				ND		ug/L	5.0	01/25/07	LRW
Calcium				52200	J.	ug/L	1000	01/25/07	LRW
Cobalt				3.9	В	ug/L	5.0	01/25/07	LRW
Copper				1.9	В	ug/L	5.0	01/25/07	LRW
T	O1 - d	D.			(6000)	• .			
Inductively Antimony	Coupted	Plasma	mass spe	0.067	Y(6020) B	ug/L	2.0	01/25- 01/30/07	BD
Iron				200		ug/L	20.0	01/25- 01/30/07	BD
Beryllium				ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium				0.10	В	ug/L	1.0	01/25- 01/30/07	BD
Zinc				10.3	J	ug/L	10.0	01/25- 01/30/07	BD
Cadmium				ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum				ND		ug/L	50.0	01/25- 01/30/07	BD
Mercury (747 Mercury	OA, Colo	d Vapor)) - Liqui	d ND		ug/L	0.20	01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL1mw-078C-0397-GW

Lab ID:

A7A240102-015

Receipt Date:

01/24/07 7:15AM

Lab ID: Sampling Date:	A7A240102-015 01/23/07 12:40PM		Receipt Dat Matrix:	te:	01/24/07 WATER Prep	7:15AM -	
Paramet	<u>cer</u>	Result	Units	RL	Analysi		Analyst
		GC Semivolati	ile Organics				
PCBs (8082) Aroclor 1016		ND	ug/L	0.50	01/25-	01/30/07	LH
Aroclor 1221		ND .	ug/L	0.50	01/25-	01/30/07	LH
Aroclor 1232		ND ·	ug/L	0.50	01/25-	01/30/07	LH
Aroclor 1242		ND	ug/L	0.50	01/25	01/30/07	LH
Aroclor 1248	**	ND	ug/L	0.50	01/25-	01/30/07	LH
Aroclor 1254		ND	ug/L	0.50	01/25-	01/30/07	LH
Aroclor 1260		ND	ug/L	0.50	01/25-	01/30/07	LH
Pesticides (8081A Dieldrin	()	ND .	ug/L	0.030	01/25-	01/27/07	csv
Endosulfan I		ND	ug/L	0.025	01/25-	01/27/07	csv
Endosulfan II		ND	ug/L	0.025	01/25-	01/27/07	CSV
Endosulfan sulfat	e	ND	ug/L	0.030	01/25-	01/27/07	csv
Endrin		ND	ug/L	0.030	01/25-	01/27/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/25-	01/27/07	csv
Endrin ketone		ND	ug/L	0.030	01/25-	01/27/07	csv
Heptachlor		ND	ug/L	0.030	01/25-	01/27/07	csv
Heptachlor epoxid	e	ND	ug/L	0.030	01/25-	01/27/07	CSV
Methoxychlor		ND	ug/L	0.10	01/25-	01/27/07	csv
alpha-BHC		ND	ug/L	0.030	01/25-	01/27/07	CSV
beta-BHC		ND .	ug/L	0.030	01/25-	01/27/07	csv
delta-BHC		ND	ug/L	0.030	01/25-	01/27/07	csv
gamma-BHC (Lindan	e)	ND	ug/L	0.030	01/25-	01/27/07	csv
Toxaphene		ND	ug/L	2.0	01/25-	01/27/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/25-	01/27/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/25-	01/27/07	csv
Aldrin		ND	ug/L	0.030	01/25-	01/27/07	csv
4,4'-DDD		ND	ug/L	0.030	01/25-	01/27/07	csv
4,4'-DDE		ND	ug/L	0.030	01/25~	01/27/07	csv
4,4'-DDT		ND	ug/L	0.030	01/25-	01/27/07	csv

Sample ID:

Hexachlorobutadiene Appendix B

FWGLL1mw-078C-0397-GW

1.0

01/24- 01/31/07

JMG

Lab ID: Sampling Date:	A7A240102-015 01/23/07 12:40P	M	Receipt Matrix:	Date:	01/24/07 7:15AM WATER	
Paramete		Result	Units	RL	Prep- Analysis Date	Analyst
				_		
Nitroaromatics & N 1,3-Dinitrobenzene		sives (8330) ND	ug/L	0.099	01/29- 02/03/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.099	01/29- 02/03/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.099	01/29- 02/03/07	FK
Nitrobenzene		ND	ug/L	0.099	01/29- 02/03/07	FK
1,3,5-Trinitrobenz	ene	ND	ug/L	0.099	01/29- 02/03/07	FK
2,4,6-Trinitrotolu	ene	ND	ug/L	0.099	01/29- 02/03/07	FK
НМХ		ND	ug/L	0.099	01/29- 02/03/07	FK
RDX		ND	ug/L	0.099	01/29- 02/03/07	FK
Tetryl		ND	ug/L	0.099	01/29- 02/03/07	FK
2-Nitrotoluene		ND	ug/L	0.50	01/29- 02/03/07	FK
3-Nitrotoluene		ND	ug/L	0.50	01/29- 02/03/07	FK
4-Nitrotoluene		ND	ug/L	0.50	01/29- 02/03/07	FK
4-Amino-2,6-dinitr	otoluene	ND	ug/L	0.099	01/29- 02/03/07	FK
2-Amino-4,6-dinitr	otoluene	ND	ug/L	0.099	01/29- 02/03/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC Diss	olved ND	ug/L	20	02/02- 02/03/07	FK
		00 () 00 00 00	1			
	•	GC/MS Semi	Moratile Organic	S		
Base/Neutrals and Diethyl phthalate	Acids (8270C)	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthalate	:	ИД	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-octyl phthala	te	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-meth	ylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	:	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene		ND	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/24- 01/31/07	JMG

Page 16 1 1 L

ND

Sample ID:

FWGLL1mw-078C-0397-GW

Lab ID: Sampling Date: A7A240102-015 01/23/07 12:40PM Receipt Date: 01/24/07 7:15AM Matrix: WATER Prep-

02,20,01		WZ	Prep-		
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24~ 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24~ 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole Appendix B	ND	Page 162	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGLL1mw-078C-0397-GW

Lab ID: A7A240102-015 Sampling Date:

01/23/07 12:40PM

Receipt Date:

01/24/07 7:15AM

Matrix: WATER

sampling Date: 01/23/07	12:40PM	Mati	cix:	WATER		
<u>Parameter</u>	Result	Units	RL	Prep- Analysis Date	Analyst	
Base/Neutrals and Acids (827	0C)					
bis(2-Chloroethoxy)methane	ND	ug/L .	1.0	01/24- 01/31/07	JMG	
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG	
bis(2-Ethylhexyl) phthalate	5.7	JB ug/L	10	01/24- 01/31/07	JMG	
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG	
Butyl benzyl phthalate	Ир	ug/L	1.0	01/24- 01/31/07	JMG	
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG	
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG	
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG	
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG	
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Di-n-butyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG	
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG	
3,3'-Dichlorobenzidine	ND	ug/L	5 0	01/24- 01/31/07	JMG	
2,4-Dichlorophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG	

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

------ GC/MS Volatile Organics -----Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE Acetone ND 10 01/25/07 ug/L LEE Ethylbenzene ND ug/L 1.0 01/25/07 LEE 2-Hexanone ND 10 ug/L 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND ug/L 10 01/25/07 LEE Page 163 /L Benzene ND 1.0 01/25/07 LEE Appendix B

Estimated result. Result is less than RL.

Sample ID:

FWGLL1mw-078C-0397-GW

Lab ID: Sampling Date: A7A240102-015

01/23/07 12:40PM

Receipt Date:

Matrix:

01/24/07 7:15AM

WATER Prep-

•	campling Date: 01/25/07 12.40FM		Mactin.	WA	Prep-	
	Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
7	Volatile Organics, GC/MS (8260B)					
	Styrene	ND	ug/L	1.0	01/25/07	LEE
	1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
	Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
	Toluene	ND	ug/L	1.0	01/25/07	LEE
	1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
	Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
	Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
	Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
	Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
	Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
	Bromoform	ND	ug/L	1.0	01/25/07	LEE
	Bromomethane	ND	ug/L	1.0	01/25/07	LEE
	2-Butanone	ND	ug/L	.10	01/25/07	LEE
	Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
	Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
	Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
	Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE
	Chloroethane	ND	ug/L	1.0	01/25/07	LEE
	Chloroform	ND	ug/L	1.0	01/25/07	LEE
	Chloromethane	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dibromoethane	ЙD	ug/L	1.0	01/25/07	LEE
	1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
	1,1-Dichloroethene	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dichloroethene (total)	ND	ug/L	1.0	01/25/07	LEE
	1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
	cis-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
						*

----- General Chemistry ------

Sample ID:

FWGLL1mw-078C-0397-GW

Lab ID:

A7A240102-015

Sampling Date:

01/23/07 12:40PM

Receipt Date:

01/24/07

7:15AM

Matrix:

WATER

Damping Date. 01/25/0/ 12.40FM		Macaa.	99	HIER Bron-	
Parameter	Result	Units	RL	Prep- Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/26/07	BLW
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGLL1mw-078C-0397-GF

Lab ID:

A7A240102-016

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-016			Receipt	Date:	01/24/07 7:15AM		
Sampling Date: 01/23/07 12:40PM		PM		Matrix:		WATER Prep-		
	Parameter	Result		Units	RL	Analysis Date	Analyst	
			Met	als				
-								
Arsenic	Coupled Plasma (6010B	ND		ug/L	5.0	01/25/07	LRW	
Lead		ND		ug/L	3.0	01/25/07	LRW	
Selenium		ND		ug/L	5.0	01/25/07	LRW	
Inductively Magnesium	Coupled Plasma (6010B)			ng/L	.1000	01/25/07	LRW	
						•	∵ ⊤ IVM ™	
Manganese		18.5		ug/L	10.0	01/25/07	LRW	
Barium		7.4	В	ug/L	10.0	01/25/07	LRW	
Nickel		ND		ug/L	10.0	01/25/07	LRW	
Potassium		1910	J	ug/L	1000	01/25/07	LRW	
Silver		ND		ug/L	5.0	01/25/07	LRW	
Sodium		5980		ug/L	1000	01/25/07	LRW	
Vanadium		ND		ug/L	10.0	01/25/07	LRW	
Chromium		ND		ug/L	5.0	01/25/07	LRW	
Calcium		50300	J	ug/L	1000	01/25/07	LRW	
Cobalt		1.3	В	ug/L	5.0	01/25/07	LRW	
Copper		2.6	В	ug/L	5.0	01/25/07	LRW	
Inductively	Coupled Plasma Mass Sp	oodtromotry.	/6020\					
Antimony	Coupled Liasma Mass of	ND ND	(8020)	ug/L	2.0	01/25- 01/30/07	BD	
Iron		320		ug/L	20.0	01/25- 01/30/07	BD	
Beryllium		ND		ug/L	1.0	01/25- 01/30/07	BD	
Thallium		0.10	В	ug/L	1.0	01/25- 01/30/07	BD	
Zinc	•	6.0	ВЈ	ug/L	10.0	01/25- 01/30/07	BD	
Cadmium		ND		ug/L	0.50	01/25- 01/30/07	BD	
Aluminum		ND		ug/L	50.0	01/25- 01/30/07	BD	
Mercury (74	70A, Cold Vapor) - Liqu	ıid						
Mercury	_	ND		ug/L	0.20	01/25/07	ML	

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-012C-0362-GW

Lab ID:

A7A240102-017

Sampling Date:

01/23/07 2:14PM

Receipt Date:

01/24/07 7:15AM

Matrix:

WATER

Dampiing Date. 01/25/07 2.14FM		Maclik.			Prep-		
Parameter		Result	Units	<u>RL</u>	Analysis Date	Analyst	
. yes and and had had the first the first had see had bee for any little held one of	les en	(GC Semivolatile Organics				
PCBs (8082)							
Aroclor 1016		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1221		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1232		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1242		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1248		ND	ug/L	0.50	01/25- 01/30/07	TH	
Aroclor 1254		ND .	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1260		ND	ug/L	0.50	01/25- 01/30/07	LH	
Pesticides (8081A)							
Dieldrin		ND	ug/L	0.030	01/25- 01/30/07	CSV	
Endosulfan I		ND	ug/L	0.025	01/25- 01/30/07	CSV	
Endosulfan II		ND	ug/L	0.025	01/25- 01/30/07	CSV	
Endosulfan sulfate		ND	ug/L	0.030	01/25- 01/30/07	csv	
Endrin		ND	ug/L	0.030	01/25- 01/30/07	CSV	
Endrin aldehyde		ND	ug/L	0.030	01/25- 01/30/07	CSV	
Endrin ketone		ND	ug/L	0.030	01/25- 01/30/07	csv	
Heptachlor		ND	ug/L	0.030	01/25- 01/30/07	csv	
Heptachlor epoxide		ND	ug/L	0.030	01/25- 01/30/07	CSV	
Methoxychlor		ND	ug/L	0.10	01/25- 01/30/07	CSV	
alpha-BHC		ND	ug/L	0.030	01/25- 01/30/07	CSV	
beta-BHC		ND	ug/L	0.030	01/25- 01/30/07	csv	
delta-BHC		ND	ug/L	0.030	01/25- 01/30/07	CSV	
gamma-BHC (Lindane)		ND	ug/L	0.030	01/25- 01/30/07	csv	
Toxaphene		ND	ug/L	2.0	01/25- 01/30/07	csv	
alpha-Chlordane		ND	ug/L	0.030	01/25- 01/30/07	CSV	
gamma-Chlordane		ND	ug/L	0.030	01/25- 01/30/07	CSV	
Aldrin		ND	ug/L	0.030	01/25- 01/30/07	CSV	
4,4'-DDD		ND	ug/L	0.030	01/25- 01/30/07	CSV	
4,4'-DDE		ND	'ug/L	0.030	01/25- 01/30/07	csv	
4,4'-DDT		ND	ug/L	0.030	01/25- 01/30/07	CSV	

Sample ID:

FWGBKGmw-012C-0362-GW

Hexachlorobutadiene Appendix B

Sample ID:	FWGBKGmw-012C-0362-GW						
Lab ID:	A7A240102-017		Receipt	Date:	01/24/07 7:15AM		
Sampling Date:	01/23/07 2:1	4PM	Matrix:		WATER Prep-		
Paramet	ter	Result	Units	RL	Analysis Date	Analyst	
Nitroaromatics & 1,3-Dinitrobenzen	_	losives (8330)	ug/L	0.098	01/29- 02/03/07	FK	
2,4-Dinitrotoluen	.e	ND	ug/L	0.098	01/29- 02/03/07	FK	
2,6-Dinitrotoluen	ıe	ND	ug/L	0.098	01/29- 02/03/07	FK	
Nitrobenzene		ND	ug/L	0.098	01/29- 02/03/07	FK	
1,3,5-Trinitroben	zene	ND	ug/L	0.098	01/29- 02/03/07	FK	
2,4,6-Trinitrotol	uene	ND	ug/L	0.098	01/29- 02/03/07	FK	
HMX		ND	ug/L	0.098	01/29~ 02/03/07	FK	
RDX		ND	ug/L	0.098	01/29- 02/03/07	FK	
Tetryl		ND	ug/L	0.098	01/29- 02/03/07	FK	
2-Nitrotoluene		ND	ug/L	0.49	01/29- 02/03/07	FK	
3-Nitrotoluene		ND	ug/L	0.49	01/29- 02/03/07	FK	
4-Nitrotoluene		ND	ug/L	0.49	01/29- 02/03/07	FK	
4-Amino-2,6-dinit	rotoluene	ND	ug/L	0.098	01/29- 02/03/07 .	FK	
2-Amino-4,6-dinit	rotoluene	ND	ug/L	0.098	01/29- 02/03/07	FK	
Organic Compounds Nitroguanidine	s by UV/HPLC Di	ssolved ND	ug/L	20	02/02- 02/03/07	FK	
		GC/MS Ser	rivolatilo Organia				
		GC/MS Ser	irvoiatire Organic	5			
Base/Neutrals and Diethyl phthalate		ND	ug/L	1.0	01/24- 01/31/07	JMG	
2,4-Dimethylpheno	1	ND	ug/L	2.0	01/24- 01/31/07	JMG	
Dimethyl phthalat	e .	ND	ug/L	1.0	01/24- 01/31/07	JMG	
Di-n-octyl phthal	ate	ND .	ug/L	1.0	01/24- 01/31/07	JMG	
4,6-Dinitro-2-met	hylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dinitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,4-Dinitrotoluer	ıe.	ND	ug/L	5.0	01/24- 01/31/07	JMG	
2,6-Dinitrotoluer	ne e	ND	ug/L	5.0	01/24- 01/31/07	JMG	
Anthracene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluoranthene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Fluorene		ND	ug/L	0.20	01/24- 01/31/07	JMG	
Hexachlorobenzene	2	ND	ug/L	0.20	01/24- 01/31/07	JMG	

Page 168^{/L}

1.0

01/24- 01/31/07

JMG

ND

Sample ID:

FWGBKGmw-012C-0362-GW

Lab ID:

A7A240102-017

Receipt Date: Matrix:

01/24/07 7:15AM

Sampling D	ate:
------------	------

Sampling Date:	01/23/07 2:14PM		Matrix:	te:	01/24/07 /:15AM WATER	
Paramete	er_	Result	<u>Units</u>	<u>RL</u>	Prep- Analysis Date	Analyst
Base/Neutrals and Hexachlorocyclopen		ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)py	rene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalen	e	ND	_ ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/24~ 01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene		ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene		.ND	ug/L	0.20	01/24- 01/31/07	JMG
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenyla	mine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b)fluoranthe	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k) fluoranthe	ne	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol		ND .	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol		ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene		ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichloroben	zene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophe	nol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophe	nol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole Appendix	K B	ND	Page 169	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-012C-0362-GW

Lab ID: Sampling Date: A7A240102-017

Receipt Date:

01/24/07 7:15AM

01/23/07 2:14PM Matrix:

WATER			
	Prep-		
9	- T	D-4-	

01/25/01 2.1	2212	13002 211 .		Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Page /Neutrals and Agids (9270C)					
Base/Neutrals and Acids (8270C) bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.,0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	4.9	JB ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	.ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND .	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
R Method blank contamination Th	e associated m	ethod blank contains th	a target ana	lute at a renortable	

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

------ GC/MS Volatile Organics ------Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/25/07 LEE Acetone ND ug/L 10 01/25/07 LEE Ethylbenzene 01/25/07 ND ug/L 1.0 LEE 2-Hexanone ND ug/L 10 01/25/07 LEE Methylene chloride ND ug/L 2.0 01/25/07 LEE 4-Methyl-2-pentanone ND 10 01/25/07 LEE Benzene 0.46 J Page 170 L 1.0 01/25/07 LEE Appendix B

Estimated result. Result is less than RL.

Sample ID:

FWGBKGmw-012C-0362-GW

Lab ID: Sampling Date:

A7A240102-017 01/23/07 2:14PM Receipt Date:

01/24/07 7:15AM

Sampling Date:	01/23/07 2:14P	M		Matrix:		WATER	
Paramete	er_	Result		Units	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics Styrene	, GC/MS (8260B)	ND		ug/L	1.0	01/25/07	LEE
1,1,2,2-Tetrachlor	roethane	ND		ug/L	1.0	01/25/07	LEE
Tetrachloroethene		ND		ug/L	1.0	01/25/07	LEE
Toluene	•	ND		ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroeth	nane	ND		ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroeth	nane	ND		ug/L	1.0	01/25/07	LEE
Trichloroethene		ND		ug/L	1.0	01/25/07	LEE
Vinyl chloride		ND		ug/L	1.0	01/25/07	LEE
Xylenes (total)		ND		ug/L	2.0	01/25/07	LEE
Bromochloromethane	.	ND		ug/L	1.0	01/25/07	LEE
Bromodichlorometha	ane	ND		ug/L	1.0	01/25/07	LEE
Bromoform		ND		ug/L	1.0	01/25/07	LEE
Bromomethane		ND		ug/L	1.0	01/25/07	LEE
2-Butanone		ND		ug/L	10	01/25/07	LEE
Carbon disulfide		ND		ug/L	1.0	01/25/07	LEE
Carbon tetrachlori	de	ND	•	ug/L	1.0	01/25/07	LEE
Chlorobenzene		ND .		ug/L	1.0	01/25/07	LEE
Dibromochlorometha	ane	ЙD		ug/L	1.0	01/25/07	LEE
Chloroethane		ИD		ug/L	1.0	01/25/07	LEE
Chloroform		ND		ug/L	1.0	01/25/07	LEE
Chloromethane		ND		ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane		ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane	:	ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	•	ND		ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	•	ИD		ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene	e (total)	ND		ug/L	1.0	01/25/07	LEE
1,2-Dichloropropan	ne	ND		ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropr	ropene	ND		ug/L	1.0	01/25/07	LEE
J Estimated resu	lt. Result is less	than RL.				•	

Cyanide, Total

Appendix B

------ General Chemistry ------

Sample ID:

FWGBKGmw-012C-0362-GW

Lab ID:

A7A240102-017

ampling Date:

01/23/07 2:14PM

Receipt Date:

01/24/07

7:15AM

fatrix:

WATER

Samping Date. 01/23/0/ 2:	14514	Mactin:		Prep-	
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/26/07	BLW
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

----- Metals ---

ug/L

ug/L

uq/L

ug/L

Sample ID:

FWGBKGmw-012C-0362-GF

Lab ID:

Sampling Date:

Arsenic

Selenium

Magnesium

Manganese

Barium

Nickel

Silver

Sodium

Vanadium

Chromium

Calcium

Cobalt

Copper

Potassium

Lead

Parameter

Inductively Coupled Plasma (6010B Trace)

Inductively Coupled Plasma (6010B)

A7A240102-018

.A/AZ4010Z-016

01/23/07 2:14PM

Result

ND

ND

12000

49.8

343

ND

ND

ND

ND

ND

ND

35800

4980

36700

Receipt Date:

01/24/07

7:15AM

Matrix:

RL

5.0

3.0

5.0

1000

10.0

10.0

10.0

1000

5.0

1000

10.0

5.0

1000

5.0

5.0

Prep-Analysis Date Analyst 01/25/07 LRW 01/25/07 LRW 01/25/07 LRW 01/25/07 LRW 01/25/07 LRW 01/25/07 TRW 01/25/07 LRW 01/25/07 LRW

Inductively Coupled Plasma Mass Antimony	Spectrometry (602 0.096	2 0) B	ug/L	2.0	01/25- 01/30/07	BD
Iron	413		ug/L	20.0	01/25- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/25- 01/30/07	BD
Zinc	9.0	в Ј	ug/L	10.0	01/25- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/25- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Li Mercury	quid ND		ug/L	0.20	01/25/07	ML

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-010C-0361-GW

Lab ID:

A7A240102-019

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-019		Receipt Date: Matrix:		1/24/07 7:15AM		
Sampling Date:	01/23/07 3:23PM				ATER <u>Prep-</u> Analysis Date		
Paramet	<u>er</u>	Result	<u>Units</u>	RL		Analyst	
		GC Semivolat	ile Organics				
PCBs (8082) Aroclor 1016		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1221		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1232		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1242		ND	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1248		ND · · · · · · · · · · · · · · · · · · ·	ug/L	050	01/25- 01/30/07	LH	
Aroclor 1254		ND .	ug/L	0.50	01/25- 01/30/07	LH	
Aroclor 1260		ND	ug/L	0.50	01/25- 01/30/07	LH	
Pesticides (8081A	`			•			
Dieldrin	,	ND	ug/L	0.030	01/25- 01/27/07	CSV	
Endosulfan I		ND	ug/L	0.025	01/25- 01/27/07	CSV	
Endosulfan II		ND	ug/L	0.025	01/25- 01/27/07	CSV	
Endosulfan sulfate	9 .	ND	ug/L	0.030	01/25- 01/27/07	CSV	
Endrin		ND	ug/L	0.030	01/25- 01/27/07	CSV	
Endrin aldehyde		ND .	ug/L	0.030	01/25- 01/27/07	CSV	
Endrin ketone		ND	ug/L	0.030	01/25- 01/27/07	CSV	
Heptachlor		ND	ug/L	0.030	01/25- 01/27/07	csv	
Heptachlor epoxide	a	ND	ug/L	0.030	01/25- 01/27/07	CSV	
Methoxychlor		ND	ug/L	0.10	01/25- 01/27/07	CSV	
alpha-BHC		ND	ug/L	0.030	01/25- 01/27/07	CSV	
beta-BHC		ND	ug/L	0.030	01/25- 01/27/07	CSV	
delta-BHC		ND	ug/L	0.030	01/25- 01/27/07	CSV	
gamma-BHC (Lindane	e)	ND	ug/L	0.030	01/25- 01/27/07	CSV	
Toxaphene		ND	ug/L	2.0	01/25- 01/27/07	CSV	
alpha-Chlordane		ND	ug/L	0.030	01/25- 01/27/07	csv	
gamma-Chlordane		ND	ug/L	0.030	01/25- 01/27/07	CSV	
Aldrin		ND	ug/L	0.030	01/25- 01/27/07	CSV	
4,4'-DDD		ND	ug/L	0.030	01/25- 01/27/07	CSV	
4,4'-DDE		ND	ug/L	0.030	01/25- 01/27/07	CSV	
4,4'-DDT		ND	ug/L	0.030	01/25- 01/27/07	csv	

-----Page 174

Sample ID:

FWGBKGmw-010C-0361-GW

Result

ND

Lab ID: A7A240102-019
Sampling Date: 01/23/07 3:23PM

Nitroaromatics & Nitramines: Explosives (8330)

Parameter

1,3-Dinitrobenzene

2,4-Dinitrotoluene

2,6-Dinitrotoluene

1,3,5-Trinitrobenzene

2,4,6-Trinitrotoluene

Nitrobenzene

HMX

RDX

Tetryl

2-Nitrotoluene

3-Nitrotoluene

4-Nitrotoluene

Nitroguanidine

4-Amino-2,6-dinitrotoluene

2-Amino-4,6-dinitrotoluene

Organic Compounds by UV/HPLC Dissolved

Receipt Date: 01/24/07 7:15AM Matrix: WATER Prep-Analysis Date Units RL Analyst 0.099 01/29- 02/03/07 ug/L .FK 01/29- 02/03/07 ug/L 0.099 FK 0.099 ug/L 01/29- 02/03/07 FK ug/L 0.099 01/29- 02/03/07 FK ug/L 0.099 01/29- 02/03/07 FK ug/L 0.099 01/29- 02/03/07 FK 0.099 ug/L 01/29- 02/03/07 FK 0.099 01/29- 02/03/07 ug/L FΚ 0.099 01/29- 02/03/07 ug/L FK 0.50 01/29- 02/03/07 ug/L FK 0.50 ug/L 01/29- 02/03/07 FΚ ug/L 0.50 01/29- 02/03/07 FK 0.099 01/29- 02/03/07 ug/L FK ug/L 0.099 01/29- 02/03/07 FK 20 02/02- 02/03/07 ug/L FK.

	(GC/MS Semivolatile Organics -			
Base/Neutrals and Acids (8270C) Diethyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,4-Dimethylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
Dimethyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-octyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/24- 01/31/07	JMG
Anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Fluorene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Hexachlorobutadiene Appendix B	ND	Page 175 ^{/⊥}	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGBKGmw-010C-0361-GW

Lab ID: Sampling Date:	A7A240102-019 01/23/07 3:23PM		Receipt Matrix:		WATER	7:15AM	
Parame	<u>eter</u>	Result	Units	<u>RL</u>	Prep- Analysis		Analyst
Base/Neutrals an		MD.		10	01/04	21 /21 /27	TMC
Hexachlorocyclop		ND	ug/L	. 10		01/31/07	JMG
Hexachloroethane		ND	ug/L	1.0		01/31/07	JMG
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20		01/31/07	JMG
Isophorone		ND	ug/L	1.0		01/31/07	JMG
2-Methylnaphthal	ene	ND	ug/L	0.20		01/31/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/24- (01/31/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/24- (01/31/07	JMG
Naphthalene		ND	ug/L	0.20	01/24- 0	01/31/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/24- 0	01/31/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/24- 0	01/31/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/24- (01/31/07	JMG
Nitrobenzene	A.	ND	ug/L	1.0	01/24- 0	01/31/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/24- 0	01/31/07	JMG
4-Nitrophenol	•	ND	ug/L	5.0	01/24- (01/31/07	JMG
Benzo(a)anthrace	ene	ND	ug/L	0.20	01/24- (01/31/07	JMG
N-Nitrosodi-n-pr	copylamine	ND	ug/L	1.0	01/24- 0	01/31/07	JМG
N-Nitrosodipheny	lamine	ND	ug/L	1.0	01/24- (01/31/07	JMG
Benzo(b)fluorant	chene	ND	ug/L	0.20	01/24- 0	01/31/07	JMG
Benzo(k)fluorant	hene	ND	ug/L	0.20	01/24- (01/31/07	JMG
Benzoic acid		ND	ug/L	10	01/24- (01/31/07	JMG
Benzo(ghi)peryle	ene	ND	ug/L	0.20	01/24-	01/31/07	JMG
Benzo(a)pyrene		ND	ug/L	0.20	01/24- 0	01/31/07	JMG
Pentachloropheno	ol.	ND	ug/L	5.0	01/24-	01/31/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/24-	01/31/07	JMG
Phenanthrene		ND	ug/L	0.20	01/24-	01/31/07	JMG
Phenol		ND .	ug/L	1.0	01/24-	01/31/07	JMG
Pyrene		ND	ug/L	0.20	01/24-	01/31/07	JMG
1,2,4-Trichlorok	penzene	ND	ug/L	1.0	01/24-	01/31/07	JMG ·
2,4,5-Trichlorop	phenol	ND	ug/L	5.0	01/24-	01/31/07	JMG
2,4,6-Trichlorop		ND	ug/L	5.0	01/24-	01/31/07	JMG
Carbazole		ND	-	1.0	01/24-	01/31/07	JMG
Appen	Idix R		Page 176				

Sample ID:

FWGBKGmw-010C-0361-GW

Lab ID: Sampling Date: A7A240102-019

Receipt Date:

01/24/07 7:15AM

Lab ID:	A7A240102-019			Receipt Date	e: 0:	1/24/07	7:15AM	
Sampling Date:	01/23/07 3:23PM			Matrix:	W	ATER Prep	1440	
Parame	ter	Result	Un	its	<u>RL</u>	Analysi		Analyst
Base/Neutrals and							01 (01 (05	
bis(2-Chloroethor	xy)methane	ND	υ	ıg/L	1.0	01/24-	01/31/07	JMG
bis(2-Chloroethy	l) ether	ND .	ນ	ıg/L	1.0	01/24-	01/31/07	JMG
2,2'-Oxybis(1-Ch)	loropropane)	ND	υ	ıg/L	1.0	01/24-	01/31/07	JMG
bis(2-Ethylhexyl)) phthalate	3.0	JB v	ıg/L	10	01/24-	01/31/07	JMG
4-Bromophenyl phe	enyl ether	ND	ט	ıg/L	2.0	01/24-	01/31/07	JMG
Butyl benzyl phtl	nalate	ND	и	ıg/L	1.0	01/24-	01/31/07	JMG
Acenaphthylene		MD .	u	ıg/L	0.20	01/24-	01/31/07	JMG
4-Chloroaniline		ND	υ	ıg/L	2.0	01/24-	01/31/07	JMG
4-Chloro-3-methy	lphenol	ND	υ	ıg/L	2.0	01/24-	01/31/07	JMG
2-Chloronaphthale	ene	ND	u	ıg/L	1.0	01/24-	01/31/07	JMG
2-Chlorophenol		ND	υ	ıg/L	1.0	01/24-	01/31/07	JMG
4-Chlorophenyl ph	nenyl ether	ND .	υ	ıg/L	2.0	01/24-	01/31/07	JMG
Chrysene		ND	. ប	ıg/L	0.20	01/24-	01/31/07.	JMG
Dibenz(a,h)anthra	acene	ND	u	ıg/L	0.20	01/24-	01/31/07	JMG
Dibenzofuran		ND .	. Tu	ıg/L	1.0	01/24-	01/31/07	JMG
Di-n-butyl phtha	late	ND	. υ	ıg/L	1.0	01/24-	01/31/07	JMG
1,2-Dichlorobenze	ene	ND	u	ıg/L	1.0	01/24-	01/31/07	JMG
1,3-Dichlorobenze	ene	ND	υ	ıg/L	1.0	01/24-	01/31/07	JMG
1,4-Dichlorobenze	ene	ND .	. "	ıg/L	1.0	01/24-	01/31/07	JMG
3,3'-Dichloroben	zidine	ND	υ	ıg/L	5.0	01/24-	01/31/07	JMG
2,4-Dichlorophen	ol	ND	υ	ıg/L	2.0	01/24-	01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable

------ GC/MS Volatile Organics ------

Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone	ND	ug/L	10	01/25/07	LEE
Methylene chloride	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE
Benzene Appendix B	ND	Page 177	1.0	01/25/07	LEE

Estimated result. Result is less than RL.

Sample ID:

FWGBKGmw-010C-0361-GW

Lab ID:

A7A240102-019

Receipt Date:

01/24/07 7:15AM

Lab ID: A7A240102-019			Receipt	Date:	01/24/07 7:15AM		
Sampling Date:	01/23/07 3:23PM		Matrix:		WATER Prep- Analysis Date		
Paramete	<u>er</u>	Result	Units	RL	MINITYSIS DACE	Analyst	
Volatile Organics	, GC/MS (8260B)						
Styrene		ND	ug/L	1.0	01/25/07	LEE	
1,1,2,2-Tetrachlor	coethane	ND	ug/L	1.0	01/25/07	LEE	
Tetrachloroethene		ND	ug/L	1.0	01/25/07	LEE	
Toluene		ND	ug/L	1.0	01/25/07	LEE	
1,1,1-Trichloroeth	nane	ND	ug/L	1.0	01/25/07	LEE .	
1,1,2-Trichloroeth	nane	ND	ug/L	1.0	01/25/07	LEE	
Trichloroethene		ND	ug/L	1.0	01/25/07	LEE	
Vinyl chloride		ND	ug/L	1.0	01/25/07	LEE	
Xylenes (total)		ND	ug/L	2.0	01/25/07	LEE	
Bromochloromethane	1	ND	ug/L	1.0	01/25/07	LEE	
Bromodichlorometha	ine	ND	ug/L	1.0	01/25/07	LEE	
Bromoform		ND	ug/L	1.0	01/25/07	LEE	
Bromomethane		ND	ug/L	1.0	01/25/07	LEE	
2-Butanone		ND	ug/L	10	01/25/07	LEE	
Carbon disulfide		ND	ug/L	1.0	01/25/07	LEE	
Carbon tetrachlori	de	ND	ug/L	1.0	01/25/07	LEE	
Chlorobenzene		ND	ug/L	1.0	01/25/07	LEE	
Dibromochlorometha	ine	ND	ug/L	1.0	01/25/07	LEE	
Chloroethane		ND	ug/L	1.0	01/25/07	LEE	
Chloroform		ND.	ug/L	1.0	01/25/07	LEE	
Chloromethane		ND	ug/L	1.0	01/25/07	LEE	
1,2-Dibromoethane		ND	ug/L	1.0	01/25/07	LEE	
1,1-Dichloroethane		ND	ug/L	1.0	01/25/07	LEE	
1,2-Dichloroethane	•	ND	ug/L	1.0	01/25/07	LEE	
1,1-Dichloroethene	3 -	ND	ug/L	1.0	01/25/07	LEE	
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/25/07	LEE	
1,2-Dichloropropan	ie	ND	ug/L	1.0	01/25/07	LEE	
cis-1,3-Dichloropr	copene	ND	ug/L	1.0	01/25/07	LEE	

----- General Chemistry

Sample ID:

FWGBKGmw-010C-0361-GW

Lab ID:

A7A240102-019

Sampling Date:

01/23/07 3:23PM

Receipt Date:

01/24/07

7:15AM

Matrix:

WATER

02,20,0.	••		**	Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/26/07	BLW
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

Sample ID:

FWGBKGmw-010C-0361-GF

Lab ID:

A7A240102-020

Receipt Date:

01/24/07

7:15AM

Lab ID:	A7A24	0102-020			Receipt	t Date:	01/24/07 7:15AM	
Sampling Date:	: 01/23	3:23PI	A		Matrix:	:	WATER Prep-	
	Parameter		Result		Units	RL	Analysis Date	Analyst
				Mai	tals			
				110	Jano			
Arsenic	Coupled Plas	ma (6010B	Trace) ND		ug/L	5.0	01/25/07	LRW
Lead			ND		ug/L	3.0	01/25/07	LRW
Selenium		·	ND		ug/L	5.0	01/25/07	LRW
Inductively Magnesium	Coupled Plas	ma (6010B)	14900		ug/L	1000	01/25/07	LRW, "
Manganese			838		ug/L	10.0	01/25/07	LRW
Barium			18.4		ug/L	10.0	01/25/07	LRW
Nickel			76.3		ug/L	10.0	01/25/07	LRW
Potassium			591	вЈ	ug/L	1000	01/25/07	LRW
Silver			ND		ug/L	5.0	01/25/07	LRW
Sodium			3590		ug/L	1000	01/25/07	LRW
Vanadium			ND		ug/L	10.0	01/25/07	LRW
Chromium	i		ND	•	ug/L	5.0	01/25/07	LRW
Calcium	•		12100	J	ug/L	1000	01/25/07	LRW
Cobalt			ND		ug/L	5.0	01/25/07	LRW
Copper			ND		ug/L	5.0	01/25/07	LRW
Inductively	Coupled Plas	ma Mass So	actrometro	7(6020)				
Antimony	ooupled lies	ma zazss sp	ND	(0020)	ug/L	2.0	01/25- 01/30/07	BD
Iron			47.2		ug/L	20.0	01/25- 01/30/07	BD
Beryllium			ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium	•		ND		ug/L	1.0	01/25- 01/30/07	BD
Zinc			12.3	J	ug/L	10.0	01/25- 01/30/07	BD
Cadmium		•	0.14	В	ug/L	0.50	01/25- 01/30/07	BD
Aluminum			136		ug/L	50.0	01/25- 01/30/07	BD
Mercury (74	70A, Cold Vap	or) - Liqu	id ND		ug/L	0.20	01/25/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWG-TB-0401-GW

Lab ID:

A7A240102-021

Receipt Date:

01/24/07 7:15AM

Sampling Date:

Appendix B

01/23/07 12:00AM

Matrix:

WATER

Parameter	Result	Units	RL	Analysis Date	Analyst
	GC/MS	Volatile Organics			
Volatile Organics, GC/MS (8260	B)				
trans-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone	1.9	J ug/L	10	01/26/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	ND	ug/L	10	01/26/07	LEE
Methylene chloride	1.5	J ug/L	20	01/26/07	LEE
4-Methyl-2-pentanone	0.35	J ug/L	10	01/26/07	LEE
Benzene	ND	ug/L	1.0	01/26/07	LEE
Styrene	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE
Toluene	ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromoform	ND	ug/L	1.0	01/26/07	LEE
Bromomethane	ND	ug/L	1.0	01/26/07	LEE
2-Butanone	ND	ug/L	10	01/26/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane	ND	ug/L	1.0	01/26/07	LEE
Chloroform	ND	ug/L	1.0	01/26/07	LEE
Chloromethane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/26/07	LEE
		- 404			

Page 181

Sample ID:

FWG-TB-0401-GW

Lab ID:

A7A240102-021

Receipt Date:

01/24/07

7:15AM

Sampling Date:

01/23/07 12:00AM

Matrix:	WATER

Jumping Parts	01/25/0/ 12:00:11			****	Prep-	
Parameter	_	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, 1,2-Dichloroethane	GC/MS (8260B)	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane		ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropro	pene	ND	ug/L	1.0	01/26/07	LEE

J Estimated result. Result is less than RL.

Sample ID:

FWGDA2mw-107C-0373-GW

Lab ID:

A7A240102-022

Sampling Date:

01/22/07 4:04PM

Receipt Date:

01/24/07 7:15AM

Matrix:

WATER
Prep-

Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
	GC Semiv	olatile Organics			
PCBs (8082) Aroclor 1016	ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1221	ND	ug/L	0.50	01/25~ 01/30/07	LH
Aroclor 1232	ND	ug/L	0.50	01/25- 01/30/07	LH
Aroclor 1242	ND	ug/L	0.50	01/25- 01/30/07	TH TH
Aroclor 1248	ND ····································	ug/L	0.50		LH LH
Aroclor 1254	ND	-	0.50	•	
Aroclor 1260		ug/L		01/25- 01/30/07	LH
Aroctor 1260	ND	ug/L	0.50	01/25- 01/30/07	LH
Pesticides (8081A) Dieldrin	ND	ug/L	0.030	01/25- 01/27/07	csv
Endosulfan I	ND	ug/L	0.025	01/25- 01/27/07	csv
Endosulfan II	ND	ug/L	0.025	01/25- 01/27/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/25- 01/27/07	csv
Endrin	ND	ug/L	0.030	01/25- 01/27/07	CSV
Endrin aldehyde	ND	ug/L	0.030	01/25- 01/27/07	CS.V
Endrin ketone	ND	ug/L	0.030	01/25- 01/27/07	CSV
Heptachlor	ND	ug/L	0.030	01/25- 01/27/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/25- 01/27/07	csv
Methoxychlor	ND	ug/L	0.10	01/25- 01/27/07	csv
alpha-BHC	ND	ug/L	0.030	01/25- 01/27/07	CSV
beta-BHC	ND	ug/L	0.030	01/25- 01/27/07	CSV
delta-BHC	ND	ug/L	0.030	01/25- 01/27/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/25- 01/27/07	CSV
Toxaphene	ND	ug/L	2.0	01/25- 01/27/07	CSV
alpha-Chlordane	ND	ug/L	0.030	01/25- 01/27/07	csv
gamma-Chlordane	ND	ug/L	0.030	01/25- 01/27/07	csv
Aldrin	ND	ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDD	ND	ug/L	0.030	01/25- 01/27/07	CSV
4,4'-DDE	ND	ug/L	0.030	01/25- 01/27/07	csv
4,4'-DDT	ND	ug/L	0.030	01/25- 01/27/07	csv

Sample ID: FWGDA2mw-107C-0373-GW A7A240102-022 01/24/07 7:15AM Tab ID: Receipt Date: Sampling Date: 01/22/07 4:04PM Matrix: WATER Prep-Analysis Date Result Units RLAnalyst Parameter Nitroaromatics & Nitramines: Explosives (8330) 1,3-Dinitrobenzene ug/L 0.097 01/29- 02/03/07 FΚ 2,4-Dinitrotoluene ND ug/L 0.097 01/29- 02/03/07 FΚ 0.097 01/29- 02/03/07 2,6-Dinitrotoluene ND ug/L FΚ Nitrobenzene ND ug/L 0.097 01/29- 02/03/07 FK 0.097 01/29- 02/03/07 1.3.5-Trinitrobenzene MD ug/L FK 2,4,6-Trinitrotoluene ND ug/L 0.097 01/29- 02/03/07 FK HMX ND ug/L 0.097 01/29- 02/03/07 FK RDX ND ug/L 0.097 01/29- 02/03/07 FK Tetryl ND ug/L 0.097 01/29- 02/03/07 FΚ 2-Nitrotoluene ND ug/L 0.48 01/29- 02/03/07 FΚ 3-Nitrotoluene ND ua/L 0.48 01/29- 02/03/07 FΚ 4-Nitrotoluene ug/L 0.48 01/29- 02/03/07 FK ND 4-Amino-2, 6-dinitrotoluene 0.097 01/29- 02/03/07 FΚ ND ug/L 2-Amino-4,6-dinitrotoluene 0.097 01/29- 02/03/07 ND ug/L FK Organic Compounds by UV/HPLC Dissolved Nitroguanidine ND uq/L 20 02/02- 02/03/07 FK ----- GC/MS Semivolatile Organics -----Base/Neutrals and Acids (8270C) 1.0 01/24- 01/31/07 Diethyl phthalate ND ug/L JMG 2,4-Dimethylphenol ND ua/L 2.0 01/24- 01/31/07 JMG ND 01/24- 01/31/07 Dimethyl phthalate ug/L 1.0 JMG 1.0 01/24- 01/31/07 Di-n-octyl phthalate ND ug/L JMG 01/24- 01/31/07 4,6-Dinitro-2-methylphenol ND ug/L 5.0 JMG 2,4-Dinitrophenol ND ug/L 5.0 01/24- 01/31/07 JMG 2,4-Dinitrotoluene ND 5.0 01/24- 01/31/07 JMG ug/L 5.0 01/24- 01/31/07 JMG 2,6-Dinitrotoluene ND ug/L Anthracene ND uq/L 0.20 01/24- 01/31/07 JMG Fluoranthene 0.20 01/24- 01/31/07 ND ug/L JMG 0.20 Fluorene ИD ug/L 01/24- 01/31/07 TMG ug/L 0.20 01/24- 01/31/07 Hexachlorobenzene ND TMG

Page 184 Page 184

1.0

01/24- 01/31/07

JMG

ND

Hexachlorobutadiene Appendix B

Sample ID:

FWGDA2mw-107C-0373-GW

Lab ID:	A7A240102-0	022		Receipt Date:	01/24/07	7:15AM
Sampling Date:	01/22/07	4:04PM	•	Matrix:	WATER Prep-	

Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Hexachlorocyclopentadiene	ND	ug/L	10	01/24- 01/31/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/24- 01/31/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Isophorone	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Naphthalene	ND	ug/L	0.20	01/24- 01/31/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/2401/31/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/24- 01/31/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzoic acid	ND	ug/L	10	01/24- 01/31/07	JMG
Benzo(ghi)perylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Benzo(a)pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Phenanthrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Phenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
Pyrene	ND	ug/L	0.20	01/24- 01/31/07	JMG
1,2,4-Trichlorobenzene	ND .	ug/L	1.0	01/24- 01/31/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/24- 01/31/07	JMG
Carbazole Appendix B	ND Pa	ge 185	1.0	01/24- 01/31/07	JMG

Sample ID:

FWGDA2mw-107C-0373-GW

Lab ID: A7A240102-022 Sampling Date:

01/22/07 4:04PM

Receipt Date:

01/24/07 7:15AM

WATER Prep-Matrix:

	-		•	Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)					
bis (2-Chloroethoxy) methane	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/24- 01/31/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/24- 01/31/07	JMG
bis(2-Ethylhexyl) phthalate	4.0 JB	ug/L	10	01/24- 01/31/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/24- 01/31/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/24- 01/31/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/24- 01/31/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/24- 01/31/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/24- 01/31/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/24- 01/31/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/24- 01/31/07	JMG
Chrysene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/24- 01/31/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/24- 01/31/07	JMG
Di-n-butyl phthalate	ND .	ug/L	1.0	01/24- 01/31/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/24- 01/31/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/24- 01/31/07	JMG
2,4-Dichlorophenol	ND	ug/L	2.0	01/24- 01/31/07	JMG

Method blank contamination. The associated method blank contains the target analyte at a reportable В level.

------ GC/MS Volatile Organics ------

Volatile Organics, GC/MS (8260B)					
trans-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
Acetone	ND	ug/L	10	01/25/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/25/07	LEE
2-Hexanone	ND	ug/L	10	01/25/07	LEE
Methylene chloride	ND	ug/L	2.0	01/25/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/25/07	LEE
Benzene Appendix B	ND	Page 186 ^{/L}	1.0	01/25/07	LEE

Estimated result. Result is less than RL.

 Sample ID:
 FWGDA2mw-107C-0373-GW

 Lab ID:
 A7A240102-022

01/24/07 7:15AM

Sampling Date: 01/22/07 4:04PM

Receipt Date: 01/24/07
Matrix: WATER
Prep-

01,22,0,				Prep-	
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics, GC/MS (8260B) Styrene	ND	ug/L	1.0	01/25/07	LEE
_					
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/25/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/25/07	LEE
Toluene	ND	ug/L	1.0	01/25/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/25/07	LEE
Trichloroethene	ND	ug/L	1.0	01/25/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/25/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/25/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/25/07	LEE
Bromoform	ND	ug/L	1.0	01/25/07	LEE
Bromomethane	ND	ug/L	1.0	01/25/07	LEE
2-Butanone .	ND	ug/L	10	01/25/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/25/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/25/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/25/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/25/07	LEE
Chloroethane	ND	ug/L	1.0	01/25/07	LEE
Chloroform	ND	ug/L	1.0	01/25/07	LEE
Chloromethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/25/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloroethene (total)	ND	ug/L	1.0	01/25/07	LEE
1,2-Dichloropropane	ND	ug/L	1.0	01/25/07	LEE
cis-1,3-Dichloropropene	ND	ug/L	1.0	01/25/07	LEE
			•		

Sample ID:

FWGDA2mw-107C-0373-GW

Lab ID:

A7A240102-022

Sampling Date:

01/22/07 4:04PM

Receipt Date:

01/24/07

7:15AM

Matrix:

WATER

02,22,0	· -		***	Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/25/07	SS
Nitrocellulose as N by 353.2 Nitrocellulose	ND	mg/L	0.50	02/02- 02/07/07	DTA

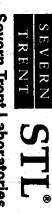
Sample ID:

FWGDA2mw-107C-0373-GF

Lab ID:

A7A240102-023

Receipt Date:

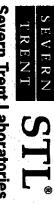

01/24/07 7:15AM

Lab ID:		A7A24010		л.		Receipt Matrix		01/24/07 7:15AM	
Sampling Date:	Parameter	01/22/07	4:04PI	Result		Units	<u>RL</u>	WATER Prep- Analysis Date	Analyst
					Me	tals			
Inductively Arsenic	Coupled	Plasma	(6010B	Trace)		ug/L	5.0	01/25/07	LRW
Lead				ND		ug/L	3.0	01/25/07	LRW
Selenium				ND		ug/L	5.0	01/25/07	LRW
Inductively Magnesium	Coupled	Plasma	(6010B)	.29300		ug/L	1000	01/25/07	LRW
Manganese				345		ug/L	10.0	01/25/07	LRW
Barium				32.0		ug/L	10.0	01/25/07	LRW
Nickel			. *	ND		ug/L	10.0	01/25/07	LRW
Potassium				1440	J	ug/L	1000	01/25/07	LRW
Silver				ND		ug/L	5.0	01/25/07	LRW
Sodium				9810		ug/L	1000	01/25/07	LRW
Vanadium				ND		ug/L	10.0	01/25/07	LRW
Chromium		•		ND		ug/L	5.0	01/25/07	LRW
Calcium				87000	J,	ug/L	1000	01/25/07	LRW
Cobalt				ND .		ug/L	5.0	01/25/07	LRW
Copper				ND		ug/L	5.0	01/25/07	LRW
Inductively	Coupled	Plasma	Mass Sp	ectrometry	z(6020)				
Antimony	COUPICA	1 1 doma	nass sp	ND	(0020)	ug/L	2.0	01/25- 01/30/07	BD
Iron				786		ug/L	20.0	01/25- 01/30/07	BD
Beryllium				ND		ug/L	1.0	01/25- 01/30/07	BD
Thallium				ND		ug/L	1.0	01/25- 01/30/07	BD
Zinc				4.7	ВЈ	ug/L	10.0	01/25- 01/30/07	BD
Cadmium				ND		ug/L	0.50	01/25- 01/30/07	BD
Aluminum				ND		ug/L	50.0	01/25- 01/30/07	BD
Mercury (74 Mercury	70A, Col	d Vapor)	- Liqu	id ND		ug/L	0.20	01/25/07	\mathtt{ML}

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Chain of Custody Record



Severn Trent Laboratories, Inc.

			· .		\$	or vigoralian m	Ç	ā	Date				3. Relinquished By
1/24/27 07/28 H			1	K	1/1		+		1-2307		1823 EDY	Rea Tax	2. Relinquished By
Ţ				1	BW	2 Received	-	Time	ate			Oh.	Jan S
123-36 173 井		V)	ZAZ	ZU	₹. \$\frac{\zero}{\pi}	1. Received By		7 / 1/6 (SO	Date	0			اق د
Time									Other		iys 🔲 21 Days] 48 Hours 7 Days 14 Days	☐ 24 Hours ☐ 48
	· ·			Silv.	OC Requirements (Specify)	C Requiren							Turn Around Time Required
h)	longer than 1 month)	Months ic	For	Archive For		Disposal By Lab		Return To Client		☐ Unknown	Poison B	Flammable Skin Irritant	Non-Hazard
(A fee may be assessed if samples are retained	4 fee may be asse			l 				Sample Disposal	San		•	ation	Possible Hazard Identification
		×						<u>, </u>	<u>^</u>		4	- CE	ELIC-TR-HON-CW
		×				W			\ \ \	१८ ३।		FWGBXC mw -010C-0361 -CM	FWGBEC MW -
	786 5.7	×				3			×	14:14	-	EWARK 0120-0362-6W	FWCRYC mw
		×				W			o ×	12:40		EWGH-1 MW-678C-0397-6W	DWGHLIMW-G
		×				w				12:40		8C-0380-6W	FWG 11 IMW-078C-0380-
		×				(VI			×	11:56		FWG-8KG-mw-608C-0394-6W	FWG-BKG-mw-c
P		×				W			×	11:56		FWGBKG MW-008C-0360-GW	FWGBKG MN-(
age		×				W			2	32:4		EWGWBC mw-0096 0392 - GW	- WGWBG mw
190		×				W			×	9:5%		0076-0391 - GW	FING WBC mw-0076 0391 -
		×				W			X	9:52		Flug W BC-mw-006C-0390-6W	FWG W BG-mw
		×				W			<i>°</i> ′	11156		FWG11 mm-0880-0382-6-W	FWGLL mw-0
		× ×	×	×		13	8		6 ×	र्थ ॥ १५%	(N 1-23-07	111-11 1 12-82 - 03-82 - HS/NA	EWIC 1) 1
		TA	SV PC	E ₁	NaOH ZnAc/ NaOH	HNO3 HCI	Unpres H2SO4	Sed. Soil	Air Aqueous	Time	Date	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Sample I.D. (Containers for each same
Conditions of Lacelle	-	ani L	B/	ب م م	irs & tives	Containers & Preservatives		Matrix				Juote No.	Contract/Purchase Order/Quote No.
Special Instructions/		ar	Pest						a constant	<u>-</u>		(State)	Project Name and Location (State)
			-	\Box			Carrol	le	Chant le	2 0	998hh	OK	FOUTENNO
	list if	Analysis (Attach list if	Anal			ntact	Lab Contact	-	Site Contact	Sitt	ж	State Zip Code	City
Page 1 of 2		Lab Number				ımber	de)/Fax No	iber (Area Co	ephone Nun	76/			Address
C24217	0~	1-25-				100	Carr	Chandelle Carrol	han			\$ ^	Spector I
Chain of Custody Number)	Date					,		Project Manager	Pro			TL-4124 (0901)

Comments

Chain of Custody Record

							-									Comments
Date					`	3. Received By	3 Ae		Time		Date					3. Relinquished By
4/02		7	N	1	0	2. Received By	 	1812	Time	9	1-23-01	4	CU3186	Rick R		2. Relinquished By
123-07 1	197	Vacor	7	<u>\</u>		1. Received By	1 Rec	16120	lime !	2	Date 1-23-67				shed By	1. Relinquished By
				,							Other_	☐ 21 Days	_	☐ 7 Days ☐ 14 Days	Turn Around Time Hequired 24 Hours 48 Hours	Turn Around
		7 .		cny)	g S	equireme	OC R]			1030	e Skill milani	zard L Flammable	Non-Hazard
(A fee may be assessed if samples are retained longer than 1 month)	(A fee may be assesse longer than 1 month)	Months (ve For	Archive For		☐ Disposal By Lab		Client	Sample Disposar Return To Client	□ Sample	☐ Unknown		Daison B		lden	Possible Ha
										<u> </u>						
				<u> </u>					_							
											-		-			
							_		-							
			-						-							
						<u> </u>										
					ļ. 											
											-					ķ
				×		W				×	જ	Pol 16 104	1-22-0	C-0373-6N	M9-ECED - 2 LOI - MM CA (3 JM -	TWAD
				Uο	NaOH ZnAc/ NaOH	нсі	H2SO4 HNO3	Unpres.	Sed. Soil	Aqueous	PG Air	Time	Date	Description combined on one line	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	S (Containers f
Conditions of Receipt					ves ves	Containers & Preservatives	Pro		Matrix	M					Contract/Purchase Order/Quote No.	Contract/Pun
Special Instructions/							. S		moer	yom Nu	Carrier/wayoii Number	<u> </u>			and Location (State)	Project Name
	eded)	more space is needed)							le Centre	<u> </u>	chantel	200	44266	OH 4	City Ravenne	€ 2 V 6 12 V 6
		Analysis (Attach list if	Ar	-			Lab Contact	2		3	Site Contact	2	3			
Page 2	D	Lab Number				Ð	ix Mumb	Code)/Fa	r (Area	Numbe	нопоре	77				Address
272427	- ග	1-23				=	Carrol	2	1	1	Chantelle Carrol		• .			Client
Chain of Custody Number	(Ch	Date								70000	COOK MA	0]	STL-4124 (0901)

Chain of Custody Record

CHAIN OF CUSTODY NUMBER

TRENT STL®

|||||||||||| Severn Trent Laboratories, Inc.

STL4149 (1202)	-	×				1	;						
Client Spac Pro				Project Manager Chantelle Carroll	Carroll			Date	01/11/2007 1-23-07	Pa	Page	and of	#-
Address				Telephone Number (Area Code)/Fax Number	ber (Area Code)/	Fax Number		Lab	Lab Location			Analysis	
8451 State Route 5				(000)	/ (000)	00)		ST	STL North Canton		0	-	- - - -
	State	Zip Code 44266	ļ	Site Contact Chantelle Carroll	Carroli					s o	O &	C F	· ·
Ravenna										20)D)O	m = - ⊃	
Project Number/Name				Carrier/Waybill Number	Jumber						- (r 	
Ravenna										_	_	- 1 - 1 - 1	
Contract/Purchase Order/Quote Number									QUOTE: 63240	0 0	N 0	0	
			1	Samuela Tima	Con	Containers		Dracanistico	Condition on Receipt/Comments	·	_		
Sample I.D. Number and Description		Date	ıme	Sample Type	Volume	Ľ	N o	r reservative	Condition on Negative Comments	-	AS		
FWGWBGmw-006C-0390-GW		1-23-07	9:52	WATER	1,	AMBER	2	None				× ×	
FWGWBGmw-006C-0390-GW		-		WATER	†L	AMBER	2	None				×	
FWGWBGMW-006C-0390-GW		-		WATER	1L	AMBER	2	None			×		
FWGWBGmw-006C-0390-GW			_	WATER	11	AMBER		None	-		×		
FWGWBGmw-008C-0390-GW		_		WATER	ור	AMBER		None		×			2
EMCMBCOM-COSC - CH				MATER	- A Oml	40ML VIA	u	1		*			19
FWGWBGmw-006C-0390-GW	-			WATER	250mL	PLASTIC		NaOH				×	ge
FWGWBGMW-006C-0390-GF		+	H	WATER	1000mL	PLASTIC	4	Conc HNO3				×	Pa
											E		
-		-											
TO NIN DITTO													-
Special Instructions													

☐ Non-Hazard Possible Hazard Identification Relinquished By ☐ Normal Turn Around Time Required 1. Relinquished B ☐ Flammable ☐ Rush とうい Other_ Skin trritant Poison B \Box ι \Box ι ι QC Lavel ☐ Unknawn ☐ Return To Client \square III. Sample Disposal 1812 ent Disposal By Lab Archive For_
Project Specific Requirements (Specify) Received By Received By Months (A fee may be assessed if samples are retained longer than 3 months)

STL North

Comments

Chain of Custody Record

сті 4149 (1202)	×	0 - 7		-	*		
Client		Project Manager	er Carroll			Date (-)	-
Spec Pro		Tolophone Numb		a Mumber		9	raye
Address 8451 State Route 5		(000)	/ (000)	0)		STL North Canton	Analysis
State OH	Zip Code 44266	Site Contact Chantelle	e Carroll	-			S S C O C C C N 6 O N
Project Number/Name		Carrier/Waybill Number	Number	,			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
							6 7 8 3 1 1 0 0
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :						QUOTE: 63240	0 2 0 0 1 1 0 1
Sample I.D. Number and Description	Date Ti	Time Sample Type	Con	_	Preservative	tive Condition on Receipt/Comments	F
	4	WATER		AMBER	2 None		××
	- 77-01	WATER	11	AMBER	2 None		×
FWGDA2mw-107C-0373-GW		WATER	11	AMBER	2 None		×
FWGDA2mw-107C-0373-GW		WATER		AMBER			×
FWGDA2mw-107C-0373-GW		WATER	1	AMBER	Ι,		3
-EMGDA2mw-107C-0373-CM		WATER	Ш	AUML VIA			
FWGDA2mw-107C-0373-GW		WATER		PLASTIC			ge
FWGDA2mw-107C-0373-GF		WATER	1000mL	PLASTIC	1 Conc H	HNOG	Pa
6							
* Only Amber							
Special instructions			4				
Possible Hazard Identification	ritant	ison B Unknown	Sample Disposal Return To Client	ent	☐ Disposal By Lab	b Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
ne Required		OC Lave!	<i>I.</i> □ #.	Project Sp	Project Specific Requirements (Specify)	ants (Specify)	on
shed By		Date Date) 16 :50	1. Received By	No By	in Rossow	Date 25-07 7 M a
2. Relinquished By VICK ASSISAN	J. 8218	1-23-0	7	2. Received By		MILL	1/24/17 Time of O
3. Relinquished By		Date	Time	3. Received By	AB Pe		Date Time
Comments		-					.
		Direct of Branch	NAIK Eight Conv				SI

Chain of Custody Record

TRENT STL®

Severn Trent Laboratories, Inc.

Comments		2. Relinquished By NICK 1 02128	7 7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24 Hours 48 Hours 7 Days 14 Days 21 Days		Possible Hazard Identification No. Possible Skin Irritant Poison B							-MG-VI WM - 0/8C - 0 2 1/ 0	43 - LB CV V3CV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample I.D. No. and Description Containers for each sample may be combined on one line) Date	Contract/Purchase Order/Quote No.		ocation (State)	City State Zip Code	Address	Spec Pro Inc	STL-4124 (0901)
	Date Time 3. Received By 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date Time 1. Received By /	Other		☐ Unknown ☐ Return To Client ☐ Disposal By Lab ☐								トメ	12:40 7 8 1	Air Aqueous Sed. Soil Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	Matrix Containers & Preservatives		Carrier/Waybill Number	Site Contact Chant II (a cra) Lab Contact	Telephone Number (Alba Code)/r-ax Number	Chantelle Carroll	Project Manager
		andle	TICH ROBER		i y)	Archive For Months longer than 1 month)								×	× × ×	EX Pro- SUG PCF CYG TA		est e		Analysis (Attach list if more space is needed)			Date
L N	Jort	1407 07/5 pp	78-21 78-89	Time 1 3		(A fee may be assessed if samples are retained longer than 1 month)				Pa	age 1	94					Conditions of necesity	Special Instructions/			Page of	272419	Chain of Custody Number

STL

Chain of Custody Record

7	TRENT	SEVERN
	OIL	_ ברדת ה

Severn Trent Laboratories, Inc.

