Draft Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops

Former Ravenna Army Ammunition Plant (RVAAP)
Ravenna, Ohio

Contract No. W912QR-12-F-0212

Prepared for

U.S. Army Corps of Engineers, Louisville 600 Dr. Martin Luther King, Jr. Place Louisville, KY 40202

Prepared by

PIKA International, Inc 12723 Capricorn Drive, Suite 500 Stafford, TX 77477

December 19, 2016

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Lefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

			IE ABOVE ADDRESS.				
	TE (DD-MM-YYY	Y) 2. REPO	ORT TYPE			3. DATES COVERED (From - To)	
19-	-12-2016		Technical	1		September 2012 - December 2016	
4. TITLE AND	SUBTITLE				5a. COI	NTRACT NUMBER	
	ection for the Co Ellant Can Tops	ompliance Res	storation Site CC-RVA	AP-80	OD/	W912QR-12-F-0212	
Group 2	mant Can p				5b. GRANT NUMBER		
Former Raveni	na Army Ammu	nition Plant (I	RVAAP) Ravenna, Ohi	io	NA		
	·		,		5c. PROGRAM ELEMENT NUMBER		
						NA	
C AUTHORIES					5d. PROJECT NUMBER		
6. AUTHOR(S)		. 3.6					
Richard Callan	nan, PIKA Proje	et Manager			NA		
					5e. TAS	SK NUMBER	
						NA	
					5f. WO	RK UNIT NUMBER	
						NA	
					<u> </u>		
7. PERFORMIN	IG ORGANIZATIO	N NAME(S) AN	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
PIKA Internati							
	orn Dr, Suite 500	J				NA	
Stafford TX, 7	7477-4104						
C CRONCORIA	UC/MACNUTODING	AGENCY NAM	IE(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
1			IE(3) AND ADDRESS(ES)				
	rps of Engineers					USACE	
	ther King Jr., Pl					11. SPONSOR/MONITOR'S REPORT	
Louisville, Kentucky 40202-0059					NUMBER(S)		
						NA	
12. DISTRIBUT	12. DISTRIBUTION/AVAILABILITY STATEMENT						
Reference Dist							
Kelefelice Disi	mbunon rage.						
13. SUPPLEME	NTARY NOTES						
None.							
Trong.							
14. ABSTRACT	r						
A Site Inspecti	ion (SI) was con	ducted at the	Compliance Restoratio	n (CR) Site (CC (Army	y Environmental Compliance-Related A	
Cleanup Program) RV AAP-80 at the former Ravenna Army Ammunition Plant (RV AAP). Soils were evaluated to determine if							
propellants or other munitions constituents were present at locations where discarded munitions packaging material (propellant cans							
and tops) were identified in 2011 by visual and geophysical surveys. In addition, samples were assessed to identify whether							
concentrations of propellants and/or other munitions constituents if present, were great enough to be considered contamination. Both							
surface and subsurface soils were evaluated in the SI. Based on the evaluation of data collected from both the 2011 SI and this SI, no							
contamination was identified in soils. Additionally, the soils are not a source to receptors or to a groundwater pathway. No other							
media (e.g., sediment or surface water) are present at the Site. Since no contamination was identified at the AOC, a No Further Action decision was made for this Site and no additional remedial action is warranted.							
Action decisio	n was made for	this Site and r	io additional remedial a	action is warr	anted.		
15. SUBJECT T	TERMS						
Draft Site Inve	estigation Repor	t, CC Site, Co	mpliance Restoration,	Surface Soil,	Subsurfa	ace Soil, No Further Action	
16. SECURITY	CLASSIFICATION		17. LIMITATION OF		19a. NA	ME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES		Richard Callahan	
NA	NA	NA	NA		19b. TEI	LEPHONE NUMBER (Include area code)	
INA	INA	IVA		3930		330-352-4822	

Ohio EPA Approval Letter Placeholder Page

DISCLAIMER STATEMENT

This Report is work prepared for the United States Government by PIKA International, Inc. In no event shall either the United States Government or PIKA have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein; nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

STATEMENT OF INDEPENDENT TECHNICAL REVIEW

PIKA International, Inc. (PIKA) has completed the Draft Report Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops at the Ravenna Army Ammunition Plant. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy, principles and procedures, utilizing justified and valid assumptions, was verified. This included review of technical assumptions; methods, procedures and materials to be used; and whether the product meets customer's needs consistent with law and existing U.S. Army Corps of Engineers policy.

Independent Technical Reviewer:	Kathleen Anthony PIKA Program Manager	_ Date: <u>12/19/16</u>
Reviewed/Approved by:	Richard Callahan PIKA Project Manager	_ Date: <u>12/19/16</u>
Reviewed/Approved by:	SAkanga Shahrukh Kanga PIKA Principal	_ Date: <u>12/19/16</u>

Draft Site Inspection Report: CC RVAAP-80 Group 2 Propellant Can Tops

Former Ravenna Army Ammunition Plant (RVAAP)
Ravenna, Ohio

Contract No. W912QR-12-F-0212

Prepared for

U.S. Army Corps of Engineers, Louisville 600 Dr. Martin Luther King, Jr. Place Louisville, KY 40202

Prepared by

PIKA International, Inc 12723 Capricorn Drive, Suite 500 Stafford, TX 77477

December 19, 2016

1 2 3 4

DOCUMENT DISTRIBUTION FOR THE DRAFT SITE INSPECTION REPORT: CC RVAAP-80 PROPELLANT CAN TOPS

NAME	ORGANIZATION	HARD COPIES	ELECTRONIC COPIES
MARK LEEPER	ARMY NATIONAL GUARD CLEANUP PROGRAM MANAGER	0	1
KATHRYN TAIT KEVIN SEDLAK	CAMP RAVENNA ENVIRONMENTAL OFFICE	1	1
KEVIN PALUMBO	OHIO ENVIRONMENTAL PROTECTION AGENCY NORTHEAST DISTRICT OFFICE DIVISION OF ENVIRONMENTAL RESPONSE AND REVITALIZATION	1	3
KATE ANTHONY	PIKA PROGRAM MANAGER	1	1
RICHARD CALLAHAN	PIKA PROJECT MANAGER	1	1
PAT RYAN	REIMS – RAVENNA ENVIRONMENTAL INFORMATION MANAGEMENT SYSTEM	0	COVER LETTER
	VISTA - RVAAP ADMINISTRATIVE RECORDS MANAGER	2	2
JAY TRUMBLE	USACE – UNITED STATES ARMY CORPS OF ENGINEERS – LOUISVILLE DISTRICT - PROJECT MANAGER	2	2

TABLE OF CONTENTS

6			
7	LIST	OF APPENDICIES	iii
8	LIST	OF ACRONYMS	iv
9	EXEC	UTIVE SUMMARY	VI
10	1.0	INTRODUCTION	1
11	1.1	Objectives	1
12	1.2	RVAAP LOCATION	2
13	1.3	RVAAP HISTORY	2
14	1.4	SITE HISTORY	3
15	1.5	SUMMARY OF PRIOR INVESTIGATIONS AT CC RVAAP-80	3
16	2.0	SITE INSPECTION ACTIVITIES	5
17	2.1	MOBILIZATION AND SITE PREPARATION	5
18		2.1.1 Equipment	5
19		2.1.2 Site-Specific Training	6
20		2.1.3 Permitting	6
21		2.1.4 Site Control	6
22	2.2	ANOMALY REACQUISITION AND COLLECTION OF MPPEH	7
23	2.3	VEGETATION REMOVAL AND SITE SURVEYING	7
24	2.4	SURFACE AND SUBSURFACE INCREMENTAL SOIL SAMPLING	8
25	2.5	SUMMARY OF SAMPLE RESULTS	9
26		2.5.1 Data Evaluation Process	10
27		2.5.2 Analytical Results	10
28	2.6	Data Validation	12
29	2.7	DISPOSAL OF IDW	13
30	3.0	CONCLUSIONS	14
31	4.0	REFERENCES	16
32			
33			

34		LIST OF FIGURES		
35	Figure 1 – General Location and Orientation of Camp Ravenna			
36	Figure 2 – Compliance Restoration Site CC RVAAP-08, Group 2 Propellant Can Tops Site			
37	Figure 3 – CC RVAA	AP-08, Group 2 Propellant Can Tops Site Map		
38	Figure 4 – Previous	ly Identified Anomalies and Anomaly Cluster Areas		
39	Figure 5 – CC RVAA	AP-80 Sample Locations		
40		LIST OF TABLES		
41	Table 1 – Sample and Analyte Summary CC RVAAP-80 Group 2 Propellant Can Tops Site			
42	Table 2 – ISM Subsurface Soil Sample Results			
43 44				
45	Table 4 – ISM Surfa	ace Soil Sample Results (Propellants and Metals)		
46				
47		LIST OF APPENDICES		
48	Appendix A	Daily Reports, Sampling Logs & Photo Documentation		
49	Appendix B	Scrap Metal MDAS Certification and Recycling Records		
50	Appendix C	Survey Data and Information		
51	Appendix D	Sampling Results (Full Lab Package on CD)		
52	Appendix E	ADR and Data Validation Reports		
53	Appendix F	IDW Drum Disposal Records		
54	Appendix G	Cumulative Signed Documentation/Correspondence		
55	Appendix H	Comment Response Table (Place Holder)		

ADR AUTOMATED Data Review APP ACCIDENT APP ACCIDENT See APP ACCIDENT APP ACCIDENT BORNAMP ACCIDENT BORNAMP ACCIDENT BORNAMP APP ACCIDENT BORNAMP ACCIDENT BORNAMP ACCIDENT BORNAMP APP ACCIDENT BORNAMP ACC	56		LIST OF ACRONYMS
58 AOC Area of Concern 59 APP Accident Prevention Plan 60 bgs below ground surface 61 Camp Ravenna Camp Ravenna Joint Military Training Center 62 CC Army Environmental Compliance-Related Cleanup Program 63 CR Compilance Restoration 64 COC Chemical of Concern 65 COPCs Chemicals of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HO Hazard Quotient 74 HTRW Hazardous Waste Operations and Emergency Response 75 IDW Inspection Derived Waste 76 IRP Inspection Derived Waste 80 IRP Inspection Derived Waste	57	ADR	Automated Data Review
59 APP Accident Prevention Plan 60 bgs below ground surface 61 Camp Ravenna Camp Ravenna Joint Military Training Center 61 Camp Ravenna Camp Ravenna Joint Military Training Center 62 CC Army Environmental Compliance-Related Cleanup Program 63 CR Compliance Restoration 64 COC Chemicals of Potential Concern 65 COPCs Chemicals of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense 68 ELAP Environmental Laboratory Accreditation Program 68 ELAP Environmental Laboratory Accreditation Program 70 EZ Exclusion Zone 71 FWCUGs Facility-Wide Clean Up Goals 72 HAZWOPER Hazard Quotient 73 HQ Hazard Quotient 74 HTRW Hazard Quotient 75 IDW Inspection Derived Waste 18P Installation Restoration Program			
below ground surface Camp Ravenna Camp Ravenna Joint Millitary Training Center CC Camp Ravenna Joint Millitary Training Center CC Camp Ravenna Joint Millitary Training Center CC Camp Ravenna Joint Millitary Training Center CCC Campliance Restoration COC Chemicals of Potential Concern COPCS Chemicals Chemical Concern COPCS Chemicals Chemical			
61 Cămp Ravenna Camp Řavenna Joint Military Training Center 62 CC Army Environmental Compliance-Related Cleanup Program 63 CR Compliance Restoration 64 COC Chemical of Concern 65 COPCS Chemicals of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HO Hazard Quotient 74 HTRW Hazardsu Waste Operations and Emergency Response 75 IDW Inspection Derived Waste 8 IDW Installation Restoration Program 76 IRP Installation Restoration Program 77 ISM Incremental Sampling Methodology 80 IR			
CC Army Environmental Compliance-Related Cleanup Program CR COMPILIANCE CORDITION COMPILIANCE PROSTORIAL COMPILIAN			S .
63 CR Compliance Restoration 64 COC Chemical of Concern 65 COPCs Chemical of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HQ Hazard Quotient 74 HTRW Hazards, Toxic, and Radioactive Waste 75 IDW Inspection Derived Waste 76 IRP Installation Restoration Program 77 ISM Incremental Sampling Methodology 78 LL Load Line 79 MC Munitions Constituents 80 MD Munitions Debris 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosive Flazard 84 mm millimeter 85 MPPEH Material Potentially Presenting an Explosive Hazard 86 MSD Minimum Separation Distance 87 NFA No Further Action 88 OHARNG Ohio Army National Guard 99 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Sit Inspection 98 SSHP Site Safety and Health Plan 99 OSWOS Semi-Volatile Organic Compounds 100 SUXOS Semi-Volatile Organic Compounds			·
64 COC Chemicals of Concern 65 COPCs Chemicals of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 60 EZ Exclusion Zone 61 FWCUGS Facility-Wide Clean Up Goals 61 HAZWOPER Hazardous Waste Operations and Emergency Response 62 HAZWOPER Hazardous Waste Operations and Emergency Response 63 HQ Hazard Quotient 64 HTRW Hazards, Toxic, and Radioactive Waste 65 IDW Inspection Derived Waste 66 IRP Installation Restoration Program 67 ISM Incremental Sampling Methodology 68 LL Load Line 69 MC Munitions Constituents 60 MD Munitions Constituents 61 MDAS Material Documented as Safe 62 MDEH Material Documented as an Explosive Hazard 63 MEC Munitions and Explosives of Concern 64 mm millimeter 65 MPPEH Material Potentially Presenting an Explosive Hazard 66 MSD Minimum Separation Distance 67 NFA No Further Action 68 OHARNG Ohio Army National Guard 69 OFGS Poly Chlorinated Biphenyls 60 PCBs Poly Chlorinated Biphenyls 61 PIKA PIKA PIKA PIKA PIKA PIKA PIKA PIKA			
65 COPCS Chemicals of Potential Concern 66 DoD Department of Defense 67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 67 DEV Exposure Point Concentration 69 EPC Exposure Point Concentration 60 EPC Exposure Point Concentration 60 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HQ Hazard Quotient 74 HTRW Hazardous Waste Operations and Emergency Response 75 IDW Hazard Quotient 76 IRP Hazardous Waste Operations and Emergency Response 77 IRW Hazard Quotient 78 IL Inspection Derived Waste 1DW Inspection Derived Waste <t< td=""><td></td><td></td><td>•</td></t<>			•
66 DoD Department of Defense 67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HQ Hazard Quotient 74 HTRW Hazards, Toxic, and Radioactive Waste 75 IDW Inspection Derived Waste 76 IRP Installation Restoration Program 77 ISM Incremental Sampling Methodology 81 IL Load Line 79 MC Munitions Constituents 80 MD Munitions Constituents 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosives of Concern 84 mm millimeter 85			
67 DoDI Department of Defense Instructions 68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGs Facility-Wide Clean Up Goals 72 HAZWOPER Hazard Quotient 73 HQ Hazard Quotient 74 HTRW Hazard Quotient 75 IDW Inspection Derived Waste 76 IRP Installation Restoration Program 78 IL Load Line 79 MC Munitions Constituents 80 MD Munitions Constituents 80 MD Munitions Onstituents 80 MD Munitions Debris 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosives of Concern 84 mm millimeter 85 MPPEH Material Potentially Presenting an Exp			
68 ELAP Environmental Laboratory Accreditation Program 69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HQ Hazard Quotient 74 HTRW Hazards, Toxic, and Radioactive Waste 75 IDW Inspection Derived Waste 76 IRP Installation Restoration Program 77 ISM Incremental Sampling Methodology 78 LL Load Line 79 MC Munitions Constituents 80 MD Munitions Constituents 80 MD Munitions Constituents 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosives of Concern 84 mm millimeter 85 MPPEH Material Potentially Presenting an Explosive Hazard 86 MSD Minimum Separation Distance 87 NFA No Further Action 88 OHARNG Ohio Army National Guard 90 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 OSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 90 SUXOS Semit-Volatile Organic Compounds 102 TAL Target Analyte List			·
69 EPC Exposure Point Concentration 70 EZ Exclusion Zone 71 FWCUGS Facility-Wide Clean Up Goals 72 HAZWOPER Hazardous Waste Operations and Emergency Response 73 HQ Hazard Quotient 74 HTRW Hazards, Toxic, and Radioactive Waste 75 IDW Inspection Derived Waste 76 IRP Installation Restoration Program 77 ISM Incremental Sampling Methodology 78 LL Load Line 79 MC Munitions Constituents 80 MD Munitions Debris 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosives of Concern 84 mm millimeter 85 MPPEH Material Potentially Presenting an Explosive Hazard 86 MSD Minimum Separation Distance 87 NFA No Further Action 88 OHARNG Ohio Army National Guard 89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Semi-Volatile Organic Compounds 101 SVOCS Semi-Volatile Organic Compounds			·
Fixed by the components of the			
Facility-Wide Clean Up Goals HAZWOPER HAZARDOUS Waste Operations and Emergency Response HAZARDOUS Waste Operations And Radioactive Waste Inspection Derived Waste Inspection Derived Waste Inspection Derived Waste Inspection Program Incremental Sampling Methodology Incremental Sampling And Playsis Plan Incremental Sampling Analysis Plan Incremental Sampling Analysis Plan Incremental Sampling Analysis Plan Incremental Sampling Methodology Incremental Sampling Analysis Plan Incremental Sampling Methodology Incremental Sampling Analysis Plan Incremental Sampling Methodology			·
72HAZWOPERHazardous Waste Operations and Emergency Response73HQHazard Quotient74HTRWHazards, Toxic, and Radioactive Waste75IDWInspection Derived Waste76IRPInstallation Restoration Program77ISMIncremental Sampling Methodology78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92OAPPQuality Assurance Project Plan93OSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection101SVOCsSeni-Volatile Organic Compounds102TALTarget Analyte List			
73HQHazard Quotient74HTRWHazards, Toxic, and Radioactive Waste75IDWInspection Derived Waste76IRPInstallation Restoration Program77ISMIncremental Sampling Methodology78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	72		·
74HTRWHazards, Toxic, and Radioactive Waste75IDWInspection Derived Waste76IRPInstallation Restoration Program77ISMIncremental Sampling Methodology78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	73		
75IDWInspection Derived Waste76IRPInstallation Restoration Program77ISMIncremental Sampling Methodology78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNIGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenii-Volatile Organic Compounds101SVOCsSemii-Volatile Organic Compounds102TALTarget Analyte List	74	HTRW	Hazards, Toxic, and Radioactive Waste
76IRPInstallation Restoration Program77ISMIncremental Sampling Methodology78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenii-Volatile Organic Compounds101SVOCsSemii-Volatile Organic Compounds102TALTarget Analyte List	75	IDW	
77 ISM Incremental Sampling Methodology 78 LL Load Line 79 MC Munitions Constituents 80 MD Munitions Debris 81 MDAS Material Documented as Safe 82 MDEH Material Documented as an Explosive Hazard 83 MEC Munitions and Explosives of Concern 84 mm millimeter 85 MPPEH Material Potentially Presenting an Explosive Hazard 86 MSD Minimum Separation Distance 87 NFA No Further Action 88 OHARNG Ohio Army National Guard 89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senir-Volatile Organic Compounds 102 TAL Target Analyte List	76	IRP	·
78LLLoad Line79MCMunitions Constituents80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	77	ISM	
80MDMunitions Debris81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	78	LL	
81MDASMaterial Documented as Safe82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	79	MC	Munitions Constituents
82MDEHMaterial Documented as an Explosive Hazard83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	80	MD	Munitions Debris
83MECMunitions and Explosives of Concern84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	81	MDAS	Material Documented as Safe
84mmmillimeter85MPPEHMaterial Potentially Presenting an Explosive Hazard86MSDMinimum Separation Distance87NFANo Further Action88OHARNGOhio Army National Guard89OSHAOccupational Safety and Health Administration90PCBsPoly Chlorinated Biphenyls91PIKAPIKA International, Inc92QAPPQuality Assurance Project Plan93QSMQuality System Manual94RSLsResidential Screening Levels95RVAAPRavenna Army Ammunition Plant96SAICScience Applications International Corporation97SAPSampling and Analysis Plan98SISite Inspection99SSHPSite Safety and Health Plan100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List	82	MDEH	Material Documented as an Explosive Hazard
MSD Minimum Separation Distance NFA NFA No Further Action OHARNG Ohio Army National Guard OCCUpational Safety and Health Administration PCBs Poly Chlorinated Biphenyls PIKA PIKA PIKA International, Inc QAPP Quality Assurance Project Plan QSM Quality System Manual RSLs Residential Screening Levels RVAAP Ravenna Army Ammunition Plant SAIC Science Applications International Corporation SAP Sampling and Analysis Plan SI Site Inspection SUXOS Senior UXO Supervisor SOUS Semi-Volatile Organic Compounds Target Analyte List	83	MEC	Munitions and Explosives of Concern
86 MSD Minimum Separation Distance 87 NFA No Further Action 88 OHARNG Ohio Army National Guard 89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List	84	mm	millimeter
87 NFA No Further Action 88 OHARNG Ohio Army National Guard 89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCS Semi-Volatile Organic Compounds 102 TAL Target Analyte List	85	MPPEH	Material Potentially Presenting an Explosive Hazard
88 OHARNG Ohio Army National Guard 89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 OAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List	86	MSD	Minimum Separation Distance
89 OSHA Occupational Safety and Health Administration 90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List	87	NFA	
90 PCBs Poly Chlorinated Biphenyls 91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Seni-Volatile Organic Compounds 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List	88	OHARNG	Ohio Army National Guard
91 PIKA PIKA International, Inc 92 QAPP Quality Assurance Project Plan 93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List	89	OSHA	Occupational Safety and Health Administration
92 QAPP 93 QSM 94 RSLs 95 RVAAP 96 SAIC 97 SAP 98 SI 99 SSHP 100 SUXOS 101 SVOCs 102 TAL Quality Assurance Project Plan Quality System Manual Quality System Manual Quality System Manual Residential Screening Levels Ravenna Army Ammunition Plant Science Applications International Corporation Science Application International Corporation Science Application International Corporation Science Application International Corporation Science Applicati	90	PCBs	· · ·
93 QSM Quality System Manual 94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			
94 RSLs Residential Screening Levels 95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			
95 RVAAP Ravenna Army Ammunition Plant 96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			
96 SAIC Science Applications International Corporation 97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			<u> </u>
97 SAP Sampling and Analysis Plan 98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			g and the state of
98 SI Site Inspection 99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			· · · · · · · · · · · · · · · · · · ·
99 SSHP Site Safety and Health Plan 100 SUXOS Senior UXO Supervisor 101 SVOCs Semi-Volatile Organic Compounds 102 TAL Target Analyte List			· · ·
100SUXOSSenior UXO Supervisor101SVOCsSemi-Volatile Organic Compounds102TALTarget Analyte List			·
 SVOCs TAL Semi-Volatile Organic Compounds Target Analyte List 			
102 TAL Target Analyte List			·
J J			·
103 TOLP Toxicity Characteristic Leaching Procedure			
	103	TCLP	loxicity Characteristic Leaching Procedure

104	USACE	U.S. Army Corps of Engineers
105	USEPA	U.S. Environmental Protection Agency
106	USP&FO	United States Property and Fiscal Officer
107	UXO	Unexploded Ordnance
108	UXOT II	UXO Technician II
109	UXOQCS	UXO Safety/Quality Control Specialist
110	UXOSO	UXO Safety Officer
111	UXOT III	UXO Technician III
112	VOCs	Volatile Organic Compounds
113	WOE	Weight of Evidence
114		
115		

EXECUTIVE SUMMARY

- 117 This Site Inspection (SI) report describes the activities performed to complete an evaluation of
- 118 potential soil contamination at the Compliance Restoration (CR) Army Environmental
- 119 Compliance-Related Cleanup Program) (CC) RVAAP-80 Group 2 Propellant Can Tops Area of
- 120 Concern (AOC) at the former Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. All
- work was conducted in accordance with the *Revised* Final Project Work Plan for Site Inspections
- at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 1 (PIKA,
- 123 2016). Work was authorized under contract W912QR-12-F-0212 issued to PIKA International,
- 124 Inc. (PIKA) by U.S. Army Corps of Engineers, Louisville District (USACE).
- 125 The former Ravenna Army Ammunition Plant (RVAAP), consisting of 21,683 acres, is in
- northeastern Ohio within Portage and Trumbull counties (Figure 1). The CC RVAAP-80 consists
- of the Group 2 Propellant Can Tops Site and is located within the boundaries of the former
- facility (Figure 2). The RVAAP was used as a load, assemble, and packing facility for munitions
- 129 production.

- 130 This SI was conducted to evaluate if soils at the AOC have propellants or other munitions
- 131 constituents (MC) present at concentrations great enough to be defined as contamination. The
- 132 evaluation was completed specifically at locations where discarded munitions packaging
- material (propellant cans and tops) were identified by visual and geophysical surveys. The
- sample data were assessed to evaluate the presence or absence of contamination, and whether
- there had been a release at the AOC. Contamination is identified if the detected concentrations
- 136 of propellants and/or MC constituents were greater than the Facility Wide Cleanup Goals
- 137 (FWCUGs) established for the Resident Receptor at RVAAP in surface or subsurface soils. Data
- for this SI included: the collection of all propellant cans, can tops, and related debris at or near
- the surface (based upon the anomalies identified during the 2011 Geophysical Survey that was
- conducted as part of the 2011 SI). In addition, all collected debris was inspected, certified, and
- disposed in accordance with Department of Defense Instructions (DoDI) 4140.62.
- 142 The 2011 Geophysical Survey of the AOC covered 12.4 acres and included the collection of
- three surficial incremental soil samples. Geophysical data showed that tops and cans were not
- buried in the subsurface at the site (PIKA, 2012). Three clusters of debris identified during the
- 145 2011 SI as having potential contamination were selected as sample locations for this SI. Soil
- samples were collected using the incremental sampling methodology (ISM).
- 147 Most of the pin flags placed during the 2011 SI Geophysical Survey were still in place and
- 148 visible during this SI. A four-man team of unexploded ordnance (UXO) Technicians reacquired
- 149 the anomalies previously identified during the 2011 Geophysical Survey. The Team also
- inspected a 1-meter radius around each pin flag to depth, removing all magnetic anomalies

- including propellant cans, can tops, and occasional unrelated items such as railroad spikes,
- banding, and strapping materials.
- 153 The UXO Team inspected each individual item encountered to certify them as material
- documented as safe (MDAS). All items recovered during this effort were certified MDAS and
- transported to the local recycling facility. No munition-related items were encountered and
- none of the propellant cans, can tops, or non-packing items were identified as Material
- Documented with an Explosive Hazard (MDEH). More than 530 propellant cans, can tops, and
- related packaging debris were collected. Additionally, miscellaneous metal scrap (e.g., rail road
- spikes, t-posts, wrenches, conduit, nuts bolts and nails) weighing 1,760 pounds was recovered
- and properly disposed.
- 161 The ISM soil samples were analyzed for the target analyte list (TAL) metals and perchlorate and
- three common propellants that were used by the DoD (nitrocellulose, nitroglycerine, and
- nitroguanidine). One sample was analyzed also for the RVAAP full suite, (explosives, cyanide,
- 164 volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and
- 165 polychlorinated biphenyls [PCBs]).
- 166 Initially, concentrations of detected metals were compared to the established background
- 167 values. Any metal that was detected at a concertation exceeding the corresponding
- 168 background level was further evaluated to determine if it should be considered as
- 169 contamination or could be indicative of a release at the AOC. Since there is no established
- background level for organic chemicals such as propellants, this initial comparison was not
- 171 completed for any detected organic chemical. The concentration of all detected organic
- 172 compounds were assessed and metals whose concentrations exceeded their respective
- 173 background values were compared to the most stringent Resident Receptor's (adult and child)
- 174 FWCUGs at the 1 X 10⁻⁶ target cancer risk level or the 0.1 Hazard Quotient (HQ). This
- 175 comparison was completed for sample results for both surface and subsurface soils.
- 176 No propellants and perchlorates were not detected at concentrations greater than the
- 177 laboratory detection limits in the subsurface soil samples. There were several metals that had
- 178 maximum concentrations that exceeded the established background values: antimony,
- 179 cadmium, selenium, silver, and thallium. None of these metals in the subsurface soil samples
- 180 had maximum concentrations that exceeded the most stringent FWCUG for the Resident
- 181 Receptor. Therefore, no contamination was identified in the subsurface soils at CC RVAAP-80.
- No propellants, pesticides, SVOCs, PCBs, or perchlorate were detected at concentrations greater
- than their respective detection limits and were therefore considered to be non-detected in the
- surface soil at the AOC. No VOCs were detected in surface soil except acetone at an estimated
- 185 concentration. Acetone is not considered indicative of contamination since it is a common
- 186 laboratory contaminant.

There were several metals that had maximum concentrations that exceeded the established background values in the surface soils: antimony, cadmium, chromium, lead, selenium, silver, thallium, and zinc. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the surface soils at CC RVAAP-80.

Based on the results from both the 2011 SI and this SI, no contamination or evidence of a release at the AOC was identified. Propellants and other MCs are not present in the surface and subsurface soils at concentrations great enough to need additional evaluation. Soils are not a source of contamination to receptors or to a groundwater pathway to receptors. No other media (e.g., sediment or surface water) are present at the Site. Additional investigation is not warranted, and a No Further Action (NFA) determination was made for this AOC.

198

192

193

194

195

196

1.0 INTRODUCTION

199

201

202

204

205

206

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227 228

229

230

231

232

233

200 This Site Inspection (SI) report describes the activities performed to complete an evaluation of potential soil contamination at the Compliance Restoration (CR) Army Environmental Compliance-Related Cleanup Program) (CC) RVAAP-80 Group 2 Propellant Can Tops Area of 203 Concern (AOC) at the former Ravenna Army Ammunition Plant (RVAAP), Ravenna, Ohio. All work was conducted in accordance with the Revised Final Project Work Plan for Site Inspections at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 1 (PIKA, 2016). Work was authorized under contract W912QR-12-F-0212 issued to PIKA International, 207 Inc. (PIKA) by U.S. Army Corps of Engineers, Louisville District (USACE).

208 This SI Report describes the procedures, sequence of activities, and resources PIKA used to 209 complete the following tasks:

- The geophysical anomalies identified during the 2011 SI of the Group 2 Propellant Can Tops area of concern (AOC) were reacquired and a surface clearance was conducted to remove all munitions packaging material (propellant cans and tops) associated with the anomalies. The recovered propellant cans and tops were inspected and certified as scrap, safe for recycling.
- Surface and subsurface soil samples were collected and analyzed for three common propellants used by the DoD (nitrocellulose, nitroglycerine, and nitroguanidine), target analyte list (TAL) metals, and perchlorate. One of the samples was also analyzed for the RVAAP full suite (explosives, cyanide, volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]).
- Inspection Derived Waste (IDW) was sampled and properly disposed.

1.1 **Objectives**

This purpose of this SI was to evaluate if soils at the AOC have propellants or other munitions constituents (MC) present at concentrations great enough to be defined as contamination. The evaluation was completed specifically at locations where discarded munitions packaging material (propellant cans and tops) were identified by visual and geophysical surveys. The sample data were assessed to evaluate the presence or absence of contamination, and whether or not there had been a release at the AOC. Contamination is identified if the detected concentrations of propellants and/or MC constituents were greater than the Facility Wide Cleanup Goals (FWCUGs) established for the Resident Receptor at RVAAP in surface or subsurface soils. Data for this SI included the collection of all propellant cans, can tops, and related debris at or near the surface (based upon the anomalies identified during the 2011 Geophysical Survey that was conducted as part of the 2011 SI). In addition, all collected debris was inspected, certified, and disposed in accordance with DoDI 4140.62.

1.2 RVAAP Location

When the RVAAP Installation Restoration Program (IRP) began in 1989, the RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two-year period (2002 and 2003), and the actual total acreage of the property was found to be 21,683 acres. The facility is in northeastern Ohio within Portage and Trumbull counties, approximately 4.8 kilometers (3 miles) east/northeast of the City of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the City of Newton Falls. Figure 1 presents a regional map with the location of the former RVAAP/Camp Ravenna. The location of the AOC within the RVAAP/Camp Ravenna is shown in Figure 2. The figures are included at the end of this SI report.

1.3 RVAAP History

The facility, previously known as the RVAAP, was formerly used as a load, assemble, and pack facility for munitions production. As of September 2013, administrative accountability for the entire acreage of the facility has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio and subsequently licensed to the OHARNG for use as a military training site known as the Camp Ravenna Joint Military Training Center (Camp Ravenna). References in this document to RVAAP relate to previous activities at the facility as related to former munitions production activities or to activities being conducted under the restoration/cleanup program.

Production at the facility began in December 1941, with the primary missions of depot storage and ammunition loading. The installation was divided into two separate units; the Portage Ordnance Depot and the Ravenna Ordnance Plant. The Portage Ordnance Depot's primary mission was storage of munitions and components, while the mission of the Ravenna Ordnance Plant was loading and packing major caliber artillery ammunition and the assembly of munitions initiating components that included fuzes, boosters, and percussion elements. In August 1943, the installation was re-designated the Ravenna Ordnance Center and again in November 1945, as the Ravenna Arsenal. The plant was placed in standby status in 1950; and operations were limited to renovation, demilitarization and normal maintenance of equipment, along with storage of ammunition and components.

The plant was reactivated during the Korean Conflict to load and pack major caliber shells and components. All production ended in August 1957 and in October 1957, the installation was again placed in a standby condition. In October 1960, the ammonium nitrate line was renovated for demilitarization operations that involved melting explosives out of bomb casings for subsequent recycling. These operations commenced in January 1961. In July 1961, the plant was again deactivated. In November 1961, the installation was divided into the Ravenna Ordnance Plant and an industrial section, with the entire installation then being designated as the RVAAP.

December 2016 Page 2 Rev 0

- 271 In May 1968, RVAAP began loading, assembling, and packing munitions on three load lines
- 272 (LLs) and two component lines in support of the Southeast Asia Conflict. These facilities were
- 273 deactivated in August 1972. The demilitarization of the M71A1 90-millimeter (mm) projectile
- 274 extended from June 1973 until March 1974. Demilitarization of various munitions was
- 275 conducted from October 1982 through 1992.
- 276 Until 1993, RVAAP maintained the capability to load, assemble, and pack military ammunition.
- 277 As part of the RVAAP mission, the inactive facilities were maintained in a standby status by
- 278 keeping equipment in a condition to permit resumption of production within prescribed
- 279 limitations. In September 1993, the RVAAP was placed in inactive caretaker status,
- 280 subsequently changed to modified caretaker status. The LLs and associated real estate were
- determined to be excess by the Army. As of September 2013, all 21,683 acres of the former
- 282 RVAAP have been transferred to the USP&FO for Ohio for use by OHARNG as a military training
- site, now called Camp Ravenna.

1.4 Site History

- 285 The CC RVAAP-80 AOC is located at the southern end of the former Group 2 Ammunition
- 286 Storage Area. The propellant cans and tops were initially identified on the ground surface and
- 287 near surface (9-inch depth maximum) by OHARNG in the winter of 2008. The propellant cans
- and tops were observed in the vegetated area located immediately south of the ammunition
- 289 storage magazines near the southern railroad spur lines (Figure 3). This area consists of
- approximately 539,572 square feet (12.4 acres).
- 291 The propellant cans and tops are not munitions. These materials are components of the
- shipping containers that were used to transport the propellant to the appropriate firing point.
- 293 Currently, shipping containers and packing materials are classified as material potentially
- 294 presenting an explosive hazard (MPPEH) until inspection and verification that propellant has
- been removed. On completion of this inspection process, the items are immediately reclassified
- as material documented as safe (MDAS) and can be released to the public for disposal or
- 297 recycling.