STL4149 (1202)	*	C	6 6 7	١	0	*										
Client Spec Pro			Project Manager Chantelle Carroll	Carroll			Date	Date 01/11/2007	1-23-07	Page	76 ·	\$~	Q		#-	
Address 8451 State Route 5			Telephone Number (Area Code)/Fax Number (000)	er (Area Code)/Fax / (000)	ax Number 0)		Lab STI	Lab Location STL North Canton	anton			Analy	alysis		. !	
City State OH	Zip Code 44266		Site Contact Chantelle Carroll	Carroll						ωz	0 8	CC	2 C	ΟZ		
Project Number/Name			Carrier/Waybill Number	umber						ა დ ა დ	- 00 - 00	- m		zω		
Ravenna										1 1	_	- г	- r	3		
Contract/Purchase Order/Quote Number							_	QUOTE: 63240	240	0 7	2 D 3	r	Ø - 12∶ 0	20		
		Time	Sample Type	Cont	Containers	1	Preservative	Condition of	Condition on Receipt/Comments	- ဂ						
Sample I.D. Number and Description	Date	111110	Sample i ype		Type 1	!·	000			<u> </u>	U.		-	+	-	İ
FWGWBGmw-009C-0392-GW	1-23-07	9:25	WATER		AMBER	1	None					>	Ŀ	 		Τ
FWGWBGmw-009C-0392-GW			WATER		AMBER	+	None				×	Ē		_		1
FWGWBGmw-009C-0392-GW			WATER	_	AMBER	 	None				×	E		_	F	
FWGWBGmw-009C-0392-GW			WATER		AMBER	† -	None			+-	×		L	-		T
FWGWBGmw-009C-0392-GW			WATER	-	AMBER	+	None			,	-	1	1	+	95	\top
-FW6WBCmu-009C-0392-GW			MA I FM	Ц.	4 VIA	╫	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			[]	+-	-	-	+	19	1
FWGWBGmw-009C-0392-GW			WATER		PLASTIC		NaOH					-	×	-	ge	1
FWGWBGMW-009C-0392-GF	-	+	WATER	1000mL	PLASTIC	-	Conc HNO3				+		×	+	Pa	1.
		1												\parallel		
* outy & Ambers																
						_					-				+	1
											+				-	
													Н			
Special Instructions															÷	
Identif		Doison B	Linknown	Sample Disposal	ent	Dispos	Disposal By Lab	Archive For	Months	(A fee	ed lone	(A fee may be assessed if samples are retained longer than 3 months)	ssed if	sample ths)	s are	
Time Required			그 잉	 	Project Sp	ecific Re	S) S	pecify)						1.		n
				Time	1. Received By	д Ву	,	× × × × × × × × × × × × × × × × × × ×	NC SACTOR		Date 2	Ω 3	7	Time	XX E	int
Jan Janu		1	Date	Time	2. Received By	d By	1	2			Date			Time	ber	C
AC)	Y03/54	(123-07	1812		,	92	NIC	7		1/2	dh	7	7	رک Aph	th
3. Relinquished By			Date	Time	3. Received By	d By					Date	,,,		Time		Nor
Comments	-												1	ه وما الأراب		CL :
	ANADY Datuma	The Clien	t with Deport PINI	PINK - Field Conv												S.

Record Chain of Custody

CHAIN OF CUSTODY NUMBER

1 2 9 5 8 - 0 0 6 *

27

Se
veri
1
ent
La
202
ator
ies
Ţ
9

STI 4149 (1202)	*	0	7 2 9 5	٥	0	*				
Client			Project Manager Chantelle Carroll	Carroll			Date 91	Date: 01/11/2007 /-}}-0)	Page 6 of	*
			Telephone Number (Area Code)/Fax Number	er (Area Code)/Fax	Fax Number		Lab	Lab Location STI North Canton	Analysis	
8451 State Route 5			(000)	, 100	707				MICIBILL	1
	Zip Code		Site Contact	Carrol					(S) 3 (S) 3 (C) 4 (C) 7 (C) 7	
Ravenna	007##		O di	4					00 00 00 01 02	
Project Number/Name			Carrier/Waybill Number	lumber		-			 	· · · -
Ravenna									- 1 - 2 - 2	
Contract/Purchase Order/Quote Number									0	
CONTRACT / PURCHASE ORDER # :								QUOTE: 63240	0 2 - 0 - 0 - 0	
Sample I.D. Number and Description	Date	Time	Sample Type	Con	Containers	8	Preservative	Condition on Receipt/Comments	S	
FWGBKGmw-012C-0362-GW	1-22-07	11:41	14:14 WATER	†L	AMBER	_	None		×	
FWGBKGmw-012C-0362-GW		-	WATER	11.	AMBER		None		×	
FWGBKGmw-012C-0362-GW			WATER	ř	AMBER	 	None		×	\$ 20.00
FWGBKGmw-012C-0362-GW			WATER	1	AMBER	1	None		>	
FWGBKGmw-012C-0362-GW			WATER	1L	AMBER		None		>	6
##XBKGmw-0120-0362-GW			WATER	4 Gm1	40ML VIA	9	tC.		1	19
FWGBKGmw-012C-0362-GW			WATER	250mL	PLASTIC	1	물		×	ge
FWG8KGmw-012C-0362-GF	H	H	WATER	1000mL	PLASTIC		Conc HNO3		>	Pa
		•								_
η										
O KIC										
		ŀ								

Special Instructions

Possible Hazard Identification		Sample Disposal		(A fee may be assessed if samples are
Non:Hazard ☐ Flemmable ☐ Skin Irritant ☐ Poison B	on B Unknown	Return To Client	nt Disposal By Lab Archive For Months	retained longer than 3 months)
ē Req	QC Level		Project Specific Requirements (Specify)	1
Normal Rush Other		□ <i>III</i> .		or
hed By 1	Date	Time	1. Received By	Date Time
Z S Table	1-25-02	\$ 16:50	Vick Michael	1000 / BOS
ed By	Date	Date Time	2. Received By N 471	ope
Vice Cont	1-2501	101/	In recover	11/0 /1/2/1
3. Relinquished By	Date	Time	3. Received By	Date Time
				No
Comments		1		· ·
DATE OF THE PROPERTY OF THE PR	That with Donat DIME	Field Conv		S

Record Chain of Custody

Severn Trent Laboratories, Inc.

COPT 4140 (1202)	*	<u></u>	7 7	0	7	>												
SIL4145 (1202)			Project Manager				Date			\dashv			~				~	
Client Spac Pro			Chantelle Carroll	e Carroll			.	11/2007	1-23-07		Page		\$	9		1,	1	ľ
Address			Telephone Nun	Telephone Number (Area Code)/Fax Number	I/Fax Number		Lab	Lab Location					4	Analysis	n 			
8451 State Route 5			(000)	/ (0	(000)		ST	STL North Canton	9	<u> </u>	_	20		7 K	Ĭ '	1	-	1
City State	Zij		Site Contact	•	٠		-			0 3) <u>a</u>) C	ה ה	7 F Z (7 3 3	9 3			
nna	OH 44266		Chantelle Carroll	e Carroli						<u></u>) C		Z (- 2				
Project Number/Name			Carrier/Waybill Number	Number						2 (Г-	Z (
Ravenna										 	-		-		0	1	- 1.	
Contract/Purchase Order/Quote Number								QUOTE: 63240		0	N	D O	<u> </u>	D		-		
				လ	Containers	_	:				0	_		_				
Sample I.D. Number and Description	Date	Time	Sample Type	Volume	Туре	┢╌	rieservative	Contrator on Necestra Comments	cerpo Commiscia	, i	Г 2	υ. Γ	+	F			-	+
FWGLL1mw-078C-0380-GW	1-22-1	12:40	WATER	71	AMBER	2	None					F	>	F	F		F	+-
FWGLL1mw-078C-0380-GW	- 1	-	WATER	1:	AMBER	Ŋ	None					×		-	<u> </u>		 	+
FWGLL199W-078C-0380-GW		1	WATER	1	AMBER	2	None			_		×		-	L		_	-
FWGLL1mw-078C-0380-GW			WATER	÷	AMBER	73	None			├-	×	F	-	-	F		-	+
FWGIL1mw-078C-0380-GW		-	WATER	11	AMBER	12	None				>			1	1	_	\overline{I}	1
-FWGLL:mw-078C-0380-GW			WATER	40m1	40ML VIA	3	Ę.			1	ľ	F			-	\perp	19	۲
FWGLL1mw-078C-0380-GW			WATER	250mL	PLASTIC	1	NaOH			-	E		F	×	-		16	+
EMOL 1 1 mm - 0.78C - 0.380 - GM		#	WATER	500mL	PLASTIC	+	Conc #2504							ļ	*	1	'n	<u>''</u>
FWGLL1mw-078C-0380-GF	-	+	WATER	1000mL	PLASTIC		Conc HNO3			_			-	×	Ĺ		F	┼
							· .			-		F		F	‡	\perp	F	+
									-	-	F	-		1	‡	\perp	F	+
Y ONTO & ALLEY														<u> </u>		\vdash		\vdash
										<u> </u>			F	Ι.				┼
		+								_						_		\vdash
						_						<u> </u>		F		_		\vdash
		1								H	E		F			-		-
Special Instructions	_									.*								
											1.							
Possible Hazard Identification				Sample Disposal	posal				٠.		(A fee may be assessed if samples are	may b	e asse	ssed	ıf san	npies	are	
CCCCC - 1111111111111111111111111111111												•						

DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report: PINK - Field Copy Relinquished By ☐ Normal Turn Around Time Required ☐ Non-Hazard Comments ☐ Flammable ☐ Rush Other_ Skin Irritant Paison B QC Lavel Unknown Return To Client 18/2 IN: SO Project Specific Requirements (Specify) 3. Received B Disposal By Lab Archive For (A fee may be assessed if samples are retained longer than 3 months)

STL North

Possible Hazard Identification

Chain of Custody Record

Savarn Trant I shoratories	TRENT	SEVERN
l shorstories		の コー ®

TL 4124 (0901)		Project Manager				Date	Chain of	Σl	*
No. 7		Chartelle Carroll	Carroll			1-23-07		272421	
Address		Telephone Number (Ar	ea Code)/Fax Number			Lab Number	Page -		-
State	ode		Lab Contact		Anal) more	Analysis (Attach list if more space is needed)			
- -	44466	Carrier/Waybill Number	iber Cit						u adiama/
Contract/Purchase Order/Quote No:		Matrix		Containers & Preservatives	٥			Conditions of Receipt	if Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air Aqueous Sed.	Unpres. H2SO4	HCI NaOH ZnAc/ NaOH	Exp Pro SVC PCP	Ta			
FWC BKC-mw-0080-0394-GW	1-23-67	X 92:11	8		× × × ×				
The Pre- 120 Pre- 120 Pre-	 - -	L ×				×			
N G C C C C C C C C C C C C C C C C C C									
									98
							escare .		ge 1
							The Land		Ра
							* S-10	1 No.	
							i de la constanti		
		Sample Disposal	nosal .						
Possible Hazard I Clammable Skin Irritant] B nosioe	☐ Unknown ☐ Return To Client	ient	🗌 Disposal By Lab 🔲 A	Archive For	Months longer t	(A ree may be assessed tonger than 1 month)	(A ree may be assessed it samples and elained longer than 1 month)	Wilder Control
ne Required	ws 21 Days	s Other	OC Req	OC Requirements (Specify)					n
1	. 1	Date 1	1. Received By	ived By	C. 250	886	X2 Page	307	19
2. Relinquished By KIZI NO.3 (S)	6	Date 1-23 -67 Tin	Time 2. Received By	M M Boon	all			14/67	ppan Ca
3. Relinquished By		Date	ne 3. Received (b)	ived by			Date	in the second	lort.
Comments						i i i i i Si i i i i i i i i i i i i i i			L I
DISTRIBITION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy	CANARY - Stays	with the Sample: PINK - Fit	eld Copy				-	egeneratus	SI

30

Severn Trent Laboratories, Inc.

STL4149 (1202)	×	c	7 4 2	0	4	×							-			1
Spec Pro			Chantelle Carroll	Garroll			4	Q1/11/2007	1-23-07	Page	e 	1		3	1	
Address			Telephone Nun	Telephone Number (Area Code)/Fax Number	Fax Number		Lab	Lab Location				Analys	<u> </u>			i
8451 State Route 5		<u> </u>	(000)	/ (00	(000)		ST	STL North Canton	nton		-	1	7	-	-	•
City State Ravenna OH	Zip Code 44266		Site Contact Chantel te	e Carroll						ω 3	0 0	0 7	0 2			
Project Number/Name			Carrier/Waybill Number	Number						2 0	0 8	က z	2 0			
Ravenna										7		- (9			
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :				-				QUOTE: 63240	•	٥ -	D 0	r -	- #4			
	,	7	Sample Tune	Con	Containers		Drosonvative	Condition on	Receint/Comments	C			·•¥			
Sample I.D. Number and Description	Date	IIme	sample Type	Volume	Туре	Νo	r reservative	Condition	Containen on Nacaipa Comments	-	S					'
FWGBKGmw-008C-0360-GW	1-23-07	11:56		1L	AMBER	2	None				-	×				·r
FWGBKGmw-008C-0360-GW				71	AMBER	2	None				×					
FWGBK6mw-008C-0360-GW			WATER	Ť	AMBER	23	None		-		×	_				
FWGBKGmw-008C-0360-GW			WATER	11	AMBER	2	None			_	×					,
FWGBK6mw-008C-0360-GW		_	WATER	11	AMBER	12	None			×			-		9	•
FWGBK6mw-008C-0360-GW			**	- City	ALIMI VIA		1				F				15	'
FWGBKGmw-008C-0360-GW			WATER	250mL	PLASTIC	_	NaOH				-	×	1		ge	•
FWGBKGmw-008C-0360-GF	}	t		1000	200		3					+	+		Þ	,
			1													, ,
* Only & Ambry											\dagger		+	1	+	ľ
		+									+	1	_	$\frac{1}{1}$	+	ŧ
																' '
						_						. 977				1
Special Instructions																
Possible Hazard Identification		Poison B	в 🔲 Ипкломп	Sample Disposal In Return To Client	ient	∐ Disp	☐ Disposal By Lab	Archive For	Months	(A fee	ed iong	(A fee may be assessed if samples are retained longer than 3 months)	ed if sa	imples : s)	are.	
d Time Required	or .		OC Level		Project S	pecific I	Project Specific Requirements (Specify)	Specify)							3	on
hed By			Date	1	1. Received By	ed By	To W	TOB	80		Date	30	1	2 mine	gix I	ant
2. Relinquished By)			Time	2. Received By	red By	7				Date		.	Time	рe	C
X /5/C NOXOGE	70/20	ر ا ا	1-65-6	1/8/	+		12 M	RUC			1	1016		011	Αř	th
3. Relinquished By		÷	Date	Time	3. Received By	/ed By					Date		eriore es	lime		Nor
Comments									,		-					L 1
	ANIADY Dates	2 2	nt with Dogot Di	DINK Field Conv									or the con-			ST

Chain of Custody Record

CHAIN OF CUSTODY NUMBER

TRENT ST

STL4149 (1202) Client			Project Manager				Date									ļ
Spec Pro			Chantelle	Carroll			9	#	23-07	Page	ge _	3 ;	of.		4	1
Address			Telephone Num	Telephone Number (Area Code)/Fax Number	Fax Number		Lab	Lab Location				Δ,	shreic	٠		
8451 State Route 5		. :	(000)	/ (000)	0)		ST	STL North Canton	ň			An	Analysis			İ
City State OH	ate Zip Code 34 266		Site Contact Chantelle	Garroll						υz	Ο α	n z	O) 3			
Project Number/Name Ravenna		·	Carrier/Waybill Number	Number						NO	_ 0	G 2				
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :		:					:	QUOTE: 63240		0 \	2 0	L	2 0	10 C		
Sample I.D. Number and Description	Date	Time	Sample Type	Con Volume			Preservative	Candition on Receipt/Comments	ceipt/Comments	г	φ					
-WGWBGMW-007C-0381-GW	1-23-07	33.0	WATER	11	AMBER	2 N	None			-		×				٠
	_ 3	- 2	WAIER	11	AMBER	Z	None					×				
			WATER	1,	AMBER	Z	None				×					
FWGWBGMW-007C-0391-GW			WATER	11.	AMBER	_	None				×					-
FWGW8GmW-007C-0391-GW		-	WATER	71	AMBER		None			×					0	
FACMERW-001/C-0381-6M			MATER	Atimi		7	1							-	20	-
FWGWBGmw-007C-0391-GW			WATER	250mL	PLASTIC		NaOH						×		ge	ľ
FWGWBGMW-007C-0391-GF	1-	۲	WATER	TODOME	PLASTIC		CONC HINUS						>	+	Pa	1
																1 [
ļ.											\pm		+	+		
or only o Ambers						-								+		
	-	-														[
Special Instructions															_	
Identification	Skin kritant	Poison B	Unknown	Sample Disposal in Return To Client	ent	☐ Disposal By Lab		Archive For	Months		e may	(A fee may be assessed if samples are retained longer than 3 months)	ssed if s	amples hs)	are	
d Time Required	Other			□ # .	Project S	pecific Re	S) S	specify)		1.2					3	on
			Date 1 - 23 - 07	16:50	1. Received By	ed By	<u>`</u> \}	~ 76	782		Date	22	57	Time	paix I	ant
1By RICK	Rossext		12307	7 1812	2. Received By	ed By	K K	M		elst.	Date	24/1	7	07	Арре	h (
3. Relinquished By			Date	Time	3. Received By	ed By C		· · · · · ·	r _{see}	1	bate			ime	-	Nort
Comments																STL
	2000		. O	The Control of the Control												S

Chain of Custody Record

STL4149 (1202)							1,			
Client Spac Pro	•		Project Manager Chantelle Carroll	Carroll			Date 1	01/11/2007 /- みらってつ	Page 5 of	*
Address 8451 State Route 5			Telephone Number (Area Code)/Fax Number (000) / (000)	per (Area Code)/Fax / (000)	ax Number		ST1	Eab Location STL North Canton	Analysis	
City State Zip	Zip Code 44266		Site Contact Chantelle	Carroll						
Project Number/Name Ravenna			Carrier/Waybill Number	lumber					N N 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :			,					QUOTE: 63240	0 2 0 0 0 0	
Sample I.D. Number and Description	Date	Time	Sample Type	Con Volume	Containers Type	N o.	Preservative	Condition on Receipt/Comments	r - c - c - c - c - c - c - c - c - c -	
	しつくかし	15:33	WAIEK	ī	AMOUN	_ ^	Mone		> >	
FWGBKGMW-010C-0361-GW		_	**************************************		7,00	,	10 10		3	
FWGBKGMW-010C-0361-GW			WAIER	Ī	AMORX	,	NO IG		\	
FWGBKGMW-010C-0361-GW			WAIER	1 7	AMBER	, ,			* 3	
FWGBKGMW-010C-0361-GW			WATER 1	403	ADM: VIA	1_1	HCL			01
THE CONTRACT OF THE CONTRACT O			WATER	250mL	PLASTIC	4	NaOH		×	je 2
FWGBKGMW-010C-0361-GF	+	1+	WATER	TODOML	PLASTIC	-	Conc HNO3		×	Pa
& Guly & Amby										
Special Instructions	:									
Possible Hazard Identification Non-Hazard Flammable Skin Irritant		☐ Poison B	□ Unknown	Sample Disposal Return To Client	ent	☐ Disp	☐ Disposal By Lab 【	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)	are
ne Required			8		Project S	Specific	Project Specific Requirements (Specify)	oecify)		on
1. Relinguished By			Date ()	Time S	1. Received By	ved By	FR	Tomas	17 Pate 3-97 17	ok ant
₽ >/ \	5		Date 23-07	1 1812	2. Received By	ved By	QU	Me	1/24/07 071	Арре
- 1			Date	Time	3. Received By	ved By			Date	Nor
Comments										TL
			1. O OA	K Field Con.						S

Record Chain of Custody

STL4 49 (1202) *		7 4 2	ox I	0	×	:					
Client Chen Bro	- 10	Project Manager Chantelle Carroll	Carroll			Date 04	Date 0 1/11/2007 /- 2\-6\	Page	26 (4-	1
Address		Telephone Number (Area Code)/Fax Number	er (Area Code)/	Fax Number		Lab	Lab Location				I
8451 State Route 5		(000)	/ (000)	0)		ST	STL North Canton		Analy	-	1
City State Zip Code Ravenna OH 44266	(0	Site Contact Chantelle	Carroll	-				က <u>အ</u>	0 Z		
Project Number/Name)	Carrier/Waybill Number	umber					. 00	- m		
Rayenna								, v	- F		
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :					-		QUOTE: 63240	6 7 8 3 0 0 2 D 0	F D 2 0		
Date	Time	Sample Type	Con	Containers		Preservative	Condition on Receipt/Comments	·			
Description	ļ	ombie i Abe	Volume	Туре	+			F 00	_		1
FWGLL1mw-083C-0382-GW 1-23-07 1	11:56	WATER	11	AMBER	1	None			×		1 .
		WATER	1L	AMBER	_	None		×			1.
FWGLL1mw-083C-0382-GW	-	WATER	†L	AMBER	2	None		×			1
FWGLL1mw~083C~0382~GW	· ·	WATER	11	AMBER		None		×			į
FWGLL1mw-083C-0382-GW	4	WATER	=	AMBER	2	None		×		2	1
EWGLL 1mw-083C-0382-GW	+	WATER	10m1	TIM THE	u	HC		*		20	í
FWGLL1mw-083C-0382-GW	*	WATER	250mL	PLASTIC	_	NaOH			×	ge	l
FWGLL1mw-083C-0382-GF	1	WATER	1000mL	PLASTIC		Conc HNO3			×	Pa	1
											1 1
A SULY & TENERS											
										<u> </u>	ļ
					-						1
Special Instructions						·					
]			!				(A fee may be assessed if samples are	ples are	
Non-Hazard Li Flammable Li Skin Irritant Li P	La Poison a	QC Level	L Return to chem	Project S	pecific F	Project Specific Requirements (Specify)	Specify)		tel man 2 monnia		١
Normal Rush Other										3	on
ned By		Date Date	65:911	1. Received By	ved By	(Z)	Propiess !	Date 2	307	7 (A)	ant
2. Relinquished By		Date /- 23-67	18/2	2. Received By	ved By	7		Date Date	7/07	o2/Jppe	h C
3. Relinquished By	_	Date	Time	3. Received By	ved By			Date		Time	ort
Comments				.							L L
The San Carlo Callage Batterned	Client	ith Dannet: DINI	K - Field Conv								SI

TI Caslas Danning	t Form/Narrative Lo	t Number: <u>A 7.4.240 102.</u>	Andrew Water was
TL Cooler Receipt		sagn Cancer Le	CHAL.
North Canton Facil	Project:	Quote#	
lient Spac Pro		by Jull	(Signature)
Cooler Received on: 1/2		Courier 🔯	
edx Client Drop Off	Other:	were the recommendation of these applications of the high contribution of a side of side of the things of	
tetson US Cargo		t Cooler Other	
TL Cooler No#See	Sall Done	Intact? Yes No	NA 🗌
	the outside of the cooler, 145 —		
	24	Yes ⋈ No 🗌 NA 🛚	
Were the custody seals	s signed and dated?	Yes No NA D	X
Shipper's packing slip	attached to this form?	Relinquished by client? Y	es No 🗌
Did custody papers ac	ecompany the samples?Yes \(\sigma\) No \(\sigma\)	Yes No 🗆	
Did you sign the custo	ody papers in the appropriate place? Rubble Wrap X Foam None		·
Packing material used	. Duoolo was 13	r multiple coolers/temp)	_
6. Cooler temperature up		ottles IR ICE/H ₂	0 Slurry 🔲
METHOD: Temp Vial	Coolant & Sample Against B		
COOLANT: Wet Ice	Bitte fee	ater None Yes No	
7. Did all bottles arrive i	in good condition (Unbroken)?	Yes No	
Could all bottle labels	and/or tags be reconciled with the COC?		A 🔲 📗
Were samples at the c	correct pH upon receipt?		`
10. Were correct bottles u	used for the tests indicated?		
11. Were air bubbles >6 r	mm in any VOA vials?	and the second s	
12 Sufficient quantity re	eceived to perform indicated analyses?	Yes X No L	
13. Was a Trip Blank pr	esent in the cooler? Yes 🔼 No 🗌 Wes	e VOAs on the COC? Yes 🔯 N	Othor [
Contacted PM	Date: by:	_ via Voice Mail 🗌 Verbal 🗌	Other
are a contract to the second of the second o	•		li li
Concerning:			:=:'è
Concerning:		er begyttigt fra skall forskjon et til ek sakterings och bygget i toksjoner.	3-7-5 CO. (1994) 11 CO. (1994) 12 CO. (1994)
V	DY		
√	DY epancies occurred:		
. CHAIN OF CUSTO			
. CHAIN OF CUSTO			
. CHAIN OF CUSTO			
The following discre	epancies occurred:		
The following discrete. 2. SAMPLE CONDITION	ON were received	after the recommended holding tir	ne had expired
The following discrete 2. SAMPLE CONDITION Sample(s)	ON were received		ne had expired.
The following discrete states of the following discrete states of	ON were received were received	after the recommended holding tirved in a broken container.	
2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s)	ON were received and received were received were received and received were received and received were received and received were received and received were received and received were received and received and received were received and receive	after the recommended holding tirved in a broken container. e further preserved in sample recei	ving to meet
The following discrete to the following disc	ON were received and received were received were received and received were received and received were received and received were received and received were received and received were received and received and received were received and receive	after the recommended holding tirved in a broken container. e further preserved in sample recei	ving to meet
The following discrete to the following disc	epancies occurred: ON were received were received were recei VATION well evel(s). Nitric Acid Lot #110106 - Sulfuric Acid Lot #0 100504-HCL: Sodium Hydroxide and Zinc Acetate Lot #0	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -12271604-CH3COO2ZN/NaOH	ving to meet 2805 -NaOH;
The following discrete to the following disc	epancies occurred: ON were received were received were recei VATION well evel(s). Nitric Acid Lot #110106 - Sulfuric Acid Lot #0 100504-HCL: Sodium Hydroxide and Zinc Acetate Lot #0	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -12271604-CH3COO2ZN/NaOH	ving to meet 2805 -NaOH;
The following discrete to the following disc	epancies occurred: ON were received were r	after the recommended holding tirved in a broken container. e further preserved in sample received to the sample	ving to meet 2805 -NaOH;
The following discrete to the following disc	epancies occurred: ON were received were r	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -12271604-CH3COO2ZN/NaOH	ving to meet 2805 -NaOH;
7. CHAIN OF CUSTOR The following discrete 2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) recommended pH le Hydrochloric Acid Lot # 1 Sample(s)	epancies occurred: ON were received were r	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -12271604-CH3COO2ZN/NaOH	ving to meet 2805 -NaOH;
7. CHAIN OF CUSTOR The following discrete complete compl	epancies occurred: Were received were received were received were received were received. WATION were evel(s). Nitric Acid Lot #110106 - Sulfuric Acid Lot # 0 100504-HCl; Sodium Hydroxide and Zinc Acetate Lot # 0 were received were receiv	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -122 1604-CH3COO2ZN/NaOH ith bubble > 6 mm in diameter (cc:	ving to meet 2805 -NaOH; PM)
7. CHAIN OF CUSTOR The following discrete comparison of the following discrete compa	Were received we	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -122 1604-CH3COO2ZN/NaOH ith bubble > 6 mm in diameter (cc:	ving to meet 2805 -NaOH; PM) Initials
7. CHAIN OF CUSTOR The following discrete comparison of the following discrete compa	epancies occurred: ON were received were received were received were received were received. Nitric Acid Lot #110106 - Sulfuric Acid Lot # 0 100504-HCl; Sodium Hydroxide and Zinc Acetate Lot # 0 were received were received whack) pH 7/2 7/2	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -122 1604-CH3COO2ZN/NaOH ith bubble > 6 mm in diameter (cc:	ving to meet 2805 -NaOH; PM)
2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) recommended pH le Hydrochloric Acid Lot # 1 Sample(s) 4. Other (see below or in the search of the see below or in the search of the se	epancies occurred: Were received were recei	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -122 1604-CH3COO2ZN/NaOH ith bubble > 6 mm in diameter (cc:	ving to meet 2805 -NaOH; PM) Initials
2. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) recommended pH le Hydrochloric Acid Lot # 1 Sample(s) 4. Other (see below or in	epancies occurred: ON were received were received were received were received were received. Nitric Acid Lot #110106 - Sulfuric Acid Lot # 0 100504-HCl; Sodium Hydroxide and Zinc Acetate Lot # 0 were received were received whack) pH 7/2 7/2	after the recommended holding tirved in a broken container. e further preserved in sample receir 1805-H2SO4; Sodium Hydroxide Lot # -122 1604-CH3COO2ZN/NaOH ith bubble > 6 mm in diameter (cc:	ving to meet 2805 -NaOH; PM) Initials

Appendix B

in particular di

STL Cooler Receipt Form/Narrative **North Canton Facility**

2		.Fk.	
 	Ť	3	4 44
-			

Client ID	<u>pH</u>) Dat		<u>Initials</u>
391	42 >12		1/24/0	7	9m
391-GF	- 42		1		
352-	7/2				
392 CF	42				
360	7/2				
360 GF	42				
394	>/2				
394-GF	42				
380	>12				
3D-GF	62				
397	7/2				1
397 - GF	42				
362	7/2				
362-CF	42				
361	712				
341 GF	42				
373	7/2				4
Cooler	Temp of the second second		Method		Coolant
241-460	2.602		IR		Ico
STL no #	3.100	· · · · · · · · · · · · · · · · · · ·			
461	2,800				
Hlol	1.9.0	tion to sever the experience of the		After Francisco of Africa	
372 no #	2.200				* a
461	24°C				
466	3,100				·
STL no H	2,700		!		
Discrepancies Cont.	The second section of the second seco			grand Arman	1
241-207	3.100	And the second section of	a Salar de la Companya de la Company	•	~~
STL no #	2.8°C				1
461	1.7.6				1
STL no #	1.8%		1 /		

CASE NARRATIVE

A7A250101

The following report contains the analytical results for twenty-two water samples and one quality control sample submitted to STL North Canton by Spec Pro from the FWGWMP RVAAP Site, project number 001074-0001. The samples were received January 25, 2007, according to documented sample acceptance procedures.

The Explosives, Nitroguanidine, and Nitrocellulose as N analyses were performed at STL Sacramento. Refer to STL Sacramento narrative included in their data package for additional information.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carroll and Valarie Ann Mariola on February 12, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT"

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at temperatures ranging from 2.1 to 3.4°C.

See STL's Cooler Receipt Form for additional information.

Appendix B

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for batch(es) 7026044 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The matrix spike/matrix spike duplicate data for batch 7029041 are not included in this report. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on the samples reported herein. In order to document compliance with the QC requirement for an MS/MSD per 20 environmental samples, a summary of sample/QC associations has been provided following this case narrative.

PESTICIDES-8081

The analytical results met the requirements of the laboratory's QA/QC program.

POLYCHLORINATED BIPHENYLS-8082

The analytical results met the requirements of the laboratory's QA/QC program.

CASE NARRATIVE (continued)

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDs that exceed 20%.

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analytes(s).

OUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

Appendix B

In addition to these batch-related OC indicators, each organic environmental and OC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225), Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#OUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence – Participating Lab Status Award (#82)

Page D -

C:\DOCUME~1\armans\LOCALS~1\Temp\Narrative 040306.docRevised 04/03/06 DJL

7 STL North Canton

SEVERN TRENT LABORATORIES, INC.

MS RUN NUMBER REVIEW

Lot ID	Smp#	Work Order	Batch	MS Run#	SDG	Prep Date	Method
A7A250219	001	JNDM71AA	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	001	JNDM71AD D	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	001	JNDM71AC S	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	002	JNDNK1AE	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	003	JNDNN1AE	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	004	JNDNP1AE	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	005	JNDNT1AE	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	006	JNDNW1AE	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250219	007	JNDN01AA	7026044	7026023	7A25219	01/26/07	SW846 8270C
A7A250101	001	JNCJP1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	003	JNCJV1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	005	JNCJX1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	007	JNCJ11AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	009	JNCJ41AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	011	JNCJ61AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	013	JNCJ81AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	015	JNCKC1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	017	JNCKE1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	019	JNCKH1AC	7029041	7026023		01/26/07	SW846 8270C
A7A250101	021	JNCKN1AC	7029041	7026023		01/26/07	SW846 8270C

1

Sample ID:

FWGBKGmw-016C-0395-GW

Lab ID: Sampling Date: A7A250101-001

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-001		Receipt Dat	e: 0	1/25/07 7:15AM	
Sampling Date:	01/24/07 9:13AM		Matrix:	W	ATER Prep-	
Paramete	<u>r</u>	Result	Units	RL	Analysis Date	Analyst
		GC Semivolati	le Organics			
PCBs (8082) Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	TH .
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	·LH
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	e. The transference of the first term of the first term of the second of the second of the second of the second of	y (ND - e e e e e e e e e e e e e e e	ug/L	050	01/28- 02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re- Aroclor 1016	extract	ND	ug/L	0.50	02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08/07	LH
Aroclor 1248		ND	ug/L	0.50	02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08/07	LH
Pesticides (8081A) Dieldrin		ND	ug/L	0.030	01/28- 01/29/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 01/29/07	csv
Endosulfan II		ND	ug/L	0.025	01/28- 01/29/07	csv
Endosulfan sulfate		ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin		ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin ketone		ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor		ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epoxide		ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 01/29/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 01/29/07	CSV
beta-BHC		ND	ug/L	0.030	01/28- 01/29/07	CSV
delta-BHC		ND	ug/L	0.030	01/28- 01/29/07	CSV
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/29/07	csv

Appendix B

Page 205

Sample ID:	FWGBKGmw-0 A7A250101-	16C-0395-GW	Receipt	Date	01/25/07	7:15AM	
Sampling Date:	01/24/07	9:13AM	Matrix:	Ducc.	WATER		
Paramete		Result	Units	RL	Prep Analysi		Analyst
Pesticides (8081A)							
Toxaphene		ND	ug/L	2.0	01/28-	01/29/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/29/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/29/07	csv
Aldrin		ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDD		ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDE		ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDT		ND	ug/L	0.030	01/28-	01/29/07	csv
Nitroaromatics & N 1,3-Dinitrobenzene	itramines:	Explosives (8330) ND	ug/L	0.096	01/31-	02/07/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.096	01/31-	02/07/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.096	01/31-	02/07/07	FK
Nitrobenzene		ND	ug/L	0.096	01/31-	02/07/07	FK
1,3,5-Trinitrobenze	ene	ND	ug/L	0.096	01/31-	02/07/07	FK
2,4,6-Trinitrotolue	ene	ND	ug/L	0.096	01/31-	02/07/07	FK
HMX		ND	ug/L	0.096	01/31-	02/07/07	FK
RDX		ND	ug/L	0.096	01/31-	02/07/07	FK
Tetryl		ND	ug/L	0.096	01/31-	02/07/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/31-	02/07/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/31-	02/07/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/31-	02/07/07	FK
4-Amino-2,6-dinitro	otoluene	ND	ug/L	0.096	01/31-	02/07/07	FK
2-Amino-4,6-dinitro	otoluene	ND	ug/L	0.096	01/31-	02/07/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC	Dissolved ND	ug/L	20	02/06-	02/07/07	FK
		GC/MS Se	mivolatilo Organico				
			mrvoractie Organics	• ·			-
Base/Neutrals and Diethyl phthalate	ACIOS (827)	ND	ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/26-	02/01/07	JMG
Appendix	В		Page 206				

Sample ID:

FWGBKGmw-016C-0395-GW

W.	Α.I	Ŀ	к

Lab ID:	A7A250101-001		Recei	pt Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:13AM		Matri	ж:	WATER Prep-	
Paramet	ter_	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and	d Acids (8270C)					
Di-n-octyl phthal	ate	ND	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-met	hylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluen	le	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluen	ie .	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	gan ing galawan kalaban kanalasan kanalasan kanalasan ka	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadie	ne	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclope	entadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/26- 02/01/07	JMG
.Indeno(1,2,3-cd)p	pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Isophorone		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthale	ene	ND .	ug/L	020	01/26- 02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26- 02/01/07	'JMG
2-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthracer	ne	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-pro		ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodiphenyl		ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b) fluoranth	•	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k) fluoranti		ND .	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid		ND	ug/L	10	01/26- 02/01/07	JMG
		ND	<u>-</u>	0.20	01/26- 02/01/07	JMG
Benzo(ghi)peryler Appen o	lix Β	N <i>D</i>	Page 207		01/20- 02/01/0/	UNG

Sample ID:

FWGBKGmw-016C-0395-GW

A7A250101-001

Lab ID:	A/A250101-	·001	Receipt	Date:	01/25/07	/:15AM
Sampling Date:	01/24/07	9:13AM	Matrix:		WATER Pres)-
Parameter	<u>:-</u>	Result	Units	RL	Analysi	
					•	

Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 208	2.0	01/26- 02/01/07	JMG

Sample ID:

FWGBKGmw-016C-0395-GW

Lab ID:

A7A250101-001

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-001		Receipt	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:13	MA	Matrix:		WATER Prep-	
Parame	eter_	Result	Units	RL	Analysis Date	Analyst
		GC/MS	Volatile Organics -			
Volatile Organic trans-1,3-Dichlo		ND	ug/L	1.0	01/26/07	LEE
Acetone		ND	ug/L	10	01/26/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	in the second of	ND	ug/L	10	01/26/07	LEE
Methylene chlori	de	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-penta	none	ND	ug/L	10	01/26/07	LEE
Benzene		ND	ug/L	1.0	01/26/07	LEE
Styrene		ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachl	oroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethen	e ·	ND	ug/L	1.0	01/26/07	LEE
Toluene		ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroe	thane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroe	thane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene		ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)		ND	ug/L	2.0	01/26/07	LEE
Bromochlorometha	ne	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromet	hane	ND	ug/L	1.0	01/26/07	LEE
Bromoform		ND	ug/L	1.0	01/26/07	LEE
Bromomethane		ИD	ug/L	1.0	01/26/07	LEE .
2-Butanone		ND	ug/L	10	01/26/07	LEE
Carbon disulfide		ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachlo	ride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/26/07	LEE
Dibromochloromet	hane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane		ND	ug/L	1.0	01/26/07	LEE
Chloroform		ND	ug/L	1.0	01/26/07	LEE
Chloromethane		ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethan	e	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Page 209

Sample ID: Lab ID:

FWGBKGmw-016C-0395-GW

A7A250101-001

Receipt Date:

0.50

01/25/07

02/06- 02/08/07

DTA

01/24/07 9:13AM

Sampling Date: 01/24	/U/ 9:13AM	matrix:		Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, GC/MS 1,1-Dichloroethane	(8260B) ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene (total) ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
	Gene	eral Chemistry			
Cyanide, Total Cyanide, Total	0.052	mg/L	0.010	01/29/07	CT

Nitrocellulose as N by 353.2

Nitrocellulose

вЈ

mg/L

0.17

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-016C-0395-GF

Lab ID:

A7A250101-002

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-002			Receipt	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:13	BAM		Matrix:		WATER Prep-	
	Parameter	Result	•	Units	<u>RL</u>	Analysis Date	Analyst
			Met	als			
Industria	Coupled Plasma (6010F	R Trace)					
Arsenic	Coupied Flasma (00101	ND ND		ug/L	5.0	01/26/07	LRW
Lead	•	ND		ug/L	3.0	01/26/07	LRW
Selenium		3.6	В	ug/L	5.0	01/26/07	LRW
Inductively Magnesium	Coupled Plasma (6010	3) 3960	e H ^{or} r, Lorense Starte	ug/L	1000	01/26/07	LRW
Manganese		16.7		ug/L	10.0	01/26/07	LRW
Barium		15.6		ug/L	10.0	01/26/07	LRW
Nickel		ND		ug/L	10.0	01/26/07	LRW
Potassium		497	вЈ	ug/L	1000	01/26/07	LRW
Silver		ND		ug/L	5.0	01/26/07	LRW
Sodium		2480	4	ug/L	1000	01/26/07	LRW
Vanadium		ND		ug/L	10.0	01/26/07	LRW
Chromium	·	ND		ug/L	5.0	01/26/07	LRW
Calcium		9580		ug/L	1000	01/26/07	LRW
Cobalt		ND		ug/L	5.0	01/26/07	LRW
Copper		2.7	В	ug/L	5.0	01/26/07	LRW
Inductively	Coupled Plasma Mass S	Spectrometry	(6020)				
Antimony	Coupled Flasha Fass .	0.13	В	ug/L	2.0	01/26- 01/30/07	BD
Iron		71.8		ug/L	20.0	01/26- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc		7.0	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum		24.8	В	ug/L	50.0	01/26- 01/30/07	BD
Mercury (74 Mercury	70A, Cold Vapor) - Lic	quid ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-016C-0365-GW

Lab ID:

A7A250101-003

Sampling Date:

01/24/07 9:13AM

Receipt Date:

01/25/07 7:15AM

WATER Prep-Matrix:

Parameter	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
	GC Semiv	olatile Organics			
PCBs (8082)					
Aroclor 1016	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242	ИD	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248 - Aroclor and Aroclor as a second	ND	ug/L	050	01/28- <02/08/07	LH of
Aroclor 1254	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260	ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-extract			•		
Aroclor 1016	ND	ug/L	0.50	02/08/07	LH
Aroclor 1221	ND	ug/L	0.50	02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	02/08/07	LH
Aroclor 1242	ND	ug/L	0.50	02/08/07	LH
Aroclor 1248	ND	ug/L	0.50	02/08/07	LH
Aroclor 1254	ND	ug/L	0.50	02/08/07	LH
Aroclor 1260	ND	ug/L	0.50	02/08/07	LH
Pesticides (8081A)					
Dieldrin	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endosulfan I	ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan II	ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan sulfate	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin ketone	ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor	ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor	ND	ug/L	0.10	01/28- 01/29/07	csv
alpha-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
beta-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
delta-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/29/07	csv

Appendix B

Page 212

Sample ID:

FWGBKGmw-016C-0365-GW

Lab ID:	A7A250101-0	03	Rec	eipt Date:	01/25/07 7:	15AM
Sampling Date:	01/24/07	9:13AM	Mat	rix:	WATER Prep-	
Paramete	<u>-</u>	Result	<u>Units</u>	RL	Analysis D	ate Analyst
Pesticides (8081A)				2.0	01/20 01	/20 /07
Toxaphene		ND	ug/L	2.0	01/28- 01/	
alpha-Chlordane		ND	ug/L	0.030	01/28- 01/	/29/07 CSV
gamma-Chlordane		ND	ug/L	0.030	01/28- 01/	/29/07 CSV
Aldrin		ND	ug/L	0.030	01/28- 01/	/29/07 CSV
4,4'-DDD		ND	ug/L	0.030	01/28- 01/	/29/07 CSV
4,4'-DDE		ND	ug/L	0.030	01/28- 01,	/29/07 CSV
4,4'-DDT		ND	ug/L	0.030	01/28- 01/	/29/07 CSV
				·		
Nitroaromatics & N 1,3-Dinitrobenzene	itramines: F	Explosives (8330) ug/L	0.097	01/31- 02/	/07/07 · FK
2,4-Dinitrotoluene		ND	ug/L	0.097	01/31- 02/	/07/07 FK
2,6-Dinitrotoluene		ND	ug/L	0.097	01/31- 02/	/07/07 FK
Nitrobenzene		ND .	ug/L	0.097	01/31- 02/	/07/07 FK
1,3,5-Trinitrobenze	ene	ND	ug/L	0.097	01/31- 02/	/07/07 FK
2,4,6-Trinitrotolue	ene	ND	ug/L	0.097	01/31- 02/	/07/07 FK
НМХ	•	ND	ug/L	0.097	01/31- 02/	/07/07 FK
RDX		ND	ug/L	0.097	01/31- 02,	/07/07 FK
Tetryl		ND .	ug/L	0.097	01/31- 02	/07/07 FK
2-Nitrotoluene		ND	ug/L	0.48	01/31- 02,	/07/07 FK
3-Nitrotoluene		ND	ug/L	0.48	01/31- 02,	/07/07 FK
4-Nitrotoluene		ND	ug/L	0.48	01/31- 02,	/07/07 FK
4-Amino-2,6-dinitro	otoluene	ND	ug/L	0.097	01/31- 02,	/07/07 FK
2-Amino-4,6-dinitro	otoluene	ND	ug/L	0.097	01/31- 02,	/07/07 FK
Organic Compounds	ha IW/HPI.C	Dissolved				e e
Nitroguanidine	<u>.</u>	ND	ug/L	20	02/06- 02,	/07/07 FK
		GC/M	S Semivolatile Org	anics		·
Base/Neutrals and Diethyl phthalate	Acids (8270	C) ND	ug/L	1.0	01/26- 02,	/01/07 JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/26- 02,	/01/07 JMG
Dimethyl phthalate		ND	ug/L	1.0	01/26- 02	/01/07 JMG
Appendix	αВ		Page 213	,		

Sample ID:

FWGBKGmw-016C-0365-GW

Lab ID: Sampling Date: A7A250101-003

01/24/07 9:13AM

Receipt Date: 01/25/07 7:15AM
Matrix: WATER
Prep-

Sampring Date: 01/24/07 9:13AM		ric on an		Prep-		
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/26~ 02/01/07	JMG	
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4-Dinitrophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,6-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Fluorene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Hexachlorobenzene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Hexachlorobutadiene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Hexachlorocyclopentadiene	ND	ug/L	10	01/26- 02/01/07	JMG	
Hexachloroethane	ND .	ug/L	1.0	01/26- 02/01/07	JMG	
Indeno(1,2,3-cd)pyrene	ND .	ug/L	0.20	01/26- 02/01/07	JMG	
Isophorone	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2-Methylnaphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
2-Methylphenol	ND .	ug/L	1.0	01/26- 02/01/07	JMG	
4-Methylphenol	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Naphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
2-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG	
3-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG	
4-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Nitrobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2-Nitrophenol	ND	ug/L	2.0	01/26- 02/01/07	JMG	
4-Nitrophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Benzo(a)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG	
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Benzo(b) fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Benzo(k) fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Benzoic acid	ND	ug/L	10	01/26- 02/01/07	JMG	
Benzo(ghi)perylene Appendix B	ND Pa	age 214	0.20	01/26- 02/01/07	JMG	

Sample ID:

FWGBKGmw-016C-0365-GW A7A250101-003

Lab ID:

Receipt Date: Matrix:

01/25/07 7:15AM

	W.	AT.	EI

Sampling Date: 01/24/07 9:13AM		Matrix:	Date.	WATER		
Parameter Parameter	Result	Units	RL	Prep- Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Phenanthrene	ИД	ug/L	0.20	01/26- 02/01/07	JMG	
Phenol	ИД	ug/L	1.0	01/26- 02/01/07	JMG	
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Carbazole	ИД	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG	
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG	
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG	
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenz(a,h)anthracene	ИD	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Di-n-butyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4-Dichlorophenol Appendix B	ND	Page 215	2.0	01/26- 02/01/07	JMG	

Sample ID:

FWGBKGmw-016C-0365-GW

Lab ID:

A7A250101-003

Receipt Date:

01/25/07

7:15AM

Sampling Date:	01/24/07 9:13AM		Matrix:		WATER _	Analyst LEE LEE LEE LEE
Param	neter_	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
		GC/MS	S Volatile Organics			
Volatile Organic trans-1,3-Dichlo	cs, GC/MS (8260B)	ND	ug/L	1.0	01/26/07	T.E.E
	oropropene		ug/L	10	01/26/07	
Acetone		ND	•			
Ethylbenzene		ND	ug/L	1.0	01/26/07	
2-Hexanone	at the control of providing the	ND	ug/L	10	01/26/07	An extra section of the section of t
Methylene chlor		ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-penta	anone	ND	ug/L	10	01/26/07	LEE
Benzene		ND	ug/L	1.0	01/26/07	LEE
Styrene		ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrach	loroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroether	ne	ND	ug/L	1.0	01/26/07	LEE
Toluene		ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloro	ethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloro	ethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene		ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride		ND .	ug/L	1.0	01/26/07	LEE
Xylenes (total)		ND	ug/L	2.0	01/26/07	LEE
Bromochlorometh	ane	ND	ug/L	1.0	01/26/07	LEE
Bromodichlorome	thane	ND .	ug/L	1.0	01/26/07	LEE
Bromoform		ND	ug/L	1.0	01/26/07	LEE
Bromomethane		ND	ug/L	1.0	01/26/07	LEE
2-Butanone		ND	ug/L	10	01/26/07	LEE
Carbon disulfid	e	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachl	oride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/26/07	LEE
Dibromochlorome	thane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane		ND	ug/L	1.0	01/26/07	LEE
Chloroform	••	ND	ug/L	1.0	01/26/07	LEE
Chloromethane		ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoetha	ne	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Sample ID:

FWGBKGmw-016C-0365-GW

Lab ID:

A7A250101-003

Receipt Date:

01/25/07

7:15AM

Sampling Date: 01/24/07	9:13AM			Matrix:	:	WATER Prep-	
Parameter		Result		Units	RL	Analysis Date	Analyst
Volatile Organics, GC/MS (82	60B)						
1,1-Dichloroethane		ND	•	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene (total)		ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane		ND		ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropropene		ND		ug/L	1.0	01/26/07	LEE
					•		
			General C	hemistry			
Cyanide, Total Cyanide, Total		0.010		mg/L	0.010	01/29/07	CT
Nitrocellulose as N by 353.2 Nitrocellulose		ND		mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-016C-0365-GF

Lab ID:

A7A250101-004

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 9:13AM

Matrix:

WATER Prep-

Paramet	er	Result		<u>Units</u>	RL	Prep- Analysis Date	Analyst
			Meta	ls	*************		
Inductively Coupl Arsenic	ed Plasma (6010B	Trace)		ug/L	5.0	01/26/07	LRW
Lead		ND		ug/L	3.0	01/26/07	LRW
Selenium		ND		ug/L	5.0	01/26/07	LRW
Inductively Coupl Magnesium	ed Plasma (6010B)	4090	usin maya mene	ug/L	1000	01/26/07	LRW
Manganese		9.6	В	ug/L	10.0	01/26/07	LRW
Barium		14.1		ug/L	10.0	01/26/07	LRW
Nickel		ND		ug/L	10.0	01/26/07	LRW
Potassium		506	вЈ	ug/L	1000	01/26/07	LRW
Silver		ND		ug/L	5.0	01/26/07	LRW
Sodium		2350		ug/L	1000	01/26/07	LRW
Vanadium		ND		ug/L	10.0	01/26/07	LRW
Chromium		ND		ug/L	5.0	01/26/07	LRW
Calcium		9600	4	ug/L	1000	01/26/07	LRW
Cobalt		ND		ug/L	5.0	01/26/07	LRW
Copper		2.4	В	ug/L	5.0	01/26/07	LRW
Inductively Coupl	ed Plasma Mass Sp	ectrometry ((6020)				
Antimony		0.92	В	ug/L	2.0	01/26- 01/30/07	BD
Iron		80.5		ug/L	20.0	01/26- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc		6.4	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum		26.7	В	ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, C	Cold Vapor) - Liqu	id 0.091	В	ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-182C-0377-GW

Lab ID:	A7A250101-005		Receipt Da	te:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17	MA	Matrix:		WATER Prep-	
Parame	eter_	Result	Units	RL	Analysis Date	Analyst
		GC Se	emivolatile Organics		· • • • • • • • • • • • • • • • • • • •	
PCBs (8082)						
Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	er en en en en en en en en en en	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH
DOD~ (9092) T	Re-extract		·	6 T		
PCBs (8082) F Aroclor 1016	e-extract	ND	ug/L	0.50	02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08/07	LH
Aroclor 1248		ND	ug/L	0.50	02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08/07	LH
Destinides (0001				•		
Pesticides (8081 Dieldrin	.A)	ND	ug/L	0.030	01/28- 01/29/07	csv
Endosulfan I		ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan II		ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan sulfa	ate	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin		ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin ketone		ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor		ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epoxi	ide	ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 01/29/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 01/29/07	csv
beta-BHC		ND	ug/L	0.030	01/28- 01/29/07	csv
delta-BHC		ND	ug/L	0.030	01/28- 01/29/07	csv
gamma-BHC (Linda	ane)	ND	ug/L	0.030	01/28- 01/29/07	csv

Appendix B

Sample ID:	FWGLL12mw-		7-GW		Receipt	: Date:	01/25/07	7:15AM	
Sampling Date:	01/24/07	9:17AM			Matrix:		WATER Pres		
Paramete	<u>r</u>		Result		Units	RL	Analysi		Analyst
Pesticides (8081A) Toxaphene			ND		ug/L	2.0	01/28-	01/29/07	csv
alpha-Chlordane			ND		ug/L	0.030	01/28-	01/29/07	csv
gamma-Chlordane			ND		ug/L	0.030	01/28-	01/29/07	csv
Aldrin			ND	÷	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDD			ND		ug/L	0.030	01/28-	01/29/07	CSV
4,4'-DDE			ND	+ + 5 , *	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDT			ND		ug/L	0.030	01/28-	01/29/07	csv

Nitroaromatics & N 1,3-Dinitrobenzene	itramines:		.ves (8330) ND		ug/L	0.097	01/31-	02/07/07	FK
2,4-Dinitrotoluene			ND		ug/L	0.097	01/31-	02/07/07	FK
2,6-Dinitrotoluene			0.059	J	ug/L	0.097	01/31-	02/07/07	FK
Nitrobenzene			ND		ug/L	0.097	01/31-	02/07/07	FK
1,3,5-Trinitrobenze	ene		ND		ug/L	0.097	01/31-	02/07/07	FK
2,4,6-Trinitrotolue	ene		ND .		ug/L	0.097	01/31-	02/07/07	FK
нмх			ND .		ug/L	0.097	01/31-	02/07/07	FK
RDX			ND		ug/L	0.097	01/31-	02/07/07	FK
Tetryl		•	ND		ug/L	0.097	01/31-	02/07/07	FK
2-Nitrotoluene			ND		ug/L	0.48	01/31-	02/07/07	FK
3-Nitrotoluene			ND		ug/L	0.48	01/31-	02/07/07	FK
4-Nitrotoluene			0.31	J	ug/L	0.48	01/31-	02/07/07	FK
4-Amino-2,6-dinitro	otoluene		ND		ug/L	0.097	01/31-	02/07/07	FK
2-Amino-4,6-dinitro	otoluene		ND		ug/L	0.097	01/31-	02/07/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC		.ved ND		ug/L	20	02/06-	02/07/07	FK
J Estimated resul									
			GC/MS	Semivola	tile Organic	:			
Base/Neutrals and Diethyl phthalate	Acids (827	-	ND		ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol			ND		ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate			ND		ug/L	1.0	01/26-	02/01/07	JMG
Appendix	В			Pag	e 220				

Sample ID:

FWGLL12mw-182C-0377-GW

Matrix: WATER

Lab ID:	A7A250101-005		Receipt I	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17AM	1	Matrix:		WATER Prep-	
Paramete	er_	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and	Acids (8270C)					
Di-n-octyl phthala	ite	ИĎ	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-meth	nylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluene	2	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluene	2	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadien	ne	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocycloper	ntadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane		ND ,	ug/L	.1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)py	vrene	ND	ug/L	0.20	01/26- 02/01/07	JMG .
Isophorone		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthaler	ie	ND.	ug/L	0.20	01/26- 02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthracene	2	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-prop	pylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodiphenyla	amine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b)fluoranthe	ene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k)fluoranthe	ene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid		ND	ug/L	10	01/26- 02/01/07	JMG
Benzo(ghi)perylene Appendi	e v B	ND	Page 221	0.20	01/26- 02/01/07	JMG
Appendi	Λ D		1 496 22 1			

Sample ID:

FWGLL12mw-182C-0377-GW

Lab ID: Sampling Date: A7A250101-005 01/24

Receipt Date:

01/25/07 7:15AM

24/07 9:17AM Matrix: WF	24/07	9:17AM	Matrix:	WATI
--------------------------------	-------	--------	---------	------

Lab ID: Sampling Date:	A7A250101-005 01/24/07 9:17AM		Receipt D Matrix:	ate:	01/25/07 7:15AM WATER	
Paramete		Result	Units	RL	Prep- Analysis Date	Analyst
			. .			
Base/Neutrals and Benzo(a)pyrene	Acids (8270C)	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene	·	ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichloroben	zene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichloropher	nol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichloropher	nol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy))methane	ND	. ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl)	ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chlor	ropropane)	.ND .	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) p	phthalate	ND	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl pheny	yl ether	ND	ug/L	.20	01/26- 02/01/07	JMG
Butyl benzyl phtha	late	ИD	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline	•	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylp	henol	ND .	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalen	e ·	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phen	nyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthrac	ene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthala	te	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzen	е	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzen	е	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzen	е	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzi	dine	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix	κВ	ND	Page 222	2.0	01/26- 02/01/07	JMG

Sample ID:

Sampling Date:

FWGLL12mw-182C-0377-GW

Lab ID:

A7A250101-005

01/24/07 9:17AM

Receipt Date: 01/25/07 7:15AM

Matrix:

WATER

Sampling Date: 01/24/0/ 9:1/AM		Matrix:	WA	ATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
	•				
	GC/MS Volatil	le Organics			A date date jumi dans
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone	ND	ug/L	10	01/26/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	ND	ug/L	10,	01/26/07	LEE
Methylene chloride	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/26/07	LEE
Benzene	ND	ug/L	1.0	01/26/07	LEE
Styrene	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE
Toluene	ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromethane	ЙD	ug/L	1.0	01/26/07	LEE
Bromoform	ND	ug/L	1.0	01/26/07	LEE
Bromomethane	ND	ug/L	1.0	01/26/07	LEE
2-Butanone	ND	ug/L	10	01/26/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane	ND	ug/L	1.0	01/26/07	LEE
Chloroform	ND	ug/L	1.0	01/26/07	LEE
Chloromethane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Sample ID:

FWGLL12mw-182C-0377-GW

sample in:	FWGLL12mw-182C-03	77-GW					
Lab ID:	A7A250101-005			Receipt	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17AM			Matrix:	I	WATER Prep-	
Parameter	<u>:</u>	Result		Units	RL	Analysis Date	Analyst
Volatile Organics, 1,1-Dichloroethane	GC/MS (8260B)	ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene	(total)	ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane		ND		ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropro	pene	ND	#	ug/L	1.0	01/26/07	LEE
		·	- General (Chemistry			
Cyanide, Total Cyanide, Total		0.0035	В	mg/L	0.010	01/29/07	CT
Nitrate-Nitrite Nitrate-Nitrite		ND		mg/L	0.1	01/30/07	DEB

02/06- 02/08/07

DTA

Nitrocellulose as N by 353.2 Nitrocellulose

ВЈ

mg/L

0.50

0.12

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-182C-0377-GF

Lab ID:

Sampling Date:

A7A250101-006

01/24/07 9:17AM

Receipt Date:

Matrix:

01/25/07 7:15AM

WATER Prep-

Parameter	Result		<u>Units</u>	<u>RL</u>	Prep- Analysis Date	Analyst
		Met	als		وهم ومام ومام المواد ومن ومن ومن ومن ومن ومن ومن ومن ومن ومن	
Inductively Coupled Plasma (6010F Arsenic	3 Trace) 26.6		ug/L	5.0	01/26/07	LRW
Lead	ND	•	ug/L	3.0	01/26/07	LRW
Selenium	. ND		ug/L	5.0	01/26/07	LRW
Inductively Coupled Plasma (60108 Magnesium	49700	gaga sawa saga sa	, ug/L	1000	01/26/07	LRW
Manganese	22.3		ug/L	10.0	01/26/07	LRW
Barium	94.4		ug/L	10.0	01/26/07	LRW
Nickel	1.6	В	ug/L	10.0	01/26/07	LRW
Potassium	6140	J	ug/L	1000	01/26/07	LRW
Silver	ND	•	ug/L	5.0	01/26/07	LRW
Sodium	29200		ug/L	1000	01/26/07	LRW
Vanadium	ИD		ug/L	10.0	01/26/07	LRW
Chromium	ND		ug/L	5.0	01/26/07	LRW
Calcium	73200		ug/L	1000	01/26/07	LRW
Cobalt	ND		ug/L	5.0	01/26/07	LRW
Copper	2.0	В	ug/L	5.0	01/26/07	LRW
Inductively Coupled Plasma Mass & Antimony	Spectrometry 0.34	(6020) B	ug/L	2.0	01/26- 01/30/07	BD
Iron	292		ug/L	20.0	01/26- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc	4.8	ВЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum	5.4	В	ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Lic Mercury	quid ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-182C-0396-GW

Lab ID:

A7A250101-007

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-007		Receipt :	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17	AM	Matrix:		WATER Prep-	
Param	eter	Result	Units	RL	Analysis Date	Analyst
		GC Se	mivolatile Organics			
PCBs (8082)	•					
Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH .
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248		ND · · · ·	ug/L	.0	01/28- 02/08/07	LH
Aroclor 1254	·	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) I	Re-extract			• .		
Aroclor 1016	ve_evclace	ND	ug/L	0.50	02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08/07	LH
Aroclor 1248		ND	ug/L	0.50	02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08/07	LH
Pesticides (808: Dieldrin	LA)	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan II		ND ·	ug/L	0.025	01/28- 01/29/07	csv
Endosulfan sulfa	ate	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin		ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin aldehyde	t .	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin ketone		ND	ug/L	0.030	01/28- 01/29/07	CSV
Heptachlor		ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epox:	ide	ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 01/29/07	CSV
alpha-BHC		ND .	ug/L	0.030	01/28- 01/29/07	CSV
beta-BHC		ND	ug/L	0.030	01/28- 01/29/07	CSV
delta-BHC		. ND	ug/L	0.030	01/28- 01/29/07	CSV
gamma-BHC (Linda	ane)	ND	ug/L	0.030	01/28- 01/29/07	csv
9 2210 (22110)	<i>'</i>		~5, ~		, 02, 22, 0,	