298

284

1.5 Summary of Prior Investigations at CC RVAAP-80

- The USACE, Louisville District conducted an emergency survey of a portion of the southern area
- 300 ground surface using a metal detector. Results of the initial inspection revealed multiple
- 301 magnetic anomalies in surface and near surface soils. The anomalies did not extend below a
- 302 depth of nine inches below ground surface (bgs). Personnel visually identified the surface
- anomalies as propellants cans and tops. During the emergency survey, it was noted that the
- 304 ground surface had been disturbed and contained hummocks (mounds) ranging in height from
- one to two feet throughout the survey area. The historic aerial photos showed storage materiel

on pallets in this area. The aerial photos did not show the area covered in gravel. Therefore, the hummocks were likely caused by the vehicles used to place or retrieve the pallets.

308 In April and May of 2011, a Geophysical Survey of the Group 2 Propellant Can Tops Site (12.4 309 acres) was conducted and three surficial incremental soil samples were collected. An EM-61MK2 310 was used to conduct the geophysical survey that identified five clusters of ferrous (magnetic) 311 items at or near the surface, as well as other scattered ferrous items (see Figure 4). The 312 Geophysical Survey confirmed that tops and cans were not buried at CC RVAAP-80. Please see 313 Appendix D of the Final Inspection Report for Compliance Restoration Site CC RVAAP-80 Group 314 2 Propellant Can Tops and Other Environmental Services (PIKA, 2012) for detailed results of the 315 Three of the clusters of ferrous items (Clusters 1, 3 and 5) identified in the 316 geophysical inspection were selected as incremental sampling methodology (ISM) sample 317 locations.

318

319

320

321

322

323

324

325

326

The ISM soil samples were analyzed for the target analyte list (TAL) metals and perchlorate and three common propellants that were used by the DoD (nitrocellulose, nitroglycerine, and nitroguanidine). One sample was analyzed also for the RVAAP full suite, (explosives, cyanide, volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]). The three samples did not contain any chemicals with concentrations that exceeded their respective FWCUGs. However, additional soil investigation was considered necessary to further evaluate the potential for contamination in the surface and subsurface soils in the areas at and surrounding where the propellant cans and tops were most dense.

The geophysics work was preceded by wetland delineation and vegetation clearance. The field team was led by an unexploded ordnance (UXO) technician, and no munitions and explosives of concern (MEC) or munitions debris (MD) were encountered on the surface during any aspect of the work.

2.0 SITE INSPECTION ACTIVITIES

- 332 All site inspection activities were completed in accordance with the Revised Final Project Work
- 333 Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can
- 334 Tops, Revision 1 (PIKA, 2016). The field work was completed in three phases: anomaly
- reacquisition and collection of MPPEH; vegetation clearance and site survey; and ISM surface
- and subsurface soil sampling. The following operations were completed as part of this SI:

337 **Phase 1**

331

340

341

342

357

March 28 through 30, 2016 - Mobilization and reacquisition of anomalies, MPPEH
 recovery, MDAS certification and recycling.

Phase 2

 April 4 through 9, 2016 – Mobilization, brush clearance, and survey of ISM surface and subsurface clusters.

343 **Phase 3**

- April 11 through 13, 2016 Mobilization and collection of surface and subsurface
 ISM soil samples in eight anomaly clusters; and
- May 9 and 10, 2016 Transportation and disposal of IDW.
- 347 The details of each of the operations listed above are provided in the following subsections.
- 348 Photographic documentation is provided with the Daily Reports provided in Appendix A.

349 2.1 Mobilization and Site Preparation

- 350 During each mobilization, site management personnel coordinated with the Camp Ravenna
- 351 Environmental Office and Range Control to ensure access and communications requirements.
- 352 All project personnel and subcontractors mobilized to the site met requirements for
- 353 Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and
- 354 Emergency Response (HAZWOPER) training and medical surveillance requirements as specified
- in the Accident Prevention Plan (APP)/Site Safety and Health Plan (SSHP). All personnel were
- trained to perform the specific tasks to which they were assigned.

2.1.1 Equipment

- 358 All equipment was inspected as it arrived to ensure proper working order. Instruments and
- 359 equipment that required routine maintenance and/or calibration were checked initially upon
- arrival and then checked again prior to use each day.

- As part of the initial equipment set-up and testing, the following communication equipment was installed and tested:
- Cellular Phone Service to maintain communication with RVAAP security personnel.
 - Hand-held portable radios used to maintain communications between the Project Manager and the UXO Technician III (UXOT III)/Team Leader.

366 2.1.2 Site-Specific Training

364

365

376

377

378

379

380

381

- As part of the mobilization process, site-specific training was conducted for all on-site personnel assigned to this project. The purpose of this training was to ensure that all on-site personnel fully understood the operational procedures and methods to be used at the facility and the AOC. Individual assigned responsibilities and safety and environmental concerns associated with site operations were also covered in the training. The Senior UXO Supervisor (SUXOS)/UXO Safety Officer (UXOSO) conducted the training sessions which included the topics identified below.
- Field equipment operation, including the safety and health precautions, inspection, and maintenance procedures;
 - Review of relevant sections of the Final Work Plan (PIKA, 2016) and APP/SSHP as they related to the tasks that were performed;
 - Discussion of potential site and operational hazards associated with site-specific tasks and operations;
 - Discussion of environmental concerns including the location of wetlands; and
 - OSHA or USACE required training per the approved APP.

382 *2.1.3 Permitting*

No permits were required for the execution of project tasks.

384 *2.1.4 Site Control*

385 The Group 2 Propellant Can Tops Site was identified as low probability site in regards to 386 encountering MEC. However, the propellant tops and cans are considered MPPEH until 387 inspected and certified as MDAS. In accordance with Engineering Pamphlet 75-1-2, Munitions 388 and Explosives of Concern (MEC) Support During Hazardous, Toxic, and Radioactive Waste 389 (HTRW) and Construction Activities, a Minimum Separation Distance (MSD) was not required. 390 However, as a precaution, a 200-foot diameter exclusion zone (EZ) was implemented during the inspection operations for site control and security purposes. The EZ included areas used for 391 392 military training and a portion of Paris-Windam Road. Vehicular traffic was temporarily halted 393 on Paris-Windam Road during the field efforts. The temporary road closures did not impact 394 facility or training operations.

2.2 Anomaly Reacquisition and Collection of MPPEH

395

423

396 A four-man team of UXO technicians reacquired the anomalies identified during the 2011 397 geophysical survey. The team included a SUXOS, a UXO Safety/Quality Control Specialist 398 (UXOQCS), a UXOT III and a UXO Technician II (UXOT II). The anomaly reacquisition, 399 recovery and MDAS certification tasks were completed between March 28 and March 30, 2016. 400 The UXO team marked each reacquired anomaly with a pin flag. Using a magnetometer, the 401 team inspected a 1-meter radius around each pin flag to depth, removing all target magnetic 402 anomalies (propellant cans and tops) and occasional unrelated materials such as railroad spikes 403 and packing debris (banding/strapping). The unrelated materials were removed to limit 404 potential magnetic interferences. The items were accumulated at onsite collection points to 405 facilitate the follow-on MDAS inspection.

Once the anomaly reacquisition and propellant cans and tops recovery task was complete, the UXO team inspected each individual item to determine and certify them as MDAS. Each item received two 100% inspections by the UXOT III and UXOT II. Then the SUXOS and UXOSOQC verified and certified the items as MDAS. All items recovered during this effort were certified MDAS and transported to the local recycling facility. No propellant can, can top, non-packing item, or munition related item encountered was determined to present a potential explosive hazard or identified as Material Documented with an Explosive Hazard (MDEH).

413 The MDAS remained in the custody of the SUXOS and UXOQC until possession was transferred 414 to the recycling facility, Falls Recycling, LLC. The SUXOS and UXOSOQC prepared and signed 415 the DD Form 1348-1A. Daily Reports and photos of the MPPEH Propellant Cans and Tops 416 collection and inspection are provided in Appendix A. More than 530 propellant can tops, 417 propellant cans, and a collection of miscellaneous metal scrap (e.g. rail road spikes, t-posts, 418 wrenches, conduit, nuts bolts and nails) were recovered and recycled. A total of 1,760 pounds 419 of propellant cans, can tops, and scrap metal certified as MDAS were delivered to Falls 420 Recycling, LLC on March 30, 2016. A summary of the items collected from each anomaly, DD 421 Form 1348-1A scrap metal MDAS Certification, and the recycling record are provided in 422 Appendix B.

2.3 Vegetation Removal and Site Surveying

Vista Sciences Corporation conducted manual and mechanical brush removal at the Site before completing the surface and subsurface ISM tasks. Brush removal operations were conducted between April 4 and April 9, 2016. The crew cut and removed ground-level vegetation in each of the eight ISM sampling grids to provide clear access for sampling. This was accomplished primarily with the use of a Bush Hog and hand-held weed eaters. All vegetation removal was coordinated with the Camp Ravenna Environmental Office.

Once the brush clearance activities were complete, Vista Sciences Corporation personnel surveyed in the corners of the eight ISM sampling grids. Five of the sampling grids were placed in grid clusters identified in 2011 (Figure 4) and three grids were placed in additional clusters added for this effort. The eight grid locations are shown on Figure 5 and the survey data is included in Appendix C.

2.4 Surface and Subsurface Incremental Soil Sampling

- The ISM surface and subsurface soil samples were collected in accordance with the approved Work Plan and associated Sampling and Analysis Plan Addendum (SAP) included Appendix D of the Work Plan (PIKA, 2016). No deviations from the Work Plan or SAP were encountered. The ISM sampling event was completed between April 11 and April 13, 2016. The location of the three subsurface ISM samples (one to four feet bgs), and five surficial ISM samples (zero to one foot bgs) are shown in Figure 5.
- A stratified random approach was used in each of the eight gridded ISM locations and 30 aliquots were collected from each. As described in the SAP, a Geoprobe® Direct Push rig with a dedicated sampling probe was used in each of the subsurface grids to collect the sample aliquots from one to four feet bgs. The soils were logged and described using the Unified Soil Classification System. The surface ISM aliquots were similarly collected from the designated grids using a ¾ inch diameter dedicated stainless steel step probe from zero to one foot bgs.
- 448 The aliquots from each sampling grid were collected in a dedicated stainless steel bowl, 449 homogenized, and placed in a sample container labeled for that grid location. Sample PCTss-450 006M-001-SO, collected in ISM sample Area 2, was selected for the RVAAP full suite of analyses 451 because of the high density of propellant can tops and propellant cans removed during the 452 MPPEH/MDAS certification task. For the VOC component of the RVAAP full suite sample, one 453 discrete aliquot was collected from Anomaly Grid 4 (Sample PCTss-006M-001-SO). Since no soil 454 staining or signs of potential VOC contamination was observed within this grid, the discrete VOC 455 sample was biased toward the location where the most propellant can tops were located. The 456 VOC sample was placed directly in the sample container and was not composited or further 457 processed in the field or laboratory. Additional details pertaining to the collection of these 458 surface and subsurface ISM are provided in the SAP Addendum and Quality Assurance Project 459 Plan (QAPP) Addendum (Appendices D and E of the Work Plan, [PIKA, 2016]).
- The ISM samples were shipped overnight to the laboratory following the custody procedures described in the SAP. At the laboratory, the ISM samples were processed as required by U.S. Environmental Protection Agency (USEPA) Method SW8330B (i.e., dried, sieved, and finely ground) for specific constituent analysis. All samples were analyzed for the three common propellants (nitrocellulose, nitroglycerine, and nitroguanidine), TAL metals, and perchlorate. One of the samples was analyzed also for the RVAAP full suite of analytes (explosives, cyanide, VOCs, SVOCs, and PCBs). The sample numbers, quality control samples and analyses per ISM

- 467 grid location are listed in Table 1 (included at the end of this SI Report. The following USEPA 468 Analytical Methods were used:
- 469 Nitrocellulose by Method 353.2
- 470 Nitroglycerine and explosives by Method 8330B
- 471 Nitroguanidine by Modified Method 8330
- 472 Perchlorate by Method 6850
- 473 TAL Metals by Method 6010C
- 474 Mercury by Methods 7470A (aqueous) and 7471A (solid)
- Cyanide by Method 9012 475
- 476 Pesticides by Methods 8081A (aqueous) and 8081B (solid)
- 477 PCBs by Method 8082A
- 478 SVOCs by Method 8270D
- 479 VOCs by Method 8260C
- 480 Analytical results are provided in Appendix D and the Automated Data Review (ADR) and Third
- 481 Party Data Validation Reports are provided in Appendix E. All samples were delivered to
- 482 TestAmerica in Canton, Ohio and forwarded to Environmental Laboratory Accreditation Program
- 483 (ELAP) certified TestAmerica West Sacramento, California for analysis.

484 2.5 **Summary of Sample Results**

- 485 This section summarizes the results of the 2011 and 2016 sampling events. The concentrations
- 486 of the chemicals detected in the surface and subsurface soil samples were evaluated using a 487
- screening and comparative process established in the Facility Wide Human Health Risk
- 488 Assessor's Manual (USACE, 2005) and the Position Paper on the Use and Applicability of
- 489 FWCUGs (USACE, 2012). The process is modified from what is used in risk assessments so that 490 the decision criteria is the determination of whether or not there is contamination present and
- 491 or is there any indication there has been a release.
- 492 The sampling locations are shown on Figure 5. Analytical results, background criteria, and
- 493 screening criteria are presented in Table 2 for propellants, metals, and perchlorate in the
- 494 subsurface ISM samples; Table 3 for the explosives, cyanide, VOCs, SVOCs, pesticides, and
- 495 PCBs in the surface ISM samples; and Table 4 for the propellants, metals, and perchlorate ISM
- 496 surface soil samples. Electronic copies of the 2016 laboratory data packages are included in
- 497 Appendix D on compact disk. Analytical data for the 2011 sampling event is found in the "Final
- Inspection Report for Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops 498
- 499 and Other Environmental Services (PIKA, 2012).

2.5.1 Data Evaluation Process

500

510

511

512

513

514

515

516517

518

519

520

521

522

- 501 The data were evaluated using a screening process. The process generally follows the 502 procedures described in the Revised United States Army Corps of Engineers Ravenna Army 503 Ammunition Plant (RVAAP) Position Paper for the Application and Use of Facility-Wide Human 504 Health Cleanup Goals (USACE, 2012). However, the screening process in this SI was completed 505 to identify if contamination was present or if there was an indication that a release occurred on 506 the AOC. The background concentrations and the FWCUGs can be found in the Facility-wide 507 Human Health Remediation Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio, March 508 2010 (FWCUG Report).
- The data evaluation process used in this SI is as follows:
 - 1. Compare the maximum value of inorganics detected in surface soil and subsurface soil samples to those of their respective for the established for RVAAP-background concentrations. Eliminate inorganic chemicals from further evaluation if the maximum is less than the established background concentration.
 - 2. Compare the maximum concertation of any detected organic chemical and the maximum concentration of any inorganic chemicals that exceeded the background value to the most stringent of the Resident Receptor's FWCUGs at the 1 X 10⁻⁶ target cancer risk and the non-carcinogenic Hazard Quotient (HQ) using the 0.1 risk value. Use USEPA's Residential Regional Screening Levels (RSLs) for chemicals that do not have a FWCUG developed.
 - 3. Eliminate chemicals from further evaluation if the maximum is less than the most stringent Resident Receptor's FWCUG for that chemical. If all chemicals are eliminated, then consider the AOC as an NFA determination.
- 4. Complete a Weight of Evidence (WOE) Evaluation of chemicals with maximum concentration(s) that exceeded the most stringent FWCUG for the Resident Receptor.
- 525 5. If results of the WOE Evaluation indicate the presence of contamination or indicate that there has been a release at the AOC, then consider additional investigation is warranted.

527 2.5.2 Analytical Results

Three ISM surface soil samples were collected on May 26, 2011 and analyzed for TAL metals, common propellants used by DoD nitrocellulose, nitroglycerine, nitroguanidine and perchlorate.

Additionally, one of the samples was analyzed for the full suite of analytes as prescribed in the Facility Wide SAP (USACE, 2011). The three sampling locations are shown on Figure 5. As stated previously, these three sample locations were biased since the locations were not selected randomly.

- A narrative summary of the 2011 analytical results and results of the screening process are summarized as follows.
- Cadmium, lead, mercury, and zinc were detected in sample PCTss-001M-0001-SO at concentrations greater than their respective background concentrations but less than their respective FWCUGs.
 - Perchlorate and propellants were detected in samples PCTss-001M-0001-SO and PCTss-003M-0001-SO at concentrations less than the reporting limit but greater than the detection limit and the results were flagged as estimated.
 - Acetone was detected in sample PCTss-001M-0001-SO at a concentration less than the reporting limit but greater than the detection limit and the result was flagged as estimated.
- Three subsurface ISM samples (1-4' bgs), and five surficial ISM samples (0-1' bgs) were collected April 11 and April 13, 2016. The sampling locations are shown on Figure 5. The results are summarized as follows:
- 548 Subsurface Soils (Table 2):

539

540541

542543

544

549

550

551

552

553

554

555

556

558

- Propellants were not detected at concentrations greater than the laboratory detection limits for these samples.
- Perchlorate concentrations were less than the detection limit or were reported at estimated concentrations.
 - There were several metals that had maximum concentrations that exceeded the established background values: antimony, cadmium, selenium, silver, and thallium. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor.
- 557 Surface Soil (Tables 3 and 4):
 - No SVOCs, PCBs, or perchlorate were detected at concentrations greater than their respective detection limits and were therefore considered to be non-detected.
- No VOCs were not detected at concentrations greater than their respective detection limits with the following exception. Acetone was reported at an estimated concentration, and is a common laboratory contaminant.

- Reported concentrations of all pesticides, except for alpha-chlordane and delta-BHC, were less than the method detection limits. Alpha-chlordane and delta-BHC were reported at estimated concentrations.
 - Propellants were reported at concentrations less than the method detection limit, except for nitrocellulose, which was reported at estimated concentration from two of the six samples collected.
 - There were several metals that had maximum concentrations that exceeded the
 established background values in the surface soils: antimony, cadmium, chromium, lead,
 selenium, silver, thallium, and zinc. None of these metals had maximum concentrations
 that exceeded the most stringent FWCUG for the Resident Receptor.

2.6 Data Validation

The analytical methods used for analysis of the Group 2 Propellant Can Tops Site samples are defined in the Facility-Wide SAP and QAPP and listed in Section 2.5. The full analytical results are provided in Appendix D and the ADR and third party data validation reports are provided in Appendix E. All the samples were delivered to TestAmerica in Canton, Ohio and forwarded to ELAP certified TestAmerica Sacramento for analysis. Laboratory results include documentation verifying compliance with sample log-in procedures, analytical holding times, and quality control procedures for analyses. The laboratory also provided information about the percent of recovery attained in laboratory spike samples, calibration curves (initial and continuing) dilutions, and detection limits. The laboratory applied data qualifiers or "flags" to the reported data based on a comparison of the parameters described above to their respective quality assurance requirements.

All sample results were systematically verified using the ADR software (Level II Validation) following which the data received a Level IV validation by Purves Environmental in Hudson, Ohio in accordance with the project specified QAAP, DoD Quality System Manual (QSM), and the National Functional Guidelines for Data Validation and USEPA SW-846 Test Methods for Evaluating Solid Waste. The validation process was conducted to ensure that the precision and accuracy of the analytical data were adequate for their intended use. The validation process minimizes the potential of using false results in the decision-making process and ensures that detected and non-detected compounds were accurately identified.

The third-party data validation effort determined that all samples were properly analyzed, diluted as needed, quantitated and that no problems were encountered with the system performance of any of the instruments. The mercury analysis for the subsurface soils samples (except for samples PCTss-002M-001-SO and PCTss-006M-001-SO) and the associated Equipment Rinsate were analyzed beyond the 28-day holding time.

- The mercury data were qualified as estimated, and biased low. The antimony result for sample PCTsb-003M-001-SO was rejected because of low matrix spike recovery. All other data are complete and usable. The findings of the third-party data validation effort are provided in Appendix E.
 - 2.7 Disposal of IDW

- The ISM surface and subsurface soil samples were collected using pre-decontaminated, dedicated, ¾-inch stainless steel step probes and Geoprobe® sampling devices with single use acetate liners. The IDW generated during the implementation of this field effort included the soil cuttings and acetate liners from the subsurface ISM sampling, and the sampling personal protective equipment (i.e., surgical gloves). All IDW was containerized in two 55-gallon, open top drums, labeled, stored, managed and disposed of in accordance with the Camp Ravenna Waste Management Guidelines dated 30 March 2015 and the Facility Wide SAP.
- The IDW was generated between April 11, 2016 and April 13, 2016. On April 13, 2016, one composite waste sample was collected from the drums and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) VOCs, SVOCs, metals, pesticides, herbicides, total sulfide, total cyanide, corrosivity (pH) and flashpoint to characterize the waste stream for disposal. Based on the analytical results, the IDW stream was classified as nonhazardous, non-contaminated.
- The drums were picked up from Camp Ravenna by Republic Services on May, 9, 2016 and disposed of at the Carbon Limestone Landfill, in Lowellville, Ohio on May 10, 2016. The Inspection Derived Waste Letter Report for the Propellant Can and Tops IDW, Weekly Inspection Forms, and the signed manifest for disposal are provided in Appendix F.

3.0 CONCLUSIONS

619

624

625

627

628

629

630

631

632

633

634

635

636

637

638

639

- The purpose of the Group 2 Propellant Can Tops SI was to achieve the following objectives:
- Collect munitions packaging material (propellant cans and tops) at or near the geophysical anomalies identified during the 2011 SI of the AOC and inspect, certify, and dispose in accordance with DoDI 4140.62.
 - Confirm the presence or absence of propellants and/or other MC in surface and subsurface soils at the AOC.
- The defined objectives were achieved as summarized below:
 - 1. All anomalies identified during the 2011 Propellant Cans and Tops SI were successfully reacquired. The associated propellant cans and tops were collected, inspected confirmed and certified as MDAS. All MDAS was recycled.
 - 2. The ISM surface soil samples were collected in areas where high densities of propellant can tops, propellant cans, or other ferrous metals were identified by the Ohio Environmental Protection Agency based on the data collected during the 2011 SI geophysical inspection. Subsurface soil samples were collected to determine whether propellants migrated to subsurface soil with the infiltration of rain/snowmelt.
 - No propellants and perchlorates were not detected at concentrations greater than the laboratory detection limits in the subsurface soil samples. There were several metals that had maximum concentrations that exceeded the established background values: antimony, cadmium, selenium, silver, and thallium. None of these metals in the subsurface soil samples had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the subsurface soils at CC RVAAP-80.
- No propellants, pesticides, SVOCs, PCBs, or perchlorate were detected at concentrations greater than their respective detection limits and were therefore considered to be non-detected in the surface soil at the AOC. No VOCs were detected in surface soil except acetone at an estimated concentration. Acetone is not considered indicative of contamination since it is a common laboratory contaminant.
- There were several metals that had maximum concentrations that exceeded the established background values in the surface soils: antimony, cadmium, chromium, lead, selenium, silver, thallium, and zinc. None of these metals had maximum concentrations that exceeded the most stringent FWCUG for the Resident Receptor. Therefore, no contamination was identified in the surface soils at CC RVAAP-80.

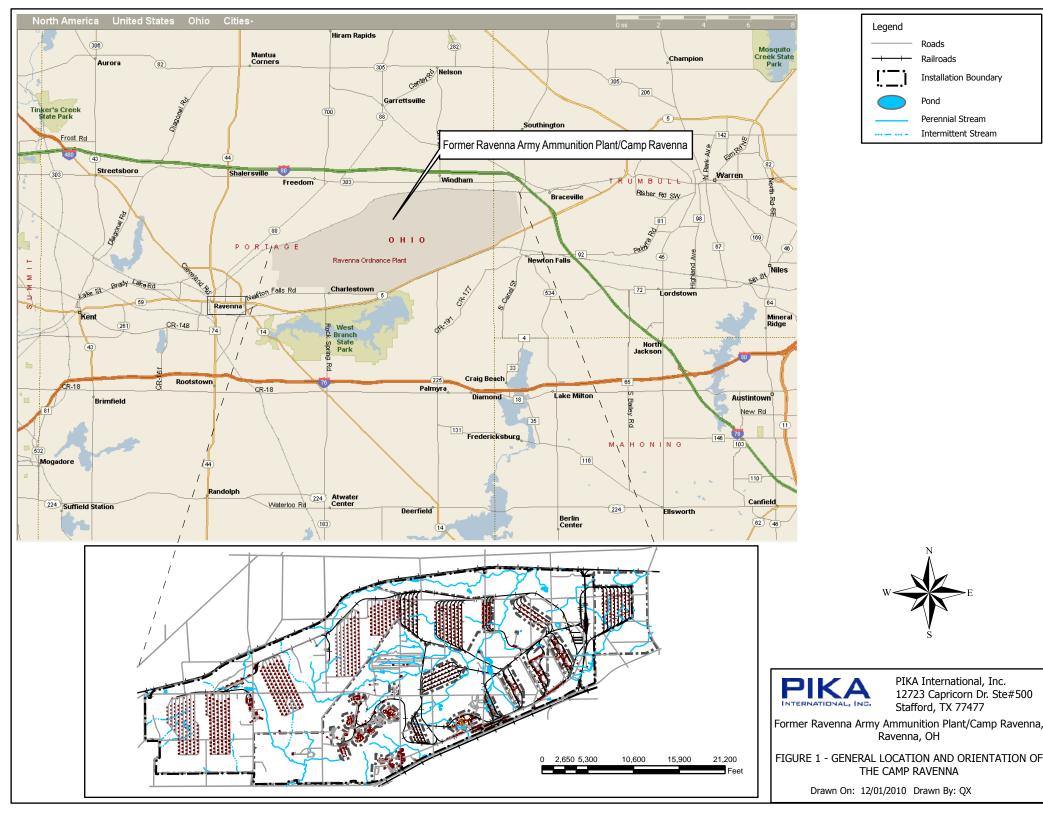
Based on the results from both the 2011 SI and this SI, no contamination or evidence of a release at the AOC was identified. Propellants and other MCs are not present in the surface and subsurface soils at concentrations great enough to need additional evaluation. Soils are not a source of contamination to receptors or to a groundwater pathway to receptors. No other media (e.g., sediment or surface water) are present at the Site. Additional investigation is not warranted, and NFA determination was made for this AOC.

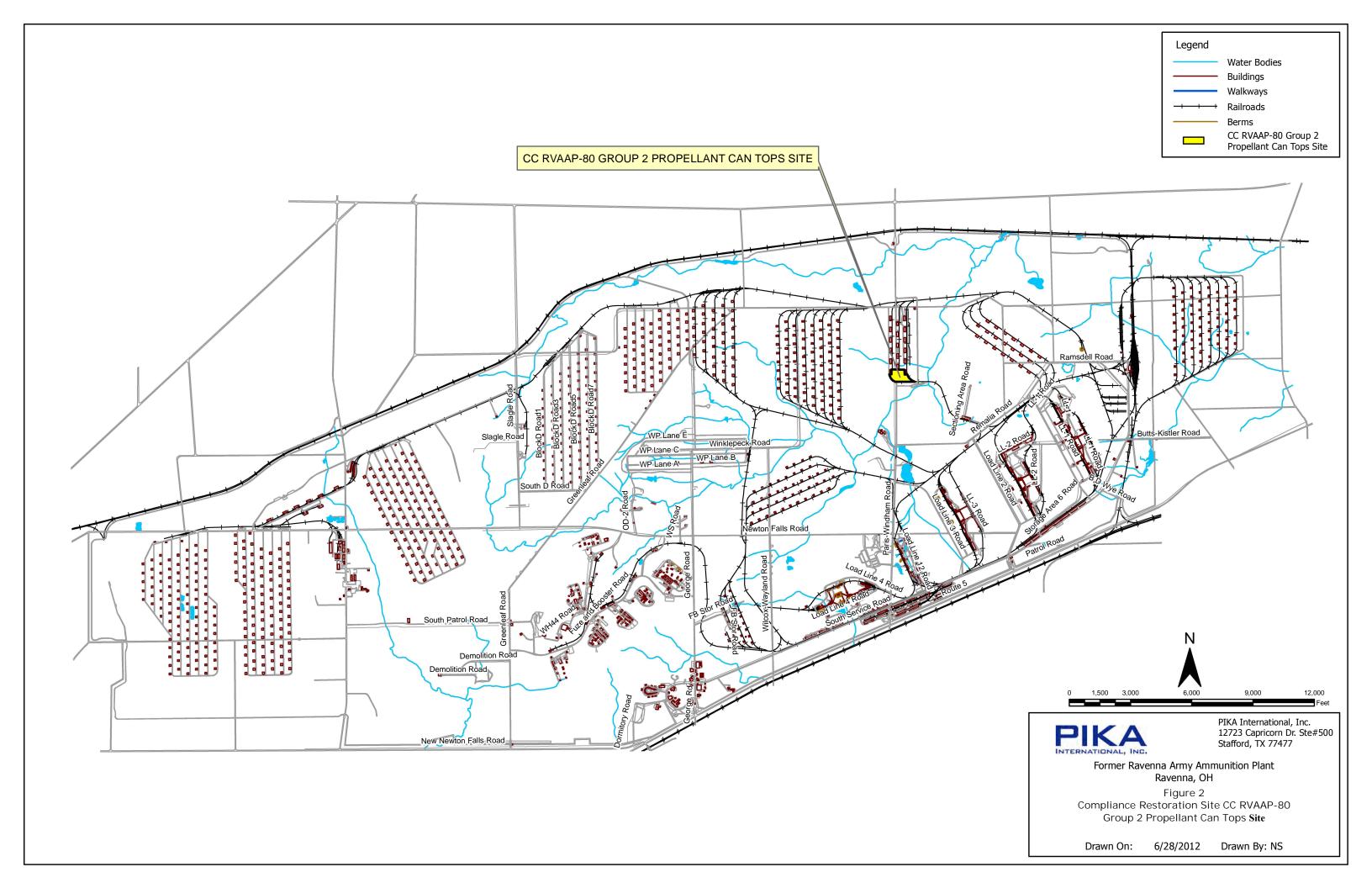
657

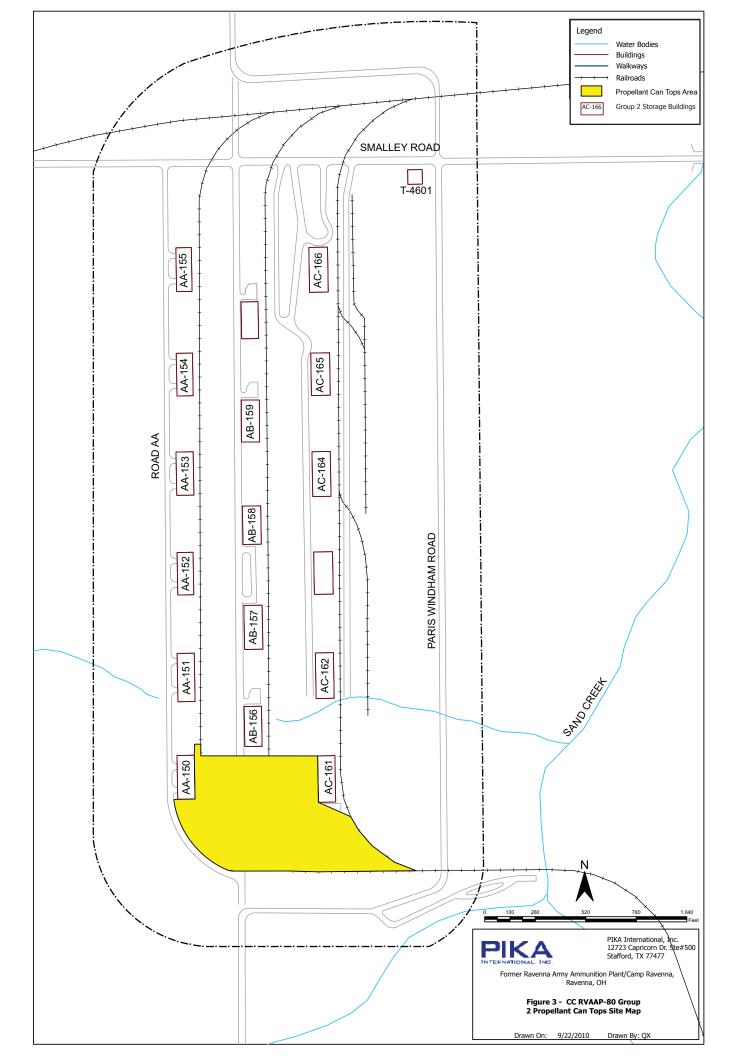
651

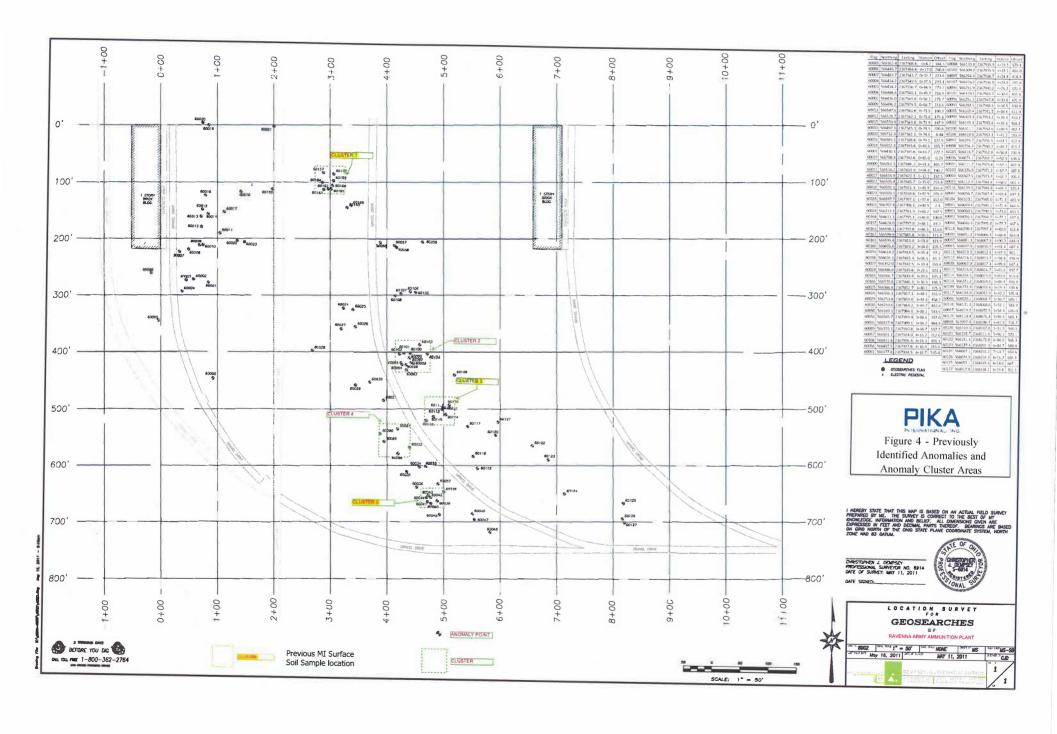
652

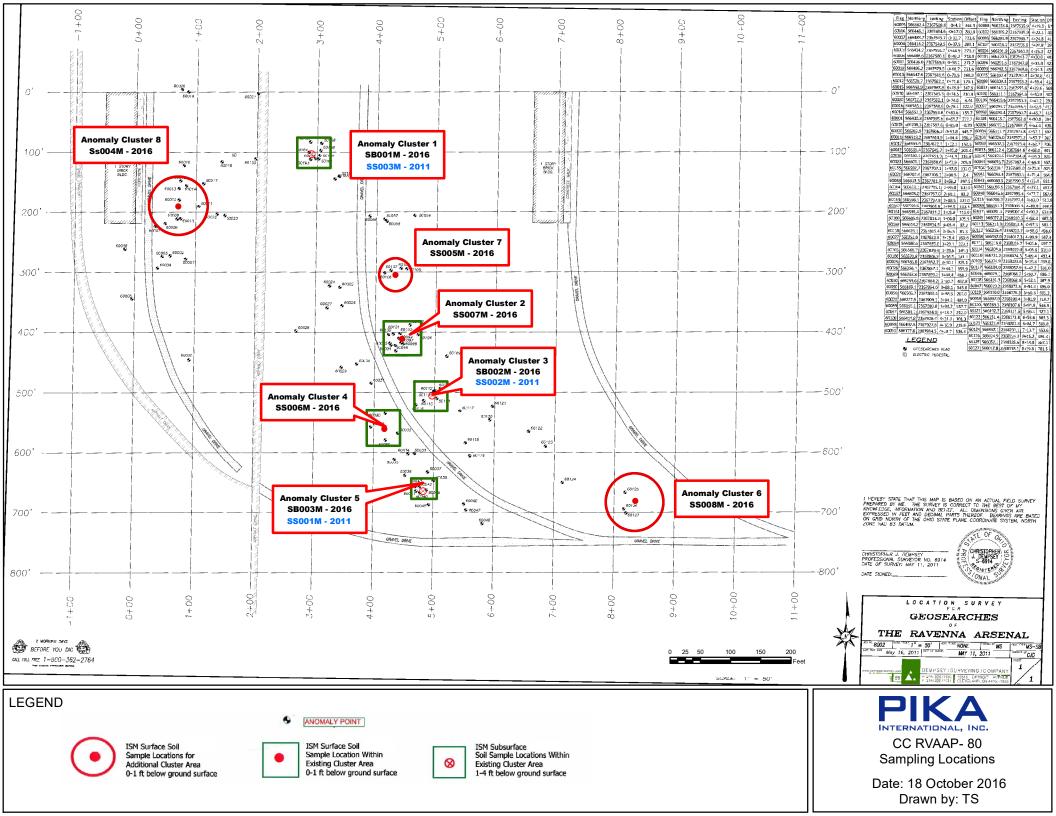
653


654


655


658	4.0 REFERENCES
659 660	Department of Defense Instruction (DoDI) 4140.62. Management and Disposition of Material Potentially Presenting an Explosive Hazard (MPPEH)
661 662	Engineering Pamphlet 75-1-2, Munitions and Explosives of Concern (MEC) Support During Hazards, Toxic, and Radioactive Waste (HTRW) and Construction Activities
663	OHARNG, 2015. Camp Ravenna Waste Management Guidelines, March.
664 665	PIKA, 2012. Final Inspection Report for the Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services, RVAAP, Ravenna, Ohio. January.
666 667	PIKA, 2016. Revised Final Project Work Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 0, January.
668 669	PIKA, 2016. Revised Final Accident Prevention Plan for Site Inspection at Compliance Restoration Site CC RVAAP-80 Group 2 Propellant Can Tops, Revision 0, January.
670 671	USACE, 2010. Facility-wide Human Health Remediation Goals, Ravenna Army Ammunition Plant, Ravenna, Ohio. March.
672 673 674	USACE, 2011. Facility-Wide Sampling and Analysis Plan for Environmental Inspections, Revision 0, Ravenna Army Ammunition Plant, Ravenna, OH, W912QR-08-D-0008, Delivery Order No. 0016, Science Applications International Corporation. February.
675 676 677	USACE, 2012. Revised United States Army Corps of Engineers Ravenna Army Ammunition Plant (RVAAP) Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals. Science Applications International Corporation. February.


678	Figures
679	Figure 1 – General Location and Orientation of the Camp Ravenna
680	Figure 2 – Compliance Restoration Site CC RVAAP-08, Group 2 Propellant Can Tops Site
681	Figure 3 – CC RVAAP-08, Group 2 Propellant Can Tops Site Map
682	Figure 4 – Previously Identified Anomalies and Anomaly Cluster Areas
683	Figure 5 – CC RVAAP-80 Sample Locations


December 2016 Rev 0

684	Tables
685	Table 1 – Sample and Analyte Summary CC RVAAP-80 Group 2 Propellant Can Tops Site
686	Table 2 – ISM Subsurface Soil Sample Results
687 688	Table 3 – ISM Surface Soil Sample Results (Explosives, VOCS, SVOCS, Cyanide, Pesticides and PCBs)
689	Table 4 – ISM Surface Soil Sample Results (Propellants and Metals)

December 2016 Rev 0

Table 1 - Sample and Analyte Summary CC-RVAAP-80 Group 2 Propellant Can Tops Site

	SAMPLE ID														де,		QA/QC	SAMPLES ¹	
Map Cluster	CC RVAAP-80 Group 2 - Propellant Can Tops Area	Sample Date	VOCs 8260B	SVOCs 8270C	Pesticides 8081A	PCBs 8082	Explosives 8330	Nitrocellulose 353.2	Nitroguanidine 8330 Modified	Nitroglycerine 8330	Perchlorate 6860	TAL Metals 6010B	Mercury 7471A	Solids 160.3	Full TCLP, total Sulfide, Total Cyanide, pH & Flash Point	Duplicate Sample ²	Trip Blank	Equipment Rinse	MS/MSD
	PROPELLANT CAN TOPS AREA - V	VASTE CHA	RACTE	RIZATI	ON SA	MPLES	3												
	PCTss-WC001-SO	2011/2016													1				
	PROPELLANT CAN TOPS AREA ISI	M SUBSURF	ACE S	OIL SA	MPLES														
Cluster 1	PCTsb-001M-0001-SO	2016						1	1	1	1	1							
Cluster 3	PCTsb-002M-0001-SO	2016						1	1	1	1	1							
Cluster 5	PCTsb-003M-0001-SO	2016						1	1	1	1	1							1
	PROPELLANT CAN TOPS AREA ISI	M SURFACE	SOILS	SAMPL	ES														
Cluster 3	PCTss-001M-0001-SO	2011						1	1	1	1					1			
Cluster 5	PCTss-002M-0001-SO ³	2011	1	1	1	1	1	1	1	1	1	1	1	1					1
Cluster 1	PCTss-003M-0001-SO	2011						1	1	1	1								
Cluster 8	PCTss-004M-0001-SO	2016						1	1	1	1	1							
Cluster 7	PCTss-005M-0001-SO	2016						1	1	1	1	1				1			
Cluster 4	PCTss-006M-0001-SO ³	2016	1	1	1	1	1	1	1	1	1	1	1	1			1	1	
Cluster 2	PCTss-007M-0001-SO	2016						1	1	1	1	1							
Cluster 6	PCTss-008M-0001-SO	2016						1	1	1	1	1							
	TOTAL SAMPLES		2	2	2	2	2	11	11	11	11	9	2	2	1	2	1	1	1

Notes:

³ Full Suite Samples were collected in clusters with the highest concentration of propellant cans and tops.

Analysis Name	Analysis Method	Preparation Method
Volatile Organic	EPA 8260B	EPA5035A
Semi-Volatile Organic	EPA 8270C	EPA 3540C
Pesticides	EPA 8081A	EPA 3540C
PCB	EPA 8082	EPA 3540C
Explosives	EPA 8330B	EPA 8330B_Sonc_10g
Nitrocellulose	EPA 353.2	NCEL_HYD & NCEL_Prep
Nitroguanidine	EPA 8330	EPA 8330_P_2g
Perchlorate	EPA 6860	EPA 6860_Prep
TAL Metals	EPA 6010B	EPA 3050B
Mercury	EPA 7471A	EPA7471A_Prep

¹ Field QC Samples - Duplicate samples were analyzed for the same parameters as the associated primary

 $^{^{2}}$ Duplicate Samples were numbered $\,$ PCTss-001M-0001-DUP and PCTss-005M-0001-DUP

TABLE 2 - ISM SUBSURFACE SOIL RESULTS

								Anomaly Cl	ictor 1	Anomaly Clud	tor 2	Anomaly Clus	tor E		-	σ	C
	F	1	1		1	I		Anomaly Clu	ister i	Anomaly Clus	ાં ડ	Anomaly Clus	SICI 3		g/kc	u Ž	al 1 HC
SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	Subsurface Soil Background Criteria mg/kg	FWCUGs for Resident Farmer Adult HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Adult Risk = 10°6 mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 (mg/kg)	FWCUGs for Resident Farmer Child Risk = 10°6 mg/kg	Residential Regional Screening Level (RSL) mg/kg	Subsurface Soil Background Criteria mg/kg	PCTsb-001M-0001-SO		PCTsb-002M-0001-SO		PCTsb-003M-0001-SO		Detection Range	Values <i>/ Limits for Non-</i> <i>detects</i> (min-max) in mg/kg	Maximum Concentration greater than Site Background Criteria	Maximum Concentration greater than Residential Criteria (TCR at 10-6 and HQ = 0.1
Sample Date								4/11/20	16	4/12/201	6	4/12/201	6	Min	Max		
Propellants 353.2, 8330B mg/	′kg																
Nitrocellulose						190000000		1.8	U	1.8	U	1.8	U	1.80	1.80	NA	NA
Nitroglycerine			81.6		52.5			0.25	U	0.25	U	0.25	U	0.25	0.25	NA	NA
Nitroguanidine						6300		0.04	U	0.041	U	0.04	U	0.04	0.041	NA	NA
METALS 6010C mg/kg																	
Aluminum	19500	52923		7380			19500	6300		11000		8100	J	6300	11000	No	
Antimony	0.96	13.6		2.82			0.96	2	U	2	U	2	R	2	2	Yes	No
Arsenic	19.8	8.21	4.25	2.02	0.54		19.8	2.7	J	15		11		2.7	15.0	No	NA
Barium	124.0	8966		1412.9			124.0	15		47		57		15	57	No	NA
Beryllium	0.88					160	0.88	0.22	J	0.5		0.37		0.22	0.50	No	NA
Cadmium	0	22.3	1249.1	6.41	2676.7		0	0.043	J	0.099	U	0.081	J	0.043	0.099	Yes	No
Calcium (essential nutrient)	35500					(n)	35500	390		610		660		390	660	No	NA
Chromium	27.2	90.4	187	19.9	4015		27.2	6.9		14		10		6.9	14.0	No	NA
Cobalt	23.2	8198	8030	131	1721		23.2	3.5		8.9		6.6		3.5	8.9	No	NA
Copper	32.3	2714		311			32.3	9.4		19		13		9.4	19.0	No	NA
Iron	35200	19010		2313			35200	8100		22000		17000	J	8100	22000	No	NA
Lead	19.1	400		400			19.1	7.8		15		12		7.8	15.0	No	NA
Magnesium (essential nutrient)	8790					(n)	8790	1300		2300		1800		1300.0	2300.0	No	NA
Manganese	3030	1482		293			3030	56		330		490	J	56.0	490.0	No	NA
Nickel	60.7	1346		155			60.7	9.5		18		15		9.5	18.0	No	NA
Potassium (essential nutrient)						(n)		480		910		630		480.0	910.0	No	NA
Selenium	1.5					390	1.5	3	U	3	U	3	UJ	3	3	Yes	No
Silver	0	324		38.6			0	0.13	J	0.15	J	0.18	J	0.13	0.18	Yes	No
Sodium (essential nutrient)						(n)		21	J	36	J	30	J	21	36	No	NA
Thallium	0.91	47.6		6.12			0.91	1	U	0.99	U	1	U	0.99	1.00	Yes	No
Vanadium	37.6	156		45			37.6	8.9		18		14		8.9	18.0	No	NA
Zinc	93.3	19659		2321		23000	93.3	36		55		49		36	55	No	NA
Mercury 7471B mg/kg																	
Mercury	0.044	16.5		2.27			0.044	0.015	R	0.02	R	0.023	R	0.015	0.023	No	NA
Perchlorate 6860 ug/kg																	
Perchlorate								0.00041	J	0.39	U	0.39	U	0.00041	0.390	NA	NA

J = Estimated concentration

mg/kg = milligrams per kilogram (parts per million)

(n) = essential nutrient

NA = Not applicable

R = Rejected result

U = Undetected at the limit of detection

ug/kg = micrograms per kilogram (parts per billion)

ug/L = micrograms per liter (parts per billion)

-- = Not Analyzed for this parameter

Green Shading indicates the maximum concetration detected exceeds the established backgoround value

Italics = Non detected concentrations

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

						-		· · · · · · · · · · · · · · · · · · ·			
SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO		PCTss-006M-0001-SO	
Sample Date						5/26/201	1	5/26/201	1	4/13/201	16
*						5, 2, 2, 2,					
EXPLOSIVES 8330B mg/kg											
1,3,5-Trinitrobenzene	1528		225			0.24	U			0.05	U
1,3-Dinitrobenzene	5.94		0.76			0.24	U			0.05	U
2,4,6-Trinitrotoluene	21.1	32.8	3.65	28.4		0.24	U			0.05	U
2,4-Dinitrotoluene	43.9	7.53	12.8	1.1		0.24	U			0.05	U
2,6-Dinitrotoluene	22.4	0.769	6.42	1.1		0.24	U			0.05	U
2-Amino-4,6-Dinitrotoluene	12.8		1.54			0.24	U			0.05	U
2-Nitrotoluene	594	6.03	76.5	3.88		0.24	U			0.05	U
3-Nitrotoluene					6.1	0.24	U			0.05	U
4-Amino-2,6-Dinitrotoluene	12.8		1.54			0.24	U			0.05	U
4-Nitrotoluene	594	81.6	76.5	52.5		0.24	U			0.05	U
HMX	1909		359			0.24	U			0.05	U
Nitrobenzene					51	0.24	U			0.05	U
PETN					130	0.48	U			0.25	U
RDX	163.2	11.5	22.7	8.03		0.24	U			0.05	U
Tetryl					160	0.24	U			0.05	U
Cyanide 9012 mg/kg											
Cyanide						0.19	J				
VOCS 8260B mg/kg										MG/KG	
1,1,1-Trichloroethane					8700					0.0014	U
1,1,2,2-Tetrachloroethane			-		0.56					0.0028	U
1,1,2-Trichloroethane					1.1					0.0014	U
1,1-Dichloroethane					240			0.005	U	0.0014	U
1,1-Dichloroethene					3.3			0.005	U	0.0014	U
1,2-Dichloroethane					0.43					0.0028	U
1,2-Dichloroethene (total)					150			0.005	U	0.0028	U
1,2-Dichloropropane					0.89			0.005	U	0.0028	U

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10^{6} mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO		PCTss-006M-0001-SO	
2-Butanone					28000			0.01	U	0.007	U
2-Hexanone					210			0.01	U	0.0028	U
4-Methyl-2-pentanone					5300			0.01	U	0.0028	U
Acetone					61000			0.0053	J	0.0083	J
Benzene					1.1			0.005	U	0.0014	U
Bromodichloromethane					0.27			0.005	U	0.0028	U
Bromoform					61			0.005	U	0.0014	U
Bromomethane					6.8			0.005	U	0.0028	U
Carbon disulfide					820			0.005	U	0.0014	U
Carbon tetrachloride					0.61			0.005	U	0.0028	U
Chlorobenzene					290			0.005	U	0.0014	U
Chloroethane					15000			0.005	U	0.0014	U
Chloroform					0.29			0.005	U	0.0014	U
Chloromethane					110			0.01	U	0.0014	U
cis-1,3-Dichloropropene					1.7			0.005	U	0.0028	U
Dibromochloromethane					0.68			0.005	U	0.0014	U
Ethylbenzene					5.4			0.005	U	0.0014	U
Methylene Chloride					11			0.005	U	0.0028	U
Styrene					6300			0.005	U	0.0014	U
Tetrachloroethene					0.55			0.005	U	0.0028	U
Toluene					5000			0.005	U	0.0028	U
trans-1,3-Dichloropropene					1.7			0.005	U	0.0028	U
Trichloroethene					2.8			0.005	U	0.0028	U
Vinyl chloride					0.06			0.005	U	0.0014	U
Xylenes (Total)					630			0.005	U	0.0014	U
SVOC 8270D mg/kg											
1,2,4-Trichlorobenzene					22	2	U			0.16	U
1,2-Dichlorobenzene					1900	3.3	U			0.16	U
1,3-Dichlorobenzene						3.3	U			0.16	U

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10^{6} mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10^6 mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
1,4-Dichlorobenzene					2.4	3.3	U		0.16	U
2,2-oxybis (1-chloropropane)						2	U			
2,4,5-Trichlorophenol					6100	2	U		0.16	U
2,4,6-Trichlorophenol					44	0.99	U		0.16	U
2,4-Dichlorophenol					180	3.3	U		0.16	U
2,4-Dimethylphenol					1200	0.99	U		0.33	U
2,4-Dinitrophenol					120	16	U		0.33	U
2,4-Dinitrotoluene	43.9	0.753	12.8	1.1		0.99	U		0.16	U
2,6-Dinitrotoluene					61	3.3	U		0.16	U
2-Chloronaphthalene					6300	0.99	U		0.16	U
2-Chlorophenol					390	0.99	U		0.16	U
2-Methylnaphthalene					310	2	U		0.16	U
2-Methylphenol					3100	2	U		0.16	U
2-Nitroaniline					610	16	U		0.33	U
2-Nitrophenol						0.99	U		0.16	U
3,3'-Dichlorobenzidine					1.1	5	U		0.16	U
3-Nitroaniline						16	U		0.1	U
4,6-Dinitro-2-methylphenol						0.14	J		0.33	U
4-Bromophenyl phenyl ether						0.99	U		0.16	U
4-Chloro-3-methylphenol						0.99	U		0.16	U
4-Chloroaniline					2.4	3.3	U		0.16	U
4-Chlorophenyl phenyl ether						0.99	U		0.16	U
4-Methylphenol					310	0.99	U		0.65	U
4-Nitroaniline					24	16	U		0.16	U
4-Nitrophenol						0.99	U		0.33	U
Acenaphthene					3400	0.99	U		0.16	U
Acenaphthylene						0.99	U		0.16	U
Anthracene					17000	0.99	U		0.16	U
Benzo(a)anthracene		0.221		0.65		0.99	U		0.16	U

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/Kg	FWCUGs for Resident Farmer Child Risk = 10 ⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Benzo(a)pyrene		0.221		0.65		0.99	U		0.16	U
Benzo(b)fluoranthene		0.221		0.65		0.99	U		0.16	U
Benzo(g,h,i)perylene						0.99	U		0.16	U
Benzo(k)fluoranthene		2.21		6.5	0.15	0.99	U		0.16	U
Bis(2-chloroethoxy)methane	178		23			0.99	U		0.16	U
Bis(2-chloroethyl) ether					0.21	0.99	U		0.16	U
Bis(2-ethylhexyl) phthalate					35	5	U		0.16	U
Butyl benzyl phthalate					260	0.99	U		0.16	U
Carbazole		69.4		44.6		0.99	U		0.16	U
Chrysene		22.1		65		0.99	U		0.16	U
Dibenz(a,h)anthracene		0.221		0.065		0.99	U		0.16	U
Dibenzofuran	0.596		15.3			0.99	U		0.16	U
Diethyl phthalate					49000	0.99	U		0.16	U
Dimethyl phthalate						0.99	U		0.16	U
Di-n-butyl phthalate			-		6100	5	U	-	0.16	U
Di-n-octyl phthalate						0.99	U		0.16	U
Fluoranthene	276		163			0.99	U		0.16	U
Fluorene	737		243			0.99	U		0.16	U
Hexachlorobenzene					0.3	0.99	U		0.16	U
Hexachlorobutadiene					6.2	5	U		0.16	U
Hexachlorocyclopentadiene					370	16	U		0.32	U
Hexachloroethane					35	3.3	U		0.16	U
Indeno(1,2,3-cd)pyrene		0.221		0.65		0.99	U		0.16	U
Isophorone					510	5	U		0.16	U
Naphthalene	4.93		121.5			0.99	U		0.16	U
Nitrobenzene					4.8	0.99	U		0.16	U
N-Nitroso-di-n-propylamine		0.127		0.12		0.99	U		0.16	U
n-Nitrosodiphenylamine					99	3.3	U		0.16	U
Pentachlorophenol	3269	21.2	151	4.91		16	U		0.16	U

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10 ⁶ mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Phenanthrene						0.99	U		0.16	U
Phenol					18000	0.99	U		0.16	U
Pyrene	207.4		122			0.99	U		0.16	U
PESTICIDES 8081B mg/kg										
4,4'-DDD					2.0	0.0034	U		0.00049	U
4,4'-DDE		4.08		2.63		0.00073	J		0.00049	U
4,4'-DDT					1.7	0.0034	U		0.00099	U
Aldrin	1.78	81.6	0.23	0.0525		0.0017	U		0.00049	U
alpha-BHC					0.077	0.0017	U		0.00049	U
alpha-Chlordane						0.0017	U		0.00047	J
beta-BHC		0.77		0.496		0.0017	U		0.00099	U
delta-BHC						0.0017	U		0.00024	J
Dieldrin	2.97	0.867	0.383	0.0558		0.0034	U		0.00027	U
Endosulfan I					370	0.0017	U		0.00027	UJ
Endosulfan II		-				0.0034	U		0.00027	U
Endosulfan sulfate						0.0034	U		0.00027	U
Endrin	1.77		1.12			0.0034	U		0.00027	U
Endrin aldehyde						0.0034	U		0.00027	U
Endrin ketone						0.0034	U		0.00099	U
gamma-BHC					0.52	0.0017	U		0.00049	U
gamma-Chlordane					1.6	0.0017	U		0.00027	U
Heptachlor	29.7	0.308	3.83	0.0198		0.0017	U		0.00049	U
Heptachlor epoxide	0.773	0.152	0.0995	0.981		0.0017	U		0.00027	U
Methoxychlor					310	0.0017	U		0.003	U
Toxaphene					0.44	0.066	U		0.049	U
PCBs 8082A mg/kg										
Aroclor-1016	1.22	0.203	0.419	0.349		0.033	U		0.0099	U
Aroclor-1221					0.14	0.033	U		0.015	U
Aroclor-1232					0.14	0.033	U		0.02	U

TABLE 3 - ISM SURFACE SOIL SAMPLE RESULTS (EXPLOSIVES, VOCs, SVOCs, CYANIDE, PESTICIDES, AND PCBs)

SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10^{6} mg/kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/kg	FWCUGs for Resident Farmer Child Risk = 10^{6} mg/kg	Residential Regional Screening Level (RSL) mg/kg	PCTss-002M-0001-SO		PCTss-002D-0001-SO	PCTss-006M-0001-SO	
Aroclor-1242					0.22	0.033	U		0.02	U
Aroclor-1248		0.203		0.349		0.033	U		0.015	U
Aroclor-1254	0.348	0.203		0.349		0.033	U		0.0099	U
Aroclor-1260		0.203		0.349		0.033	U		0.0099	U

FWCUGs- Facility-wide Clean Up Goals, SAIC, March 2010

HI - Hazard Index

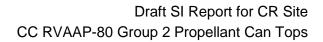
J = Estimated concentration

mg/kg = milligrams per kilogram (parts per million)

SVOCs - Semivolatile organic compounds

U = Undetected at the limit of detection

VOCs - Volatile organic compounds


-- = Not Analyzed for this parameter

Italics = Non detected concentrations

TABLE 4 - ISM SURFACE SOIL SAMPLE RESULTS (PROPELLANTS AND METALS)

							Anomaly Cluster 1	Anomaly Cluster 3	Anomaly	Cluster 5						
SUMMARY OF ISM SUBSURFACE SOIL SAMPLES	FWCUGs for Resident Farmer Adult HI = 0.1 mg/kg	FWCUGs for Resident Farmer Adult Risk = 10 ⁶ mg/Kg	FWCUGs for Resident Farmer Child HI = 0.1 mg/Kg	FWCUGs for Resident Farmer Child Risk = 10^{6} mg/kg	Residential Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-003M-0001-SO	PCTss-002M-0001-SO	PCTss-001M-001-SO	PCTss-001M-001-SO DUP	PCTss-004M-0001-SO	PCTss-005M-0001-SO	PCTss-005M-0001-DS DUPLICATE	PCTss-006/M-0001-SO	PCTss-007M-0001-SO	PCTss-008M-0001-SO
Sample Date							5/26/2011	5/26/2011	5/26/2011	5/26/2011	4/13/2016	4/13/2016	4/13/2016	4/13/2016	4/13/2016	4/13/2016
Propellants mg/kg																
Nitrocellulose					190000000		5 U	5 U	1.1 J	0.82 J	0.96 J	1.8 U	1.8 U	0.84 J	1.8 U	1.8 U
Nitroglycerine		81.6		52.5			0.5 U	0.48 U	0.48 U	0.49 U	0.25 U	0.26 U	0.25 U	0.25 U	0.25 U	0.25 U
Nitroguanidine					6300		0.17 J	0.25 U	0.063 J	0.12 J	0.039 U	0.04 U	0.4 U	0.041 U	0.039 U	0.041 U
METALS 6010B mg/kg														,		
Aluminum	52923		7380			17700		10600			11000	7800 D	7900	9700 J	9100	7900
Antimony	13.6		2.82			0.96		1.6 U			2 U	2 U	2 U	2 U	2 U	2 U
Arsenic	8.21	4.25	2.02	0.54		15.4		8.4			9.3	7.4	7.6	8.4	7	6.9
Barium	8966		1412.9			88.4		81.7			59	49	49	70	65	57
Beryllium					160	0.88		0.45			0.51	0.31	0.3	0.43	0.37	0.31
Cadmium	22.3	1249.1	6.41	2676.7		0.0		0.13 J			0.21 J	0.11	0.1 J	0.23 J	0.13 J	0.15 J
Calcium (essential nutrient)					(n)	15800		954			2700	280	340	900	630	480
Chromium	90.4	187	19.9	4015		17.4		2.42			18	11	10	12	13	9.1
Cobalt	8198	8030	131	1721		10.4		7.7			9.2	6	5.9	6.7	6.9	5.3
Copper	2714		311			17.7		12.1			17	9.8	9.4	10	11	8.6
Iron	19010		2313			23100		17600			21000	13000	13000	15000 J	15000	13000
Lead	400		400			26.1		34.1			62	27	27	28	41	14
Magnesium (essential nutrient)					(n)	3030		1770			2800	1300	1300	1600	1600	1300
Manganese	1482		293			1450		833			420	460	440	730 J	570	500
Nickel	1346		155			21.1		18.5			21	11	11	13	15	12
Potassium (essential nutrient)					(n)			654			1100	470	470	600	570	510
Selenium					390	1.4		2.1 U			3 U	3 U	3 U	2.9 U	3.1 U	3 U
Silver	324		38.6			0		0.53 U			0.19 J	0.25 J	0.31 J	0.2 U	0.29 J	0.2 J
Sodium (essential nutrient)					(n)			35.6 J			36 J	21 J	21 J	41 J	22 J	22 J
Thallium	47.6		6.12			0		2.1 U	-		1 U	0.99 U	<i>0.99</i> U	0.98 U	1 U	1 U
Vanadium	156		45			31.1		24.4			17	13	13		15	14
Zinc	19659		2321		23000	61.8		62.4	-		78	50	50	64	60	51
Mercury 7471A mg/kg																
Mercury	16.5		2.27			0.036		0.049			0.038 J-	0.035 J-	0.038 J-	0.045	0.039 J-	0.04 J-
Perchlorate 6860 ug/kg									_							
Perchlorate						0.00	0.000093 J	0.5 U	0.000093 J	0.00011 J	0.4 U	0.41 U	0.41 U	0.41 U	0.39 U	0.41 U

J = Estimated concentration
J- = Estimated concentration, biased low
mg/kg = milligrams per kilogram (parts per million)
U = Undetected at the limit of detection
-- = Not Analyzed for this parameter
Grey highlights indicate the applicable screening level.
Italics = Non detected concentrations
Blue Highlight = > the applicable screening level.
Bold = > Background

690 Appendix A

Daily Reports, Sampling Logs & Photo Documentation

December 2016 Rev 0

INTERNATIONAL, INC.								D	AILY REPORT
CONTRACT/TO NUMBERS			TITLE AND LOCATI				DAY/DATE		NUMBER
W912-QR-12-F-0212	Anom	ialy Re-Acquire	Propellant Can and Lid MDAS	pickup ar	nd Certificatio	n as	Monday, March 28, 2016	Page	1 1
		CONTRAC					NAME	OF SUXOS	•
			ricorn Dr, Stafford TX 7 :: (281) 340-5533	7477			Came	eron Wenzel	
WEATHER: 15 mph wind			(TEMPERATURE	Low: 42	High: 49
WEATHER EFFECTS: Period	ic work b	reaks required	to warm up						
			PRIME CONTR	RACTOR/		ACTOR V	WORKFORCE		
NAME	P	OSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY O	F WORK PERFORM	ED
Cameron Wenzel		SUXOS	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification as MDAS
Grady Bendel	ι	JXOSOQC	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification as MDAS
Kyle Toporek	U	XO Tech 3	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification as MDAS
Josh Starkey	U	XO Tech 2	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification as MDAS
Rick Callahan	Pr	oj Manager	PIKA	10.0	0.0	0.0	Field Support		
			1						
					-				
Total				14.0	0.0	36.0			
				W	ork Exposui	е			
TOTAL WORK HOURS ON JOB SITE THIS 50.0 Break down of hours 14.0 0.0 36.0 TOTAL EXPOSURE HOURS ON JOB SITE THIS DATE									
TOTAL WORK HOURS FROM STAR PROJECT	T OF	50.0			•		TOTAL EXPOSURE WORK HOURS PROJECT	FROM START OF	36.0

PIKA International, Inc.						DAI	LY REPORT
CONTRACT/TO NUMBERS		TITLE AND LOCATION		D	AY/DATE	REPORT NU	IMBER
W912-QR-12-F-0212	Anomaly Re-Acquire/F	ropellant Can and Lid pickup and Co MDAS	ertification as	Monday	, March 28, 2016	Page	2
SAFETY TOPICS COVERED						•	
* Slips, Trips, and Falls							
* Recovery and Inspection							
* Hand Injuries and Protection							
*							
DETAILED DESCRIPTION OF P	ROJECT ACTIVITIES:						
* 44 Anomalies Reacquired, Prope	llant can and Lids recove	red.					
* All of the items were determined	to be propellant can page	kaging or scrap metal and not MPPI	H. All Items co	nfirmed MDAS	and consolidated for r	ecycling.	
* Limited non-propellant can scrap	metal was co-located ar	nd collected. It will be recycled alon	g with the prop	ellant can items	5.		
*		·					
*							
*							
*							
*							
*							
···							
PROJECT PERFORMANCE METR	RICS:						
DESCRIPT	ION	Total Anomalies to Reacquire	e	TODAYS	TOTAL	CUMULATIVE	TOTAL
* Number of Ano	onamlies	103.00		44		44	
* Number of Items	Recovered			205	5	205	
* Number of Items determ	nined to be MPPEH			0		0	
* Number of Items Co	nfirmed MDAS			205	5	205	
DAILY SAFETY INSPECTION RE	ESULTS:						
* Lost Workday Accidents:	Today:	0 This We	ek: 0	This Month:	0	To Date:	0
* Lost Workdays:	Today:	0 This We	ek: 0	This Month:	0	To Date:	0
 Property Damage Accidents Exce 	eeding \$2,000.00:			This Week:	0	To Date:	0
PLANNED ACTIVITIES FOR REM	MAINDER OF WEEK						
Continue scope - no deviations ar	nticipated.						
VISITORS							
Kevin Sedlak OHARNG 1045 am							
DEMARKS (Include directions	received from client's	representative, visitors, compli	nce notices r	occived: nerti	inent information)		
KLIMAKAS (Include directions i	received from chemes	representative, visitors, compile	ince notices i	eceiveu, peru	ment information)		
Grah, Beach	1	3/28/16		Ca:		3/28/16	
UXOSO/QC Grady Bendel		Date		SUXOS	Cameron Wenzel	Date	

PIKA International, Inc.							DA	ILY REPORT
CONTRACT/TO NUMBERS		TITLE AND LOCAT	ION			DAY/DATE	REPORT	NUMBER
W912-QR-12-F-0212	Anomaly Re-Acquire/F	Propellant Can and Lic MDAS	d pickup an	d Certification	on as	Tuesday, March 29, 2016	Page 2	1
	CONTRACT	OR:				NAME	OF SUXOS	1
PIKA Interi	national Inc., 12723 Capri Tel: (281) 340-5525 Fax:	corn Dr, Stafford TX (281) 340-5533	77477			Camer	ron Wenzel	
WEATHER: Sunny and cle		(201) 3 10 3333				TEMPERATURE	Low: 32	High: 44
WEATHER EFFECTS: None								
		PRIME CONT	RACTOR/		RACTOR V	WORKFORCE		
NAME	POSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY O	F WORK PERFORME	D
Cameron Wenzel	SUXOS	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	n and Lid pickup and C	Certification as MDAS
Grady Bendel	UXOSOQC	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	n and Lid pickup and C	Certification as MDAS
Kyle Toporek	UXO Tech 3	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	n and Lid pickup and C	Certification as MDAS
Josh Starkey	UXO Tech 2	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Car	n and Lid pickup and C	Certification as MDAS
Rick Callahan	Proj Manager	PIKA	10.0	0.0	0.0	Field Support		
			1					
			1					
Total			14.0	0.0	36.0			
			Wo	ork Exposu	re			

Break down of hours

50.0

100.0

14.0

0.0

36.0

TOTAL EXPOSURE HOURS ON JOB SITE THIS DATE

TOTAL EXPOSURE WORK HOURS FROM START OF PROJECT

36.0

72.0

TOTAL WORK HOURS ON JOB SITE THIS DATE

TOTAL WORK HOURS FROM START OF PROJECT

TERNATIONAL, INC.						DAIL	Y REPO
CONTRACT/TO NUMBERS		TITLE AND LOCATION			DAY/DATE	REPORT NU	MBER
W912-QR-12-F-0212	Anomaly Re-Acquire/P	ropellant Can and Lid picku MDAS	p and Certification as	Tuesda	y, March 29, 2016	Page 2	2
ETY TOPICS COVERED		-				.51	
lips, Trips, and Falls							
ecovery and Inspection							
and Injuries and Protection							
AILED DESCRIPTION OF PR							
6 Anomalies Reacquired, Propel			MDDELL All Thomas				
Il of the items were determined imited non-propellant can scrap						cycling.	
imited non-propellant can scrap	metal was co-located at	ia collectea. It will be recyc	ied along with the pr	оренані сан пені	5.		
			-				
DJECT PERFORMANCE METR	ICS:						
DESCRIPTI	ON	Total Anomalies to Re	acquire	TODAYS	TOTAL	CUMULATIVE	TOTAL
Number of Ano	namlies	103.00		56	5	100	
Number of Items	Recovered			36	7	572	
Number of Items determ	ined to be MPPEH			0		o	
Number of Items Cor	firmed MDAS			36	7	572	
ILY SAFETY INSPECTION RE	SULTS:						
ost Workday Accidents:	Today:	0	This Week:	This Month:	0 To	Date:	0
ost Workdays:	Today:	0	This Week:			Date:	0
roperty Damage Accidents Exce	eding \$2,000.00:			This Week:	0 To	Date:	0
NNED ACTIVITIES FOR REN	MATNDER OF WEEK						
ontinue scope - no deviations ar							
onemae scope me aemadons an							
			-				
SITORS							
evin Sedlak and Katie Tait - OHA	ARNG 1030						
ary Brunswick - Vista 1530							
MARKS (Include directions r	eceived from client's	representative, visitors,	compliance notice	received; pert	inent information)		
Grank, Berch	1	3/29/16		Ca:		3/29/16	
-1							
UXOSO/OC Grady Bendel		Date		01.01-01	S Cameron Wenzel	Date	