Appendix B

Sample ID: FWGLL12mw-182 Lab ID: A7A250101-007		007	6-GW		_	t Date:	01/25/07	7:15AM	
Sampling Date:	01/24/07	9:17AM			Matrix	:	WATER Prep	>=	
Parameter	-		Result		Units	RL	Analysi	s Date	Analyst
Pesticides (8081A)									
Toxaphene			ND		ug/L	2.0	01/28-	01/29/07	csv
alpha-Chlordane			ND		ug/L	0.030	01/28-	01/29/07	CSV
gamma-Chlordane			ND		ug/L	0.030	01/28-	01/29/07	csv
Aldrin			ND		ug/L	0.030	01/28-	01/29/07	cśv
4,4'-DDD			ND		ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDE	÷		ND .	i de estado.	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDT			ND		ug/L	0.030	01/28-	01/29/07	CSV
Nitroaromatics & Ni 1,3-Dinitrobenzene	tramines:	Explos	ives (8330) ND	•	ug/L	0.096	01/31-	02/07/07	FK
2,4-Dinitrotoluene			ND .		ug/L	0.096	01/31-	02/07/07	FK
2,6-Dinitrotoluene			0.053	J	ug/L	0.096	01/31-	02/07/07	FK
Nitrobenzene			ND		ug/L	0.096	01/31-	02/07/07	FK
1,3,5-Trinitrobenzer	ne		ND	•	ug/L	0.096	01/31-	02/07/07	FK
2,4,6-Trinitrotoluer	ne		ND		ug/L	0.096	01/31-	02/07/07	FK
НМХ			ND		ug/L	0.096	01/31-	02/07/07	FK
RDX			ND		ug/L	0.096	01/31-	02/07/07	FK
Tetryl			ND		ug/L	0.096	01/31-	02/07/07	FK
2-Nitrotoluene			ND		ug/L	0.48	01/31-	02/07/07	FK
3-Nitrotoluene			ND		ug/L	0.48	01/31-	02/07/07	FK
4-Nitrotoluene			0.25	J	ug/L	0.48	01/31-	02/07/07	FK
4-Amino-2,6-dinitro	toluene		ND		ug/L	0.096	01/31-	02/07/07	FK
2-Amino-4,6-dinitro	toluene		ND		ug/L	0.096	01/31-	02/07/07	FK
Organic Compounds b	y UV/HPLC	Disso	lved ND		ug/L	20	02/06-	02/07/07	FK
J Estimated result	. Result	is less	than RL.						
			GC/MS S	Semivolati	ile Organi	.cs			
Base/Neutrals and A Diethyl phthalate	cids (827	0C)	ND		ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol			ND		ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate			ND		ug/L	1.0	01/26-	02/01/07	JMG
Appendix I	3			Page 2	227				

Sample ID:

FWGLL12mw-182C-0396-GW

Lab ID: Sampling Date: A7A250101-007

Receipt Date: Matrix:

01/25/07 7:15AM

		WATER

Sampling Date: 01/24/07 9:17AM			Receipt Matrix:	Date:	U1/25/U/ /:15AM	
Sampling Date:					WATER Prep- Analysis Date	
<u>Parame</u>	ter	Result	<u>Units</u>	<u>RL</u>		Analyst
Base/Neutrals and Di-n-octyl phtha:		ND	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-met	thylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitropheno	1 .	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluer	ne	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluer	ne	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	Andrew State (1997) Andrew	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene	e	ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadie	ene	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclope	entadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG .
Isophorone		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthale	ene -	ND	ug/L	020	01/26- 02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline	•	ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline		ND.	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthrace	ne	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-pro	opylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodipheny.	lamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b) fluorant	hene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k)fluorant	hene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid		ND	ug/L	10	01/26- 02/01/07	JMG
Benzo(ghi)peryle Appen o	ne dix B	ND	Page 228	0.20	01/26- 02/01/07	JMG

Sample ID:

FWGLL12mw-182C-0396-GW

Lab ID: Sampling Date: A7A250101-007

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-007		Receipt	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17AM		Matrix:		WATER Prep- Analysis Date	
Parameter	<u>2</u>	Result	Units	<u>RL</u>	mary sts Date	Analyst
Base/Neutrals and A	Acids (8270C)	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene	The second of th	ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobenz	ene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichlorophen	nol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichlorophen	nol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy)	methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl)	ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chlor	copropane)	ND .	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) p	hthalate	0.88 ЈВ	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl pheny	ol ether	ND	ug/L	20	01/26- 02/01/07	JMG
Butyl benzyl phthal	ate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylph	nenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalene	•	. ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phen	nyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthrace	ene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthalat	ce	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzene	e	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzene	2	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzene	3	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzio	line	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix	В	ND F	age 229	2.0	01/26- 02/01/07	JMG

Sample ID:

FWGLL12mw-182C-0396-GW

Lab ID:

A7A250101-007

Receipt Date:

01/25/07

Lab ID:		A7A250101-	-007	Receipt 1	Date:	01/25/07 7:15AM	
Sa	mpling Date:	01/24/07	9:17AM	Matrix:		WATER Prep-	
	Paramete	e <u>r</u>	Result	Units	RL	Analysis Date	Analyst
E	level.			nod blank contains the	e target and	alyte at a reportable	
			s less than RL.	S Valatila Omenaisa			
				s volatile Organics -			
	platile Organics, trans-1,3-Dichloro		60B) ND	ug/L	1.0	01/26/07	LEE
	Acetone		ND	ug/L	10	01/26/07	LEE
	Ethylbenzene		ND	ug/L	1.0	01/26/07	LEE
	2-Hexanone		ND	ug/L	10	01/26/07	LEE
	Methylene chloride		ND	ug/L	2.0	01/26/07	LEE
	4-Methyl-2-pentano	ne	ND	ug/L	10	01/26/07	LEE
	Benzene		ND	ug/L	1.0	01/26/07	LEE
	Styrene		ND	ug/L	1.0	01/26/07	LEE
	1,1,2,2-Tetrachlor	oethane	ND	ug/L	1.0	01/26/07	LEE
	Tetrachloroethene		ND	ug/L	1.0	01/26/07	LEE
	Toluene		ND	ug/L	1.0	01/26/07	LEE
	1,1,1-Trichloroeth	ane	ND	ug/L	1.0	01/26/07	LEE
	1,1,2-Trichloroeth	ane	ND	ug/L	1.0	01/26/07	LEE
	Trichloroethene		ND	ug/L	1.0	01/26/07	LEE
	Vinyl chloride		ND	ug/L	1.0	01/26/07	LEE
	Xylenes (total)		ND	ug/L	2.0	01/26/07	LEE
	Bromochloromethane		ND	ug/L	1.0	01/26/07	LEE
	Bromodichlorometha	ne	ND	ug/L	1.0	01/26/07	LEE
	Bromoform		ND	ug/L	1.0	01/26/07	LEE
	Bromomethane		ND	ug/L	1.0	01/26/07	LEE
	2-Butanone		ND	ug/L	10	01/26/07	LEE
	Carbon disulfide		ND	ug/L	1.0	01/26/07	LEE
	Carbon tetrachlori	de	ND	ug/L	1.0	01/26/07	LEE
	Chlorobenzene		ND	ug/L	1.0	01/26/07	LEE
	Dibromochlorometha	ne	ND	ug/L	1.0	01/26/07	LEE
	Chloroethane	•	ND	ug/L	1.0	01/26/07	LEE
	Chloroform		ND	ug/L	1.0	01/26/07	LEE

Appendix B

Chloromethane

Page 230

ug/L

1.0

01/26/07

LEE

ND

Sample ID: Lab ID:

FWGLL12mw-182C-0396-GW

A7A250101-007

Receipt Date:

01/25/07

7:15AM

						01,20,0:	
Sampling Date: 0	01/24/07 9:	17AM		Matrix	:	WATER Prep-	
Parameter		Result		Units	RL	Analysis Date	Analyst
Volatile Organics, G	C/MS (8260E	ND		ug/L	1.0	01/26/07	LEE
1,1-Dichloroethane		ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane		ND		ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene		ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene (t	otal)	ND		ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane	** *** *** ***	ND		ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloroprope	ene .	ND .		ug/L	1.0	01/26/07	LEE
			General C	hemistry			
Cyanide, Total Cyanide, Total		ND		mg/L	0.010	01/29/07	CT
Nitrate-Nitrite Nitrate-Nitrite		ND		mg/L	0.1	01/30/07	DEB
Nitrocellulose as N :	by 353.2	0.13	.В Ј	mg/L	0.50	02/06- 02/08/07	DTA

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-182C-0396-GF

Lab ID:

A7A250101-008

Receipt Date:

01/25/07

7:15AM

Lab ID:	A7A250101-008			Receipt	: Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:17AM	•		Matrix:		WATER Prep-	
Parameter	<u>.</u>	Result		Units	RL	Analysis Date	Analyst
····			Wot	·nlo		·	
			Met	als		<u>-</u>	
Inductively Coupled Arsenic	d Plasma (6010B 1	Crace) 26.1		ug/L	5.0	01/26/07	LRW
Lead		ND		ug/L	3.0	01/26/07	LRW
Selenium		ND .		ug/L	5.0	01/26/07	LRW
Inductively Coupled Magnesium	d Plasma (6010B)	49600	g t esse a garage	ug/L	1000	01/26/07	LRW
Manganese	the company of the state of the	21.0		ug/L	10.0	01/26/07	LRW
Barium		92.5		ug/L	10.0	01/26/07	LRW
Nickel		ND		ug/L	10.0	01/26/07	LRW
Potassium		6120	J	ug/L	1000	01/26/07	LRW
Silver		ND		ug/L	5.0	01/26/07	LRW
Sodium		29200		ug/L	1000	01/26/07	LRW
Vanadium		ND		ug/L	10.0	01/26/07	LRW
Chromium		ND		ug/L	5.0	01/26/07	LRW
Calcium		72200		ug/L	1000	01/26/07	LRW
Cobalt		ND	•	ug/L	5.0	01/26/07	LRW
Copper		1.9	В	ug/L	5.0	01/26/07	LRW
Inductively Coupled	d Dinama Maga Spe	-a+*-m-a+***	(6020)				
Antimony Coupled	ı rıasma mass əpe	0.21	B	ug/L	2.0	01/26- 01/30/07	BD
Iron		294		ug/L	20.0	01/26- 01/30/07	BD ·
Beryllium		ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc		4.5	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum		6.6	В	ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, Co. Mercury	ld Vapor) - Liqu	id ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-186C-0379-GW

Lab ID:

A7A250101-009

Receipt Date:

01/25/07

7:15AM

Sampling Date:

01/24/07 3:01PM

Matrix:

WATER _

M	Matrix:		WATER Prep-	
Result	Units	RL	Analysis Date	Analyst
GC Semivo	latile Organics			
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	01/28- 02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND ·	ug/L	0.50	02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND	ug/L	0.50	02/08/07	LH
ND	ug/L	0.030	01/28- 01/29/07	csv
ND	ug/L	0.025	01/28- 01/29/07	CSV
ND .	ug/L	0.025	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	. 01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
NĎ	ug/L	0.10	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
ND	ug/L	0.030	01/28- 01/29/07	CSV
	Result ND ND ND ND ND ND ND ND ND N	Result Units ND ug/L ND <td>Result Units RL GC Semivolatile Organics ND ug/L 0.50 ND ug/L 0.030 ND ug/L</td> <td> ND</td>	Result Units RL GC Semivolatile Organics ND ug/L 0.50 ND ug/L 0.030 ND ug/L	ND

Appendix B

Sample ID:	FWGLL12mw-186	C-0379-GW					
	A7A250101-009			Receipt		•	15AM
Sampling Date: ()1/24/07 3:	01PM		Matrix:		WATER Prep-	
Parameter		Result		Units	RL	Analysis Da	Analyst Analyst
Pesticides (8081A) Toxaphene		ND		ug/L	2.0	01/28- 01/	29/07 CSV
alpha-Chlordane		ND		ug/L	0.030	01/28- 01/	29/07 CSV
gamma-Chlordane		ND		ug/L	0.030	01/28- 01/	29/07 CSV
Aldrin		ND		ug/L	0.030	01/28- 01/	/29/07 CSV
4,4'-DDD		ND		ug/L	0.030	01/28- 01/	29/07 CSV
4,4'-DDE	The second of	ND	e e introduce de la compansión de la compansión de la compansión de la compansión de la compansión de la compa	ug/L	0.030	01/28- 01/	29/07 CSV
4,4'-DDT		. ND		ug/L	0.030	01/28- 01/	29/07 CSV
		a lage data from two year first two tall two date for some for the same of		that have brok have mad done have been bod bod on	ng tima angg bang pang bang bang bang bang bang bang bang b		
Nitroaromatics & Nit	ramines: Ex	plosives (833)	0)				
1,3-Dinitrobenzene		ND		ug/L	0.095	01/31- 02/	
2,4-Dinitrotoluene		ND		ug/L	0.095	01/31- 02/	'08/07 FK
2,6-Dinitrotoluene		ND		ug/L	0.095	01/31- 02/	'08/07 FK
Nitrobenzene		ND	,	ug/L	0.095	01/31- 02/	'08/07 FK
1,3,5-Trinitrobenzene		ND		ug/L	0.095	01/31- 02/	'08/07 FK
2,4,6-Trinitrotoluene		ND		ug/L	0.095	01/31- 02/	08/07 FK
HMX		ND		ug/L	0.095	01/31- 02/	08/07 FK
RDX		0.053	J	ug/L	0.095	01/31- 02/	'08/07 FK
Tetryl		ND		ug/L	0.095	01/31- 02/	'08/07 FK
2-Nitrotoluene		ND		ug/L	0.48	01/31- 02/	'08/07 FK
3-Nitrotoluene		ND		ug/L	0.48	01/31- 02/	'08/07 FK
4-Nitrotoluene		ИD		ug/L	0.48	01/31- 02/	'08/07 FK
4-Amino-2,6-dinitroto	oluene	ND		ug/L	0.095	01/31- 02/	'08/07 FK
2-Amino-4,6-dinitroto	oluene	ND		ug/L	0.095	01/31- 02/	'08/07 FK
Organic Compounds by Nitroguanidine	UV/HPLC D	rissolved ND		ug/L	20	02/06- 02/	'07/07 FK
J Estimated result.							
		GC/1	fS Semivo	latile Organio	os		
Base/Neutrals and Ac Diethyl phthalate	ids (8270C)	ND		ug/L	1.0	01/26- 02/	'01/07 JMG
2,4-Dimethylphenol		.MD		ug/L	2.0	01/26- 02/	/01/07 JMG
Dimethyl phthalate		ND		ug/L	1.0	01/26- 02/	/01/07 JMG
Appendix B			Pa	ge 234			

Sample ID:

FWGLL12mw-186C-0379-GW

Sample ID: FWGLL12mw-186C-0379-GW				04 /05 /05		
Lab ID: A7A250101-009 Sampling Date: 01/24/07 3:01PM		DM	Receipt Matrix:	Date:	01/25/07 7:15AM WATER	
-			•		Prep- Analysis Date	
Param	<u>eter</u>	Result	Units	<u>RL</u>		Analyst
Base/Neutrals an	•	ND	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-me	ethylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitropheno	ol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotolue	ene	ND .	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotolue	ene	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	and the second second second second	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzer	ne	ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadi	Lene	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclop	pentadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane	e	ND	ug/L	1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Isophorone		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthal	Lene	ND	ug/L	0.20	01/26- 02/01/07	JMĠ
2-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a) anthrace	ene	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-pı	ropylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodipheny	ylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b) fluorant	thene	ND .	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k) fluorant	thene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid		ND	ug/L	10 .	01/26- 02/01/07	JMG
Benzo(ghi)peryle Apper	ene idix B	ND	Page 235	0.20	01/26- 02/01/07	JMG
			-			

Sample ID:

FWGLL12mw-186C-0379-GW

Lab ID: Sampling Date:

A7A250101-009 01/24/07 3:01PM Receipt Date:

01/25/07 7:15AM

Matrix:	WATER
	i i

Sampling Date: 01/24/07 3:0	1PM	Matrix:		WATER Prep-	
Parameter	Result	Units	<u>rl</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)	M	/T	0.20	01/26- 02/01/07	JMG
Benzo(a)pyrene	ND	ug/L			
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobenzene /	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix B	ND	-	2.0	01/26- 02/01/07	JMG
Appendix B		Page 236 ^{7L}			

Sample ID: FWGLL12mw-186C-0379-GW

Lab ID: Sampling Date: A7A250101-009

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-009		Recei	pt Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 3:01PM	1	Matri	x:	WATER Prep-	
Parame	eter	Result	Units	RL	Analysis Date	Analyst
		GC/M	S Volatile Organic	s	·	
	s, GC/MS (8260B)					
trans-1,3-Dichlo	ropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone		ND	ug/L	10	01/26/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	and the second of the second	ND	ug/L	10	01/26/07	LEE
Methylene chlori	de	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-penta	none	ND	ug/L	10	01/26/07	LEE .
Benzene		ND	ug/L	1.0	01/26/07	LEE
Styrene	•	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachl	oroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethen	e	ND	ug/L	1.0	01/26/07	LEE
Toluene		ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroe	thane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroe	thane	ND .	ug/L	1.0	01/26/07	LEE
Trichloroethene		ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)		ND .	ug/L	2.0	01/26/07	LEE
Bromochlorometha	ne	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromet	hane	ND	ug/L	1.0	01/26/07	LEE
Bromoform		ND	ug/L	1.0	01/26/07	LEE
Bromomethane		ND	ug/L	1.0	01/26/07	LEE
2-Butanone		ND	ug/L	10	01/26/07	LEE
Carbon disulfide	:	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachlo		ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/26/07	LEE
Dibromochloromet	hane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane		ND	ug/L	1.0	01/26/07	LEE
Chloroform		ND	ug/L	1.0	01/26/07	LEE
Chloromethane		ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethar	ie	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Sample ID:	FWGLL12mw-18	5C-0379-GW				•
Lab ID:	A7A250101-009	e e e e e e e e e e e e e e e e e e e	Re	ceipt Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 3	:01PM	Ma	trix:	WATER Prep-	
Parameter	_	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, 1,1-Dichloroethane	GC/MS (8260E	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane	4.5	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropane		ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropro	pene	ND	ug/L	1.0	01/26/07	LEE
	·		General Chemistry	A		
Cyanide, Total Cyanide, Total		0.0086	B mg/L	0.010	01/30/07	SS
Nitrate-Nitrite Nitrate-Nitrite		ND	mg/L	0.1	01/30/07	DEB
Nitrocellulose as M Nitrocellulose	1 by 353.2	ND .	mg/L	0.50	02/06- 02/08/07	DTA

B Estimated result. Result is less than RL.

Sample ID:

FWGLL12mw-186C-0379-GF

Lab ID:

A7A250101-010

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-010	_		_	t Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 3:01PM	1		Matrix	:	WATER Prep- Analysis Date	
Paramete	er_	Result		Units	RL	MISTYSTS DATE	Analyst
-min and one days and box spec and one can can and and			Met	als			
Inductively Couple Arsenic	ed Plasma (6010B '	Trace)		ug/L	5.0	01/26/07	LRW
Lead	•	ND		ug/L	3.0	01/26/07	LRW
Selenium		ND		ug/L	5.0	01/26/07	LRW
Inductively Couple		65000	e i e e e	ug/L	10.00	01/26/07	LRW
Manganese		295		ug/L	10.0	01/26/07	LRW
Barium		47.3	•	ug/L	10.0	01/26/07	LRW
Nickel		ND		ug/L	10.0	01/26/07	LRW
Potassium		1520	J	ug/L	1000	01/26/07	LRW
Silver		ND		ug/L	5.0	01/26/07	LRW
Sodium		16600		ug/L	1000	01/26/07	LRW
Vanadium		ND		ug/L	10.0	01/26/07	LRW
Chromium		ND		ug/L	5.0	01/26/07	LRW
Calcium		141000		ug/L	1000	01/26/07	LRW
Cobalt		1.4	В	ug/L	5.0	01/26/07	LRW
Copper		ND		ug/L	5.0	01/26/07	LRW
Inductively Couple	ed Plasma Mass Sp	ectrometry(60	20)				
Antimony		0.17	В	ug/L	2.0	01/26- 01/30/07	BD
Iron		699		ug/L	20.0	01/26- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc		5.2	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum		ND		ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, Co	old Vapor) - Liqu	id ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

Sampling Date:

FWGBKGmw-005C-0358-GW

Lab ID:

A7A250101-011

01/24/07 11:35AM

Receipt Date:

Matrix:

01/25/07 7:15AM

WATER

Prep-Analysis Date Parameter Result Units RL Analyst ----- GC Semivolatile Organics -----PCBs (8082) Aroclor 1016 0.50 01/28- 02/08/07 ND ug/L LΗ 0.50 01/28- 02/08/07 LH Aroclor 1221 ND ug/L 0.50 01/28- 02/08/07 Aroclor 1232 LH ND ug/L 0.50 01/28- 02/08/07 Aroclor 1242 ND ug/L LH 0.50 01/28- 02/08/07 Aroclor 1248 NDug/L $_{\rm LH}$ Aroclor 1254 ND ug/L 0.50 01/28- 02/08/07 LH Aroclor 1260 ND 0.50 01/28- 02/08/07 LH ug/L PCBs (8082) Re-extract 0.50 02/08/07 Aroclor 1016 ND ug/L LН Aroclor 1221 ug/L 0.50 02/08/07 LН ND Aroclor 1232 ND ug/L 0.50 02/08/07 T.H 0.50 02/08/07 Aroclor 1242 ND ug/L LH Aroclor 1248 ND ug/L 0.50 02/08/07 LH Aroclor 1254 ND ug/L 0.50 02/08/07 LH Aroclor 1260 ND ug/L 0.50 02/08/07 LHPesticides (8081A) 0.030 01/28- 01/29/07 Dieldrin ND ug/L CSV 0.025 01/28- 01/29/07 Endosulfan T ND ug/L CSV 0.025 01/28- 01/29/07 Endosulfan II ug/L CSV ND Endosulfan sulfate ND ug/L 0.030 01/28- 01/29/07 CSV 01/28- 01/29/07 Endrin ND ug/L 0.030 CSV Endrin aldehyde ND 0.030 01/28- 01/29/07 CSV ug/L 0.030 01/28- 01/29/07 CSV Endrin ketone ND ug/L 01/28- 01/29/07 Heptachlor ND 0.030 CSV ug/L 0.030 01/28- 01/29/07 CSV Heptachlor epoxide ND ug/L ND 01/28- 01/29/07 Methoxychlor ug/L 0.10 CSV 01/28- 01/29/07 alpha-BHC 0.030 CSV ND ug/L beta-BHC 01/28- 01/29/07 ND ug/L 0.030 CSV delta-BHC ND ug/L 0.030 01/28- 01/29/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/28- 01/29/07 CSV

Appendix B

Sample ID:

FWGBKGmw-005C-0358-GW

Lab ID:	A7A250101-	03C-0338-GW	Receipt	Date:	01/25/07 7:15	AM
Sampling Date:	01/24/07		Matrix:		WATER	
Paramete	<u>r</u>	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Pesticides (8081A)						
Toxaphene		ND	ug/L	2.0	01/28- 01/29)/07 CSV
alpha-Chlordane		ND	ug/L	0.030	01/28- 01/29	0/07 CSV
gamma-Chlordane		ND	ug/L	0.030	01/28- 01/29	9/07 CSV
Aldrin		ND	ug/L	0.030	01/28- 01/29)/07 CSV
4,4'-DDD		ND	ug/L	0.030	01/28- 01/29)/07 CSV
4,4'-DDE	g typig ett t	ND	ug/L	0.030	01/28- 01/29	0/07 CSV
4,4'-DDT		ND	ug/L	0.030	01/28- 01/29)/07 CSV
Nitroaromatics & N 1,3-Dinitrobenzene	itramines:	Explosives (8330) ND	ug/L	0.096	01/31- 02/08	3/07 FK
2,4-Dinitrotoluene		ND	ug/L	0.096	01/31- 02/08	3/07 FK
2,6-Dinitrotoluene		ND	ug/L	0.096	01/31- 02/08	3/07 FK
Nitrobenzene		ND	ug/L	0.096	01/31- 02/08	3/07 FK
1,3,5-Trinitrobenz	ene	ND	ug/L	0.096	01/31- 02/08	3/07 FK
2,4,6-Trinitrotolu	ene	ND	ug/L	0.096	01/31- 02/08	3/07 FK
HMX		ND	ug/L	0.096	01/31- 02/08	
RDX	•	ND	ug/L	0.096	01/31- 02/08	
Tetryl		ND	ug/L	0.096	01/31- 02/08	
2-Nitrotoluene		ND	ug/L	0.48	01/31- 02/08	
3-Nitrotoluene		ND	ug/L	0.48	01/31- 02/08	
4-Nitrotoluene		ND .	ug/L	0.48	01/31- 02/08	
	a# a]a.a		_	0.096	01/31- 02/08	
4-Amino-2,6-dinitr		ND	ug/L			
2-Amino-4,6-dinitr	otoluene	ND	ug/L	0.096	01/31- 02/08	3/07 FK
Organic Compounds Nitroguanidine	by UV/HPLC	Dissolved ND	ug/L	20	02/06- 02/0	7/07 FK
		GC/MS S	Semivolatile Organio	:s		
Base/Neutrals and Diethyl phthalate	Acids (8270	OC)	ug/L	1.0	01/26- 02/03	L/07 JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/26- 02/0	L/07 JMG
Dimethyl phthalate		ND	ug/L	1.0	01/26- 02/03	L/07 JMG
Appendix	κВ		Page 241			

Sample ID:

FWGBKGmw-005C-0358-GW

Lab ID: Sampling Date: A7A250101-011 01/24/07 11:35AM Receipt Date: 01/25/07 7:15AM
Matrix: WATER

Sampling Date: 01/24/0/ 11:35A	ΤΔĪ	Matrix:		Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20.	01/26- 02/01/07	JMG
Isophorone	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene	ND .	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/26~ 02/01/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid	ND	.ug/L	10	01/26- 02/01/07	JMG
Benzo(ghi)perylene Appendix B	ND	Page 242	0.20	01/26- 02/01/07	JMG

Sample ID:

2,4-Dichlorophenol Appendix B

FWGBKGmw-005C-0358-GW

Lab ID:	A7A250101-0	11	Receipt 1	Date:	01/25/07 7:15AM	
Sampling Date:	01/24/07 1	1:35AM	Matrix:		WATER Prep-	
Paramet	er	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and	Acids (8270	-		0.00	01/06 00/01/05	7. 0
Benzo(a)pyrene	•	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/26- 02/01/07	JMĢ
Phenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobe	nzene	ИD	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichloroph	enol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichloroph	enol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethox	y)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND .	ug/L	1.0	01/26- 02/01/07	JMG .
2,2'-Oxybis(1-Chl	oropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl phe	nyl ether	ND	ug/L	.20	01/26- 02/01/07	JMG
Butyl benzyl phth	alate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methyl	phenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthale	ne	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl ph	enyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthra	cene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran		. ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthal	ate	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenze	ne	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenze	ne	ND .	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenze	ne	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenz	idine	ND	ug/L	5.0	01/26- 02/01/07	JMG
	_		-			

Page 243

2.0

01/26- 02/01/07

JMG

ND

Sample ID:

FWGBKGmw-005C-0358-GW

Lab ID:

A7A250101-011

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-011		·F	Receipt Date:	01/25/07 7:15	ΜA
Sampling Date:	01/24/07 11:35AM	1	b	fatrix:	WATER Prep-	
Param	eter_	Result	Units	<u>RL</u>	Analysis Date	Analyst
		GC,	MS Volatile Org	anics		
	es, GC/MS (8260B)	•				
trans-1,3-Dichlo	propropene	ND	ug/	L 1.0	01/26/07	LEE
Acetone		ND	ug/	L 10	01/26/07	LEE
Ethylbenzene		ND	ug/	1.0	01/26/07	LEE
2-Hexanone		ИD	ug/	L, 10	01/26/07	LEE LEE
Methylene chlori	.de	ND	ug/	L 2.0	01/26/07	LEE
4-Methyl-2-penta	none	ND	ug/	L 10	01/26/07	LEE
Benzene		ND .	ug/	1.0	01/26/07	LEE
Styrene		ND	ug/	L 1.0	01/26/07	LEE
1,1,2,2-Tetrachl	oroethane	ND	ug/	L 1.0	01/26/07	LEE
Tetrachloroethen	ıe,	ND	ug/	1.0	01/26/07	LEE
Toluene		ND	ug/	L 1.0	01/26/07	LEE
1,1,1-Trichloroe	thane	ND	ug/	L 1.0	01/26/07	LEE
1,1,2-Trichloroe	thane	ND	ug/i	L 1.0	01/26/07	LEE
Trichloroethene		ND	ug/	L 1.0	01/26/07	LEE
Vinyl chloride		ND	ug/	L 1.0	01/26/07	LEE
Xylenes (total)		ND	ug/	L 2.0	01/26/07	LEE
Bromochlorometha	ne	ND .	ug/:	L 1.0	01/26/07	LEE
Bromodichloromet	hane	ND	ug/	L 1.0	01/26/07	LEE
Bromoform		ND	ug/	L 1.0	01/26/07	LEE
Bromomethane		ND	ug/	L 1.0	01/26/07	LEE
2-Butanone		ND	ug/		01/26/07	LEE
Carbon disulfide		ND	ug/		01/26/07	LEE
Carbon tetrachlo		ND	ug/:		01/26/07	LEE
Chlorobenzene	72140	ND	_		01/26/07	
			ug/			LEE
Dibromochloromet	nane	ND	ug/		01/26/07	LEE
Chloroethane		ND	ug/		01/26/07	LEE
Chloroform		ND	ug/	L 1.0	01/26/07	LEE
Chloromethane		ND	ug/	L 1.0	01/26/07	LEE
1,2-Dibromoethar	e	ND	ug/	L 1.0	01/26/07	LEE

Appendix B

Sample ID:	FWGBKGmw-005C-03	358-GW			04 /07 /07 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Lab ID:	A7A250101-011		Receipt 1	Date:	01/25/07 7:15AM	
Sampling Date: 01/24/07 11:35		M	Matrix:		WATER Prep-	
Param	eter	Result	Units	RL	Analysis Date	Analyst
	cs, GC/MS (8260B)	ND		1.0	01 /26 /07	LEE
1,1-Dichloroetha	ane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroetha	ane	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethe	ene	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethe	ene (total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroprop	pane	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloro	opropene	ND	ug/L	1.0	01/26/07	LEE
		0				
a de la metala		Gen	eral Chemistry		. The same state of the same s	
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose a	as N by 353.2					
Nitrocellulose		ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-005C-0358-GF

Lab ID:

A7A250101-012

Receipt Date:

01/25/07 7:15AM

Lab ID: A7A250101-012			Receipt I		01/25/07 7:15AM	
Sampling Date: 01/24/07 11:35A	M		Matrix:	·	WATER Prep-	
Parameter_	Result		Units	RL	Analysis Date	Analyst
		Meta	als			
Inductively Coupled Plasma (6010B Arsenic	Trace)		ug/L	5.0	01/26/07	LRW
Lead	ND		ug/L	3.0	01/26/07	LRW
Selenium	ND		ug/L	5.0	01/26/07	LRW
Inductively Coupled Plasma (6010B) Magnesium	40000		ug/L	. 1000	01/26/07	LRW
Manganese	0.73	В	ug/L	10.0	01/26/07	LRW
Barium	14.0		ug/L	10.0	01/26/07	LRW
Nickel	ND	•	ug/L	10.0	01/26/07	LRW
Potassium	391	вЈ	ug/L	1000	01/26/07	LRW
Silver	ND		ug/L	5.0	01/26/07	LRW
Sodium	3140		ug/L	1000	01/26/07	LRW
Vanadium	ND		ug/L	10.0	01/26/07	LRW
Chromium	ND		ug/L	5.0	01/26/07	LRW
Calcium	77800		ug/L	1000	01/26/07	LRW
Cobalt	ND		ug/L	5.0	01/26/07	LRW
Copper	ND		ug/L	5.0	01/26/07	LRW
Inductively Coupled Plasma Mass Sp	pectrometry(6	5020)			•	
Antimony	0.12	В	ug/L	2.0	01/26- 01/30/07	BD
Iron	312		ug/L	20.0	01/26- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc	5.5	вј	ug/L	10.0	01/26- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Liquentury	uid ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

Sampling Date:

FWGLL12mw-183C-0378-GW

Lab ID:

A7A250101-013

01/24/07 11:22AM

Receipt Date:

01/25/07 7:15AM

Matrix:

WATER Prep-

Parameter_	Result	<u>Units</u>	<u>RL</u>	Prep- Analysis Date	Analyst
	GC Semivolati	le Organics			
PCBs (8082) Aroclor 1016	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	. ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260	ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-extract					
Aroclor 1016	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260	ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A)					
Dieldrin	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endosulfan I	ND	ug/L	0.025	01/28- 01/29/07	CSV
Endosulfan II	ND	ug/L	0.025	01/28- 01/29/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin aldehyde	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin ketone	ND	ug/L	0.030	01/28- 01/29/07	CSV
Heptachlor	ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor	ND	ug/L	0.10	01/28- 01/29/07	csv
alpha-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
beta-BHC	ND	ug/L	0.030	01/28- 01/29/07	CSV
delta-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/29/07	CSV

Appendix B

	FWGLL12mw-183 A7A250101-013		Receipt I	Date:	01/25/07 7:15AM	
Sampling Date: 01/24/07		22AM	Matrix:		WATER Prep-	
Parameter		Result	<u>Units</u>	RL	Analysis Date	Analyst
Pesticides (8081A)			•			•
Toxaphene		ND	ug/L	2.0	01/28- 01/29/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/28- 01/29/07	CSV
gamma-Chlordane		ND	ug/L	0.030	01/28- 01/29/07	CSV
Aldrin		ND	ug/L	0.030	01/28- 01/29/07	CSV
4,4'-DDD		ND	ug/L	0.030	01/28- 01/29/07	CSV
4,4'-DDE	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ND	ug/L	0.030	01/28- 01/29/07	CSV
4,4'-DDT		ND	ug/L	0.030	01/28- 01/29/07	csv
Nitroaromatics & Nit 1,3-Dinitrobenzene	ramines: Ex	plosives (8330) ND) ug/L	0.097	01/31- 02/08/07	FK
2,4-Dinitrotoluene		ИD	ug/L	0.097	01/31- 02/08/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.097	01/31- 02/08/07	FK
Nitrobenzene		ND	ug/L	0.097	01/31- 02/08/07	FK
1,3,5-Trinitrobenzen	е	ND	ug/L	0.097	01/31- 02/08/07	FK
2,4,6-Trinitrotoluen	e	ND	ug/L	0.097	01/31- 02/08/07	FK
HMX		ND	ug/L	0.097	01/31- 02/08/07	FK
RDX		ND	ug/L	0.097	01/31- 02/08/07	FK
Tetryl		ND	ug/L	0.097	01/31- 02/08/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/31- 02/08/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/31- 02/08/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/31- 02/08/07	FK
4-Amino-2,6-dinitrot	oluene	ND	ug/L	0.097	01/31- 02/08/07	FK
2-Amino-4,6-dinitrot	oluene	ND	ug/L	0.097	01/31- 02/08/07	FK
Organic Compounds by Nitroguanidine	V UV/HPLC D	issolved ND	ug/L	20	02/06- 02/07/07	FK
		GC/MS	S Semivolatile Organics	:		
Base/Neutrals and Ac	cids (8270C)	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/26- 02/01/07	JMG
Appendix E	3		Page 248			

Sample ID:

FWGLL12mw-183C-0378-GW

lx:	WATE

Lab ID:		A7A250101-013			Receipt Date:		01/25/07 7:15AM		
Sampling Date:	01/24/07	11:22AM			Matrix:		WATER Prep		
Paramete	<u>r</u>	•	Result	Unit	<u>s</u>	RL	Analysi	.s Date	Analyst
Base/Neutrals and Di-n-octyl phthala		70C)	ND	ug	/L	1.0	01/26-	02/01/07	JMG
4,6-Dinitro-2-meth	ylphenol		ND	ug	/L	5.0	01/26-	02/01/07	JMG
2,4-Dinitrophenol			ND	ug	/L	5.0	01/26-	02/01/07	JMG
2,4-Dinitrotoluene			ND	ug	/L	5.0	01/26-	02/01/07	JMG
2,6-Dinitrotoluene			ND	ug.	/ L	5.0	01/26-	02/01/07	JMG
Anthracene	and return of ex		ND	ug	/L	0.20	01/26-	02/01/07	JMG
Fluoranthene			ND	ug.	/L	0.20	01/26-	02/01/07	JМG
Fluorene			ND	ug,	/L	0.20	01/26-	02/01/07	JMG
Hexachlorobenzene			ND	ug	/L	0.20	01/26-	02/01/07	JMG
Hexachlorobutadien	e		ND	ug	/L	1.0	01/26-	02/01/07	JMG
Hexachlorocyclopen	tadiene		ND	ug.	/L	10	01/26-	02/01/07	JMG
Hexachloroethane			ND	ug,	/L	1.0	01/26-	02/01/07	JMG
Indeno(1,2,3-cd)py	rene		ND	ug,	/L	0.20	01/26-	02/01/07	JMG
Isophorone			ND	ug	/L	1.0	01/26-	02/01/07	JMG
2-Methylnaphthalen	e		ND	ug	/L	0.20	01/26-	02/01/07	JMG
2-Methylphenol			ND	ug	/L	1.0	01/26-	02/01/07	JMG
4-Methylphenol	•		ND	ug	/L	1.0	01/26-	02/01/07	JMG
Naphthalene			ND	ug	/L	0.20	01/26-	02/01/07	JMG
2-Nitroaniline			ND	ug	/L	2.0	01/26-	02/01/07	JMG
3-Nitroaniline	•		ND	ug	/L	2.0	01/26-	02/01/07	JMG
4-Nitroaniline			ND	ug	/L	2.0	01/26-	02/01/07	JMG
Nitrobenzene			ND	ug	/L	1.0	01/26-	02/01/07	JMG
2-Nitrophenol	•		ND	ug	/L	2.0	01/26-	02/01/07	JMG
4-Nitrophenol			ND	ug	/L	5.0	01/26-	02/01/07	JMG
Benzo(a)anthracene			ND	ug	/L	0.20	01/26-	02/01/07	JMG
N-Nitrosodi-n-prop	ylamine		ND	ug	/L	1.0	01/26-	02/01/07	JMG
N-Nitrosodiphenyla	mine		ND	ug	/ L	1.0	01/26-	02/01/07	JMG
Benzo(b)fluoranthe	ne		ND	ug	/L	0.20	01/26-	02/01/07	JMG
Benzo(k)fluoranthe	ne		ND	ug	/L	0.20	01/26-	02/01/07	JMG
Benzoic acid			ND	ug	/L	10	01/26-	02/01/07	JMG
Benzo(ghi)perylene Appendi	kВ		ND	Page 24 ^{ug}	/L	0.20	01/26-	02/01/07	JMG

Sample ID:

Sampling Date:

FWGLL12mw-183C-0378-GW

Lab ID:

A7A250101-013 01/24/07 11:22AM

Receipt Date: Matrix:

01/25/07 7:15AM

WATER Prep-

Sampling Date: 01/24/07 11:22AM		Macrix:		Prep-	
<u>Parameter</u>	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C)					
Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol	ND .	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	50	01/26- 02/01/07	JMG
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND ·	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	20	01/26- 02/01/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix B	ND	Page 250	2.0	01/26- 02/01/07	JMG
Appendix B		Page 250			

Sample ID:

FWGLL12mw-183C-0378-GW

Lab ID:

A7A250101-013

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 11:22AM

Matrix:

WATER

Parameter	Result	Units	RL	Analysis Date	Analyst
	GC/MS	Volatile Organics			
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone	ND	ug/L	10	01/26/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	ND	ug/L	10	01/26/07	LEE
Methylene chloride	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/26/07	LEE
Benzene	ND	ug/L	1.0	01/26/07	LEE
Styrene	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE
Toluene	ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromoform	ND	ug/L	1.0	01/26/07	LEE
Bromomethane	ND	ug/L	1.0	01/26/07	LEE
2-Butanone	ND	ug/L	10	01/26/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane	ND	ug/L	1.0	01/26/07	LEE
Chloroform	ND	ug/L	1.0	01/26/07	LEE
Chloromethane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Sample ID: Lab ID:

FWGLL12mw-183C-0378-GW A7A250101-013

Receipt Date:

01/25/07

7:15AM

Sampling Date:	01/24/07	11:22AM			Matri	κ:	IAW	ER Prep-	
Parameter	-		Result		Units	RL	!	Analysis Date	Analyst
Volatile Organics, 1,1-Dichloroethane	GC/MS (82	60B)	ND		ug/L	1.	0	01/26/07	LEE
1,2-Dichloroethane			ND		ug/L	1.	0	01/26/07	LEE
1,1-Dichloroethene			ND		ug/L	1.	0	01/26/07	LEE
1,2-Dichloroethene	(total)		ND		ug/L	1.	0	01/26/07	ΓĖΕ
1,2-Dichloropropane			ND		ug/L	1.	0	01/26/07	LEE
cis-1,3-Dichloropro	pene	and the state of a	ND	State type & Common Common	ug/L	1.	0	01/26/07	LEE
									•
				General Ch	emistry -				
Cyanide, Total Cyanide, Total			ND		mg/L	0.	010	01/30/07	SS
Nitrate-Nitrite Nitrate-Nitrite			ND		mg/L	0.	1	01/30/07	DEB
Nitrocellulose as N	by 353.2	:	ND		mg/L	0.	50	02/06- 02/08/07	DTA

Sample ID:

FWGLL12mw-183C-0378-GF

Lab ID:

A7A250101-014

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 11:22AM

Matrix:

WATER Prep-

01/21/01				Prep-		
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst	
	Met	als				
Inductively Coupled Plasma (6010B T			F 0	01 /06 /07	TDE	
Arsenic	34.5	ug/L	5.0	01/26/07	LRW	
Lead	ND	ug/L	3.0	01/26/07	LRW	
Selenium	ND	ug/L	5.0	01/26/07	LRW	
Inductively Coupled Plasma (6010B)						
Magnesium	44700	ug/L	10.00	01/26/07	LRW	
Manganese	56.9	ug/L	10.0	01/26/07	LRW	
Barium	82.3	ug/L	10.0	01/26/07	LRW	
Nickel	ND	ug/L	10.0	01/26/07	LRW	
Potassium	4920 J	ug/L	1000	01/26/07	LRW	
Silver	ND	ug/L	5.0	01/26/07	LRW	
Sodium	20600	ug/L	1000	01/26/07	LRW	
Vanadium	ND	ug/L	10.0	01/26/07	LRW	
Chromium	ND	ug/L	5.0	01/26/07	LRW	
Calcium	110000	ug/L	1000	01/26/07	LRW	
Cobalt	ND	ug/L	5.0	01/26/07	LRW	
Copper	ND	ug/L	5.0	01/26/07	LRW	
Todustical Counted Places Mass Co.	-t(6030)					
Inductively Coupled Plasma Mass Spe Antimony	0.12 B	ug/L	2.0	01/26- 01/30/07	BD .	
Iron	1220	ug/L	20.0	01/26- 01/30/07	BD	
Beryllium	ND	ug/L	1.0	01/26- 01/30/07	BD	
Thallium	ND	ug/L	1.0	01/26- 01/30/07	BD	
Zinc	63 B J	ug/L	10.0	01/26- 01/30/07	BD	
Cadmium	ND	ug/L	0.50	01/26- 01/30/07	BD	
Aluminum	ND	ug/L	50.0	01/26- 01/30/07	BD	
Mercury (7470A, Cold Vapor) - Liqui	đ					
Mercury	ND	ug/L	0.20	01/26- 01/30/07	ML	

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGCBPmw-005C-0371-GW

Lab ID:

A7A250101-015

Receipt Date:

01/25/07 7:15AM

Lab ID: A7A250101-015			Receipt Da	ate:	01/25/07 7:15AM		
Sampling Date:	01/24/07 9:25AM		Matrix:		WATER Prep-		
Paramet	er	Result	Units	RL	Analysis Date	Analyst	
		GC Ser	nivolatile Organics -				
PCBs (8082)							
Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1248	$T_{ij} = \{ x_i \in \mathcal{X}_i \mid x_i \in \mathcal{X}_i : x_i \in \mathcal{X}_i \}$	ND · · · · ·	ug/L	050	01/28- 02/08/07	TĤ ····	
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH	
(0000)							
PCBs (8082) Re Aroclor 1016	-extract	ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1221		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1232		· ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1242		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1248	·	ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1254		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1260		ND	ug/L	0.50	02/08- 02/09/07	LH	
			•				
Pesticides (8081A Dieldrin	.)	ND ·	ug/L	0.030	01/28- 01/29/07	csv	
Endosulfan I		ND .	ug/L	0.025	01/28- 01/29/07	csv	
Endosulfan II		ND	ug/L	0.025	01/28- 01/29/07	csv	
Endosulfan sulfat	e	ND	ug/L	0.030	01/28- 01/29/07	csv	
Endrin		ND	ug/L	0.030	01/28- 01/29/07	csv	
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/29/07	csv	
Endrin ketone		ND	ug/L	0.030	01/28- 01/29/07	CSV	
Heptachlor		ND	ug/L	0.030	01/28- 01/29/07	CSV	
Heptachlor epoxid	e	ND	ug/L	0.030	01/28- 01/29/07	csv	
Methoxychlor		ND	ug/L	0.10	01/28- 01/29/07	csv	
alpha-BHC		ND	ug/L	0.030	01/28- 01/29/07	csv	
beta-BHC		ND	ug/L	0.030	. 01/28- 01/29/07	csv	
delta-BHC		ND	ug/L	0.030	01/28- 01/29/07	csv	
gamma-BHC (Lindan	e)	ND	ug/L	0.030	01/28- 01/29/07	csv	

Appendix B

Page 254

Lab ID:	FWGCBPmw-00 A7A250101-0 01/24/07		Rece Mati	eipt Date:	01/25/07	7:15AM	
Parameter	01/24/07	9:25AM Result	Units	RL	WATER Prep Analysi		Analyst
Da-ti-ida- (00017)							
Pesticides (8081A) Toxaphene		ND	ug/L	2.0	01/28-	01/29/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/29/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/29/07	csv
Aldrin		ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDD		ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDE	, en en en en en en en en en en en en en	ND	ug/L	0.030	01/28-	01/29/07	csv
4,4'-DDT		ND	ug/L	0.030	01/28-	01/29/07	csv
Nitroaromatics & Nit 1,3-Dinitrobenzene	ramines:	Explosives (8330) ND	ug/L	0.097	01/31-	02/08/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.097	01/31-	02/08/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.097	01/31-	02/08/07	FK
Nitrobenzene		ND	ug/L	0.097	01/31-	02/08/07	FK
1,3,5-Trinitrobenzen	e	ND	ug/L	0.097	01/31-	02/08/07	FK
2,4,6-Trinitrotoluen	e	ND	ug/L	0.097	01/31-	02/08/07	FK
нмх		ND	ug/L	0.097	01/31-	02/08/07	FK
RDX		ND	ug/L	0.097	01/31-	02/08/07	FK
Tetryl		ND	ug/L	0.097	01/31-	02/08/07	FK
2-Nitrotoluene		ND	ug/L	0.48	01/31-	02/08/07	FK
3-Nitrotoluene		ND	ug/L	0.48	01/31-	02/08/07	FK
4-Nitrotoluene		ND	ug/L	0.48	01/31-	02/08/07	FK
4-Amino-2,6-dinitrot	oluene	ND	ug/L	0.097	01/31-	02/08/07	FK
2-Amino-4,6-dinitrot	oluene	ND	ug/L	0.097	01/31-	02/08/07	FK
Organic Compounds by Nitroguanidine	UV/HPLC	Dissolved ND	ug/L	20	02/06-	02/07/07	FK
		GC/MS	Semivolatile Orga	nics			
Base/Neutrals and Ac	eids (8270	C)	ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/26-	02/01/07	JMG
Appendix E	3		Page 255	•			

Sample ID:

Sampling Date:

FWGCBPmw-005C-0371-GW

Lab ID:

A7A250101-015

Receipt Date:

01/25/07 7:15AM

01/24/07	9:25AM	Matrix:	WATER

Parameter_	Result	Units	RL	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrophenol	ИD	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene	ИD	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Isophorone	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Methylphenol	.ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene	ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline	ND.	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b) fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k) fluoranthene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid	ND	ug/L	10	01/26- 02/01/07	JMG
Benzo(ghi)perylene Appendix B	ND	Page 256	0.20	01/26- 02/01/07	JMG

Sample ID:

Sampling Date:

FWGCBPmw-005C-0371-GW

Lab ID:

A7A250101-015

01/24/07 9:25AM

Receipt Date: Matrix:

01/25/07 7:15AM

WATER Prep-

sampling Date: 01/24/0/ 9:25A	TAT	Matrix:		Prep-		
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
<u>-</u>		-	5.0	01/26- 02/01/07		
Benzyl alcohol	ND	ug/L			JMG	
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,2'-Oxybis(1-Chloropropane)	. ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG	
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG	
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG	
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenz(a,h) anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Di-n-butyl phthalate	NĎ	ug/L	1.0	01/26- 02/01/07	JMG	
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4-Dichlorophenol Appendix B	ND	Deca Qug/L	2.0	01/26- 02/01/07	JMG	
Appendix B		Page 257				

Sample ID:

FWGCBPmw-005C-0371-GW

Lab ID:

A7A250101-015

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-015		Receipt	Date:	:e: 01/25/07 7:15AM	
Sampling Date:	01/24/07 9:25	5AM	Matrix:		WATER Prep-	
Paran	meter_	Result	Units	RL	Analysis Date	Analyst
		GC/MS	Volatile Organics			
Volatile Organi trans-1,3-Dichl	cs, GC/MS (8260B) oropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone		ND	ug/L	10	01/26/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	er er er er er er er er er er er er er e	ND	ug/L	10	01/26/07	LEE
Methylene chlor	ide	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-pent	anone	ND	ug/L	10	01/26/07	LEE
Benzene	•	ND	ug/L	1.0	01/26/07	LEE
Styrene		ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrach	loroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethe	ne	ND	ug/L	1.0	01/26/07	LEE
Toluene		ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloro	ethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloro	ethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene		ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	*	ND	ug/L	2.0	01/26/07	LEE
Bromochlorometh	ane	ND	ug/L	1.0	01/26/07	LEE
Bromodichlorome	thane	ND	ug/L	1.0	01/26/07	LEE
Bromoform		ND	ug/L	1.0	01/26/07	LEE
Bromomethane		ND	ug/L	1.0	01/26/07	LEE
2-Butanone		ND	ug/L	10	01/26/07	LEE
Carbon disulfid	e	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachl	oride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/26/07	LEE
Dibromochlorome	thane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane		ND	ug/L	1.0	01/26/07	LEE
Chloroform		ND	ug/L	1.0	01/26/07	LEE
Chloromethane		ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoetha	ne	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Page 258

Sample ID:	FWGCBPmw-005C-037	1-GW				
Lab ID:	A7A250101-015		Receipt Da	ite:	01/25/07 7:15AM	
Sampling Date:	01/24/07 9:25AM	I .	Matrix:		WATER Prep-	
Paramete	<u>er</u>	Result	Units	<u>RL</u>	Analysis Date	Analyst
Volatile Organics		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane		ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene	2	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene	e (total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropan	ie	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropr	copene	ND	ug/L	1.0	01/26/07	LEE
·		General C	hemistry	·		
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS ·
Nitrocellulose as Nitrocellulose	N by 353.2	ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGCBPmw-005C-0371-GF

Lab ID:

A7A250101-016

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 9:25AM

Matrix:

WATER

Sampling Date:		01/24/07 9:25AM			Matrix:			WATER Prep-	
	Parameter	-		Result		Units	RL	Analysis Date	Analyst
					Me	tals			
Inductively Arsenic	Coupled	Plasma	(6010B T	race) 24.6		ug/L	5.0	01/26/07	LRW
Lead				ND		ug/L	3.0	01/26/07	LRW
Selenium				ND	·	ug/L	5.0	01/26/07	LRW
Inductively Magnesium		Plasma	(6010B)	37400	e de la companya	ug/L	1000	01/26/07	LRW
Manganese				51.7		ug/L	10.0	01/26/07	LRW
Barium				36.4		ug/L	10.0	01/26/07	LRW
Nickel				ND		ug/L	10.0	01/26/07	LRW
Potassium				4190	J	ug/L	1000	01/26/07	L.RW
Silver				ND		ug/L	5.0	01/26/07	LRW
Sodium				29400		ug/L	1000	01/26/07	LRW
Vanadium				ND		ug/L	10.0	01/26/07	LRW
Chromium				ND		ug/L	5.0	01/26/07	LRW
Calcium			•	75600		ug/L	1000	01/26/07	LRW
Cobalt				ND		ug/L	5.0	01/26/07	LRW
Copper				ND		ug/L	5.0	01/26/07	LRW
Inductively	he larron	Dlaema	Mace Sne	ctrometry	7/6020)				
Antimony	Coupied	IIasma	nass ope	0.11	В	ug/L	2.0	01/26- 01/30/07	BD
Iron				1040		ug/L	20.0	01/26- 01/30/07	BD
Beryllium			e.	ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium				ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc				4.1	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium				ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum				ND		ug/L	50.0	01/26- 01/30/07	BD
Mercury (74 Mercury	70A, Col	d Vapor)	- Liqui	đ ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-017C-0366-GW

Result

ND

Lab ID:

PCBs (8082)

Aroclor 1016

A7A250101-017

Sampling Date:

Parameter

01/24/07 1:53PM

Receipt Date:

Matrix:

RL

0.50

Units

ug/L

01/25/07 7:15AM WATER
PrepAnalysis Date Analyst ----- GC Semivolatile Organics ------01/28- 02/08/07 01/28- 02/08/07

Aroclor 1221	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	w ND - see	ug/L-	0.50	01/28- 02/08/07	LH
Aroclor 1254	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260	ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-extract Aroclor 1016	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260	ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A) Dieldrin	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endosulfan I	ND	ug/L	0.025	01/28- 01/29/07	csv
Endosulfan II	ND	ug/L	0.025	01/28~ 01/29/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin	ND	ug/L	0.030	01/28- 01/29/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/28- 01/29/07	CSV
Endrin ketone	ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor	ND	ug/L	0.030	01/28- 01/29/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/28- 01/29/07	csv
Methoxychlor	ND	ug/L	0.10	01/28- 01/29/07	csv
alpha-BHC	ND	ug/L	0.030	01/28- 01/29/07	csv
beta-BHC	ND .	ug/L	0.030	01/28- 01/29/07	CSV
delta-BHC	ND	ug/L	0.030	01/28- 01/29/07	CSV
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/29/07	CSV
Appendix B	Page	261			

Sample ID:

FWGBKGmw-017C-0366-GW

Lab ID:	A7A250101-	·017		Receipt Date:			7:15AM	5AM	
Sampling Date:	01/24/07	1:53PM			Matrix		01/25/07 WATER _		
Parameter	-	Re	sult	Un	its	RL	Prej		Analyst
Pesticides (8081A)				•					
Toxaphene		ND		ı	ıg/L	2.0	01/28-	01/29/07	csv
alpha-Chlordane		ND	1		ıg/L	0.030	01/28-	01/29/07	CSV
gamma-Chlordane		ND	•	, t	ıg/L	0.030	01/28-	01/29/07	csv
Aldrin		ND		ι	ıg/L	0.030	01/28-	01/29/07	csv
4,4'-DDD		ND	•	ι	ıg/L	0.030	01/28-	01/29/07	csv
4,4'-DDE		ND	er er er er er er er er er er er er er e)	ıg/L	0.030	01/28-	01/29/07	csv
4,4'-DDT		ND		΄ (ıg/L	0.030	01/28-	01/29/07	csv
·									
Nitroaromatics & Ni	tramines:	_			-		0.1 /0.1		
1,3-Dinitrobenzene		ND	•	1	ıg/L	0.097	01/31-	02/08/07	FK
2,4-Dinitrotoluene		ND	1	ι	ıg/L	0.097	01/31-	02/08/07	FK
2,6-Dinitrotoluene		ND	1	1	ıg/L	0.097	01/31-	02/08/07	FK
Nitrobenzene		ND	•	ι	ıg/L	0.097	01/31-	02/08/07	FK
1,3,5-Trinitrobenze	ne	ND		ì	ıg/L	0.097	01/31-	02/08/07	FK
2,4,6~Trinitrotolue	nė	. ND)	.1	ıg/L	0.097	01/31-	02/08/07	FK
HMX		ND)	ι	ıg/L	0.097	01/31-	02/08/07	FK
RDX		ND		1	ıg/L	0.097	01/31-	02/08/07	FK .
Tetryl		ND)	1	ıg/L	0.097	01/31-	02/08/07	FK
2-Nitrotoluene		ИD		1	ıg/L	0.48	01/31-	02/08/07	FK
3-Nitrotoluene		ND)	ı	ıg/L	0.48	01/31-	02/08/07	FK
4-Nitrotoluene		ND)		ıg/L	0.48	01/31-	02/08/07	FK
4-Amino-2,6-dinitro	toluene	ND		٦	ıg/L	0.097	01/31-	02/08/07	FK
2-Amino-4,6-dinitro	toluene	ND)	1	ıg/L	0.097	01/31-	02/08/07	FK
	/	.	,						
Organic Compounds by Nitroguanidine	oĀ OA\H5FC	ND		1	ıg/L	20	02/06-	02/07/07	FK
				•					
			GC/MS	Semivolatilo	e Organi	.cs			
Base/Neutrals and A Diethyl phthalate	Acids (827	OC))	1	ıg/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol		ND)	1	ıg/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate		NE)	1	ug/L	1.0	01/26-	02/01/07	JMG
Appendix	В			Page 26	2				

Sample ID:

FWGBKGmw-017C-0366-GW

Lab ID:	A7A250101-017		Rece	01/25/07 7:15AM		
Sampling Date:	01/24/07 1:	53PM	Matr	ix:	WATER Prep-	
Paramete	<u>r_</u>	Result	<u>Units</u>	<u>RL</u>	Analysis Date	<u>Analyst</u>
Base/Neutrals and Di-n-octyl phthalat		ND	ug/L	. 1.0	01/26- 02/01/07	JMG
4,6-Dinitro-2-methy	ylphenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dinitrotoluene		ND	ug/L	5.0	01/26- 02/01/07	JMG
2,6-Dinitrotoluene		ND	ug/L	5.0	01/26- 02/01/07	JMG
Anthracene	· .	ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/26- 02/01/07	JMG
Hexachlorobutadiene	е	ND	ug/L	1.0	01/26- 02/01/07	JMG
Hexachlorocyclopen	tadiene	ND	ug/L	10	01/26- 02/01/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/26- 02/01/07	JMG
Indeno(1,2,3-cd)py:	rene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Isophorone		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Methylnaphthalene	е	ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Methylphenol		ND .	ug/L	1.0	01/26- 02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26- 02/01/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26- 02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzo(a)anthracene		ND	ug/L	0.20	01/26- 02/01/07	JMG
N-Nitrosodi-n-prop	ylamine	ND	ug/L	1.0	01/26- 02/01/07	JMG
N-Nitrosodiphenyla	mine	ND	ug/L	1.0	01/26- 02/01/07	JMG
Benzo(b)fluoranthe	ne	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzo(k)fluoranthe	ne	ND	ug/L	0.20	01/26- 02/01/07	JMG
Benzoic acid		ND	ug/L	10	01/26- 02/01/07	JMG
Benzo(ghi)perylene Appendix	В	ND	Page 263	0.20	01/26- 02/01/07	JMG

Sample ID:

FWGBKGmw-017C-0366-GW

Lab ID:

A7A250101-017

Sampling Date:

01/24/07 1:53PM

Receipt Date: Matrix: 01/25/07 7:15AM

WATER

Sampling Date: 01/24/0/ 1:53P	M	matrix:		WATER Prep-		
Parameter	Result	<u>Units</u>	RL	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4,6-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG	
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG	
bis(2-Ethylhexyl) phthalate	ND	ug/L	10	01/26- 02/01/07	JMG	
4-Bromophenyl phenyl ether	. ND	ug/L	20	01/26- 02/01/07	JMG	
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Acenaphthylene	ND	ug/L	0.20	. 01/26- 02/01/07	JMG	
4-Chloroaniline	ND ·	ug/L	2.0	01/26- 02/01/07	JМG	
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JМG	
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
2-Chlorophenol	ND .	ug/L	1.0	01/26- 02/01/07	JMG	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG	
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG	
Dibenzofuran	ND	ug/L	1.0	01/26- 02/01/07	JMG	
Di-n-butyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,3~Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG	
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG	
2,4-Dichlorophenol Appendix B	ND	Page 264	2.0	01/26- 02/01/07	JMG	
•						

Sample ID:

FWGBKGmw-017C-0366-GW

Lab ID:

A7A250101-017

01/24/07 1:53PM

Receipt Date:

01/25/07 7:15AM

Sampling Date:

Matrix:

WATER

Sampling Date: 01/24/0/ 1:53PM		Matrix:	W.E	Prep-		
Parameter	Result	Units	RL	Analysis Date	Analyst	
	GC/MS Volatil	la Organiaa				
	GC/MS VOIACII	Le Organics		·		
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE	
Acetone	ND	ug/L	10	01/26/07	LEE	
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE	
2-Hexanone	ND	ug/L	10	01/26/07	LEE	
Methylene chloride	ND	ug/L	2.0	01/26/07	LEE	
4-Methyl-2-pentanone	ND	ug/L	10 .	01/26/07	LEE	
Benzene	ND	ug/L	1.0	01/26/07	LEE	
Styrene	ND	ug/L	1.0	01/26/07	LEE	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE	
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE	
Toluene	ND .	ug/L	1.0	01/26/07	LEE	
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE	
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE	
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE	
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE	
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE	
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE	
Bromodichloromethane	ND	ug/L	1.0	01/26/07	LEE	
Bromoform	ND	ug/L	1.0	01/26/07	LEE	
Bromomethane	ND	ug/L	1.0	01/26/07	LEE	
2-Butanone	ND	ug/L	10	01/26/07	LEE	
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE	
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE	
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE	
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE	
Chloroethane	ND	ug/L	1.0	01/26/07	LEE	
Chloroform	ND	ug/L	1.0	01/26/07	LEE	
Chloromethane	ND	ug/L	1.0	01/26/07	LEE	
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE	

Appendix B

Page 265

Sample ID:	FWGBKGmw-017C-036	66-GW				
Lab ID:	A7A250101-017		Receipt D	ate:	01/25/07 7:15AM	
Sampling Date:	01/24/07 1:53PM	1	Matrix:		WATER	
Paramet	cer_	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics 1,1-Dichloroethan		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethan	e	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethen	e	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethen	e (total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropa	ne	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichlorop	ropene	ND	ug/L	1.0	01/26/07	LEE
<u></u>		Ger	eral Chemistry		· ·	
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose as	N by 353.2	ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-017C-0366-GF

Lab ID:

A7A250101-018

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 1:53PM

Matrix:

WATER

Sampling Date: 01/24/07 1:53PM	Ĭ	Matrix: WATER		TER Prep-		
Parameter	Result		Units	<u>RL</u>	Analysis Date	Analyst
		Metal	ls			
Inductively Coupled Plasma (6010B						
Arsenic	20.4		ug/L	5.0	01/26/07	LRW
Lead	ND		ug/L	3.0	01/26/07	LRW
Selenium	ND		ug/L	5.0	01/26/07	LRW
Inductively Coupled Plasma (6010B)						
Magnesium (00105)	43200	180 m	ug/L	1000,	01/26/07	LRW
Manganese	211		ug/L	10.0	01/26/07	LRW
Barium	37.0		ug/L	10.0	01/26/07	LRW
Nickel	· ND		ug/L	10.0	01/26/07	LRW
Potassium	2340	J	ug/L	1000	01/26/07	LRW
Silver	ИD		ug/L	5.0	01/26/07	LRW
Sodium	22100		ug/L	1000	01/26/07	LRW
Vanadium	ИД	•	ug/L	10.0	01/26/07	LRW
Chromium	ND		ug/L	5.0	01/26/07	LRW
Calcium	101000		ug/L	1000	01/26/07	LRW
Cobalt	ND		ug/L	5.0	01/26/07	LRW
Copper	ND		ug/L	5.0	01/26/07	LRW
T. I. Garatta Plana Mark Gr		001				
Inductively Coupled Plasma Mass Spe Antimony	0.073	B	ug/L	2.0	01/26- 01/30/07	BD
Iron	1800		ug/L	20.0	01/26- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/26- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/26- 01/30/07	BD
Zinc	5.1	вЈ	ug/L	10.0	01/26- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/26- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/26- 01/30/07	BD
(5.50)	• 4			•		
Mercury (7470A, Cold Vapor) - Liqu Mercury	id ND		ug/L	0.20	01/26- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL12mw-153C-0376-GW

Lab ID:

A7A250101-019

Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-019		Receipt Da	ite:	01/25/07 7:15AM	
Sampling Date:	01/24/07 1:50PM	1	Matrix:		WATER Prep-	
Paramete	er_	Result	Units	RL	Analysis Date	Analyst
		GC Sex	mivolatile Organics -			
PCBs (8082)				•		
Aroclor 1016	, 1.	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	and the second of the second of the second	* , ND	A - ug/L	-050	01/28- 02/08/07	IH · · · · ·
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH
(0000)						
PCBs (8082) Re- Aroclor 1016	-extract	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248	•	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08- 02/09/07	LH
D						
Pesticides (8081A) Dieldrin		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 01/30/07	csv
Endosulfan II		ND	ug/L	0.025	01/28- 01/30/07	csv
Endosulfan sulfate		ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin		ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin ketone		ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor		ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor epoxide	:	ND	ug/L	0.030	01/28- 01/30/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 01/30/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
beta-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
delta-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
gamma-BHC (Lindane	2)	ND	ug/L	0.030	01/28- 01/30/07	csv

Appendix B

Page 268

Sample ID:

FWGLL12mw-153C-0376-GW

Lab ID:	A7A250101-	-019	<i>.</i>	Receipt D	ate:	01/25/07	7:15AM	
Sampling Date:	01/24/07	1:50PM		Matrix:		WATER Pre		*
Parameter	<u>. </u>		Result	Units	RL		is Date	Analyst
Pesticides (8081A) Toxaphene			ND	ug/L	2.0	01/28-	01/30/07	csv
alpha-Chlordane			ND	ug/L	0.030	01/28-	01/30/07	CSV
gamma-Chlordane			ND	ug/L	0.030	01/28-	01/30/07	CSV
Aldrin			ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDD			ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE	erry e er		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT			ND	ug/L	0.030	01/28-	01/30/07	csv
Nitroaromatics & Ni 1,3-Dinitrobenzene	tramines:		ves (8330) ND	ug/L	0.097	01/31-	02/08/07	FK
2,4-Dinitrotoluene			ND	ug/L	0.097	01/31-	02/08/07	FK
2,6-Dinitrotoluene			ND	ug/L	0.097	01/31-	02/08/07	FK
Nitrobenzene			ND	ug/L	0.097	01/31-	02/08/07	FK
1,3,5-Trinitrobenze	ne		ND	ug/L	0.097	01/31-	02/08/07	FK
2,4,6-Trinitrotolue	ne		ND	ug/L	0.097	01/31-	02/08/07	FK
HMX			ND	ug/L	0.097	01/31-	02/08/07	FK
RDX		· · .	ND	ug/L	0.097	01/31~	02/08/07	FK
Tetryl			ND	ug/L	0.097	01/31-	02/08/07	FK
2-Nitrotoluene			ND	ug/L	0.48	01/31-	02/08/07	FK
3-Nitrotoluene			ND	ug/L	0.48	01/31-	02/08/07	FK
4-Nitrotoluene			ND	ug/L	0.48	01/31-	02/08/07	FK
4-Amino-2,6-dinitro	toluene		ND	ug/L	0.097	01/31-	02/08/07	FK
2-Amino-4,6-dinitro	toluene		ND	ug/L	0.097	01/31-	02/08/07	FK
Organic Compounds h	or IN/HDI.C	Diesol	red.					
Nitroguanidine	oy ov/mrme		ND	ug/L	20	02/06-	02/07/07	FK
			GC/MS	Semivolatile Organics				
Base/Neutrals and A Diethyl phthalate	Acids (827	•	ND	ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylphenol			ND	ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate			ND	ug/L	1.0	01/26-	02/01/07	JMG
Appendix	В			Page 269				

Sample ID:

FWGLL12mw-153C-0376-GW

Lab ID: Sampling Date: A7A250101-019 01/24/07 1:50PM Receipt Date:

Matrix:

01/25/07 7

WATER

7:15AM

Prep-Analysis Date Result Analyst <u>Units</u> RL Parameter Base/Neutrals and Acids (8270C) 01/26- 02/01/07 Di-n-octyl phthalate ND ug/L 1.0 JMG 01/26- 02/01/07 4,6-Dinitro-2-methylphenol MD 5.0 JMG ug/L 5.0 01/26- 02/01/07 2,4-Dinitrophenol ND ug/L JMG 2,4-Dinitrotoluene ND ug/L 5.0 01/26- 02/01/07 JMG 2,6-Dinitrotoluene ND 5.0 01/26- 02/01/07 JMG ug/L Anthracene ND uq/L 0.20 01/26- 02/01/07 JMG 0.20 Fluoranthene ND ug/L 01/26- 02/01/07 JMG 0.20 01/26- 02/01/07 Fluorene ИD ug/L .TMG Hexachlorobenzene 0.20 01/26- 02/01/07 MD TMG ug/L Hexachlorobutadiene 01/26- 02/01/07 ND ug/L 1.0 JMG Hexachlorocyclopentadiene ND ug/L 10 01/26- 02/01/07 JMG Hexachloroethane ND 1.0 01/26- 02/01/07 JMG ug/L 0.20 01/26- 02/01/07 Indeno(1,2,3-cd)pyrene ND ug/L JMG 01/26- 02/01/07 Isophorone ND ua/L 1.0 JMG 2-Methylnaphthalene ND ug/L 0.20 01/26- 02/01/07 JMG 01/26- 02/01/07 2-Methylphenol ND ug/L 1.0 JMG 1.0 01/26- 02/01/07 JMG 4-Methylphenol MD ug/L 01/26- 02/01/07 Naphthalene ND ug/L 0.20 JMG 2-Nitroaniline ND ug/L 2.0 01/26- 02/01/07 JMG 3-Nitroaniline 2.0 01/26- 02/01/07 JMG ND uq/L 4-Nitroaniline ND uq/L 2.0 01/26- 02/01/07 JMG Nitrobenzene 1.0 01/26- 02/01/07 JMG ug/L ND 2 0 01/26- 02/01/07 2-Nitrophenol ИD ug/L -TMG 5.0 01/26- 02/01/07 4-Nitrophenol ND ug/L JMG Benzo(a) anthracene ND ug/L 0.20 01/26- 02/01/07 JMG N-Nitrosodi-n-propylamine ND ug/L 1.0 01/26- 02/01/07 JMG N-Nitrosodiphenylamine ND ug/L 1.0 01/26- 02/01/07 JMG 0.20 01/26- 02/01/07 Benzo(b) fluoranthene ND ug/L JMG Benzo(k) fluoranthene ND 0.20 01/26- 02/01/07 JMG ug/L Benzoic acid ND 10 01/26- 02/01/07 ug/L JMG Benzo(ghi)perylene Appendix B Page 270 0.20 ND 01/26- 02/01/07 JMG

Sample ID:

FWGLL12mw-153C-0376-GW

Lab ID: Sampling Date:

A7A250101-019 01/24/07 1:50PM Receipt Date:

01/25/07 7:15AM

Lab ID:	A7A250101-				eceipt Date:		'07 7:15AM	
Sampling Date:	01/24/07	1:50PM		M	Matrix:	WATER	Prep-	
Paramete	<u>r</u>		Result	Units	<u>.</u>	RL Ana	alysis Date	Analyst
Base/Neutrals and	Acids (827	0C)						
Benzo(a)pyrene			ND	ug/	L (0.20 01,	/26- 02/01/07	JMG
Pentachlorophenol			ND	ug/	L	5.0 01,	/26- 02/01/07	JMG
Benzyl alcohol			ND	ug/	L .	5.0 01,	/26- 02/01/07	JMG
Phenanthrene			ИD	ug/I	r (0.20 01,	/26- 02/01/07	JMG
Phenol			ND ·	ug/i	L . 1	1.0 01,	/26- 02/01/07	JMG
Pyrene			ND	ug/I	L (0.20 01,	/26- 02/01/07	JMG
1,2,4-Trichloroben	zene		ND	ug/I	L 1	1.0 01,	/26~ 02/01/07	JMG
2,4,5-Trichlorophe	nol		ND	ug/I	L .	5.0 01,	/26- 02/01/07	JMG
2,4,6-Trichlorophe	nol		ND	ug/	ն 5	5.0 01,	/26- 02/01/07	JMG
Carbazole		• •	ND	ug/I	L 1	1.0 01,	/26- 02/01/07	JMG
bis(2-Chloroethoxy)methane		ND	ug/l	L · 1	1.0 01,	/26- 02/01/07	JMG
bis(2-Chloroethyl)	ether		ND	ug/1	ւ 1	1.0 01,	/26- 02/01/07	JMG
2,2'-Oxybis(1-Chlo	ropropane)		ND	ug/I	L 1	1.0 01,	/26- 02/01/07	JMG
bis(2-Ethylhexyl)	phthalate		ND	ug/I	L I	10 01,	/26- 02/01/07	JMG
4-Bromophenyl phen	yl ether		ND	ug/I	ւ 2	2.0 01,	/26- 02/01/07	JMG
Butyl benzyl phtha	late		ND	ug/I	ь 1	1.0 01,	/26- 02/01/07	JMG
Acenaphthylene			ND	ug/I	Ĺ (0.20 01,	/26- 02/01/07	JMG
4-Chloroaniline			ND	ug/I	ь 2	2.0 01,	/26- 02/01/07	JMG
4-Chloro-3-methylp	henol		ND	ug/I	ъ 2	2.0 01,	/26- 02/01/07	JMG
2-Chloronaphthalen	e .		ND	ug/I	ь 1	1.0 01,	/26- 02/01/07	JMG
2-Chlorophenol			ND	ug/:	ն .1	1.0 01,	/26- 02/01/07	JMG
4-Chlorophenyl phe	nyl ether		ND	ug/	ь 2	2.0 01,	/26- 02/01/07	JMG
Chrysene			ND	ug/	L (0.20 01,	/26- 02/01/07	JMG
Dibenz(a,h)anthrac	ene		ND	ug/:	L (0.20 01,	/26- 02/01/07	JMG
Dibenzofuran			ND	.ug/:	L i	1.0 01,	/26- 02/01/07	JMG
Di-n-butyl phthala	te		ND	ug/:	L :	1.0 01,	/26- 02/01/07	JMG
1,2-Dichlorobenzen	e		ND	ug/:	L :	1.0 01,	/26- 02/01/07	JMG
1,3-Dichlorobenzen	e		ND	ug/	ь :	1.0 01,	/26- 02/01/07	JMG
1,4-Dichlorobenzen	e		ND	ug/	L 3	1.0 01,	/26- 02/01/07	JMG
3,3'-Dichlorobenzi	dine		ND	ug/	L S	5.0 01,	/26- 02/01/07	JMG
2,4-Dichlorophenol Appendi	. D		ND	Page 271	L 2	2.0 01,	/26- 02/01/07	JMG
Appendix	(R			Page 2/1				

Sample ID:

FWGLL12mw-153C-0376-GW

Lab ID:

A7A250101-019

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 1:50PM

Matrix:

WATER

Sampling Date: 01/24/07	1:50PM	Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
	GC/MS	Volatile Organics		و والله والمن والمن والمن والمن والمن والمن والله الله والله والله والمن والمن والمن والله والله والله الله	
Volatile Organics, GC/MS (8				/ /	
trans-1,3-Dichloropropene	ND .	ug/L	1.0	01/26/07	LEE
Acetone	ND	ug/L	10	01/26/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	ND NO.	ug/L		01/26/07	LEE
Methylene chloride	ND	ug/L	2.0	01/26/07	LEE
4-Methyl-2-pentanone	. ND	ug/L	10	01/26/07	LEE
Benzene	ND	ug/L	1.0	01/26/07	LEE
Styrene	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE
Toluene	ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromoform	ND	ug/L	1.0	01/26/07	LEE
Bromomethane	ND	ug/L	1.0	01/26/07	LEE
2-Butanone	ND	ug/L	10	01/26/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane	ND	ug/L	1.0	01/26/07	LEE
Chloroform	ND	ug/L	1.0	01/26/07	LEE
Chloromethane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE

Appendix B

Page 272

7:15AM

01/26/07

02/06- 02/08/07

Analyst

LEE

LEE

LEE

LEE

DTA

Sample ID: FWGLL12mw-153C-0376-GW Lab ID: A7A250101-019 Receipt Date: 01/25/07 Matrix: 01/24/07 1:50PM Sampling Date: Prep-Analysis Date Units RL. Parameter Result Volatile Organics, GC/MS (8260B) 1,1-Dichloroethane ND ug/L 1.0 01/26/07 ND ug/L 1.0 01/26/07 1,2-Dichloroethane ug/L 1.0 01/26/07 1,1-Dichloroethene ND

ND

ND

1,2-Dichloropropane	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
· · · · · · · · · · · · · · · · · · ·		- General Chemistry			
Cyanide, Total Cyanide, Total	ND	mg/L	0.010	01/30/07	SS
Nitrate-Nitrite Nitrate-Nitrite	ND	mg/L	0.1	01/30/07	DEB
Nitrocellulose as N by 353.2		· /=	0.50	00 (05 00 (00 (07	D

ug/L

mg/L

1.0

0.50

1,2-Dichloroethene (total)

Nitrocellulose

Sample ID:

FWGLL12mw-153C-0376-GF

Lab ID:

A7A250101-020

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 1:50PM

Matrix:

WATER Prep-

		0=,==, 0.						Prep-	
		Parameter		Result		Units	<u>RL</u>	Analysis Date	Analyst
					Met	als			·
	uctively senic	Coupled Plasma	(6010B T	race) 12.7		ug/L	5.0	01/26/07	LRW
Le	ad			ND		ug/L	3.0	01/26/07	LRW
Se	lenium			ND		ug/L	5.0	01/26/07	LRW
	ictively gnesium	Coupled Plasma	(6010B)	72600		ug/L		01/26/07	LRW
Ma	nganese			187		ug/L	10.0	01/26/07	LRW
Ва	rium			73.2		ug/L	10.0	01/26/07	LRW
Ni	ckel			ND		ug/L	10.0	01/26/07	LRW
Po	tassium			1960	J	ug/L	1000	01/26/07	LRW
Si	lver			ND		ug/L	5.0	01/26/07	LRW
So	dium			24400	·	ug/L	1000	01/26/07	LRW
۷a	nadium			ND		ug/L	10.0	01/26/07	LRW
Ch	romium			ND		ug/L	5.0	01/26/07	LRW
Ca	lcium			133000		ug/L	1000	01/26/07	LRW
Co	balt			ND		ug/L	5.0	01/26/07	LRW
Co	pper			ND		ug/L	5.0	01/26/07	LRW
	ıctively timony	Coupled Plasma	Mass Spe	ctrometry ND	y (6020)	ug/L	2.0	01/26- 01/30/07	BD
Ir	on			4020		ug/L	20.0	01/26- 01/30/07	BD
Ве	ryllium	·		ND		ug/L	1.0	01/26- 01/30/07	BD .
Th	allium			ND		ug/L	1.0	01/26- 01/30/07	BD
Zi	nc			6.9	ВЈ	ug/L	10.0	01/26- 01/30/07	BD
Ca	dmium			ND		ug/L	0.50	01/26- 01/30/07	BD
Al	uminum			ND		ug/L	50.0	01/26- 01/30/07	BD
	cury (74	70A, Cold Vapor)	- Liqui	d ND		ug/L	0.20	01/26- 01/30/07	ML
-10						~g/ ~	0.50	12,20 02,00,07	***

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

Sampling Date:

FWGCBPmw-007C-0372-GW

Lab ID:

A7A250101-021

01/24/07 10:40AM

Receipt Date:

01/25/07 7:15AM

Matrix:

ATER

Prep-Analysis Date Analyst Parameter Result Units RL ------ GC Semivolatile Organics ------PCBs (8082) ND 0.50 01/28- 02/08/07 Aroclor 1016 uq/L LH 0.50 01/28- 02/08/07 Aroclor 1221 ND uq/L LH 0.50 01/28- 02/08/07 LΗ Aroclor 1232 ND uq/L 0.50 ug/L 01/28- 02/08/07 T.H Aroclor 1242 ND 0.50 01/28- 02/08/07 LHAroclor 1248 ND ug/L 01/28- 02/08/07 Aroclor 1254 ND ug/L 0.50 LH Aroclor 1260 ND ug/L 0.50 01/28- 02/08/07 LH PCBs (8082) Re-extract 0.50 02/08- 02/09/07 LH Aroclor 1016 ND uq/L 02/08- 02/09/07 Aroclor 1221 ND uq/L 0.50 LH Aroclor 1232 ND ug/L 0.50 02/08- 02/09/07 LH ug/L 0.50 02/08- 02/09/07 T.H Aroclor 1242 ND Aroclor 1248 ND ug/L 0.50 02/08- 02/09/07 т.н Aroclor 1254 ND ug/L 0.50 02/08- 02/09/07 LH Aroclor 1260 ND ug/L 0.50 02/08- 02/09/07 LH Pesticides (8081A) 0.030 01/28- 01/30/07 CSV Dieldrin ND ug/L 0.025 01/28- 01/30/07 CSV Endosulfan T ND uq/L 01/28- 01/30/07 csv ug/L 0.025 Endosulfan II ND 01/28- 01/30/07 Endosulfan sulfate ND ug/L 0.030 CSV 01/28- 01/30/07 Endrin ND ug/L 0.030 CSV Endrin aldehyde ND ug/L 0.030 01/28- 01/30/07 CSV 0.030 01/28- 01/30/07 CSV Endrin ketone ND ug/L ug/L 0.030 01/28- 01/30/07 Heptachlor ЙD CSV 0.030 01/28- 01/30/07 CSV Heptachlor epoxide ND ug/L 01/28- 01/30/07 0.10 CSV Methoxychlor ממ ug/L 0.030 01/28- 01/30/07 CSV alpha-BHC ND ug/L beta-BHC 0.030 01/28- 01/30/07 ND ug/L CSV delta-BHC ND ug/L 0.030 01/28- 01/30/07 CSV gamma-BHC (Lindane) ND ug/L 0.030 01/28- 01/30/07 CSV

Appendix B

Page 275

Sample ID:	FWGCBPmw-0	007C-0372-GW -021	Receipt D	ate:	01/25/07	7:15AM	
Sampling Date:	01/24/07		Matrix:		WATER		
Paramete	er .	Result	Units	RL	Prep Analysi		Analyst
Pesticides (8081A							
Toxaphene	,	ND	ug/L	2.0	01/28-	01/30/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	csv
Aldrin		ND	ug/L	0.030	01/28-	01/30/07	csv
4,4'-DDD		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/28-	01/30/07	csv
4,4'-DDT		ND	ug/L	0.030	01/28-	01/30/07	csv
						•	
Nitroaromatics & 1		Explosives (8330) ND	ug/L	0.098	01/31-	02/08/07	FK
2,4-Dinitrotoluene	e	ND	ug/L	0.098	01/31-	02/08/07	FK
2,6-Dinitrotoluene	•	ND	ug/L	0.098	01/31-	02/08/07	FK
Nitrobenzene		ND	ug/L	0.098	01/31-	02/08/07	FK
1,3,5-Trinitrobenz	zene	ND	ug/L	0.098	01/31-	02/08/07	FK
2,4,6-Trinitrotolu	iene	ND	ug/L	0.098	01/31-	02/08/07	FK
НМХ		ND	ug/L	0.098	01/31-	02/08/07	FK
RDX	•	ND	ug/L	0.098	01/31-	02/08/07	FK
Tetryl	•	ND	ug/L	0.098	01/31-	02/08/07	FK
2-Nitrotoluene		ND	ug/L	0.49	01/31~	02/08/07	FK
3-Nitrotoluene		ND	ug/L	0.49	01/31-	02/08/07	FK
4-Nitrotoluene		ND	ug/L	0.49	01/31-	02/08/07	FK
4-Amino-2,6-dinit	rotoluene	ND	ug/L	0.098	01/31-	02/08/07	FK
2-Amino-4,6-dinit	rotoluene	ND	ug/L	0.098	01/31-	02/08/07	FK
Organic Compounds Nitroguanidine	by UV/HPLC	Dissolved ND	ug/L	20	02/06-	02/07/07	FK
		GC/MS S	Semivolatile Organics				
Base/Neutrals and Diethyl phthalate	Acids (827	OC)	ug/L	1.0	01/26-	02/01/07	JMG
2,4-Dimethylpheno	L	ND	ug/L	2.0	01/26-	02/01/07	JMG
Dimethyl phthalate	e	ND	ug/L	1.0	01/26-	02/01/07	JMG
Appendi	хВ		Page 276				

Sample ID:

FWGCBPmw-007C-0372-GW

A7A250101-021

trix:	WATER

Lab ID:	A7A250101-021		Recei	.pt Date:	01/25/07	7:15AM	
Sampling Date:	01/24/07 10:40A	ΜM	Matri	x:	WATER Prep	_	
Paramete	er_	Result	Units	RL	Analysi:	s Date	Analyst
Base/Neutrals and		ND	ug/L	1.0	01/26-	02/01/07	JMG
4,6-Dinitro-2-meth		ND	ug/L	5.0		02/01/07	JMG
	ivibuenor	•					
2,4-Dinitrophenol		ND	ug/L	5.0		02/01/07	JMG
2,4-Dinitrotoluene		ND	ug/L	5.0	*	02/01/07	JMG
2,6-Dinitrotoluene	Barrier de Mariere de La primer de la composition della compositio	ND	ug/L	5.0	The second second	02/01/07	JMG
Anthracene		ND	ug/L	0.20		02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/26-	02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/26-	02/01/07	JMG
Hexachlorobenzene		ND	ug/L	0.20	01/26-	02/01/07	JMG
Hexachlorobutadier	ie	ND	ug/L	1.0	01/26-	02/01/07	JMG
Hexachlorocycloper	ntadiene	ND	ug/L	10	01/26-	02/01/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/26-	02/01/07	JMG
Indeno(1,2,3-cd)py	rene	ND	ug/L	0.20	01/26-	02/01/07	JMG
Isophorone		ND	ug/L	1.0	01/26-	02/01/07	JMG
2-Methylnaphthaler	ne ·	ND ·	ug/L	0.20	01/26-	02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/26-	02/01/07	JMG
4-Methylphenol		ND	ug/L	1.0	01/26-	02/01/07	JMG
Naphthalene		ND	ug/L	0.20	01/26-	02/01/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/26-	02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/26-	02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/26-	02/01/07	JMG
Nitrobenzene		ND	ug/L	1.0	01/26-	02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/26-	02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/26-	02/01/07	JMG
Benzo(a)anthracene	· •	ND	ug/L	0.20	01/26-	02/01/07	JMG
N-Nitrosodi-n-prop	pylamine	ND	ug/L	1.0	01/26-	02/01/07	JMG
N-Nitrosodiphenyla	amine	ИD	ug/L	1.0	01/26-	02/01/07	JMG
Benzo(b)fluoranthe	ene	ND	ug/L	0.20	01/26-	02/01/07	JMG
Benzo(k)fluoranthe	ene	ND	ug/L	0.20	01/26-	02/01/07	JMG
Benzoic acid		ND	ug/L	. 10		02/01/07	JMG
	e _	ND	-	0.20		02/01/07	JMG
Benzo(ghi)perylen Appendi	хВ		Page 277		,		

Sample ID:

FWGCBPmw-007C-0372-GW

Lab ID:

A7A250101-021

Sampling Date: 01/24/07 10:40AM Receipt Date: Matrix:

01/25/07 7:15AM

WATER Prep-

Sampling Date: 01/24/0/ 10:40AM		Macrix:		Prep-	
Parameter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Benzo(a)pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Pentachlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Benzyl alcohol	ND	ug/L	5.0	01/26- 02/01/07	JMG
Phenanthrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Phenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
Pyrene	ND	ug/L	0.20	01/26- 02/01/07	JMG
1,2,4-Trichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,4,5-Trichlorophenol	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4,6-Trichlorophenol	ND .	ug/L	5.0	01/26- 02/01/07	JMG
Carbazole	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethoxy)methane	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/26- 02/01/07	JMG
2,2'-Oxybis(1-Chloropropane)	ND	ug/L	1.0	01/26- 02/01/07	JMG
bis(2-Ethylhexyl) phthalate	3.6 JB	ug/L	10	01/26- 02/01/07	JMG
4-Bromophenyl phenyl ether	ND	ug/L	2.0	01/26- 02/01/07	JMG
Butyl benzyl phthalate	ND	ug/L	1.0	01/26- 02/01/07	JMG
Acenaphthylene	ND	ug/L	0.20	01/26- 02/01/07	JMG
4-Chloroaniline	ND	ug/L	2.0	01/26- 02/01/07	JMG
4-Chloro-3-methylphenol	ND	ug/L	2.0	01/26- 02/01/07	JMG
2-Chloronaphthalene	ND	ug/L	1.0	01/26- 02/01/07	JMG
2-Chlorophenol	ND	ug/L	1.0	01/26- 02/01/07	JMG
4-Chlorophenyl phenyl ether	ND .	ug/L	2.0	01/26- 02/01/07	JMG
Chrysene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenz(a,h)anthracene	ND	ug/L	0.20	01/26- 02/01/07	JMG
Dibenzofuran	ИD	ug/L	1.0	01/26- 02/01/07	JMG
Di-n-butyl phthalate	ND .	ug/L	1.0	01/26- 02/01/07	JMG
1,2-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,3-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
1,4-Dichlorobenzene	ND	ug/L	1.0	01/26- 02/01/07	JMG
3,3'-Dichlorobenzidine	ND	ug/L	5.0	01/26- 02/01/07	JMG
2,4-Dichlorophenol Appendix B	ND Pa	ge 278	2.0	01/26- 02/01/07	JMG

Sample ID:

FWGCBPmw-007C-0372-GW

Result

Lab ID:

A7A250101-021

Receipt Date:

RL

01/25/07 7:15AM

Analyst

Sampling Date:

Parameter

01/24/07 10:40AM

Matrix:

Units

WATER
PrepAnalysis Date

	 -			
	lank contains th	ne target ana	lyte at a reportable	
ss than RL.			•	
GC/MS Vol	atile Organics			
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	10	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	10	01/26/07	LEE
ND .	ug/L	2.0	01/26/07	LEE
ND	ug/L	10 .	01/26/07	LEÉ
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	2.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	10	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND .	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
ND	ug/L	1.0	01/26/07	LEE
	SS than RL.	SE THAN RL.	ND	ND

Appendix B

Page 279

Sample ID:	FWGCBPmw-007C-037	2-GW				
Lab ID:	A7A250101-021		Receipt D	ate:	01/25/07 7:15AM	
Sampling Date:	01/24/07 10:40AM	I	Matrix:		WATER Prep-	
Paramete	er_	Result	Units	RL	Analysis Date	Analyst
Volatile Organics	, GC/MS (8260B)	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethane		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethane	3	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethene	:	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethene		ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropan		ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichloropr	copene	ND	ug/L	10	01/26/07	LEE
		Gen	eral Chemistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Cyanitue, local		. ·	щg/ Б	0.010	01/30/07	33
Nitrocellulose as Nitrocellulose	N by 353.2	ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGCBPmw-007C-0372-GF

Lab ID:

A7A250101-022

Receipt Date:

01/25/07 7:15AM

Sampling Date:

01/24/07 10:40AM

Matrix:

WATER Prep-

Parameter	Result	Units	RL	Analysis Date	Analyst
		Metals			
Inductively Coupled P. Arsenic	lasma (6010B Trace) 18.8	ug/L	50	01/26/07	LRW
Lead	ND	ug/L	3.0	01/26/07	LRW
Selenium	ND	ug/L	5.0	01/26/07	LRW
Inductively Coupled P	lasma (6010B)	ug/L	,	01/26/07	LRW
Manganese	73.6	ug/L	10.0	01/26/07	LRW
Barium	12.9	ug/L	10.0	01/26/07	LRW
Nickel	ND	ug/L	10.0	01/26/07	LRW
Potassium	5070	J ug/L	1000	01/26/07	LRW
Silver	ND	ug/L	5.0	01/26/07	LRW
Sodium	136000	ug/L	1000	01/26/07	LRW
Vanadium	ND	ug/L	10.0	01/26/07	LRW
Chromium	ND	ug/L	5.0	01/26/07	LRW
Calcium	198000	ug/L	1000	01/26/07	LRW
Cobalt	ND	ug/L	5.0	01/26/07	LRW
Copper	2.3	B ug/L	5.0	01/26/07	LRW
Inductively Coupled P	lasma Mass Spectrometry (60	20)			
Antimony	0.12	B ug/L	2.0	01/26- 01/30/07	BD
Iron	2290	ug/L	20.0	01/26- 01/30/07	BD
Beryllium	ND	ug/L	1.0	01/26- 01/30/07	BD
Thallium	ND	ug/L	1.0	01/26- 01/30/07	BD
Zinc	10.0	J ug/L	10.0	01/26- 01/30/07	BD
Cadmium	ND	ug/L	0.50	01/26- 01/30/07	BD
Aluminum	ND	ug/L	50.0	01/26- 01/30/07	BD
Mercury (7470A, Cold	Vapor) - Liquid		2.22	01/05 01/00/07	

Estimated result. Result is less than RL.

Mercury

ug/L

0.20

01/26- 01/30/07

ML

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWG-TB-0402-GW

Lab ID:

A7A250101-023

Receipt Date:

01/25/07 7:15AM

Sampling Date: 01/24/07 12:00AM

Matrix:

WATER Prep-

Parameter	Result	Units	RL	Prep- Analysis Date	Analyst
	GC,	MS Volatile Organics			
Volatile Organics, GC/MS (8260B)					
trans-1,3-Dichloropropene	ND	ug/L	1.0	01/26/07	LEE
Acetone	ND	ug/L	10	01/26/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/26/07	LEE
2-Hexanone	ND	ug/L	10	01/26/07	LEE
Methylene chloride	0.90	e -J · · · ug/L · · · ·	2.0	01/26/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/26/07	LEE
Benzene	ND .	ug/L	1.0	01/26/07	LEE
Styrene	ND	ug/L	1.0	01/26/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/26/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/26/07	LEE
Toluene	ND	ug/L	1.0	01/26/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/26/07	LEE
Trichloroethene	ND	ug/L	1.0	01/26/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/26/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/26/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/26/07	LEE
Bromoform	NĎ	ug/L	1.0	01/26/07	LEE
Bromomethane	ND	ug/L	1.0	01/26/07	LEE
2-Butanone	ND	ug/L	10	01/26/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/26/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/26/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/26/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/26/07	LEE
Chloroethane	ND	ug/L	1.0	01/26/07	LEE
Chloroform	ND	ug/L	1.0	01/26/07	LEE
Chloromethane	ND	ug/L	1.0	01/26/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethane	ND	ug/L	1.0	01/26/07	LEE
Appendix B		Page 282			

Sample ID:

FWG-TB-0402-GW

A7A250101-023 Lab ID:

Receipt Date:

01/25/07

7:15AM

Sampling Date:	01/24/07 12:00AM		Matrix:	WA	ATER Prep-	
Paramet	er	Result	Units	RL	Analysis Date	Analyst
Volatile Organics 1,2-Dichloroethan		ND	ug/L	1.0	01/26/07	LEE
1,1-Dichloroethen	e	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloroethen	e (total)	ND	ug/L	1.0	01/26/07	LEE
1,2-Dichloropropa	ne	ND	ug/L	1.0	01/26/07	LEE
cis-1,3-Dichlorop	ropene	ND	ug/L	1.0	01/26/07	LEE

Estimated result. Result is less than RL.

Chain of Custody Record

TRENT STL® Severn Trent Laboratories, Inc.

Contract Contract	
Same 2p Code Checker Lab Contact Canthonics C	
Content Content Content Analysis (Attach list Canva II	
Date Time A gen Annum Containers & Cont	
Date Time \$ \$ \$ \$ \$ \$ \$ \$ \$	Special Instructions/
Date Time A Aqueous Aqueous A Aqueous A Aqueous Aq	Conditions of Receipt
-Aft-07 1:13 X 8 3	
13:13 X 3 X X X X X X X	
9:17 X 3 X X X X X X X X	
	84
	ge 2
	Pa
11:32 X 3	
13:53 X 3 X X X X X X X	
13:53 X 3 X X X X X X X	
13:50 X 3 X X X X X X X X	
Interpretation Inte	
Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive ForMonths	
Required 14 Bays 21 Days Other hay be assessed if samples are retained han 1 month)	
Fig. Date Time 1. Received By For Topy wat 1. Received By For Topy wat 1. Received By For Topy wat 1. Received By For Topy wat 1. Received By For Time 3. Received By Time 3. Received By	
RICIL Rab ISIN Date Time 3. Received By AMM	Date 7 174 8
Date Time 3. Received By	1/2 for 1 1/2 of
	Bate Time
Comments	

STL

Chain of Custody Record

Severn Trent Laboratories, Inc.

Comments	3. Relinquished By	2 Relinquished By RICIC TOBISSING	1. Relinquished By	24 Hours 48 Hours 7 Days 14 Days 21 Days	e Required	mable 🔲 Skin Irritant 🔲 Poison B	Possible Hazard Identification							FWG-TB-0402-GW 1-24-07	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Contract/Purchase Order/Quote No.	Project Name and Location (State)	Kavenna OT 4446	State Z		Spec Pro Inc	Client (vao)
	Date Time 3. Received By C	1-2407 1852 2 Received By OLI	Time 7	Other	QC Requirements (Spe	☐ Unknown ☐ Return To Client ☐ Disposal By Lab ☐ Archive For	Sample Disposal							×	Air Aqueous Sed. Soil Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	Matrix Containers & Preservatives	Carierwayon Number	Chantile Corn !!	Site Contact Lab Contact	Telephone Number (Area Code)/Fax Number	chartelle carroll	Project Manager
		NICE ORIGINAL ORIGINA ORIGINAL ORIGINAL ORIGINAL ORIGINA ORIGINAL ORIGINAL ORIGINAL	Date Date			(A ree may be assessed it samples are retained ive For Months longer than 1 month)	/ 4												Analysis (Attach list if	Lab Number Page _	-24-07	Date Chain
	re Time	567 0715AP	24-37 174-87 3	В		r Sampies are retained				Pa	ge 2	85				Conditions of Receipt	Special Instructions/			2 2	272429	Chain of Custody Number

Record Chain of Custody

CHAIN OF CUSTODY NUMBER

22

Severn Trent Laboratories, Inc.

STL4149 (1202)	*	0	1 2 9	о О П	0 0 9	*							
Client Spec Pro			Project Manager Chantelle Carroll	Carroll			Date 911	Date 01/11/280 7	1-24-07	Page		 	31
Address 8451 State Route 5			Telephone Num (000)	Telephone Number (Area Code)/Fax Number (000) / (000)	Fax Number 10)		1 S	Lab Location STL North Canton	anton			Analysis	
City State Ravenna OH	Zip Code 44266		Site Contact Chante I le	e Carroll						υz	C	0 F	
Project Number/Name Ravenna			Carrier/Waybill Number	Number						2 8	<u>⊸</u> 00	Ω = Γ ⊒ 0	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :								QUOTE: 63240	240	0 0 2	D 3	P 0 0	
Sample I.D. Number and Description	Date	Time	Sample Type	Con Volume	_	8	Preservative	Condition or	Condition on Receipt/Comments	г го	S		
FWGBKGmw-016C-0365-GW	10-74-01	<u>ه</u>	WATER	11.			None				×	×	
FWGBKGMW-016C-0365-GW		-	一	14	AMBER		None				X		
FWGBKGmw-016C-0365-GW			WATER	11	AMBER	1	None				×		
FWGBKGmw-016C-0365-GW		+	WATER		AMBER	22 12	None			× ×			
-FRABRAMW - OTEC - D3R5-CW	-	#	WATER	40#	40ML VIA	11	100			*	+		86
FWGBKGmw-016C-0365-GW		+	WATER	250mL	PLASTIC	4	NaOH				_	×	e 2
FWG8KGmw-016C-0365-GF		-	WATER	1000mL	PLASTIC		Conc HNO3					×	Pag
Y Autor													
						_							
Special Instructions													
Possible Hazard Identification Non-Hazard Flammable Skin Irritant		☐ Poison B	3 Пикломп	Sample Disposal Return To Client		☐ Disposal	sal By Lab	Archive For	Months	(A fee r retained	nay be a d longer i	(A fee may be assessed if samples are retained longer than 3 months)	mples are
Turn Around Time Required Normal Rush Other			OC Level	□ <i> </i> .	Project S _k	ecific R	Project Specific Requirements (Specify)	Specify)					В
1 Relinquished By			1-24-0]	Time 174	1. Received By	ed By) } }	(Zoz	3/200		Date 1-24	75	endix
7 Relinquished By RICIL ROBISSIO	33156	6	1-24-57	1852	2. Received By	ed By	1	C.	10		Dall 1/25	97 2	07/AP
3 Relinquished By			Date	ı	3. Кесенчед Ву	ed By					Date		Time
Comments				-									_

Record Chain of Custody

ω

COVORT Tront I	TRENT	SEVERN
	TIC	

Severn Trent Laboratories, Inc.

STL4149 (1202) * U			
Client Spec Pro	Project Manager Chanteile Carroli	Date 1-2005	Page 21 of 37
Address 8451 State Route 5	Telephone Number (Area Code)/Fax Number (000) / (000)	Lab Location STL North Canton	Analy
City State Zip Code Ravenna OH 44266	Sile Contact Chantelle Carroll		S M C C C C C C C C C C C C C C C C C C
Project Number/Name Ravenna	Carrier/Waybill Number		2 8 8 8 E E R R R R R R R R R R R R R R R
CONTRACT / PURCHASE ORDER # :		QUOTE: 63240	0 7
Sample I.D. Number and Description Date Time	Sample Type Volume	Preservative Condition on Receipt/Comments	F
FWGLL1ZMW-18ZC-03//-GW /-24-07 9:11	WAIER	None	× ×
FWGLL12mw-1820-03//-uw	MAICH IL AMBER 2	None	×
FWGLL12MW-1820-0377-GW	IL AMBER	None	×
FWGLL1Zmw-18ZC-0377-GW	WATER IL AMBER 2	None	7
	ADML VIA 3	HCL	28
FWGLL12mw-182C-0377-GW	250mL	NAOH	×
FWGLL128W-1820-03//-GW		Conc H2SD4	×
FWGLLTZMW-18ZC-0377-GF	WATER 1000mL PLASTIC 1	Conc HN03	*
* only & Ambers			
	-4		
Special Instructions			
Possible Hazard Identification Non-Hazard	Sample Disposal ☐ Unknown ☐ Return To Client	☐ Disposal By Lab ☐ Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
Turn Around Time Required Normal Rush Other	OC Lavel Project Specific	Project Specific Requirements (Specify)	B
1. Relinquished By	Date Time 1. Received By	Rick Robbins	1-24-07 1761 To
2. Relinquished By RCK / GBSO	1-24-07 1852 2 Received By	and the	X
3 Relinquished By	Date Time 3. Received By	2	Date Time NO
Comments			STL

Chain of Custody Record

Severn Trent Laboratories, Inc.

Comments	3. Relinquished By	2. Relinquished By TICL TODISGN	1. Relinquished By	24 Hours 48 Hours 7 Days 14 Days 21 Days	e Required	Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B	Possible Usery Identification							FWG bl. 12 mw-1820-6396-GW 1-24-07	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Contract/Purchase Order/Quote No.			City State Zip Code OH 24166	nuu soo	DACID TVC	1	CTI A15A INDIAN
	Date Time 3. Received By	1-2407 1852 2. Received By M. M.	1747 1747	Other	OC Requirements (Spe	☐ Unknown ☐ Return To Client ☐ Disposal By Lab ☐ Archive For	Sample Disposed							×××× 1 8 × 0:	Air Aqueous Sed. Soil Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH Pro SVo	<u>و</u>		Carrier/Waybill Number	Sile Contact Lab Contact	TOTE PUBLIC PUBLIC COURT AN TELLINATION	Telephone Nimber (Area Code): Fax Nimber	>	
	Date Time Y	1 ' 1	Salve 1 24-07 17 8 4	on.	- 1	(A fee may be assessed if samples are retained Months longer than 1 month)				Pag	e 28	388	×	×	Cya	Conditions of Receipt	•		Analysis (Attach list if more space is needed)	Page of	(-0/	Date Chain of Custody Number	

STL

25

Severn	TRENT
Trent	Z
Laboratories,	51
ories, lı	
ズ	

Record Chain of Custody

Severn Trent	TRENT
Lahoratories In	SIL

ťΩ
Severn
¥
ā
Ϋ́
3
3,
<u> </u>
Trent
_
Ġ
*
.abora
Ŧ.
可
ਠ
₹.
atories,
Ö
=
Inc.
•

STL4149 (1202)	*	7 2 7 5	0 00	C	*					
Client		Project Manager	•			Date	•		(
Spec Pro		Chantelle Carroll	Carroll		1	. 6	1-24-07	Page	of _	37
; :		relephone ryuni	relephone wumber (Area Code)/rax wumber	ax Nomber		Lac	Lao Location		Analysis	
State Route 5		(000)	/ (000)	9		STL	STL North Canton		Titaly City	
State Zi	ide	Site Contact						8 9 M	N C	
오	44266	Chantelle	Carroll					9 C	1 C 2 C - Z	
Project Number/Name		Carrier/Waybill Number	Vumber					000	· r·	
Ravenna								2 0 1	L 다 1	
						<u> </u>		3 63		
CONTRACT / FORCEROR ORDER # :			Cont				@001E: 03240	- r	F 6	
Sample I.D. Number and Description D.	Date Time	ne Sample Type	Volume	Type 1	No. Prese	Preservative (Condition on Receipt/Comments	⊅ - ທ -		
FWGBKGmw-005C-0358-GW /-24-0)	. (o-	S WATER		AMBER	2 None				×	
FWGBKGmw-005C-0358-GW		WATER	1	AMBER	2 Nane				×	
FWGBKGmw-005C-0358-GW		WATER	; <u>†</u>	AMBER	2 None			×		
FWGBKGmw-005C-0358-GW		WATER	1-1-1	AMBER	2 None			×		
FWGBKGmw-005C-0358-GW		WATER	11 /	AMBER	2 None			×)
-FWGBKGmH-005C-0358-GW	1	WATER	40ml	THOP	3 HC1	,		*		290
FWGBKGmw-005C-0358-GW		WATER	250mL F	PLASTIC	1 NaOH	_			×	je.
FWGBKGmw-005C-0358-GF	<u></u>	WATER	1000mL }	PLASTIC	1 Canc	: HNO3				
										F
* Only 8 Ambers										
						_				
	+									
Special Instructions			:							
Possible Hazard Identification	D Prison B		Sample Disposal		Disposal Bu I sh	_	Archive For Months	(A fee may	(A fee may be assessed if samples are retained longer than 3 months)	ples are
ne Required		S	- 1	Project Spe	Project Specific Requirements (Specify)	ements (Spe				
□ Normal □ Rush □ Other			□ <i>III</i> .							В
1. Remoulished By		Date 1-24-67	1747	1. Received By	d Ву		a Tapus Y	Date	1487	andix
2. Relinquished By YICK TOS/SM	0	1-24 07	1 1852	2. Received By	<i>ا</i> ۾		MIM	// ///	5/12	Xppe th
3. Relinquished By		Date		3. Received By	1By C			Ďate	e Time	
Comments										STL

STL4149 (1202)

CHAIN OF CUSTODY NUMBER

SEVERN STL®

Severn Trent Laboratories, Inc.

/8034

27

Client Spec Pro				Chantelle Carroll	e Carroil			- Dit	700 2/11/1 007	1-24-01	Page	D	₽ ~	ę,	4 —	1
Address 8451 State Route 5				Telephone Nun (000)	Telephone Number (Area Code)/Fax Number (000)	/Fax Number 00)		Lab ST	Lab Location STL North Canton	nton			Analysis	/sis		
City	State	Zip Code		Site Contact							N N	В	NFCMN	Z		
Ravenna	오	44266		Chantella	Chantelle Carroll						S S C	0	<u>C</u> C ¥	6		
Project Number/Name				Carrier/Waybill Number	Number						œ	00 00	m Z			
Ravenna											2 2 0	ω				
CONTRACT / PURCHASE ORDER #									QUOTE: 63240	40	6 7 0 0 2	D Ο 3	г г	- O		
			•		Cor	Containers				Panint/Comments	 ი			F		
Sample I.D. Number and Description	-	700	i iii id	Sample Type	Volume	Туре	No.	r reservanve	Condition on	Contract on Necestra Continuents	LLA	S				
FWGLL12mw-183C-0378-GW		-74-07	٦: ٦ ع	WATER	11	AMBER	Ŋ	None					×			
FWGLL12mw~183C~0378~GW		-	_	WATER	71	AHBER	Ŋ	None				×				
FWGLL12mw-183C-0378-GW		-	-	WATER	11	AMBER	N	None				×				
FWG1L12mw-183C-0378-GW	_			WATER	11	AMBER	2	None			×					\dashv
FWGLL12mw-183C-0378-GW		-		WATER	11	AMBER	22	None			×					
FMGL C+2mw-183C-0378-GW		-		WATER	40mL	THOP THOP	42	HCL			*				29	
FWGLL12mw-183C-0378-GW		-		WATER	250mL	PLASTIC		NaOH					x		ıe '	
FWGLL12mw-183C-0378-GW				WATER	500mL	PLASTIC	1	Canc H2SO4						×	Paç	
FWGLL12mw-183C-0378-GF		1	+	WATER	1000mL	PLASTIC	1	Canc HNO3						×	F	-
																-
45							_						-			
of only & Ambus																\vdash
		•														-
																-
																\vdash
													 			-
Special Instructions																

Comments

Relinquished By

Relinquished By

NICK ROBISSI

Date 1-24 27

17852

2. Received By

Received By

STL North

Received By

Turn Around Time Required

☐ Rush

Other_

QC Lavel

☐ Non-Hazard

☐ Flammable

Skin Irritant

Poison B

☐ Unknown

Return To Client

Project Specific Requirements (Specify)

☐ Disposal By Lab ☐ Archive For.

Months

(A fee may be assessed if samples are retained longer than 3 months)

Sample Disposal

Possible Hazard Identification

Record Chain of Custody

STL4149 (1202)

CHAIN OF CUSTODY NUMBER

SEVERN TRENT

Severn Trent Laboratories, Inc.

8451 State Route 5 Spec Pro CONTRACT / PURCHASE ORDER # : Ravenna Ravenna 1. Remauished By Turn Around Time Required Possible Hazard Identification Special Instructions -FW6G8P#W--015C-0371-GW FWGCBPmw-005C-0371-GW FWGCBPmw-005C-0371-GW -WGCBP#W-005C-03/1-GW FWGCBPMW-005C-03/1-GW Contract/Purchase Order/Quote Number Project Number/Name Address FWGC8Pmw-005C-0371-GF FWGCBPmw-005C-0371-GW FWGC8Pmw-005C-0371-GW SAL Sample I.D. Number and Description ☐ Rush ☐ Flammable ナラクシ Other_ Skin Irritant State OH 18880VD Zip Code 1-24-07 44266 Date Porson B 9:25 Time Sample Type 1-14-67 MATER MATER WATER MATER WATER WATER WATER MATER QC Lavel Carrier/Waybill Number Project Manager Site Contact 1-24-07 Telephone Number (Area Code)/Fax Number Chantelle Carroll ☐ Unknown Chantelle Carroll (000) Return To Client Volume Sample Disposal 1000mL 1852 250mL H Ħ H Ħ / (000) Containers AMBER AIMBER PLASTIC PLASTIC 401 AMBER AMBER AMBER Туре Received By Received By Project Specific Requirements (Specify) Disposal By Lab Archive For <u>></u> HC None None None None None Conc HN03 NaOH Preservative STL North Canton 01/11/2007 Lab Location Condition on Receipt/Comments QUOTE: 63240 1-24-07 Months (A fee may be assessed if samples are relained longer than 3 months! Page __ Analysis đ STL North

Comments

Relinquished By

Received By

STL4149 (1202)

29

Severn	TRE
Trent Laboratories, I	
oratorie	PIL
es, Inc.	-

Spec Pro				Project Manager Chantelle	oject Manager Chantelle Carroll			Date 014	Date 0+/+1/2007 -24-2007	Page		ő. Æ—	¥	
Address 8451 State Route 5				Telephone Nun	Telephone Number (Area Code)/Fax Number (000)	de)/Fax Number (000)		Lab ST	Lab Location STL North Canton			Analysis		l
C#v	State Z	Zip Code		Site Contact						MMG	8	NICIMIN		- 1
nna		44266		Chante!	Chantelle Carroll					s s c	0 0	CCNGC		
Project Number/Name Ravenna				Carrier/Waybill Number	Number					2 8	<u>- α</u>	E Z 0 3		_
Contract/Purchase Order/Quote Number										6 7 8	ω		<u> </u>	
CONTRACT / PURCHASE ORDER # :									QUOTE: 63240	0 0 2	0	Г Г Б ; 2	10	
Sample I.D. Number and Description	-3	Date	Time	Sample Type	Cor Volume	Containers Type	X o.	Preservative	Condition on Receipt/Comments	г г с	თ			
FWGBKGmw-017C-0366-GW	-	-24-07	13/53	WATER	1.	AMBER	Ν.	None				×		- 1
FWGBKGmw-017C-0366-GW			_	WATER	12	AMBER	22	None		_	×			- [
FWGBKGmw-017C-0366-GW				WATER	11	AMBER	2	None			×			
FWGBKGmw-017C-0366-GW	_			WATER	11	AMBER	72	None		×				- [
FWGBKGmw-017C-0366-GW		-	_	WATER	11	AMBER	2	None		×			3	ŀ
EWG8K6mm 0170-0305-011				WATER	40mL	41A JMOP	4	HCL -		*			29	- [
FWGBKGmw-017C-0366-GW				WATER	250mL	PLASTIC	_	NaOH				×	je	' [
FWGBKGmw-017C-0366-GF		H	F	WATER	1000mL	PLASTIC		Conc HNO3				×	Pag	1
	-													1
* only O Ambers										-				1
														l
														l
														l
										_				
Special Instructions														
Possible Hazard Identification					Sample Disposal	osal				in the	7	A for man be received if complete	amalan ara	- 1

Comments

Relinquished By

Relifiquished By

☐ Normal

☐ Rush

Other_

QC Level

Received By

1852

Received By

Received By

STL North

Relinquished (8)

Turn Around Time Required

☐ Non-Hazard

☐ Flammable

Skin Irritant

Poison B

☐ Unknown

Return To Client

Project Specific Requirements (Specify)

Disposal By Lab

Archive For_

Months

(A fee may be assessed if samples are retained longer than 3 months)

Record Chain of Custody

) 	TRENT	SEVERN
•	JIL	

30

Severn Trent Laboratories, Inc.

STL4149 (1202)	*	C	7 6 9 5	- 0	2	*				
Client Spec Pro			Project Manager Chantelle Carroll	Carroll			Q.	Date 0.1/11/2007 .30/) - 10.	ţ-
Address			Telephone Number (Area Code)/Fax Number	er (Area Code)/F	ax Number		Le	Lab Location		
8451 State Route 5			(000)	/ (000)	Ö		G	STL Morth Canton	Analysis	J ,
City State Ravenna OH	Zip Code 44266		Site Contact Chantelle Carroll	Carroli					8 S C O C C C N 6	0 Z
Project Number/Name			Carrier/Waybill Number	umber					0 00 00 00 00 00 00 00 00 00 00 00 00 0	ω 3
									- C	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :			:					QUOTE: 63240	6 7 8 3 : ; ; 0 0 0 2 D 0 L L Q ;	NO
Sample I.D. Number and Description	Date	Time	Sample Type	Cont	Containers Type	No.	Preservative	Condition on Receipt/Comments	□ ··· □ ··· □ ··· □ ···	
FWGLL12mw-153C-0376-GW	10-46-1	3.50			AMBER	2	None		××	
FWGLL12mw-153C-0376-GW		-			AMBER	2	None		×	
FWGL 12mw - 1530-0376-0W		_	EATER.			J N	None		×	
FWGLL12mw-153C-0376-GW		\perp	WATER	_	AMBER	N	None		×	
EWGLL12mw-J53C-03Z6-GW		H	WATER	40m1	40ML VIA	Ĺ,	#CL		×	294
FWGLL12mw-153C-0376-GW		_	WATER	250mL	PLASTIC	_	NaOH		×	je 2
FWGLL12mw-153C-0376-GW			WATER	500mL	PLASTIC		Conc H2SO4	4		× Pac
FWGLL12mw-153C-0376-GF	-	F	WATER	1000mL	PLASTIC		Conc HN03		×	
* Only & Ambro						1				
Special Instructions			-							
Possible Hazard Identification Non-Hazard Flammable Skin Irritant		☐ Paison B	☐ Unknown	Sample Disposal Return To Client	sal Client	□ 0 <u>;</u>	☐ Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)	samples are iths)
Turn Around Time Required Normal Rush Other_			QC Lavel	□ # !.	Project	Specific	Project Specific Requirements (Specify)	Specify)		B on
1. Rekipquished By			1-24-0)	747	1. Received By	ived By	(2) (2)	TORSON)	1-24 07	Time endix Cant
√0, √0, √0,	JOB3594		1-24-07	1857	2. Received By	wed By	K	THE	1/25/67	١,
3. Relinquished By			Date	Time	3. Received B	wed By			Date	Nor
Comments										STL
		2	11 2 11 2 12 1	1						

Chain of Custody Record

STL4149 (1202)

ü

CHAIN OF CUSTODY NUMBER

* 0 1 2 9 5 8 - 0 1 6 *

Covora Trons	TRENT	SEVERN
	JIL	© TH O

	-
_	
2	Ξ
9	
Δı	
∞	
ı	
0	=
_	Ξ
6	
*	
	Severi Heilt Laboratories, Inc.

Client				Project Manager				Date					~		_	-
Spec Pro				Chantelle Carroll	Carroll			£	01/11/2007 /	しゅっと	Page	9	k-	of	7	• •
Address				Telephone Num	Telephone Number (Area Code)/Fax Number	/Fax Number		Lab	Lab Locatron							- }
8451 State Route 5				(000)	/ (000)	00)		- ST	STL North Canton	'n			Analysis	Sis		
City	State	Zip Code		Site Contact							M G	8	N C M	Z		ᅱ
nna		44266		Chantelle Carroll	Carroll						S S C	0	ი ი ≱	6 0		
Project Number/Name				Carrier/Waybill Number	Vumber	:					8 8	œ œ	m Z 	о 3		
Ravenna											2 2 0	<u>-</u>	<u>ا</u>	z		
											-1			0		
CONTRACT / PURCHASE ORDER # :									QUOTE: 63240		0 0 2	0	ر ا	2		•
Sample I D. Number and Description	•	Date	Time	Sample Type	Cor	Containers	Щ.	Preservative	Condition on Receipt/Comments	ceint/Comments	 റ					
Compression and Coordinate		2		000000000000000000000000000000000000000	Volume	Туре	-					5				
FWGCBPmw-007C-0372-GW	_	10-hK-1	oh: ol	WATER	≓	AMBER	N	None					×	-		
FWGCBPmw~007C-0372-GW		-	-	WATER	11.	AMBER	2	None				×				
FWGCBPmw-007C-0372-GW				WATER	11	AMBER	2	None				×				
FWGCBPmw-007C-0372-GW	_	_		WATER	11	AMBER	2	None			×					\dashv
FWGCBPmw-007C-0372-GW			-	WATER	1	AMBER	2	Nane			×				;	\neg
FWGCBPmw-0076-0372-0W		_		WATER	40mt	VIA THOP	40	3 HCL			k				29	一
FWGCBPmw-007C-0372-GW				WATER	250mL	PLASTIC		NaOH					×		 је :	
FWGCBPmw-007C-0372-GF		+	+	WATER	1000mL	PLASTIC	_	Conc HNO3						×	Pag	
															F	П
* ONLY & PROSI											-					
*																
		i														
Special Instructions																

Possible Hazard Identification		Sample Disposal		(A far and the annual of a part of a
Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison	☐ Poison B ☐ Unknown ☐ Return To Client	Return To Clie	ent Disposal By Lab Archive For Months	s retained longer than 3 months)
Turn Around Time Required	QC Lavel		Project Specific Requirements (Specify)	
□ Normal □ Rush □ Other □	_ 01. 011.	□ <i>III</i> .		В
1. Relinquished By	Date	Time	1. Received By	Date Time X
Jaco Hours	(2442)	1747	Tier Tosyxxxx	LEVI 120 177
2 Relinquished By NCIC JUBISH D	124 BT	1852	2. Received By M. M. M.	01/25/07 07/ A 5
3. Relinquished By	Date	Time	3. Received B	Date Time
Comments				₽TT.
DISTRIBUTION WHITE Street HANDY Botton to Client with Board BING Sield Con	at with Donnel DIMIN	Elold Coon		

STL Cooler Receipt	Form/Nari	rative Lot	Number:	7A250	101
North Canton Facili	Ly	Project: 1 1	Que	ote#:	11
Client: Spac Pro	107	Opened on: 1/25/07		by July	(Signature)
Cooler Received on: 1/25		DHL FAS STL	Courier	3 /	Ì
Fedx Client Drop Off	L UPS L		,		
Stetson US Cargo	16	Other: Client	Cooler	Other	
STL Cooler No#So6_	<u>sack</u>		Intact'	Yes No	NA 🗌
1 Were custody seals on	the outside of D	he cooler? Yes No	1111111111		
If YES, Quantity	<u></u>	. 19	Yes 🛭	No NA	
Were the custody seals	signed and dat	C2	Ves [] No ∏ NA	
2. Shipper's packing slip	attached to this	www.tas2Vag No D	Relino	juished by client?	Yes No 🗌
3. Did custody papers acc	company the sai	mples? res \(\) No \(\)		X No □	
4. Did you sign the custoo	ly papers in the	appropriate place:			
5. Packing material used:	Bubble Wrap	Foam None None			
6. Cooler temperature upo	on receipt	°C (see back of form for	lice	IR ICE/F	H ₂ 0 Slurry []
METHOD: Temp Vial	Coolant &	Sample Against Bot	er 🗀 N	one	
COOLANT: Wet Ice	Blue Ice		F	s No 🗆	
7. Did all bottles arrive in	good condition	n (Unbroken)?		s No 🗆	
8. Could all bottle labels	and/or tags be	reconciled with the COC!			JA 🗍
9. Were samples at the co	orrect pH upon	reccipt/		s No	
10. Were correct bottles us	sed for the tests	indicated?	Ye		JA 🔲
11. Were air bubbles >6 m	ım ın any VOA	Viais!		s No 🗆 🗸	
12. Sufficient quantity rec	eived to perior	er? Yes No Were	VOAs on the	COC? Yes	No 🗌
13. Was a Trip Blank pre	sent in the cool	er/ res [Z] Na [] Were	via Vo ice N	Aail 🕖 Verbal 🗷	Other 🗌
Contacted PM TSC	Date 1	SCE DY. CONT.	, , , ,		
Concerning:					
V CHAIN OF CUSTOD	V				
1. CHAIN OF CUSTOD		ed:			
The following discrep		or listed on C	- 12 mu	2-182 <u>-</u> -	<u>0396-40</u>
Per Co The	10.0 · 10.	2 listed M. C.	152_, U	sil los	
103	NO3 N	OC VANCE V.			- List
2. SAMPLE CONDITIO	N				
Sample(s)		were received a	fter the recon	umended holding t	me had expired.
Sample(s)		were receive	d in a broken	container.	
3. SAMPLE PRESERVA	4 TION	4.00			
Clo(a)		were	further preser	ved in sample rece	civing to meet
Sample(s)	iel(s) Nura And I	1 or 10 10106 - Sulfano And Lot # 092	006-H2SO4; Sod	ium Hydroxide Lot # -12	22805 -NaOH:
Hydrochloric Acid Lot # 10	10504-HCl; Sodium	JJudeanda and Zine Acetale LOLH UDU	203 -0113000022	W/1VaC/11	
Sample(s)		were received with	bubble > 6 r	nm in diameter (co	: PM)
4. Other (see below or be	ack)				
				. Data	Initials
Client ID		рH		Date 1/15/07	01-
395	12 712			1/02/01	+ -7,
365	42 71L	. 1			+ - /
37?	12712	42		-4-	-
396	42 712	- ~			

Client ID	pH	Date	Initials
379	42 7/2 LZ	1/25/07	
358	42 7/2	1/23/07	gu
318	62 7/2 62		
37/	12 7/2		
3/0/4	12 712		
376	42 712 42		
318 371 364 374 372	12 712		
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			
Cooler	Yana		
STL no #	Temp 2.1°C	Method	Coolant
1 - NOTT	2.7°6	FR.	Tco
161-039	921	1	
	2.3°C 3.4°C 3.3°C		
STL no #	7 200		
680-646	3.3.0		
37L w # VB 004	3,110		
V IS 00 7	3,1°C 2.6°C 3,1°C		
371 no#	\s\ \langle \cdot \cdo		
iscrepancies Cont.		1	
STL no #	2.40	1	- 1
ST1 ++	ž ieu		- 1
STL no # 5TL NO #	2.1°0 2.3°0	\	
516 MD	۵.0		

CASE NARRATIVE

A7A260102

The following report contains the analytical results for fifteen water samples and one quality control sample submitted to STL North Canton by Spec Pro from the FWGWMP RVAAP Site, project number 001074.0001. The samples were received January 26, 2007, according to documented sample acceptance procedures.

The 8330 Explosives, Nitroguanidine, 353.2 Nitrocellulose as N analyses were performed at the STL West Sacramento laboratory. Refer to STL West Sacramento narrative included in their data package for additional information.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carroll and Valarie Ann Mariola on February 21, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT"

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at temperatures ranging from 1.4 to 3.3°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGBKGmw-013C-0363-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GC/MS SEMIVOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWGBKGmw-013C-0363-GW had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

Sample(s) FWGLL3mw-238C-0386-GW, FWGBKGmw-019C-0368-GW, and FWGLL1mw-080C-0381-GW had up to one surrogate recovery per fraction outside acceptance limits. However, since the recovery was greater than 10% and all associated QC met criteria, no corrective action was taken.

PESTICIDES-8081

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

CASE NARRATIVE (continued)

PESTICIDES-8081 (continued)

Sample(s) FWGLL3mw-238C-0386-GW had elevated reporting limits due to matrix interference.

POLYCHLORINATED BIPHENYLS-8082

The matrix spike associated with batch(es) 7027077 and 7039226, the recovery for one surrogate compound is outside acceptance criteria. Since the method criterion is that one of two surrogate compounds must meet acceptance criteria, no corrective action was required.

The LCS associated with batch(es) 7027077 was recovered low and outside acceptance criteria for the associated PCB samples. Upon reextraction and reanalysis, all QC met acceptance criteria; however, sample holding times had been exceeded. Both sets of data have been reported.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

Serial dilution of a sample in this lot indicates that physical and chemical interferences were present. Refer to the sample report pages for the affected analytes flagged with "E".

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analytes(s).

OUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is repreped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be repreped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),
Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#QUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence – Participating Lab Status Award (#82)

C. 11

Appendix B

C:\DOCUME~1\armans\LOCALS~1\Temp\Narrative_040306.docRevised 04/03/06 DJL

Page E - 5

Sample ID:

FWGBKGmw-013C-0363-GW

Lab ID: Sampling Date: A7A260102-001

Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-001		Receipt I	Date:		7:30AM	
Sampling Date:	01/25/07 2:4	1PM	Matrix:		WATER Prep-	Data	
Paramet	er	Result	Units	RL	Analysis	Date	Analyst
6 44 44 44 44 44 44 44 44 44 44 44 44 44		GC Se	emivolatile Organics				uu an 100 000 000 000
PCBs (8082) Aroclor 1016		ND	ug/L	0.50	01/28- 0)2/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 0	2/08/07	LH
Aroclor 1232		ND	ug/L	0.50	01/28- 0	2/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 0	2/08/07	LH
Aroclor 1248		ND	ug/L	0.50	01/28- 0	2/08/07	LH
Aroclor 1254		ND	ug/L	0.50	01/28- 0	2/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 0	2/08/07	LH
TOD= (9092) Do	-extract						
PCBs (8082) Re Aroclor 1016	-extract	ND	ug/L	0.50	02/08- 0	2/09/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08- 0	2/09/07	LH
Aroclor 1232		ND	ug/L	0.50	02/080	2/09/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08- 0	2/09/07	LH
Aroclor 1248		ИĎ	ug/L	0.50	02/08- 0	2/09/07	LH
Aroclor 1254		ИD	ug/L	0.50	02/08- 0	2/09/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08- 0	12/09/07	LH
Pesticides (8081A							
Dieldrin	,	ND	ug/L	0.030	01/28- 0)1/30/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 0)1/30/07	CSV
Endosulfan II		ND	ug/L	0.025	01/28- 0)1/30/07	CSV
Endosulfan sulfate	е	ND	ug/L	0.030	01/28- 0)1/30/07	CSV
Endrin		ND	ug/L	0.030	01/28- 0)1/30/07	csv
Endrin aldehyde		ИД	ug/L	0.030	01/28- 0)1/30/07	CSV
Endrin ketone		ND	ug/L	0.030	01/28- 0)1/30/07	csv
Heptachlor		ND	ug/L	0.030	01/28- 0)1/30/07	csv
Heptachlor epoxide	е	ND	ug/L	0.030	01/28- 0)1/30/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 0)1/30/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 0)1/30/07	csv _.
beta-BHC		ND	ug/L	0.030	01/28- 0)1/30/07	csv
delta-BHC		ND	ug/L	0.030	01/28- 0)1/30/07	csv
gamma-BHC (Lindan	e)	ND	ug/L	0.030	01/28- 0)1/30/07	CSV

Appendix B

Sample ID:	FWGBKGmw-013						
Lab ID: Sampling Date:	A7A260102-003 01/25/07 2	1 :41PM	Receipt : Matrix:	Date:	01/26/07 WATER	7:30AM	
Paramete		Result	<u>Units</u>	RL	Prep Analysi		Analyst
Pesticides (8081A) Toxaphene		ND	ug/L	2.0	01/28-	01/30/07	csv
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	CSV
Aldrin		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDD		ИD	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT		ND	ug/L	0.030	01/28-	01/30/07	CSV
·				•			
Nitroaromatics & N 1,3-Dinitrobenzene		plosives (8330) ND	ug/L	0.098	02/01-	02/17/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.098	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.098	02/01-	02/17/07	FK
Nitrobenzene		ND	ug/L	0.098	02/01-	02/17/07	FK
1,3,5-Trinitrobenz	ene	ND	ug/L	0.098	02/01-	02/17/07	FK
2,4,6-Trinitrotolu	ene	ND	ug/L	0.098	02/01-	02/17/07	FK
HMX		ND	ug/L	0.098	02/01-	02/17/07	FK
RDX		ND	ug/L	0.098	02/01-	02/17/07	FK
Tetryl		ND	ug/L	0.098	02/01-	02/17/07	FK
2-Nitrotoluene		ND	ug/L	0.49	02/01-	02/17/07	FK
3-Nitrotoluene		ND	ug/L	0.49	02/01-	02/17/07	FK
4-Nitrotoluene		ND	ug/L	0.49	02/01-	02/17/07	FK
4-Amino-2,6-dinitr	otoluene	ND	ug/L	0.098	02/01-	02/17/07	FK
2-Amino-4,6-dinitr	otoluene	ND	ug/L	0.098	02/01-	02/17/07	FK
Organic Compounds	by UV/HPLC I						
Nitroguanidine		ND	ug/L	20	02/06-	02/07/07	FK
	·	GC/MS S	emivolatile Organics	;			
Base/Neutrals and							
Diethyl phthalate		ND	ug/L	1.0	01/29~	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate	:	ND	ug/L	1.0	01/29-	02/01/07	JMG

Appendix B

Sample ID:

FWGBKGmw-013C-0363-GW

Lab ID: Sampling Date:

A7A260102-001 01/25/07 2:41PM Receipt Date:

01/26/07 7:30AM

WATER Prep-Matrix:

01,20,0, 2:121	• • • •			Prep-	
Parameter	Result	<u>Units</u>	<u>rl</u>	Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/29- 02/01/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
Anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluorene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/29- 02/01/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/29- 02/01/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/29- 02/01/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Isophorone	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
Naphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzoic acid	ND	ug/L	10	01/29- 02/01/07	JMG
Benzo(ghi)perylene Appendix B	ND	Page 300	0.20	01/29- 02/01/07	JMG

Sample ID:

FWGBKGmw-013C-0363-GW

Lab ID: Sampling Date: A7A260102-001 01/25/07 2:41PM Receipt Date:

01/26/07 7:30AM

Matrix: WATER

sampling Date:	U1/25/U/ .2:41Pi	IAT		Matrix:		Prep-	
Parame	ter	Result		Units	RL	Analysis Date	Analyst
Base/Neutrals and Benzo(a)pyrene	d Acids (8270C)	ND		ug/L	0.20	01/29- 02/01/07	JMG
Pentachlorophenol	L	ND		ug/L	5.0	01/29- 02/01/07	JMG
Benzyl alcohol		ND		ug/L	5.0	01/29- 02/01/07	JMG
Phenanthrene		ND		ug/L	0.20	01/29- 02/01/07	JMG
Phenol		ND		ug/L	1.0	01/29- 02/01/07	JMG
Pyrene		ND		ug/L	0.20	01/29- 02/01/07	JMG
1,2,4-Trichlorobe	enzene	ND		ug/L	1.0	01/29- 02/01/07	JMG
2,4,5-Trichloroph	nenol	ND		ug/L	5.0	01/29- 02/01/07	JMG
2,4,6-Trichloroph	nenol	ND		ug/L	5.0	01/29- 02/01/07	JMG
Carbazole		ND		ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethox	(y)methane	ND		ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethyl	L) ether	ND		ug/L	1.0	01/29- 02/01/07	JMG
2,2'-Oxybis(1-Chl	Loropropane)	ND		ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	3.0	J	ug/L	10	01/29- 02/01/07	JMG
4-Bromophenyl phe	enyl ether	ND		ug/L	2.0	01/29- 02/01/07	JMG
Butyl benzyl phth	nalate	ND		ug/L	1.0	01/29- 02/01/07	JMG
Acenaphthylene		ND		ug/L	0.20	01/29- 02/01/07	JMG
4-Chloroaniline		ND		ug/L	2.0	01/29- 02/01/07	JMG
4-Chloro-3-methyl	lphenol	ND	•	ug/L	2.0	01/29- 02/01/07	JMG
2-Chloronaphthale	ene	ND		ug/L	1.0	01/29- 02/01/07	JMG
2-Chlorophenol		ND		ug/L	1.0	01/29- 02/01/07	JMG
4-Chlorophenyl ph	nenyl ether	ND		ug/L	2.0	01/29- 02/01/07	JMG
Chrysene		ND		ug/L	0.20	01/29- 02/01/07	JMG
Dibenz(a,h)anthra	acene	ND		ug/L	0.20	01/29- 02/01/07	JMG
Dibenzofuran		ND		ug/L	1.0	01/29- 02/01/07	JMG
Di-n-butyl phthal	late	ND		ug/L	1.0	01/29- 02/01/07	JMG
1,2-Dichlorobenze	ene	ND		ug/L	1.0	01/29- 02/01/07	JMG
1,3-Dichlorobenze	ene	ND		ug/L	1.0	01/29- 02/01/07	JMG
1,4-Dichlorobenze	ene	ND		ug/L	1.0	01/29- 02/01/07	JMG
3,3'-Dichlorobenz	zidine	ND		ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dichloropheno Appeno		ND	Pag	ug/L e 301	20	01/29- 02/01/07	JMG

Sample ID:	FWGBKGmw-013C-03	63-GW			01 /05 /05	
Lab ID: Sampling Date:	A7A260102-001 01/25/07 2:41P	M	Receipt Da Matrix:	ite:	01/26/07 7:30AM WATER	
Paramete		Result	Units	RL	Prep- Analysis Date	Analyst
	 lt. Result is less					
			Volatile Organics			
Volatile Organics,	GC/MS (8260B)					
trans-1,3-Dichloro		ИD	ug/L	1.0	01/30/07	LEE
Acetone		ИD	ug/L	10	01/30/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/30/07	LEE
2-Hexanone		ND .	ug/L	10	01/30/07	LEE
Methylene chloride		ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pentano	ne	ND	ug/L	10	01/30/07	LEE
Benzene		ND	ug/L	1.0	01/30/07	LEE
Styrene	•	ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetrachlor	oethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroethene		ND	ug/L	1.0	01/30/07	LEE
Toluene		ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichloroeth	ane	ND	ug/L	1.0	01/30/07	LEE
1,1,2-Trichloroeth	ane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethene		ND	ug/L	1.0	01/30/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/30/07	LEE
Xylenes (total)		ND	ug/L	2.0	01/30/07	LEE
Bromochloromethane		ND	ug/L	1.0	01/30/07	LEE
Bromodichlorometha	ne	ND	ug/L	1.0	01/30/07	LEE
Bromoform		ND	ug/L	1.0	01/30/07	LEE
Bromomethane		ND	ug/L	1.0	01/30/07	LEE
2-Butanonė		ND	ug/L	10	01/30/07	LEE
Carbon disulfide		ND	ug/L	1.0	01/30/07	LEE
Carbon tetrachlori	de	ND	ug/L	1.0	01/30/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/30/07	LEE
Dibromochlorometha	ne	ND	ug/L	1.0	01/30/07	LEE
Chloroethane		ND	ug/L	1.0	01/30/07	LEE .
Chloroform		ND	ug/L	1.0	01/30/07	LEE
Chloromethane		ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoethane		ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWGBKGmw-013C-03	363-GW					
Lab ID:	A7A260102-001			Receipt	: Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 2:41	PM .		Matrix:		WATER	
Parame	eter_	Result		<u>Units</u>	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organic		ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloroetha	ne	ND		ug/L	1.0	01/30/07	LEE
1,1-Dichloroethe	ne	ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloroethe	ne (total)	ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloroprop	ane	ND		ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloro	propene	ND		ug/L	1.0	01/30/07	LEE
		`	General (Chemistry		<u>-</u>	
Cyanide, Total Cyanide, Total		0.0095	В	mg/L	0.010	01/30/07	SS
Nitrocellulose a	s N by 353.2	ND		mg/L	0.50	02/06- 02/08/07	DTA

B Estimated result. Result is less than RL.

Sample ID:

FWGBKGmw-013C-0363-GF

Lab ID: Sampling Date: A7A260102-002 01/25/07 2:41PM Receipt Date:

01/26/07 7:30AM

Matrix:

WATER Prep-

Parameter	Result		Units	RL	Prep- Analysis Date	Analyst
		Meta	als		· 	
Inductively Coupled Plasma (6010B Arsenic	Trace) 13.4		ug/L	5.0	01/29- 02/06/07	LRW
Lead	ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium	ÑD		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma (6010B Magnesium) 24600		ug/L	1000	01/29- 02/06/07	LRW
Manganese	432		ug/L	10.0	01/29- 02/06/07	LRW
Barium	87.6		ug/L	10.0	01/29- 02/06/07	IRW
Nickel	ND		ug/L	10.0	01/29- 02/06/07	LRW
Potassium	1870	JE	ug/L	1000	01/29- 02/06/07	LRW
Silver	ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium	12100		ug/L	1000	01/29- 02/06/07	LRW
Vanadium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium	73500		ug/L	1000	01/29- 02/06/07	LRW
Cobalt	ND		ug/L	5.0	01/29- 02/06/07	LRW
Copper	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma Mass S	pectrometry	(6020)				
Antimony	0.94	В	ug/L	2.0	01/29- 01/30/07	BD
· Iron	1170		ug/L	. 20.0	01/29- 01/30/07	BD
Beryllium	ND .		ug/L	1.0	01/29- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc	5.6	вЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum	ИD		ug/L	50.0	01/29- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Liq Mercury	uid ND		ug/L	0.20	01/29- 01/30/07	ML

B Estimated result. Result is less than RL.

E Matrix interference.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-021C-0370-GW

Lab ID: Sampling Date: A7A260102-003

01/25/07 9:11AM

Receipt Date: 01/26/07 7:30AM

Matrix: WATER

samping Date. 01/25/07 9.11AM		Maciix.		Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
	GC Se	mivolatile Organics -			
PCBs (8082)					
Aroclor 1016	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260	ND	· ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-extract					
Aroclor 1016	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260	ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A)					
Dieldrin	ND	ug/L	0.030	01/28- 01/30/07	CSV
Endosulfan I	ND	ug/L	0.025	01/28- 01/30/07	CSV
Endosulfan II	ND	ug/L	0.025	01/28- 01/30/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin	ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/28- 01/30/07	CSV
Endrin ketone	ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor	ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/28- 01/30/07	csv
Methoxychlor	ND	ug/L	0.10	01/28- 01/30/07	csv
alpha-BHC	ND	ug/L	0.030	01/28- 01/30/07	csv
beta-BHC	ND	ug/L	0.030	01/28- 01/30/07	csv
delta-BHC	ND	ug/L	0.030	01/28- 01/30/07	CSV
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/30/07	csv

Appendix B

Sample ID: Lab ID:	FWGBKGmw-021C- A7A260102-003	0370-GW		Receipt Dat	:e:	01/26/07	7:30AM	
Sampling Date:	01/25/07 9:1	1AM		Matrix:		WATER Prep)	
Parameter	<u>r</u>	Result	Unit	<u>s</u>	RL	Analysi	s Date	Analyst
Pesticides (8081A)								
Toxaphene		ND	ug	/L	2.0	01/28-	01/30/07	CSV
alpha-Chlordane		ND	ug	/L	0.030	01/28-	01/30/07	CSV
gamma-Chlordane		ND	ug	/L	0.030	01/28-	01/30/07	CSV
Aldrin		ND	ug	/L	0.030	01/28-	01/30/07	CSV
4,4'-DDD		ND	ug	/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE		ND	ug	/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT		ND	ug	/L	0.030	01/28-	01/30/07	CSV
			•	•				
	art ann ann ann àire dear dear dear ann ann ann dear dear dear dear dear dear							
Nitroaromatics & N: 1,3-Dinitrobenzene	itramines: Exp	losives (8330)	ug	/L	0.097	02/01-	02/17/07	FK
2,4-Dinitrotoluene		ND	ug		0.097	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND	ug		0.097		02/17/07	FK
Nitrobenzene		ND	ug		0.097		02/17/07	FK
1,3,5-Trinitrobenze	ene	ND	ug		0.097		02/17/07	FK
2,4,6-Trinitrotolue		ND	ug		0.097		02/17/07	FK
HMX	·····	ND .	ug		0.097		02/17/07	FK
RDX			ug		0.097		02/17/07	FK
Tetryl		ND	ug		0.097		02/17/07	FK
2-Nitrotoluene		NĎ	ug		0.48		02/17/07	FK
		ND	•			•		FK
3-Nitrotoluene		ND	ug		0.48		02/17/07	FK
4-Nitrotoluene			_	/L	0.48		02/17/07	
4-Amino-2, 6-dinitro		ND		/L	0.097		02/17/07	FK
2-Amino-4,6-dinitro	otoluene	ND	ug		0.097	02/01-	02/1//0/	FK
Organic Compounds ! Nitroguanidine	by UV/HPLC Di	.ssolved ND	ug		20	02/06-	02/07/07	FK
Nicroguanitaine		UD	. ug	, п	20	02/00-	02/01/01	FK
		GC/MS S	emivolatile	Organics -				
Base/Neutrals and			_	-				
Diethyl phthalate		ND	ug	/ L	1.0	01/29-	02/01/07	JMG
2,4-Dimethylphenol		ND	ug	/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND	ug	/ L	1.0	01/29-	02/01/07	JMG
Appendix	В		Page 306					

Sample ID:

FWGBKGmw-021C-0370-GW

Lab ID: Sampling Date: A7A260102-003

Receipt Date: Matrix: 01/26/07 7:30AM

WATER

01/25/07 9:11AM

Prep-Analysis Date Parameter Result Units RLAnalyst Base/Neutrals and Acids (8270C) 1.0 01/29- 02/01/07 Di-n-octyl phthalate ND uq/L JMG 4,6-Dinitro-2-methylphenol ND ug/L 5.0 01/29- 02/01/07 JMG 2,4-Dinitrophenol ND uq/L 5.0 01/29- 02/01/07 JMG 2,4-Dinitrotoluene ND uq/L 5.0 01/29- 02/01/07 JMG 2,6-Dinitrotoluene ND 5.0 01/29- 02/01/07 JMG uq/L ND 0.20 01/29- 02/01/07 JMG Anthracene ug/L Fluoranthene 0.20 01/29- 02/01/07 ND ug/L JMG 0.20 01/29- 02/01/07 Fluorene ND ug/L TMC 0.20 01/29- 02/01/07 Hexachlorobenzene ND ug/L JMG Hexachlorobutadiene ND 1.0 01/29- 02/01/07 JMG ug/L 10 01/29- 02/01/07 JMG Hexachlorocyclopentadiene ND ug/L Hexachloroethane ND 110/L 1.0 01/29- 02/01/07 JMG 0.20 01/29- 02/01/07 Indeno(1,2,3-cd)pyrene ug/L JMG ND 01/29- 02/01/07 Isophorone ND ug/L 1.0 JMG 0.20 01/29- 02/01/07 2-Methylnaphthalene ND ug/L . .TMC 01/29- 02/01/07 2-Methylphenol ND ug/L 1.0 JMG 4-Methylphenol ND ug/L 1.0 01/29- 02/01/07 JMG Naphthalene 0.20 01/29- 02/01/07 JMG ND ug/L 2.0 01/29- 02/01/07 2-Nitroaniline ND ug/L JMG 2.0 01/29- 02/01/07 JMG 3-Nitroaniline ND ug/L 01/29- 02/01/07 2.0 JMG 4-Nitroaniline ND ug/L 01/29- 02/01/07 1.0 JMG Nitrobenzene ND ug/L 2.0 01/29- 02/01/07 2-Nitrophenol ND ug/L JMG 4-Nitrophenol ND ug/L 5.0 01/29- 02/01/07 JMG 0.20 01/29- 02/01/07 Benzo(a) anthracene ND ug/L JMG 01/29- 02/01/07 N-Nitrosodi-n-propylamine ND ug/L 1.0 JMG N-Nitrosodiphenylamine ND 1.0 01/29- 02/01/07 JMG ug/L 0.20 01/29- 02/01/07 Benzo(b) fluoranthene ND ug/L JMG Benzo(k) fluoranthene ND ug/L 0.20 01/29- 02/01/07 .TMG Benzoic acid 10 01/29- 02/01/07 ND ug/L JMG 01/29- 02/01/07 Benzo(ghi)perylene ND ug/L 0.20 JMG Appendix B Page 307

Sample ID:

FWGBKGmw-021C-0370-GW

Lab ID: Sampling Date: A7A260102-003 01/25/07 9:11AM Receipt Date:

01/26/07

7:30AM

Matrix: WATER

Prep-Analysis Date Parameter Result Units RL Analyst Base/Neutrals and Acids (8270C) 0.20 01/29- 02/01/07 Benzo(a)pyrene ND ug/L .TMC Pentachlorophenol ND ug/L 5.0 01/29- 02/01/07 JMG Benzyl alcohol ND ug/L 5.0 01/29- 02/01/07 JMG Phenanthrene ND ug/L 0.20 01/29- 02/01/07 JMG Phenol ND 1.0 01/29- 02/01/07 JMG ug/L Pyrene ND ug/L 0.20 01/29- 02/01/07 JMG 1.0 01/29- 02/01/07 1,2,4-Trichlorobenzene ND ug/L JMG ND 5.0 01/29- 02/01/07 2,4,5-Trichlorophenol ug/L :TMC 01/29- 02/01/07 2,4,6-Trichlorophenol ND ug/L 5.0 JMG Carbazole ND ug/L 1.0 01/29- 02/01/07 JMG bis (2-Chloroethoxy) methane ND 1.0 01/29- 02/01/07 JMG ug/L 01/29- 02/01/07 bis(2-Chloroethyl) ether ND ug/L 1.0 JMG 2,2'-Oxybis(1-Chloropropane) 1.0 01/29- 02/01/07 JMG ND ug/L 10 01/29- 02/01/07 bis(2-Ethylhexyl) phthalate ND ug/L JMG 2.0 01/29- 02/01/07 4-Bromophenyl phenyl ether -TMC ND ug/L 01/29- 02/01/07 Butyl benzyl phthalate ND ug/L 1.0 JMG Acenaphthylene ND ug/L 0.20 01/29- 02/01/07 JMG 4-Chloroaniline ND 2.0 01/29- 02/01/07 JMG ug/L 4-Chloro-3-methylphenol 2.0 01/29- 02/01/07 ND ug/L JMG 2-Chloronaphthalene ND 1.0 01/29- 02/01/07 JMG ug/L ug/L 01/29- 02/01/07 2-Chlorophenol ΝD 1.0 JMG 01/29- 02/01/07 ug/L 2.0 4-Chlorophenyl phenyl ether JMG ND 0.20 01/29- 02/01/07 Chrysene ND ug/L JMG Dibenz (a, h) anthracene ND ug/L 0.20 01/29- 02/01/07 JMG Dibenzofuran 1.0 01/29- 02/01/07 JMG ND ug/L 1.0 01/29- 02/01/07 JMG Di-n-butyl phthalate ND ug/L 1,2-Dichlorobenzene ND uq/L 1.0 01/29- 02/01/07 JMG ug/L 1.0 01/29- 02/01/07 1.3-Dichlorobenzene ND JMG 1,4-Dichlorobenzene ND ug/L 1.0 01/29- 02/01/07 JMG 01/29- 02/01/07 3,3'-Dichlorobenzidine 5.0 ND ug/L -TMG ug/L 2,4-Dichlorophenol ND 2.0 01/29- 02/01/07 JMG Appendix B Page 308

Sample ID:

FWGBKGmw-021C-0370-GW

Lab ID: Sampling Date: A7A260102-003

01/25/07 9:11AM

Receipt Date:

01/26/07 7:30AM

Matrix:

WATER Prep-

Parameter_	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
	GC/MS Volati	le Organice			
	GO/HD VOLACE	re organics			
Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene	ND	ug/L	1.0	01/30/07	LEE
Acetone	ND	ug/L	10	01/30/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/30/07	LEE
2-Hexanone	ND	ug/L	10	01/30/07	LEE
Methylene chloride	ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/30/07	LEE
Benzene	ND	ug/L	1.0	01/30/07	LEE
Styrene	ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/30/07	LEE
Toluene	ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichloroethane	ИD	ug/L	1.0	01/30/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethene	ИD	ug/L	1.0	01/30/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/30/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/30/07	LEE
Bromochloromethane	ND .	ug/L	1.0	01/30/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/30/07	LEE
Bromoform	ND	ug/L	1.0	01/30/07	LEE
Bromomethane	ИD	ug/L	1.0	01/30/07	LEE
2-Butanone	ND	ug/L	10	01/30/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/30/07	LEE
Carbon tetrachloride	ND .	ug/L	1.0	01/30/07	LEE
Chlorobenzene	.ND	ug/L	1.0	01/30/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/30/07	LEE
Chloroethane	ND	ug/L	1.0	01/30/07	LEE
Chloroform	ND	ug/L	1.0	01/30/07	LEE
Chloromethane	ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWGBKGmw-021C-037	0-GW				
Lab ID:	A7A260102-003		Receipt Da	ıte:	01/26/07 7:30AM	
Sampling Date:	01/25/07 9:11AM	I	Matrix:		WATER	
Paramete	er_	Result	Units	RL	Prep- Analysis Date	Analyst
Volatile Organics 1,1-Dichloroethane	• • •	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethane	•	ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethene)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethene	e (total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloropropar	ne	ND	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloropr	ropene	ND	ug/L	1.0	01/30/07	LEE
		Ger	neral Chemistry	orf peri data gara dara una dara una bala un		
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose as	N by 353.2	ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-021C-0370-GF

Lab ID: Sampling Date: A7A260102-004

Receipt Date:

01/26/07 7:30AM

Prep-

01/25/07 9:11AM

Matrix:

WATER

Parameter	Result		Units	RL	Analysis Date	Analyst
		Meta	als			
Inductively Coupled Plasma (601 Arsenic	OB Trace)		ug/L	5.0	01/29- 02/06/07	LRW
Lead	ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma (601 Magnesium	0B) 50800		ug/L	1000	01/29- 02/06/07	LRW
Manganese	0.47	В	ug/L	10.0	01/29- 02/06/07	LRW
Barium	31.0		ug/L	10.0	01/29- 02/06/07	LRW
Nickel	ND		ug/L	10.0	01/29- 02/06/07	LRW
Potassium	695	ВЈ	ug/L	1000	01/29- 02/06/07	LRW
Silver	ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium	15200		ug/L	1000	01/29- 02/06/07	LRW
Vanadium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium	88200		ug/L	1000	01/29- 02/06/07	LRW
Cobalt	ND	÷	ug/L	5.0	01/29- 02/06/07	LRW
Copper	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma Mass	Speatrometry	(6020)				
Antimony Coupled Flasha Mass	0.19	В	ug/L	2.0	01/29- 01/30/07	BD
Iron	296		ug/L	20.0	01/29- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/29- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc	3.9	вЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/29- 01/30/07	BD
Mercury (7470A, Cold Vapor) - L Mercury	iquid ND		ug/L	0.20	01/29- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-004C-0357-GW

A7A260102-005

Lab ID:	A7A260102-005		Receipt Da	ate:	01/26/07 7:30AM	
Sampling Date:	01/25/07 10:20AI	M	Matrix:		WATER Prep-	
Parameter	<u>r_</u>	Result	Units	RL	Analysis Date	Analyst
		GC Semiv	olatile Organics -			
PCBs (8082)						
Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ИD	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		. ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-	extract				•	
Aroclor 1016	extract	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242		ND .	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A)						
Dieldrin		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 01/30/07	CSV
Endosulfan II	,	ND	ug/L	0.025	01/28- 01/30/07	CSV
Endosulfan sulfate		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endrin		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endrin ketone		ND	ug/L	0.030	01/28- 01/30/07	CSV
Heptachlor		ND	ug/L	0.030	01/28- 01/30/07	CSV
Heptachlor epoxide		ND	ug/L	0.030	01/28- 01/30/07	CSV
Methoxychlor		ND	ug/L	0.10	01/28- 01/30/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 01/30/07	CSV
beta-BHC		ND	ug/L	0.030	01/28- 01/30/07	CSV
delta-BHC		ND	ug/L	0.030	01/28- 01/30/07	CSV
gamma-BHC (Lindane))	ND	ug/L	0.030	01/28- 01/30/07	CSV

Appendix B

Sample ID:	FWGBKGmw-004C-0	357-GW				
Lab ID:	A7A260102-005	7) 3.4	Receipt Da	ite:	01/26/07 7:30AM	
Sampling Date:	01/25/07 10:20	AM	Matrix:		WATER Prep-	
Paramet	er	Result	<u>Units</u>	RL	Analysis Date	Analyst
Pesticides (8081A)	•				
Toxaphene	,	ND	ug/L	2.0	01/28- 01/30/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28- 01/30/07	csv
gamma-Chlordane		ND	ug/L	0.030	01/28- 01/30/07	CSV
Aldrin		ND	ug/L	0.030	01/28- 01/30/07	csv
4,4 ¹ -DDD		ND	ug/L	0.030	01/28- 01/30/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/28- 01/30/07	csv
4,4'-DDT		ND	ug/L	0.030	01/28- 01/30/07	CSV
					•	
			the tree law are far and for the far and far and far far far far far far far far far far			
Nitroaromatics & 1	Nitramines: Expl	osives (8330)				
1,3-Dinitrobenzene		ND	ug/L	0.10	02/01- 02/17/07	FK
2,4-Dinitrotoluene	B	ND	ug/L	0.10	02/01- 02/17/07	FK
2,6-Dinitrotoluene	9	ND	ug/L	0.10	02/01- 02/17/07	FK
Nitrobenzene		ND	ug/L	0.10	02/01- 02/17/07	FK
1,3,5-Trinitrobenz	zene	ND	ug/L	0.10	02/01- 02/17/07	FK
2,4,6-Trinitrotolu	lene	ND	ug/L	0.10	02/01- 02/17/07	FK
HMX		ИД	ug/L	0.10	02/01- 02/17/07	FK
RDX		ND ·	ug/L	0.10	02/01- 02/17/07	FK
Tetryl		ND	ug/L	0.10	02/01- 02/17/07	FK
2-Nitrotoluene		ND .	ug/L	0.50	02/01- 02/17/07	FK
3-Nitrotoluene		ND	ug/L	01.50	02/01- 02/17/07	FK
4-Nitrotoluene		ND	ug/L	0.50	02/01- 02/17/07	FK
4-Amino-2,6-dinit:	rotoluene	ND .	ug/L	0.10	02/01- 02/17/07	FK
2-Amino-4,6-dinit	rotoluene	ND	ug/L	0.10	02/01- 02/17/07	FK
0	les the free of Dis	7				
Organic Compounds Nitroguanidine	ph on Harc pra	ND ND	ug/L	20	02/06- 02/07/07	FK
		GC/MS	Semivolatile Organics			
Base/Neutrals and	Agide (8270C)					
Base/Neutrals and Diethyl phthalate	ACIUS (02/UC)	ND	ug/L	1.0	01/29- 02/01/07	JMG
2,4-Dimethylpheno	1	ND	ug/L	2.0	01/29- 02/01/07	JMG
Dimethyl phthalate	е	ND	ug/L	1.0	01/29~ 02/01/07	JMG
Appendi	х В		Page 313			

Sample ID:

FWGBKGmw-004C-0357-GW

Lab ID: Sampling Date: A7A260102-005 01/25/07 10:20AM Receipt Date: Matrix: 01/26/07 7:30AM

WATER Prep-

	10.20121		Prep-		
Parameter	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and Acids (8 Di-n-octyl phthalate	8270C) ND	ug/L	1.0	01/29- 02/01/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	·JMG
Anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluorene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobutadiene	ND	ug/L	1.0	01/29- 02/01/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/29- 02/01/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/29- 02/01/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Isophorone	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
Naphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Nitroaniline	ND .	ug/L	2.0	01/29- 02/01/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzoic acid	ND	ug/L	10	01/29- 02/01/07	JМG
Benzo(ghi)perylene Appendix B	ND ·	ug/L Page 314	0.20	01/29- 02/01/07	JMG

Sample ID:

FWGBKGmw-004C-0357-GW

Lab ID: Sampling Date: A7A260102-005

Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-005			Receipt	Date:	01/26/07	7:30AM	
Sampling Date:	01/25/07 10:20AM			Matrix:		WATER Prep		
Paramete	er	Result		Units	RL	Analysi	.s Date	Analyst
Base/Neutrals and Benzo(a)pyrene	Acids (8270C)	ND		ug/L	0.20	01/29-	02/01/07	JMG
Pentachlorophenol		ND		ug/L	5.0	01/29-	02/01/07	JMG
Benzyl alcohol		ND	·	ug/L	5.0	01/29-	02/01/07	JMG
Phenanthrene		.ND		ug/L	0.20	01/29-	02/01/07	JMG
Phenol		ND		ug/L	1.0	01/29-	02/01/07	JMG
Pyrene		ND		ug/L	0.20	01/29-	02/01/07	JMG
1,2,4-Trichlorober	ızene	ND		ug/L	1.0	01/29-	02/01/07	JMG
2,4,5-Trichlorophe	enol	ND		ug/L	5.0	01/29-	02/01/07	JMG
2,4,6-Trichlorophe	enol	ND		ug/L	5.0	01/29-	02/01/07	JMG
Carbazole		ND		ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethoxy	y) methane	ND		ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethyl)	ether	ND		ug/L	1.0	01/29-	02/01/07	JMG
2,2'-Oxybis(1-Chlo	propropane)	ND		ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	0.94	J	ug/L	10	01/29-	02/01/07	JMG
4-Bromophenyl phen	nyl ether	ND		ug/L	2.0	01/29-	02/01/07	JMG
Butyl benzyl phtha	alate	ND		ug/L	1.0	01/29-	02/01/07	JMG
Acenaphthylene		ND		ug/L	0.20	01/29~	02/01/07	JMG
4-Chloroaniline		ND		ug/L	2.0	01/29-	02/01/07	JMG
4-Chloro-3-methylp	phenol	ND		ug/L	2.0	01/29-	02/01/07	JMG
2-Chloronaphthaler	ne	ND		ug/L	1.0	01/29-	02/01/07	JMG
2-Chlorophenol		ND ·		ug/L	1.0	01/29-	02/01/07	JMG
4-Chlorophenyl phe	enyl ether	ИD		ug/L	2.0	01/29-	02/01/07	JMG
Chrysene		ND		ug/L	0.20	01/29-	02/01/07	JMG
Dibenz(a,h)anthrac	cene	ND		ug/L	0.20	01/29-	02/01/07	JMG
Dibenzofuran		ND		ug/L	1.0	01/29-	02/01/07	JMG
Di-n-butyl phthala	ate	ND		ug/L	1.0	01/29-	02/01/07	JMG
1,2-Dichlorobenzer	ne	ND		ug/L	1.0	01/29-	02/01/07	JMG
1,3-Dichlorobenzer	ne	ИD		ug/L	1.0	01/29-	02/01/07	JMG
1,4-Dichlorobenzer	ne	ND		ug/L	1.0	01/29-	02/01/07	JMG
3,3'-Dichlorobenzi	idine	ND		ug/L	5.0	01/29-	02/01/07	JMG
2,4-Dichlorophenol Appendix		ND	Pa	ug/L age 315	2.0	01/29-	02/01/07	JMG

Sample ID:

FWGBKGmw-004C-0357-GW

Lab ID: Sampling Date: A7A260102-005

Receipt Date: Matrix:

01/26/07

7:30AM

Result	***		Prep-	
	Units	RL	Analysis Date	Analyst
lt is less than RL.	•			
GC/MS	Volatile Organics			
(8260B) ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	10	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	10	01/30/07	LEE
ND	ug/L	2.0	01/30/07	LEE
ND .	ug/L	10	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND.	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	2.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND.	ug/L	1.0	01/30/07	LEE
ND	ug/L	10	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
ND	ug/L	1.0	01/30/07	LEE
	(8260B) ND ND ND ND ND ND ND ND ND N	ND	CC/MS Volatile Organics	(6260B) ND ND ND ND ND ND ND ND ND N

Appendix B

Sample ID:	FWGBKGmw-004C-035	7-GW				
Lab ID:	A7A260102-005		Receipt Da	te:	01/26/07 7:30AM	
Sampling Date:	01/25/07 10:20AM		Matrix:		WATER	
Paramete	er	Result	<u>Units</u>	<u>RL</u>	Prep- Analysis Date	Analyst
Volatile Organics, 1,1-Dichloroethane		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethane		ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloropropan	e	ND	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloropr	ropene	ND	ug/L	1.0	01/30/07	LEE
ı						
		Gen	eral Chemistry			
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose as Nitrocellulose	N by 353.2	.ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-004C-0357-GF

Lab ID: Sampling Date: A7A260102-006 01/25/07 10:20AM

Receipt Date:

01/26/07 7:30AM

Matrix:

WATER Prep-

					Prep-	
Parameter	Result		<u>Units</u>	RL	Analysis Date	Analyst
		Met	als			
Inductively Coupled Plasma (6010B Arsenic	Trace)		ug _. /L	5.0	01/29- 02/06/07	LRW
Lead	ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma (6010B Magnesium	6430		ug/L	1000	01/29- 02/06/07	LRW
Manganese	1.1	В	ug/L	10.0	01/29- 02/06/07	LRW
Barium	20.4		ug/L	10.0	01/29- 02/06/07	LRW
Nickel	ND		ug/L	10.0	01/29- 02/06/07	LRW
Potassium	685	вЈ	ug/L	1000	01/29- 02/06/07	LRW
Silver	ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium	12700		ug/L	1000	01/29- 02/06/07	LRW
Vanadium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium	18000		ug/L	1000	01/29- 02/06/07	LRW
Cobalt	ND		ug/L	5.0	01/29- 02/06/07	LRW
Copper	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma Mass S Antimony	0.11	B	ug/L	2.0	01/29- 01/30/07	BD
Iron	68.2		ug/L	20.0	01/29- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/29- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc	6.3	ВЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum	2.8	В	ug/L	50.0	01/29- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Liq	uid					
Mercury	ND		ug/L	0.20	01/29- 01/30/07	ML

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL3mw-238C-0386-GW

Lab ID: Sampling Date: A7A260102-007 01/25/07 9:15AM Receipt Date: Matrix: 01/26/07 7:30AM

WATER

Prep-Analysis Date Parameter Result Units RLAnalyst ----- GC Semivolatile Organics -----PCBs (8082) Aroclor 1016 ND ug/L 0.50 01/28- 02/08/07 T.H Aroclor 1221 ND 0.50 01/28- 02/08/07 ug/L LHAroclor 1232 0.50 01/28- 02/08/07 ND ug/L LH Aroclor 1242 ND ug/L 0.50 01/28- 02/08/07 LH Aroclor 1248 ND ug/L 0.50 01/28- 02/08/07 LН Aroclor 1254 0.50 01/28- 02/08/07 ND ug/L LН Aroclor 1260 ND ug/L 0.50 01/28- 02/08/07 LH PCBs (8082) Re-extract ND 0.50 02/08- 02/09/07 Aroclor 1016 ug/L LH ND 0.50 Aroclor 1221 ug/L 02/08- 02/09/07 LH Aroclor 1232 02/08- 02/09/07 ND ug/L 0.50 LH Aroclor 1242 ND ug/L 0.50 02/08- 02/09/07 LH Aroclor 1248 ND 0.50 02/08- 02/09/07 ug/L LH Aroclor 1254 ND 0.50 02/08- 02/09/07 uq/L LH Aroclor 1260 ND uq/L 0.50 02/08- 02/09/07 LH Pesticides (8081A) ND 0.30 01/28- 02/01/07 CSV Dieldrin ug/L Endosulfan I ug/L 0.25 01/28- 02/01/07 ND CSV Endosulfan II ND ug/L 0.25 01/28- 02/01/07 CSV Endosulfan sulfate ND ug/L 0.30 01/28- 02/01/07 CSV Endrin ND 0.30 01/28- 02/01/07 CSV ug/L Endrin aldehyde ND ug/L 0.30 01/28- 02/01/07 CSV Endrin ketone 0.30 01/28- 02/01/07 ND ug/L CSV Heptachlor ND ug/L 0.30 01/28- 02/01/07 CSV Heptachlor epoxide 0.30 01/28- 02/01/07 ND ug/L CSV 01/28- 02/01/07 Methoxychlor ND ug/L 1.0 CSV alpha-BHC ND ug/L 0.30 01/28- 02/01/07 CSV beta-BHC 0.17 0.30 01/28- 02/01/07 CSV ug/L delta-BHC ND 0.30 01/28- 02/01/07 csv ug/L gamma-BHC (Lindane) ND 0.30 01/28- 02/01/07 CSV ug/L

Appendix B

Sample ID: FWGLL3mw-238C-0386-GW Lab ID: A7A260102-007		6-GW	Receipt :	Date:	01/26/07		
Sampling Date:	01/25/07 9:15AM	I	Matrix:		WATER Prep-		
Parameter	<u>-</u>	Result	Units	RL		is Date	Analyst
Pesticides (8081A)			(19)		25.422	00 /01 /05	
Toxaphene		ND	ug/L	20		02/01/07	CSV
alpha-Chlordane		ND ·	ug/L	0.30	01/28-	02/01/07	CSV
gamma-Chlordane		ND	ug/L	0.30	01/28-	02/01/07	CSV
Aldrin		ND	ug/L	0.30	01/28-	02/01/07	CSV
4,4'-DDD		ND	ug/L	0.30	01/28-	02/01/07	CSV
4,4'-DDE		ND	ug/L	0.30	01/28-	02/01/07	CSV
4,4'-DDT		ND	ug/L	0.30	01/28-	02/01/07	CSV
J Estimated resul	t. Result is less	than RL.					
	·	(0220)					
Nitroaromatics & N. 1,3-Dinitrobenzene	itramines: Explo	ND (8330)	ug/L	0.49	02/01-	02/17/07	FK
2,4-Dinitrotoluene	•	ND	ug/L	0.49	02/01-	02/17/07	FK
2,6-Dinitrotoluene		0.49	ug/L	0.49	02/01-	02/17/07	FK
Nitrobenzene		ND	ug/L	0.49	02/01-	02/17/07	FK
1,3,5-Trinitrobenze	ene	30	ug/L	0.49	02/01-	02/17/07	FK
2,4,6-Trinitrotolue	ene	65	ug/L	0.49	02/01-	02/17/07	FK
HMX		1.5	ug/L	0.49	02/01-	02/17/07	FK
RDX		4.6	ug/L	0.49	02/01-	02/17/07	FK
Tetryl		ND	ug/L	0.49	02/01-	02/17/07	FK
2-Nitrotoluene		ND	ug/L	2.5	02/01-	02/17/07	FK
3-Nitrotoluene		ND	ug/L	2.5	02/01-	02/17/07	FK
4-Nitrotoluene		ND	ug/L	2.5	02/01-	02/17/07	FK
4-Amino-2,6-dinitro	otoluene	27	ug/L	0.49	02/01-	02/17/07	FK
2-Amino-4,6-dinitro	otoluene	13	ug/L	0.49	02/01-	02/17/07	FK
Organic Compounds	by UV/HPLC Diss	olved					
Nitroguanidine		ND	ug/L	20	02/06-	02/07/07	FK
		GC/MS Semi	ivolatile Organics	s 			
Base/Neutrals and							
Diethyl phthalate		ND	ug/L	1.0	01/29~	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND .	ug/L	1.0	01/29-	02/01/07	JMG
Appendix	В		Page 320				

Sample ID:

FWGLL3mw-238C-0386-GW

Lab ID: Sampling Date: A7A260102-007

Receipt Date:

01/26/07 7:30AM

WATER Prep-01/25/07 9:15AM Matrix:

01/23/07 9.	15741	***************************************		Prep-		
<u>Parameter</u>	Result	<u>Units</u>	RL	Analysis Date	Analyst	
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/29- 02/01/07	JMG	
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG	
2,4-Dinitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG	
2,4-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG	
2,6-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG	
Anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Fluorene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Hexachlorobenzene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Hexachlorobutadiene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
Hexachlorocyclopentadiene	ND	ug/L	10	01/29- 02/01/07	JMG	
Hexachloroethane	ND	ug/L	1.0	01/29- 02/01/07	JMG	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Isophorone	ND	ug/L	1.0	01/29- 02/01/07	JMG	
2-Methylnaphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
2-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG	
4-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG	
Naphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
2-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG	
3-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG	
4-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG	
Nitrobenzene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
2-Nitrophenol	ND	ug/L	2.0	01/29- 02/01/07	JMG	
4-Nitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG	
Benzo(a)anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG	
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG	
Benzo(b) fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Benzo(k)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Benzoic acid	ND	ug/L	10	01/29- 02/01/07	JMG	
Benzo(ghi)perylene Appendix B	ИD	ug/L Page 321	0.20	01/29- 02/01/07	JMG	

Sample ID:

FWGLL3mw-238C-0386-GW

Lab ID: Sampling Date: A7A260102-007

Receipt Date:

01/26/07 7:30AM

Lab ID: A7A260102-007		Receipt	Receipt Date:		01/26/07 7:30AM		
Sampling Date:	01/25/07 9:15AM		Matrix:		WATER Prep	<u>>-</u>	
Paramete	er_	Result	Units	<u>RL</u>	Analysi	is Date	Analyst
Base/Neutrals and Benzo(a)pyrene	Acids (8270C)	ND	ug/L	0.20	01/29-	02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/29-	02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/29-	02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/29-	02/01/07	JMG
Phenol		ND	ug/L	1.0	01/29-	02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/29-	02/01/07	JMG
1,2,4-Trichloroben	izene	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,4,5-Trichlorophe	enol	ND	ug/L	5.0	01/29-	02/01/07	JMG
2,4,6-Trichlorophe	nol	ND	ug/L	5.0	01/29-	02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethoxy) methane	ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethyl)	ether	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,2'-Oxybis(1-Chlo	propropane)	ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/29-	02/01/07	JMG
4-Bromophenyl phen	yl ether	ND	ug/L	2.0	01/29-	02/01/07	JMG
Butyl benzyl phtha	late	ND	ug/L	1.0	01/29-	02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/29-	02/01/07	JMG
4-Chloroaniline		ИD	ug/L	2.0	01/29-	02/01/07	JMG
4-Chloro-3-methylr	henol	ND	ug/L	2.0	01/29-	02/01/07	JMG
2-Chloronaphthalen	ıe	ND .	ug/L	1.0	01/29-	02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/29-	02/01/07	JMG
4-Chlorophenyl phe	enyl ether	ND	ug/L	2.0	01/29-	02/01/07	JMG
Chrysene		ND	ug/L	0.20	01/29-	02/01/07	JMG
Dibenz(a,h)anthrac	cene	ND	ug/L	0.20	01/29-	02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/29-	02/01/07	JMG
Di-n-butyl phthala	ite	ND .	ug/L	1.0	01/29-	02/01/07	JMG
1,2-Dichlorobenzer	ne	ND	ug/L	1.0	01/29-	02/01/07	JMG
1,3-Dichlorobenzer	ne .	ND	ug/L	1.0	01/29-	02/01/07	JMG
1,4-Dichlorobenzer	ne	ND	ug/L	1.0	01/29-	02/01/07	JMG
3,3'-Dichlorobenzi	dine	ND	ug/L	5.0	01/29-	02/01/07	JMG
2,4-Dichlorophenol Appendi		ND	ug/L Page 322	2.0	01/29-	02/01/07	JMG ·

Sample ID:

FWGLL3mw-238C-0386-GW

Lab ID: Sampling Date: A7A260102-007

Receipt Date:

01/26/07 7:30AM

01/25/07 9:15AM

WATER
Prep-lvsis Dat Matrix:

Parameter	Result	Units	RL	Analysis Date	Analyst
	GC/MS	Volatile Organics -			
Volatile Organics, GC/MS (8					
trans-1,3-Dichloropropene	ND	ug/L	1.0	01/30/07	LEE
Acetone	ND	ug/L	10	01/30/07	LEE
Ethylbenzene	ND	ug/L	1.0	01/30/07	LEE
2-Hexanone	ND	ug/L	10	01/30/07	LEE
Methylene chloride	ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pentanone	ND	ug/L	10	01/30/07	LEE
Benzene	ND	ug/L	1.0	01/30/07	LEE
Styrene	ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroethene	. ND	ug/L	1.0	01/30/07	LEE
Toluene	ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/30/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethene	. ND	ug/L	1.0	01/30/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/30/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/30/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/30/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/30/07	LEE
Bromoform	ND	ug/L	1.0	01/30/07	LEE
Bromomethane	ND	ug/L	1.0	01/30/07	LEE
2-Butanone	ND	ug/L	10	01/30/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/30/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/30/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/30/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/30/07	LEE
Chloroethane	ND	ug/L	1.0	01/30/07	LEE
Chloroform	ND	. ug/L	1.0	01/30/07	LEE
Chloromethane	ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWGLL3mw-238C-	0386-GW					
Lab ID:	A7A260102-007			Receipt	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 9:1	5AM		Matrix:	:	WATER Prep-	
Parame	ter	Result		Units	RL	Analysis Date	Analyst
Volatile Organics 1,1-Dichloroethar		ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloroethar	ne	ND		ug/L	1.0	01/30/07	LEE
1,1-Dichloroether	ne	ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloroether	ne (total)	ND		ug/L	1.0	01/30/07	LEE
1,2-Dichloropropa	ine	ND .		ug/L	1.0	01/30/07	LEE
cis-1,3-Dichlorop	propene	ND		ug/L	1.0	01/30/07	LEE
			- Conomal C	homistra			·
			- General C	nemrs cry			
Cyanide, Total Cyanide, Total		ND		mg/L	0.010	01/30/07	SS
Nitrocellulose as	s N by 353.2	0.14	ВЈ	mg/L	0.50	02/06- 02/08/07	DTA

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL3mw-238C-0386-GF

Lab ID: Sampling Date: A7A260102-008 01/25/07 9:15AM Receipt Date:

01/26/07

WATER

7:30AM

Matrix:

Prep-Analysis Date Result Parameter Units RLAnalyst ----- Metals Inductively Coupled Plasma (6010B Trace) 01/29- 02/06/07 ug/L 5.0 TIRW Arsenic ND 3.0 01/29- 02/06/07 Lead ug/L LRW Selenium ND ug/L 5.0 .01/29- 02/06/07 LRW Inductively Coupled Plasma (6010B) 3990 1000 01/29- 02/06/07 LRW Magnesium ug/L 0.79 10.0 01/29- 02/06/07 Manganese ug/L LRW Barium 5.6 10.0 01/29- 02/06/07 LRW ug/L Nickel 10.0 01/29- 02/06/07 ND ua/L T.RW J 1000 01/29- 02/06/07 Potassium 1620 ug/L LRW Silver ND ug/L 5.0 01/29- 02/06/07 LRW Sodium 1910 ug/L 1000 01/29- 02/06/07 LRW Vanadium ND ug/L 10.0 01/29- 02/06/07 LRW Chromium ND 5.0 01/29- 02/06/07 ug/L LRW Calcium 36600 1000 ug/L 01/29~ 02/06/07 LRW Cobalt 5.0 01/29- 02/06/07 ND ug/L T.RW Copper 1.9 В ug/L 5.0 01/29- 02/06/07 TIRW Inductively Coupled Plasma Mass Spectrometry (6020) 2.0 01/29- 01/30/07 Antimony 0.13 ug/L BD Iron 120 ug/L 20.0 01/29- 01/30/07 BD Beryllium ND ug/L 1.0 01/29- 01/30/07 BD Thallium 1.0 01/29- 01/30/07 ND ug/L BD Zinc 6.2 вЈ ug/L 10.0 01/29- 01/30/07 BD Cadmium ND 0.50 01/29- 01/30/07 ug/L BD Aluminum ND ug/L 50.0 01/29- 01/30/07 BD Mercury (7470A, Cold Vapor) - Liquid

Mercury

ug/L

0.20

01/29- 01/30/07

ML

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGBKGmw-019C-0368-GW

Lab ID: Sampling Date: A7A260102-009 01/25/07 11:00AM Receipt Date:

01/26/07 7:30AM

Matrix:

WATER _

Sampling Date:	01/25/07 11:00AM		MATTIX: WATER Prep-		WATER Prep-	
Paramete	er_	Result	Units	<u>RL</u>	Analysis Date	Analyst
		GC	Semivolatile Organics			
PCBs (8082)				,		
Aroclor 1016		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232		ИD	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-	-extract					
Aroclor 1016		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254		ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260		ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A)						
Dieldrin		ND	ug/L	0.030	01/28- 01/30/07	CSV
Endosulfan I		ND	ug/L	0.025	01/28- 01/30/07	CSV
Endosulfan II		ND	ug/L	0.025	01/28- 01/30/07	csv
Endosulfan sulfate	· ,	ND	ug/L	0.030	01/28- 01/30/07	CSV
Endrin		ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin ketone		ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor		ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor epoxide		ND	ug/L	0.030	01/28- 01/30/07	csv
Methoxychlor		ND	ug/L	0.10	01/28- 01/30/07	csv
alpha-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
beta-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
delta-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv
gamma-BHC (Lindane	2)	ND	ug/L	0.030	01/28- 01/30/07	CSV

Sample ID: Lab ID: Sampling Date:	D: A7A260102-009		Receipt Da Matrix:	ite:	01/26/07 WATER		
Paramete		Result	Units	RL	Prep Analysi		Analyst
Pesticides (8081A)							
Toxaphene		ND	ug/L	2.0	01/28-	01/30/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	CSV
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	CSV
Aldrin		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDD		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE		ND	ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT		ND	ug/L	0.030	01/28-	01/30/07	CSV
					·		
Nitroaromatics & N: 1,3-Dinitrobenzene	itramines: Explo	ND (8330)	ug/L	0.096	02/01-	02/17/07	FK
2,4-Dinitrotoluene		ND	ug/L	0.096	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.096	02/01-	02/17/07	FK
Nitrobenzene		ND ·	ug/L	0.096	02/01-	02/17/07	FK
1,3,5-Trinitrobenze	ene	. ND	ug/L	0.096	02/01-	02/17/07	FK
2,4,6-Trinitrotolue	ene	ND	ug/L	0.096	02/01-	02/17/07	FK
нмх		ND	ug/L	0.096	02/01-	02/17/07	FK
RDX		ND	ug/L	0.096	02/01-	02/17/07	FK
Tetryl		ND	ug/L	0.096	02/01-	02/17/07	FK
2-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
3-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
4-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
4-Amino-2,6-dinitro	otoluene	ND	ug/L	0.096	02/01-	02/17/07	FK
2-Amino-4,6-dinitro	otoluene	ND	ug/L	0.096	02/01-	02/17/07	FK
Organic Compounds	by UV/HPLC Dis	solved					
Nitroguanidine	2, 00,	ND	ug/L	20	02/06-	02/07/07	FK
		GC/MS	Semivolatile Organics				,
Base/Neutrals and . Diethyl phthalate	Acids (8270C)	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/29-	02/01/07	JMG
Appendix	В		Page 327				

Sample ID:

FWGBKGmw-019C-0368-GW

Lab ID: Sampling Date: A7A260102-009

Receipt Date: 01/26/07 7:30AM WATER Prep-01/25/07 11:00AM Matrix:

Parameter_	Result	Units	<u>RL</u>	Prep- Analysis Date	Analyst
Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/29- 02/01/07	JMG
4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,6-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
Anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluorene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobenzene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobutadiene	ND	ug/L	10	01/29- 02/01/07	JMG
Hexachlorocyclopentadiene	ND	ug/L	10	01/29- 02/01/07	JMG
Hexachloroethane	ND	ug/L	1.0	01/29- 02/01/07	JMG
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Isophorone	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Methylnaphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
Naphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
3-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
Nitrobenzene	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Nitrophenol	ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzo(a)anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
N-Nitrosodiphenylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
Benzo(b)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzo(k)fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzoic acid	ND	ug/L	10	01/29- 02/01/07	JMG
Benzo(ghi)perylene Appendix B	ND	ug/L Page 328	0.20	01/29- 02/01/07	JMG

Sample ID:

FWGBKGmw-019C-0368-GW

Lab ID:	A7A260102-009		_	Receipt Date:		01/26/07 7:30AM	
Sampling Date:	01/25/07 11:00AM		Matrix:		WATER Prep Analysi		
Paramet	er_	Result	Units	<u>RL</u>	maryar	.s Dace	Analyst
Base/Neutrals and Benzo(a)pyrene	Acids (8270C)	ND	ug/L	0.20	01/29-	02/01/07	JMG
Pentachlorophenol		ND .	ug/L	5.0	01/29-	02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/29-	02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/29-	02/01/07	JMG
Phenol		ND	ug/L	1.0	01/29-	02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/29-	02/01/07	JMG
1,2,4-Trichlorober	nzene	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,4,5-Trichlorophe	enol	ND	ug/L	5.0	01/29-	02/01/07	JMG
2,4,6-Trichlorophe	enol	ND	ug/L	5.0	01/29-	02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethoxy	y)methane	ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Chloroethyl)) ether	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,2'-Oxybis(1-Chlo	oropropane)	ND	ug/L	1.0	01/29-	02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/29-	02/01/07	JMG
4-Bromophenyl phen	nyl ether	ND	ug/L	2.0	01/29-	02/01/07	JMG
Butyl benzyl phtha	alate	ND	ug/L	1.0	01/29-	02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/29-	02/01/07	JMG
4-Chloroaniline	•. •	ND	ug/L	2.0	01/29-	02/01/07	JMG
4-Chloro-3-methyl	phenol	ND	ug/L	2.0	01/29-	02/01/07	JMG
2-Chloronaphthale	ne	ND	ug/L	1.0	01/29-	02/01/07	JMG
2-Chlorophenol	. •	ND	ug/L	1.0	01/29-	02/01/07	JMG
4-Chlorophenyl pho	enyl ether	ND	ug/L	2.0	01/29-	02/01/07	JMG
Chrysene		ИD	ug/L	0.20	01/29-	02/01/07	JMG
Dibenz(a,h)anthra	cene	ИD	ug/L	0.20	01/29-	02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/29-	02/01/07	JMG
Di-n-butyl phthal	ate	ND	ug/L	1.0	01/29-	02/01/07	JMG
1,2-Dichlorobenze	ne	ИD	ug/L	1.0	01/29-	02/01/07	JMG
1,3-Dichlorobenze	ne	ИD	ug/L	1.0	01/29-	02/01/07	JMG
1,4-Dichlorobenze	ne	ND	ug/L	1.0	01/29-	02/01/07	JMG
3,3'-Dichlorobenz	idine	ND	ug/L	5.0	01/29-	02/01/07	JMG
2,4-Dichloropheno Append		ND	ug/L Page 329	2.0	01/29-	02/01/07	JMG

Sample ID:

FWGBKGmw-019C-0368-GW

Lab ID: Sampling Date: A7A260102-009

01/25/07 11:00AM

Receipt Date:

Matrix:

01/26/07 7:30AM

WATER

Prep-Analysis Date Parameter Result Units Analyst ------ GC/MS Volatile Organics ------Volatile Organics, GC/MS (8260B) trans-1,3-Dichloropropene ND ug/L 1.0 01/30/07 LEE Acetone ND ug/L 10 01/30/07 LEE Ethvlbenzene ND 1.0 01/30/07 LEE ug/L 2-Hexanone ND ug/L 10 01/30/07 LEE Methylene chloride 2.0 01/30/07 ND ug/L LEE 4-Methyl-2-pentanone 10 01/30/07 MD ug/L LEE ND 1.0 01/30/07 Benzene ug/L LEE Styrene MD ug/L 1.0 01/30/07 LEE 1,1,2,2-Tetrachloroethane ND ug/L 1.0 01/30/07 LEE Tetrachloroethene ND ug/L 1.0 01/30/07 LEE ND 01/30/07 LEE Toluene ug/L 1.0 1,1,1-Trichloroethane ND 1.0 01/30/07 LEE ug/L 1,1,2-Trichloroethane ND ug/L 1.0 01/30/07 TEE Trichloroethene ND ug/L 1.0 01/30/07 LEE Vinyl chloride 01/30/07 ND ug/L 1.0 TER Xylenes (total) ND ug/L 2.0 01/30/07 LEE Bromochloromethane ND 1.0 01/30/07 ug/L LEE Bromodichloromethane 01/30/07 ND uq/L 1.0 LEE Bromoform ND 1.0 01/30/07 LEE ug/L Bromomethane ND 01/30/07 ug/L 1.0 LEE 2-Butanone 10 01/30/07 ND ug/L LEE Carbon disulfide 01/30/07 ND ug/L 1.0 LEE Carbon tetrachloride ND ug/L 1.0 01/30/07 LEE Chlorobenzene ND ug/L 1.0 01/30/07 LEE Dibromochloromethane ND ug/L 1.0 01/30/07 LEE Chloroethane ND ug/L 1.0 01/30/07 LEE Chloroform ND ug/L 1.0 01/30/07 LEE Chloromethane ND 01/30/07 LEE ug/L 1.0 1,2-Dibromoethane ND uq/L 1.0 01/30/07 TJEE

Appendix B

Sample ID:	FWGBKGmw-019C-0	368-GW				
Lab ID:	A7A260102-009		Receipt Da	ate:	01/26/07 7:30AM	
Sampling Date:	01/25/07 11:00	AM	Matrix:		WATER Prep-	
Parame	eter_	Result	Units	<u>RL</u>	Analysis Date	Analyst
	es, GC/MS (8260B)				4 10	
1,1-Dichloroetha	ine	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroetha	ine	ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethe	ene	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethe	ene (total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroprop	pane	ND .	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloro	propene	ND	ug/L	1.0	01/30/07	LEE
grows maken having garmen provent fromthe destall glands until An		Ge	eneral Chemistry			
Cyanide, Total			•			
Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose a	as N by 353.2					
Nitrocellulose		ND	ma/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGBKGmw-019C-0368-GF

Lab ID: Sampling Date: A7A260102-010

Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-010		*	Receipt	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 11:00AM	ī		Matrix:		WATER Prep-	
Paramete	er	Result		Units	RL	Analysis Date	Analyst
			Met	als			
Inductively Couple Arsenic	ed Plasma (6010B !	Irace) ND		ug/L	5.0	01/29- 02/06/07	LRW
Lead		ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium		ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Couple	ed Plasma (6010B)	32600		ug/L	1000	01/29- 02/06/07	LRW
Manganese		146		ug/L	10.0	01/29- 02/06/07	LRW
Barium		43.3		ug/L	10.0	01/29- 02/06/07	LRW
Nickel		ND		ug/L	10.0	01/29- 02/06/07	LRW
Potassium		1200	J	ug/L	1000	01/29- 02/06/07	LRW
Silver		ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium		8120		ug/L	1000	01/29- 02/06/07	LRW
Vanadium		ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium		ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium		114000		ug/L	1000	01/29- 02/06/07	LRW
Cobalt		ND		ug/L	5.0	01/29- 02/06/07	LRW
Copper		ND	·	ug/L	5.0	01/29- 02/06/07	LRW
Inductively Couple	ed Plasma Mass Spo	ectrometry(6020)				
Antimony		0.074	В,	ug/L	2.0	01/29- 01/30/07	BD
Iron		520		ug/L	20.0	01/29- 01/30/07	BD
Beryllium		ND		ug/L	1.0	01/29- 01/30/07	BD
Thallium		ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc		4.4	ВЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium		ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum		25.5	В	ug/L	50.0	01/29- 01/30/07	BD
Mercury (7470A, Co	old Vapor) - Liqu	id ND		ug/L	0.20	01/29- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL1mw-080C-0381-GW

Lab ID:

A7A260102-011

01/26/07 7:30AM

Lab ID:	A7A260102-011	•	Receipt Date:		Date:	01/26/07 7:30AM	1
Sampling Date:	01/25/07 1:	35PM		Matrix:		WATER Prep-	
Paramete	er_	Result	Ur	nits	RL	Analysis Date	Analyst
		GC	Semivolatile	Organics ·			
PCBs (8082)							
Aroclor 1016		ND		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1221		ND		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1232		ND		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1242		ND		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1248		ИД		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1254		MD.		ug/L	0.50	01/28- 02/08/	07 LH
Aroclor 1260		ND		ug/L	0.50	01/28- 02/08/	07 LH
DOD- (0000) D-		•	,				
PCBs (8082) Re- Aroclor 1016	-extract	ND	,	ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1221		ND		ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1232		ND		ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1242		ND		ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1248		ND	•	ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1254		ND		ug/L	0.50	02/08- 02/09/	07 LH
Aroclor 1260		ND		ug/L	0.50	02/08- 02/09/	07 LH
	•						
Pesticides (8081A) Dieldrin		ND		ug/L	0.030	01/28- 01/30/	07 CSV
Endosulfan I		ND		ug/L	0.025	01/28- 01/30/	07 CSV
Endosulfan II		ND		ug/L	0.025	01/28- 01/30/	or csv
Endosulfan sulfate	· ·	ND		ug/L	0.030	01/28- 01/30/	or csv
Endrin		ND		ug/L	0.030	01/28- 01/30/	or csv
Endrin aldehyde		ND .		ug/L	0.030	01/28- 01/30/	07 CSV
Endrin ketone		ND		ug/L	0.030	01/28- 01/30/	07 csv
Heptachlor		ND		ug/L	0.030	01/28- 01/30/	07 CSV
Heptachlor epoxide	:	ND		ug/L	0.030	01/28- 01/30/	o7 csv
Methoxychlor		ND	•	ug/L	0.10	01/28- 01/30/	07 CSV
alpha-BHC		ND		ug/L	0.030	01/28- 01/30/	07 CSV
beta-BHC		0.029	J	ug/L	0.030	01/28- 01/30/	07 CSV
delta-BHC		ND		ug/L	0.030	01/28- 01/30/	07 CSV
gamma-BHC (Lindane	e)	ND		ug/L	0.030	01/28- 01/30/	07 CSV

Appendix B

Lab ID:	FWGLL1mw-080C-038 A7A260102-011 01/25/07 1:35PM			Receipt Matrix:		01/26/07 WATER	7:30AM	
Parameter	-	Result		Units	RL	Prep Analysi		Analyst
Pesticides (8081A) Toxaphene		ND		ug/L	2.0	01/28-	01/30/07	csv
alpha-Chlordane		ND		ug/L	0.030	01/28-	01/30/07	CSV
gamma-Chlordane		ND		ug/L	0.030	01/28-	01/30/07	ÇSV
Aldrin		ND		ug/L	0.030	01/28-	01/30/07	csv
4,4'-DDD		ND		ug/L	0.030	01/28-	01/30/07	csv
4,4'-DDE		ND		ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT		ND		ug/L	0.030	01/28-	01/30/07	csv
J Estimated result	. Result is less t	than RL.			•		•	
u	·		· 			Place dans from Sand Green From Sand Sand Sand Sand Sand Sand Sand Sand		n errer dense dense dense som
Nitroaromatics & Nit 1,3-Dinitrobenzene	tramines: Explos	ives (8330) ND		ug/L	0.099	02/01-	02/17/07	FK
2,4-Dinitrotoluene		ND		ug/L	0.099	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND		ug/L	0.099	02/01-	02/17/07	FK
Nitrobenzene		ND		ug/L	0.099	02/01-	02/17/07	FK
1,3,5-Trinitrobenzen	ie .	0.22		ug/L	0.099	02/01-	02/17/07	FK
2,4,6-Trinitrotoluen	ie .	0.15		ug/L	0.099	02/01-	02/17/07	FK
HMX		0.55		ug/L	0.099	02/01-	02/17/07	FK
RDX		2.4		ug/L	0.099	02/01-	02/17/07	FK
Tetryl		ND		ug/L	0.099	02/01-	02/17/07	FK
2-Nitrotoluene		ND		ug/L	0.50	02/01-	02/17/07	FK
3-Nitrotoluene		ND		ug/L	0.50	02/01-	02/17/07	FK
4-Nitrotoluene		0.14	J	ug/L	0.50	02/01-	02/17/07	FK
4-Amino-2,6-dinitrot	coluene	3.1		ug/L	0.099	02/01-	02/17/07	FK
2-Amino-4,6-dinitrot	coluene	1.4		ug/L	0.099	02/01-	02/17/07	FK
Organic Compounds by	y UV/HPLC Disso	olved						
Nitroguanidine	_	ND		ug/L	20	02/06-	02/07/07	FK
	. Result is less		omirrola+	ilo Organio	36			
Base/Neutrals and A		GC/ FID L	ent vota c	rre Organic				
Diethyl phthalate		ND		ug/L	1.0	01/29-	02/01/07	JMG
2,4-Dimethylphenol		ND		ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND		ug/L	1.0	01/29-	02/01/07	JMG
Appendix E	3		Page	334		٠.		