PIKA International, Inc.							D	AILY RE	PORT	
CONTRACT/TO NUMBERS		TITLE AND LOCAT	TION			DAY/DATE	REPOR	T NUMBER		
W912-QR-12-F-0212	Anomaly Re-Acquire/F	Propellant Can and Li MDAS	d pickup an	d Certification	on as	Wednesday, March 30, 2016	Page	3	1	
	CONTRACT	OR:				NAME	OF SUXOS	ı		
PIKA Inter	national Inc., 12723 Capr Tel: (281) 340-5525 Fax:	icorn Dr, Stafford TX (281) 340-5533	77477			Came	ron Wenzel			
WEATHER: Sunny and cl		(===) = := ====				TEMPERATURE	Low: 23	High:	58	
WEATHER EFFECTS: None						•				
		PRIME CONT	RACTOR/		RACTOR \	WORKFORCE				
NAME	POSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY OF WORK PERFORMED				
Cameron Wenzel	SUXOS	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification	n as MDAS	
Grady Bendel	UXOSOQC	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification	n as MDAS	
Kyle Toporek	UXO Tech 3	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification	n as MDAS	
Josh Starkey	UXO Tech 2	PIKA	1.0	0.0	9.0	Anomaly Re-Acquire/Propellant Ca	n and Lid pickup and	Certification	ı as MDA	
Rick Callahan	Proj Manager	PIKA	10.0	0.0	0.0	Field Support				
					-					
Total	+		14.0	0.0	36.0					
	1			ork Exposu						

0.0

14.0

36.0

TOTAL EXPOSURE HOURS ON JOB SITE THIS DATE

TOTAL EXPOSURE WORK HOURS FROM START OF PROJECT

36.0

108.0

Break down of hours

50.0

150.0

TOTAL WORK HOURS ON JOB SITE THIS DATE

TOTAL WORK HOURS FROM START OF PROJECT

PIKA International, Inc.						DAII	LY REPORT
CONTRACT/TO NUMBERS		TITLE AND LOCATION		D	AY/DATE	REPORT NU	JMBER
W912-QR-12-F-0212	Anomaly Re-Acquire/F	Propellant Can and Lid pickup a MDAS	and Certification as	Wednesda	ay, March 30, 2016	3 Page	2
SAFETY TOPICS COVERED							
* Slips, Trips, and Falls							
* Recovery and Inspection							
* Hand Injuries and Protection							
*							
DETAILED DESCRIPTION OF P	ROJECT ACTIVITIES:						
* 3 Anomalies Reacquired, Propella	ant can and Lids recover	ed.					
* All of the items were determined	to be propellant can page	ckaging or scrap metal and not	MPPEH. All Items co	onfirmed MDAS	and consolidated for red	cycling.	
* Limited non-propellant can scrap	metal was co-located ar	nd collected. It will be recycled	d along with the prop	ellant can items	S.		
* 1348 Forms prepared and Scrap	(MDAS) transported to t	he following:					
* Falls Recycling LLC, 1536A 1st St	t., Newton Falls, OH 444	44 for recycling.					
*							
*							
*							
*							
PROJECT PERFORMANCE METR	RICS:						
DESCRIPT	ION	Total Anomalies to Read	cquire	TODAYS	TOTAL	CUMULATIVE	TOTAL
* Number of Ano	namlies	103.00		3		103	
* Number of Items	Recovered			8		580	
* Number of Items determ	ined to be MPPEH			0		0	
* Number of Items Co				8		580	
DAILY SAFETY INSPECTION RE						_	
* Lost Workday Accidents:	Today:		nis Week: 0	This Month:		Date:	0
* Lost Workdays:	Today:	0 Th	nis Week: 0	This Month:		Date:	0
* Property Damage Accidents Exce	eeding \$2,000.00:			This Week:	0 To	o Date:	0
PLANNED ACTIVITIES FOR REP	MAINDER OF WEEK						
Task complete							
VISITORS							
Greg Moore - OHARNG 1015							
REMARKS (Include directions r	received from client's	representative, visitors, co	mpliance notices i	eceived; pert	inent information)		
Grank, Berch	1	3/30/16		Ca:		3/30/16	
UXOSO/QC Grady Bendel		Date		SUXOS	Cameron Wenzel	Date	

Anomaly Reacquisition, MPPEH Recovery and Inspection Photo Log

Magnetometer Assisted Anomaly Reacquisition

Anomaly Recovery

Propellant cans recovered at a single anomaly in Cluster 1

Propellant tops recovered from a single anomaly in Cluster 1

Anomaly Reacquisition, MPPEH Recovery and Inspection Photo Log (continued)

Example of comingled propellant tops and metallic debris

Propellant can top and rail road spike

Typical Propellant Can and Top

A cache of nails at relocated anomaly

ĢENER	AL PROJECT AND S	ITE INFORMATION	
Date: 03/28/2016 Instructor(s): G	rady Bendel	Time: 0700	Log No.:RAV-001
ite Name & Location: Compliance Restoration Si		enna Army Ammunition Plant, Port	age & Trumble Counties Ohio
Contract No.:	Cont	ract No.: W912QR-12-F-0	1212
Site Manager or SUXOS: Cameron \	Wenzel SSH	O: Grady (Bill) Bendel	
II. SAF	ETY AND HEALTH T	OPICS COVERED	
Tasks Being Conducted: Sampling a	and Removal		
Applicable CTHA/AHA's Reviewed f	or Today's Task: Site	Specific Safety Training, S	Slip Trips and Fall
Anticipated Weather Conditions for t mph. Chance of rain 50%.	the Day: Windy with r	ain showers, High 51F, W	inds W at 20 to 30
Safety Concerns: Slip, trips and falls	s. PPE and Overhead	Hazards,	
Permits Required:		mit [Excavation Permit
Heavy Equipment to be Used Today	r. N/A	V 400000	
Site Control and Buddy Procedures:	Visitor Control Log a	nd Buddy System	
Subcontractors Working On-site Too	day and Their Tasks:	innocusion and the state of the	
Emergency Procedures: Non-Esser	ntial personnel on Site	, Site communications	
Assembly Locations: Work Trailer			
Scheduled Deliveries for Today: Nor	ne		
	AILY SAFETY BRIEF	NG ATTENDEES	
Name (printed)	Şigŋature	. 0	rganization
Cameron Wenzel	5- 21	PIKA	
Grady (Bill) Bendel	Trady Rand	يا PIKA	
Richard (Top) Toporek	TRILL K.T.	PIKA	
Joshua Starkey	1-4-	PIKA	
Rick Callahan	tea 1 al	PIKA	
		83	
I certify that the personnel listed	on this roster have received	the safety and health training (described above.
Crank, Back	1	C-2	2
Site Safety and Health	Officer	Site Mai	no gor

June 2013 Revision 5

	GENER	RAL PROJECT A	ND SITE INFORM	ATION						
Date: 03/29/2016	Instructor(s): G	Grady Bendel		Time: 0700	Log No.:RAV-002					
Site Name & Location: Cor			mer Ravenna Army Ammi	unition Plant, Portage	& Trumble Counties Ohio					
Contract No.:			Contract No.: W9	12QR-12-F-0212	2					
Site Manager or SL	JXOS: Cameron	Wenzel	SSHO: Grady (Bil	I) Bendel						
	II. SAI	FETY AND HEAL	TH TOPICS COV	ERED						
Tasks Being Condu	ucted: Sampling	and Removal								
Applicable CTHA/A	HA's Reviewed	for Today's Task:	Slip Trips and Fal	I, Awareness of	thorn and thistle					
bushes for cuts and	d punctures, Ove	rhead fall hazard	S.							
Anticipated Weathe	Anticipated Weather Conditions for the Day: Some clouds this morning will give way to generally sunny									
skies for the afterno	oon. High 48F. W	/inds NNW at 10	to 15 mph.							
Safety Concerns: S	Slip, trips and falls	s. PPE and Overl	nead Hazards,							
Permits Required:		Safe Wor Safe Wor	k Permit		Excavation Permit					
Heavy Equipment t	o be Used Toda	y: N/A								
Site Control and Bu	uddy Procedures	: Visitor Control	Log and Buddy Sy	stem						
Subcontractors Wo	rking On-site To	day and Their Ta	sks:							
Emergency Proced	lures: Non-Esse	ntial personnel or	n Site, Site commu	nications						
Assembly Location	s: Work Trailer									
Scheduled Deliveri	es for Today: No	ne								
	III. D	AILY SAFETY B	RIEFING ATTEND	DEES						
Name (pr	inted)	Sign	ature	Orga	nization					
Cameron Wenzel				PIKA						
Grady (Bill) Bende		(Mardy.	Rodel	PIKA						
Richard (Top) Top	orek	MINK		PIKA						
Joshua Starkey				PIKA						
Rick Callahan		DU C		PIKA						
			<u> </u>							
l certify that	the personnel listed	on this roster have w	eceived the safety and	l health training desc	ribed above					
7 5571117 11101										
/),	1 K.	1.		$ \leftarrow$ \nearrow	\					

Site Manager

Revision 5

Site Safety and Health Officer

GENER	RAL PROJECT A	ND SITE INFORM	ATION								
Date: 03/30/2016 Instructor(s): 0			Time: 0700	Log No.:RAV-003							
Site Name & Location: Compliance Restoration S	ite CC RVAAP-80, Forr	ner Ravenna Army Ammı	ınition Plant, Portage	& Trumble Counties Ohio							
Contract No.:		Contract No.: W9	12QR-12-F-021	2							
Site Manager or SUXOS: Cameron	Wenzel	SSHO: Grady (Bil	l) Bendel	4							
II. SA	FETY AND HEAL	TH TOPICS COVI	ERED								
Tasks Being Conducted: Sampling	and Removal										
Applicable CTHA/AHA's Reviewed	for Today's Task:	Slip Trips and Fal	l, Tick awarene	ss, Poison Ivy							
Anticipated Weather Conditions for 10 to 20 mph.	the Day: Sunshin	e and clouds mixe	d. High 67F, Lo	w 53. Winds S at							
Safety Concerns: Slip, trips and falls. PPE and Overhead Hazards,											
Permits Required:		k Permit		Excavation Permit							
Heavy Equipment to be Used Toda	y: N/A										
Site Control and Buddy Procedures	: Visitor Control I	_og and Buddy Sys	stem								
Subcontractors Working On-site To	day and Their Ta	sks:									
Emergency Procedures: Non-Esse	ntial personnel or	n Site, Site commu	nications								
Assembly Locations: Work Trailer	8										
Scheduled Deliveries for Today: No	ne										
III. D	AILY SAFETY BI	RIEFING ATTEND	EES								
Name (printed)	Sign	ature		anization							
Cameron Wenzel	(-)	. 0	PIKA								
Grady (Bill) Bendel	(nedy B	erde	PIKA								
Richard (Top) Toporek	TRUM K	. 7 0	PIKA								
Joshua Starkey	The		PIKA								
Rick Callahan	asa 1	alle_	PIKA								
											
* **		***************************************									
I certify that the personnel listed	on this roster have re	eceived the safety and	health training desc	cribed above.							
Grady Ben	del		-)							
Site Safety and Health	Officer		Site Manag	ger							

GENEF	RAL PROJECT A	ND SITE INFORM	ATION								
Date: 03/31/2016 Instructor(s): G	Grady Bendel		Time: 0700	Log No.:RAV-004							
Site Name & Location: Compliance Restoration S		ner Ravenna Army Ammi	unition Plant, Portage 8	Trumble Counties Ohio							
Contract No.:		Contract No.: W9	12QR-12-F-0212								
Site Manager or SUXOS: Cameron	Wenzel	SSHO: Grady (Bil	l) Bendel								
II. SAI	FETY AND HEAL	TH TOPICS COV	ERED								
Tasks Being Conducted: Sampling	and Removal										
Applicable CTHA/AHA's Reviewed	for Today's Task:	Slip Trips and Fal	l, Machete Safet	y, Personnel							
Hydration											
Anticipated Weather Conditions for	the Day: Cloudy	with periods of rain	. Becoming wind	ly late. Thunder							
possible. High 63F. Winds SSW at 20 to 30 mph. Chance of rain 100%.											
Safety Concerns: Slip, trips and falls	Safety Concerns: Slip, trips and falls. PPE and Overhead Hazards,										
Permits Required: Safe Work Permit Excavation Permit											
Heavy Equipment to be Used Toda	y: N/A										
Site Control and Buddy Procedures	: Visitor Control I	og and Buddy Sy	stem								
Subcontractors Working On-site To	day and Their Ta	sks:									
Emergency Procedures: Non-Esse	ntial personnel or	Site, Site commu	nications								
Assembly Locations: Work Trailer											
Scheduled Deliveries for Today: No	ne			· ·							
III. D	AILY SAFETY BI	RIEFING ATTEND	EES								
Name (printed)	Sign	ature	Orga	nization							
Cameron Wenzel	(-) &		PIKA								
Grady (Bill) Bendel	(redy B	ndel	PIKA								
Richard (Top) Toporek	TRUNK	. Tou	PIKA								
Joshua Starkey	An		PIKA								
Rick Callahan	ara 1	alle_	PIKA								
I certify that the personnel listed	on this roster have re	ceived the safety and	health training descr	ibed above.							
Grady Ber	del		- 0)							
Site Safety and Health	Officer		Site Manage	er							

INTERNATIONAL, INC.								DAILY REPORT	
CONTRACT/TO NUMBERS			TITLE AND LOCATI	ON			DAY/DATE REPOR	T NUMBER	
W912-QR-12-F-0212		Surfa	ce and Subsurface ISM	Sampling	9		Monday, April 11, 2016	1 1	
	ļ	CONTRACT	OR:				NAME OF Team Leader	1	
			icorn Dr, Stafford TX 77 (281) 340-5533	7477			Richard Callahan		
WEATHER: Rainy							TEMPERATURE Low: 32	High: 45	
WEATHER EFFECTS: Limited	i								
			PRIME CONTR	ACTOR/		RACTOR V	VORKFORCE		
NAME	P	OSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY OF WORK PERFORM	1ED	
Rick Callahan	Pr	oj Manager	PIKA	8.0	0.0	0.0	Team Leader/Field Support for Sampling		
Mel Lau	U	XO Tech 2	PIKA	1.0	7.0	0.0	Ordnance Avoidance for sampling		
Christine McNeill		Geologist	TPMC	8.0	0.0	0.0	Logging and Sample Collection		
Joseph Henley		Driller	Fronz	1.0	0.0	0.0	Geoprobe Drilling		
Rickie Shanks	Dr	illers helper	Fronz	10.0	0.0	0.0	Geoprobe Drilling		
						ļ			
Total				28.0	7.0	0.0			
	- 1		1	Wo	ork Exposu	re	1		
TOTAL WORK HOURS ON JOB SITE DATE	THIS	35.0	Break down of hours	28.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB SITE THIS DATE	7.0	

TOTAL EXPOSURE WORK HOURS FROM START OF PROJECT

7.0

TOTAL WORK HOURS FROM START OF PROJECT

35.0

F	PIKA						DATI	LY REPORT
ž	TERNATIONAL, INC.							
	CONTRACT/TO NUMBERS		TITLE AND LOCATION		D	AY/DATE	REPORT NU	IMBER
	W912-QR-12-F-0212	Surface	e and Subsurface ISM Sampling		Monday	, April 11, 2016	Page	2
SA	AFETY TOPICS COVERED							
* 5	Slips, Trips, and Falls							
* (Ordnance avoidance							
*	Hand Injuries and Protection from drilling	ng and sampling						
*								
	TAILED DESCRIPTION OF PROJEC	T ACTIVITIES:						
_	Completed PCTsb-001M-0001-SO							
*								
*								
*								
*								
*								
*								
*								
*								
PR	ROJECT PERFORMANCE METRICS:			ı				
	DESCRIPTION		Total Number to Sample		TODAYS	TOTAL	CUMULATIVE	TOTAL
*	Number of Geoprobe I	ISM	3		1		1	
*	Number of Surface Soil	ISM	5		0		0	
DA	AILY SAFETY INSPECTION RESULTS	s:					<u> </u>	
* [Lost Workday Accidents: Tod	day:	0 This Week:	0	This Month:	0 To	Date:	0
* [Lost Workdays: Tod	day:	0 This Week:	0	This Month:	0 To	Date:	0
*	Property Damage Accidents Exceeding 5	\$2,000.00:			This Week:	0 To	Date:	0
PL	ANNED ACTIVITIES FOR REMAIND	DER OF WEEK						
Rei	mainder of ISM SB and surface location	ns						
	SITORS							
Ν	None							
_								
RE	MARKS (Include directions receive	ed from client's r	epresentative, visitors, compliance	e notices re	ceived; perti	nent information)		
_								
	Birland C. Callahan	4	4/11/16					

Team Leader

Date

CONTRACT/TO NUMBERS	1		TITLE AND LOCATI	ON		1	DAY/DATE	DEDODT	NUMBER	
W912-QR-12-F-0212		Cf	ace and Subsurface ISM		_				2	
W912-QK-12-F-0212				Sampling	9		Tuesday, April 12, 2016	Page	1	
PIKA Intern	ational In	CONTRAC c., 12723 Cap	ricorn Dr, Stafford TX 7	7477				eam Leader		
٦	Tel: (281)		:: (281) 340-5533					Callahan		
WEATHER: Sunny and Cle	ear						TEMPERATURE L	ow: 28	High:	47
WEATHER EFFECTS: NA			PRIME CONTR	ACTOD /	SUBCONT	PACTOR	WODKEODCE			
NAME	PO.	SITION	EMPLOYER		HOURS			WORK PERFORMI	ED.	
HAPIE		5111011	LITEOTER	0%	4%	8%	SOFTMAKT OF	WORK I ERI OKI-II		
Rick Callahan	Proj	Manager	PIKA	8.0	0.0	0.0	Team Leader/Field Support for Samp	ling		
Mel Lau	UX	O Tech 2	PIKA	1.0	7.0	0.0	Ordnance Avoidance for sampling			
Christine McNeill	G	eologist	TPMC	8.0	0.0	0.0	Logging and Sample Collection			
Joseph Henley		Driller	Fronz	1.0	0.0	0.0	Geoprobe Drilling			
Rickie Shanks	Drill	ers helper	Fronz	10.0	0.0	0.0	Geoprobe Drilling			
Total				28.0	7.0	0.0				
			1	Wo	ork Exposu	re				
TOTAL WORK HOURS ON JOB SITE DATE	THIS	35.0	Break down of hours	28.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB S	ITE THIS DATE	7.0	
TOTAL WORK HOURS FROM START PROJECT	ΓOF	70.0					TOTAL EXPOSURE WORK HOURS FR PROJECT	OM START OF	14.0	

ERNATIONAL, INC.							ILY REPO	
CONTRACT/TO NUMBERS	TITLE AND LOCATION			D	AY/DATE	REPORT NUMBER		
W912-QR-12-F-0212	Surface an	d Subsurface ISM Sampling		Tuesday	, April 12, 2016	Page	2	
ETY TOPICS COVERED						•		
lips, Trips, and Falls								
rdnance avoidance								
and Injuries and Protection from drillin	ng and sampling							
AILED DESCRIPTION OF PROJECT	F ACTIVITIES:							
ompleted PCTsb-002M-0001-SO								
ompleted PCTsb-003M-0001-SO and M	S/MSD							
DJECT PERFORMANCE METRICS:								
DESCRIPTION		Total Number to Sample		TODAYS	ГОТАL	CUMULATIVE TOTAL		
Number of Geoprobe I	SM	3		2		3		
Number of Surface Soil	ISM	5		0		0		
LY SAFETY INSPECTION RESULTS	i :							
ost Workday Accidents: Tod	ay:	0 This Week:	0	This Month:	0 7	To Date:	0	
ost Workdays: Tod	ay:	0 This Week:	0	This Month:	0 1	To Date:	0	
roperty Damage Accidents Exceeding \$	\$2,000.00:			This Week:	0 1	To Date:	0	
NNED ACTIVITIES FOR REMAIND	ER OF WEEK							
ace ISM Sample collection								
<u>'</u>								
·								
`								
ITORS								
ITORS y Trumble -Louisville COE								
ITORS								
ITORS y Trumble -Louisville COE								
ITORS y Trumble -Louisville COE								
ITORS y Trumble -Louisville COE evin Sedlak and Katie Tait - OHARNG	d form all all and							
ITORS y Trumble -Louisville COE	d from client's repr	esentative, visitors, complianc	ce notices r	eceived; perti	nent information)			
ITORS y Trumble -Louisville COE evin Sedlak and Katie Tait - OHARNG	d from client's repr	esentative, visitors, complianc	ce notices r	eceived; perti	nent information)			
ITORS y Trumble -Louisville COE evin Sedlak and Katie Tait - OHARNG	d from client's repr	esentative, visitors, complianc	ce notices r	eceived; perti	nent information)			
ITORS y Trumble -Louisville COE evin Sedlak and Katie Tait - OHARNG	d from client's repr	esentative, visitors, complianc	ce notices r	eceived; perti	nent information)			
ITORS y Trumble -Louisville COE vin Sedlak and Katie Tait - OHARNG	d from client's repr	esentative, visitors, complianc	ce notices r	eceived; perti	nent information)			

Team Leader

Date

INTERNATIONAL, INC.								D	AILY REPOR
CONTRACT/TO NUMBERS			TITLE AND LOCATI	ON			DAY/DATE		NUMBER
W912-QR-12-F-0212		Surf	ace and Subsurface ISM	1 Sampling	g		Wednesday, April 13, 2016	Page	3 1
	1	CONTRAC	TOR:				NAME OF	Team Leader	
			oricorn Dr, Stafford TX 7 c: (281) 340-5533	7477			Richard	d Callahan	
WEATHER: Sunny	(,	(===, = := ====			ı	TEMPERATURE	Low: 35	High: 65
WEATHER EFFECTS: NA									
			PRIME CONTR	RACTOR/		RACTOR	WORKFORCE		
NAME	P	OSITION	EMPLOYER	0%	HOURS 4%	8%	SUMMARY OF	WORK PERFORMI	ED
Rick Callahan	Pr	oj Manager	PIKA	8.0	0.0	0.0	Team Leader/Field Support for Sam	ıpling	
Mel Lau	U	XO Tech 2	PIKA	1.0	7.0	0.0	0.0 Ordnance Avoidance for sampling		
Christine McNeill		Geologist	TPMC	8.0	0.0	0.0	Logging and Sample Collection		
Total				17.0	7.0	0.0			
				W	ork Exposu	re			T
TOTAL WORK HOURS ON JOB SITE	E THIS	24.0	Break down of hours	17.0	7.0	0.0	TOTAL EXPOSURE HOURS ON JOB	SITE THIS DATE	7.0
TOTAL WORK HOURS FROM STAR PROJECT	T OF	94.0					TOTAL EXPOSURE WORK HOURS F PROJECT	ROM START OF	21.0

PIKA TERNATIONAL, INC.								DAILY REPO
CONTRACT/TO NUMBERS		TITLE AND LOC	CATION		DAY/DATE		REPORT NUMBE	
W912-QR-12-F-0212	Surfa	ce and Subsurface	ISM Sampling		Wednesd	lay, April 13, 2016	Page	3 2
AFETY TOPICS COVERED							rage	2
Slips, Trips, and Falls								
Ordnance avoidance								
Hand Injuries and Protection from	drilling and sampling							
TAILED DESCRIPTION OF PR	OJECT ACTIVITIES:							
Collected all 5 Surface ISM sample	 2S							
Collected IDW sample								
Shipped samples for Analysis								
OJECT PERFORMANCE METRI	ics:		_					
DESCRIPTION	N	Total Num	ber to Sample		TODAYS	TOTAL	CUMULATIVE TO	
Number of Geopr	obe ISM		3		0		3	
Number of Surface	Soil ISM		5		5			5
ILY SAFETY INSPECTION RES	ULTS:	<u>L</u>					•	
Lost Workday Accidents:	Today:	0	This Week:	0	This Month:	0	To Date:	0
Lost Workdays:	Today:	0	This Week:	0	This Month:	0	To Date:	0
Property Damage Accidents Excee	ding \$2,000.00:				This Week:	0	To Date:	0
ANNED ACTIVITIES FOR REM								
mob of personnel and Port-o-Jons	i							
SITORS								
None								
	ceived from client's	renresentative	visitors, compliance	e notices m	eceived: nerti	inent information)		
MARKS (Include directions re	Corred Holli Chelles	. opi escritative,	Tistors, compiland	c notices it	cccived, peru			
MARKS (Include directions re								
MARKS (Include directions re								
MARKS (Include directions re								
MARKS (Include directions re								
MARKS (Include directions re								
MARKS (Include directions re								

Team Leader

Date

HTRW DRI	LLING LOG	DISTRICT USACE, Loui	sville			HOLE NUMBER N/A
COMPANY NAME PIKA International, Inc.		2. SUBCONTRACT	OR			SHEET SHEETS.
3. PROJECT		4. LOCATION				1 OF Z
Site Inspection at Compliance Restoration Site	CC RVAAP-80 Group 2 Propellant Car		nna Army Ammunitio		Trumble Counti	es, Ohio
5. NAME OF DRILLER Frontz Drilling: Rickie Schantz,	Helper: Joe Henley	Direct push, t	er's designation of dri rack mounted Geopr		Į	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT		8. HOLE LOCATIO	N e location sketch bel	ow circled in light	areen)	
		9. SURFACE ELEV	/ATION	ow, on old in light	910011)	
Dual tube sleeves, 4F	-t long by 1 1/4" w	ide 10. DATE STARTE	N/A	11 DAT	E COMPLETED	
		April 11, 2016		April 1	11, 2016	=
12. OVERBURDEN THICKNESS N/.	A	15. DEPTH GROUI	NDWATER ENCOUNTERED)		
13. DEPTH DRILLED INTO ROCK N/A		16. DEPTH TO WA	TER AND ELAPSED TIME /	AFTER DRILLING COMF	PLETED	
14. TOTAL DEPTH OF HOLE 4 Ft	\(\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\texi}\tint{\text{\text{\text{\text{\text{\text{\texi}\tinz}\\\ \ti}\\\ \tinttitex{\text{\text{\text{\text{\texi}\tint{\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tint{\texi}\tin}\tint{\texititt{\text{\texi}\tint{\texititex{\tiin}\tiint{	17. OTHER WATER	R LEVEL MEASUREMENTS	(SPECIFY)		
18. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTU	RBED 19. TOTAL I	NUMBER OF CORE BOX		
N/A	N/A	N/A			N/A	
20. SAMPLES FOR CHEMICAL ANALYSI See comments below	s voc N/A	METALS See below	OTHER (SPECIFY) See below	OTHER(SPECIFY) See below	OTHER(SPECIFY) See below	RECOVERY N/A %
22. DISPOSITION OF HOLE	BACKFILLED	MONITORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF II	NSPECTOR	
N/A LOCATION SKETCH/COMME	Bentonite	N/A	N/A	SCAL	N/A	1
LOCATION SKETCH/COMMI	EN12	0 0 8	F 8 8 8	SCAL	□ :	
		7 7 7				
		N627			+ I I I	
		Cluster 1		N		
	100' - 1		12 1	47		
	and the same	3.5	(100)	Ц		
	200	100				
					+ T T T	
		Age and	Cluster 2			
	****		Studies 2			
		1	Cluster 3			
		Cluster 4	4			
			200	100	 	
		-2	1		Ť. 	
		Chuster 5				
	700				2	
		700 Mg , 400				
Weather: Cool, temper within the Cluster 1 bo		s, rainy. Groun	d was very wet	, standing wa	ter in some	locations .
Thirty (30) borings wer The boring log summa	-	5		proach within	the Cluster	1 boundary.
Increments from one (sampling methodology location.						
All subsurface soil san				on propellants	used by the	; DoD .
PROJECT Site Inspection at Compliance	e Restoration Site CC R\	/AAP-80 Group 2 F	Propellant Can Tops	HOLE N	UMBER N/A	4

			USTER	C1)			HOLE NU	I/A	
OJECT SI	ite Inspe	ection at Compliance Restoration site NAAP-80 Group a Propellent Can Tops	INSPECTOR	N/A			SHEET	OF	SHEETS
EVATION (a)	DEPTH 口字	DESCRIPTION OF MATERIALS (c)	FIELD SCREENING RESULTS (d)	GEOTECH SAMPLE OR CORE BOX NO. (e)	ANALYTICAL SAMPLE NO. (f)	BLOW COUNT (g)		REMARKS (h)	
	=								
	3	3.5							-
	=	0-1 Ft considered							Ξ
	=								=
	=	surface soil, not included in soil							29
	=	Classification							Ξ
	-								=
	1F1								=
	Ξ	1F1-3F1:							-
	1	CL/ML -> lean clay / Silt							
	3	as transition to larger							_
1	=	- grain size as you approach							-
	=	3 It light grangey brown							-
	=	· low to medium plasticity in upper part of core . · nonplastic to low toward 3Pt.							_
	=	· Somewhat moist							Ξ
	2Ft	· Consistency = Upper portion of core is firm + slowly transitions							
	=	to soft toward 3 Ft interval.							_=
	1	10 00							-
	-	*							÷
	=	- Structure = mostly homogeneous							=
	3	w/ lensing of weathered material toward 3 Ft. (mottling)					1000A		-
	=	· Toughness = medium to low toward					2.75	to ap	prox_
	251	3Ft.					occas	sions o	fo =
	3Fh	3Ft-4Ft: (Distinct strata change)					Money	elonga nered r	ock -
	=	SW -> Well graded Sond, max sond particle size & medium					lane	the s	SOLVA
	=								=
]	moistsubangular/subrounded sand							-
	=	· Consistency = soft to some what firm Thumb indent 2 0.5"					i i		=
	Ē	· Cementation = weak							
	=								
ECT	4-54-7	ort Compliance Restoration Site CC RVAAP-80 Gr			HOLE NUMBER	N/A			-

HTRW DRII	LLING LOG	DISTRICT USACE, Lou	isville			HOLE NUMBER				
1. COMPANY NAME		2. SUBCONTRAC				SHEET SHEETS				
PIKA International, Inc. 3. PROJECT		N/A 4. LOCATION				1 of 2				
Site Inspection at Compliance Restoration Site	CC RVAAP-80 Group 2 Propellant	Can Tops Former Rave	enna Army Ammuniti		Trumble Cou	nties, Ohio				
 NAME OF DRILLER Frontz Drilling: Rickie Schantz, I 	Helper: Joe Henley		6. MANUFACTURER'S DESIGNATION OF DRILL Direct push, track mounted Geoprobe							
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT			8. HOLE LOCATION Cluster 3 (See location sketch below, circled in light green)							
THIS STAIN LINE EQUI MENT		9. SURFACE ELE		wew, enclose in light	9,001.)					
Dual tube sleeves, 4F	Et long by 1 1/4" v	wide N/A	-D	11 DAT	E COMPLETED	· · · · · · · · · · · · · · · · · · ·				
		· April 12, 2016		April 1	12, 2016	8				
12. OVERBURDEN THICKNESS N/A		15. DEPTH GROU N/A	NDWATER ENCOUNTERE	ED						
13. DEPTH DRILLED INTO ROCK N/A		16. DEPTH TO WA	ATER AND ELAPSED TIME	AFTER DRILLING COM	PLETED					
14. TOTAL DEPTH OF HOLE		17. OTHER WATE	R LEVEL MEASUREMENT	S (SPECIFY)						
4 Ft 18. GEOTECHNICAL SAMPLES	DISTURBED	N/A UNDISTU	JRBED 19. TOTAI	NUMBER OF CORE BO.	XES					
N/A	N/A	N/A	N/A							
20. SAMPLES FOR CHEMICAL ANALYSIS See comments below	S VOC	METALS See below	OTHER (SPECIFY) See below	OTHER(SPECIFY) See below	OTHER(SPECIF See below	PECOVERY N/A %				
22. DISPOSITION OF HOLE	BACKFILLED	MONITORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF I	NSPECTOR	/A				
N/A LOCATION SKETCH/COMME	Bentonite	N/A	N/A	SCAL		//\				
Weather: Partly cloudy		Cluster I	Cluster 2							
"Thirty (30) borings wer The boring log summa "Increments from one ("methodology (ISM). Th " All subsurface soil sam "including nitrocellulose	not sink too low a re pushed using a strizes all borings ta 1) to four (4) feet b ne subsurface sam	nd get stuck. systematic randoken within Cluston gs from each souple was a composed for TAL meta	om location apper 3. il boring was consite of all 30 bals and common	oroach within the bleeted using to orings taken at	ne Cluster 3 he increme	B boundary. Brital sampling Ton.				

ATION DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW COUNT REMARKS RESULTS OR CORE BOX NO. SAMPLE NO.			Spection at Compliance Restoration Site CC INSPECTOR 1/14					SHEET SHEETS
Average recovery approximately Gr. 3% over the 30 borings & 6" average surface material removed from Core Lightbrown Noist this british scrize semest to had more resisture than the below interval yeth soft to soft Consistency Toughness to but throughout interval Rock Flour present = white powder Plasticity = medium Same gravel throughout interval Rock Flour present = white powder Plasticity = medium Same gravel throughout interval Toughness to but throughout all borings; great and soft action of the two intervals up Light Brown this throughout all borings; great, arong yethed in color Separated the two intervals up Consistency thand, hand tool used to callect sample was difficult to Scrape. Plasticity = nonplastic to lavy Crumbles when rolled between fingers, minor ribbaning the two difference between fingers, minor ribbaning the two cheeked wents.								OF Q
Areage recovery approximately 67.3% over the 30 borings 26" average surface material removed from Core Light brown Moist **Anis harizan semad to inad more moisture than the below introval **Rect Sept to Soft Consistency **Toughness ** Low to medium at times Some gravel throughout interval **Rock Flour present* white powder **Plasticity *= medium **Spring gravel **Suborgular **Duffle Brown **mothing throughout all barriags; gren, avoing elerad in color **Some what moist, almost dry **Consistency **Hard, hand tool used to callect sample was difficult to scrape. **Plasticity **nonplastic to law **Crumbles winen-railed between fingers, minor ribbaning **Tought from the stratt the consistency of the law of	/ATION (a)			RESULTS	OR CORE BOX NO.	SAMPLE NO.		
** Light brown Noist > this horizon seemed to made more moisture than the below interval Noist > this horizon seemed to made more moisture than the below interval Noist > this horizon seemed to made more moisture than the below interval North of the soft consistency Toughness > Low to meedium at times Some gravel throughout interval Rock Flour present = white powder Plasticity = medium Some gravel > subangular. ** 2 '12 Ft - 4 Ft ML/CL -> sit/ lean Clay Light Brown > mottling throughout all borings; grey, arangey-red in color Somewhat moist, almost dry Consistency > Hord, hand tool used to collect sample was difficult to scrape. Plasticity > nonplastic to low Crumbles when rolled between fingers, minor ribboning The two stratations are represented the two stratations of fingers, minor ribboning ** ** ** ** ** ** ** ** **		ه و ا	67.3% over the 30 borings a 6" average surface material					
		رم برباییییاییییایییایییایییایییاییی	· Light brown · Moist > this horizon seemed to mode more r · Very soft to soft Consistency · Toughness > Low to medium at times · Some gravel throughout interval · Rock Flour present = white powder · Plasticity = medium · Some gravel > subangular. * 2/2 Ft - 4 Ft ML/CL > sit/lean Clay · Light Brown > mottling throughout all borings; grey, arongey-red in color · Some what moist, almost dry · Consistency > Hard, hand tool used to collect sample was difficult to scrape. · Plasticity > nonplastic to low · Crumbles when rolled between		ian the be	sw inter	Val	on Occasion, a well sorted to moderately well sorted fine-med, sond layer separated the two intervals w lenses of 3" 6" thick. The division was weathered sandstone separation the strata. At times, there was no visitat clifference betw the two strate the two strate the consistency checked where changed from si

HTRW DRI	LLING LOG	DISTRICT USACE, Lo	ouisville						OLE NUME N/A	BER
COMPANY NAME PIKA International, Inc.		2. SUBCONTRA N/A	ACTOR					S	HEET S	2 Same 10 St. At.
3. PROJECT		4. LOCATION			DI 1 D 1	0. T				
Site Inspection at Compliance Restoration Sit 5. NAME OF DRILLER	e CC RVAAP-80 Group 2 Propellant (venna Army A			ige & Trur	mble Coun	ities, C	inio	
Frontz Drilling: Rickie Schantz,	Helper: Joe Henley		n, track mount	ted Geopro	be			J		
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT		8. HOLE LOCAT	пом See location s	sketch belo	w, circled in l	light greer	٦)			
		9. SURFACE EL N/A	EVATION						*	
Dual tube sleeves, 4l	=t long by 1 1/4" \	wide 10. DATE STAR	RTED		11	I. DATE COM	MPLETED			_
12. OVERBURDEN THICKNESS		April 12, 201	16 DUNDWATER EN	COLINTERED	A	April 12, 20	16			
N/A		N/A	SONDWATER EN	OODIVIERED						
13. DEPTH DRILLED INTO ROCK N/A		16. DEPTH TO	WATER AND ELA	PSED TIME A	FTER DRILLING	COMPLETE	D			
14. TOTAL DEPTH OF HOLE			TER LEVEL MEAS	SUREMENTS	(SPECIFY)					
4 Ft 18. GEOTECHNICAL SAMPLES	DISTURBED	N/A UNDIS	TURBED	19. TOTAL N	IUMBER OF COR	E BOXES				
N/A	N/A	N/A		N/A	1			lot T	OTAL OOF	
20. SAMPLES FOR CHEMICAL ANALYS See comments below	IS VOC	METALS See below	OTHER ((SPECIFY)	OTHER(SPE) See below		HER(SPECIF)	RECO	OVERY N	/A %
22. DISPOSITION OF HOLE N/A	BACKFILLED	MONITORING WEL		(SPECIFY)	23. SIGNATURE	OF INSPEC	TOR N/A	Δ		
LOCATION SKETCH/COMM	Bentonite ENTS	N/A	N/A		S	CALE:	11/1	. 7		
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		Tanana and a said					_
		IChrster 1								
		Cluster				<u> </u>				
	190' - 2 - 200	ers west		I.S.	250 150	ļ				
	200	1	Section Section							
						-				
	.50° - \$50°	200	\odot		18	T T				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4000 A000	Clus	ter 2		<u>_</u>				
	400,	71	Clusto	er 3	//					
	eau,	Cluster 4		ken .		 				
		4		org org	1 de la companya della companya della companya de la companya della companya dell	ļ				
	•• 0kg.	10	nd Control			1				
	202	Cluster s								
		13/2	Cheft clies	•	0000 300					
Weather: Partly cloud	y, temperature in t	he upper 40's.	Ground w	vas wet	from rain	during	the pre	vious	day.	
This cluster was bord	ered by drainage o	ditches to the s	outh and	east.						-
l _Thirty (30) borings we	aro nuchod voina a	evetometic re	ndom loca	tion on	arooch will	thin the	Cluster	r E h	ounda	, .
The boring log summa				шоп арр	Jioacii wii	ının ine	Cluste	ום כו	Junua	пу
			orusi Teli							Ť
Increments from one]
sampling methodolog	y (ISM). The subsi	urface sample	was a cor	nposite	of all 30 b	orings	taken a	it this	,]
"location. 										
⊦ - All subsurface soil sa	mples will be analy	zed for TAL m	netals and	commo	n propella	ants use	ed by th	e Do	D	
- including nitrocellulos					5		ē			-
PROJECT						OLE NUMBE	R		<u> </u>	:
Site Inspection at Compliance	e Restoration Site CC F	RVAAP-80 Group 2	2 Propellant 0	Can Tops	١	1/A				

CTSH	Site Inspection at Compliance Restoration Site CC AP-80 Group & Propellent Can Tops N/A							
TION	DEPTH (b)			GEOTECH SAMPLE OR CORE BOX NO. (e)	ANALYTICAL SAMPLE NO. (f)	BLOW COUNT	OF A	
	b9S -	Based avg. recovery from all borings ≈ 66% recovery • Top portion of recovered material was removed + considered surface material.					-	
	/ \ / \ / \	Surface = 0-1Ft. bgs						
	1	CL > Sandy Lean Clay · light brown, moist · Consistency > soft · medium to high plasticity · Toughness = low to medium					Lensing of very firm non plastic silty clay, approx.	
	a.5 	occasional subargular sandstone. "pancake "shape seperating horizons %2- SW-SM → Well graded sand w/ silt +grave • Subangular grains		thick			3"-12" inches appearing at the bottom of core 4 intermintently in the 3-4 interval 4 the 1.5 to 2.5 Ft interval	
	3	· Light brown, moist > top 1" of interval had noticeably more water saturation * Cementation > weak to moderate . grain size range > medium to coarse	n				_	
	3.5							

Field Sampling Report Project Name: Group 2 Propellant Can Tops 0001-SO Ravenna Army Ammunition Weather 45 RAINY Temperature 450 Location ID: PCTsb-001M-0001-SO Ravenna Army Ammunition Plant **Sampling Information** Source Groundwater / Product Surface Water Soils / Sediments / Sludge Method Bailer Sample Bottle Scoop Trowel Pump Bacon Bomb Hand Auger Bowl Micro-purge Push Probe Plastic Liner Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Collection: 7400 hrs (1645) Sample Type: Composite - ISM - Grab If ISM, # of increments taken: 30 Decon: Dedicated - Each Day - Each Location Location: Plotted on Map - Staked in Field Sample Depth: 1-4 / FT (below surface) De Estimated - Measured - (Surveyed) **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity ppm Background: **SVOC** Reactivity Sulfide/Cyanide TPH DRO **Explosives** Chromium +6 Ignitability Sample: Propellants X Nitrate Water Level TAL Metals X Sulfate **QA Samples** Temperature °C Pesticides/PCBs Asbestos MS/MSD Yes / No NA uMHOs Sp. Conductance; Cyanides Duplicate ID NA pH Equipment Rinse ID Perchlorate X TOC NA Turbidity N.T.U. Trip Blank ID NA Grain Size **Sample Description Split Sample** Split Sample ID: ___ See HIRW LOG Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: Field Mid Callaha (Please Print)

Field Sampling Report Project Name: Group 2 Propellant Can Tops Location ID: PCTsb-002M-0001-SO Ravenna Army Ammunition Plant Weather SUNNY Temperature 60° 1 Date: 4/12/(6 **Sampling Information** Source Groundwater / Product Surface Water Soils / Sediments / Sludge Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Hand Auger Plastic Liner Micro-purge Push Probe Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Collection: \(\frac{300}{590} \) hrs (1650) Sample Type: Composite - (ISM) - Grab Location: Plotted on Map - Staked in Field If ISM, # of increments taken: Estimated - Measured - (Surveyed) Sample Depth: 1-4 FT (below surface) Decon: Dedicated - Each Day - Each Location **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity ppm Background: **SVOC** TPH DRO Reactivity Sulfide/Cyanide Explosives Ignitability Chromium +6 Sample: Propellants X Nitrate Water Level TAL Metals Sulfate **QA Samples** Temperature Pesticides/PCBs MS/MSD Yes / No Asbestos NA uMHOs Sp. Conductance: Cyanides рН Duplicate ID NA Equipment Rinse 1D Perchlorate X TOC NA Trip Blank ID Turbidity Grain Size **Sample Description Split Sample** Split Sample ID: ___ Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: Richard Callah Logged By: (Please Print) Signature:

Field Sampling Report Project Name: Group 2 Propellant Can Tops Location ID: PCTsb-003M-0001-SO Ravenna Army Ammunit Date: 4/12//6 Weather 50 nm Temperature 60° Ravenna Army Ammunition Plant **Sampling Information** Source Groundwater / Product Surface Water Soils / Sediments / Sludge Sample Bottle Bailer Trowel Method Scoop Pump Bacon Bomb Bowl Hand Auger Push Probe Plastic Liner Micro-purge Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Collection: hrs (233) Sample Type: Composite - (ISM) - Grab Location: Plotted on Map - Staked in Field If ISM, # of increments taken: Decon: Dedicated - Each Day - Fach Location Estimated - Measured - (Surveyed) Sample Depth: ______ FT (below surface) **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity Background: Reactivity Sulfide/Cyanide **SVOC** TPH DRO Explosives Chromium +6 Ignitability Sample: Propellants X Nitrate Water Level TAL Metals Sulfate **QA Samples** Temperature Pesticides/PCBs MS/MSD Yes No NA Asbestos uMHOs Sp. Conductance: Cyanides pН Duplicate ID NA units Equipment Rinse ID NA Perchlorate X TOC Turbidity N.T.U. NA Grain Size Trip Blank ID Sample Description **Split Sample** Split Sample ID: ___ Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: RicHAN Logged By: Christine Mcheill (Please Print) Signature:

Field Sampling Report Project Name: Group 2 Propellant Can Tops Location ID: PCTss-004M-0001-SO Ravenna Army Ammunition Plant Weather Sunny Temperature_ **Sampling Information** Source Groundwater / Product Surface Water Soils / Sediments / Sludge Bailer Sample Bottle Trowel Scoop Method Pump Bacon Bomb Bowl Hand Auger Micro-purge Push Probe Plastic Liner Mattocks Direct-Push X Type/Construction Well Purging Form Miscellaneous Sample Collection: 14 40 hrs Sample Type: Composite - (ISM) - Grab Location: Plotted on Map - Staked in Field If ISM, # of increments taken: 30 Decon Dedicated Each Day - Each Location Estimated - Measured - (Surveyed) Sample Depth: C FT (below surface) **Other Parameters Field Parameters Analytical Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity Background: **SVOC** TPH DRO Reactivity Sulfide/Cyanide Ignitability Explosives Chromium +6 Sample: O. O ppm Propellants X Nitrate Water Level TAL Metals Sulfate **QA Samples** Pesticides/PCBs Yes / No Temperature MS/MSD NA Asbestos uMHOs Sp. Conductance: Cvanides Duplicate ID NA pH Equipment Rinse ID units Perchlorate X TOC NA Trip Blank ID Turbidity Grain Size Sample Description Split Sample Split Sample ID: ___ Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: PicHAd Logged By: Christine Mc Neil (Please Print)

Field Sampling Report Project Name: Group 2 Propellant Can Tops Ravenna Army Ammunition Plant Location ID: PCTss-005M-0001-SO Weather Sunny Temperature 65° **Sampling Information** Source Groundwater / Product Soils / Sediments / Sludge **Surface Water** Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Bowl Hand Auger Micro-purge Push Probe Plastic Liner Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Type: Composite - ISM - Grab If ISM, # of increments taken: 30 Decon Dedicated Each Day - Each Location Sample Collection: 10 20 hrs Location: Plotted on Map - Staked in Field Estimated - Measured - (Surveyed) Sample Depth: ______ FT (below surface) **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity Background: **SVOC** TPH DRO Reactivity Sulfide/Cyanide Explosives Ignitability Chromium +6 Sample: Propellants X Nitrate Water Level TAL Metals X Sulfate **QA Samples** Temperature Yes (No) MS/MSD Pesticides/PCBs NA Asbestos Sp. Conductance: uMHOs Cyanides Duplicate ID PCTss-005M-0001-DUP pΗ units Perchlorate TOC Equipment Rinse ID NA Turbidity Grain Size Trip Blank ID NA Sample Description **Split Sample** Split Sample ID: ___ DARK BROWN SIT, COAL TO Eight Red SANdy Clay Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Logged By: Christine McNeill Signature: Charles The Keel I Reviewed by: RicHArd Cullus (Please Print)

Field Sampling Report Project Name: Group 2 Propellant Can Tops Ravenna Army Ammunition Plant Location ID: PCTss-006M-0001-SO Weather Suray Temperature 658 **Sampling Information** Soils / Sediments / Sludge Groundwater / Product Source Surface Water Bailer Sample Bottle Trowel Method Scoop Bacon Bomb Hand Auger Pump Bowl Plastic Liner Micro-purge Push Probe Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Collection: 1275 hrs Sample Type: Composite - ISM - Grab If ISM, # of increments taken: 30 Location: Plotted on Map - Staked in Field Estimated - Measured - (Surveyed) Decon Dedicated Each Day - Each Location Sample Depth: 0 - 1 FT (below surface) **Field Parameters Analytical Parameters** Other Parameters (at time of sample) PID / FID Readings: VOC X TPH GRO Corrosivity (). () ppm Background: SVOC Reactivity Sulfide/Cyanide X TPH DRO **Explosives** Chromium +6 Ignitability 0.0 Sample: Propellants X Nitrate Water Level TAL Metals X Sulfate **OA Samples** Yes (No) Temperature Pesticides/PCBs Asbestos MS/MSD NA Sp. Conductance: uMHOs Duplicate ID NA Cyanides pH Perchlorate X TOC Equipment Rinse ID PCTss-006M-0001-ER Turbidity Trip Blank ID PCTss-006M-0001-TB Grain Size Split Sample Sample Description Split Sample ID: ___ 31611/ Name: Agency/Company: Soil sample description should include: OA/OC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: Richard Callah (Pleas Signature: Date: 4//2 Logged By: Christine McNeil (Please Print)

Field Sampling Report Project Name: Group 2 Propellant Can Tops Location ID: PCTss-007M-0001-SO Ravenna Army Ammunition Plant Sunny Temperature Weather **Sampling Information** Source Groundwater / Product **Surface Water** Soils / Sediments / Sludge Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Bowl Hand Auger Micro-purge Push Probe Plastic Liner Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Sample Collection: 09(0 hrs Sample Type: Composite - (ISM) - Grab Location: Plotted on Map - Staked in Field If ISM, # of increments taken: 30 Decon Dedicated Each Day - Each Location Estimated - Measured - (Surveyed) Sample Depth: _____ FT (below surface) **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity (). () ppm Background: **SVOC** TPH DRO Reactivity Sulfide/Cyanide 0.0 Explosives Chromium +6 Ignitability Sample: Propellants X Nitrate Water Level TAL Metals Sulfate **QA Samples** Temperature °C Pesticides/PCBs MS/MSD Yes / No Asbestos NA Sp. Conductance; uMHOs NA Cyanides рН Duplicate ID Equipment Rinse 1D Perchlorate X NA TOC Tarbidity Trip Blank ID Grain Size Sample Description **Split Sample** Split Sample ID: ___ Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Logged By: (Please Print) Signature:

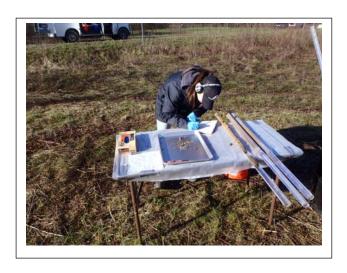
Field Sampling Report Project Name: Group 2 Propellant Can Tops Ravenna Army Ammunition Plant Location ID: PCTss-008M-0001-SO Weather Sunmy Temperature 650 **Sampling Information** Source Groundwater / Product Soils / Sediments / Sludge Surface Water Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Bowl Hand Auger Micro-purge Push Probe Plastic Liner Type/Construction Mattocks Direct-Push X Well Purging Form Miscellaneous Yes - No Sample Collection: 0 830 hrs Sample Type: Composite - ISM - Grab If ISM, # of increments taken: 30 Decon Dedicated Each Day - Each Location Location: Plotted on Map - Staked in Field Estimated - Measured - (Surveyed) Sample Depth: FT (below surface) **Field Parameters Other Parameters Analytical Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity Background: SVOC TPH DRO Reactivity Sulfide/Cyanide Ignitability Explosives Chromium +6 Sample: Propellants X Nitrate 0.0 Water Level TAL Metals X Sulfate **QA Samples** °C Yes / No Temperature MS/MSD Pesticides/PCBs NA Asbestos Sp. Conductance: uMHOsCyanides pH Duplicate ID NA units Equipment Rinse ID Perchlorate X TOC NA Tarbidity Trip Blank ID Grain Size Sample Description **Split Sample** Split Sample ID: ____ Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Logged By: Christine McNeill Signature: Christine McNeill Reviewed by: R. CHAR. (Please Print)

Field Sampling Report Project Name: ___ Group 2 Propellant Can Tops Weather Sunny Temperature Ravenna Army Ammunition Plant Location ID: PCTss-WC001-SQ **Sampling Information** Source Groundwater / Product Surface Water Soils / Sediments / Sludge Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Hand Auger Micro-purge Push Probe Plastic Liner Direct-Push Type/Construction Mattocks X Well Purging Form Miscellaneous Yes - No Sample Collection: Sample Type: Composite - ISM - Grab Location: Plotted on Map - Staked in Field PorpRun Estimated - Measured - Surveyed (NA) If ISM, # of increments taken: Sample Depth: 0 -FT (below surface) Decon Dedicated Each Day - Each Location **Field Parameters Analytical Parameters Other Parameters** (at time of sample) PID / FID Readings: VOC **TPH GRO** Corrosivity Background: SVOC TPH DRO Reactivity Sulfide/Cyanide Ignitability Explosives Chromium +6 Sample: Propellants Nitrate Water Level TAL Metals Total Sulfide X **QA Samples** Yes / No Temperature Pesticides/PCBs MS/MSD NA Cyanide X Sp. Conductance: uMHOs X Duplicate ID NA Cyanides рН Equipment Rinse 1D units Perchlorate Full TCLP X NA Trip Blank ID Turbidity X Grain Size Flash Point Sample Description **Split Sample** Split Sample ID: ___ Soil Glosos Plastic Name: Agency/Company: Address: Soil sample description should include: QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Munsell Color Odor Staining Texture Sorting Plasticity Moisture Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: _____SAME Logged By: R. CAlla HA (Please Print) Signature: Signature: _

ISM Surface and Shallow Sub-Surface Sampling Photo Log

ISM Shallow Sub-Surface Magnetometer Anomaly Avoidance

Track-Mounted Geoprobe Drilling – Direct Push ISM Shallow Sub-Surface Sampling



Sealing Drilling Location with Bentonite Pellets

Sealed Drilling Location

ISM Surface and Shallow Sub-Surface Sampling Photo Log (continued)

Logging and sampling ISM Sub-Surface Intervals

Lanes and Random ISM Surface Sampling Locations – Cluster 6

ISM Surface Soil Sample Dedicated Stainless Steel Push Probe

Collection of 30 Aliquots for ISM Surface Soil Sample

I. GENERAL PROJECT AND SITE INFORMATION										
Date: Instructor(s):	Melvin .	huy	Time:	Log No.:						
Site Name & Location: Are p 2										
Contract No.: Contract No.:										
Site Manager or SUXOS: Rick (1/13/14) SSHO:										
	FETY AND HEAL	TH TOPICS COV	ERED							
Tasks Being Conducted:	1 Sample 3									
Applicable AHA's Reviewed for Too	11- T1-4.	: Avoidance	f							
Anticipated Weather Conditions for	the Day:									
Safety Concerns:	Js Slips Safe Work	Trips Fall	Mec Avaid	Lawer						
Permits Required: ☐ Penetration P		Permit Other:	E	Excavation Permit						
☐ Hot Work Per Site	mit 🗌 Lift Permit	Locko	ut / Tagout 🔲 F	Permits Are On						
Heavy Equipment to be Used Toda	y: Down ho	le Track	Machine							
Site Control and Buddy Procedures										
Subcontractors Working On-site To	day and Their Tas	ks: Fronte	Prillian							
Emergency Procedures:			7							
Assembly Locations:	Aren 2									
Scheduled Deliveries for Today:	No-	•	5							
III. D.	AILY SAFETY BR	IEFING ATTEND	DEES	×						
Name (printed)	Name (printed) Signature Organization									
Rield Callaha	Rield Callaha Fe Call									

Christine McNeill	TerranearPMC	Rustin Harseill				
		5-c.				
		*				
	· ·					
I certify that the personnel listed	on this roster have received the safety and	health training described above.				
Rel Lav		SAME				
Site Safety and Health Offic	er Sı	Sr. UXO Supervisor or Site Supervisor				

I. GENERAL PROJECT AND SITE INFORMATION										
Date: Instructor(s):	Melvin LAL		Time:	Log No.:						
Site Name & Location:	RUAAP									
Contract No.:		Contract No.:								
Site Manager or SUXOS: Rick Callahan SSHO:										
II. S	AFETY AND HEAD	TH TOPICS COV	ERED							
Tasks Being Conducted:	Soil Samp	le s								
Applicable AHA's Reviewed for To	1112	C FILE ON CE								
Anticipated Weather Conditions fo	or the Day:									
Safety Concerns:	Safety Concerns: Pinch Paints Slips Trips Falls Moc Avoidance Permits Required: Safe Work Permit Excavation Permit									
Permits Required: ☐ Penetration		k Permit Other:		Excavation Permit						
☐ Hot Work Po	ermit 🗌 Lift Perm	it Locko	ut / Tagout 🔲	Permits Are On						
Heavy Equipment to be Used Tod	lay: Dour hole	Track M.	Achi'-9							
Site Control and Buddy Procedure										
Subcontractors Working On-site T	oday and Their Ta	sks:	Prilling							
Emergency Procedures:	Cate Notif	-								
Assembly Locations:	ate Aron 2									
Scheduled Deliveries for Today:	work									
III.	DAILY SAFETY B	RIEFING ATTEND	DEES							
Name (printed) Christine McNeill										

be Henley	MILL	Frontz Drilling Inc.
Rickie Shanks	ach Start	Front Drilling Inc
Rick Callaha	2011	PIKA.
James N Trumble	James N. Coullett	USACE
Kathaya S. Tait	Keithern Stait	CHARNG
Kerin SEDLAK	I flow	DKNG
	,	
-		
A 10 10 10 10 10 10 10 10 10 10 10 10 10		
3"	÷ .	
I certify that the personnel listed	on this roster have received the safety and	health training described above.
mil La		SALL
Site Safety and Health Offic	ser Sr.	UXO Supervisor or Site Supervisor

I. GENERAL PROJECT AND SITE INFORMATION										
Date: Instructor(s): Melvin Lan O700 Lo Site Name & Location: RVAAP Contract No.: Contract No.:										
Site Name & Location:	Site Name & Location: Area 2 RVAAP									
Contract No.:										
Site Manager or SUXOS: Rich Collabor SSHO:										
II. SA	AFETY AND HEAL	TH TOPICS COV	ERED							
Tasks Being Conducted:	or the Day:	les								
Applicable AHA's Reviewed for To	oday's Tasks: Me	c Aveidan	· (> .							
Anticipated Weather Conditions fo	or the Day:	r								
Safety Concerns: Permits Required:										
Heavy Equipment to be Used Tod	ay: <i>wo</i>	n(°								
Site Control and Buddy Procedure	es:									
Subcontractors Working On-site T	oday and Their Ta	sks:								
Emergency Procedures:	mi Gate	Neti Fiest	io-							
Assembly Locations:	ate Area	2								
Scheduled Deliveries for Today:	Non	9								
III. I	DAILY SAFETY BI	RIEFING ATTEND	DEES							
Name (printed)	Sign	ature	Orga	anization						
Richard Callah	Al (Plks						

Christine McNeill	TerronearPML	Austine He Mail
	>	
		- ************************************
	A CONTRACTOR OF THE CONTRACTOR	
		,
I certify that the personnel listed	on this roster have received the safety and	health training described above.
Mel La		SAME
Site Safety and Health Office		UXO Supervisor or Site Supervisor

Draft SI Report for CR Site CC RVAAP-80 Group 2 Propellant Can Tops

692 Appendix B

693 Full Laboratory Package

December 2016 Rev 0

Draft SI Report for CR Site CC RVAAP-80 Group 2 Propellant Can Tops

694 Appendix C

695 ADR and Data Validation Reports

December 2016 Rev 0

Field QC Assignments and Associated Samples

EDD File Name: 320-18324-1

eQapp Name: Pika Ravenna 05012016

		Associated Samples	Sample Collection Date
eld QC Sample: F	PCTss-005M-0001-DS		
цо туро.			
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
eld QC Sample: F	PCTss-006M-0001-ER		
QC Type:			
		PCTsb-001M-0001-SO	4/11/2016 4:45:00 PM
		PCTsb-002M-0001-SO	4/12/2016 4:50:00 PM
		PCTsb-003M-0001-SO	4/12/2016 12:30:00 PM
		PCTss-004M-0001-SO	4/13/2016 2:40:00 PM
		PCTss-005M-0001-DS	4/13/2016 10:25:00 AM
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
		PCTss-006M-0001-SO	4/13/2016 12:45:00 PM
		PCTss-007M-0001-SO	4/13/2016 9:10:00 AM
		PCTss-008M-0001-SO	4/13/2016 8:30:00 AM
	207 2001 2004 77		
QC Type:	PCTss-006M-0001-TB TB		
		PCTsb-001M-0001-SO	4/11/2016 4:45:00 PM
		PCTsb-002M-0001-SO	4/12/2016 4:50:00 PM
		PCTsb-003M-0001-SO	4/12/2016 12:30:00 PM
		PCTss-004M-0001-SO	4/13/2016 2:40:00 PM
		PCTss-005M-0001-DS	4/13/2016 10:25:00 AM
		PCTss-005M-0001-SO	4/13/2016 10:20:00 AM
		PCTss-006M-0001-ER	4/13/2016 12:30:00 PM
		PCTss-006M-0001-SO	4/13/2016 12:45:00 PM
		PCTss-007M-0001-SO	4/13/2016 9:10:00 AM
		PCTss-008M-0001-SO	4/13/2016 8:30:00 AM

Lab Reporting Batch ID: 320-18324-1 **Laboratory: TA SAC**

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: **GENCHEM**

Method: 353.2 Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.48	U	0.48	CRDL	2.0	MRL	mg/L	R	StoA

Method Category: **GENCHEM**

Method: 353.2 Matrix: SO

Sample ID: PCTsb-001M-0001-SO Collected: 4/11/2016 4:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Sample ID: PCTsb-002M-0001-SO Collected: 4/12/2016 4:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

4/12/2016 12:30:00

Sample ID: PCTsb-003M-0001-SO Analysis Type: RES Collected: PM Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Sample ID: PCTss-004M-0001-SO Collected: 4/13/2016 2:40:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.96	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA

4/13/2016 10:25:00

Sample ID: PCTss-005M-0001-DS	Collec	ted: AM	010 10.23		nalysis T	ype: RES	3	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA	

4/13/2016 10:20:00

Sample ID: PCTss-005M-0001-SO Collected: AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

denotes a non-reportable result

Nitrocellulose

Data Qualifier Summary

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: GENCHEM

Method: 353.2 Matrix: SO

0.84

4/13/2016 12:45:00

0.78

CRDL

5.0

MRL

mg/Kg

J

Collected: PM Analysis Type: RES Sample ID: PCTss-006M-0001-SO Dilution: 1 Data Lab DL RL Review Reason Lab Analyte Result Qual DL Type RL Type Units Qual Code

Sample ID: PCTss-007M-0001-SO Collected: 4/13/2016 9:10:00 AM Analysis Type: RES Dilution: 1

J

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.77	U	0.77	CRDL	5.0	MRL	mg/Kg	R	StoA

Sample ID: PCTss-008M-0001-SO Collected: 4/13/2016 8:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Method Category: GENCHEM

Method: 6850 Matrix: SO

Sample ID: PCTsb-001M-0001-SO Collected: 4/11/2016 4:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.41	J	0.15	CRDL	5.1	MRL	ug/Kg	J	RI

Method Category: METALS

Method: 6010C Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	0.027	J	0.020	CRDL	0.10	MRL	mg/L	J	RI
SODIUM	0.31	J	0.25	CRDL	1.0	MRL	mg/L	J	RI
ZINC	0.0037	J	0.0030	CRDL	0.020	MRL	mg/L	U	Mb

denotes a non-reportable result

RI, StoA

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: METALS

Method: 6010C Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	9700	DJ	5.5	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.92	UJ	0.92	CRDL	2.9	MRL	mg/Kg	R	Ms
CADMIUM	0.23	JD	0.029	CRDL	0.29	MRL	mg/Kg	J	RI
IRON	15000	DJ	2.0	CRDL	9.8	MRL	mg/Kg	J	Ms
MANGANESE	730	DJ	0.25	CRDL	0.98	MRL	mg/Kg	J	Ms
SODIUM	41	JD	20	CRDL	98	MRL	mg/Kg	J	RI

Method Category: SVOA

Method: 8081B Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4 -DDD	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4 -DDE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4 -DDT	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ALDRIN	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-BHC	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
вета-внс	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
DELTA-BHC	0.012	U	0.012	CRDL	0.054	MRL	ug/L	UJ	StoE
DIELDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN I	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN II	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.027	U	0.027	CRDL	0.11	MRL	ug/L	UJ	StoE
ENDRIN KETONE	0.022	U	0.022	CRDL	0.11	MRL	ug/L	UJ	StoE
gamma-BHC (Lindane)	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
GAMMA-CHLORDANE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR EPOXIDE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
METHOXYCHLOR	0.046	U	0.046	CRDL	0.11	MRL	ug/L	UJ	StoE
TOXAPHENE	0.55	U	0.55	CRDL	2.2	MRL	ug/L	UJ	StoE

denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8081B Matrix: AQ

Method Category: SVOA

Method: 8081B Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-CHLORDANE	0.47	J	0.20	CRDL	1.7	MRL	ug/Kg	J	RI
DELTA-BHC	0.24	J	0.16	CRDL	1.7	MRL	ug/Kg	J	RI

Method Category: SVOA

Method: 8082A Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1016	0.098	U	0.098	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1221	0.12	U	0.12	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1232	0.18	U	0.18	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1242	0.13	U	0.13	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1248	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1254	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1260	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method: 8270D Matrix: AQ

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Benzo a anthracene	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE

4/13/2016 12:30:00
Sample ID: PCTss-006M-0001-ER

Collected: PM

Analysis Type: RES-ACID

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4,6-TRICHLOROPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DICHLOROPHENOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE

denotes a non-reportable result

Dilution: 1

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DIMETHYLPHENOL	2.3	U	2.3	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROPHENOL	21	U	21	CRDL	62	MRL	ug/L	UJ	StoE
2-CHLOROPHENOL	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLPHENOL	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROPHENOL	2.0	U	2.0	CRDL	10	MRL	ug/L	UJ	StoE
3 & 4 Methylphenol	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
4,6-DINITRO-2-METHYLPHENOL	2.3	U	2.3	CRDL	62	MRL	ug/L	UJ	StoE
4-CHLORO-3-METHYLPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROPHENOL	6.3	U	6.3	CRDL	62	MRL	ug/L	UJ	StoE
BENZOIC ACID	21	UQ	21	CRDL	77	MRL	ug/L	R	Lcs, StoE
PENTACHLOROPHENOL	5.2	U	5.2	CRDL	62	MRL	ug/L	UJ	StoE
PHENOL	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
1,2-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,3-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,4-DICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,6-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2-CHLORONAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLNAPHTHALENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROANILINE	2.1	U	2.1	CRDL	52	MRL	ug/L	UJ	StoE
3,3 -DICHLOROBENZIDINE	0.99	U	0.99	CRDL	52	MRL	ug/L	UJ	StoE
3-NITROANILINE	1.4	U	1.4	CRDL	52	MRL	ug/L	UJ	StoE
4-BROMOPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROANILINE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROANILINE	1.5	U	1.5	CRDL	52	MRL	ug/L	UJ	StoE
ACENAPHTHENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ACENAPHTHYLENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ANTHRACENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE

denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Campic ID. 1 C133 CCCIII CCC1 EIX	Conco	tou. I ivi			nuny 515 1	ypc. ILL	חסבווי		Dilation. 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Benzo a pyrene	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo b fluoranthene	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
Benzo g,h,i perylene	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
Benzo k fluoranthene	0.99	U	0.99	CRDL	10	MRL	ug/L	UJ	StoE
BENZYL ALCOHOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
Bis (2-chloroisopropyl) ether	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)METHANE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Bis(2-chloroethyl)ether	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL) PHTHALATE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Butyl benzyl phthalate	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
CARBAZOLE	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
CHRYSENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZOFURAN	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DIETHYL PHTHALATE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
DIMETHYL PHTHALATE	0.91	U	0.91	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
FLUORANTHENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
FLUORENE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	5.2	U	5.2	CRDL	52	MRL	ug/L	UJ	StoE
HEXACHLOROETHANE	1.4	UQ	1.4	CRDL	10	MRL	ug/L	UJ	Lcs, StoE
Indeno 1,2,3-cd pyrene	3.5	U	3.5	CRDL	15	MRL	ug/L	UJ	StoE
ISOPHORONE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
NAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
NITROBENZENE	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
N-Nitrosodi-n-propylamine	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PHENANTHRENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PYRENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE

denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO	Collec	ted: PM		Α	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZOIC ACID	280	UJ	280	CRDL	1600	MRL	ug/Kg	UJ	Ms

Method Category: VOA

Method: 8260C Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER	Collec	ted: PM		A	nalysis T	ype: RES	5		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHI OROFORM	0.20	.I	0.12	CRDI	1.0	MRI	ug/l	.I	RI

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RE Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	20	Н	2.1	CRDL	10	MRL	ug/L	J	StoA

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
METHYLENE CHLORIDE	0.77	J	0.35	CRDL	1.0	MRL	ug/L	J	RI

Method Category: VOA

Method: 8260C Matrix: SO

4/13/2016 12:45:00
Sample ID: PCTss-006M-0001-SO
Collected: PM
Analysis Type: RES
Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	8.3	J	2.0	CRDL	28	MRL	ug/Kg	U	Tb

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Reason Code Legend

Reason Code	Description
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Lower Re ection
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Re ection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Estimation
StoA	Sampling to Analysis Re ection
StoE	Sampling to Extraction Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

Lab Reporting Batch ID: 320-18324-1

	Description	Varning	Value	Line # Column	Table
	TOXAPHENE (8001-35-2) is a required SPK complement of the second source of the second sample LCS 320-106848/2-A.	14			Analytical Results
	ENDOSULFAN I (959-98-8) is a required SPK cor 8081B , Matrix: AQ and QCType: LCS , but is no sample LCS 320-106848/4-A.	14			Analytical Results
	HEPTACHLOR (76-44-8) is a required SPK comp 8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A.				Analytical Results
	ENDRIN ALDEHYDE (7421-93-4) is a required SF Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.	14			Analytical Results
	4,4-DDE (72-55-9) is a required SPK compound f Matrix: AQ and QCType: LCS, but is not reporte 320-106848/4-A.				Analytical Results
	4,4-DDD (72-54-8) is a required SPK compound f Matrix: AQ and QCType: LCS, but is not reporte 320-106848/4-A.				Analytical Results
	METHOXYCHLOR (72-43-5) is a required SPK co Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.				Analytical Results
	ENDRIN (72-20-8) is a required SPK compound for Matrix: AQ and QCType: LCS, but is not reporte 320-106848/4-A.				Analytical Results
	DIELDRIN (60-57-1) is a required SPK compound 8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A.	14			Analytical Results
	gamma-BHC (Lindane) (58-89-9) is a required SP Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.	14			Analytical Results
	ENDRIN KETONE (53494-70-5) is a required SPH Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.				Analytical Results
	GAMMA-CHLORDANE (5103-74-2) is a required Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.				Analytical Results
	ALPHA-CHLORDANE (5103-71-9) is a required S Method: 8081B , Matrix: AQ and QCType: LCS , for sample LCS 320-106848/4-A.				Analytical Results
	4,4-DDT (50-29-3) is a required SPK compound findatrix: AQ and QCType: LCS, but is not reporte 320-106848/4-A.				Analytical Results
	ENDOSULFAN II (33213-65-9) is a required SPK Method: 8081B, Matrix: AQ and QCType: LCS, for sample LCS 320-106848/4-A.				Analytical Results
	DELTA-BHC (319-86-8) is a required SPK compo 8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A.	14			Analytical Results
	BETA-BHC (319-85-7) is a required SPK compout 8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A.	14			Analytical Results
	ALPHA-BHC (319-84-6) is a required SPK compo 8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A.	14			Analytical Results
	ALDRIN (309-00-2) is a required SPK compound f Matrix: AQ and QCType: LCS, but is not reporte 320-106848/4-A.	14			Analytical Results
	ENDOSULFAN SULFATE (1031-07-8) is a require for Method: 8081B, Matrix: AQ and QCType: LC reported for sample LCS 320-106848/4-A.	14			Analytical Results
· · · · · · · · · · · · · · · · · · ·	HEPTACHLOR EPOXIDE (1024-57-3) is a require for Method: 8081B, Matrix: AQ and QCType: LC reported for sample LCS 320-106848/4-A.	14			Analytical Results
	TOXAPHENE (8001-35-2) is a required SPK comp 8081B, Matrix: SO and QCType: LCS, but is no sample LCS 320-107618/2-A.				Analytical Results
not read for lorted fo	8081B, Matrix: AQ and QCType: LCS, but is no sample LCS 320-106848/4-A. ALDRIN (309-00-2) is a required SPK compound in Matrix: AQ and QCType: LCS, but is not reported 320-106848/4-A. ENDOSULFAN SULFATE (1031-07-8) is a requirefor Method: 8081B, Matrix: AQ and QCType: LC reported for sample LCS 320-106848/4-A. HEPTACHLOR EPOXIDE (1024-57-3) is a requirefor Method: 8081B, Matrix: AQ and QCType: LC reported for sample LCS 320-106848/4-A. TOXAPHENE (8001-35-2) is a required SPK common 8081B, Matrix: SO and QCType: LCS, but is no	14 14 14			Analytical Results Analytical Results