Sample ID:

FWGLL1mw-080C-0381-GW

Lab ID:

Appendix B

A7A260102-011

Receipt Date:

01/26/07 7:30AM

1:35PM Matrix: 01/25/07 Sampling Date: WATER Prep-Analysis Date Result Units RLAnalyst Parameter Base/Neutrals and Acids (8270C) 01/29- 02/01/07 Di-n-octyl phthalate ND ug/L 1.0 JМG ug/L 5.0 01/29~ 02/01/07 4,6-Dinitro-2-methylphenol ND JMG 2,4-Dinitrophenol MΠ ug/L 5.0 01/29- 02/01/07 .TMC 2,4-Dinitrotoluene 5.0 01/29- 02/01/07 ND ug/L JMG 5.0 01/29- 02/01/07 2,6-Dinitrotoluene ND ug/L JMG Anthracene ND ug/L 0.20 01/29- 02/01/07 JMG Fluoranthene 0.20 01/29- 02/01/07 JMG ND ug/L 0.20 01/29- 02/01/07 Fluorene ND uq/L JMG Hexachlorobenzene . ND 0.20 01/29- 02/01/07 JMG uq/L 01/29- 02/01/07 Hexachlorobutadiene 1.0 JMG NΠ ug/L Hexachlorocyclopentadiene 10 01/29- 02/01/07 JMG ND ug/L 01/29- 02/01/07 Hexachloroethane ND ug/L 1.0 JMG Indeno(1,2,3-cd)pyrene ND ug/L 0.20 01/29- 02/01/07 JMG Isophorone 1.0 01/29- 02/01/07 JМG ND ug/L 0.20 01/29- 02/01/07 2-Methylnaphthalene ND ua/L JMG 1.0 01/29- 02/01/07 JMG 2-Methylphenol ND ug/L 1.0 01/29- 02/01/07 4-Methylphenol ND ug/L JMG 0.20 01/29- 02/01/07 Naphthalene ND ug/L .TMC 2-Nitroaniline 2.0 01/29- 02/01/07 ND ug/L JMG 3-Nitroaniline ND ug/L 2.0 01/29- 02/01/07 JMG 4-Nitroaniline 2.0 01/29- 02/01/07 JMG ND ug/L 01/29- 02/01/07 Nitrobenzene ND ug/L 1.0 JMG 2-Nitrophenol ND 2.0 01/29- 02/01/07 JMG ug/L 01/29- 02/01/07 4-Nitrophenol ND ug/L 5.0 JMG 0.20 01/29- 02/01/07 Benzo(a) anthracene ND ug/L JMG N-Nitrosodi-n-propylamine ND ug/L 1.0 01/29- 02/01/07 JMG N-Nitrosodiphenylamine ND ug/L 1.0 01/29- 02/01/07 JMG Benzo(b) fluoranthene ND ug/L 0.20 01/29- 02/01/07 JMG Benzo(k) fluoranthene 0.20 01/29- 02/01/07 JMG ND ug/L Benzoic acid 01/29- 02/01/07 ND ug/L 10 JMG Benzo(ghi)perylene ND ug/L 0.20 01/29- 02/01/07 JMG

Sample ID:

FWGLL1mw-080C-0381-GW

A7A260102-011

Receipt Date:

01/26/07 7:30AM

Lab ID: A7A260102-011			Recei	pt Date:	01/26/07 7:30AM		
Sampling Date:	01/25/07 1:351	PM	Matri	ж:	WATER Prep-		
Parame	ter	Result	Units	RL	Analysis Date	Analyst	
Base/Neutrals and Benzo(a)pyrene	d Acids (8270C)	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Pentachlorophenol	L	ND	ug/L	5.0	01/29- 02/01/07	JMG	
Benzyl alcohol		ND	ug/L	5.0	01/29- 02/01/07	JMG	
Phenanthrene		ND	ug/L	0.20	01/29- 02/01/07	JMG	
Phenol		ND	ug/L	1.0	01/29- 02/01/07	JMG	
Pyrene		ND	ug/L	0.20	01/29- 02/01/07	JMG	
1,2,4-Trichlorobe	enzene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
2,4,5-Trichloroph	nenol	ND	ug/L	5.0	01/29- 02/01/07	JMG	
2,4,6-Trichloroph	nenol	ND	ug/L	5.0	01/29- 02/01/07	JMG	
Carbazole		ND	ug/L	1.0	01/29- 02/01/07	JMG	
bis(2-Chloroethox	(y) methane	ND	ug/L	1.0	01/29- 02/01/07	JMG	
bis(2-Chloroethy)	l) ether	ND	ug/L	1.0	01/29- 02/01/07	JMG	
2,2'-Oxybis(1-Chl	Loropropane)	ND .	ug/L	1.0	01/29- 02/01/07	JMG	
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/29- 02/01/07	JMG	
4-Bromophenyl phe	enyl ether	ND	ug/L	2.0	01/29- 02/01/07	JMG	
Butyl benzyl phth	nalate	ND	ug/L	1.0	01/29- 02/01/07	JMG	
Acenaphthylene		ND.	ug/L	0.20	01/29- 02/01/07	JMG	
4-Chloroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG	
4-Chloro-3-methyl	lphenol	ND	ug/L	2.0	01/29- 02/01/07	JMG	
2-Chloronaphthale	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
2-Chlorophenol		ND	ug/L	1.0	01/29- 02/01/07	JMG	
4-Chlorophenyl ph	nenyl ether	ND	ug/L	2.0	01/29- 02/01/07	JMG	
Chrysene		ND	ug/L	0.20	01/29- 02/01/07	JMG	
Dibenz(a,h)anthra	acene	ND	ug/L	0.20	01/29- 02/01/07	JMG	
Dibenzofuran		ND	ug/L	1.0	01/29- 02/01/07	JMG	
Di-n-butyl phtha	late	ND	ug/L	1.0	01/29- 02/01/07	JMG	
1,2-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
1,3-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
1,4-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG	
3,3'-Dichloroben	zidine	ND	ug/L	5.0	01/29- 02/01/07	JMG	
2,4-Dichloropheno Append		ND	ug/L Page 336	2.0	01/29- 02/01/07	JMG	

Sample ID:

FWGLL1mw-080C-0381-GW

Lab ID:	A7A260102-011		Receipt :	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 1:35PM	vi	Matrix:		WATER Prep-	
Pe	arameter	Result	Units	RL	Analysis Date	Analyst
		GC/1	MS Volatile Organics -			
Volatile Orga	nics, GC/MS (8260B)				•	
trans-1,3-Dio	chloropropene	ND	ug/L	1.0	01/30/07	LEE
Acetone		ND	ug/L	10	01/30/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/30/07	LEE
2-Hexanone		ND	ug/L	10	01/30/07	LEE
Methylene chl	loride	ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pe	entanone ,	ИD	ug/L	10	01/30/07	LEE
Benzene	,	ND	ug/L	1.0	01/30/07	LEE
Styrene		ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetra	achloroethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroet	thene	ND	ug/L	1.0	01/30/07	LEE
Toluene		ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichlo	proethane	ND	. ug/L	1.0	01/30/07	LEE
1,1,2-Trichlo	proethane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethe	ene	ND	ug/L	1.0	01/30/07	LEE
Vinyl chlorid	de	ND	ug/L	1.0	01/30/07	LEE
Xylenes (tota	al)	ND	ug/L	2.0	01/30/07	LEE
Bromochlorome	ethane	ND	ug/L	1.0	01/30/07	LEE
Bromodichlor	omethane	ND	ug/L	1.0	01/30/07	LEE
Bromoform		ND	ug/L	1.0	01/30/07	LEE
Bromomethane		ND	ug/L	1.0	01/30/07	LEE
2-Butanone		ND	ug/L	10	01/30/07	LEE
Carbon disul:	fide	ND	ug/L	1.0	01/30/07	LEE
Carbon tetra	chloride	ND	ug/L	1.0	01/30/07	LEE
Chlorobenzene	e	ND	ug/L	1.0	01/30/07	LEE
Dibromochlor	omethane	ND	ug/L	1.0	01/30/07	LEE
Chloroethane		ND	ug/L	1.0	01/30/07	LEE
Chloroform		ND	ug/L	1.0	01/30/07	LEE
Chloromethane	е	ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoe	thane	ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWGLL1mw-080C-038	B1−GW				
Lab ID:	A7A260102-011		Receipt D	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 1:35PM	M	Matrix:		WATER	
Paramete	er_	Result	Units	RL	Prep- Analysis Date	Analyst
Volatile Organics, 1,1-Dichloroethane		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethane		ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloropropan	e	ND	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloropr	ropene	ND	ug/L	1.0	01/30/07	LEE
			- General Chemistry	·	••••••••••••••••••••••••••••••••••••••	
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose as Nitrocellulose	N by 353.2	0.12	BJ mg/L	0.50	02/06- 02/08/07	DTA

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL1mw-080C-0381-GF

Lab ID: Sampling Date: A7A260102-012

01/25/07 1:35PM

Receipt Date:

01/26/07 7:30AM WATER _

Matrix:

Damparing Date: 01/25/07 1:5					Prep-	
Parameter	Result		Units	RL	Analysis Date	Analyst
		Met	als			
Inductively Coupled Plasma (6010 Arsenic	B Trace) ND		ug/L	5.0	01/29- 02/06/07	LRW
Lead	ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma (6010) Magnesium	B) 3180		ug/L	1000	01/29- 02/06/07	LRW
Manganese	0.34	В	ug/L	10.0	01/29- 02/06/07	LRW
Barium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Nickel	ND		ug/L	10.0	01/29- 02/06/07	LRW
Potassium	1500	J.	ug/L	1000	01/29- 02/06/07	LRW
Silver	ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium	722	В	ug/L	1000	01/29- 02/06/07	LRW
Vanadium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium	45100		ug/L	1000	01/29- 02/06/07	LRW
Cobalt	ND		ug/L	5.0	01/29- 02/06/07	LRW
Copper	ND		ug/L	5.0	01/29- 02/06/07	LRW
Inductively Coupled Plasma Mass	Spectrometry	(6020)				
Antimony	0.21	В	ug/L	2.0	01/29- 01/30/07	BD
Iron	147		ug/L	20.0	01/29- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/29- 01/30/07	BD
Thallium	ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc	3.7	вЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum	ND		ug/L	50.0	01/29- 01/30/07	BD
Mercury (7470A, Cold Vapor) - Li	quid		,			

[₿] Estimated result. Result is less than RL.

Mercury

ug/L

0.20

01/29- 01/30/07

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWGLL3mw-242C-0387-GW

Lab ID:

A7A260102-013

Receipt Date:

01/26/07 7:30AM

WATER Prep-Sampling Date: 01/25/07 11:16AM Matrix:

Parameter	Result	<u>Units</u>	<u>RL</u>	Analysis Date	Analyst
	GC Se	emivolatile Organics			
PCBs (8082)					
Aroclor 1016	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1221	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1232	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1242	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1248	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1254	ND	ug/L	0.50	01/28- 02/08/07	LH
Aroclor 1260	ND	ug/L	0.50	01/28- 02/08/07	LH
PCBs (8082) Re-extract					
Aroclor 1016	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1221	ND .	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1232	ИD	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1242	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1248	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1254	ND	ug/L	0.50	02/08- 02/09/07	LH
Aroclor 1260	ND	ug/L	0.50	02/08- 02/09/07	LH
Pesticides (8081A)					
Dieldrin	ИD	ug/L	0.030	01/28- 01/30/07	csv
Endosulfan I	ND	ug/L	0.025	01/28- 01/30/07	CSV
Endosulfan II	MD	ug/L	0.025	01/28- 01/30/07	csv
Endosulfan sulfate	ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin	ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin aldehyde	ND	ug/L	0.030	01/28- 01/30/07	csv
Endrin ketone	ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor	ND	ug/L	0.030	01/28- 01/30/07	csv
Heptachlor epoxide	ND	ug/L	0.030	01/28- 01/30/07	csv
Methoxychlor	ND	ug/L	0.10	01/28- 01/30/07	csv
alpha-BHC	ИD	ug/L	0.030	01/28- 01/30/07	csv
beta-BHC	ND	ug/L	0.030	01/28- 01/30/07	csv
delta-BHC	ND	ug/L	0.030	01/28- 01/30/07	CSV
gamma-BHC (Lindane)	ND	ug/L	0.030	01/28- 01/30/07	csv

Appendix B

Sample ID:	FWGLL3mw-242C-038	7-GW					
Lab ID: Sampling Date:	A7A260102-013 01/25/07 11:16AM		Receipt	Date:	01/26/07		
		·	Matrix:		WATER Prep Analysi		
Parameter	<u>-</u>	Result	Units	RL	Mialysi	.s Date	Analyst
Pesticides (8081A) Toxaphene		ND	ug/L	2.0	01/28-	01/30/07	CSV
alpha-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	CSV
gamma-Chlordane		ND	ug/L	0.030	01/28-	01/30/07	CSV
Aldrin		ND	ug/L	0.030		01/30/07	CSV
4,4'-DDD		ND	ug/L	0.030		01/30/07	CSV
4,4'-DDE		ND	ug/L	0.030		01/30/07	CSV
4,4'-DDT		ND	ug/L	0.030		01/30/07	CSV
,	•				,		

Nitroaromatics & Ni	traminac. Evoloc	iros (8330)	,				
1,3-Dinitrobenzene	ctamines: Expios	ND ND	ug/L	0.097	02/01-	02/17/07	fK
2,4-Dinitrotoluene	4.4	ND	ug/L	0.097	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND	ug/L	0.097	02/01-	02/17/07	FK
Nitrobenzene		ND	ug/L	0.097	02/01-	02/17/07	FK
1,3,5-Trinitrobenze	ne	ND	ug/L	0.097	02/01-	02/17/07	FK
2,4,6-Trinitrotolue	ne	ND	ug/L	0.097	02/01-	02/17/07	FK
НМХ		ND	ug/L	0.097	02/01-	02/17/07	FK
RDX		ND	ug/L	0.097	02/01-	02/17/07	FK
Tetryl		ND	ug/L	0.097	02/01-	02/17/07	FK
2-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
3-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
4-Nitrotoluene		ND	ug/L	0.48	02/01-	02/17/07	FK
4-Amino-2,6-dinitro	toluene	ND	ug/L	0.097	02/01-	02/17/07	FK
2-Amino-4,6-dinitro	toluene	ND	ug/L	0.097	02/01-	02/17/07	FK
Owenia Companda b	ITI/IIDI (Di	1 d	•				
Organic Compounds b Nitroguanidine	od nalesco	ND T ved	ug/L	20	02/06-	02/07/07	FK
		GC/MS Semi	volatile Organics				
Base/Neutrals and A	Acids (8270C)	ND	ug/L	1.0	01/29-	02/01/07	JMG
2,4-Dimethylphenol		ND	ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND	ug/L	1.0	01/29-	02/01/07	JMG
Appendix	В		Page 341				

Sample ID:

FWGLL3mw-242C-0387-GW

Lab ID:

A7A260102-013

Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-013	ı	Receipt	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 11:16A	M	Matrix:		WATER Prep-	
Parame	ter	Result	Units	<u>RL</u>	Analysis Date	Analyst
Base/Neutrals and	•	ND	ug/L	1.0	01/29- 02/01/07	JMG
4,6-Dinitro-2-met	thylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrophenol	1	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dinitrotoluer	ne	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,6-Dinitrotoluer	ne	ND	ug/L	5.0	01/29- 02/01/07	JMG
Anthracene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluoranthene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Fluorene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobenzene	e	ND	ug/L	0.20	01/29- 02/01/07	JMG
Hexachlorobutadie	ene	ND ·	ug/L	1.0	01/29- 02/01/07	JMG
Hexachlorocyclope	entadiene	ND	ug/L	10	01/29- 02/01/07	JMG
Hexachloroethane		ND	ug/L	1.0	01/29- 02/01/07	JMG
Indeno(1,2,3-cd)	pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Isophorone		ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Methylnaphthale	ene	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Methylphenol		ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Methylphenol		ND .	ug/L	1.0	01/29- 02/01/07	JMG
Naphthalene	. *	ND	ug/L	0.20	01/29- 02/01/07	JMG
2-Nitroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG
3-Nitroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG
Nitrobenzene		ND .	ug/L	1.0	01/29- 02/01/07	JMG
2-Nitrophenol		ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Nitrophenol		ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzo(a)anthracer	ne	ND	ug/L	0.20	01/29- 02/01/07	JMG
N-Nitrosodi-n-pro	opylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
N-Nitrosodipheny	lamine	. ממ	ug/L	1.0	01/29- 02/01/07	JMG
Benzo(b)fluoranth	hene	ND ·	ug/L	0.20	01/29- 02/01/07	JMG
Benzo(k)fluoranth	hene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Benzoic acid		ND	ug/L	10	01/29- 02/01/07	JMG
Benzo(ghi)perylen Appen o		ND	Page 342	0.20	01/29- 02/01/07	JMG

Sample ID:

FWGLL3mw-242C-0387-GW

Lab ID: Sampling Date: A7A260102-013 01/25/07 11:16AM Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-01			ipt Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 13	:16AM	Matr	ix:	WATER Prep-	
Paramete	er_	Result	Units	RL	Analysis Date	Analyst
Base/Neutrals and	Acids (82700				•	
Benzo(a)pyrene		ND	ug/L	0,.20	01/29- 02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/29- 02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Phenol		ND ·	ug/L	1.0	01/29- 02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/29- 02/01/07	JMG
1,2,4-Trichloroben	zene	ND	ug/L	1.0	01/29- 02/01/07	JMG
2,4,5-Trichlorophe	nol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4,6-Trichlorophe	nol	ND	ug/L	5.0	01/29- 02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethoxy) methane	ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethyl)	ether	ND	ug/L	1.0	01/29- 02/01/07	JMG
2,2'-Oxybis(1-Chlo	ropropane)	ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/29- 02/01/07	JMG
4-Bromophenyl phen	yl ether	ND	ug/L	.2.0	01/29- 02/01/07	JMG
Butyl benzyl phtha	late	ND	ug/L	1.0	01/29- 02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/29- 02/01/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Chloro-3-methylp	henol	ND	ug/L	2.0	01/29- 02/01/07	JMG
2-Chloronaphthalen	e .	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Chlorophenyl phe	nyl ether	ND	ug/L	2.0	01/29- 02/01/07	JMG
Chrysene		.ND	ug/L	0.20	01/29- 02/01/07	JMG
Dibenz(a,h)anthrac	ene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/29- 02/01/07	JMG
Di-n-butyl phthala	te	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,2-Dichlorobenzen	e .	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,3-Dichlorobenzen	e	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,4-Dichlorobenzen	e	ND	ug/L	1.0	01/29- 02/01/07	JMG
3,3'-Dichlorobenzi	dine	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dichlorophenol Appendix		ND	ug/L Page 343	2.0	01/29- 02/01/07	JMG

Sample ID:

FWGLL3mw-242C-0387-GW

Lab ID: Sampling Date: A7A260102-013

Receipt Date:

01/26/07 7:30AM

Lab ID:	A7A260102-013 01/25/07 11:16AM			eipt Date:	01/26/07 7:30AM	
Sampling Date:	, ,			rix:	WATER <u>Prep-</u> Analysis Date	
Paramet	er	Result	Units	<u>RL</u>		Analyst
		GC/N	MS Volatile Organ	ics		
Volatile Organics		33,1	ab voluciale organ			
trans-1,3-Dichlore		ND	ug/L	1.0	01/30/07	LEE
Acetone	. ·	ND	ug/L	10	01/30/07	LEE
Ethylbenzene		ND	ug/L	1.0	01/30/07	LEE
2-Hexanone		ND	ug/L	10	01/30/07	LEE
Methylene chloride	e	ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pentano	one	ND	ug/L	. 10	01/30/07	LEE
Benzene		, ND	ug/L	1.0	01/30/07	LEE
Styrene		ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetrachlo	roethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroethene		ND	ug/L	1.0	01/30/07	LEE
Toluene		ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichloroet	nane	ND	ug/L	1.0	01/30/07	LEE
1,1,2-Trichloroeth	nane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethene	•	ND	ug/L	1.0	01/30/07	LEE
Vinyl chloride		ND	ug/L	1.0	01/30/07	LEE
Xylenes (total)		ИD	ug/L	2.0	01/30/07	LEE
Bromochloromethan	e	ND	ug/L	1.0	01/30/07	LEE
Bromodichlorometh	ane	ND	ug/L	1.0	01/30/07	LEE
Bromoform		ND	ug/L	1.0	01/30/07	LEE
Bromomethane		ND	ug/L	1.0	01/30/07	LEE
2-Butanone		ND	ug/L	10	01/30/07	LEE
Carbon disulfide		ND	ug/L	1.0	01/30/07	LEE
Carbon tetrachlor	ide	ND	ug/L	1.0	01/30/07	LEE
Chlorobenzene		ND	ug/L	1.0	01/30/07	LEE
Dibromochlorometh	ane	ND	ug/L	1.0	01/30/07	LEE
Chloroethane		ND	ug/L	1.0	01/30/07	LEE
Chloroform		ND	ug/L	1.0	01/30/07	LEE
Chloromethane		ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoethane		ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWGLL3mw-242C-03	887-GW				
Lab ID:	A7A260102-013		Receipt I	ate:	01/26/07 7:30AM	
Sampling Date:	01/25/07 11:16A	ΔM	Matrix:		WATER Prep-	
Paramet	er_	Result	<u>Units</u>	<u>RL</u>	Analysis Date	Analyst
Volatile Organics 1,1-Dichloroethan		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethan	е	ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethen	е	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethen	e (total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloropropa	ne	ND	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichlorop	ropene	ND	ug/L	1.0	01/30/07	LEE
		G	eneral Chemistry			
Cyanide, Total Cyanide, Total		ND .	mg/L	0.010	01/30/07	SS
Nitrocellulose as	N by 353.2	ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWGLL3mw-242C-0387-GF

Lab ID:

A7A260102-014

Receipt Date:

01/26/07 7:30AM

Sampling Date:

01/25/07 11:16AM

Matrix:

WATER Prep-

Parameter	Result		Units	RL	Prep- Analysis Date	Analyst
		Met		_	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		113.0	.415			
Inductively Coupled Plasma Arsenic	ND		ug/L	5.0	01/29- 02/06/07	LRW
Lead	ND		ug/L	3.0	01/29- 02/06/07	LRW
Selenium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Industrials Counted Blooms	/6010P\			•		
Inductively Coupled Plasma Magnesium	5640		ug/L	1000	01/29- 02/06/07	LRW
Manganese	5.3	В	ug/L	10.0	01/29- 02/06/07	LRW
Barium	7.5	В	ug/L	10.0	01/2902/06/07	LRW
Nickel	4.8	В	ug/L	1.00	01/29- 02/06/07	LRW
Potassium	. 768	ВЈ	ug/L	1000	01/29- 02/06/07	LRW
Silver	ND		ug/L	5.0	01/29- 02/06/07	LRW
Sodium	9750		ug/L	1000	01/29- 02/06/07	LRW
Vanadium	ND		ug/L	10.0	01/29- 02/06/07	LRW
Chromium	ND		ug/L	5.0	01/29- 02/06/07	LRW
Calcium	11000		ug/L	1000	01/29- 02/06/07	LRW
Cobalt	ND		ug/L	5.0	01/29- 02/06/07	LRW
Copper	ND		ug/L	5.0	01/29- 02/06/07	LRW
			•			
Inductively Coupled Plasma Antimony	Mass Spectrometry (6	5020)	ug/L	2.0	01/29- 01/30/07	BD
Iron	36.0		ug/L	20.0	01/29- 01/30/07	BD
Beryllium	ND		ug/L	1.0	01/29- 01/30/07	BD ·
Thallium	ND		ug/L	1.0	01/29- 01/30/07	BD
Zinc	6.7	ВЈ	ug/L	10.0	01/29- 01/30/07	BD
Cadmium	ND		ug/L	0.50	01/29- 01/30/07	BD
Aluminum	9.8	В	ug/L	50.0	01/29- 01/30/07	BD
Management (7/70% Cald 3*	ا المنسسة T					
Mercury (7470A, Cold Vapor) Mercury	ND ND		ug/L	0.20	01/29- 01/30/07	ML

Estimated result. Result is less than RL.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Sample ID:

FWG-ER-0393-GW

Lab ID:

A7A260102-015

Receipt Date:

01/26/07 7:30AM

Lab ID: A7A260102-015			Receipt		01/26/07 7:30AM	•	
Sampling Date:	01/25/07 3:17P		Matrix:		WATER <u>Prep-</u> Analysis Date		
Param	<u>eter</u>	Result	<u>Units</u>	<u>RL</u>	Midly 515 Date	Analyst	
		GC :	Semivolatile Organics	3			
PCBs (8082) Aroclor 1016		ND .	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1221		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1232		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1242		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1248		ND	ug/L	0.50	01/28- 02/08/07	LH .	
Aroclor 1254		ND	ug/L	0.50	01/28- 02/08/07	LH	
Aroclor 1260		ND	ug/L	0.50	01/28- 02/08/07	LH	
PCBs (8082)	Re-extract	•					
Aroclor 1016	The Chester of	ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1221		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1232		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1242		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1248		ND	ug/L	0.50	02/08- 02/09/07	LH .	
Aroclor 1254		ND	ug/L	0.50	02/08- 02/09/07	LH	
Aroclor 1260		ND	ug/L	0.50	02/08- 02/09/07	LH	
Pesticides (808)	1A)						
Dieldrin	-	ND	ug/L	0.030	01/28- 01/30/07	CSV	
Endosulfan I	·	ND	ug/L	0.025	01/28- 01/30/07	CSV	
Endosulfan II		ND	ug/L	0.025	01/28- 01/30/07	CSV	
Endosulfan sulf	ate	ND	ug/L	0.030	01/28- 01/30/07	CSV	
Endrin	•	ND	ug/L	0.030	01/28- 01/30/07	CSV	
Endrin aldehyde		ND	ug/L	0.030	01/28- 01/30/07	CSV	
Endrin ketone		ND	ug/L	0.030	01/28- 01/30/07	CSV	
Heptachlor		ND	ug/L	0.030	01/28- 01/30/07	CSV	
Heptachlor epox	ide	ND	ug/L	0.030	01/28- 01/30/07	csv	
Methoxychlor		ND	ug/L	0.10	01/28- 01/30/07	csv	
alpha-BHC		ND	ug/L	0.030	01/28- 01/30/07	csv	
beta-BHC		ND	ug/L	0.030	01/28- 01/30/07	CSV	
delta-BHC		ND	ug/L	0.030	01/28- 01/30/07	CSV	
gamma-BHC (Lind	ane)	ND	ug/L	0.030	01/28- 01/30/07	CSV	

Appendix B

Sample ID: FWG-ER-0393-GW Lab ID: A7A260102-015 Sampling Date: 01/25/07 3:17PM			Reco Mat:		ite:	01/26/07 WATER		
Parameter	-	Rest	ılt	Units	<u>RL</u>	Prer Analysi	_	Analyst
Pesticides (8081A)				, _			01 (00 (05	
Toxaphene		ND		ug/L	2.0		01/30/07	CSV
alpha-Chlordane		ND		ug/L	0.030		01/30/07	CSV
gamma-Chlordane		N D		ug/L	0.030		01/30/07	CSV
Aldrin		ND		ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDD		ND		ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDE		ND		ug/L	0.030	01/28-	01/30/07	CSV
4,4'-DDT		ND		ug/L	0.030	01/28-	01/30/07	CSV
Nitroaromatics & Ni	tramines:	Explosives	(8330)					
1,3-Dinitrobenzene		ND		ug/L	0.098	02/01-	02/17/07	FK
2,4-Dinitrotoluene		ND		ug/L	0.098	02/01-	02/17/07	FK
2,6-Dinitrotoluene		ND		ug/L	0.098	02/01-	02/17/07	FK
Nitrobenzene		ND		ug/L	0.098	02/01-	02/17/07	FK
1,3,5-Trinitrobenzer	ne	ИD		ug/L	0.098	02/01-	02/17/07	FK
2,4,6-Trinitrotoluer	ne	ND		ug/L	0.098	02/01-	02/17/07	FK
HMX		ND		ug/L	0.098	02/01-	02/17/07	FK
RDX		ND		ug/L	0.098	02/01-	02/17/07	FK
Tetryl		ND		ug/L	0.098	02/01-	02/17/07	FK
2-Nitrotoluene		ND		ug/L	0.49	02/01-	02/17/07	FK
3-Nitrotoluene		ND		ug/L	0.49	02/01-	02/17/07	FK
4-Nitrotoluene		ND		ug/L	0.49	02/01-	02/17/07	FK
4-Amino-2,6-dinitrot	toluene	ND		ug/L	0.098	02/01-	02/17/07	FK
2-Amino-4,6-dinitrot	toluene	ND		ug/L	0.098	02/01-	02/17/07	FK
Organic Compounds b	y UV/HPLC	Dissolved						
Nitroguanidine	-	ND		ug/L	20	02/06-	02/08/07	FK
			GC/MS Sem	ivolatile Organics				
Base/Neutrals and A								
Diethyl phthalate	-	ND		ug/L	1.0	01/29-	02/01/07	JMG
2,4-Dimethylphenol		ND		ug/L	2.0	01/29-	02/01/07	JMG
Dimethyl phthalate		ND		ug/L	1.0	01/29-	02/01/07	JMG
Appendix I	В			Page 348				

Sample ID: Lab ID: Sampling Date: FWG-ER-0393-GW A7A260102-015

01/25/07 3:17PM

Receipt Date: Matrix: 01/26/07 7:30AM

:: WATER

S	ampling Date: 01/25/07 3:17PN	1	Matrix:		WATER Prep-	
	Parameter	Result	Units	RL	Analysis Date	Analyst
E	Base/Neutrals and Acids (8270C) Di-n-octyl phthalate	ND	ug/L	1.0	01/29- 02/01/07	JMG
	4,6-Dinitro-2-methylphenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
	2,4-Dinitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
	2,4-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
	2,6-Dinitrotoluene	ND	ug/L	5.0	01/29- 02/01/07	JMG
	Anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Fluorene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Hexachlorobenzene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Hexachlorobutadiene	ND	ug/L	1.0	01/29- 02/01/07	JMG
	Hexachlorocyclopentadiene	ND	ug/L	10	01/29- 02/01/07	JMG
	Hexachloroethane	ND	ug/L	1.0	01/29- 02/01/07	JMG
	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Isophorone	ND	ug/L	1.0	01/29- 02/01/07	JMG
	2-Methylnaphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	2-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
	4-Methylphenol	ND	ug/L	1.0	01/29- 02/01/07	JMG
	Naphthalene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	2-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
	3-Nitroaniline	ИD	ug/L	2.0	01/29- 02/01/07	JMG
	4-Nitroaniline	ND	ug/L	2.0	01/29- 02/01/07	JMG
	Nitrobenzene	ND	ug/L	1.0	01/29- 02/01/07	JMG
	2-Nitrophenol	ND	ug/L	2.0	01/29- 02/01/07	JMG
	4-Nitrophenol	ND	ug/L	5.0	01/29- 02/01/07	JMG
	Benzo(a) anthracene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	N-Nitrosodi-n-propylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
	N-Nitrosodiphenylamine	ND	ug/L	1.0	01/29- 02/01/07	JMG
	Benzo(b) fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Benzo(k) fluoranthene	ND	ug/L	0.20	01/29- 02/01/07	JMG
	Benzoic acid	ND	ug/L	10	01/29- 02/01/07	JМG
	Benzo(ghi)perylene Appendix B	ND	ug/L Page 349	0.20	01/29- 02/01/07	JMG
					•	

Sample ID:

FWG-ER-0393-GW

Lab ID: Sampling Date: A7A260102-015

Receipt Date: Matrix:

01/26/07 7:30AM

Lab ID:	A7A260102-015		Receipt	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 3:17P	М.	Matrix:		WATER <u>Prep-</u> Analysis Date	
Paramet	cer	Result	<u>Units</u>	RL	Midly Date	Analyst
Base/Neutrals and Benzo(a)pyrene	l Acids (8270C)	ND	ug/L	0.20	01/29- 02/01/07	JMG
Pentachlorophenol		ND	ug/L	5.0	01/29- 02/01/07	JMG
Benzyl alcohol		ND	ug/L	5.0	01/29- 02/01/07	JMG
Phenanthrene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Phenol		ND	ug/L	1.0	01/29- 02/01/07	JMG
Pyrene		ND	ug/L	0.20	01/29- 02/01/07	JMG .
1,2,4-Trichlorobe	nzene	ND	ug/L	1.0	01/29- 02/01/07	JMG
2,4,5-Trichloroph	enol	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4,6-Trichloroph	enol	ND	ug/L	5.0	01/29- 02/01/07	JMG
Carbazole		ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethox	y)methane	ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Chloroethyl) ether	ND	ug/L	1.0	01/29- 02/01/07	JMG
2,2'-Oxybis(1-Chl	oropropane)	ND	ug/L	1.0	01/29- 02/01/07	JMG
bis(2-Ethylhexyl)	phthalate	ND	ug/L	10	01/29- 02/01/07	JMG
4-Bromophenyl phe	nyl ether	ND	ug/L	2.0	01/29- 02/01/07	JMG
Butyl benzyl phth	alate	ND	ug/L	1.0	01/29- 02/01/07	JMG
Acenaphthylene		ND	ug/L	0.20	01/29- 02/01/07	JMG
4-Chloroaniline		ND	ug/L	2.0	01/29- 02/01/07	JMG
4-Chloro-3-methyl	phenol	ND	ug/L	2.0	01/29- 02/01/07	JMG
2-Chloronaphthale	ne	ND	ug/L	1.0	01/29- 02/01/07	JMG
2-Chlorophenol		ND	ug/L	1.0	01/29- 02/01/07	JMG
4-Chlorophenyl ph	enyl ether	ND	ug/L	2.0	01/29- 02/01/07	JMG
Chrysene		ND	ug/L	0.20	01/29- 02/01/07	JMG
Dibenz(a,h)anthra	cene	ND	ug/L	0.20	01/29- 02/01/07	JMG
Dibenzofuran		ND	ug/L	1.0	01/29- 02/01/07	JMG
Di-n-butyl phthal	ate	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,2-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,3-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG
1,4-Dichlorobenze	ene	ND	ug/L	1.0	01/29- 02/01/07	JMG
3,3'-Dichlorobenz	idine	ND	ug/L	5.0	01/29- 02/01/07	JMG
2,4-Dichlorophend		ND	ug/L Page 350	2.0	01/29- 02/01/07	JMG

Sample ID:

FWG-ER-0393-GW

A7A260102-015

Receipt Date:

01/26/07 7:30AM

Lab ID: A7A260102-015	Receipt	Date:	01/26/07 7:30AM		
Sampling Date: 01/25/07 3:17PM		Matrix:		WATER Prep-	
Parameter	Result	Units	RL	Analysis Date	Analyst
	GC/1	MS Volatile Organics		سے میں میں میں میں میں میں میں ایک ایک ایک ایک ایک ایک ایک ایک ایک ایک	
Volatile Organics, GC/MS (8260B)					
trans-1,3-Dichloropropene	ND	ug/L	1.0	01/30/07	LEE
Acetone	ND	ug/L	10	01/30/07	LEE
Ethylbenzene	ИD	ug/L	1.0	01/30/07	LEE
2-Hexanone	ND	ug/L	10	01/30/07	LEE
Methylene chloride	ND	ug/L	2.0	01/30/07	LEE
4-Methyl-2-pentanone	ИD	. ug/L	10	01/30/07	LEE
Benzene	ND	ug/L	1.0	01/30/07	LEE
Styrene	ND	ug/L	1.0	01/30/07	LEE
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	01/30/07	LEE
Tetrachloroethene	ND	ug/L	1.0	01/30/07	LEE
Toluene	ND	ug/L	1.0	01/30/07	LEE
1,1,1-Trichloroethane	ND	ug/L	1.0	01/30/07	LEE
1,1,2-Trichloroethane	ND	ug/L	1.0	01/30/07	LEE
Trichloroethene	ND	ug/L	1.0	01/30/07	LEE
Vinyl chloride	ND	ug/L	1.0	01/30/07	LEE
Xylenes (total)	ND	ug/L	2.0	01/30/07	LEE
Bromochloromethane	ND	ug/L	1.0	01/30/07	LEE
Bromodichloromethane	ND	ug/L	1.0	01/30/07	LEE
Bromoform	ND	ug/L	10	01/30/07	LEE
Bromomethane	ND	ug/L	1.0	01/30/07	LEE
2-Butanone	ND	ug/L	10	01/30/07	LEE
Carbon disulfide	ND	ug/L	1.0	01/30/07	LEE
Carbon tetrachloride	ND	ug/L	1.0	01/30/07	LEE
Chlorobenzene	ND	ug/L	1.0	01/30/07	LEE
Dibromochloromethane	ND	ug/L	1.0	01/30/07	LEE
Chloroethane	ND	ug/L	1.0	01/30/07	LEE
Chloroform	ND	ug/L	1.0	01/30/07	LEE
Chloromethane	ND	ug/L	1.0	01/30/07	LEE
1,2-Dibromoethane	ND	ug/L	1.0	01/30/07	LEE

Appendix B

Sample ID:	FWG-ER-0393-GW				04 /05 /08 - 7 - 00	
Lab ID:	A7A260102-015		Receipt	Date:	01/26/07 7:30AM	
Sampling Date:	01/25/07 3:17P	M	Matrix:		WATER Prep-	
Param	eter_	Result	Units	RL	Analysis Date	Analyst
	cs, GC/MS (8260B)			1.0	01 (20 (07	
1,1-Dichloroetha	ane	ND	ug/L	1.0	. 01/30/07	LEE
1,2-Dichloroetha	ane	ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethe	ene	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethe	ene (total)	ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroprop	pane	ND .	ug/L	1.0	01/30/07	LEE
cis-1,3-Dichloro	opropene	ND	ug/L	1.0	01/30/07	LEE
						&
		Gen	eral Chemistry	· 		
Cyanide, Total Cyanide, Total		ND	mg/L	0.010	01/30/07	SS
Nitrocellulose a	as N by 353.2			•		
Nitrocellulose		ND	mg/L	0.50	02/06- 02/08/07	DTA

Sample ID:

FWG-TB-0404-GW

Lab ID: Sampling Date: A7A260102-016

Receipt Date:

01/26/07 7:30AM

	A7A260102-016 01/25/07 12:00AN			Receipt Date: Matrix:		01/26/07 7:30AM		
	71/25/07 12:00AN					WATER <u>Prep-</u> Analysis Date		
Parameter		Result		Units	<u>RL</u>		Analyst	
		(GC/MS Volati	ile Organics				
Volatile Organics, G trans-1,3-Dichloropro		ND		ug/L	1.0	01/30/07	LEE	
Acetone		2.2	J	ug/L	10	01/30/07	LEE	
Ethylbenzene		ND		ug/L	1.0	01/30/07	LEE	
2-Hexanone		ND		ug/L	10	01/30/07	LEE	
Methylene chloride		1.3	Ј В	ug/L	2.0	01/30/07	LEE	
4-Methyl-2-pentanone		ND		ug/L	10	01/30/07	LEE	
Benzene		ND		ug/L	1.0	01/30/07	LEE	
Styrene	·	ND		ug/L	1.0	01/30/07	LEE	
1,1,2,2-Tetrachloroet	hane	ND		ug/L	1.0	01/30/07	LEE	
Tetrachloroethene		ND		ug/L	1.0	01/30/07	LEE	
Toluene		ND		ug/L	1.0	01/30/07	LEE	
1,1,1-Trichloroethane		ND		ug/L	1.0	01/30/07	LEE	
1,1,2-Trichloroethane		ND		ug/L	1.0	01/30/07	LEE	
Trichloroethene	•	ND		ug/L	1.0	01/30/07	LEE	
Vinyl chloride		ND .		ug/L	1.0	01/30/07	LEE	
Xylenes (total)		ND		ug/L	2.0	01/30/07	LEE	
Bromochloromethane		ND		ug/L	1.0	01/30/07	LEE	
Bromodichloromethane		ND		ug/L	1.0	01/30/07	LEE	
Bromoform		ND		ug/L	1.0	01/30/07	LEE	
Bromomethane		ND		ug/L	1.0	01/30/07	LEE	
2-Butanone		ND .		ug/L	10	01/30/07	LEE	
Carbon disulfide		ND		ug/L	1.0	01/30/07	LEE	
Carbon tetrachloride		ND		ug/L	1.0	01/30/07	LEE	
Chlorobenzene		ND		ug/L	1.0	01/30/07	LEE	
Dibromochloromethane		ND		ug/L	1.0	01/30/07	LEE	
Chloroethane		ND		ug/L	1.0	01/30/07	LEE	
Chloroform		ND		ug/L	1.0	01/30/07	LEE	
Chloromethane		ND		ug/L	1.0	01/30/07	LEE	
1,2-Dibromoethane		ND		ug/L	1.0	01/30/07	LEE	
1,1-Dichloroethane		ND		ug/L	1.0	01/30/07	LEE	
Annendiy B			Pag	10 353				

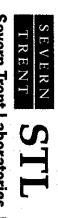
Appendix B

Sample ID:

FWG-TB-0404-GW

A7A260102-016 01/25/07 12:003M Receipt Date:

01/26/07


7:30AM

Sampling Date:	01/25/07 12:00AM		Matrix:	AW	TER Prep-	
Parameter	<u>-</u>	Result	Units	RL	Analysis Date	Analyst
Volatile Organics, 1,2-Dichloroethane	GC/MS (8260B)	ND	ug/L	1.0	01/30/07	LEE
1,1-Dichloroethene		ND	ug/L	1.0	01/30/07	LEE
1,2-Dichloroethene	(total)	ND	ug/L	1.0	01/30/07	LEE .
1,2-Dichloropropane		ND	ug/L	1.0	01/30/07	LEE
cis-1.3-Dichloropro	pene	ND	ug/L	1.0	01/30/07	LEE

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Estimated result. Result is less than RL.

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL

Chain of Custody Record

SEVERN TRENT

Severn Trent Laboratories, Inc.

STL4149 (1202)			•	-	:					4		
Client Spec Pro		Project Manager Chantelle	Carroll			Date	Date -dd-0]	Page	} ~	Q.	9 –	
ess		Telephone Number (Area Code)/Fax Number	er (Area Code)/Fax	ax Number		Lab	Lab Location			Analysis		
מנמנם חסתנם ט		Site Contact						MM	1 N 1 B	CMN		7
Ravenna OH 44266		Chantelle	Carroll					S	0 0 0			
Project Number/Name		Carrier/Waybill Number	umber		·			2 8 8	- 8 3 8 - E	- 0 Z 3		
Ravenna								4 1	- r - r	> -		
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :							QUOTE: 63240		r -	C		
Sample I.D. Number and Description Date	Time	Sample Type	Cont		<u></u>	Preservative	Condition on Receipt/Comments	ents L L A	ω -			
FWGBKGmw-013C-0363-GW 1-2 C-07	なよ	WATER		AMBER	2	None			××			
- 1		WATER	11	AMBER	2	None			×			
FWGBKGMW-013C-0363-GW		WATER	7	АМВЕК		None			×			
-FWGBKGMW-013C-0363-GW		WATER	11	дмвен	\vdash	None		×				
FWGBKGMW-U13C-U363-GW		WATER		AMBER	2	None		×				6
- FWGDRGMW- U13C-U363-GM		MATER	40m1	10X1- 41A	3	HCT		<u></u>				35
FWGBKGMW-013C-0363-GW		WATER		PLASTIC		NaOH				×		ge
FWGBKGmw-013C-0363-GF	1	WATER	1000mL	PLASTIC		Conc HNO3				×		Pa
								-		l	-	
* ONLY & Ambers											2	
					1							
Special Instructions												
Identification			Sample Disposal	<u>.</u>		Oissocial Bulliah	Archive For	(A fee	(A fee may be assessed if samples are	sed if sar	nples an	æ
Turn Around Time Required		QC Lavel		oject	pecific f	irements (S		- 11				1
□ Normal □ Rush □ Other □ Other □			□ <i>III.</i>							,		Β :01
1. Reimguished By		1-44-9	1736	1. Received By	82 B)	2/2/2	Characally in		1-25-5	7	7	ndix amit
Ву	○	Date /25-07	1845	2. Received By	ed By	1	Y)	Date 1-7-		Time	Appe h (
		Date	Time	3. Received By	ed By				Date	, T	Time	Nor
Comments												${ t TL}$
	2		rials Con.				the second secon					S

1

Severn Trent Laboratories, Inc.

STL4149 (1202)	*	· c	7 7 7	۱	2 6	×			
Client			Project Manager				Date	111/2003	,
Spec Pro			Chantelle Carroll	Carroil			E	1-X7-07	Page 12 of 37
Address			Telephone Number (Area Code)/Fax Number (000)	ver (Area Code)/Fax / (000)	cax Number		ST Lao	STL North Canton	Analysis
(0)	Zip Code		Site Contact						M G S L N L C M
nna	44266		Chantelle Carroll	Carroll					
Project Number/Name			Carrier/Waybill Number	lumber					N 00 00 00 00 00 00 00 00 00 00 00 00 00
Ravenna									- !
Contract/Purchase Order/Quote Number								QUOTE: 63240	0 0 2 D 0 L L 0 2 C
				Cont	Containers	_			O
Sample I.D. Number and Description	Date	Time	Sample Type	Volume	e	\vdash	Preservative	Condition on Receipt Continents	
FWGBKGmw-019C-0368-GW	(-26-1	11:00	HATER	1L	AMBER	-	None		× ×
FWGBKGmw-019C-0368-GW			WATER	11	AMBER	\vdash	None		×
FWGBKGmw-019C-0368-GW			WATER	11.	AMBER	-	None		*
FWGBKGmw-019C-0368-GW		-	WATER	11	AMBER	-	None		×
FWGBKGmw-019C-0368-GW			WATER		AMBER	 	None		× ×
FWGBKGmw-0196 0368 GW		+	WATER	40m1	ADML VIA	di	#		
FWGBKGmw-019C-0368-GW			WATER	250mL	PLASTIC	-	NaOH		æ
FWGBKGmw-019C-0368-GF	-		WATER	1000mL	PLASTIC	_	Conc HNO3		×
		į				-			
* Only & Amber									
Special Instructions									
Identifi		Doison B	l Inknown	Sample Disposal	lent t	Disor	☐ Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
Turn Around Time Required			1 8	11	Project Sp	ecific f	15		n
□ Normal □ Rush □ Other	θτ			[] <i>III.</i>	1 Doggingd By	D			Date Time B C
1. Reimquisned by			1-25-0	1730			1/6	Nowson I	1-25-07 17 B
2 Relinquished By RCV COSCY	355		Date /25-07	7 1 845	2. Received By	ed By	1	M	
3. Relinquished By			Date	Time	3. Received By	эд Ву			Date Time
Comments			·						TL.
		2	Dana da	K Gold Con.					S

Chain of Custody Record

SEVERN TRENT

Severn Trent Laboratories, Inc.

STL4149 (1202) * 0	1 2 9 5 8	- 0 3 7	*			k project into
Client Spec Pro	Project Manager Chantelle Carroll	011		Date [-25-27]	Page 37 of 3	
Address 8451 State Route 5	Telephone Number (Area Code)/Fax Number (000) / (000)	a Code)/Fax Number / (000)		STL North Canton	Analy	american Section (1)
City State Zip Code Ravenna OH 44266	Site Contact Chantelle Carroll	oi I			C	
Project Number/Name Ravenna	Carrier/Waybill Number				0 88 0 88	. 879
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :				QUOTE: 63240	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 5%
Sample I.D. Number and Description Date Time	Sample Type Volume	Containers Ime Type	No. Preservative	re Candition on Receipt/Comments	F	
FWG-ER-0393-GW 1-25-07 /510	WATER					
	WATER		-		×	
FWG-ER-0393-GW	WATER		┪		×	
FWG-ER-0393-GW	WAIER		-		*	
FWG-ER-0393-GW			2 None		×	8
TWG-EH-COURS-GW	MATER	AUMI HOW HELD	3 461-		 	35
FWG-ER-0393-GW	WATER 25	250mL PLASTIC	1 NaOH		×	age
* only & Ambus						-
						+
Special Instructions						
Identifi	Sam	Sample Disposal	Oisonsal By Lah	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)	₩e
	. I L	Project	Project Specific Requirements (Specify)			L
□ Normal □ Rush □ Other □	□ <i>l.</i> □ <i>ll.</i> □ <i>lll.</i>					B on
Action of the Control	/ درجدر	780	/VC/	1 (Second	1-25-07 17	an
2. Relinquished By ROW NOB SOL	Date 25-07 Time	Time 3 45 2. Received By	ived By	the	Letter to Met	Ander
3. Relinquished By	Date	3. Received By	ived By		Date Time	Nor
Comments				(TL
Commission with the Commission CANIADY Determined to Office	Broad DINIK Eigh					S

Severn Trent Laboratories, Inc. SEVERN TRENT

STI 4149 (1202) * U	- 2 × 0 0 - x		
Client Spec Pro	Project Manager Chantelle Carroll	Date 1-25-07	Page ST of 37
Address 8451 State Route 5	Telephone Number (Area Code)/Fax Number (000) / (000)	23 Location STL North Canton	Analysis
City State Zip Code Ravenna OH 44266	Sile Contact Chantelle Carrol!		
Project Number/Name Rayenna	Carrier/Waybill Number		1 22 C
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :		QUOTE: 63240	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sample I.D. Number and Description Date Time	Type Containers Volume Type No.	Preservative Condition on Receipt/Comments	р у г
- FWGLL3MW-Z4ZC-U387-GW /- 12 07 111/6	1 C AMBER	None	>
	1L AMBER	NOTE	>
FWGCL3MW-Z4ZC-038/-GW	MAICH IL AMOUN C	NO TO TO	× ,
FWGLL3MW-2420-0387-GW	IL AMBER 2	None	
	40mL 40ML VIA 3	HCL	359
FWGLL3MW-242C-0387-GW	WATER 250mL PLASTIC 1	Naoh	ge
FWGLL3MW-242C-0387-GF	WATER TOUGHL PLASTIC 1	Conc HNO3	Pa
*only & Ambers			
Special Instructions			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	Sample Disposal ☐ Unknown ☐ Return To Client	Disposal By Lab Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
ie Requiréd ☐ Other	OC Leavel	Project Specific Requirements (Specify)	B
1. Religiuished By	1-250) \$ 7730	1 (154) 1 BOGAC.	1-25-07 1734E
2. Relinquished By	1-25-67 1845 2 Received By C	XXX	Date 1-207 Time 7000
3. Relinquished By	Date Time 3. Received By		Date Time Nor
Comments			STL
	The state of the s		

Severn Trent	TRENT	SEVERN
shorstories	OIL	

State OH CR # : Description	Zip Code 44286 1-X-0)	Time	Project Manager Chantelle Carroll Telephone Number (Area Code)/Fax Number (000) / (000) Site Contact Chantelle Carroll Chantelle Carro	roll 99 Code)// 99 Code)// (00 / (00 / (1) Con Con 1L 1L 1L 1L 1L 1L 1L 50mL	Containers Type AMBER AMBER AMBER AMBER AMBER AMBER AMBER AMBER AMBER AMBER AMBER AMBER	- 4 2 2 2 2 2 2	Date Lab (STL Rone None None None None None None None	Date 01/11/2807 (-)5-07 Lab Location STL North Canton QUOTE: 63240 Condition on Receipt/Comments	Page
Description	Date	Time	Sample Type	§	tainers Type AMBER	-	Preservative None	Condition on Receipt/Comments	F 0 8 5 X X
	-25-07	9:15	WATER		AMBER		None		×
FWGLL3mw-238C-0386-GW	+		WATER		AMBER	-	None		×
FWGLL3mw-238C-0386-GW			WATER		AMBER		None		×
FWGLL3mw-238C-0386-GW			WATER		AMBER	Η	None		×
FWGLL3mw-238C-0386-GW	+		WATER		PLASTIC		NaOH		×
FWGLL3mw-238C-0386-GF		j	WATER	1000mL	PLASTIC	_	Conc HNO3		×
Fonly & Ambers									
Special Instructions									
Possible Hazard Identification		Poison B	□ ∪пкпоwп	Sample Disposal Return To Client	ient	Disp	☐ Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 3 months)
ne Required □ Rush			OC Lavel	□ .	Project	Specific t	15		
100			1-25-07	1730	1 Received By	wed By	\	Messessoft in	125-8 7 17
12	isse/		P-25-07	1845	2. Received By	ved By	1	The	1-264 Time
3. Relinquished By			Date	Time	3. Received By	ved By	0		Date Twine
Comments will be commented to the comments of	`	S Control	with Donort DINK	Field Conv					
PICTOIRITION: WHITE - Stave with the Sample: CAN	ANARY - Return	ed to Client	Between to Client with Report PINK - Field Conv	Lield Conv					-

Severn Trent Laboratories, Inc.

STL4149 (1202)	,	-		1					
Client		Project Manager				Date - FORCETITIES)	+ ~
spec Pro		Telephone Num	ጥ 1	ax Number		- [- Sep		
8451 State Route 5		(000)	/ (000)	0)		STL North Canton		Analysis	1
City State Zip Code Ravenna OH 4426	Code 442 66	Site Contact Chantelle	e Carroll				0 C C	. C . C	
Project Number/Name Ravenna		Carrier/Waybill Number	Number				1 N 0	- B Z	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :						QUOTE: 63240	200	P 0	
Sample I.D. Number and Description	Date Time		§	Containers Type No.		ive Condition on Receipt/Comments	rents L L A S L		
	1-25-07	WAIEK			 			>	
FWGLL18W-080C-0381-GW		WAIER		AMBEX	┼-		>		
		WATER		AMBER	┼		2		
FWGLL1mw-080C-0381-GW		WALER	$oxed{oxed}$	AMOCK	NOTICE A		× .		
FWGLL1MW-080C-0381-GW		WATER	- Tunny	ADMI VIA	++		*		861
FWGLL1mm-080C-0381-GW		WATER	250ML	PLASTIC	NaOH			Х	ge
FWGLL1MW-080C-0381-GF		WAIEH	TODOME	PLASTIC	1 Conc HNUS	2		>	Pa
* Only & Ambers									
Special Instructions				-					
Possible Hazard Identification Non-Hazard Flammable	☐ Poison B	n B ☐ Unknown	Sample Disposal In Return To Client	ient	Disposal By Lab	Archive For	(A fee may be Months retained longer	(A fee may be assessed if samples are retained longer than 3 months)	'es are
ne Requ		OC Lavel	□ <i>III</i> .	Project Specific Req	Req	uirements (Specify)	A Committee of the Comm	1	B
1 Remagnished By		(0-5T-1)	730	несешел ну	1	y / Wassy-() /-2	5-07	701
Ву	5)-25-0	7 1845	2. Received By	A)	h	Date	Date 26-91 Time	-7) A60e
	1	Date	Time	3. Received By	By C		Date	Time	Nort
Comments		No. 2 with Donorth Di							STL
CAMADA	Onturned to	Signaturally Donnate Di	DINK - Field Cook					.9"	

Chain of Custody Record

TRENT STI®

Severn Trent Laboratories, Inc.

STL4149 (1202)	*	1 2 9 5	8 1 0	* *			
Client Spec Pro		Project Manager Chantelle Carroll	Carrolt		Date •	01/11/2007 1-25-07	Page
Address 8451 State Route 5		Telephone Numba (000)	Telephone Number (Area Code)/Fax Number (000) / (000)	Number	Lab ST	Lab Location STL North Canton	Analysis
City State Ravenna OH	Zip Code 44266	Sile Contact Chantelle Carroll	Carroll				00 X 00 X 00 C 00 C 00 X 00 X
Project Number/Name Ravenna		Carrier/Waybill Number	ımber				2 8 8 8 8 F F G Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :						QUOTE: 63240	0 0 2 D 0 L L Q ; 2
Sample I.D. Number and Description	Date Time	Sample Type —	Containers Volume Typ	Type No.	Preservative	Condition on Receipt/Comments	F C C P
FWGBKGmw-021C-0370-GW	1:15 10-56-1				None		× ×
FWGBKGmw-021C-0370-GW		WATER		<u> </u>	None		×
FWGBKGmw-021C-0370-GW		WATER		-	None		× ×
FWGBKGmw-021C-0370-GW		WATER	IL AM	AMBER 2	None		× >
~FWCBKGmv-021C-0370-GW		WATER	40mt 40	OHL VIA 9	#		* 362
FWGBKGmw-021C-0370-GW		WATER	250mL PL	PLASTIC 1	NaOH		×
FWGBKGmw-021C-0370-GF	<u> </u>	WATER	1000mL PL	PLASTIC 1	Conc HNO3		Pa
Fonly & Ambers							
Special Instructions							
Possible Hazard Identification Non-Hazard	Irritant 🔲 Poison B	В Цпкпошп	Sample Disposal Return To Client	ent Disposal By Lab		Archive For Months	(A fee may be assessed if samples are setained longer than 3 months)
ne Required Rush		OC Lavel	□ <i> </i> .	Project Specific	Requirements (Specify)	Specify)	B
Chinapished By		12567	1730	1. Кесемел Ну	New	1035X	1-25-07 1730
IBY TYK	Toisicaro	P & & 7	1845	2. Received By		Jan J	1-22-07 Time 7: \$ 1
3. Relinquished By		Date	Time	3. Received By	(Date Time Nor
Comments		ort with Donor - Dilly	E CONTRACTOR OF THE CONTRACTOR				STL

Severn Trent Laboratories, Inc.

ä

STL4149 (1202)

Record

Chain of Custody

Client			Project Manager	`			102			,
Spec Pro			Chantelle Carroll	e Carrolt			9 29 6	9+/++/2007 1-12 SYOT	-	† -
Address			Telephone Num	Telephone Number (Area Code)/Fax Number	/Fax Number		Lat	-	age	
8451 State Route 5			(000)	/ / (0	(000)		S1	STL North Canton	Analysis	•
	Zip Code		Site Contact						M M G B L N L C M N	
Ravenna	44266		Chantelle Carroll	e Carroll	. - .	ı .*			S S C O C C C N 6 O	
Project Number/Name			Carrier/Waybill Number	Vumber					8 8 8 E N - 0 3	
Ravenna									20131611	
Contract/Purchase Order/Quote Number CONTRACT / PURCHASE ORDER # :								QUOTE: 63240	6 7 8 3 ; ; i 0 0 0 0 2 D 0 L L 0 ; 2	
Samole I.D. Number and Description	Date		Sample Time	Cor	Containers				 O	
EMCBACAOOACOSET CH	taio	1000	Comple 1 ype	Volume	Туре		F (C)C(VC(VC	Condition on Receipe Comments	r A S r	
	1-25-01	اعز: ٥/	XX	11	AMBER	_	None		× ×	
FMGBKGMW-004C-0357-GW		-	WATER	11	AMBER	N	None		×	
-WGBKG#W-004C-0357-GW			WATER	1	AMBER	2	None		×	
FWGBRGMW-004C-0357-GW			WATER	1.	AMBER	N	None		×	
TWGBNGMW-004C-035/-GW			WATER	† L	AMBER	N	None		×	63
TRANSLINE COAC GOO! TOT		1	WATER	40mL	40ML VIA	3	HCL		*	e 3
FWGBKGmw-004C-0357-GW			WATER	250mL	PLASTIC	-4	NaOH		×	ag
FWGBKGMW-004C-0357-GF	+	1-	WATER	1000mL	PLASTIC	4	Conc HN03		×	P
* CELL X ANDOLA										
1										
		ļ								
		-				-				
						-	ŀ			
Special Instructions										
Identification]			J			(A fee may be assessed if samples are	es are
Turn Around Time Remilled		L Foison B	Or Tevel	Return To Client	o Client L	_ Dispo	nt Disposal By Lab Arc	Archive For Months	retained longer than 3 months)	
□ Normal □ Rush □ Other			□ <i>l.</i> □ <i>ll.</i>	<i>Ⅲ.</i>			oqui omonia (o	pauny/		B ton
Sab Hom			1-45-01	19/73d	d 1. Received By	ед Бу	$\lambda_{<\epsilon}$	() Contraction	Date / Time	Adio an
Relinquished by Rich	Jasisan) Date -25-07	NXX/	2. Received By	ed By	1/	XX		de . t
3. Relinquished By			Date	Time	3. Received By	ed By			Date	Nor
Comments										TL
									THE TAX THE STATE SAVANDA	S

STL Cooler R	eceip	it Form/Nar	rative	Lot Numbe	174260	102
North Canton	10.00	A CONTRACTOR OF THE PARTY OF TH	Children in the contract of th			
Client Say Pro	/	/	Project		Quote#U524	
Cooler Received on	1-	2407	Opened on: 1-24 DHL FAS	07	by:	(Signature)
Fedx Client D	op Of	f UPS U	DHL FAS	STL Courier	\mathcal{P} () ()
Stetson US Car	go 🗌]	Other:	·	_	į
STL Cooler No#	$\perp c$	ver	Foam Box	Client Cooler		
 Were custody s 	eals or	the outside of the	he cooler? Yes 🔯 N	o 📗 — In	tact? Yes 😭 No	□ NA □
If YES, Quanti	₺	18				<u></u>
		s signed and date			es No NA	<u></u>
2. Shipper's packi	hg slip	attached to this	form?	=	es 🔲 No 🔲 NA	
Did custody pag	ers ac	company the sar	mples?Yes 🔁 No 🗌		elinquished by client?	Yes Loo No L
4. Did you sign the	e custo	ody papers in the	appropriate place?		es 🔛 No 🗌	
5. Packing materia	l used	: Bubble Wrap	Foam T	.0,10	ther	-
Cooler tempera	ure uţ	oon receipt	(see back of fo	rm for multiple of	coolers/temp	
METHOD: Temp				st Bottles		I₂0 Slurry □
COOLANT: Wet				Water	None []	
7. Did all bottles a					Yes No No	
			econciled with the CO	C7	Yes No 🗌	, <u> </u>
9. Were samples a	t the c	orrect pH upon	receipt?			A 📋
10. Were correct bo					Yes No Yes No No No No No No No No No No No No No	, _[
11. Were air bubble					Yes No No N	A L.J
12. Sufficient quan	tity re	ceived to perform	n indicated analyses?	XV VO 4 a am	h-uneral distance	
13. Was a Trip Bla	nk pre	esent in the coole	er? Yes 🙋 No 🗌	were VOAS on	one COC! Les per l'	
	ļ	Date:	by:	via voi	ce Man verbar	J Outer []
Concerning:						
N and a second	0000					
1. CHAIN OF CU	4		٠	· · · · · · · · · · · · · · · · · · ·		
The following	discre	pancies occurre	a.			
	 					
2. SAMPLE CON	DITI)N	and the second s			
		714	were rece	ived after the re-	commended holding tir	ne had expired
Sample(s)				eceived in a brok		
Sample(s)	CEDIZ	ATION	WOIC I	SCOTTOG BY a DION	on Jonation.	
3. SAMPLE PRE	JEKV.	AIIUIV		were further pre	served in sample recei	ving to meet
Sample(s)	NI to	vol(a) 22 4 - 21	ot#110106 - Sulfuric Acid Le			
recommended	pri let	VCI(S). NIITIC ACIA LO NOSO4-HCI: Sodium I	ot#110700 - Suguric Acta Le Hydroxide and Zinc Acetate Lo	r# 050205-CH3CO	D2ZN/NaOH	
Sample(s)	PO: 11		were receive	d with bubble >	6 mm in diameter (cc:	PM)
4. Other (see below	v or h	ack)	The state of the s			
7. 011.01 (500 1501)	1					
			·			
Client ID	<u> </u>		<u>pH</u>		Date	Initials
013C		712712			1-26-07	K
	F	42			 	
0196	<u> </u>	712				
6196 6	F	22			<u> </u>	•

STL Cooler Receipt Form/Narrative North Canton Facility

Client ID			pН		Date	Initials
EC		712			1-26-07	2/
ERAD)	242C	12 FW 712)	
01/2						
740	E-6F	42			}	
238	L	712				
238	GF	42				
080C		>12 L2				
08DC	6F_	12				}
021c		712			T.	1
0216	6F	22				
0040	65	712				
2040		764				$+$ $ \bot$ $-$
064c	6F	42				
	<u> </u>					
oler		Temp		Me	thod	Coolant
512 no#	<u> </u>	3.3"		5	P	Wet Ide
Client cod		i Goc			7	1
grag un	<u> </u>	2/hoc	<u> </u>		1	1 1
SIL not	ļ	54°C		· · · · · · · · · · · · · · · · · · ·	 	++
ST 100#	<u> </u>	J.7				
141-528	Ž	9:300				
SIL no#		1 1 1				
STL 100 #		1.400			.	<u> </u>
461		1,900	•			
screpancies Co	nt.	2.100			_	1
		•				
					•	
	1					

SOP: NC-SC-0005, Sample Receiving N:\QAQC\WARRATIV\STU\Cooler Receipt STU\COOLER_STU_Rev 60 012407.doc

APPENDIX C

DATA VERIFICATION and VALIDATION REPORTS

This page left intentionally blank

DATA VERIFICATION /VALIDATION REPORT

PROJECT: RVAAP Facility Wide Ground Water Monitoring Program Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A7A200106

The following samples were received at STL North Canton on 1/19/2007 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, and nitroguanidine were performed by STL Sacramento. Ground-water (GW) samples are analyzed for Volatiles, Semi-Volatiles, Explosives, Nitrocellulose, Nitroguanidine, Pesticides, PCBs, and Cyanide. Ground-filtered (GF) samples are field filtered prior to preservation and are analyzed for dissolved metals.

Validation Sample LIST			
Client ID	QC Type	Date/Time Collected	Lab ID
FWGLL11mw-007C-0375-GW		1/18/2007 1:48:00 PM	A7A200106001
FWGLL11mw-007C-0375-GF		1/18/2007 1:48:00 PM	A7A200106002
FWGLL4mw-198C-0388-GW		1/19/2007 11:10:00 AM	A7A200106003
FWGLL4mw-198C-0388-GF		1/19/2007 11:10:00 AM	A7A200106004
FWGLL11mw-002C-0374-GW		1/18/2007 12:25:00 PM	A7A200106005
FWGLL11mw-002C-0374-GF		1/18/2007 12:25:00 PM	A7A200106006
FWGLL4mw-199C-0389-GW		1/19/2007 1:55:00 PM	A7A200106007
FWGLL4mw-199C-0389-GWMSD	Matrix Spike	1/19/2007 1:55:00 PM	A7A200106007D
FWGLL4mw-199C-0389-GWMS	Matrix Spike	1/19/2007 1:55:00 PM	A7A200106007S
FWGLL4mw-199C-0389-GF		1/19/2007 1:55:00 PM	A7A200106008
FWGLL4mw-199C-0389-GFMSD	Matrix Spike	1/19/2007 1:55:00 PM	A7A200106008D
FWGLL4mw-199C-0389-GFMS	Matrix Spike	1/19/2007 1:55:00 PM	A7A200106008S
FWG-TB-0398-GW	Trip Blank	1/19/2007	A7A200106009

OVERALL ELECTRONIC DATA VALIDATION AND REVIEW

The electronic data deliverable (EDD) had 116 errors when compared to the RVAPP 14 Library dated 061006. These electronic deliverable errors were due to the following issues which could not be resolved by the data validator however these errors did not take away from the validity or usability of the analytical results:

- 17 errors due to the use of an alternative surrogate, 3,4-dinitrotoluene, instead of 1,2-dinitrobenzene as specified by the library for explosives method 8330. However, this alternative surrogate is approved under the Louisville Chemistry guidelines.
- 18 errors due to insufficient information provided by the laboratory for the MS/MSD/LCS/LCSD percent recoveries of 4 compounds: bromochloromethane, benzyl alcohol, m&p-xylenes, and o-xylenes.
- 2 errors due to MS/MSD analysis being performed instead of sample/sample duplicate data as specified by the ADR library for methods 353.2 and 9012 and also due to batch MS/MSD QC not from this project performed. However this is an acceptable practice under Louisville Chemistry guidelines.
- 79 errors due to reporting limit issues with the laboratory. Sample results are non-detect but reported result exceeds the project requirements for reporting limit. In most cases MDL values were able to achieve these limits and the laboratory does report estimated values below the standard reporting limit.

The 116 electronic deliverable errors described above were accepted by the validator and did not detract from the usability or validity of the data. Trip blanks and field duplicate QC assignments were made and

automated electronic review of the data was performed by the ADR software. The discrepancies between manual and automated data review were incorporated into the data validation summary.

VOLATILES (EPA 8260B)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- · Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination
- The trip blank was free from contamination

Methylene chloride was detected in the method blank at a concentration of 1.7 ug/L. The only sample which contained methylene chloride was the trip blank which had a value of 1.4 ug/L both which are less than the reporting limit of 2.0 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

SEMI-VOLATILES (EPA 8270C, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery and low surrogate recovery was reported for the initial analysis of this analytical batch. The samples were re-extracted and re-analyzed with acceptable recovery outside of the 7 day holding time. Results from the re-analysis have been reported but qualified estimated (J/UJ) due to holding time exceedances.

Low LCS recovery was reported for hexachlorocyclopentadiene (5.7%) in the re-extracted LCS. This value is lower than the LCL and the rejection criteria of 30%. Results for hexachlorocyclopentadiene have been rejected (R) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL4mw-199C-0389-GW for the following compounds: hexachlorocyclopentadiene (7.8%, 9.4%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Bis(2-ethyl-hexyl)phthalate was detected in the method blank at a concentration of 1.6 ug/L which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

PESTICIDES (EPA 8081A, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Positive results have been confirmed on a secondary column.

Low LCS recovery was reported for endosulfan I (38%) which is lower than the LCL but greater than the rejection criteria of 30%. Results for endosulfan have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL4mw-199C-0389-GW for the following compounds: endosulfan I (40%, 36%), and endosulfan II (49%, 46%). Results of the spiked sample have been qualified estimated for the specified compounds.

PCBs (EPA 8082, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

EXPLOSIVES and Nitroguanidine (EPA 8330)

The following were reviewed and found acceptable:

- Preservation and sample handling
- Initial Calibration Criteria
- MRL criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination
- The filter blank was free from contamination

Due to high solid content within the extract, several samples were filtered prior to analysis following Section 7.0 Guidance under USEPA Solid Waste Method 8330. A filter blank was prepared and analyzed with this analytical batch. No contamination was noted on the filter blank.

METALS (EPA 6010B, 6020, 7470A, Prep method 3010)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICB criteria
- CCV and CCB criteria
- Interference check compounds (ICSA) criteria
- Sample duplicate criteria
- · Serial dilution criteria
- Post digestion spike criteria

Low LCS recovery was reported for antiomny (67%) which is less than the LCL however, but greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL4mw-199C-0389-GW for the following compounds: antimony (74%) and iron (62%, 56%). Results in the spiked sample were qualified estimated (J/UJ) based on spike criteria.

Iron was detected in the method blank at a concentration of 13 ug/L which is greater than $\frac{1}{2}$ the reporting limit of 20 ug/L. Potassium was detected in the method blank at a concentration of 146 ug/L which is greater than $\frac{1}{2}$ the reporting limit of 200 ug/L. The lab has been notified that re-analysis needs to occur any time contamination has been reported in a method blank at a concentration greater than $\frac{1}{2}$ the reporting limit. Iron and Potassium results have been qualified estimated (J) for all results within 5 times the value reported in the method blank.

Manganese was detected in the method blank at a concentration of 0.30 ug/L which is less than ½ the reporting limit of 10 ug/L. Antimony was detected in the method blank at a concentration of 0.079 ug/L which is less than ½ the reporting limit of 2.0 ug/L. Zinc was detected in the method blank at a concentration of 3.9 ug/L which is less than ½ the reporting limit of 10 ug/L. Calcium was detected in the method blank at a concentration of 332 ug/L which is less than ½ the reporting limit of 1000ug/L. Copper was detected in the method blank at a concentration of 1.8ug/L which is less than ½ the reporting limit of 5.0 ug/L, All metals specified have been qualified estimated (J) for any value reported less than the reporting limit.

Cyanide

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Nitrocellulose

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Facility Wide Ground Water Monitoring Program

Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A7A230101

The following samples were received at STL North Canton on 1/23/2007 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, and nitroguanidine were performed by STL Sacramento. Ground-water (GW) samples are analyzed for Volatiles, Semi-Volatiles, Explosives, Nitrocellulose, Nitroguanidine, Pesticides, PCBs, and Cyanide. Ground-filtered (GF) samples are field filtered prior to preservation and are analyzed for dissolved metals.

Validation Sample LIST			
Client ID	QC Type	Time / Date Collected	Lab ID
FWGLL2mw-059C-0383-GW		1/22/2007 10:35:00 AM	A7A230101001
FWGLL2mw-059C-0383-GWMSD	Matrix Spike	1/22/2007 10:35:00 AM	A7A230101001D
FWGLL2mw-059C-0383-GWMS	Matrix Spike	1/22/2007 10:35:00 AM	A7A230101001S
FWGLL2mw-059C-0383-GF		1/22/2007 10:35:00 AM	A7A230101002
FWGLL2mw-059C-0383-GFMS	Matrix Spike	1/22/2007 10:35:00 AM	A7A230101002S
FWGLL2mw-059C-0383-GFDUP	Lab Dup	1/22/2007 10:35:00 AM	A7A230101002X
FWGBKGmw-020C-0369-GW		1/22/2007 10:34:00 AM	A7A230101003
FWGBKGmw-020C-0369-GF		1/22/2007 10:34:00 AM	A7A230101004
FWGLL2mw-262C-0384-GW		1/22/2007 1:55:00 PM	A7A230101005
FWGLL2mw-262C-0384-GF		1/22/2007 1:55:00 PM	A7A230101006
FWGLL2mw-263C-0385-GW		1/22/2007 12:55:00 PM	A7A230101007
FWGLL2mw-263C-0385-GF		1/22/2007 12:55:00 PM	A7A230101008
FWGBKGmw-018C-0367-GW		1/22/2007 10:25:00 AM	A7A230101009
FWGBKGmw-018C-0367-GF		1/22/2007 10:25:00 AM	A7A230101010
FWGBKGmw-006C-0359-GW		1/22/2007 11:49:00 AM	A7A230101011
FWGBKGmw-006C-0359-GF		1/22/2007 11:49:00 AM	A7A230101012
FWGBKGmw-015C-0364-GW		1/22/2007 2:29:00 PM	A7A230101013
FWGBKGmw-015C-0364-GF		1/22/2007 2:29:00 PM	A7A230101014
FWG-TB-0398-GW	Trip Blank	1/22/2007	A7A230101015

OVERALL ELECTRONIC DATA VALIDATION AND REVIEW

The electronic data deliverable (EDD) had 150 errors when compared to the RVAPP 14 Library dated 061006. These electronic deliverable errors were due to the following issues which could not be resolved by the data validator however these errors did not take away from the validity or usability of the analytical results:

- 23 errors due to the use of an alternative surrogate, 3,4-dinitrotoluene, instead of 1,2-dinitrobenzene as specified by the library for explosives method 8330. However, this alternative surrogate is approved under the Louisville Chemistry guidelines.
- 17 errors due to insufficient information provided by the laboratory for the MS/MSD/LCS/LCSD percent recoveries of 4 compounds: bromochloromethane, benzyl alcohol, m & p-xylenes, and o-xylenes.
- 6 errors due to MS/MSD analysis being performed instead of sample/sample duplicate data as specified by the ADR library for methods 353.2 and 9012 and also due to batch MS/MSD QC not from this project performed. However this is an acceptable practice under Louisville Chemistry guidelines.

 104 errors due to reporting limit issues with the laboratory. Sample results are non-detect but reported result exceeds the project requirements for reporting limit. In most cases MDL values were able to achieve these limits and the laboratory does report estimated values below the standard reporting limit.

The 150 electronic deliverable errors described above were accepted by the validator and did not detract from the usability or validity of the data. Trip blanks and field duplicate QC assignments were made and automated electronic review of the data was performed by the ADR software. The discrepancies between manual and automated data review were incorporated into the data validation summary.

VOLATILES (EPA 8260B)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination
- The trip blank was free from contamination

SEMI-VOLATILES (EPA 8270C, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery was reported for hexachlorocyclopentadiene (19%, 24%) and benzoic acid (29%) which is lower than the LCL and lower than rejection criteria of 30%. Results for these compounds have been rejected (R) in all associated samples in the analytical batch.

Elevated RPD criteria was reported for several compounds in the LCS/LCSD in this analytical batch. Hexachlorocyclopentadiene (24%), benzoic acid (35%), 2-chlorophenol (34%), and phenol (33%). Only positive results for these compounds were qualified estimated based on RPD criteria.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL2mw-059C-0383-GW for the following compounds: 3,3-dichlorobenzene (17%, 17%), hexachlorocyclopentadiene (11%, 9.5%), and 2,4-dimethylphenol (27%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Low surrogate recoveries were reported for all acid surrogates associated with sample FWGLL2mw-263C-0395-GW. The sample was re-extracted and re-analyzed with acceptable surrogate recovery. The results of the re-analysis have been reported outside of holding time.

Bis(2-ethyl-hexyl)phthalate was detected in the method blank at a concentration of 5.6 ug/L and 1.7 ug/L in a second method blank which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

Di-n-octyl phthalate was detected in the method blank at a concentration of 0.62 ug/L which is less than ½ the reporting limit of 2.0 ug/L. Positive values reported at concentrations less than the reporting limit have been qualified (B) found in blank.

PESTICIDES (EPA 8081A, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Positive results have been confirmed on a secondary column.

Low LCS recovery was reported for endosulfan I (26%) and endosulfan II (31%) which is lower than the LCL. The rejection criteria of 30% was not met for endosulfan I. Results for endosulfan I have been rejected (R) based on the rejection criteria not being met. Results for endosulfan II have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL2mw-059C-0383-GW for the following compounds: endosulfan I (34%, 38%), and endosulfan II (38%, 43%). Results of the spiked sample have been qualified estimated for the specified compounds.

PCBs (EPA 8082, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery was reported for aroclor 1016 (41%) and aroclor 1260 (38%) which is lower than the LCL however, greater than the rejection criteria of 30%. Results for these compounds have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL2mw-059C-0383-GW for the following compounds: aroclor-1016 (40%, 40%), and aroclor 1260 (30%, 30%). Results in the spiked sample were qualified estimated (J/UJ) based on spike criteria.

Low surrogate recovery was reported for one of the two surrogates in all PCB samples in this analytical batch. Surrogate percent recoveries ranged from 17% to 35%. All samples have been qualified estimated (J/UJ) based on surrogate recoveries.

EXPLOSIVES and Nitroguanidine (EPA 8330)

The following were reviewed and found acceptable:

- Preservation and sample handling
- Initial Calibration Criteria
- MRL criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination.
- The filter blank was free from contamination

Due to high solid content within the extract, several samples were filtered prior to analysis following Section 7.0 Guidance under USEPA Solid Waste Method 8330. A filter blank was prepared and analyzed with this analytical batch. No contamination was noted on the filter blank.

METALS (EPA 6010B, 6020, 7470A, Prep method 3010)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICB criteria
- CCV and CCB criteria
- Interference check compounds (ICSA) criteria
- Sample duplicate criteria
- Serial dilution criteria
- Post digestion spike criteria

Low LCS recovery was reported for antimony (75%) which is less than the LCL however, but greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Potassium was detected in the method blank at a concentration of 160 ug/L which is greater than $\frac{1}{2}$ the reporting limit of 200 ug/L. The lab has been notified that re-analysis needs to occur any time contamination has been reported in a method blank at a concentration greater than $\frac{1}{2}$ the reporting limit. Potassium results have been qualified estimated (J) for all results within 5 times the value reported in the method blank.

Manganese was detected in the method blank at a concentration of 0.56 ug/L which is less than ½ the reporting limit of 10 ug/L. Antimony was detected in the method blank at a concentration of 0.087 ug/L which is less than ½ the reporting limit of 2.0 ug/L. Manganese and Antimony have been qualified estimated (J) for any value reported less than the reporting limit.

Cyanide

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries

- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Nitrocellulose

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Facility Wide Ground Water Monitoring Program Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A7A240102

The following samples were received at STL North Canton on 1/24/2007 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, and nitroguanidine were performed by STL Sacramento. Ground-water (GW) samples are analyzed for Volatiles, Semi-Volatiles, Explosives, Nitrocellulose, Nitroguanidine, Pesticides, PCBs, and Cyanide. Ground-filtered (GF) samples are field filtered prior to preservation and are analyzed for dissolved metals.

Validation Sample LIST			
Client ID	QC Type	Date / Time Collected	Lab ID
FWGLL1mw-083C-0382-GW		1/23/2007 11:56:00 AM	A7A240102001
FWGLL1mw-083C-0382-GWMSD	Matrix Spike	1/23/2007 11:56:00 AM	A7A240102001D
FWGLL1mw-083C-0382-GWMS	Matrix Spike	1/23/2007 11:56:00 AM	A7A240102001S
FWGLL1mw-083C-0382-GF		1/23/2007 11:56:00 AM	A7A240102002
FWGLL1mw-083C-0382-GFMS	Matrix Spike	1/23/2007 11:56:00 AM	A7A240102002S
FWGLL1mw-083C-0382-GFDUP	Lab Duplicate	1/23/2007 11:56:00 AM	A7A240102002X
FWGWBGmw-006C-0390-GW		1/23/2007 9:52:00 AM	A7A240102003
FWGWBGmw-006C-0390-GF		1/23/2007 9:52:00 AM	A7A240102004
FWGWBGmw-007C-0391-GW		1/23/2007 9:58:00 AM	A7A240102005
FWGWBGmw-007C-0391-GF		1/23/2007 9:58:00 AM	A7A240102006
FWGWBGmw-009C-0392-GW		1/23/2007 9:25:00 AM	A7A240102007
FWGWBGmw-009C-0392-GF		1/23/2007 9:25:00 AM	A7A240102008
FWGBKGmw-008C-0360-GW	Original	1/23/2007 11:56:00 AM	A7A240102009
FWGBKGmw-008C-0360-GF	Original	1/23/2007 11:56:00 AM	A7A240102010
FWGBKGmw-008C-0394-GW	Field Dup	1/23/2007 11:56:00 AM	A7A240102011
FWGBKGmw-008C-0394-GF	Field Dup	1/23/2007 11:56:00 AM	A7A240102012
FWGLL1mw-078C-0380-GW	Original	1/23/2007 12:40:00 PM	A7A240102013
FWGLL1mw-078C-0380-GF	Original	1/23/2007 12:40:00 PM	A7A240102014
FWGLL1mw-078C-0397-GW	Field Dup	1/23/2007 12:40:00 PM	A7A240102015
FWGLL1mw-078C-0397-GF	Field Dup	1/23/2007 12:40:00 PM	A7A240102016
FWGBKGmw-012C-0362-GW		1/23/2007 2:14:00 PM	A7A240102017
FWGBKGmw-012C-0362-GF		1/23/2007 2:14:00 PM	A7A240102018
FWGBKGmw-010C-0361-GW		1/23/2007 3:23:00 PM	A7A240102019
FWGBKGmw-010C-0361-GF		1/23/2007 3:23:00 PM	A7A240102020
FWG-TB-0401-GW	Trip Blank	1/23/2007	A7A240102021
FWGDA2mw-107C-0373-GW		1/22/2007 4:04:00 PM	A7A240102022
FWGDA2mw-107C-0373-GF		1/22/2007 4:04:00 PM	A7A240102023

OVERALL ELECTRONIC DATA VALIDATION AND REVIEW

The electronic data deliverable (EDD) had 205 errors when compared to the RVAPP 14 Library dated 061006. These electronic deliverable errors were due to the following issues which could not be resolved by the data validator however these errors did not take away from the validity or usability of the analytical results:

- 31 errors due to the use of an alternative surrogate, 3,4-dinitrotoluene, instead of 1,2-dinitrobenzene as specified by the library for explosives method 8330. However, this alternative surrogate is approved under the Louisville Chemistry guidelines.
- 21 errors due to insufficient information provided by the laboratory for the MS/MSD/LCS/LCSD percent recoveries of 4 compounds: bromochloromethane, benzyl alcohol, m&p-xylenes, and o-xylenes.
- 6 errors due to MS/MSD analysis being performed instead of sample/sample duplicate data as specified by the ADR library for methods 353.2 and 9012 and also due to batch MS/MSD QC not from this project performed. However this is an acceptable practice under Louisville Chemistry guidelines.
- 134 errors due to reporting limit issues with the laboratory. Sample results are non-detect but reported result exceeds the project requirements for reporting limit. In most cases MDL values were able to achieve these limits and the laboratory does report estimated values below the standard reporting limit.

The 205 electronic deliverable errors described above were accepted by the validator and did not detract from the usability or validity of the data. Trip blanks and field duplicate QC assignments were made and automated electronic review of the data was performed by the ADR software. The discrepancies between manual and automated data review were incorporated into the data validation summary.

VOLATILES (EPA 8260B)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination
- The trip blank was free from contamination

SEMI-VOLATILES (EPA 8270C, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL1mw-083C-0382-GW for the following compounds: 2,4-dimethylphenol (26%, 26%) and hexachlorocyclopentadiene (5.4%, 6.8%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Bis(2-ethyl-hexyl)phthalate was detected in the method blank at a concentration of 5.6 ug/L which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

PESTICIDES (EPA 8081A, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Positive results have been confirmed on a secondary column.

Low LCS recovery was reported for endosulfan I (38%) and endosulfan II (46%) which is lower than the LCL however, greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Elevated MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL1mw-083C-0382-GW for the following compounds: heptachlor epoxide (177%, 159%). Also elevated RPD values were reported for the MS for endrin aldehyde (32%). Since all associated samples had undetectable levels of these compounds, no data was qualified based on this.

PCBs (EPA 8082, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

EXPLOSIVES and Nitroguanidine (EPA 8330)

The following were reviewed and found acceptable:

- Preservation and sample handling
- Initial Calibration Criteria
- MRL criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- The method blank was free from contamination
- The filter blank was free from contamination

Due to high solid content within the extract, several samples were filtered prior to analysis following Section 7.0 guidance under USEPA Solid Waste Method 8330. A filter blank was prepared and analyzed with this analytical batch. No contamination was noted on the filter blank.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL1mw-083C-0382-GW for the following compounds: tetryl (0%, 0%), and 2-amino-4,6-dinitrotoluene (6.0%, 0%). Positive results were qualified estimated (J) and non-detect results were qualified (UJ) for these compounds in the spiked sample.

METALS (EPA 6010B, 6020, 7470A, Prep method 3010)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICB criteria
- CCV and CCB criteria
- Interference check compounds (ICSA) criteria
- Sample duplicate criteria
- Serial dilution criteria
- Post digestion spike criteria

Low LCS recovery was reported for antimony (69%) which is less than the LCL however, but greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL1mw-083C-0382-GF for the following compounds: antimony (74%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Potassium was detected in the method blank at a concentration of 141 ug/L which is greater than ½ the reporting limit of 200 ug/L. Calcium was detected in the method blank at a concentration of 55.1 ug/L which is greater than ½ the reporting limit of 100ug/L. Zinc was detected in the method blank at a concentration of 5.5 ug/L which is greater than ½ the reporting limit of 10 ug/L. The lab has been notified that re-analysis needs to occur any time contamination has been reported in a method blank at a concentration greater than ½ the reporting limit. Potassium, Calcium, and Zinc results have been qualified estimated (J) for all results within 5 times the value reported in the method blank.

Cyanide

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Nitrocellulose

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Facility Wide Ground Water Monitoring Program Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A7A250101

The following samples were received at STL North Canton on 1/25/2007 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, and nitroguanidine were performed by STL Sacramento. Ground-water (GW) samples are analyzed for Volatiles, Semi-Volatiles, Explosives, Nitrocellulose, Nitroguanidine, Pesticides, PCBs, and Cyanide. Ground-filtered (GF) samples are field filtered prior to preservation and are analyzed for dissolved metals.

Validation Sample List			
Sample ID	QC Type	Time / Date Collected	Lab ID
FWGBKGmw-016C-0395-GW	Field Dup	1/24/2007 9:13:00 AM	A7A250101001
FWGBKGmw-016C-0395-GF	Field Dup	1/24/2007 9:13:00 AM	A7A250101002
FWGBKGmw-016C-0395-GFMS	Matrix Spike	1/24/2007 9:13:00 AM	A7A250101002S
FWGBKGmw-016C-0395-GFDUP	Lab Dup	1/24/2007 9:13:00 AM	A7A250101002X
FWGBKGmw-016C-0365-GW	Original	1/24/2007 9:13:00 AM	A7A250101003
FWGBKGmw-016C-0365-GF	Original	1/24/2007 9:13:00 AM	A7A250101004
FWGLL12mw-182C-0377-GW	Original	1/24/2007 9:17:00 AM	A7A250101005
FWGLL12mw-182C-0377-GWMSD	Matrix Spike	1/24/2007 9:17:00 AM	A7A250101005D
FWGLL12mw-182C-0377-GWMS	Matrix Spike	1/24/2007 9:17:00 AM	A7A250101005S
FWGLL12mw-182C-0377-GF	Original	1/24/2007 9:17:00 AM	A7A250101006
FWGLL12mw-182C-0396-GW	Field Dup	1/24/2007 9:17:00 AM	A7A250101007
FWGLL12mw-182C-0396-GF	Field Dup	1/24/2007 9:17:00 AM	A7A250101008
FWGLL12mw-186C-0379-GW		1/24/2007 3:01:00 PM	A7A250101009
FWGLL12mw-186C-0379-GF		1/24/2007 3:01:00 PM	A7A250101010
FWGBKGmw-005C-0358-GW		1/24/2007 11:35:00 AM	A7A250101011
FWGBKGmw-005C-0358-GF		1/24/2007 11:35:00 AM	A7A250101012
FWGLL12mw-183C-0378-GW		1/24/2007 11:22:00 AM	A7A250101013
FWGLL12mw-183C-0378-GF		1/24/2007 11:22:00 AM	A7A250101014
FWGCBPmw-005C-0371-GW		1/24/2007 9:25:00 AM	A7A250101015
FWGCBPmw-005C-0371-GF		1/24/2007 9:25:00 AM	A7A250101016
FWGBKGmw-017C-0366-GW		1/24/2007 1:53:00 PM	A7A250101017
FWGBKGmw-017C-0366-GF		1/24/2007 1:53:00 PM	A7A250101018
FWGLL12mw-153C-0376-GW		1/24/2007 1:50:00 PM	A7A250101019
FWGLL12mw-153C-0376-GF		1/24/2007 1:50:00 PM	A7A250101020
FWGCBPmw-007C-0372-GW		1/24/2007 10:40:00 AM	A7A250101021
FWGCBPmw-007C-0372-GF		1/24/2007 10:40:00 AM	A7A250101022
FWG-TB-0402-GW	Trip Blank	1/24/2007	A7A250101023

OVERALL ELECTRONIC DATA VALIDATION AND REVIEW

The electronic data deliverable (EDD) had 184 errors when compared to the RVAPP 14 Library dated 061006. These electronic deliverable errors were due to the following issues which could not be resolved by the data validator however these errors did not take away from the validity or usability of the analytical results:

- 28 errors due to the use of an alternative surrogate, 3,4-dinitrotoluene, instead of 1,2-dinitrobenzene as specified by the library for explosives method 8330. However, this alternative surrogate is approved under the Louisville Chemistry guidelines.
- 7 errors due to insufficient information provided by the laboratory for the MS/MSD/LCS/LCSD percent recoveries of 4 compounds: bromochloromethane, benzyl alcohol, m&p-xylenes, and o-xylenes.
- 21 errors due to MS/MSD analysis being performed instead of sample/sample duplicate data as specified by the ADR library for methods 353.2 and 9012 and also due to batch MS/MSD QC not from this project performed. However this is an acceptable practice under Louisville Chemistry guidelines.
- 128 errors due to reporting limit issues with the laboratory. Sample results are non-detect but reported result exceeds the project requirements for reporting limit. In most cases MDL values were able to achieve these limits and the laboratory does report estimated values below the standard reporting limit.

The 184 electronic deliverable errors described above were accepted by the validator and did not detract from the usability or validity of the data. Trip blanks and field duplicate QC assignments were made and automated electronic review of the data was performed by the ADR software. The discrepancies between manual and automated data review were incorporated into the data validation summary.

VOLATILES (EPA 8260B)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination
- The trip blank was free from contamination

SEMI-VOLATILES (EPA 8270C, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery was reported for hexachlorocyclopentadiene (19%) which is lower than the LCL and less than rejection criteria of 30%. Results for this compound have been rejected (R) in all associated samples in the analytical batch.

Bis(2-ethyl-hexyl)phthalate was detected in the method blank at a concentration of 1.0 ug/L which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

PESTICIDES (EPA 8081A, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Positive results have been confirmed on a secondary column.

Low LCS recovery was reported for endosulfan I (42%) which is lower than the LCL however, greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

PCBs (EPA 8082, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery was reported for both aroclor-1016 (0%) and aroclor-1260 (0%). The samples were re-run and re-analyzed with acceptable LCS recovery. This re-analysis however, was performed outside of holding times. Results for the primary analysis have been rejected, re-analyzed results have been reported with acceptable LCS recovery and surrogate recovery but outside of holding time.

Low surrogate recovery was reported for on sample FWGCBPmw-005C-0371-GW for dechlorobiphenyl (19%). Since this recovery is less than 20%, the results for this sample have been rejected.

EXPLOSIVES and Nitroguanidine (EPA 8330)

The following were reviewed and found acceptable:

- Preservation and sample handling
- Initial Calibration Criteria
- MRL criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- The method blank was free from contamination
- The filter blank was free from contamination

Due to high solid content within the extract, several samples were filtered prior to analysis following Section 7.0 guidance under USEPA Solid Waste Method 8330. A filter blank was prepared and analyzed with this analytical batch. No contamination was noted on the filter blank.

METALS (EPA 6010B, 6020, 7470A, Prep method 3010)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICB criteria
- CCV and CCB criteria
- Interference check compounds (ICSA) criteria
- Sample duplicate criteria
- Serial dilution criteria
- Post digestion spike criteria

Low LCS recovery was reported for antimony (70%) which is less than the LCL however, but greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGBKGmw-016C-0395-GW for the following compounds: antimony (73%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Potassium was detected in the method blank at a concentration of 144 ug/L which is greater than ½ the reporting limit of 200 ug/L. The lab has been notified that re-analysis needs to occur any time contamination has been reported in a method blank at a concentration greater than ½ the reporting limit. Potassium results have been qualified estimated (J) for all results within 5 times the value reported in the method blank. Zinc was detected in the method blank at a concentration of 4.1 ug/L which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

Cyanide

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination.

Nitrate

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- The method blank was free from contamination

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGLL12mw-182C-0377-GW for nitrate (75, 77%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

Nitrocellulose

The following were reviewed and found acceptable:

Holding times, preservation, sample handling

- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values

Nitrocellulose was detected in the method blank at a concentration of 0.16 ug/L which is less than $\frac{1}{2}$ the reporting limit of 0.5 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

DATA VERIFICATION /VALIDATION REPORT PROJECT: RVAAP Facility Wide Ground Water Monitoring Program Prepared by Valarie Mariola of Mariola's Data Validation Services

SDG: A7A260102

The following samples were received at STL North Canton on 1/26/2007 by laboratory transit in acceptable condition for the analysis specified below. Analysis of explosives, nitrocellulose, and nitroguanidine were performed by STL Sacramento. Ground-water (GW) samples are analyzed for Volatiles, Semi-Volatiles, Explosives, Nitrocellulose, Nitroguanidine, Pesticides, PCBs, and Cyanide. Ground-filtered (GF) samples are field filtered prior to preservation and are analyzed for dissolved metals.

Validation Sample LIST			
Sample ID	QC Type	Date / Time Collected	Lab Sample ID
FWGBKGmw-004C-0357-GF		1/25/2007 10:20:00 AM	A7A260102006
FWGBKGmw-004C-0357-GW		1/25/2007 10:20:00 AM	A7A260102005
FWGBKGmw-013C-0363-GF		1/25/2007 2:41:00 PM	A7A260102002
FWGBKGmw-013C-0363-GFDUP	Lab Dup	1/25/2007 2:41:00 PM	A7A260102002X
FWGBKGmw-013C-0363-GFMS	Matrix Spike	1/25/2007 2:41:00 PM	A7A260102002S
FWGBKGmw-013C-0363-GW		1/25/2007 2:41:00 PM	A7A260102001
FWGBKGmw-013C-0363-GWMS	Matrix Spike	1/25/2007 2:41:00 PM	A7A260102001S
FWGBKGmw-013C-0363-GWMSD	Spike Dup	1/25/2007 2:41:00 PM	A7A260102001D
FWGBKGmw-019C-0368-GF		1/25/2007 11:00:00 AM	A7A260102010
FWGBKGmw-019C-0368-GW		1/25/2007 11:00:00 AM	A7A260102009
FWGBKGmw-021C-0370-GF		1/25/2007 9:11:00 AM	A7A260102004
FWGBKGmw-021C-0370-GW		1/25/2007 9:11:00 AM	A7A260102003
FWG-ER-0393-GW	Equip Rinse	1/25/2007 3:17:00 PM	A7A260102015
FWGLL1mw-080C-0381-GF		1/25/2007 1:35:00 PM	A7A260102012
FWGLL1mw-080C-0381-GW		1/25/2007 1:35:00 PM	A7A260102011
FWGLL3mw-238C-0386-GF		1/25/2007 9:15:00 AM	A7A260102008
FWGLL3mw-238C-0386-GW		1/25/2007 9:15:00 AM	A7A260102007
FWGLL3mw-242C-0387-GF		1/25/2007 11:16:00 AM	A7A260102014
FWGLL3mw-242C-0387-GW		1/25/2007 11:16:00 AM	A7A260102013
FWG-TB-0404-GW	Trip Blank	1/25/2007	A7A260102016

OVERALL ELECTRONIC DATA VALIDATION AND REVIEW

The electronic data deliverable (EDD) had 158 errors when compared to the RVAPP 14 Library dated 061006. These electronic deliverable errors were due to the following issues which could not be resolved by the data validator however these errors did not take away from the validity or usability of the analytical results:

- 25 errors due to the use of an alternative surrogate, 3,4-dinitrotoluene, instead of 1,2-dinitrobenzene as specified by the library for explosives method 8330. However, this alternative surrogate is approved under the Louisville Chemistry guidelines.
- 15 errors due to insufficient information provided by the laboratory for the MS/MSD/LCS/LCSD percent recoveries of 4 compounds: bromochloromethane, benzyl alcohol, m & p-xylenes, and o-xylenes.

- 4 errors due to MS/MSD analysis being performed instead of sample/sample duplicate data as specified by the ADR library for methods 353.2 and 9012. However this is an acceptable practice under Louisville Chemistry guidelines.
- 114 errors due to reporting limit issues with the laboratory. Sample results are non-detect but reported result exceeds the project requirements for reporting limit. In most cases MDL values were able to achieve these limits and the laboratory does report estimated values below the standard reporting limit.

The 158 electronic deliverable errors described above were accepted by the validator and did not detract from the usability or validity of the data. Trip blanks and field duplicate QC assignments were made and automated electronic review of the data was performed by the ADR software. The discrepancies between manual and automated data review were incorporated into the data validation summary.

VOLATILES (EPA 8260B)

The following were reviewed and found acceptable:

- Holding ti0mes, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values

Methylene chloride (0.25 ug/L J) was detected in the method blank. All samples had undetectable levels of this compound; therefore no results were qualified based on this.

Methylene chloride was detected in the trip blank (1.3 ug/L J) at a value less than the standard reporting limit. All samples had undetectable levels of this compound; therefore no results were qualified based on this

SEMI-VOLATILES (EPA 8270C, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV 2nd source and MRL criteria
- CCV criteria
- Internal standard area counts and retention times
- RRT and ion abundance criteria for all quantified compounds
- Manual integration consistent with LCG guidance documents
- Surrogate recoveries
- The method blank was free from contamination

Low LCS recovery was reported for benzoic acid (14%) and hexachlorocyclopentadiene (4.9%) which are both lower than the LCL and rejection criteria of 30%. Results for these two compounds have been rejected (R) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGBKGmw-013C-0363-GW for the following compounds: benzoic acid (25%), and

hexachlorocyclopentadiene (5.5, 5..2%). Results have been previously qualified due to poor LCS recovery. No further qualification was made based on MS/MSD percent recoveries.

PESTICIDES (EPA 8081A, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Instrument performance, Breakdown criteria
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Positive results have been confirmed on a secondary column.

Low LCS recovery was reported for endosulfan I (42%) which is lower than the LCL however, greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGBKGmw-013C-0363-GW for the following compounds: endosulfan I (42, 48%), and endosulfan II (48%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

PCBs (EPA 8082, Prep method 3520)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- CCV criteria
- Confirmation of positive values using second column
- LCS/LCSD percent recoveries and RPD values
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Low LCS recovery was reported for both aroclor-1016 (0%) and aroclor-1260 (0%). The samples were re-run and re-analyzed with acceptable LCS recovery. This re-analysis however, was performed outside of holding times. Results for the primary analysis have been rejected, re-analyzed results have been reported with acceptable LCS recovery and surrogate recovery but outside of holding time.

EXPLOSIVES and Nitroguanidine (EPA 8330)

The following were reviewed and found acceptable:

- Preservation and sample handling
- Initial Calibration Criteria
- MRL criteria
- Confirmation of positive values using second column
- Surrogate recoveries
- LCS percent recoveries
- The method blank was free from contamination
- The filter blank was free from contamination

Due to high solid content within the extract, several samples were filtered prior to analysis following Section 7.0 guidance under USEPA Solid Waste Method 8330. A filter blank was prepared and analyzed with this analytical batch. No contamination was noted on the filter blank.

METALS (EPA 6010B, 6020, 7470A, Prep method 3010)

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV 2nd source and MRL criteria
- ICB criteria
- CCV and CCB criteria
- Interference check compounds (ICSA) criteria
- Sample duplicate criteria
- Serial dilution criteria
- Post digestion spike criteria

Low LCS recovery was reported for antimony (69%) which is less than the LCL however, but greater than rejection criteria of 30%. Results for this compound have been qualified estimated (J/UJ) in all associated samples in the analytical batch.

Low MS/MSD percent recoveries were reported in the MS and/or MSD performed on sample FWGBKGmw-013C-0363-GW for the following compounds: antimony (70%). Results for the spiked sample have been qualified estimated (J/UJ) based on MS/MSD percent recoveries.

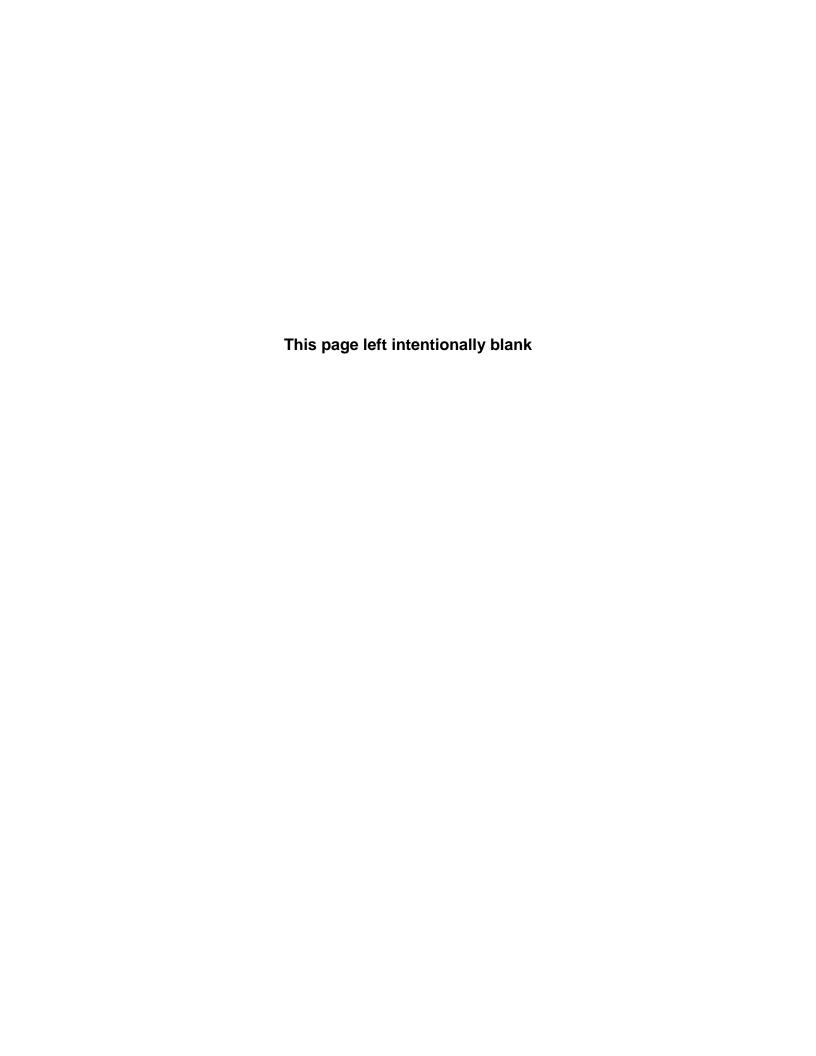
Potassium was detected in the method blank at a concentration of 143 ug/L which is greater than ½ the reporting limit of 200 ug/L. The lab has been notified that re-analysis needs to occur any time contamination has been reported in a method blank at a concentration greater than ½ the reporting limit. Potassium results have been qualified estimated (J) for all results within 5 times the value reported in the method blank. Zinc was detected in the method blank at a concentration of 2.6 ug/L which is less than ½ the reporting limit of 10 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

Cyanide

The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values
- The method blank was free from contamination

Nitrocellulose


The following were reviewed and found acceptable:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- Initial Calibration Blank
- CCV, CCB criteria
- LCS percent recoveries
- MS/MSD percent recoveries and RPD values

Nitrocellulose was detected in the method blank at a concentration of 0.16 ug/L which is less than $\frac{1}{2}$ the reporting limit of 0.5 ug/L. Positive values reported at concentrations less than reporting limit have been qualified (B) found in blank.

APPENDIX D

Investigation-Derived Waste (IDW) Report

FINAL

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

FOR THE FACILITY WIDE GROUNDWATER MONITORING PROGRAM JANUARY 2007 SAMPLING EVENT AT THE RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

APRIL 2007

Prepared for

U.S. Army Corps of Engineers Louisville, Kentucky GSA Contract No. GS-10F-0448P

Prepared by

SpecPro, Inc. 8451 State Route 5 Ravenna, OH 44266

CONTENTS

CONTENTS	i
TABLES	i
APPENDICES	i
ACRONYMS	. ii
1.0 INTRODUCTION	
2.0 OPERATIONAL HISTORY AND WASTE GENERATION	.1
3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA	.2
4.0 DISCUSSION OF ANALYTICAL RESULTS	.3
5.0 RECOMMENDATIONS FOR DISPOSAL	.3
5.1 Groundwater Results	
5.2 Decontamination Fluids Results	
5.3 Summary of Disposal Recommendations	
6.0 REFERENCES	.6
TA DI EQ	
TABLES	
Table 2-1. IDW Inventory of Drums	.2
Table 5.1 Detected analytical results when compared to USEPA Regulatory	
Maximum Toxicity Characteristics (40 CFR 261.24)	.4
Table 5.2 Summary of Drum Containers, TCLP Criteria, and Disposal	
Recommendations	5

APPENDICES

Appendix 1 Investigation-Derived Waste Analytical Results Summary

ACRONYMS

AOC Area of Concern

EPA U.S. Environmental Protection Agency

IDW investigation-derived wastes

Ohio EPA Ohio Environmental Protection Agency

PPE personal protective equipment

RCRA Resource Conservation and Recovery Act

RVAAP Ravenna Army Ammunition Plant

SAP Sampling and Analysis Plan

SVOC Semi-volatile organic compounds

TCLP Toxicity Characteristic Leaching Procedure

USACE US Army Corps of Engineers

UXO unexploded ordnance

VOC Volatile organic compounds

1.0 INTRODUCTION

Facility Wide Groundwater Monitoring Program sampling events in January 2007 at the Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio, resulted in the generation of investigation-derived wastes (IDW) consisting of purge-water and decontamination water wastes. The IDW water was generated in the course of sampling each well and the decontamination of the equipment.

The purpose of this report is to characterize and classify the IDW for proper disposal. The report includes a summary of the IDW generated and its origin; classification, and recommendations for disposal. Also included are the analytical results used for waste characterization. This document follows guidance established by the US Army Corps of Engineers (USACE) and the Ohio EPA regarding IDW disposition at RVAAP.

2.0 OPERATIONAL HISTORY AND WASTE GENERATION

Information regarding the operational history and suspected contaminants for the Facility Wide Groundwater Monitoring Program Plan is presented in Section 1.2 of the Final Part 1- Sampling and Analysis Plan Addendum for the Facility-Wide Groundwater Monitoring Program Plan at the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum) (Portage, 2004). Section 4.6 of the SAP Addendum describes procedures used for sampling and managing IDW at RVAAP.

IDW water (purged groundwater and decontamination water) was generated during the January 2007 sampling event. Each AOC area had a drum designated and labeled for purge water disposal before any sampling events occurred as agreed upon by USACE, Ohio EPA, and SpecPro. The Background wells had one drum labeled prior to beginning the sampling events. Purge water was generated in accordance with the Facility Wide Sampling and Analysis Plan (SAP), Section 4.3.4.2 (SAIC, 2001) under Micro-Purging criteria. Decontamination water was generated from the decontamination procedures used for all non-dedicated sampling equipment. These decontamination procedures are described in Section 4.3.8 "Decontamination Procedures" of the Facility Wide SAP.

The unique drum container label number, the type and size of drum container used, estimated volume within each drum, and the source of purge waste water or decontamination fluid is presented in Table 2-1.

Table 2-1. IDW Inventory of Drums

Drum Container Labeled as	Container Type & Size	Contents of Drum	Estimated Volume	Location Source of Waste
2007-101	55 Gal. Closed Top	Purge water	<10 gallons	LL1 Monitoring Wells 078, 080, 083
2007-102	55 Gal. Closed Top	Purge water	<10 gallons	LL2 Monitoring Wells 059, 262, 263
2007-103	55 Gal. Closed Top	Purge water	<10 gallons	LL3 Monitoring Wells 238, 242
2007-104	55 Gal. Closed Top	Purge water	<10 gallons	LL4 Monitoring Wells 198, 199
2007-105	55 Gal. Closed Top	Purge water	<10 gallons	LL11 Monitoring Wells 002, 007
2007-106	55 Gal. Closed Top	Purge water	<10 gallons	LL12 Monitoring Wells 153,182,183,186
2007-107	55 Gal. Closed Top	Purge water	<10 gallons	CBP Monitoring Wells 005, 007
2007-108	55 Gal. Closed Top	Purge water	~ 35 gallons	RVAAP Background Monitoring Wells
2007-109	55 Gal. Closed Top	Purge water	<10 gallons	WBG Monitoring Wells 006, 007, 009
2007-110	55 Gal. Closed Top	Decon wash water	~10 gallons	IDW wash decon water
2007-111	55 Gal. Closed Top	Decon rinse water	~15 gallons	IDW rinse decon water
2007-112	55 Gal. Closed Top	Purge water	~ 3 gallons	DA2 Monitoring Well 107

3.0 MANAGEMENT OF ENVIRONMENTAL MEDIA

All environmental media were managed in a manner that minimized risk to human health and the environment. IDW was handled as nonhazardous material pending waste characterization and classification based on analytical results. The Facility-Wide SAP (SAIC, 2001) and the Final Part 1 Sampling and Analysis Plan (Portage, 2004) describe approved procedures used for containerizing and handling IDW.

All purged groundwater generated from each monitoring well micro-purging was segregated into different drums by AOC areas and placed into closed-top 55-gallon drums as agreed upon by USACE, Ohio EPA, and SpecPro. The purge water was transferred daily from each well location after sampling by closed-top 5-gallon buckets to the appropriately labeled 55-gallon drums located behind Building 1036.

4.0 DISCUSSION OF ANALYTICAL RESULTS

In accordance with Section 7.4 "IDW Characterization and Classification for Disposal" of the Facility-Wide SAP (SAIC, 2001), all IDW was characterized for disposal by taking composite samples collected from each of the segregated waste streams. There were only two segregated waste streams that needed to be investigated; one for the purge water, and one for the decontamination water. Each waste stream had a composite sample taken by using a "drum thief" until a total of 4 liters was withdrawn in equal amounts from all drums of that particular waste stream. Each waste stream composite sample was submitted to STL Laboratories, North Canton for full Toxicity Characteristic Leaching Procedure (TCLP) analysis using the following methods in accordance with the Facility-Wide SAP (SAIC, 2001):

- TCLP Mercury by SW846 1311/7470A
- TCLP Metals (Silver, arsenic, barium, cadmium, chromium, lead, and selenium) by SW846 1311/6010B
- TCLP Semi-volatile organic compounds (SVOCs) by SW846 1311/8270C
- TCLP Volatile organic compounds (VOCs) by SW846 1311/8260B
- Reactive Cyanide by SW846 7.3.3
- Reactive Sulfide by SW846 7.3.4
- Flash Point by SW846 1010
- pH by SW846 9040B

As requested by the Ohio EPA, a trip blank (FWG-IDW-TB2007-1) was submitted with the samples and analyzed for Volatile Organic Compounds. The IDW TCLP results are presented in Appendix 1.

5.0 RECOMMENDATIONS FOR DISPOSAL

Table 7-1 in the Facility-Wide SAP (SAIC, 2001) presents the maximum concentration of contaminants for the toxicity characteristic for hazardous wastes listed in 40 CFR 261.24. Analytical results for the January 2007 Groundwater Sampling Events IDW were compared against these criteria to determine whether waste streams generated were hazardous or non-hazardous.

5.1 Groundwater Results

The data indicated that no regulatory criteria for Resource Conservation and Recovery Act (RCRA) hazardous waste determinations were exceeded. IDW was generated during the well sampling activities by micro-purging monitoring wells associated with this investigation. After comparing the analytical data results generated from groundwater sampling activities to the contaminants and their regulatory levels from Table 7-1. Please see Table 5.1 below for the detected results compared to the toxicity characteristic for hazardous wastes as per 40 CFR 261.24. For a complete listing of all RCRA toxicity characteristic values please see Table 7-1 in the Facility-Wide SAP (SAIC, 2001).

Table 5.1 Detected analytical results when compared to USEPA Regulatory Maximum Toxicity Characteristics (40 CFR 261.24).

Sample ID	Detected Contaminant	Detected Result (mg/L)	Regulatory Level (mg/L)	Above Regulatory Yes/No
	Barium - TCLP	0.029 J	100.00	NO
FWG-IDW- MWPURGE2007-1	Benzene	0.0052 J	0.5	NO
	Methyl ethyl ketone	0.043 J	200	NO
FWG-IDW-	Barium - TCLP	0.028 J	100.00	NO
MWDECON2007-1	Cadmium - TCLP	0.00063 J	1.0	NO
	Chromium - TCLP	0.0058 J	5.0	NO
	Lead - TCLP	0.0058 J	5.0	NO
FWG-IDW-TB2007-	Methylene chloride	0.69 J	N/A	N/A
	Acetone	1.8 J	N/A	N/A

Notes: N/A = not applicable

J = Estimated result. Result is less than reporting limit.

It is recommended that the drums containing purged groundwater be classified as contaminated, but non-hazardous and that they be sent off-site for disposal to a permitted water treatment facility in accordance with the Facility-Wide SAP (SAIC, 2001) guidance under Section 7.0 "Investigation-Derived Waste".

5.2 Decontamination Fluids Results

A composited sample collected from decontamination fluids generated from cleaning of non-dedicated sampling equipment used during the investigation indicated that all analytes were below TCLP threshold values and therefore should be classified as non-hazardous. It is recommended that these containers be classified as contaminated, non-hazardous, and that they be sent off-site for disposal to a permitted water treatment facility in accordance with the Facility-Wide SAP (SAIC, 2001) guidance under Section 7.0 Investigation-Derived Waste.

5.3 Summary of Disposal Recommendations

We recommend that all drums be classified as contaminated, but non-hazardous and that they be sent off-site for disposal to a permitted water treatment facility. The TCLP test results for both composited samples show that no chemical was detected in levels that required a labeling of hazardous. Table 5-2 presents a summary of each drum and the recommended disposal options for the waste streams presented and previously discussed in Section 5.

Table 5.2 Summary of Drum Containers, TCLP Criteria, and Disposal Recommendations

Drum Container Labeled As	Media	TCLP Criteria	Disposal Recommendation
2007-101	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-102	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-103	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-104	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-105	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-106	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-107	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-108	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-109	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-110	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-111	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal
2007-112	Water	Maximum Concentration of Contaminates NOT exceeded	Consolidated for Off-Site Non-Hazardous Disposal

6.0 REFERENCES

SAIC, 2001. Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio.

Portage Environmental, 2004, RVAAP Facility Wide Groundwater Monitoring Program Plan.

APPENDIX 1

INVESTIGATION-DERIVED WASTE ANALYTICAL RESULTS SUMMARY

STL North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Tel: 330 497 9396 Fax: 330 497 0772 www.stl-inc.com

ANALYTICAL REPORT

PROJECT NO. 001074.0001

FACILITY WIDE GROUNDWATER

Lot #: A7B010206

Chantelle Carrol

SpecPro Inc 8451 State Route 5 Ravenna, OH 44266

SEVERN TRENT LABORATORIES, INC.

Frank J. Calovini

Project Manager

February 23, 2007

CASE NARRATIVE

A7B010206

The following report contains the analytical results for two water samples and one quality control sample submitted to STL North Canton by Spec Pro from the Facility Wide Groundwater Site. The samples were received February 01, 2007, according to documented sample acceptance procedures.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Chantelle Carrol on February 13, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Frank J. Calovini, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT." The total number of pages in this report is 55.

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 1.8°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for FWG-IDW-MWPURGE2007-1 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 7038176. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

GC/MS SEMIVOLATILES

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 7037082. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

Sample(s) FWG-IDW-MWDECON2007-1 had elevated reporting limits due to matrix interferences.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

CASE NARRATIVE (continued)

GENERAL CHEMISTRY (continued)

Reactive Cyanide and/or Reactive Sulfide results have been reported herein with an SW846 method reference. Although the analyses are based on the referenced methods, US EPA has amended sections 7.3.3 and 7.3.4 of SW846-Chapter Seven to withdraw the Cyanide and Sulfide reactivity guidance from *Test Methods for Evaluating Solid Waste*, *Physical/Chemical Methods in June of 2005 (6/14/05; 70 FR 34537).* The analyses are no longer approved by USEPA for use in complying with RCRA regulations.

STL North Canton 4

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

STL North Canton conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. STL North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals
contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration
must be twenty fold less than the concentration reported in the associated environmental samples. (See common
laboratory contaminants listed below.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride, Acetone, 2-Butanone	Phthalate Esters	Copper, Iron, Zinc, Lead, Calcium, Magnesium, Potassium, Sodium, Barium, Chromium, Manganese	Copper, Iron, Zinc, Lead

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable. The acceptance criteria do not apply to samples that are diluted for organics if the native sample amount is 4x the concentration of the spike.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepped and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepped and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide, PCB, and PAH methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria.