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	Description
Analytical Results			14	ENDOSULFAN I (959-98-8) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	HEPTACHLOR (76-44-8) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ENDRIN ALDEHYDE (7421-93-4) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	4,4-DDE (72-55-9) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	4,4-DDD (72-54-8) is a required SPK compound for Method: 8081B , Matrix: SO and QCType: LCS , but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	METHOXYCHLOR (72-43-5) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ENDRIN (72-20-8) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	DIELDRIN (60-57-1) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	gamma-BHC (Lindane) (58-89-9) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ENDRIN KETONE (53494-70-5) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	GAMMA-CHLORDANE (5103-74-2) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ALPHA-CHLORDANE (5103-71-9) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	4,4-DDT (50-29-3) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ENDOSULFAN II (33213-65-9) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	DELTA-BHC (319-86-8) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	BETA-BHC (319-85-7) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ALPHA-BHC (319-84-6) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ALDRIN (309-00-2) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	ENDOSULFAN SULFATE (1031-07-8) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	HEPTACHLOR EPOXIDE (1024-57-3) is a required SPK compound for Method: 8081B, Matrix: SO and QCType: LCS, but is not reported for sample LCS 320-107618/3-A.
Analytical Results			14	TOXAPHENE (8001-35-2) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/3-A.
Analytical Results			14	ENDOSULFAN I (959-98-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	g Description
Analytical Results			14	HEPTACHLOR (76-44-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ENDRIN ALDEHYDE (7421-93-4) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	4,4-DDE (72-55-9) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	4,4-DDD (72-54-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	METHOXYCHLOR (72-43-5) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ENDRIN (72-20-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	DIELDRIN (60-57-1) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	gamma-BHC (Lindane) (58-89-9) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ENDRIN KETONE (53494-70-5) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	GAMMA-CHLORDANE (5103-74-2) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ALPHA-CHLORDANE (5103-71-9) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	4,4-DDT (50-29-3) is a required SPK compound for Method: 8081B , Matrix: AQ and QCType: LCS , but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ENDOSULFAN II (33213-65-9) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	DELTA-BHC (319-86-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	BETA-BHC (319-85-7) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ALPHA-BHC (319-84-6) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ALDRIN (309-00-2) is a required SPK compound for Method: 8081B Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	ENDOSULFAN SULFATE (1031-07-8) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			14	HEPTACHLOR EPOXIDE (1024-57-3) is a required SPK compound for Method: 8081B, Matrix: AQ and QCType: LCS, but is not reported for sample LCSD 320-106848/5-A.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

Table	Line #	Column	Value	Warning	Description
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-001M-0001-SO.
Analytical Results				10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	Description
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-002M-0001-SO.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTsb-003M-0001-SO.
Analytical Results			14	4-NITROTOLUENE (99-99-0) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	1,3-DINITROBENZENE (99-65-0) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	1,3,5-TRINITROBENZENE (99-35-4) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	3-NITROTOLUENE (99-08-1) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	NITROBENZENE (98-95-3) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	2-NITROTOLUENE (88-72-2) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
Analytical Results			14	PETN (78-11-5) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS.
6/2/2016 8:39:45 P	M Al	DR version 1.9.0.325 (License	d For Use On l	

Lab Reporting Batch ID: 320-18324-1

Analytical Results 14 2,6-DINITROTOLUENE (608-20-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-001-SOMS. Analytical Results 14 Tetry (479-45-8) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-001-SOMS. Analytical Results 14 CAMINO-4,6-DINITROTOLUENE (35572-78-2) compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 HMX (2691-41-0) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 Q-4-DINITROTOLUENE (121-14-2) is a required Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 15 Q-4-BINITROTOLUENE (18-96-7) is a required Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 16 Q-4-BINITROTOLUENE (194-96-5-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 17 Q-4-BINITROTOLUENE (194-96-5-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 18 Q-4-BINITROTOLUENE (194-96-5-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 19 A-NITROTOLUENE (199-95-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 19 A-NITROTOLUENE (199-95-3) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 19	
Analytical Results Analytical Results 14	
compound for Method: 8330B, Matrix: SO and not reported for sample PCTsb-003M-0001-SOM Analytical Results 14 HMX (2691-41-0) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-DINITROTOLUENE (121-14-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-ETRINITROTOLUENE (118-96-7) is a required for Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-AMINO-2,6-DINITROTOLUENE (199-96-7) is a required for Method: 8330B, Matrix: SO and QCType: N reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-AMINO-2,6-DINITROTOLUENE (199-96-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-INITROTOLUENE (99-96-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-DINITROBENZENE (99-65-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 15 3-NITROTOLUENE (99-98-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 16 3-NITROBENZENE (99-98-5) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 17 3-NITROBENZENE (99-98-7) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 18 3-NITROBENZENE (99-98-7) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results	
Matrix: SO and OCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-DINITROTOLUENE (121-14-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-GTRINITROTOLUENE (118-96-7) is a required for Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-AMINO-2,6-DINITROTOLUENE (19406-51-0) compound for Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-NITROTOLUENE (99-99-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 4-NITROTOLUENE (99-65-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-DINITROBENZENE (99-65-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 15 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 16 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 16 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD.	QCType: MS, but is
Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-DINITROTOLUENE (121-14-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 2,4-ETRINITROTOLUENE (118-96-7) is a required for Method: 8330B, Matrix: SO and QCType: MS, reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-AMINO-2,6-DINITROTOLUENE (19406-51-0) compound for Method: 8330B, Matrix: SO and not reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-NITROTOLUENE (99-99-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-DINITROBENZENE (99-65-0) is a required SMEthod: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-ETRINITROBENZENE (99-35-4) is a required SMEthod: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITRODENZENE (99-35-4) is a required SMEthod: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 15 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 16 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 17 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results	
Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMS. Analytical Results 14 2,4,6-TRINITROTOLUENE (118-96-7) is a required for Method: 8330B, Matrix: SO and QCType: Not reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-AMINO-2,6-DINITROTOLUENE (19406-51-0) compound for Method: 8330B, Matrix: SO and not reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14 4-NITROTOLUENE (99-99-0) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-DINITROBENZENE (99-65-0) is a required SME Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3,5-TRINITROBENZENE (99-35-4) is a required SME Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-05-3) is a required SME Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-05-3) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results	
for Method: 8330B, Matrix: SO and QCType: Note reported for sample PCTsb-003M-0001-SOMS. Analytical Results 14	
compound for Method: 8330B, Matrix: SO and not reported for sample PCTsb-003M-0001-SOM Analytical Results 14	
Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-DINITROBENZENE (99-65-0) is a required SMethod: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3-5-TRINITROBENZENE (99-35-4) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 NITROBENZENE (98-95-3) is a required SPK of sample PCTsb-003M-0001-SOMSD.	QCType: MS, but is
Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 1,3,5-TRINITROBENZENE (99-35-4) is a require Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 NITROBENZENE (98-95-3) is a required SPK or	
Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 3-NITROTOLUENE (99-08-1) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 NITROBENZENE (98-95-3) is a required SPK or	
Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD. Analytical Results 14 NITROBENZENE (98-95-3) is a required SPK or	
8330B , Matrix: SO and QCType: MS , but is no PCTsb-003M-0001-SOMSD.	
Analytical Results 14 2-NITROTOLUENE (88-72-2) is a required SPK Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD.	
Analytical Results 14 PETN (78-11-5) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMSD.	
Analytical Results 14 2,6-DINITROTOLUENE (606-20-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD.	
Analytical Results 14 Tetryl (479-45-8) is a required SPK compound for Matrix: SO and QCType: MS, but is not reported PCTsb-003M-0001-SOMSD.	
Analytical Results 14 2-AMINO-4,6-DINITROTOLUENE (35572-78-2) compound for Method: 8330B, Matrix: SO and not reported for sample PCTsb-003M-0001-SOM	QCType: MS, but is
Analytical Results 14 HMX (2691-41-0) is a required SPK compound for Matrix: SO and QCType: MS, but is not reported PCTsb-003M-0001-SOMSD.	or Method: 8330B,
Analytical Results 14 RDX (121-82-4) is a required SPK compound for Matrix: SO and QCType: MS, but is not reporte PCTsb-003M-0001-SOMSD.	
Analytical Results 14 2,4-DINITROTOLUENE (121-14-2) is a required Method: 8330B, Matrix: SO and QCType: MS, for sample PCTsb-003M-0001-SOMSD.	
Analytical Results 14 2,4,6-TRINITROTOLUENE (118-96-7) is a requi for Method: 8330B, Matrix: SO and QCType: N reported for sample PCTsb-003M-0001-SOMSD	red SPK compound

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	g Description
Analytical Results			14	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required SPK compound for Method: 8330B, Matrix: SO and QCType: MS, but is not reported for sample PCTsb-003M-0001-SOMSD.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-004M-0001-SO.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	Description
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-DS.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-005M-0001-SO.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.

Lab Reporting Batch ID: 320-18324-1

Table	Line # Column	Value	Warning	Description
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO , but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-007M-0001-SO.
Analytical Results			10	4-NITROTOLUENE (99-99-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	1,3-DINITROBENZENE (99-65-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	1,3,5-TRINITROBENZENE (99-35-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	3-NITROTOLUENE (99-08-1) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	NITROBENZENE (98-95-3) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	2-NITROTOLUENE (88-72-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	PETN (78-11-5) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	2,6-DINITROTOLUENE (606-20-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	Tetryl (479-45-8) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	2-AMINO-4,6-DINITROTOLUENE (35572-78-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	HMX (2691-41-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results			10	RDX (121-82-4) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.

EDD Warning Log

Lab Reporting Batch ID: 320-18324-1

eQAPP: Pika_Ravenna_05012016 Laboratory: TA SAC

Table	Line #	Column	Value	Warnin	g Description
Analytical Results				10	2,4-DINITROTOLUENE (121-14-2) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	2,4,6-TRINITROTOLUENE (118-96-7) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Analytical Results				10	4-AMINO-2,6-DINITROTOLUENE (19406-51-0) is a required target analyte for Method: 8330B and Matrix: SO, but is not reported for sample PCTss-008M-0001-SO.
Sample Analysis	47	PreparationBatch	320-107226	17	This batch has more that one sample with QCType MB.
Sample Analysis	48	PreparationBatch	320-107226	17	This batch has more that one sample with QCType MB.
Sample Analysis	49	PreparationBatch	320-107232	17	This batch has more that one sample with QCType MB.
Sample Analysis	50	PreparationBatch	320-107232	17	This batch has more that one sample with QCType MB.
Sample Analysis	12	PreparationBatch	320-107232	17	This batch has more that one sample with QCType LCS.
Sample Analysis	13	PreparationBatch	320-107232	17	This batch has more that one sample with QCType LCS.
Sample Analysis	83	MethodBatch	320-107232	17	This batch has more that one sample with QCType MS.
Sample Analysis	84	MethodBatch	320-107232	17	This batch has more that one sample with QCType MS.
Sample Analysis	88	MethodBatch	320-107232	17	This batch has more that one sample with QCType MSD.
Sample Analysis	89	MethodBatch	320-107232	17	This batch has more that one sample with QCType MSD.
Sample Analysis	41	PreparationBatch	320-106848	17	This batch has more that one sample with QCType MB.
Sample Analysis	42	PreparationBatch	320-106848	17	This batch has more that one sample with QCType MB.
Sample Analysis	5	PreparationBatch	320-106848	17	This batch has more that one sample with QCType LCS.
Sample Analysis	6	PreparationBatch	320-106848	17	This batch has more that one sample with QCType LCS.
Sample Analysis	38	PreparationBatch	320-106710	17	This batch has more that one sample with QCType MB.
Sample Analysis	39	PreparationBatch	320-106710	17	This batch has more that one sample with QCType MB.
Sample Analysis	2	PreparationBatch	320-106710	17	This batch has more that one sample with QCType LCS.
Sample Analysis	3	PreparationBatch	320-106710	17	This batch has more that one sample with QCType LCS.
Sample Analysis				38	MethodBatch 320-108702 is missing a sample of QCType MS for LabAnalysisRefMethodID 7471A
Sample Analysis				38	MethodBatch 320-108702 is missing a sample of QCType MSD for LabAnalysisRefMethodID 7471A
Sample Analysis	51	PreparationBatch	320-107618	17	This batch has more that one sample with QCType MB.
Sample Analysis	52	PreparationBatch	320-107618	17	This batch has more that one sample with QCType MB.
Sample Analysis	14	PreparationBatch	320-107618	17	This batch has more that one sample with QCType LCS.
Sample Analysis	15	PreparationBatch	320-107618	17	This batch has more that one sample with QCType LCS.
Sample Analysis				38	MethodBatch 320-107922 is missing a sample of QCType MS for LabAnalysisRefMethodID 8260C
Sample Analysis				38	MethodBatch 320-107922 is missing a sample of QCType MSD for LabAnalysisRefMethodID 8260C
Sample Analysis				38	MethodBatch 320-107200 is missing a sample of QCType MS for LabAnalysisRefMethodID 8260C
Sample Analysis				38	MethodBatch 320-107200 is missing a sample of QCType MSD for LabAnalysisRefMethodID 8260C

Data Review Summary

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Validation Area	Note
Technical Holding Times	SR
Temperature	A
Initial Calibration	N
Continuing Calibration/Initial Calibration Verification	N
Method Blanks	SR
Surrogate/Tracer Spikes	SR
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	N
Laboratory Replicates	N
Laboratory Control Samples	SR
Compound Quantitation	SR
Field Duplicates	A
Field Triplicates	N
Field Blanks	SR

QC Outlier Report: HoldingTimes

Laboratory: TA SAC

eQAPP Name: Pika_Ravenna_05012016 EDD Filename: 320-18324-1 Method: 353.2 Preparation Method: Method Matrix: Sample ID Actual Criteria **Units Type** Flag PCTss-006M-0001-ER (RES) Sampling To Analysis 649.25 48.00 **HOURS** J (all detects) PCTss-006M-0001-ERMS (RES) 649.25 48.00 **HOURS** R (all non-detects) PCTss-006M-0001-ERMSD (RES) 48.00 HOURS 649.50 Method: 8081B **Preparation Method: Method** Matrix: AQ Sample ID Actual Criteria **Units** Type Flag PCTss-006M-0001-ER (RES) Sampling To Extraction DAYS 6.00 5.00 J(all detects) PCTss-006M-0001-ER (RES2) 6.00 5.00 DAYS UJ(all non-detects) Method: 8082A **Preparation Method: Method** Matrix: AQ Criteria Sample ID Actual **Units Type** Flag PCTss-006M-0001-ER (RES) Sampling To Extraction 6.00 5.00 DAYS J(all detects) UJ(all non-detects) Method: 8260C **Preparation Method: Method** Matrix: AQ Criteria Sample ID **Type** Actual **Units** Flag PCTss-006M-0001-TB (RE) Sampling To Analysis 15.00 14.00 DAYS J(all detects) UJ(all non-detects) Method: 8270D Preparation Method: Method **Matrix:** AQ Sample ID Type Actual Criteria **Units** Flag PCTss-006M-0001-ER (RES) DAYS J(all detects) Sampling To Extraction 6.00 5.00 UJ(all non-detects) Method: 353.2 **Preparation Method: Method** Matrix: SO Criteria Sample ID Actual **Units** Flag Type **HOURS** PCTsb-001M-0001-SO (RES) Sampling To Analysis 574.75 48.00 J(all detects) PCTsb-002M-0001-SO (RES) 550.75 48.00 **HOURS** R(all non-detects) PCTsb-003M-0001-SO (RES) HOURS 555.00 48.00 PCTsb-003M-0001-SOMS (RES) 555.00 48.00 **HOURS** PCTsb-003M-0001-SOMSD (RES) 555.25 48.00 **HOURS** 529.00 PCTss-004M-0001-SO (RES) 48.00 **HOURS** PCTss-005M-0001-DS (RES) **HOURS** 533.25 48.00 PCTss-005M-0001-SO (RES) 533.25 48.00 **HOURS**

Project Name and Number: W912QR-12-F-0212 -

PCTss-006M-0001-SO (RES)

PCTss-007M-0001-SO (RES)

PCTss-008M-0001-SO (RES)

Lab Reporting Batch ID: 320-18324-1

6/2/2016 8:38:12 PM ADR version 1.9.0.325 Page 1 of 2

531.25

534.75

535.50

48.00

48.00

48.00

HOURS HOURS

HOURS

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method: 8260C Preparation Method: Method Matrix: SO

Sample ID	Туре	Actual	Criteria	Units	Flag
PCTss-006M-0001-SO (RE)	Sampling To Analysis	24.00	14.00	DAYS	J(all detects) UJ(all non-detects)

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method:	8270D
Matrix:	AQ

QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCS 320-106852/2-A LCSD 320-106852/3-A (PCTss-006M-0001-ER)	BENZOIC ACID	0	0	10.00-40.00	-	BENZOIC ACID	J (all detects) R (all non-detects)
LCSD 320-106852/3-A (PCTss-006M-0001-ER)	HEXACHLOROETHANE	-	-	21.00-115.00	21 (20.00)	HEXACHLOROETHANE	J(all detects) UJ(all non-detects)

 $6/2/\overline{2}$ 016 8:38:23 PM ADR version 1.9.0.325 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method:	8081B	
Matrix:	so	

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS PCTss-006M-0001-SOMSD (PCTss-006M-0001-SO)	ENDOSULFAN I	153	424	53.00-132.00	95 (30.00)	ENDOSULFAN I	J (all detects)

Method: 8270D

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS PCTss-006M-0001-SOMSD (PCTss-006M-0001-SO)	BENZOIC ACID	0	0	10.00-89.00	-	BENZOIC ACID	J(all detects) UJ(all non-detects)

Method: 6010C

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTss-006M-0001-SOMS (TOT) PCTss-006M-0001-SOMSD (TOT) (PCTss-006M-0001-SO)	ALUMINUM IRON	1593 1890	1399 1321	74.00-119.00 81.00-118.00		ALUMINUM IRON	J(all detects)
PCTss-006M-0001-SOMS (TOT) PCTss-006M-0001-SOMSD (TOT) (PCTss-006M-0001-SO)	ANTIMONY MANGANESE	27 -197	26 -30	79.00-114.00 84.00-114.00		ANTIMONY MANGANESE	J(all detects) R(all non-detects)

 $6/2/\overline{2}$ 016 8:38:20 PM ADR version 1.9.0.325 Page 1 of 1

Method Blank Outlier Report

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method: Matrix:	6010C AQ				
Method Bla Sample ID		Analysis Date	Analyte	Result	Associated Samples
MB 320-107757	7/1-A	4/28/2016 10:43:00 AM	ZINC	0.00771 mg/L	PCTss-006M-0001-ER

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
PCTss-006M-0001-ER(RES/TOT)	ZINC	0.0037 mg/L	0.0037U mg/L

6/2/2016 8:38:16 PM ADR version 1.9.0.325 Page 1 of 1

Lab Reporting Batch ID: 320-18324-1 **Laboratory: TA SAC**

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: **GENCHEM**

Method: 353.2 Matrix: AQ

4/13/2016 12:30:00

Collected: PM Sample ID: PCTss-006M-0001-ER Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.48	U	0.48	CRDL	2.0	MRL	mg/L	R	StoA

Method Category: **GENCHEM**

Method: 353.2 Matrix: SO

Sample ID: PCTsb-001M-0001-SO Collected: 4/11/2016 4:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Sample ID: PCTsb-002M-0001-SO Collected: 4/12/2016 4:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

4/12/2016 12:30:00

Sample ID: PCTsb-003M-0001-SO Analysis Type: RES Collected: PM Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA	1

Sample ID: PCTss-004M-0001-SO Collected: 4/13/2016 2:40:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.96	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA

4/13/2016 10:25:00

		4/13/2010 10.23.00									
Sample ID: PCTss-005M-0001-DS	Collec	ted: AM		A	nalysis T	ype: RES	3		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: GENCHEM

Method: 353.2 Matrix: SO

4/13/2016 10:20:00

Sample ID: PCTss-005M-0001-SO Collected: AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.84	J	0.78	CRDL	5.0	MRL	mg/Kg	J	RI, StoA

Sample ID: PCTss-007M-0001-SO Collected: 4/13/2016 9:10:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.77	U	0.77	CRDL	5.0	MRL	mg/Kg	R	StoA

Sample ID: PCTss-008M-0001-SO Collected: 4/13/2016 8:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrocellulose	0.78	U	0.78	CRDL	5.0	MRL	mg/Kg	R	StoA

Method Category: GENCHEM

Method: 6850 Matrix: SO

Sample ID: PCTsb-001M-0001-SO Collected: 4/11/2016 4:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.41	J	0.15	CRDL	5.1	MRL	ug/Kg	J	RI

Method Category: METALS

Method: Matrix: AG

4/13/2016 12:30:00

	Sample ID. PC155-000W-0001-ER	Conec	teu. PM			ilalysis i	ype. KLS	,101		Dilution. 1
	Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
- [
	IRON	0.027	J	0.020	CRDL	0.10	MRL	mg/L	J	RI

Analysis Tymes DEC/TOT

Commis ID, DCToo 000M 0004 ED

Dilusiana 4

Dilution: 1

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: METALS

Method: 6010C Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	0.31	J	0.25	CRDL	1.0	MRL	mg/L	J	RI
ZINC	0.0037	J	0.0030	CRDL	0.020	MRL	mg/L	U	Mb

Method Category: METALS

Method: 6010C Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	9700	DJ	5.5	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.92	ΠΊ	0.92	CRDL	2.9	MRL	mg/Kg	R	Ms
CADMIUM	0.23	JD	0.029	CRDL	0.29	MRL	mg/Kg	J	RI
IRON	15000	DJ	2.0	CRDL	9.8	MRL	mg/Kg	J	Ms
MANGANESE	730	DJ	0.25	CRDL	0.98	MRL	mg/Kg	J	Ms
SODIUM	41	JD	20	CRDL	98	MRL	mg/Kg	J	RI

Method Category: SVOA

Method: 8081B Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4'-DDE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
4,4'-DDT	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ALDRIN	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-BHC	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
ALPHA-CHLORDANE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
вета-внс	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
DELTA-BHC	0.012	U	0.012	CRDL	0.054	MRL	ug/L	UJ	StoE
DIELDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN I	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8081B Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDOSULFAN II	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDOSULFAN SULFATE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
ENDRIN ALDEHYDE	0.027	U	0.027	CRDL	0.11	MRL	ug/L	UJ	StoE
ENDRIN KETONE	0.022	U	0.022	CRDL	0.11	MRL	ug/L	UJ	StoE
gamma-BHC (Lindane)	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
GAMMA-CHLORDANE	0.013	U	0.013	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR	0.0076	U	0.0076	CRDL	0.054	MRL	ug/L	UJ	StoE
HEPTACHLOR EPOXIDE	0.0065	U	0.0065	CRDL	0.054	MRL	ug/L	UJ	StoE
METHOXYCHLOR	0.046	U	0.046	CRDL	0.11	MRL	ug/L	UJ	StoE
TOXAPHENE	0.55	U	0.55	CRDL	2.2	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method: 8081B Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-CHLORDANE	0.47	J	0.20	CRDL	1.7	MRL	ug/Kg	J	RI
DELTA-BHC	0.24	J	0.16	CRDL	1.7	MRL	ug/Kg	J	RI

Method Category: SVOA

Method: 8082A Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1016	0.098	U	0.098	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1221	0.12	U	0.12	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1232	0.18	U	0.18	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1242	0.13	U	0.13	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1248	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

^{*} denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8082A Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PCB-1254	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE
PCB-1260	0.11	U	0.11	CRDL	1.1	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method: 8270D Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Benzo[a]anthracene	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TRICHLOROPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4,6-TRICHLOROPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DICHLOROPHENOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DIMETHYLPHENOL	2.3	U	2.3	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROPHENOL	21	U	21	CRDL	62	MRL	ug/L	UJ	StoE
2-CHLOROPHENOL	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLPHENOL	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROPHENOL	2.0	U	2.0	CRDL	10	MRL	ug/L	UJ	StoE
3 & 4 Methylphenol	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
4,6-DINITRO-2-METHYLPHENOL	2.3	U	2.3	CRDL	62	MRL	ug/L	UJ	StoE
4-CHLORO-3-METHYLPHENOL	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROPHENOL	6.3	U	6.3	CRDL	62	MRL	ug/L	UJ	StoE
BENZOIC ACID	21	UQ	21	CRDL	77	MRL	ug/L	R	Lcs, StoE
PENTACHLOROPHENOL	5.2	U	5.2	CRDL	62	MRL	ug/L	UJ	StoE
PHENOL	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Cumple ID. 1 C133 CCCIII CCC1 EIX	Conco	tou. Fivi			naiyoio i	ypc. ILEC	DAOLI	ILO IIIAL	Dilation. 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,4-TRICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
1,2-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,3-DICHLOROBENZENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
1,4-DICHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
2,4-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2,6-DINITROTOLUENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
2-CHLORONAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
2-METHYLNAPHTHALENE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
2-NITROANILINE	2.1	U	2.1	CRDL	52	MRL	ug/L	UJ	StoE
3,3'-DICHLOROBENZIDINE	0.99	U	0.99	CRDL	52	MRL	ug/L	UJ	StoE
3-NITROANILINE	1.4	U	1.4	CRDL	52	MRL	ug/L	UJ	StoE
4-BROMOPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROANILINE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
4-CHLOROPHENYL PHENYL ETHER	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
4-NITROANILINE	1.5	U	1.5	CRDL	52	MRL	ug/L	UJ	StoE
ACENAPHTHENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ACENAPHTHYLENE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
ANTHRACENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[a]pyrene	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[b]fluoranthene	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[g,h,i]perylene	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
Benzo[k]fluoranthene	0.99	U	0.99	CRDL	10	MRL	ug/L	UJ	StoE
BENZYL ALCOHOL	2.7	U	2.7	CRDL	10	MRL	ug/L	UJ	StoE
Bis (2-chloroisopropyl) ether	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-CHLOROETHOXY)METHANE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Bis(2-chloroethyl)ether	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
BIS(2-ETHYLHEXYL) PHTHALATE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
Butyl benzyl phthalate	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
CARBAZOLE	1.2	U	1.2	CRDL	10	MRL	ug/L	UJ	StoE
CHRYSENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZ(A,H)ANTHRACENE	2.1	U	2.1	CRDL	10	MRL	ug/L	UJ	StoE
DIBENZOFURAN	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: SVOA

Method: 8270D Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIETHYL PHTHALATE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
DIMETHYL PHTHALATE	0.91	U	0.91	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-BUTYL PHTHALATE	1.1	U	1.1	CRDL	10	MRL	ug/L	UJ	StoE
DI-N-OCTYL PHTHALATE	1.5	U	1.5	CRDL	10	MRL	ug/L	UJ	StoE
FLUORANTHENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
FLUORENE	0.96	U	0.96	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBENZENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROBUTADIENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
HEXACHLOROCYCLOPENTADIENE	5.2	U	5.2	CRDL	52	MRL	ug/L	UJ	StoE
HEXACHLOROETHANE	1.4	UQ	1.4	CRDL	10	MRL	ug/L	UJ	Lcs, StoE
Indeno[1,2,3-cd]pyrene	3.5	U	3.5	CRDL	15	MRL	ug/L	UJ	StoE
ISOPHORONE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
NAPHTHALENE	1.3	U	1.3	CRDL	10	MRL	ug/L	UJ	StoE
NITROBENZENE	1.6	U	1.6	CRDL	10	MRL	ug/L	UJ	StoE
N-Nitrosodi-n-propylamine	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE
N-NITROSODIPHENYLAMINE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PHENANTHRENE	1.0	U	1.0	CRDL	10	MRL	ug/L	UJ	StoE
PYRENE	1.4	U	1.4	CRDL	10	MRL	ug/L	UJ	StoE

Method Category: SVOA

Method: 8270D Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZOIC ACID	280	UJ	280	CRDL	1600	MRL	ug/Kg	UJ	Ms

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: VOA

Method: 8260C Matrix: AQ

4/13/2016 12:30:00

Sample ID: PCTss-006M-0001-ER Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLOROFORM	0.20	J	0.12	CRDL	1.0	MRL	ug/L	J	RI

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RE Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1,1-TRICHLOROETHANE*	0.19	UH	0.19	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1,2,2-TETRACHLOROETHANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1,2-TRICHLOROETHANE*	0.31	UH	0.31	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1-DICHLOROETHANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
1,1-DICHLOROETHENE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-Dibromoethane (EDB)*	0.22	UH	0.22	CRDL	2.0	MRL	ug/L	UJ	StoA
1,2-DICHLOROETHANE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-Dichloroethene, Total*	0.20	UH	0.20	CRDL	1.0	MRL	ug/L	UJ	StoA
1,2-DICHLOROPROPANE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
2-BUTANONE (MEK)*	0.53	JH	0.35	CRDL	2.0	MRL	ug/L	J	RI, StoA
2-HEXANONE*	0.17	UH	0.17	CRDL	2.0	MRL	ug/L	UJ	StoA
4-METHYL-2-PENTANONE (MIBK)*	0.18	UH	0.18	CRDL	2.0	MRL	ug/L	UJ	StoA
ACETONE	20	Н	2.1	CRDL	10	MRL	ug/L	J	StoA
BENZENE*	0.13	UH	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOCHLOROMETHANE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMODICHLOROMETHANE*	0.14	UH	0.14	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOFORM*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA
BROMOMETHANE*	0.29	UH	0.29	CRDL	1.0	MRL	ug/L	UJ	StoA
CARBON DISULFIDE*	0.16	UH	0.16	CRDL	2.0	MRL	ug/L	UJ	StoA
CARBON TETRACHLORIDE*	0.15	UΗ	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROBENZENE*	0.12	UH	0.12	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLORODIBROMOMETHANE*	0.13	UΗ	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROETHANE*	0.34	UH	0.34	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROFORM*	0.12	UH	0.12	CRDL	1.0	MRL	ug/L	UJ	StoA
CHLOROMETHANE*	0.25	UH	0.25	CRDL	1.0	MRL	ug/L	UJ	StoA
CIS-1,2-DICHLOROETHENE*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA
CIS-1,3-DICHLOROPROPENE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: VOA

Method: 8260C Matrix: AQ

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RE Dilution: 1

oumpic ID. I O 133 Octili Oct I ID	Conco	tou. Trioiz	0.00.00.	OU AIII A	nuny 515 1	ypc. IL		Dilution. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ETHYLBENZENE*	0.15	UН	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
METHYLENE CHLORIDE*	4.6	Н	0.35	CRDL	1.0	MRL	ug/L	J	StoA	
m-Xylene & p-Xylene*	0.18	UH	0.18	CRDL	1.0	MRL	ug/L	UJ	StoA	
O-XYLENE*	0.10	UH	0.10	CRDL	1.0	MRL	ug/L	UJ	StoA	
STYRENE*	0.21	JHM	0.15	CRDL	1.0	MRL	ug/L	J	RI, StoA	
TETRACHLOROETHENE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
TOLUENE*	0.25	UH	0.25	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRANS-1,2-DICHLOROETHENE*	0.11	UH	0.11	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRANS-1,3-DICHLOROPROPENE*	0.15	UH	0.15	CRDL	1.0	MRL	ug/L	UJ	StoA	
TRICHLOROETHENE*	0.13	UH	0.13	CRDL	1.0	MRL	ug/L	UJ	StoA	
VINYL CHLORIDE*	0.22	UH	0.22	CRDL	1.0	MRL	ug/L	UJ	StoA	
Xylenes, Total*	0.18	UH	0.18	CRDL	1.5	MRL	ug/L	UJ	StoA	

Sample ID: PCTss-006M-0001-TB Collected: 4/13/2016 8:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE*	7.8	JQ	2.1	CRDL	10	MRL	ug/L	J	RI
METHYLENE CHLORIDE	0.77	J	0.35	CRDL	1.0	MRL	ug/L	J	RI

Method Category: VOA

Method: 8260C Matrix: SO

4/13/2016 12:45:00
Sample ID: PCTss-006M-0001-SO

Collected: PM

Analysis Type: RE

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1,1-TRICHLOROETHANE*	0.52	UH	0.52	CRDL	7.2	MRL	ug/Kg	UJ	StoA
1,1,2,2-TETRACHLOROETHANE*	0.98	UH	0.98	CRDL	7.2	MRL	ug/Kg	UJ	StoA
1,1,2-TRICHLOROETHANE*	0.63	UH	0.63	CRDL	7.2	MRL	ug/Kg	UJ	StoA
1,1-DICHLOROETHANE*	0.42	UH	0.42	CRDL	7.2	MRL	ug/Kg	UJ	StoA
1,1-DICHLOROETHENE*	0.37	UH	0.37	CRDL	7.2	MRL	ug/Kg	UJ	StoA
1,2-Dibromoethane (EDB)*	0.39	UH	0.39	CRDL	14	MRL	ug/Kg	UJ	StoA
1,2-DICHLOROETHANE*	1.0	UH	1.0	CRDL	7.2	MRL	ug/Kg	UJ	StoA

^{*} denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Dilution: 1

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: VOA

Method: 8260C Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RE Dilution: 1 Data DL Lab Lab RL Review Reason Result DL RL **Units** Code Analyte Qual Type **Type** Qual 1.3 UΗ **CRDL** 7.2 MRL UJ StoA 1,2-Dichloroethene, Total* 1.3 ug/Kg 1.2-DICHLOROPROPANE* 0.86 UН 0.86 **CRDL** 7.2 MRL UJ StoA ug/Kg 2-BUTANONE (MEK)* 2.0 UΗ 2.0 **CRDL** 14 MRL UJ StoA ug/Kg 2-HEXANONE* 1.1 UН 1.1 **CRDL** 14 MRL UJ ug/Kg StoA 4-METHYL-2-PENTANONE (MIBK)* 13 UН 1.3 **CRDL** 14 MRL ug/Kg UJ StoA 24 JΗ 2.0 **CRDL** UJ StoA, Tb **ACETONE*** 29 MRL ug/Kg BENZENE* 0.37 UΗ 0.37 **CRDL** 7.2 MRL UJ ug/Kg StoA **BROMOCHLOROMETHANE*** 1.4 UН 1.4 CRDL 7.2 MRL UJ StoA ug/Kg **BROMODICHLOROMETHANE*** 0.76 UΗ 0.76 **CRDL** 7.2 MRL UJ ug/Kg StoA 0.58 7.2 UJ **BROMOFORM*** UН 0.58 **CRDL** MRL ug/Kg StoA **BROMOMETHANE*** 1.2 UН 1.2 **CRDL** 7.2 MRL UJ StoA ug/Kg CARBON DISULFIDE* 0.70 UΗ 0.70 **CRDL** 14 MRL ug/Kg UJ StoA CARBON TETRACHLORIDE* 0.76 UН 0.76 **CRDL** 7.2 MRL ug/Kg UJ StoA CHLOROBENZENE* 0.42 UΗ 0.42 **CRDL** 7.2 MRL UJ ug/Kg StoA CHLORODIBROMOMETHANE* 0.37 UН 0.37 CRDL 7.2 MRL ug/Kg UJ StoA CHLOROETHANE* 0.65 UΗ 0.65 **CRDL** 7.2 MRL ug/Kg UJ StoA 0.37 UΗ **CRDL** 7.2 UJ CHLOROFORM* 0.37 MRL StoA ug/Kg CHLOROMETHANE* 0.72 UΗ 0.72 **CRDL** 7.2 MRL UJ StoA ug/Kg CIS-1,2-DICHLOROETHENE* 1.3 UΗ 1.3 **CRDL** 7.2 MRL UJ StoA ug/Kg UΗ 0.92 **CRDL** 7.2 UJ CIS-1,3-DICHLOROPROPENE* 0.92 MRL ug/Kg StoA ETHYLBENZENE* 0.49 UΗ 0.49 **CRDL** 7.2 MRL UJ StoA ug/Kg METHYLENE CHLORIDE* 1.2 UН 1.2 **CRDL** 7.2 MRL UJ StoA ug/Kg 1.2 UΗ 1.2 **CRDL** 7.2 MRL UJ StoA m-Xylene & p-Xylene* ug/Kg O-XYLENE' 0.47 UН 0.47 **CRDL** 7.2 MRL UJ StoA ug/Kg STYRENE* 0.45 UΗ 0.45 **CRDL** 7.2 UJ MRL ug/Kg StoA TETRACHLOROETHENE* 0.88 UΗ 0.88 **CRDL** 7.2 MRL UJ ug/Kg StoA TOLUENE* 0.88 UН 0.88 **CRDL** 7.2 MRL UJ StoA ug/Kg TRANS-1,2-DICHLOROETHENE* 0.55 UΗ 0.55 **CRDL** 7.2 MRL UJ StoA ug/Kg TRANS-1,3-DICHLOROPROPENE* 1.1 UΗ **CRDL** 7.2 MRL UJ 1.1 ug/Kg StoA

0.86

0.52

1.2

TRICHLOROETHENE³

VINYL CHLORIDE*

Xylenes, Total*

0.86

0.52

1.2

CRDL

CRDL

CRDL

7.2

7.2

7.2

MRL

MRL

MRL

ug/Kg

ug/Kg

UН

UН

UН

StoA

StoA

StoA

UJ

UJ

UJ

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method Category: VOA

Method: 8260C Matrix: SO

4/13/2016 12:45:00

Sample ID: PCTss-006M-0001-SO Collected: PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACETONE	8.3	J	2.0	CRDL	28	MRL	ug/Kg	U	Tb

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Reason Code Legend

Reason Code	Description
Lcs	Laboratory Control Precision
Lcs	Laboratory Control Spike Lower Rejection
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Estimation
StoA	Sampling to Analysis Rejection
StoE	Sampling to Extraction Estimation
Surr	Surrogate/Tracer Recovery Upper Estimation
Tb	Trip Blank Contamination

^{*} denotes a non-reportable result

Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method: 6010C

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-ER	IRON SODIUM ZINC]]	0.027 0.31 0.0037	0.10 1.0 0.020	MRL MRL MRL	mg/L mg/L mg/L	J (all detects)

Method: 8260C

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-ER	CHLOROFORM	J	0.20	1.0	MRL	ug/L	J (all detects)
PCTss-006M-0001-TB	2-BUTANONE (MEK) ACETONE METHYLENE CHLORIDE STYRENE	JHM JQ JH	0.53 7.8 0.77 0.21	2.0 10 1.0 1.0	MRL MRL MRL MRL	ug/L ug/L ug/L ug/L	J (all detects)

Method: 353.2

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-004M-0001-SO	Nitrocellulose	J	0.96	5.0	MRL	mg/Kg	J (all detects)
PCTss-006M-0001-SO	Nitrocellulose	J	0.84	5.0	MRL	mg/Kg	J (all detects)

Method: 6010C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-SO	CADMIUM SODIUM	J D	0.23 41	0.29 98	MRL MRL	mg/Kg mg/Kg	J (all detects)

Method: 6850

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTsb-001M-0001-SO	PERCHLORATE	J	0.41	5.1	MRL	ug/Kg	J (all detects)

6/2/2016 8:38:26 PM ADR version 1.9.0.325 Page 1 of 2

Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method: 8081B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-SO	ALPHA-CHLORDANE DELTA-BHC	J	0.47 0.24	1.7 1.7	MRL MRL	ug/Kg ug/Kg	J (all detects)

Method: 8260C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTss-006M-0001-SO	ACETONE	JН	24	29	MRL	ug/Kg	J (all detects)

6/2/2016 8:38:26 PM ADR version 1.9.0.325 Page 2 of 2

Trip Blank Outlier Report

Lab Reporting Batch ID: 320-18324-1 Laboratory: TA SAC

EDD Filename: 320-18324-1 eQAPP Name: Pika_Ravenna_05012016

Method: 8260C Matrix: SO				
Trip Blank Sample ID	Collected Date	Analyte	Result	Associated Samples
PCTss-006M-0001-TB(RE)	4/13/2016 8:00:00 AM	2-BUTANONE (MEK) ACETONE METHYLENE CHLORIDE STYRENE	0.53 ug/L 20 ug/L 4.6 ug/L 0.21 ug/L	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-006M-0001-SO PCTss-006M-0001-SO PCTss-006M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO
PCTss-006M-0001-TB (RES)	4/13/2016 8:00:00 AM	ACETONE METHYLENE CHLORIDE	7.8 ug/L 0.77 ug/L	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-005M-0001-SO PCTss-006M-0001-ER PCTss-006M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
PCTss-006M-0001-SO(RES)	ACETONE	8.3 ug/Kg	8.3U ug/Kg

6/2/2016 8:38:33 PM ADR version 1.9.0.325 Page 1 of 1

Field QC Assignments and Associated Samples

EDD File Name: 320-18324-2

eQapp Name: Pika Ravenna 05012016a

Associated	Sample Collection
Samples	Date
Cumpies	Date

Field QC Sample: PCTss-005M-0001-DS

QC Type: FD

PCTss-005M-0001-SO

4/13/2016 10:20:00 AM

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

Method: 6010C Matrix: SO

Sample ID: PCTsb-001M-0001-SO	Collected: 4/11/2016 4:45:00 PM	Analysis Type: RES/TOT	Dilution: 2
		,, e.c , per = e, . e .	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.95	U	0.95	CRDL	3.0	MRL	mg/Kg	R	Ms		
ARSENIC	2.7	JD	1.3	CRDL	4.0	MRL	mg/Kg	J	RI		
BERYLLIUM	0.22	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI		
CADMIUM	0.043	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI		
IRON	8100	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms		
MANGANESE	56	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms		
SILVER	0.13	JD	0.091	CRDL	0.50	MRL	mg/Kg	U	Mb		
SODIUM	21	JD	20	CRDL	100	MRL	mg/Kg	J	RI		
ALUMINUM	6300	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms		

Sample ID: PCTsb-002M-0001-SO Collected: 4/12/2016 4:50:00 PM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	11000	D	5.5	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms
IRON	22000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms
MANGANESE	330	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms
SILVER	0.15	JD	0.089	CRDL	0.49	MRL	mg/Kg	U	Mb
SODIUM	36	JD	20	CRDL	99	MRL	mg/Kg	J	RI

4/12/2016 12:30:00
Sample ID: PCTsb-003M-0001-SO

Collected: PM

Analysis Type: RES/TOT

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	8100	JD	5.6	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.94	UJ	0.94	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.081	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	17000	JD	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	490	JD	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.18	JD	0.090	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	30	JD	20	CRDL	100	MRL	mg/Kg	J	RI

Sample ID: PCTss-004M-0001-SO Collected: 4/13/2016 2:40:00 PM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	11000	D	5.7	CRDL	20	MRL	mg/Kg	J	Ms

denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

Method: 6010C Matrix: SO

Sample ID: PCTss-004M-0001-SO Collected: 4/13/2016 2:40:00 PM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.95	U	0.95	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.21	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	21000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	420	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.19	JD	0.091	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	36	JD	20	CRDL	100	MRL	mg/Kg	J	RI

4/13/2016 10:25:00

Sample ID: PCTss-005M-0001-DS Collected: AM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	7900	D	5.5	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.10	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	13000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms
MANGANESE	440	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms
SILVER	0.31	JD	0.089	CRDL	0.49	MRL	mg/Kg	U	Mb
SODIUM	21	JD	20	CRDL	99	MRL	mg/Kg	J	RI

4/13/2016 10:20:00
Sample ID: PCTss-005M-0001-SO
Collected: AM
Analysis Type: RES/TOT
Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	7800	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.93	U	0.93	CRDL	3.0	MRL	mg/Kg	R	Ms
CADMIUM	0.11	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI
IRON	13000	D	2.0	CRDL	9.9	MRL	mg/Kg	J	Ms
MANGANESE	460	D	0.25	CRDL	0.99	MRL	mg/Kg	J	Ms
SILVER	0.25	JD	0.089	CRDL	0.50	MRL	mg/Kg	U	Mb
SODIUM	21	JD	20	CRDL	99	MRL	mg/Kg	J	RI

Sample ID: PCTss-007M-0001-SO Collected: 4/13/2016 9:10:00 AM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	9100	D	5.7	CRDL	20	MRL	mg/Kg	J	Ms
ANTIMONY	0.96	U	0.96	CRDL	3.1	MRL	mg/Kg	R	Ms
CADMIUM	0.13	JD	0.031	CRDL	0.31	MRL	mg/Kg	J	RI

denotes a non-reportable result

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

Method: 6010C Matrix: SO

Sample ID: PCTss-007M-0001-SO Collected: 4/13/2016 9:10:00 AM Analysis Type: RES/TOT Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	15000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms
MANGANESE	570	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms
SILVER	0.29	JD	0.092	CRDL	0.51	MRL	mg/Kg	U	Mb
SODIUM	22	JD	20	CRDL	100	MRL	mg/Kg	J	RI

Sample ID: PCTss-008M-0001-SO Collected: 4/13/2016 8:30:00 AM Analysis Type: RES/TOT Dilution: 2

•	• • •									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	7900	D	5.6	CRDL	20	MRL	mg/Kg	J	Ms	
ANTIMONY	0.94	U	0.94	CRDL	3.0	MRL	mg/Kg	R	Ms	
CADMIUM	0.15	JD	0.030	CRDL	0.30	MRL	mg/Kg	J	RI	
IRON	13000	D	2.0	CRDL	10	MRL	mg/Kg	J	Ms	
MANGANESE	500	D	0.25	CRDL	1.0	MRL	mg/Kg	J	Ms	
SILVER	0.20	JD	0.090	CRDL	0.50	MRL	mg/Kg	U	Mb	
SODIUM	22	JD	20	CRDL	100	MRL	mg/Kg	J	RI	

Method Category: METALS

Method: 7471A Matrix: SO

Sample ID: PCTsb-001M-0001-SO Collected: 4/11/2016 4:45:00 PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.015	JΗ	0.0051	CRDL	0.024	MRL	mg/Kg	J	RI, StoA

Sample ID: PCTsb-002M-0001-SO Collected: 4/12/2016 4:50:00 PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.020	JΗ	0.0051	CRDL	0.024	MRL	mg/Kg	J	RI, StoA

4/12/2016 12:30:00
Sample ID: PCTsb-003M-0001-SO
Collected: PM
Analysis Type: RES/TOT
Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.023	JΗ	0.0052	CRDL	0.024	MRL	mg/Kg	J	RI, StoA

denotes a non-reportable result

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method Category: METALS

Method: 7471A Matrix: SO

Sample ID: PCTss-004M-0001-SO	Collected: 4/13/2016 2:40:00 P	M Analysis Type: RES/TOT	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.038	Н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA

4/13/2016 10:25:00

Sample ID: PCTss-005M-0001-DS Collected: AM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.038	Н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA

4/13/2016 10:20:00

Sample ID: PCTss-005M-0001-SO Collected: AM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.035	Н	0.0051	CRDL	0.024	MRL	mg/Kg	J	StoA

Sample ID: PCTss-007M-0001-SO Collected: 4/13/2016 9:10:00 AM Analysis Type: RES/TOT Dilution: 1

4	Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
N	MERCURY	0.039	Н	0.0052	CRDL	0.024	MRL	mg/Kg	J	StoA

Sample ID: PCTss-008M-0001-SO Collected: 4/13/2016 8:30:00 AM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.040	Н	0.0052	CRDL	0.024	MRL	mg/Kg	J	StoA

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Reason Code Legend

Reason Code	Description
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Re ection
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Re ection

Data Review Summary

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Validation Area	Note
Technical Holding Times	SR
Temperature	A
Initial Calibration	N
Continuing Calibration/Initial Calibration Verification	N
Method Blanks	SR
Surrogate/Tracer Spikes	N
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	N
Laboratory Replicates	N
Laboratory Control Samples	A
Compound Quantitation	SR
Field Duplicates	A
Field Triplicates	N
Field Blanks	N

Field Duplicate RPD Report

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method: 6010C Matrix: SO

	Concentrat	tion (mg/Kg)			
Analyte	PCTss-005M-0001-SO (TOT)	PCTss-005M-0001-DS (TOT)	Sample RPD	eQAPP RPD	Flag
ALUMINUM	7800	7900	1	50.00	
ARSENIC	7.4	7.6	3	50.00	
BARIUM	49	49	0	50.00	
BERYLLIUM	0.31	0.30	3	50.00	
CADMIUM	0.11	0.10	10	50.00	
CALCIUM	280	340	19	50.00	
CHROMIUM	11	10	10	50.00	
COBALT	6.0	5.9	2	50.00	
COPPER	9.8	9.4	4	50.00	
IRON	13000	13000	0	50.00	No Qualifiers Applied
LEAD	27	27	0	50.00	
MAGNESIUM	1300	1300	0	50.00	
MANGANESE	460	440	4	50.00	
NICKEL	11	11	0	50.00	
POTASSIUM	470	470	0	50.00	
SILVER	0.25	0.31	21	50.00	
SODIUM	21	21	0	50.00	
VANADIUM	13	13	0	50.00	
ZINC	50	50	0	50.00	

Method: 7471A Matrix: SO

	Concentrat	tion (mg/Kg)			
Analyte	PCTss-005M-0001-SO (TOT)	PCTss-005M-0001-DS (TOT)	Sample RPD	eQAPP RPD	Flag
MERCURY	0.035	0.038	8	50.00	No Qualifiers Applied

7/6/2016 1:27:07 PM ADR version 1.9.0.325 Page 1 of 1

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 320-18324-2

EDD Filename: 320-18324-2

Laboratory: TA SAC eQAPP Name: Pika_Ravenna_05012016a

Method: 7471A Preparation Method: 7471A

Matrix: SO					
Sample ID	Туре	Actual	Criteria	Units	Flag
PCTsb-001M-0001-SO (RES/TOT)	Sampling To Analysis	72.00	28.00	DAYS	J (all detects)
PCTsb-002M-0001-SO (RES/TOT)	, ,	71.00	28.00	DAYS	R (all non-detects)
PCTsb-003M-0001-SO (RES/TOT)		71.00	28.00	DAYS	,
PCTsb-003M-0001-SOMS (RES/TOT)		71.00	28.00	DAYS	
PCTsb-003M-0001-SOMSD (RES/TO)		71.00	28.00	DAYS	
PCTss-004M-0001-SO (RES/TOT)		70.00	28.00	DAYS	
PCTss-005M-0001-DS (RES/TOT)		70.00	28.00	DAYS	
PCTss-005M-0001-SO (RES/TOT)		70.00	28.00	DAYS	
PCTss-007M-0001-SO (RES/TOT)		70.00	28.00	DAYS	
PCTss-008M-0001-SO (RES/TOT)		70.00	28.00	DAYS	

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method: 6010C Matrix: SO

Matrix. 00							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PCTsb-003M-0001-SOMS (TOT) PCTsb-003M-0001-SOMSD (TOT) (PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-005M-0001-SO PCTss-007M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO)	ALUMINUM IRON MANGANESE	1126 308 149	1141 489 134	74.00-119.00 81.00-118.00 84.00-114.00	-	ALUMINUM IRON MANGANESE	J (all detects)
PCTsb-003M-0001-SOMS (TOT) PCTsb-003M-0001-SOMSD (TOT) (PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-005M-0001-SO PCTss-007M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO)	ANTIMONY	19	21	79.00-114.00	-	ANTIMONY	J(all detects) R(all non-detects)

 $7/6/2016 \ 1:26:54$ PM ADR version 1.9.0.325 Page 1 of 1

Method Blank Outlier Report

Lab Reporting Batch ID: 320-18324-2 Laboratory: TA SAC

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method: 60100 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 320-115129/1-A	6/25/2016 10:48:00 AM	SILVER	0.114 mg/Kg	PCTsb-001M-0001-SO PCTsb-002M-0001-SO PCTsb-003M-0001-SO PCTss-004M-0001-SO PCTss-005M-0001-DS PCTss-005M-0001-SO PCTss-007M-0001-SO PCTss-008M-0001-SO

The following samples and their listed target analytes were qualified due to contamination reported in this

Sample ID	Analyte	Reported Result	Modified Final Result
PCTsb-001M-0001-SO(RES/TOT)	SILVER	0.13 mg/Kg	0.13U mg/Kg
PCTsb-002M-0001-SO(RES/TOT)	SILVER	0.15 mg/Kg	0.15U mg/Kg
PCTsb-003M-0001-SO(RES/TOT)	SILVER	0.18 mg/Kg	0.18U mg/Kg
PCTss-004M-0001-SO(RES/TOT)	SILVER	0.19 mg/Kg	0.19U mg/Kg
PCTss-005M-0001-DS(RES/TOT)	SILVER	0.31 mg/Kg	0.31U mg/Kg
PCTss-005M-0001-SO(RES/TOT)	SILVER	0.25 mg/Kg	0.25U mg/Kg
PCTss-007M-0001-SO(RES/TOT)	SILVER	0.29 mg/Kg	0.29U mg/Kg
PCTss-008M-0001-SO(RES/TOT)	SILVER	0.20 mg/Kg	0.20U mg/Kg

7/6/2016 1:26:47 PM ADR version 1.9.0.325 Page 1 of 1

Reporting Limit Outliers

Lab Reporting Batch ID: 320-18324-2 **Laboratory: TA SAC**

EDD Filename: 320-18324-2 eQAPP Name: Pika_Ravenna_05012016a

Method: 6010C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTsb-001M-0001-SO	ARSENIC BERYLLIUM CADMIUM SILVER SODIUM	10 10 10 10	2.7 0.22 0.043 0.13 21	4.0 0.30 0.30 0.50 100	MRL MRL MRL MRL MRL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
PCTsb-002M-0001-SO	SILVER SODIUM	J D	0.15 36	0.49 99	MRL MRL	mg/Kg mg/Kg	J (all detects)
PCTsb-003M-0001-SO	CADMIUM SILVER SODIUM	1 1 1 1	0.081 0.18 30	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-004M-0001-SO	CADMIUM SILVER SODIUM	1D 1D 1D	0.21 0.19 36	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-005M-0001-DS	CADMIUM SILVER SODIUM	JD JD JD	0.10 0.31 21	0.30 0.49 99	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-005M-0001-SO	CADMIUM SILVER SODIUM	1 1 1 1	0.11 0.25 21	0.30 0.50 99	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-007M-0001-SO	CADMIUM SILVER SODIUM	1 D 1 D 1 D	0.13 0.29 22	0.31 0.51 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)
PCTss-008M-0001-SO	CADMIUM SILVER SODIUM	JD JD JD	0.15 0.20 22	0.30 0.50 100	MRL MRL MRL	mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 7471A

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
PCTsb-001M-0001-SO	MERCURY	JН	0.015	0.024	MRL	mg/Kg	J (all detects)
PCTsb-002M-0001-SO	MERCURY	JΗ	0.020	0.024	MRL	mg/Kg	J (all detects)
PCTsb-003M-0001-SO	MERCURY	JΗ	0.023	0.024	MRL	mg/Kg	J (all detects)

Project Name and Number: W912QR-12-F-0212 - Site CC RVAAP-80 Group 2 Propellant Can Tops Area at Ravenna AAP

Data Validation Report For PIKA International, Inc.

Date: 10/27/16 Rev D

Project: RAVENNA PO# 1208157-009

Project LAB #: 320-18324-1 and 320-18324-2

Laboratory: Test America (Various)

Prepared By:

Signed: 9/2/2/2/2/2/William W. Purves

e-mail: wpurves330@gmail.com

Purves Environmental Data Validation Specialists

Table of Contents

Introduction	3
Quality Control	4
Method 8260B Summary	5
ICP Quality Control	4
Mercury Quality Control	7
Nitrate Quality Control Method 9056A	9
QC Summary	10
References	
Glossary of Terms	12
Tables Appendix A	15
Check Sheets Appendix B	

e-mail: wpurves330@gmail.com

1.0 Introduction

This Data Validation Report (DVR) details the assessment and validation of analytical data generated for samples collected by PIKA during field activities at the Ravenna Army Arsenal, Ravenna Ohio, PIKA Project # 1208157-009. The laboratories subcontracted for the chemical analysis of the soil and water samples were various Test America facilities. The laboratories are ELAP accredited.

This report is the accumulation of all the laboratory reports/project numbers into one document. The samples evaluated in this report were sampled April 11-13, 2016. All samples were delivered to TestAmerica in Canton, Ohio on April 14, 2016 and forwarded to ELAP certified TestAmerica Sacramento for analysis. Analytical results of the samples are provided by the ADR and not provided in this report. The professional judgment of the data and qualifiers used and/or changed by the data validator are presented under each method. An overview of the validation findings is presented in tabular form in Appendix A Appendix B contains all the check lists that were used in the validation effort. The methods are provided in the list following this paragraph:

Volatile Organic Compounds via USEPA Method 8260B
Semi-Volatile Organic Compounds via USEPA Method 8270C
Pesticides via USEPA Method 8081A
Poly Chlorinated Biphenyls via USEPA Method 8082
Explosives via USEPA Method 8330
Nitroglycerine via USEPA Method 8330
Nitroguanidine (propellant) via USEPA Method 8330 Modified
Perchlorate via USEPA Method 6860
Metals excluding Mercury via USEPA Methods 6010B and 6010B (trace)
Mercury by USEPA Methods 7470A (water) and 7471A (soil)
Nitrocellulose (propellant) via USEPA Methods 3532
Percent Solids via USEPA Method 160.3

All sample results were systematically verified using the ADR software (Level II Validation) followed by a Level IV validation by Purves Environmental in Hudson, OH in accordance with the project specified QAAP, DOD QSM, National Functional Guidelines for Data Validation and USEPA SW-846 Test Methods for Evaluating Solid Waste. A completeness review of 100% of the package was performed. One water sample (PCTss-006M-0001-ER, Equipment Rinse) and one soil sample (PCT ss-006M-0001-SO) were fully validated (complete reconstruction) to meet the project objective of Level IV validation of ten percent of the data. This validation includes all QA/QC data, calibration curves for ten percent of the compound listed, and any data where calibration or QA/QC data indicated an issue. The soil samples were evaluated and checked separately from the equipment rinse sample.

1.1 Sample Data Selection Criteria

All the QA/QC data was reviewed for the samples in all project numbers based upon the following criteria.

Flagging Criteria: All samples that had R, J, H, and M flags were checked.

Data Validation Specialists

As the QA/QC data was reviewed, all samples that were affected by any QA/QC outlier was isolated and reviewed. Ten Percent (10%) of the samples were then reviewed. Due to the small sample group, only one soil and water was available for full evaluation.

The of the data was validated in accordance with the analytical methods and the documents entitled:

Project Specified QAAP
The DOD QSM
National Functional Guidelines for Data Validation
USEPA Test Methods for evaluating Solid Waste SW-846

All data is computer generated and has been consistent. The data package used by Test America is an industry standard and re-calculation consistently demonstrates that there are no issues with the data in terms of accuracy of the calculations. Calculations that may be generated by hand was be checked. However, the computer data generation systems used by Test America are 100% accurate based upon the input. The only time that data validation issues arise is when the calibration, QA or QC does not meet established criteria and sample data is generated and reported within the outlying criteria.

The results of the data validation are presented in the following subsections.

Section 2.0 Quality Control Results Section 3.0 QC Summary Section 4.0 References Appendix A

2.0 Quality Control Results

This section provides a summary of the laboratory QC results, which were used to meet the project data quality objectives (DQOs) for the investigation. The section below outlines what parts of each method were checked and a brief statement is provided where issues may occur.

- 2.1 All organic data utilizes the same validation flagging letters.

 J= Estimated Value (used primarily when the result is below the reporting limit (RL) but above the detection limit (DL)), otherwise, when QA/QCs are out of range but the sample result is above the reporting limit.

 R= Rejected (used when calibrations and QA/QCs fail) often used per analyte when multiple compounds or elements are analyzed by the same method.
- 2.1.1 Metals Data Soils ICP Method 6010B and 6010B (trace) Soil, and Water.

Test America uses a J Flag as and estimated value for blank results that are greater than the Method Detection Limit (MDL) and below the Reporting Limit (RL) or Method Reporting Limit (MRL). The J flag is also used for data that is considered estimated for other quality control reasons as well. All data that was J

e-mail: wpurves330@gmail.com

flagged was reviewed by the data validator and an evaluation provided in the summary. All changes in flags by the data validator are fully explained.

2.1.2 Flag Removal

- 2.1.2.1 All estimated data generated for all organic and general chemistry are valid and should remain.
- 2.1.2.2 Results for aluminum, iron, and manganese by Method 6010B were more than 4 times greater than the spike concentration. All estimated results for aluminum, iron, and manganese by due to low MS/MSD recovery were removed because the spiking criteria were not met.
- 2.2 Method 8260B Volatile Organic Compounds (Water)
 - 2.2.1 Initial Calibration
 All method requirements were met for all data generated.
 - 2.2.2 Laboratory Control Sample (LCS) (Second Source Compounds)
 All method requirements were met. All LCS compounds
 recovered with in the method limits. The LCS Dup was also within
 method limits. The LCS/LCS Dup also substituted for the sample
 dup and all Relative Percent Differences passed.
 - 2.2.3 Continuing Calibration Checks. (CCCs)
 All method requirements were met. All CCCs recovered within the method limits except Acetone as described in the case narrative. This issue is normally due to acetone as a laboratory contaminant and it is the professional judgment that the sample is not affected by the contaminant.
 - 2.2.4 Matrix Spike and Matrix Spike Duplicate Analysis
 Not enough sample was provided for a MS/MSD analysis.
 - 2.2.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
 - 2.2.6 Method Blank

All the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

2.2.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

e-mail: wpurves330@gmail.com

2.2.8 Surrogates

All surrogates met method criteria

2.2.9 Internal Standards

All Internal Standards met method limits.

2.2.10 Tuning

Tuning requirements for the method were met.

2.2.11 SPCC Check

The SPCC Check met all method requirements.

2.2.12 Holding Time

The holding time for this sample was met.

2.2.13 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.3 Method 8260B Volatile Organic Compounds (Soil)

2.3.1 Initial Calibration

All method requirements were met for all data generated.

2.3.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered within the method limits. The LCS Dup was also within method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

2.3.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

2.3.4 Matrix Spike and Matrix Spike Duplicate Analysis

MS/MSD was not analyzed on a project sample. Per the laboratory narrative, "insufficient sample volume was provided to perform a matrix spike and matrix spike duplicate". This statement was provided for both analytical batches.

2.3.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.3.6 Method Blank

All the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

2.3.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.3.8 Surrogates

All surrogates met method criteria.

2.3.9 Internal Standards

All Internal Standards met method criteria.

2.3.10 Tuning

Tuning requirements for the method were met.

2.3.11 SPCC Check

The SPCC Check met all method requirements.

2.3.12 MRL Sequence Analysis

The MRL Analysis met method requirements

2.3.13 Holding Time

The holding time for this sample was met.

2.3.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.4 Method 8270C Semi-Volatile Organic Compounds (Water)

2.4.1 Initial Calibration

All method requirements were met for all data generated.

2.4.2 Laboratory Control Sample (LCS)

All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed. Benzoic Acid did not meet method requirements; however, Benzoic Acid is a poor chromatographic compound and has no effect on the non-detect data. The %RPD for Hexachloroethane did not affect sample data.

2.4.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

e-mail: wpurves330@gmail.com

- 2.4.4 Matrix Spike and Matrix Spike Duplicate Analysis
 Not enough sample was provided for a MS/MSD analysis.
- 2.4.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.4.6 Method Blank

All the blanks were below the reporting limit for water.

- 2.4.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.4.8 Surrogates

All surrogates met method limits.

- 2.4.9 Internal Standards
 All Internal Standards met method guidelines.
- 2.4.10 Tuning

Tuning requirements for the method were met.

2.4.11 SPCC Check

The SPCC Check met all method requirements.

2.4.12 MRL Standard

The MRL met method requirements.

2.4.13 Holding Time

Sample PCTss-006M-0001-SO was analyzed for the RVAAP full suite. Holding times were met except for re-extraction for Benzoic Acid to verify the low MS/MSD recoveries. No other issues were found.

2.4.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

- 2.5 Method 8270C Semi-Volatile Organic Compounds (Soil)
 - 2.5.1 Initial Calibration

All method requirements were met for all data generated.

2.5.2 Laboratory Control Sample (LCS) (Second Source Compounds)
All method requirements were met. All LCS compounds
recovered within the method limits. The LCS Dup was also within

method limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

2.5.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

2.5.4 Matrix Spike and Matrix Spike Duplicate Analysis

The MS/MSD recovery for Benzoic Acid was low for both the MS and MSD. Reference to multiple compounds in the narrative was incorrect as they were samples that were not part of the Ravenna sample group. No additional measures were taken to verify the reason for the low recovery thus the MS/MSD recovery. The flag stands for the Benzoic Acid.

2.5.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.5.6 Method Blank

All the blanks were below the reporting limit for water.

2.5.7 Field Duplicate (Sample Duplicate) Analysis

No field duplicate was available.

2.5.8 Surrogates

All surrogates met method limits.

2.5.9 Internal Standards

All Internal Standards met method guidelines.

2.5.10 Tuning

Tuning requirements for the method were met.

2.5.11 SPCC Check

The SPCC Check met all method requirements.

2.5.12 MRL Standard

The MRL met method requirements.

2.5.13 Holding Time

The holding times for the samples were met.

2.5.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

e-mail: wpurves330@gmail.com

2.6 Method 8081A Pesticides (Water)

The validation reviewed only those compounds of concern.

2.6.1 Initial Calibration

All method requirements were met for all data generated.

2.6.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.

2.6.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

2.6.4 Matrix Spike and Matrix Spike Duplicate Analysis There was insufficient sample to run the MS/MSD.

2.6.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met for most compounds

2.6.6 Method Blank

All the blanks were below the reporting limit for water.

2.6.7 Field Duplicate (Sample Duplicate) Analysis

No field duplicate was available.

2.6.8 Surrogates

All surrogates met method guidelines.

2.6.9 Holding Time

Holding times for extraction were met.

2.6.10 Endrin and 4,4'-DDT Breakdown

All breakdown analysis passed method requirements.

2.6.11 Retention Times

All retention times and retention time windows met method requirements.

2.6.12 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.7 Method 8081A Pesticides (Soil)

The validation reviewed only those compounds of concern.

2.7.1 **Initial Calibration**

All method requirements were met for all data generated.

2.7.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.

2.7.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

Matrix Spike and Matrix Spike Duplicate Analysis

The MS/MSD met method requirements for all compounds except Endosulfan I. The MS and MSD were biased high. Since no Endosulfan I was not detected in the samples, there was no effect on data.

2.7.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.7.6 Method Blank

All the blanks were below the reporting limit for water.

Field Duplicate (Sample Duplicate) Analysis

No field duplicate was available.

2.7.8 Surrogates

All surrogates met method limits.

2.7.9 Holding Time

There was no holding time issue with the sample.

2.7.10 Endrin and 4,4'-DDT Breakdown

All breakdown analysis passed method requirements.

2.7.11 Retention Times

All retention times and retention time windows met method requirements.

2.7.12 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.8 Method 8082 Polychlorinated Biphenyl (PCBs) (Water) The validation reviewed only those compounds of concern.

2.8.1 Initial Calibration

All method requirements were met for all data generated.

2.8.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.

2.8.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

- 2.8.3 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) There was not sufficient sample provided to perform a MS/MSD.
- 2.8.4 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

2.8.5 Method Blank

All the blanks were below the reporting limit for water.

2.8.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.8.7 Surrogates

All surrogates met recovery limits.

2.8.8 Holding Time

There was no holding time issue with the sample.

2.8.9 **Retention Times**

All retention times and retention time windows met method requirements.

2.8.10 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.9 Method 8082 Polychlorinated Biphenyl (PCBs) (Soil)

The validation reviewed only those compounds of concern.

2.9.1 Initial Calibration

All method requirements were met for all data generated.

- 2.9.2 Laboratory Control Sample (LCS) (Second Source Compounds)
 All method requirements were met. All LCS compounds
 recovered with in the method limits. The LCS Dup was also within
 method limits and all Relative Percent Differences passed.
- 2.9.3 Continuing Calibration Checks. (CCCs)
 All method requirements were met. All CCCs recovered within the method limits.
- 2.9.4 Matrix Spike and Matrix Spike Duplicate Analysis
 All method requirements were met. All Matrix Spike compounds
 recovered with in the method limits. The Matrix Spike Duplicate
 was also within method limits and all Relative Percent Differences
 passed.
- 2.9.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.9.6 Method Blank
 All the blanks were below the reporting limit for water.
- 2.9.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.9.8 Surrogates

All surrogates met method requirements except in the method blank. The recovery was biased positively and did not affect any sample data.

2.9.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.9.10 Holding Time

There was no holding time issue with the sample.

2.9.11 Retention Times

All retention times and retention time windows met method requirements.

2.9.12 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.10 Method 8330 Explosives and Nitroglycerine (Water) The validation reviewed only those compounds of concern.

2.10.1 Initial Calibration

All method requirements were met for all data generated.

- 2.10.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.10.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.10.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) Not enough sample was provided for MS/MSD analysis.
- 2.10.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.10.5 Method Blank

All the blanks were below the reporting limit for water.

- 2.10.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.10.7 Surrogates

All surrogates met method limits.

2.10.8 Holding Time

There was no holding time issue with the sample.

2.10.9 Retention Times

All retention times and retention time windows met method requirements.

2.10.10Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.11 Method 8330 Explosives (Includes Nitroglycerine)(Soil)

The validation reviewed only those compounds of concern.

2.11.1 Initial Calibration

All method requirements were met for all data generated.

- 2.11.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the method limits. The LCS Dup was also within method limits and all Relative Percent Differences passed.
- 2.11.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the method limits.
- 2.11.4 Matrix Spike and Matrix Spike Duplicate Analysis All method requirements were met. All Matrix Spike compounds recovered with in the method limits. The Matrix Spike Duplicate was also within method limits and all Relative Percent Differences passed.
- 2.11.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.11.6 Method Blank

All the blanks were below the reporting limit for water.

2.11.7 Field Duplicate (Sample Duplicate) Analysis The field duplicate was non-detect as well as the original sample. No percent difference can be calculated. (Nitroglycerine only).

2.11.8 Surrogates

All surrogates met method limits.