STL North Canton Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),
Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Ohio (#6090), OhioVAP (#CL0024), Utah (#QUAN9), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit, ACIL Seal of Excellence — Participating Lab Status Award (#82)

C:\DOCUME~1\armans\LOCALS~1\Temp\Narrative_040306.docRevised 04/03/06 DJL

EXECUTIVE SUMMARY - Detection Highlights

A7B010206

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
FWG-IDW-MWPURGE2007-1 02/01/07 09:00	001			
Barium - TCLP Benzene Methyl ethyl ketone Flashpoint pH (liquid)	0.029 B 0.0052 J 0.043 J >180 7.5	10.0 0.025 0.25	mg/L mg/L mg/L deg F No Units	SW846 6010B SW846 8260B SW846 8260B SW846 1010 SW846 9040B
FWG-IDW-MWDECON2007-1 02/01/07 09:30	002			
Barium - TCLP Cadmium - TCLP Chromium - TCLP Lead - TCLP Flashpoint pH (liquid)	0.028 B 0.00063 B 0.0058 B 0.0058 B >180 9.0		mg/L mg/L mg/L mg/L deg F No Units	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 1010 SW846 9040B
FWG-IDW-TB2007-1 02/01/07 003				
Methylene chloride Acetone	0.69 J 1.8 J	2.0 10	ug/L ug/L	SW846 8260B SW846 8260B

ANALYTICAL METHODS SUMMARY

A7B010206

PARAMETER	ANALY:	
pH Aqueous	SW846	9040B
Inductively Coupled Plasma (ICP) Metals	SW846	6010B
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846	7470A
Pensky-Martens Method for Determining Ignitability	SW846	1010
Reactive Cyanide		7.3.3
Reactive Sulfide	SW846	7.3.4
Semivolatile Organic Compounds by GC/MS	SW846	8270C
Volatile Organics by GC/MS	SW846	8260B

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A7B010206

WO # 5	SAMPLE;	CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
JNQNV JNQN1 JNQN2	001 002 003	FWG-IDW-MWPURGE2007-1 FWG-IDW-MWDECON2007-1 FWG-IDW-TB2007-1	02/01/07 09:00 02/01/07 09:30 02/01/07
NOTE (S)):		

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: FWG-IDW-MWPURGE2007-1

TCLP GC/MS Volatiles

Lot-Sample #...: A7B010206-001 Work Order #...: JNQNV1AA Matrix..... WG

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/06/07

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	0.0052 J	0.025	mg/L	0.00023
Carbon tetrachloride	ND	0.025	mg/L	0.00045
Chlorobenzene	ND	0.025	mg/L	0.00028
Chloroform	ND	0.025	mg/L	0.00040
1,2-Dichloroethane	ND	0.025	mg/L	0.00048
1.1-Dichloroethylene	ND	0.070	mg/L	0.00060
Methyl ethyl ketone	0.043 J	0.25	mg/L	0.0010
Tetrachloroethylene	ND	0.070	mg/L	0.00083
Trichloroethylene	ND	0.050	mg/L	0.00041
Vinyl chloride	ND	0.025	mg/L	0.00044
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	120	(86 - 12	5)	
1,2-Dichloroethane-d4	122	(80 - 12	2)	
Toluene-d8	102	(90 - 12	2)	
4-Bromofluorobenzene	99	(84 - 12	5)	
MOME (a)				

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

J Estimated result. Result is less than RL.

FWG-IDW-MWPURGE2007-1

GC/MS Volatiles

Lot-Sample #: A7B010206-001 Work Order #: JNQNV1AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER .alphaMethylstyrene	CAS # 98-83-9	RESULT 0.29 NJ M	TIME 9.4163	UNITS mg/L
.aipha: Mcchijisejione				

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: FWG-IDW-MWPURGE2007-1

TCLP GC/MS Semivolatiles

Lot-Sample #...: A7B010206-001 Work Order #...: JNQNV1AC Matrix..... WG

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/10/07

Leach Batch #..: P703610 Prep Batch #...: 7037082

Dilution Factor: 1

Method.....: SW846 8270C

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
o-Cresol	ND	0.0040	mg/L	0.00056
m-Cresol & p-Cresol	ND	0.040	mg/L	0.00075
1,4-Dichlorobenzene	ND	0.0040	mg/L	0.00052
2,4-Dinitrotoluene	ND	0.020	mg/L	0.00040
Hexachlorobenzene	ND	0.020	mg/L	0.000065
Hexachlorobutadiene	ND	0.020	mg/L	0.00051
Hexachloroethane	ND	0.020	mg/L	0.00058
Nitrobenzene	ND	0.0040	mg/L	0.000053
Pentachlorophenol	ND	0.040	mg/L	0.00048
Pyridine	ND	0.020	mg/L	0.00078
2,4,5-Trichloro- phenol	ND	0.020	mg/L	0.00096
2,4,6-Trichloro- phenol	ND	0.020	mg/L	0.0014
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	74	(27 - 11	0),	
2-Fluorobiphenyl	69	(20 - 11	0)	
Terphenyl-d14	86	(44 - 11	0)	
Phenol-d5	69	(10 - 11	0)	
2-Fluorophenol	38	(10 - 11	0)	
2,4,6-Tribromophenol	95	(28 - 11	0)	

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

STL North Canton 12

Client Sample ID: FWG-IDW-MWPURGE2007-1

TCLP Metals

Lot-Sample #...: A7B010206-001

Matrix..... WG

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

Leach Date....: 02/05/07 Leach Batch #..: P703610

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 7037015 ND	0.50 Dilution Facto	2.	SW846 6010B		JNQNV1AD
Barium	0.029 B	10.0 Dilution Facto		SW846 6010B		JNQNV1AE
Cadmium	ND	0.10 Dilution Facto	٥.	SW846 6010B		JNQNV1AF
Chromium	ND	0.50 Dilution Facto		SW846 6010B		JNQNV1AG
Lead	ND	0.50 Dilution Facto	٥.	SW846 6010B	•	JNQNV1AH
Selenium	ND	0.25 Dilution Facto		SW846 6010B		JNQNV1AJ
Silver	ND	0.50 Dilution Facto	3.	SW846 6010B		JNQNV1AK
Mercury	ND	0.0020 Dilution Facto	٥.	SW846 7470A		JNQNV1AL

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: FWG-IDW-MWPURGE2007-1

General Chemistry

Lot-Sample #...: A7B010206-001 Work Order #...: JNQNV Matrix.....: WG

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	7.5		No Units	SW846 9040B	02/01/07	7033311
		Dilution Facto	or: 1	MDL:		
Flashpoint	>180		deg F	SW846 1010	02/06/07	7037399
		Dilution Facto	or: 1	MDL:		
Reactive Cyanide	ND	200	mg/kg	SW846 7.3.3	02/02/07	7033277
		Dilution Facto	or: 1	MDL 71		
Reactive Sulfide	ND	500	mg/kg	SW846 7.3.4	02/02/07	7033066
		Dilution Facto	or: 1	MDL 61		

STL North Canton 14

Client Sample ID: FWG-IDW-MWDECON2007-1

TCLP GC/MS Volatiles

Lot-Sample #...: A7B010206-002 Work Order #...: JNQN11AA Matrix...... WG

Date Sampled...: 02/01/07 09:30 Date Received..: 02/01/07

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/06/07

Leach Batch #..: P703605 Prep Batch #...: 7037257

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	0.025	mg/L	0.00023
Carbon tetrachloride	ND	0.025	mg/L	0.00045
Chlorobenzene	ND	0.025	mg/L	0.00028
Chloroform	ND	0.025	mg/L	0.00040
1,2-Dichloroethane	ND	0.025	mg/L	0.00048
1,1-Dichloroethylene	ND	0.070	mg/L	0.00060
Methyl ethyl ketone	ND	0.25	mg/L	0.0010
Tetrachloroethylene	ND	0.070	mg/L	0.00083
Trichloroethylene	ND	0.050	mg/L	0.00041
Vinyl chloride	ND	0.025	mg/L	0.00044
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	116	(86 - 12	5)	
1,2-Dichloroethane-d4	122	(80 - 12	2)	
Toluene-d8	103	(90 - 12	2)	
4-Bromofluorobenzene	105	(84 - 12	5)	

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

FWG-IDW-MWDECON2007-1

GC/MS Volatiles

Lot-Sample #: A7B010206-002 Work Order #: JNQN11AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

ESTIMATED RETENTION CAS # TIME UNITS RESULT

None

Client Sample ID: FWG-IDW-MWDECON2007-1

TCLP GC/MS Semivolatiles

Lot-Sample #...: A7B010206-002 Work Order #...: JNQN11AC Matrix..... WG

Date Sampled...: 02/01/07 09:30 Date Received..: 02/01/07

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/12/07

Leach Batch #..: P703610 Prep Batch #...: 7037082

Dilution Factor: 5

Method..... SW846 8270C

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
o-Cresol	ND	0.020	mg/L	0.0028
m-Cresol & p-Cresol	ND	0.20	mg/L	0.00075
1,4-Dichlorobenzene	ND	0.020	mg/L	0.0026
2,4-Dinitrotoluene	ND	0.10	mg/L	0.0020
Hexachlorobenzene	ND	0.10	mg/L	0.00032
Hexachlorobutadiene	ND	0.10	mg/L	0.0026
Hexachloroethane	ND	0.10	mg/L	0.0029
Nitrobenzene	ND	0.020	mg/L	0.00026
Pentachlorophenol	ND	0.20	mg/L	0.0024
Pyridine	ND	0.10	mg/L	0.0039
2,4,5-Trichloro-	ND	0.10	mg/L	0.0048
phenol				
2,4,6-Trichloro-	ND	0.10	mg/L	0.0070
phenol				
-				
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Nitrobenzene-d5	80 DIL	(27 - 110)		
2-Fluorobiphenyl	86 DIL	(20 - 110)	•	
Terphenyl-d14	88 DIL	(44 - 110))	
Phenol-d5	66 DIL	(10 - 110))	
2-Fluorophenol	43 DIL	(10 - 110))	
2,4,6-Tribromophenol	94 DIL	(28 - 110))	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: FWG-IDW-MWDECON2007-1

TCLP Metals

Lot-Sample # Date Sampled Leach Date	: 02/01/07 0	9:30 Date	Received Batch #		Matrix:	WG
PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
	- 7027015					
Prep Batch # Arsenic	ND	0.50 Dilution Fac	-	SW846 6010B		JNQN11AD
Barium	0.028 B	10.0 Dilution Fac		SW846 6010B		JNQN11AE
Cadmium	0.00063 B	0.10 Dilution Fac	٥.	SW846 6010B	02/06/07	JNQN11AF
Chromium	0.0058 B	0.50 Dilution Fac		SW846 6010B		JNQN11AG
Lead	0.0058 B	0.50 Dilution Fac	-	SW846 6010B	,, -	JNQN11AH
Selenium	ND	0.25 Dilution Fac	-	SW846 6010B		JNQN11AJ
Silver	ND	0.50 Dilution Fac	٥.	SW846 6010B		JNQN11AK
Mercury	ND	0.0020 Dilution Fac	•	SW846 7470A		JNQN11AL

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

B Estimated result. Result is less than RL.

Client Sample ID: FWG-IDW-MWDECON2007-1

General Chemistry

Lot-Sample #...: A7B010206-002 Work Order #...: JNQN1 Matrix..... WG

Date Sampled...: 02/01/07 09:30 Date Received..: 02/01/07

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
рН (liquid)	9.0	Dilution Fact	No Units	SW846 9040B	02/01/07	7033311
Flashpoint	>180	Dilution Fact	deg F	SW846 1010	02/06/07	7037399
Reactive Cyanide	ND	200 Dilution Fact	mg/kg .or: 1	SW846 7.3.3	02/02/07	7033277
Reactive Sulfide	ND	500 Dilution Fact	mg/kg	SW846 7.3.4	02/02/07	7033066

Client Sample ID: FWG-IDW-TB2007-1

GC/MS Volatiles

Lot-Sample #...: A7B010206-003 Work Order #...: JNQN21AA Matrix..... WQ

Prep Batch #...: 7038176

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Bromochloromethane	ND	1.0	ug/L	0.24	
1,2-Dibromoethane	ND	1.0	ug/L	0.24	
Chloromethane	ND	1.0	ug/L	0.14	
Bromomethane	ND	1.0	ug/L	0.36	
Vinyl chloride	ND	1.0	ug/L	0.21	
Chloroethane	ND	1.0	ug/L	0.24	
Methylene chloride	0.69 J	2.0	ug/L	0.19	
Acetone	1.8 J	10	ug/L	0.74	
Carbon disulfide	ND	1.0	ug/L	0.28	
1,1-Dichloroethene	ND	1.0	ug/L	0.18	
1,1-Dichloroethane	ND	1.0	ug/L	0.21	
1,2-Dichloroethene	ND	1.0	ug/L	0.35	
(total)					
Chloroform	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.16	
2-Butanone	ND	10	ug/L	0.39	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.21	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.14	
1,2-Dichloropropane	ND	1.0	ug/L	0.15	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.12	
Trichloroethene	ND	1.0	ug/L	0.28	
Dibromochloromethane	ND	1.0	ug/L	0.19	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.22	
Benzene	ND	1.0	ug/L	0.22	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.17	
4-Methyl-2-pentanone	ND	10	ug/L	0.32	
2-Hexanone	ND	10	ug/L	0.35	
Tetrachloroethene	ND	1.0	${\tt ug/L}$	0.19	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22	
Toluene	ND	1.0	ug/L	0.17	
Chlorobenzene	ND	1.0	ug/L	0.20	
Ethylbenzene	ND	1.0	ug/L	0.19	
Styrene	ND	1.0	ug/L	0.13	
Xylenes (total)	ND	2.0	\mathtt{ug}/\mathbf{L}	0.44	

(Continued on next page)

Client Sample ID: FWG-IDW-TB2007-1

GC/MS Volatiles

Lot-Sample #...: A7B010206-003 Work Order #...: JNQN21AA Matrix.....: WQ

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Dibromofluoromethane	105	(50 - 150)
1,2-Dichloroethane-d4	105	(50 - 150)
Toluene-d8	97	(50 - 150)
4-Bromofluorobenzene	87	(50 - 150)

J Estimated result. Result is less than RL.

FWG-IDW-TB2007-1

GC/MS Volatiles

Lot-Sample #: A7B010206-003 Work Order #: JNQN21AA Matrix: WQ

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

ESTIMATED RETENTION CAS # RESULT TIME UNITS ug/L None

22

QUALITY CONTROL SECTION

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN2JC1AA Matrix..... WATER

MB Lot-Sample #: A7B070000-176 Prep Date.....: 02/06/07

Analysis Date..: 02/06/07 Prep Batch #...: 7038176

Dilution Factor: 1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	2.0	ug/L	SW846 8260B
Acetone	ND	10	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
(total)				
Chloroform	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	10	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	N D	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	10	ug/L	SW846 8260B
2-Hexanone	ND	10	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS	<u></u>	
Dibromofluoromethane	108	(50 - 1		
1,2-Dichloroethane-d4	111	(50 - 1	50)	

(Continued on next page)

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A7B010206

Work Order #...: JN2JC1AA Matrix....: WATER

REPORTI	ING		
LIMIT		UNITS	METHOD
 			

PARAMETER (50 - 150) 95 Toluene-d8 (50 - 150)4-Bromofluorobenzene 84

RESULT

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SpecPro Inc

Method Blank Report

GC/MS Volatiles

Lot-Sample #: A7B070000-176 B Work Order #: JN2JC1AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

ESTIMATED RETENTION CAS # RESULT TIME UNITS PARAMETER ug/L None

TCLP GC/MS Volatiles

Client Lot #...: A7B010206

Work Order #...: JNXPM1AA

99

Matrix....: SOLID

MB Lot-Sample #: A7B050000-269

Leach Date....: 02/05/07 Leach Batch #..: P703605

Prep Date....: 02/06/07 Prep Batch #...: 7037257

Analysis Date..: 02/06/07

Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	0.025	mg/L	SW846 8260B
Carbon tetrachloride	ND	0.025	mg/L	SW846 8260B
Chlorobenzene	ND	0.025	mg/L	SW846 8260B
Chloroform	ND	0.025	mg/L	SW846 8260B
1,2-Dichloroethane	ND	0.025	mg/L	SW846 8260B
1,1-Dichloroethylene	ND	0.070	mg/L	SW846 8260B
Methyl ethyl ketone	ND	0.25	mg/L	SW846 8260B
Tetrachloroethylene	ND	0.070	mg/L	SW846 8260B
Trichloroethylene	ND	0.050	mg/L	SW846 8260B
Vinyl chloride	ND	0.025	mg/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	112	(86 - 1	25)	
1,2-Dichloroethane-d4	117	(80 - 1	22)	
Toluene-d8	103	(90 - 1	22)	

(84 - 125)

NOTE(S):

4-Bromofluorobenzene

Calculations are performed before rounding to avoid round-off errors in calculated results.

SpecPro Inc

Method Blank Report

GC/MS Volatiles

Lot-Sample #: A7B050000-269 B Work Order #: JNXPM1AA

Matrix: SOLID

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER CAS # ESTIMATED RETENTION

CAS # RESULT TIME UNITS

Acetic acid, 1-methylethyl est 108-21-4 0.10 NJ M 4.8127 mg/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

TCLP GC/MS Semivolatiles

Client Lot #...: A7B010206 Work Order #...: JN0EQ1AA Matrix..... WATER

MB Lot-Sample #: A7B060000-082

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/09/07
Leach Batch #..: P703610 Prep Batch #..: 7037082

REPORTING

(28 - 110)

Dilution Factor: 1

PARAMETER	RESULT	LIMIT	UNITS	METHOD
o-Cresol	ND	0.0040	mg/L	SW846 8270C
m-Cresol & p-Cresol	ND	0.040	mg/L	SW846 8270C
1,4-Dichlorobenzene	ND	0.0040	mg/L	SW846 8270C
2,4-Dinitrotoluene	ND	0.020	mg/L	SW846 8270C
Hexachlorobenzene	ND	0.020	mg/L	SW846 8270C
77 N. N N	NTD	0.000	m~/T	CMO46 9270C

2,4-Dinitrotoluene	ND	0.020	mg/L	SW846 8270C	
Hexachlorobenzene	ND	0.020	mg/L	SW846 8270C	
Hexachlorobutadiene	ND	0.020	mg/L	SW846 8270C	
Hexachloroethane	ND	0.020	mg/L	SW846 8270C	
Nitrobenzene	ND	0.0040	mg/L	SW846 8270C	
Pentachlorophenol	ND	0.040	mg/L	SW846 8270C	
Pyridine	ND	0.020	mg/L	SW846 8270C	
2,4,5-Trichloro-	ND	0.020	mg/L	SW846 8270C	
phenol					
2,4,6-Trichloro-	ND	0.020	mg/L	SW846 8270C	
phenol					

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	81	(27 - 110)
2-Fluorobiphenyl	77	(20 - 110)
Terphenyl-d14	102	(44 - 110)
Phenol-d5	72	(10 - 110)
2-Fluorophenol	41	(10 - 110)

103

NOTE(S):

2,4,6-Tribromophenol

 $\textbf{Calculations are performed before rounding to avoid round-off errors in calculated } \overline{\textbf{results.}}$

STL North Canton 29

TCLP Metals

Matrix..... WATER Client Lot #...: A7B010206 PREPARATION-WORK REPORTING UNITS ANALYSIS DATE ORDER # METHOD LIMIT PARAMETER RESULT MB Lot-Sample #: A7B050000-314 Prep Batch #...: 7037015 Leach Batch #..: P703610 Leach Date....: 02/05/07 JNXTE1AC 02/06/07 SW846 6010B Arsenic mq/L Dilution Factor: 1 02/06/07 JNXTE1AD 10.0 mq/L SW846 6010B Barium ND Dilution Factor: 1 JNXTE1AE mq/L SW846 6010B 02/06/07 0.10 Cadmium ND Dilution Factor: 1 SW846 6010B 02/06/07 JNXTE1AF mg/L Chromium ND 0.50 Dilution Factor: 1 02/06/07 JNXTE1AG SW846 6010B Lead ND 0.50 mg/L Dilution Factor: 1 JNXTE1AH 02/06/07 SW846 6010B Selenium 0.0061 B 0.25 mq/L Dilution Factor: 1 02/06/07 JNXTE1AJ SW846 6010B Silver ND 0.50 mq/L Dilution Factor: 1 02/06/07 JNXTE1AK 0.0020 mg/L SW846 7470A Mercury ND Dilution Factor: 1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

TCLP Metals

Client Lot #...: A7B010206

Matrix..... WATER WORK PREPARATION-REPORTING ANALYSIS DATE ORDER # METHOD RESULT LIMIT UNITS PARAMETER MB Lot-Sample #: A7B060000-015 Prep Batch #...: 7037015 JN0CA1AA 02/06/07 0.50 mq/L SW846 6010B Arsenic Dilution Factor: 1 JN0CA1AC 02/06/07 10.0 mg/L SW846 6010B ND Barium Dilution Factor: 1 JN0CA1AD mg/L SW846 6010B 02/06/07 0.10 Cadmium ND Dilution Factor: 1 SW846 6010B 02/06/07 JN0CA1AE 0.50 mg/L Chromium ND Dilution Factor: 1 02/06/07 JN0CA1AF SW846 6010B 0.50 mq/L Lead ND Dilution Factor: 1 JN0CA1AG 02/06/07 SW846 6010B mg/L Selenium ND 0.25 Dilution Factor: 1 JN0CA1AH 02/06/07 0.50 mg/L SW846 6010B Silver ND Dilution Factor: 1 JN0CA1AJ 0.0020 mg/L SW846 7470A 02/06/07 ND Mercury Dilution Factor: 1

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

General Chemistry

Client Lot #:	A7B010206		Matr	ix WA	TER
PARAMETER Reactive Cyanide	RESULT	REPORTING LIMIT UNITS Work Order #: JNT6D	METHOD 1AA MB Lot-Sample #:	PREPARATION- ANALYSIS DATE A7B020000-277	PREP BATCH #
•	75 B	200 mg/kg Dilution Factor: 1	SW846 7.3.3	02/02/07	7033277
Reactive Sulfide	ND	Work Order #: JNT0H 500 mg/kg Dilution Factor: 1	1AA MB Lot-Sample #: SW846 7.3.4	A7B020000-066 02/02/07	7033066

NOTE(S): Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN2JC1AC-LCS Matrix...... WATER

LCS Lot-Sample#: A7B070000-176 JN2JC1AD-LCSD

Prep Batch #...: 7038176

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,2-Dibromoethane	85	(75 - 127)			SW846 8260B
172 Diblomocolland	91	(75 - 127)	6.9	(0-30)	SW846 8260B
Chloromethane	73	(58 - 135)			SW846 8260B
C/12/02/O/MODITATIO	75	(58 - 135)	2.8	(0-30)	SW846 8260B
Bromomethane	89	(35 - 153)			SW846 8260B
220	84	(35 - 153)	6.2	(0-30)	SW846 8260B
Vinyl chloride	75	(73 - 134)			SW846 8260B
V211/1 011101100	70 a	(73 - 134)	6.5	(0-30)	SW846 8260B
Chloroethane	90	(72 - 129)			SW846 8260B
0.11010001100	88	(72 - 129)	1.6	(0-30)	SW846 8260B
Methylene chloride	97	(69 - 118)			SW846 8260B
	101	(69 - 118)	3.8	(0-30)	SW846 8260B
Acetone	71	(51 - 157)			SW846 8260B
710000110	77	(51 - 157)	8.3	(0-30)	SW846 8260B
Carbon disulfide	98	(74 - 123)			SW846 8260B
carbon dibarriac	98	(74 - 123)	0.31	(0-30)	SW846 8260B
1,1-Dichloroethene	98	(75 - 125)			SW846 8260B
T,T DIGITOTOCONC	100	(75 - 125)	2.4	(0-30)	SW846 8260B
1,1-Dichloroethane	98	(75 - 133)		•	SW846 8260B
171 BIONICIOSOMANO	101	(75 - 133)	2.8	(0-30)	SW846 8260B
1,2-Dichloroethene	97	(85 - 111)			SW846 8260B
(total)					
(60641)	97	(85 - 111)	0.66	(0-30)	SW846 8260B
Chloroform	107	(74 - 127)			SW846 8260B
	107	(74 - 127)	0.35	(0-30)	SW846 8260B
1,2~Dichloroethane	102	(67 - 132)			SW846 8260B
,	104	(67 - 132)	1.3	(0-30)	SW846 8260B
2-Butanone	83	(45 - 150)			SW846 8260B
	83	(45 - 150)	0.20	(0-30)	SW846 8260B
1,1,1-Trichloroethane	111	(70 - 127)			SW846 8260B
, ,	113	(70 - 127)	2.0	(0-30)	SW846 8260B
Carbon tetrachloride	113	(71 - 132)			SW846 8260B
	117	(71 - 132)	3.6	(0-30)	SW846 8260B
Bromodichloromethane	103	(70 - 130)			SW846 8260B
	101	(70 - 130)	1.7	(0-30)	SW846 8260B
1,2-Dichloropropane	89	(75 - 127)			SW846 8260B
• •	91	(75 - 127)	2.1	(0-30)	SW846 8260B
cis-1,3-Dichloropropene	92	(73 - 132)			SW846 8260B
	94	(73 - 132)	2.1	(0-30)	SW846 8260B

(Continued on next page)

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN2JC1AC-LCS Matrix.....: WATER LCS Lot-Sample#: A7B070000-176 JN2JC1AD-LCSD

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Trichloroethene	95	(67 - 128)			SW846 8260B
II I CALOLO CHOICE	92	(67 - 128)	2.6	(0-30)	SW846 8260B
Dibromochloromethane	97	(74 - 145)		,	SW846 8260B
2121011011111010111111	100	(74 - 145)	2.9	(0-30)	SW846 8260B
1,1,2-Trichloroethane	92	(75 - 136)			SW846 8260B
-,-,-	90	(75 - 136)	1.3	(0-30)	SW846 8260B
Benzene	92	(75 - 126)			SW846 8260B
	93	(75 - 126)	1.1	(0-30)	SW846 8260B
trans-1,3-Dichloropropene	94	(74 - 131)			SW846 8260B
	98	(74 - 131)	4.2	(0-30)	SW846 8260B
Bromoform	94	(72 - 136)			SW846 8260B
	95	(72 - 136)	1.3	(0-30)	SW846 8260B
4-Methyl-2-pentanone	84	(59 - 150)			SW846 8260B
• •	86	(59 - 150)	2.4	(0-30)	SW846 8260B
2-Hexanone	77	(53 ~ 139)			SW846 8260B
	80	(53 - 139)	3.4	(0-30)	SW846 8260B
Tetrachloroethene	96	(75 - 129)			SW846 8260B
	101	(75 - 129)	5.6	(0-30)	SW846 8260B
1,1,2,2-Tetrachloroethane	81	(68 - 129)			SW846 8260B
	80	(68 - 129)	1.2	(0-30)	SW846 8260B
Toluene	95	(75 - 125)			SW846 8260B
	98	(75 - 125)	3.3	(0-30)	SW846 8260B
Chlorobenzene	88	(75 - 127)			SW846 8260B
	94	(75 - 127)	7.0	(0-30)	SW846 8260B
Ethylbenzene	86	(75 - 120)			SW846 8260B
	92	(75 - 120)	6.9	(0-30)	SW846 8260B
Styrene	89	(75 - 130)			SW846 8260B
	92	(75 - 130)	3.3	(0-30)	SW846 8260B
Xylenes (total)	92	(90 - 114)			SW846 8260B
	96	(90 ~ 114)	3.8	(0-30)	SW846 8260B
cis-1,2-Dichloroethene	97	(73 - 133)			SW846 8260B
	97	(73 - 133)	0.54	(0-30)	SW846 8260B
trans-1,2-Dichloroethene	98	(75 - 134)			SW846 8260B
	97	(75 - 134)	0.79	(0-30)	SW846 8260B
n-Hexane	104	(69 - 129)			SW846 8260B
	105	(69 - 129)	1.7	(0-30)	SW846 8260B
1,2-Dibromo-3-chloro-	85	(75 - 132)			SW846 8260B
propane					
	86	(75 - 132)	0.95	(0-30)	SW846 8260B
1,2-Dichlorobenzene	88	(73 - 120)			SW846 8260B
	89	(73 - 120)	1.5	(0-30)	SW846 8260B

(Continued on next page)

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN2JC1AC-LCS Matrix..... WATER

JN2JC1AD-LCSD LCS Lot-Sample#: A7B070000-176

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD_	LIMITS	METHOD
1,3-Dichlorobenzene	87	(75 - 122)			SW846 8260B
-,-	90	(75 - 122)	3.1	(0-30)	SW846 8260B
1,4-Dichlorobenzene	92	(74 - 123)			SW846 8260B
2,	93	(74 - 123)	0.70	(0-30)	SW846 8260B
Dichlorodifluoromethane	56 a	(59 - 134)			SW846 8260B
	55 a	(59 - 134)	0.79	(0-30)	SW846 8260B
Freon 113	112	(50 - 150)			SW846 8260B
	110	(50 - 150)	1.2	(0-30)	SW846 8260B
Isopropylbenzene	95	(75 - 126)			SW846 8260B
	99	(75 - 126)	4.8	(0-30)	SW846 8260B
Methyl acetate	82	(60 - 140)			SW846 8260B
	88	(60 - 140)	7.1	(0-20)	SW846 8260B
Methylcyclohexane	92	(60 - 140)			SW846 8260B
,	94	(60 - 140)	1.9	(0-20)	SW846 8260B
Methyl tert-butyl ether (MTBE)	98	(59 - 129)			SW846 8260B
(MIDE)	97	(59 - 129)	0.68	(0-30)	SW846 8260B
1,2,4-Trichloro-	86	(75 - 130)			SW846 8260B
benzene	88	(75 - 130)	1.9	(0-30)	SW846 8260B
- 11 61th	110	(68 - 133)			SW846 8260B
Trichlorofluoromethane	112	(68 - 133)	1.5	(0-30)	SW846 8260B
	112	(00 133)	1.5	(0 30)	5.70 13 13-11-1
		PERCENT	RECOV	'ERY	
SURROGATE		RECOVERY	LIMIT	'S	
Dibromofluoromethane		109	(50 -	150)	
DIDIOMOLINGIA		109	(50 -	150)	
1,2-Dichloroethane-d4		112	(50 -	150)	
1,2 promozocomana ar		113	(50 -	150)	
Toluene-d8		99	(50 ⋅	150)	
TOTACHE AU		102	(50 -	150)	
4-Bromofluorobenzene		99		150)	
4 DIOMOLIMOTODOMO		105		150)	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN0581AA Matrix...... WATER

LCS Lot-Sample#: A7B060000-257

Prep Date....: 02/06/07 Analysis Date..: 02/06/07

Prep Batch #...: 7037257

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	113	(76 - 118)	SW846 8260B
Chloromethane	105	(37 - 126)	SW846 8260B
Carbon tetrachloride	110	(71 - 124)	SW846 8260B
Bromomethane	98	(55 - 137)	SW846 8260B
Chlorobenzene	100	(76 - 113)	SW846 8260B
Chloroform	117	(82 - 117)	SW846 8260B
1,2-Dichloroethane	117	(78 - 122)	SW846 8260B
Chloroethane	99	(55 - 125)	SW846 8260B
1,1-Dichloroethylene	104	(67 - 128)	SW846 8260B
Methyl ethyl ketone	111 a	(40 - 110)	SW846 8260B
Methylene chloride	101	(69 - 131)	SW846 8260B
Tetrachloroethylene	101	(64 - 121)	SW846 8260B
Acetone	90	(22 - 110)	SW846 8260B
Trichloroethylene	108	(76 - 119)	SW846 8260B
Vinyl chloride	100	(47 - 123)	SW846 8260B
Carbon disulfide	99	(57 - 128)	SW846 8260B
1,1-Dichloroethane	122 a	(79 - 119)	SW846 8260B
1,2-Dichloroethene	117	(79 - 118)	SW846 8260B
(total)			
1,1,1-Trichloroethane	119	(74 - 122)	SW846 8260B
Bromodichloromethane	124 a	(78 - 123)	SW846 8260B
1,2-Dichloropropane	117	(80 - 119)	SW846 8260B
cis-1,3-Dichloropropene	112	(74 - 126)	SW846 8260B
Dibromochloromethane	104	(76 - 120)	SW846 8260B
1,1,2-Trichloroethane	101	(84 - 110)	SW846 8260B
trans-1,3-Dichloropropene	79	(71 - 112)	SW846 8260B
Bromoform	91	(63 - 129)	SW846 8260B
4-Methyl-2-pentanone	125	(56 - 125)	SW846 8260B
2-Hexanone	106	(36 - 111)	SW846 8260B
1,1,2,2-Tetrachloroethane	101	(79 - 120)	SW846 8260B
Toluene	102	(72 - 117)	SW846 8260B
Ethylbenzene	101	(71 - 119)	SW846 8260B
Styrene	98	(71 - 120)	SW846 8260B
Xylenes (total)	103	(72 - 120)	SW846 8260B
*			

(Continued on next page)

GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JN0581AA Matrix...... WATER

LCS Lot-Sample#: A7B060000-257

PARAMETER cis-1,2-Dichloroethene trans-1,2-Dichloroethene n-Hexane	PERCENT RECOVERY 115 120 130	RECOVERY LIMITS (81 - 116) (74 - 122) (68 - 139)	METHOD SW846 8260B SW846 8260B SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		114	(86 - 124)
1,2-Dichloroethane-d4		116	(80 - 122)
Toluene-d8		104	(90 - 122)
4-Bromofluorobenzene		106	(84 - 125)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC/MS Semivolatiles

Client Lot #...: A7B010206 Work Order #...: JN0EQ1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A7B060000-082 JN0EQ1AD-LCSD

Prep Date....: 02/06/07 Analysis Date..: 02/09/07

Prep Batch #...: 7037082

Dilution Factor: 1

PARAMETER RECOVERY LIMITS RPD LIMITS METHOD O-Cresol 74 (23 - 110) 5.0 (0-30) SW846 8270C m-Cresol & p-Cresol 79 (28 - 110) 5.0 (0-30) SW846 8270C 76 (28 - 110) 4.0 (0-30) SW846 8270C 1,4-Dichlorobenzene 66 (13 - 110) 5.1 (0-30) SW846 8270C 2,4-Dinitrotoluene 98 (45 - 119) SW846 8270C
O-Cresol 74 (23 - 110) SW846 8270C 71 (23 - 110) 5.0 (0-30) SW846 8270C m-Cresol & p-Cresol 79 (28 - 110) SW846 8270C 76 (28 - 110) 4.0 (0-30) SW846 8270C 1,4-Dichlorobenzene 66 (13 - 110) SW846 8270C 62 (13 - 110) 5.1 (0-30) SW846 8270C
71 (23 - 110) 5.0 (0-30) SW846 8270C m-Cresol & p-Cresol 79 (28 - 110) 5.0 (0-30) SW846 8270C 76 (28 - 110) 4.0 (0-30) SW846 8270C 1,4-Dichlorobenzene 66 (13 - 110) 5.1 (0-30) SW846 8270C 62 (13 - 110) 5.1 (0-30) SW846 8270C
m-Cresol & p-Cresol 79 (28 - 110) SW846 8270C 76 (28 - 110) 4.0 (0-30) SW846 8270C 1,4-Dichlorobenzene 66 (13 - 110) SW846 8270C 62 (13 - 110) 5.1 (0-30) SW846 8270C
76 (28 - 110) 4.0 (0-30) SW846 8270C 1,4-Dichlorobenzene 66 (13 - 110) SW846 8270C 62 (13 - 110) 5.1 (0-30) SW846 8270C
1,4-Dichlorobenzene 66 (13 - 110) SW846 8270C 62 (13 - 110) 5.1 (0-30) SW846 8270C
62 (13 - 110) 5.1 (0-30) SW846 8270C
103 (45 - 119) 4.7 (0-30) SW846 8270C
Hexachlorobenzene 89 (46 - 112) SW846 8270C
88 (46 - 112) 1.0 (0-30) SW846 8270C
Hexachlorobutadiene 59 (10 - 110) SW846 8270C
60 (10 - 110) 1.9 (0-30) SW846 8270C
Hexachloroethane 59 (10 - 110) SW846 8270C
57 (10 - 110) 4.3 (0-30) SW846 8270C
Nitrobenzene 84 (29 - 118) SW846 8270C
85 (29 - 118) 0.53 (0-30) SW846 8270C
Pentachlorophenol 81 (10 - 116) SW846 8270C
94 (10 - 116) 14 (0-30) SW846 8270C
Pyridine 67 (15 - 110) SW846 8270C
69 (15 - 110) 2.8 (0-30) SW846 8270C
2,4,5-Trichloro- 84 (36 - 110) SW846 8270C
phenol
85 (36 - 110) 1.3 (0-30) SW846 8270C
2,4,6-Trichloro- 83 (32 - 110) SW846 8270C
phenol
85 (32 - 110) 2.0 (0~30) SW846 8270C
Cresols (total) 78 (28 - 110) SW846 8270C
74 (28 - 110) 4.3 (0-30) SW846 8270C
PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
Nitrobenzene-d5 82 (27 - 110)
82 (27 - 110)
2-Fluorobiphenyl 79 (20 - 110)
80 (20 - 110)
Terphenyl-d14 98 (44 - 110)
97 (44 - 110)
Phenol-d5 80 (10 - 110)

(Continued on next page)

GC/MS Semivolatiles

Client Lot #...: A7B010206 Work Order #...: JN0EQ1AC-LCS Matrix....: WATER LCS Lot-Sample#: A7B060000-082 JN0EQ1AD-LCSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
SURROGATE	76	(10 - 110)
2-Fluorophenol	59	(10 - 110)
-	55	(10 - 110)
2,4,6-Tribromophenol	106	(28 - 110)
	106	(28 - 110)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

TCLP Metals

Client Lot #: A7B010206	Matrix: WATER
Client Lot #: A7B010206	Hattla

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic	A7B060000- 91	015 Prep Ba (50 - 150) Dilution Facto	sw846 6010B or: 1	02/06/07	JN0CA1AK
Barium	97	(50 - 150) Dilution Fact	SW846 6010B or: 1	02/06/07	JN0CA1AL
Cadmium	97	(50 - 150) Dilution Fact	SW846 6010B or: 1	02/06/07	JN0CA1AM
Chromium	98	(50 - 150) Dilution Fact	SW846 6010B	02/06/07	JN0CA1AN
Lead	91	(50 - 150) Dilution Fact	SW846 6010B or: 1	02/06/07	JN0CA1AP
Selenium	100	(50 - 150) Dilution Fact	SW846 6010B or: 1	02/06/07	JN0CA1AQ
Silver	110	(50 - 150) Dilution Fact	SW846 6010B or: 1	02/06/07	JN0CA1AR
Mercury	108	(50 150) Dilution Fact	SW846 7470A	02/06/07	JNOCALAT
NOTE(S):					

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #: A7B010206					Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD		PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)	100		#: JNVA71AA SW846 9040B		Lot-Sample#: A7B020000- 02/01/07	-311 7033311
	100	Dilution Fact				
Reactive Cyanid	.e	Work Order	#: JNT6D1AC	LCS	Lot-Sample#: A7B020000	-277
	25	(10 - 200) Dilution Fact	SW846 7.3.3		02/02/07	7033277
Reactive Sulfid	.e	Work Order	#: JNTOH1AC	LCS	Lot-Sample#: A7B020000	-066
	133	(10 - 200) Dilution Fact	SW846 7.3.4 cor: 1		02/02/07	7033066

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JNQNV1CA-MS Matrix..... WG

MS Lot-Sample #: A7B010206-001 JNQNV1CC-MSD

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

Leach Date....: 02/05/07 Prep Date....: 02/06/07 Analysis Date..: 02/06/07

Leach Batch #...: P703605 Prep Batch #...: 7037257

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	107	(76 - 117)			SW846 8260B
	109	(76 - 117)	2.3	(0-30)	SW846 8260B
Carbon tetrachloride	89	(72 - 124)			SW846 8260B
	94	(72 - 124)	5.8	(0-30)	SW846 8260B
Chlorobenzene	98	(72 - 114)			SW846 8260B
	96	(72 - 114)	1.8	(0-30)	SW846 8260B
Chloroform	113	(82 - 117)			SW846 8260B
	116	(82 - 117)	2.6	(0-30)	SW846 8260B
Chloromethane	99	(39 - 126)			SW846 8260B
	101	(39 - 126)	2.1	(0-30)	SW846 8260B
1,2-Dichloroethane	115	(80 - 120)			SW846 8260B
	118	(80 - 120)	2.4	(0-30)	SW846 8260B
1,1-Dichloroethylene	97	(67 - 129)			SW846 8260B
	98	(67 - 129)	1.0	(0-30)	SW846 8260B
Bromomethane	92	(56 - 144)			SW846 8260B
	92	(56 - 144)	0.58	(0-30)	SW846 8260B
Methyl ethyl ketone	97	(37 - 110)			SW846 8260B
	100	(37 - 110)	2.8	(0-30)	SW846 8260B
Tetrachloroethylene	95	(60 - 119)			SW846 8260B
	94	(60 - 119)	0.90	(0-30)	SW846 8260B
Chloroethane	95	(54 - 129)			SW846 8260B
	96	(54 - 129)	0.94	(0-30)	SW846 8260B
Trichloroethylene	104	(72 - 121)			SW846 8260B
	106	(72 - 121)	1.8	(0-30)	SW846 8260B
Vinyl chloride	91	(54 - 118)			SW846 8260B
-	96	(54 - 118)	5.2	(0-30)	SW846 8260B
Methylene chloride	96	(70 - 124)			SW846 8260B
-	98	(70 - 124)	2.0	(0-30)	SW846 8260B
Acetone	69	(22 - 110)			SW846 8260B
	75	(22 - 110)	7.7	(0-30)	SW846 8260B
Carbon disulfide	93	(59 - 126)			SW846 8260B
	92	(59 - 126)	1.2	(0-24)	SW846 8260B
1,1-Dichloroethane	117	(78 - 119)			SW846 8260B
	118	(78 - 119)	0.86	(0-30)	SW846 8260B
1,2-Dichloroethene (total)	114	(80 - 117)			SW846 8260B
	115	(80 - 117)	0.56	(0-30)	SW846 8260B
1.1.1-Trichloroethane	103	(74 - 123)			SW846 8260B
, ,	106	(74 - 123)	3.1	(0-30)	SW846 8260B

(Continued on next page)

TCLP GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JNQNV1CA-MS Matrix..... WG

MS Lot-Sample #: A7B010206-001 JNQNV1CC-MSD

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOL)
		(00 100)			CIMO 4.C	00C0B
Bromodichloromethane	114	(80 - 123)	2.6	(0.20)	SW846	
	119	(80 - 123)	3.6	(0-30)	SW846	
1,2-Dichloropropane	110	(79 - 118)		(0.00)	SW846	
	112	(79 - 118)	2.4	(0-30)	SW846	
cis-1,3-Dichloropropene	92	(77 - 121)		(0.20)	SW846	
	98	(77 - 121)	6.8	(0-30)	SW846	
Dibromochloromethane	97	(79 - 118)		(0.00)	SW846	
	97	(79 - 118)	0.04	(0-30)	SW846	
1,1,2-Trichloroethane	100	(83 - 110)	_	()	SW846	
	99	(83 - 110)	1.1	(0-30)	SW846	
trans-1,3-Dichloropropene		(74 - 110)			SW846	
	68 a	(74 - 110)	2.5	(0-30)	SW846	
Bromoform	80	(69 - 129)			SW846	
	81	(69 - 129)	0.52	(0-30)		8260B
4-Methyl-2-pentanone	117	(57 - 123)				8260B
	120	(57 - 123)	2.5	(0-30)	SW846	
2-Hexanone	98	(40 - 110)				8260B
	99	(40 ~ 110)	1.0	(0-30)		8260B
1,1,2,2-Tetrachloroethane	94	(76 - 125)				8260B
	94	(76 - 125)	0.22	(0-30)		8260B
Toluene	101	(67 - 113)			SW846	8260B
	99	(67 - 113)	1.7	(0-30)	SW846	8260B
Ethylbenzene	97	(64 - 120)			SW846	8260B
	97	(64 - 120)	0.09	(0-30)	SW846	8260B
Styrene	95	(66 - 122)				8260B
	95	(66 - 122)	0.29	(0-30)	SW846	8260B
Xylenes (total)	101	(62 - 122)			SW846	8260B
-	101	(62 - 122)	0.89	(0-30)	SW846	8260B
cis-1,2-Dichloroethene	111	(82 - 116)			SW846	8260B
	113	(82 - 116)	1.3	(0-30)	SW846	8260B
trans-1,2-Dichloroethene	117	(75 - 120)			SW846	8260B
	116	(75 - 120)	0.14	(0-30)	SW846	8260B
		DBDCENT		RECOVERY		
arran o an min		PERCENT		LIMITS		
SURROGATE		RECOVERY			_	
Dibromofluoromethane		116		(86 - 125)		
		116		(86 - 125)		
1,2-Dichloroethane-d4		118		(80 - 122)		
		118		(80 - 122)		
Toluene-d8		107		(90 - 122)		
		105		(90 - 122)	•	

(Continued on next page)

TCLP GC/MS Volatiles

Client Lot #...: A7B010206 Work Order #...: JNQNV1CA-MS Matrix.....: WG

MS Lot-Sample #: A7B010206-001 JNQNV1CC-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	110 108	(84 - 125) (84 - 125)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

STL North Canton 44

TCLP Metals

Client Lot #...: A7B010206 Matrix....: WG

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

PARAMETER	PERCENT RECOVER		RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sampl	e #: A7E	3010206-001 Pre				
Leach Date	: 02/	'05/07 Lea	ch Batch #.			
Arsenic	102	(50 - 150)		SW846 6010B	02/06/07	JNQNV1AR
	104	(50 - 150) 2 Dilution	1.1 (0-20) Factor: 5	SW846 6010B	02/06/07	JNQNV1AT
Barium	103	(50 - 150)		SW846 6010B	02/06/07	JNQNV1AU
Ballum	106	(50 - 150) 2	2.6 (0-20)	SW846 6010B	02/06/07	JNQNV1AV
	100	•	Factor: 5			
Cadmium	108	(50 - 150)		SW846 6010B	02/06/07	JNQNV1AW
	110	(50 - 150) 1	.9 (0-20)	SW846 6010B	02/06/07	JNQNV1AX
		Dilution	Factor: 5			
Chromium	108	(50 - 150)		SW846 6010B	02/06/07	JNQNV1A0
	110	(50 - 150) 2	2.0 (0-20)	SW846 6010B	02/06/07	JNQNV1A1
		Dilution	Factor: 5			
Lead	100	(50 - 150)		SW846 6010B	02/06/07	JNQNV1A2
	102	(50 - 150) 1	.9 (0-20)	SW846 6010B	02/06/07	JNQNV1A3
		Dilution	Factor: 5			
Selenium	109	(50 ~ 150)		SW846 6010B	02/06/07	JNQNV1A4
	110	(50 - 150) (0.95 (0-20)	SW846 6010B	02/06/07	JNQNV1A5
	•	Dilution	Factor: 5			
Silver	108	(50 - 150)		SW846 6010B	02/06/07	JNQNV1A6
	111	(50 - 150) 2	2.0 (0-20)	SW846 6010B	02/06/07	JNQNV1A7
		Dilution	Factor: 5			
Mercury	92	(50 ~ 150)		SW846 7470A	02/06/07	JNQNV1A8
-	91	(50 - 150) (Dilution	0.48 (0-20) Factor: 1	SW846 7470A	02/06/07	JNQNV1A9
NOTE(S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: A7B010206 Matrix.....: WG

Date Sampled...: 02/01/07 09:30 Date Received..: 02/01/07

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS METHOD	PREPARATION- PREP ANALYSIS DATE BATCH #
Reactive Cyar	nide	WO#:	JNQN11AU-MS/JNQN11AV-MSD	MS Lot-Sample #: A7B010206-002
•	25	(10 - 200)	SW846 7.3.3	02/02/07 7033277
	25	(10 - 200)	0.0 (0-100) SW846 7.3.3	02/02/07 7033277
		Dilut	ion Factor: 1	
Reactive Sul	fide	WO#:	JNQN11AR-MS/JNQN11AT-MSD	MS Lot-Sample #: A7B010206-002
	104	(10 - 200)	SW846 7.3.4	02/02/07 7033066
	64	(10 - 200)	41 (0-100) SW846 7.3.4	02/02/07 7033066
		Dilut	ion Factor: 1	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: A7B010206

Work Order #...: JNP3L-SMP

Matrix....: WATER

JNP3L-DUP

Date Sampled...: 01/31/07 11:00 Date Received..: 02/01/07

PARAM RESULT	DUPLICATE RESULT	UNITS RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)				SD Lot-Sample #:	A7B010126-005	
6.5	6.5	No Units 0.77	(0-20)	SW846 9040B	02/01/07	7033311
		Dilution Factor: 1				

General Chemistry

Client Lot #...: A7B010206

Work Order #...: JNQN1-SMP

JNQN1-DUP

Matrix..... WG

Date Sampled...: 02/01/07 09:30 Date Received..: 02/01/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)					SD Lot-Sample #:	A7B010206-002	
9.0	9.1	No Units	0.11	(0-20)	SW846 9040B	02/01/07	7033311
		Dilution Fact	tor: 1				

General Chemistry

Client Lot #...: A7B010206

Work Order #...: JNQNV-SMP Matrix....: WG

JNQNV-DUP

Date Sampled...: 02/01/07 09:00 Date Received..: 02/01/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Flashpoint	112002				SD Lot-Sample #:	A7B010206-001	
>180	>180	deg F	0.0	(0-20)	SW846 1010	02/06/07	7037399

General Chemistry

Client Lot #...: A7B010206

Work Order #...: JNVV5-SMP

Matrix....: WASTE

JNVV5-DUP

Date Sampled...: 02/01/07 10:30 Date Received..: 02/02/07

 PARAM RESULT
 RESULT
 UNITS
 RPD
 PREPARATION PREPA

Dilution Factor: 1

General Chemistry

Client Lot #...: A7B010206 Work Order #...: JNWNJ-SMP

Matrix..... SOLID

JNWNJ-DUP

Date Sampled...: 02/02/07 15:30 Date Received..: 02/03/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Flashpoint				(0.00)	SD Lot-Sample #:		7037399
>180	>180	deg F Dilution Fac	0.0 tor: 1	(0-20)	SW846 1010	02/06/07	7037399

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)							Data	1.0	and office towns a free popular	`
Cies.		Froject manager					2-01-2007		301933	w
Address	-	Telephone Numb	Telephone Number (Area Code)/Fax Number	x Number			Lab Number		•	-
	,	330-	330-358-1753	33					Page of	-
State	Zip Code	Site Contact		Lab Contact		Analy	Analysis (Attach list if	± ***i		
Ravenna		Chantelle Carroll	[pure]				1 1000000			
Project Name and Location (State)	•	Carrier/Waybill Number	lumber		· ·					
Facility Wide Groundwater	par.								Special Instructions/	uctions/
			Matrix	Containers & Preservatives	Pass				Conditions	, noceipt
Sample I.D. No. and Description (Containers for each sample may be combined on one time)	Date	Time O Air Aqueous	Sed. Soil Unpres.	H2SO4 HNO3 HCI NaOH	ZnAc/ NaOH	√ 00				
FWG-IDW-MWPURGE2007-1	2-01-2007	4:00 ×	4		*					
FWG- 1PW-MWDECON 2007-1	2-01-2007	9:30 X	4		×					
FWG-IDW-TB2007-1		×				<u>×</u>				
	• .	-					-			
			- 1		-					
Identification		Samp	Sample Disposal	Disposal By Lah	ah Archive For	/A For	Months longe	may be assess r than 1 month)	(A fee may be assessed if samples are retained longer than 1 month)	ned
Turn Around Time Required	ľ	-	-	QC Requirements (Specify)	81					
24 Hours 48 Hours 7 Days 14 Days	ays 21 Days)				
1. Rainquished By Bulling		21,107	1130	т. несехео ву	Xick.	Jodisu	Sur		107	1/30 ant
2. Relinquished By RICH XOBI SO	À	Date 21-07	Time 12/3	2. Received Sy	X	7	V		1-c7	213
3. Relinquished By		Date	Time	3. Received By					Date	Nor
Comments			A					· .		ΓL
CONTROL WHITE Borned to Client with Boord:	CANARY . Stave	Stave with the Samole: PINK - Field Copy	K - Field Copy							S

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy

	Tat No.	imber: A BOI ODOC
STL Cooler Receipt		
North Canton Facili		Quote# (171615)
Client: Spec Pro	Project:	by: Signature)
	Chemed (N1 '7' γ) =C3 /	The state of the s
Fedx Client Drop Off	UPS DHL FAS SIL Cou	urer (S)
Stetson US Cargo	Otner:	
OTT Carlon Not 4	Foam Box Client Coo	oler Other No NA
Were custody seals on	the outside of the cooler? Yes No [Intact? Yes No NA NA
If VFS Quantity	7_	Yes 🗷 No 🗆 NA 🗀
Were the custody seals	signed and dated?	
2 Chinner's nacking slip	attached to this form?	Yes No NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO
2 Did custody napers ac	company the samples? Yes \(\sigma \) NO \(\sigma \)	Relinquished by client? Yes No
4 Did you sign the custo	ly papers in the appropriate place:	Yes 🔁 No 🗋
l = 10 1 '	Dubble Wran IXI FORM I NUIL L	Other :
6 Cooler temperature up	on receipt 1.8 °C (see back of form for mul	ltiple coolers/temp)
METHOD Temn Vial	Coolant & Sample Against Duttes	
COOLANT: Wet Ice	Blue Ice Dry Ice Water	None
7 Did all bottles arrive it	good condition (Unbroken)?	Yes No
8 Could all hottle labels	and/or tags be reconciled with the COC?	Yes No D
9. Were samples at the o	orrect pH upon receipt?	Yes No NA NA
10. Were correct bottles u	sed for the tests indicated?	Yes P No L
11 Were air bubbles >6 B	ım in any VOA vials?	Yes No NA NA
	indicated analyses/	Yes No L
13 Was a Trip Blank pre	sent in the cooler? Yes [X] No [] were vu	As on the COC? Yes \ No \
Contacted PM	Date: by: via	a Voice Mail Verbal Other
Concerning:		
		建筑设置加强 化胃性超过能过度强强性
1. CHAIN OF CUSTOD		
The following discre		
The following disorc		
2. SAMPLE CONDITIO	N	
Sample(s)	were received after	the recommended holding time had expired.
		a broken container.
Sample(s)		
3. SAMPLE PRESERVA	xiere firth	her preserved in sample receiving to meet
Sample(s)	cl(s). Nitric Acid Lot #110106 - Sulfuric Acid Lot # 092006	H2SO4; Sodium Hydroxide Lot # -122805 -NaOH;
recommended pH lev	OSOA .HCI: Sodium Hudroxide and Zinc Acetate Lot # USUZUS-	CH3COOZZN/NAOH
	were received with but	bble > 6 mm in diameter (cc: PM)
Sample(s)		
4. Other (see below or be		
Client ID	рН	<u>Date</u> <u>Initials</u>
CHEILLID		
2		

STL Cooler Receipt Form/Narrative North Canton Facility

	pΗ	Date	<u>Initials</u>
Client ID	<u>pri</u>		
			
		Method	Coolant
oler	Temp	Method	
<u> </u>			
iscrepancies Cont.		·	
			-
•			
		•	
•			
		· ·	
	·		

END OF REPORT

55

APPENDIX E

Compounds That Do Not and Cannot Meet the RVAAP QAPP PQLs and/or Region 9 PRGs

Table E-1. VOCs

				RVAAP	
			Lab	QAPP	Region 9
CAS No	Analyte Name	MDL	RL	PQL	PRG
107-06-2	1,2-Dichloroethane	0.16	1.0	1.0	0.12
71-43-2	Benzene	0.22	1.0	1.0	0.35
67-66-3	Chloroform	0.16	1.0	1.0	0.17
10061-					
01-5	cis-1,3-Dichloropropene	0.12	1.0	1.0	0.4
75-01-4	Vinyl chloride	0.21	1.0	1.0	0.02
	1,1,2,2-				
79-34-5	Tetrachloroethane	0.22	1.0	1.0	0.055
106-93-4	1,2-Dibromoethane	0.24	1.0	1.0	0.0056
79-01-6	Trichloroethene	0.28	1.0	1.0	0.028
127-18-4	Tetrachloroethene	0.19	1.0	1.0	0.1
75-27-4	Bromodichloromethane	0.14	1.0	1.0	0.18
79-00-5	1,1,2-Trichloroethane	0.22	1.0	1.0	0.2
124-48-1	Dibromochloromethane	0.19	1.0	1.0	0.13
10061-	trans-1,3-				
02-6	Dichloropropene	0.17	1.0	1.0	0.4
56-23-5	Carbon tetrachloride	0.19	1.0	1.0	0.17

Note: All units are ug/L

Table E-2. SVOCs

				RVAAP	_
CAS No	Analyte Name	MDL	Lab RL	QAPP PQL	Region 9 PRG
111-44-4	Bis(2-Chloroethyl) ether	0.088	1.0	10	0.01
50-32-8	Benzo(a)pyrene	0.048	0.20	10	0.0092
53-70-3	Dibenz(a,h)anthracene	0.039	0.20	10	0.0093
118-74-1	Hexachlorobenzene	0.065	0.20	10	0.042
205-99-2	Benzo(b)fluoranthene	0.049	0.20	10	0.092
193-39-5	Indeno(1,2,3-cd)pyrene	0.065	0.20	10	0.092
56-55-3	Benzo(a)anthracene	0.052	0.20	10	0.092
91-94-1	3,3'-Dichlorobenzidine	0.48	5.0	10	0.15
106-46-7	1,4-Dichlorobenzene	0.52	1.0	10	0.5
87-86-5	Pentachlorophenol	0.48	5.0	25	0.56
87-68-3	Hexachlorobutadiene	0.51	1.0	10	0.86
88-06-2	2,4,6-Trichlorophenol	1.4	5.0	10	3.6

Note: All units are ug/L

Table E-3. Pesticides

				RVAAP	_
CAS No	Analyte Name	MDL	Lab RL	QAPP PQL	Region 9 PRG
60-57-1	Dieldrin	0.0067	0.030	0.05	0.0042
309-00-2	Aldrin	0.0061	0.030	0.05	0.004
1024-57-3	Heptachlor epoxide	0.0065	0.030	0.05	0.0074
319-84-6	alpha-BHC	0.0062	0.030	0.05	0.011
76-44-8	Heptachlor	0.0062	0.030	0.05	0.015

Note: All units are ug/L

Table E-4. Explosives

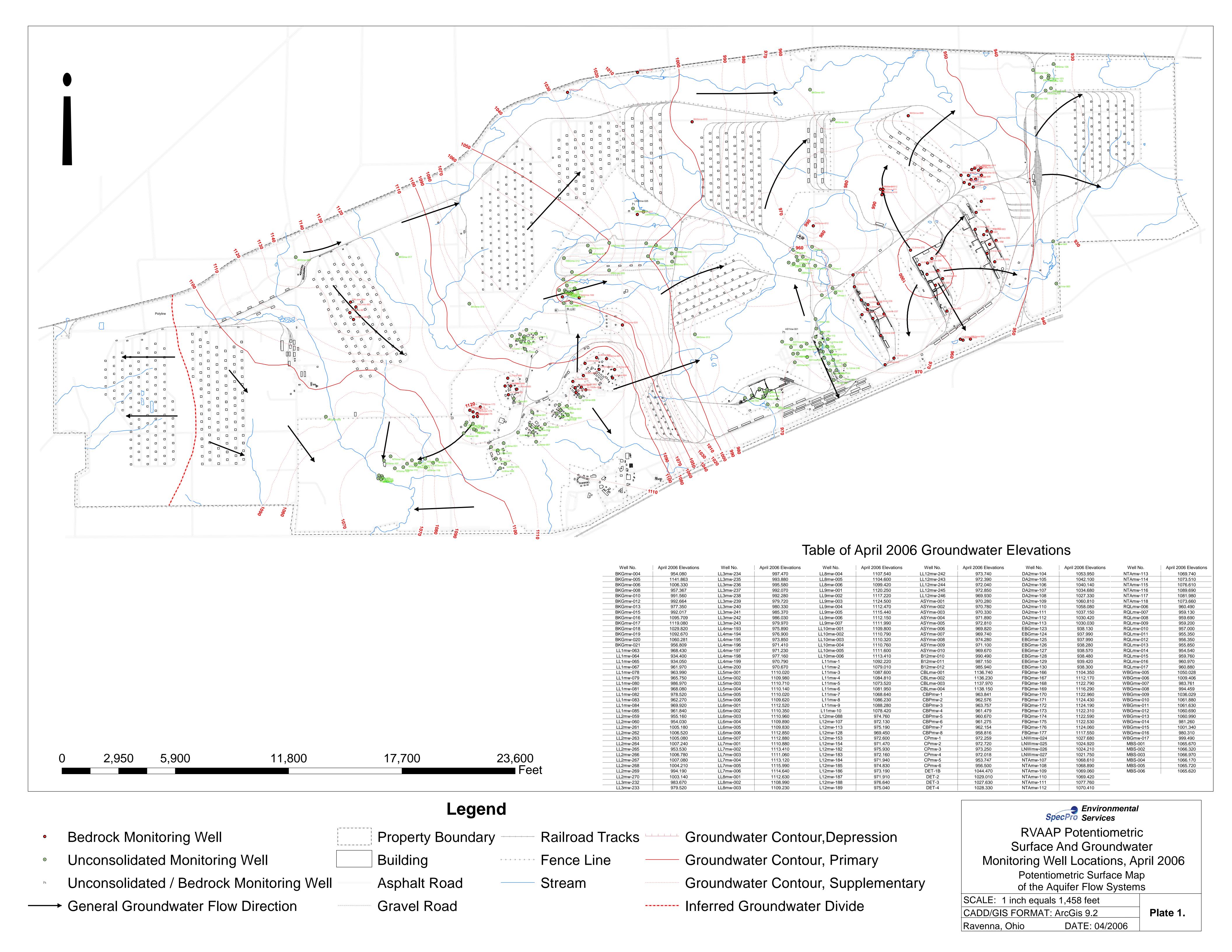
CAS No	Analyte Name	MDL	Lab RL	RVAAP QAPP PQL	Region 9 PRG
88-72-2	2-Nitrotoluene	0.1	0.48	0.2	120
99-08-1	3-Nitrotoluene	0.1	0.48	0.2	0.049
99-99-0	4-Nitrotoluene	0.1	0.48	0.2	0.66

Note: All units are ug/L

Table E-5. PCBs

				RVAAP	
			Lab	QAPP	Region
CAS No	Analyte Name	MDL	RL	PQL	9 PRG
11104-28-2	PCB-1221	0.49	0.50	0.50	0.034
11141-16-5	PCB-1232	0.41	0.50	0.50	0.034
53469-21-9	PCB-1242	0.11	0.50	0.50	0.034
12672-29-6	PCB-1248	0.049	0.50	0.50	0.034
11097-69-1	PCB-1254	0.087	0.50	0.50	0.034
11096-82-5	PCB-1260	0.071	0.50	0.50	0.034

Note: All units are ug/L


Table E-6. Inorganics

CAS No	Analyte Name	MDL	Lab RL	RVAAP QAPP PQL	Region 9 PRG
7440-70-2	Calcium	80	1000	100	NS
7440-23-5	Sodium	410	1000	200	NS

Notes:

NS = Not Specified

These compounds will not meet the reporting limits specified in the QAPP. However, both of these chemicals have been consistently been found naturally occurring on the site at values that exceed the QAPP and laboratory RLs.