2.11.9 Manual Integration

Manual integration was performed and followed method guidelines.

2.11.10Holding Time

There was no holding time issue with the sample.

2.11.11Retention Times

All retention times and retention time windows met method requirements.

2.11.12Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.12 Method 8330 Modified Nitroguanidine (Water)

The validation reviewed only the compound of concern.

2.12.1 Initial Calibration

All method requirements were met for all data generated.

2.12.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered with in the method limits and the Relative Percent Difference passed.

2.12.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. The CCCs recovered within the method limits.

- 2.12.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) Not enough sample was provided for MS/MSD analysis.
- 2.12.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

2.12.6 Method Blank

All the blanks were below the reporting limit for water.

2.12.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.12.8 Surrogates

No surrogate is used in this method.

2.12.9 Holding Time

There was no holding time issue with the sample.

2.12.10Retention Times

All retention times and retention time windows met method requirements.

2.12.11Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.13 Method 8330 Modified Nitroguanidine (Soil)

The validation reviewed only the compound of concern.

2.13.1 Initial Calibration

All method requirements were met for all data generated.

2.13.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the method limits and the Relative Percent Difference passed.

2.13.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the method limits.

2.13.4 Matrix Spike and Matrix Spike Duplicate Analysis

All method requirements were met. The Matrix Spike and Matrix Spike Duplicate compound recovered within the method limits and the Relative Percent Difference passed.

2.13.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.13.6 Method Blank

All the blanks were below the reporting limit for water.

2.13.7 Field Duplicate (Sample Duplicate) Analysis

The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.

2.13.8 Surrogates

No surrogate is used in this method.

2.13.9 Holding Time

There was no holding time issue with the sample.

2.13.10Retention Times

All retention times and retention time windows met method requirements.

2.13.11Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.14 Method 6850 Perchlorate (Water)

2.14.1 Tune

Tune met method criteria.

2.14.2 Initial Calibration All method requirements were met.

- 2.14.3 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS ands LCS Dup compound recovered with in the method limits and the Relative Percent Difference passed.
- 2.14.4 LC Interference Check Standard
 The LC Interference Check Standard recovered within the method limits.
- 2.14.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

 Prep Batch reports that an MS/MSD was extracted but on data is provided in the report.
- 2.14.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.14.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.14.8 Holding Time

 There was no holding time issue with the sample.
- 2.14.9 Retention Times
 All retention times and retention time windows met method requirements.
- 2.14.10Method Blank, Initial Calibration Blank
 All the blanks were below the reporting limit for water
- 2.15 Method 6850 Perchlorate by ICMS (Soil) The validation reviewed only the compound of concern.
 - 2.15.1 Tune
 Tune met method criteria.
 - 2.15.2 Initial Calibration
 All method requirements were met for all data generated.
 - 2.15.3 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the method limits and the Relative Percent Difference passed.

2.15.4 LC Interference Check Standard

The LC Interference Check Standard recovered within the method limits

2.15.5 Matrix Spike and Matrix Spike Duplicate Analysis The Matrix Spike and Matrix Spike Duplicate met method requirements.

2.15.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
All method requirements were met.

2.15.7 Method Blank

All the blanks were below the reporting limit for water.

2.15.8 Field Duplicate (Sample Duplicate) Analysis

The field duplicate was non-detect as well as the original sample.

No percent difference can be calculated.

2.15.9 Holding Time

There was no holding time issue with the sample.

2.15.10 Retention Times, Relative Retention Time
All retention times and retention time windows met method requirements.

2.16 Method 353.2 Nitrocellulose General Chemistry (Water) The validation reviewed only the compound of concern.

2.16.1 Initial Calibration

All method requirements were met.

- 2.16.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.16.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
- 2.16.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The MS/MSD met method requirements.
- 2.16.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.

2.16.6 Method Blank, Initial Calibration Blank, Continuing Calibration Blank

All the blanks were below the reporting limit for water.

- 2.16.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.16.8 Holding Time There was no holding time issue with the sample.
- 2.17 Method 353.2 Nitrocellulose General Chemistry (Soil) The validation reviewed only the compound of concern.
 - 2.17.1 Initial Calibration All method requirements were met.
 - 2.17.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.17.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.17.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.17.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.17.6 Method Blank, Initial Calibration Blank, Continuing Calibration All the blanks were below the reporting limit for water.
 - 2.17.7 Field Duplicate (Sample Duplicate) Analysis The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.
 - 2.17.8 Holding Time There was no holding time issue with the samples.
- 2.18 Method 7470A Mercury (Water)
 - 2.18.1 Initial Calibration All method requirements were met.

- 2.18.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.18.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
- 2.18.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and the Matrix Spike Duplicate passed and the RPD was within method limits.
- 2.18.4 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.18.5 Method Blank, Initial Calibration Blank, Continuing Calibration Blank All the blanks were below the reporting limit for water.
- 2.18.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.18.7 Holding Time There was no holding time issue with the sample.
- 2.19 Method 7471A Mercury (Soil) Two packages were reviewed.
 - 2.19.1 Initial Calibration All method requirements were met.
 - 2.19.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.19.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.19.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.19.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

- 2.19.6 Method Blank, Initial Calibration Blank, Continuing Calibration Blank All the blanks were below the reporting limit.
- 2.19.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was provided.
- 2.19.8 Holding Time

There was no holding time issue with sample PCTss-006M-0001so in Project # 320-18324-1. The soil samples PCTsb-001M-0001-SO, PCTsb-002M-0001-SO, PCTsb-003M-0001-SO, PCTss-004M-0001-SO, PCTss-005M-0001-SO, PCTss-005M-0001-DS, PCTss-007M-0001-SO, PCTss-008M-0001-SO were all analyzed outside of the holding time for soil. All detected concentrations were qualified as estimated, biased low (J-).

- 2.20 Method 6010B and 6010B trace Metals (Water) The validation reviewed only the elements of concern.
 - 2.20.1 Initial Calibration All method requirements were met.
 - 2.20.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.20.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.20.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All the blanks were below the reporting limit.
 - 2.20.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.20.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.20.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.
 - 2.20.8 ICP Serial Dilution

No serial dilution as no elements were detected 4 time higher than the reporting limit.

- 2.20.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.
- 2.21 Method 6010B and 6010B trace Metals (Soil) The validation reviewed only the elements of concern.
 - 2.21.1 Initial Calibration All method requirements were met.
 - 2.21.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.21.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.21.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All the blanks were below the reporting limit.
 - 2.21.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD for many elements. The elements that had concentration that were more than 4 times greater than the spike concentration are not valid and do not have any affect on data

The MS/MSD results for antimony in soil were less than the evaluation criteria and the percent recovery for both the spike and duplicate were less than 35%. Therefore, the result for antimony in sample PCTsb-003M-0001-SO, associated with the low MS/MSD recovery, was rejected. However, since matrix homogeneity could not be established, antimony was not qualified in the associated batch samples.

- 2.21.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.21.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.
- 2.21.8 ICP Serial Dilution

The serial dilution passed for all elements that qualified. Elements that were not at least 10 time the reporting limit would not qualify.

2.21.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.

3.0 QC Summary

3.1 Executive Summary

3.3.1 All Methods

All the system quality assurance and controls were met. There is no indication that any instrument quality system did not meet method criteria. The Benzoic Acid in both water and soil failed due to the LCS and LCS Dup which is not an instrument issue. The flag for the Benzoic Acid is justified. The results for mercury in the seven samples that exceeded the holding time qualified as estimated, biased low (J-). The result for antimony in sample PCTsb-003M-0001-SO, associated with the low MS/MSD recovery, was rejected.

3.3.2 Data Validator Narrative

For each issue the data validator provided an explanation for each issue that would have affected data. There were no issues in any sample or method that would have adversely affected any data. All data is valid and useful.

3.3.3 Holding Times

The issue regarding the holding time for Mercury in soils in report 320-18324-2: It is the professional judgment of the data validator that the results are usable (J-).

3.4 Usability and Comparability

Usability of data was evaluated by assuring that all the analytical requests were met, samples that were received in the proper condition, and all analysis were performed within the appropriate holding times. Additionally, all quality control and quality assurance measures were taken to assure accurate and useable data. Most sample results that are estimated were flagged because the reported value is below the Reporting Limit. Eight results were estimated because of holding time exceedances and eight results were estimated because of matrix spike criteria exceedances. Except for one antimony result, all sample data above the Report Limit is valid and usable.

An overview of the validation findings is presented in tabular form in Appendix A. The check sheets and any additional comments are found in those sheets. The suggested data validation flags are listed below and are defined as follows:

R Quality Control (QC) indicated the data is not usable.

Purves Environmental

Data Validation Specialists

- J Indicates an estimated value.
- UJ Indicates that the compound is detected above the MDL (Method Detection Limit) but below the RL (Reporting Limit).
- U Indicates the compound or analyte was analyzed for, but not detected at or above the stated limit.

The above flags are incorporated in the data table where they apply based upon the RVAAP QAAP. Any flags generated by the laboratory utilizing the laboratory's internal QC program are not presented in the data tables.

All sample data described in this report are usable and valid except for one antimony result.

4.0 References

RVAAP QAAP
The DOD QSM
National Functional Guidelines for Data Validation
USEPA Test Methods for evaluating Solid Waste SW-846

Glossary of Terms

°C degrees Celsius

CCB Continuing Calibration Blank (used in Metals analysis)

CCV Continuing Calibration Verification (used in all methods to verify system calibration)

CLP Contract Laboratory Program (used in Superfund program)

COC Chain of Custody
%D Percent Difference
DQO Data Quality Objectives

DS Down Stream
FB Field Blank
FD Field Duplicate

ICB Initial Calibration Blank (used primarily in metals analysis)

ICP Inductively Coupled Plasma

ICPMS Inductively Coupled Plasma Mass Spectrometer

ICV Initial Calibration Verification (second source standard used to initially verify the

calibration curve.

ICS Interference Check Solution (used in ICP and ICPMS only)

ICSA Interference Check Solution A

ICSAB Interference Check Solution A&B combined

IS Internal Standard

LCG Louisville Chemistry Guideline Version 5

LCS Laboratory Control Sample
MRL Method Reporting Limit (MRL)
MDL Method Detection Limit (MDL)

MD Matrix Duplicate (often referred to as the sample duplicate)

MSA Method of Standard Additions

MS/MSD Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

PARCC Precision, Accuracy, Representativeness, Completeness, Comparability

PD Post Digested Spike (also PDS)

QA Quality Assurance

OAPP Ouality Assurance Project Plan

QC Quality Control

RPD Relative Percent Difference RSD Relative Standard Deviation SAP Sampling and Analysis Plan

SD Standard Deviation SDG Sample Delivery Group

SOP Standard Operating Procedure (SOPs is plural)

TB Trip Blank

TCLP Toxic Compound Leaching Procedure
TERC Total Environmental Restoration Contract
USACE or United States Army Corps of Engineers

ACE Army Corps of Engineers

USEPA United States Environmental Protection Agency

%R Percent Recovery

Appendix A

Tables

Flag Change Table

Analyte	Lab	ADR	QAAP	Validator	Samples Affected	Reason For Change
	Flag	Flag	Flag	Flag		
Aluminum	JD	J	none	none	PCTsb-003M-0001-SO	The spike concentrations were less than 4 time the analyte
Iron	JD	J	none	none	PCTsb-003M-0001-SO	concentration in the sample (<1/4). Therefore, no qualification
Manganese	JD	J	none	none	PCTsb-003M-0001-SO	is required.
Mercury	JH	J	R	J-	PCTsb-001M-0001-SO	The holding time for mercury was exceeded. The results are
	JH	J	R	J-	PCTsb-002M-0001-SO	qualified as estimated, biased low.
	JH	J	R	J-	PCTsb-003M-0001-SO	
	JH	J	R	J-	PCTss-004M-0001-SO	
	JH	J	R	J-	PCTss-005M-0001-SO	
	JH	J	R	J-	PCTss-005M-0001-DS	
	JH	J	R	J-	PCTss-007M-0001-SO	
	JH	J	R	J-	PCTss-008M-0001-SO	
Antimony	UJ	R	U	U	PCTsb-001M-0001-SO	The MS/MSD results for antimony in soil were less than the
	UJ	R	U	U	PCTsb-002M-0001-SO	evaluation criteria and the percent recovery for both the spike
	UJ	R	R	R	PCTsb-003M-0001-SO	and duplicate were less than 35%. Therefore, antimony in
	UJ	R	U	U	PCTss-004M-0001-SO	sample PCTsb-003M-0001-SO, associated with the low
	UJ	R	U	U	PCTss-005M-0001-SO	MS/MSD recovery, was rejected. However, since matrix
	UJ	R	U	U	PCTss-005M-0001-DS	homogeneity could not be established, antimony was not
	UJ	R	U	U	PCTss-007M-0001-SO	qualified in the associated batch samples.
	UJ	R	U	U	PCTss-008M-0001-SO	
Nitrocellulose	U	R	U	U	PCTsb-001M-0001-SO	Samples were extracted and analyzed within the QAPP
	U	R	U	U	PCTsb-002M-0001-SO	required holding time for preserved samples. No qualification
	U	R	U	U	PCTsb-003M-0001-SO	was warranted.
	U	R	U	U	PCTss-004M-0001-SO	
	U	R	U	U	PCTss-005M-0001-SO	
	U	R	U	U	PCTss-005M-0001-DS	
	U	R	U	U	PCTss-007M-0001-SO	
	U	R	U	U	PCTss-008M-0001-SO	

Appendix B

All Check Lists

Semi-Volatile Organic Analysis Checklist Method 8270C

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

Holding Time:	
---------------	--

Tune

	Yes	No
Were Samples extracted within holding times?	Yes	
Were Samples analyzed within holding times?	Yes	
Was DFTPP tune performed at the beginning of each 12-hour	Yes	
period during which samples were analyzed?		

M/	\/	
Was mass assignment based on m/z 198?	Yes	
Was mass assignment bassa on m/2 100.	100	

Indicate if DFTPP ion abundance relative to m/z 198 base peak met the ion abundance criteria.

,		
m/z	Acceptance Criter	ำล

51	30-60%	Yes
68	< 2% mass 69	Yes
70	< 2% mass 69	Yes
127	40-60%	Yes
197	<1%	Yes
198	100% Base Peak	Yes
199	5-9%	Yes
275	10-30%	Yes
365	>1%	Yes
441	present but < mass 443	Yes
442	>40%	Yes
443	17-23% of mass 442	Yes

Initial Calibration

Five calibration standard minimum	Yes	
Was the linear model applied?	Yes	
Was the quadratic model applied as needed?	Yes	

System Performance Check Compounds (SPCC)

Did they meet the minimum mean responsfactor?

N-nitroso-di-n-propylamine	Yes	
Hexachlorocyclopentadiene	Yes	
2,4-dinitrophenol	Yes	
4-nitrophenol	Yes	

Calibration Check Compounds (CCC)

Did the RSD meet the criteria of < 30% for each compound?

Base/Neutral Fraction:

Acenaphthene	Yes
1,4-Dichlorobenzene	Yes
Hexachlorobutadiene	Yes
Diphenylamine	Yes
Di-n-octylphthalate	Yes
Fluoranthene	Yes
Benzo(a)pyrene	Yes

Acid Fraction

4-Chloro-3-3methylphenol	Yes
2,4-Dichlorophenol	Yes
2-Nitrophenol	Yes
Phenol	Yes
Pentachlorophenol	Yes
2,4,6-Trchlorophenol	Yes

Semi-Volatile Organic Analysis Checklist Method 8270C (Cont pg 2)

	Are the RSDs <15% for the remaining target analytes	Yes	
	Are the 1003 C1376 for the remaining target analytes	163	
	If No are the mean RSDs < 15%		
	or r >0.99 with a mean RSD < 15% with a maximum RSD< 30%	?	
ual Integration	Was manual integration "M" performed?	Yes	1
Manual i	intrgration was performed within the method guidelines and was require		ing condition
IDL	Was MDL shock performed?	IVoo	1
IDL	Was MDL check performed?	Yes	
IRL	Was QCMRL run at thebeginning and end of every daily	Yes	
	sequence or every 12 hours?		ļ
	Was OOMBI hatware 70 4200/ massiver	- Vaa	1
	Was QCMRL between 70-130% recovery	Yes	
	For the non-contaminants of concern, was the QCMRL	Yes	
	between 50-150%	103	
	26.11.06.11.007.0		
al Calibration Veri	fication (ICV)		
	In the mid level (2nd course) recovery within 70 1200/ for	Vac	1
	Is the mid level (2nd source) recovery within 70-130% for contaminants of concern?	Yes	
	Is the mid level (2nd source) recovery within 50-150% for	Yes	
	non-contaminants of concern?	100	<u> </u>
	-		
inuing Calibration	Verification (CCV)		1
	Was CCV run every 12 hours?	Yes	
	Did SPCC meet the minimum mean response factor?		
	N-nitroso-di-n-propylamine	Yes	
	Hexachlorocyclopentadiene	Yes	
	2,4-dinitrophenol	Yes	
	4-nitrophenol	Yes	
	Did the CCC meet the minimum requirements (D< 20%)		
	bid the 600 meet the minimum requirements (5/20%)		
	Base/Neutral Fraction:	To a	1
	Acenaphthene	Yes	
	1,4-Dichlorobenzene	Yes	-
	Hexachlorobutadiene Diebonylomine	Yes	
	Diphenylamine Di-n-octylphthalate	Yes Yes	1
	Fluoranthene	Yes	
	Benzo(a)pyrene	Yes	
	Acid Fraction		
	4-Chloro-3-3methylphenol	Yes	
	2,4-Dichlorophenol	Yes	
	2-Nitrophenol	Yes	
	Phenol	Yes	
		Voc	
	Pentachlorophenol	Yes	
	Pentachlorophenol 2,4,6-Trchlorophenol	Yes	

Semi-Volatile Organic Ana	alysis Checklist Method 8270C (Cont pg 3)		
	Maximum allowable drift for each target analyte s <30%	Yes	
	when D < 20%?		
	•		
Sample Analysis			
	Was the RRT of an identified componet within +/- 0.06	Yes	
	RRT units of the RRT f the standard componet.		
	Did the abundanceof ions I the sample spectra agree within	Yes	
	30% of the major ions (> 10% of the base peak) in the standard		
	spectra		
	Were internal standards within the QC limits of -50% to +200%	Yes	
Sample Quality Control			
M 41 151 1	Two to the Albert of Main IRI	lv I	
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
1.00	Were the Or recognise for the LOO within the PariteO	IV.	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MC/MCD	Mana manant mana wisa within annual limita?	NI/A	
MS/MSD	Were percent recovries within control limits?	N/A	
	Ware DDD within control limits 2	NI/A	
	Were RPD within control limits?	N/A	
C			
Surrogates	And a company of the control of the	Iv	
	Are surrogate recoveries within QC limits	Yes	

Some surrogates were diluted out. All other surrogates met method requirements Comments

Signed:____Will sur Pures

LCS

Method 8330 Nitroaromatic, Nitramine and Nitroglycerine Data Analysis (Explosive Residues) Checklist

Project Name: Ravenna PO# 1208157-009 Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1 Yes No **Holding Time:** Were Samples extracted within holding times? Yes Were Samples analyzed within holding times? Yes **Initial Calibration** Five calibration standard minimum Yes **Manual Integration** Was manual integration "M" performed? Yes **QCMDL** Was MDL check performed? Yes **QCMRL** Was QCMRL run at the beginning and end of every daily Yes sequence or every 12 hours? Was the % "D" <30% Yes Intital Calibration Verification (ICV) Is the mid level (2nd source) recovery within 85-115% Yes **Continuing Calibration Verification (CCV)** Was CCV run at the beginning of the day or run every 12 hours? Yes Was the midpoint sample (CCV) conducted every ten samples Yes or every 12 hours? Was the midpoint sample (CCV) conducted at the end of the Yes day/run. Did the CCV meet the minimum requirements (D<15% with a Yes maximum D < 20% for a specific compound. Sample Analysis Was the RRT of an identified componet within the required Yes retention time window. Were all identified hits, above the initial calibration curve diluted Yes and reanalyzed Were all identified compounds confirmed on a second column Yes Was all RPD of target analyte confirmation <40% Yes Was there a shoulder on the 2,4,6-TNT peak? No **Sample Quality Control Method Blank** Were Target analytes < 1/2 the MRL for the Method Blank Yes

Were the % recoveries for the LCS within the limits?

Yes

Method 8330 Nitroaromatic, Nitramine and Nitroglycerine Data Analysis (Explosive Residues) Checklist

MS/MSD	Were percent recovries within control limits?	Yes: Soils only run			
	Were RPD within control limits?	Yes			
Surrogates					
	Are surrogate recoveries within QC limits	Yes			
Second Column Confirmation					
	Was Second column confirmation performed?	Yes			

Comments

Signed:____Will sur Pures

QCMDL

Volatile Organic Analysis Checklist Method 8260B Project Name: Ravenna PO# 1208157-009 Laboratory: TestAmerica (Various) TestAmerica Job ID: 320-18324-1 No Yes **Holding Time:** Were Samples extracted within holding times? Yes Were Samples analyzed within holding times? Yes Was BFB tune performed at the beginning of each 12-hour Yes Tune period during which samples were analyzed? Was mass assignment based on m/z 95, 174, 176 Yes m/e Acceptance Criteria 50 15.0-40.0% of mass 95 Yes 75 30.0-60.0% of mass 95 Yes 95 Base Peak 100% Yes 5.0-9.0% of mass 95 Yes 96 173 Less than 2% of mass 174 Yes 174 50.0-120.0 of mass 95 Yes 175 Yes 5.0-9.0% of mass 174 Yes 176 95.0-101.0% of mass 174 177 5.0-9.0% of mass 176 Yes **Initial Calibration** Five calibration standard minimum Yes Was the linear model applied? Yes Was the quadratic model applied as needed? Yes System Performance Check Compounds (SPCC) Did the SPCC meet the minimum mean response factor? Yes **Calibration Check Compounds (CCC)** Did the RSD meet the criteria of < 30% for each compound? Yes **Remaining Target Analytes** Are the RSDs <15% for the remaining target analytes Yes If No are the mean RSDs < 15% or r >0.99 with a mean RSD < 15% with a maximum RSD< 30%? **Manual Integration** Was manual integration "M" performed? Yes

Manual intrgration was performed within the method guidelines and was required under the operating conditions.

Yes

Was MDL check performed?

Volatile Organic Analysis (Checklist Method 8260B (Cont)		
QCMRL	Was QCMRL run at thebeginning and end of every daily	Yes	
	sequence or every 12 hours?		
	Was QCMRL between 70-130% recovery	Yes	
	For the non-contaminants of concern, was the QCMRL	Yes	
	between 50-150%		
Intital Calibration Verification	ion (ICV)		
	Is the mid level (2nd source) recovery within 70-130% for	Yes	
	contaminants of concern?		
	Is the mid level (2nd source) recovery within 50-150% for	Yes	
	non-contaminants of concern?		
Continuing Calibration Ver		1	
	Was CCV run every 12 hours?	Yes	
Drift			
	Maximum allowable drift for each target analyte s <30%	Yes	
	when D < 20%?		
Sample Analysis			
	Was the RRT of an identified componet within +/- 0.06	Yes	
	RRT units of the RRT f the standard componet.		
	Did the abundanceof ions I the sample spectra agree within	Yes	
	30% of the major ions (> 10% of the base peak) in the standard	_	
	spectra		
	Were internal standards within the QC limits of -50% to +200%	Yes	
Sample Quality Control			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soil Only Run	
	Were RPD within control limits?	Yes: Soil Only Run	
Surrogates			
Surrogates	Are surrogate recoveries within QC limits	Yes	
	Are surrogate recoveries within two limits	103	ļJ
Comments			
Mili	ser Pine		
Signed:	- luc		
oigilou	William W. Purves		

Method 8081A Pesticides

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1 Yes No **Holding Time:** Were Samples extracted within holding times? Yes Were Samples analyzed within holding times? Yes **Initial Calibration** Five calibration standard minimum Yes **Manual Integration** Was manual integration "M" performed? Yes Was MDL check performed? **QCMDL** Yes **QCMRL** Yes Was QCMRL run at the beginning and end of every daily sequence or every 12 hours? Was the % "D" <30% Yes **Intital Calibration Verification (ICV)** Is the mid level (2nd source) recovery within 85-115% Yes **Continuing Calibration Verification (CCV)** Was CCV run at the beginning of the day or run every 12 hours? Yes Was the midpoint sample (CCV) conducted every ten samples Yes or every 12 hours? Was the midpoint sample (CCV) conducted at the end of the Yes day/run. Yes Did the CCV meet the minimum requirements (D<15% with a maximum D < 20% for a specific compound. Sample Analysis Was the RRT of an identified componet within the required Yes retention time window. Were all identified hits, above the initial calibration curve diluted Yes and reanalyzed

Were all identified compounds confirmed on a second column

Was all RPD of target analyte confirmation <40%

Was there Endrin or 4,4-DDT peak breakdown?

Yes

Yes

No

Method 8081A Pesticides (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
	<u> </u>	l.,	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only run	
	Wasa DDD within control limits?	lv	
	Were RPD within control limits?	Yes	
Surrogates			
Surroyates	Are surrogate recoveries within QC limits	Yes	

Comments

Signed:___

William W. Purves

Method 8082 PCB (Arochlors) Project Name: Ravenna PO# 1208157-009 Laboratory: TestAmerica (Various) TestAmerica Job ID: 320-18324-1 Yes No **Holding Time:** Were Samples extracted within holding times? Yes Were Samples analyzed within holding times? Yes **Initial Calibration** Five calibration standard minimum Yes **Manual Integration** Was manual integration "M" performed? Yes **QCMDL** Was MDL check performed? Yes **QCMRL** Yes Was QCMRL run at the beginning and end of every daily sequence or every 12 hours? Was the % "D" <30% Yes **Intital Calibration Verification (ICV)** Is the mid level (2nd source) recovery within 85-115% Yes **Continuing Calibration Verification (CCV)** Was CCV run at the beginning of the day or run every 12 hours? Yes Was the midpoint sample (CCV) conducted every ten samples Yes or every 12 hours? Was the midpoint sample (CCV) conducted at the end of the Yes day/run. Yes Did the CCV meet the minimum requirements (D<15% with a maximum D < 20% for a specific compound. Sample Analysis Was the RRT of an identified componet within the required Yes retention time window. Were all identified hits, above the initial calibration curve diluted Yes and reanalyzed

Were all identified compounds confirmed on a second column

Was all RPD of target analyte confirmation <40%

Was there Endrin or 4,4-DDT peak breakdown?

Yes

Yes

No

Method 8082 PCBs (Arochlors) (Cont)

Sample Quality Control

Were Target analytes < 1/2 the MRL for the Method Blank Yes	
Were the % recoveries for the LCS within the limits?	Yes
Were percent recovries within control limits?	Yes: Soils only run
Were RPD within control limits?	Yes
Are surrogate recoveries within QC limits	Yes
ation	
Was Second column confirmation performed?	Yes
	Were the % recoveries for the LCS within the limits? Were percent recovries within control limits? Were RPD within control limits? Are surrogate recoveries within QC limits

Comments:

Signed:___

William W. Purves

Method 8330 Modified Nitroguanidine Check List Project Name: Ravenna PO# 1208157-009 TestAmerica (Various) Laboratory: TestAmerica Job ID: 320-18324-1 Yes No **Holding Time:** Were Samples extracted within holding times? Yes Were Samples analyzed within holding times? Yes **Initial Calibration** Five calibration standard minimum Yes **Manual Integration** Was manual integration "M" performed? No **QCMDL** Was MDL check performed? Yes **QCMRL** Yes Was QCMRL run at the beginning and end of every daily sequence or every 12 hours? Was the % "D" <30% Yes **Intital Calibration Verification (ICV)** Is the mid level (2nd source) recovery within 85-115% Yes **Continuing Calibration Verification (CCV)** Was CCV run at the beginning of the day or run every 12 hours? Yes Was the midpoint sample (CCV) conducted every ten samples Yes or every 12 hours? Was the midpoint sample (CCV) conducted at the end of the Yes day/run. Did the CCV meet the minimum requirements (D<15% with a Yes maximum D < 20% for a specific compound. Sample Analysis Was the RT of an identified componet within the required Yes retention time window. Were all identified hits, above the initial calibration curve diluted Yes and reanalyzed Were all identified compounds confirmed on a second column Yes

Was all RPD of target analyte confirmation <40%

Yes

Method 8330 Modified Nitroguanidine Check List (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes: Soils only run	
	_	1	
	Were RPD within control limits?		
Second Column Confirmat	ion		
	Was Second column confirmation performed?	Yes	

Comments

Signed:____

William W. Purves

Method 6850 Perchlorate LCMS Check List

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

MS Tune		Yes	No
	Did the system Tune Pass?	Yes	
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
		•	•
Initial Calibration	Five calibration standard minimum	Yes	
	,	•	
Manual Integration			
	Was manual integration "M" performed?		No
	Trac mariaa mogranom mi ponomioa.		
QCMDL	Was MDL check performed?	Yes	
QCIVIDE	was MDL check performed:	165	
001101			
QCMRL	hu aana	.,	
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
	Was the % "D" <30%	Yes	
Internal Standard			
	Did the internal Standard Meet Method Criteria?	Yes	
		•	
Intital Calibration Verificati	on (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
	is the find level (2nd source) recovery within 65-11576	163	
Canting in a Calibration Van	Highlan (CCV)		
Continuing Calibration Ver	mication (CCV)		
	hu 000/ 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\ <u>'</u>	1
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
		ī	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		
	maximum b < 20% for a specific compound.	<u>_</u>]	
Commis Amelicais			
Sample Analysis	West to BBT of an idea (Control of the Control of t	V	1
	Was the RRT of an identified componet within the required	Yes	
	retention time window.	_	
	Were all identified hits, above the initial calibration curve diluted	Yes	
	and reanalyzed		

Method 6850 Perchlorate LCMS Check List (Cont)

Sample Quality Control

Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank Yes		
LCS	Were the % recoveries for the LCS within the limits?	Yes	
	<u></u>		
MS/MSD	Were percent recovries within control limits? Yes: Soils of		
	Were RPD within control limits?	Yes	

Comments

Signed:___

William W. Purves

Method 6010B ICP Metals (Water and Soil)

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1 and 320-18324-2

Haldina Time	Ware Consider automated within helding Conseq	ly
Holding Time:	Were Samples extracted within holding times? Were Samples analyzed within holding times?	Yes
	were Samples analyzed within holding times?	Yes
Initial Calibration	Three calibration standard minimum	Yes
		, , , , , , , , , , , , , , , , , , ,
ICV	Did the ICV Pass?	Yes
ICS A&B		
	Did the ICS A & B Pass?	Yes
OCMDI	Was MDI shaek parformed?	Yes
QCMDL	Was MDL check performed?	res
QCMRL		
	Was QCMRL run at the beginning and end of every daily	Yes
	sequence or every 12 hours?	
	Was the recovery 75-125%	Yes
Intital Calibration Verificat	ion (ICV)	
	Is the mid level (2nd source) recovery within 90-110%	Yes
	is the find level (2nd source) recovery within 90-11076	163
Continuing Calibration ve	rification (CCV)	
Continuing Calibration Ve	rification (CCV)	
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples	Yes
Continuing Calibration Ve	, ,	Yes
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the	Yes Yes
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples	
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run.	Yes
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the	
	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements	Yes Yes
Continuing Calibration Ve	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run.	Yes
	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements	Yes Yes
Sample Analysis	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements	Yes Yes
Sample Analysis	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements	Yes Yes
Sample Analysis Sample Quality Control Method Blank	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank	Yes Yes Yes
Sample Analysis Sample Quality Control	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range?	Yes Yes
Sample Analysis Sample Quality Control Method Blank LCS	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank Were the % recoveries for the LCS within the limits?	Yes Yes Yes
Sample Analysis Sample Quality Control Method Blank	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank	Yes Yes Yes
Sample Analysis Sample Quality Control Method Blank LCS	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank Were the % recoveries for the LCS within the limits?	Yes Yes Yes Yes Yes
Sample Analysis Sample Quality Control Method Blank LCS	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank Were the % recoveries for the LCS within the limits?	Yes Yes Yes
Sample Analysis Sample Quality Control Method Blank LCS	Was the midpoint sample (CCV) conducted every ten samples Was the midpoint sample (CCV) conducted at the end of the day/run. Did the CCV meet the minimum requirements Was all data within the calibration range or diluted within the range? Were Target analytes < 1/2 the MRL for the Method Blank Were the % recoveries for the LCS within the limits?	Yes Yes Yes Yes Yes

Method 6010B ICP Metals (Water and Soil) (Cont)

Comments:

TestAmerica Job ID: 320-18324-1 and 320-18324-2

The water for Job # 320-18324-1 was analyzed within holding requirements.

The Soil for Job # 320-18324-1 was analyzed at the same time as the water

The Soils for Job # 320-18324-2 were analyzed within the holding time eventhough Soils have no specified holding time in 40CFR136

Signed:_

William W. Purves

Wille ser Pens

Method 7141A	Mercury (Soil)
--------------	----------------

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-2

Holding Time:	Were Samples extracted within holding times? 320-18324-2		
Initial Calibration	Five calibration standard minimum	Yes	
icv	Did the ICV Pass	Yes	
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily sequence or every 12 hours?	Yes	
	Was the recovery 75-125%	Yes	
Intital Calibration Verificat	tion (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration Ve	erification (CCV)		
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	Was the midpoint sample (CCV) conducted at the end of the day/run.	Yes	
	Did the CCV meet the minimum requirements	Yes	
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes	
Sample Quality Control			
Method Blank	Was mercury results analytes < 1/2 the MRL for the Method Blank	Yes	
	We set the OV second set for the LOO within the Parity O	ly	· -
LCS	Were the % recoveries for the LCS within the limits?	Yes	
MS/MSD	Were percent recovries within control limits?	Yes	
	Were RPD within control limits?	Yes	

Comments:

Signed:___

William W. Purves

^{*} Soils have no established hold time in 40CFR136, all of the soil data for mercury is valid H flags should be removed.

Method 7140A/7141A Mercury (Water and Soil)

Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

		I		
Holding Time:	Were Samples extracted within holding times? 320-18324-1 Yes			
	F	I		
Initial Calibration	Five calibration standard minimum	Yes		
	From the second	I		
ICV	Did the ICV Pass	Yes		
	En la companya de la companya della companya della companya de la companya della	I		
QCMDL	Was MDL check performed?	Yes		
QCMRL				
	Was QCMRL run at the beginning and end of every daily	Yes		
	sequence or every 12 hours?			
		,		
	Was the recovery 75-125%	Yes		
Intital Calibration Verification	tion (ICV)			
	Is the mid level (2nd source) recovery within 85-115%	Yes		
Continuing Calibration Ve	rification (CCV)			
	Was the midpoint sample (CCV) conducted every ten samples	Yes		
		•		
	Was the midpoint sample (CCV) conducted at the end of the	Yes		
	day/run.	<u> </u>		
	Did the CCV meet the minimum requirements	Yes		
	Did the Cov most the minimum requirements	. 55		
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes		
oumpie Analysis	was an data within the samplation range of analoa within the range.	100		
Sample Quality Control				
Sample Quality Control				
Method Blank	Was mercury results analytes < 1/2 the MRL for the Method Blank	Yes		
WELTIOU DIATIK	was mercury results analytes < 1/2 the MRL for the Method Blank	162		
1.00	Mars the 04 recoveries for the LOO within the Parity	V		
LCS	Were the % recoveries for the LCS within the limits?	Yes		
110/1105	W	\ <u>\</u>		
MS/MSD	Were percent recovries within control limits?	Yes		
	Fig. 122	1		
	Were RPD within control limits?	Yes		

Comments:

Signed: William W. Purves

Method Nitrocellulose Method 353.2 (Water and Soil)

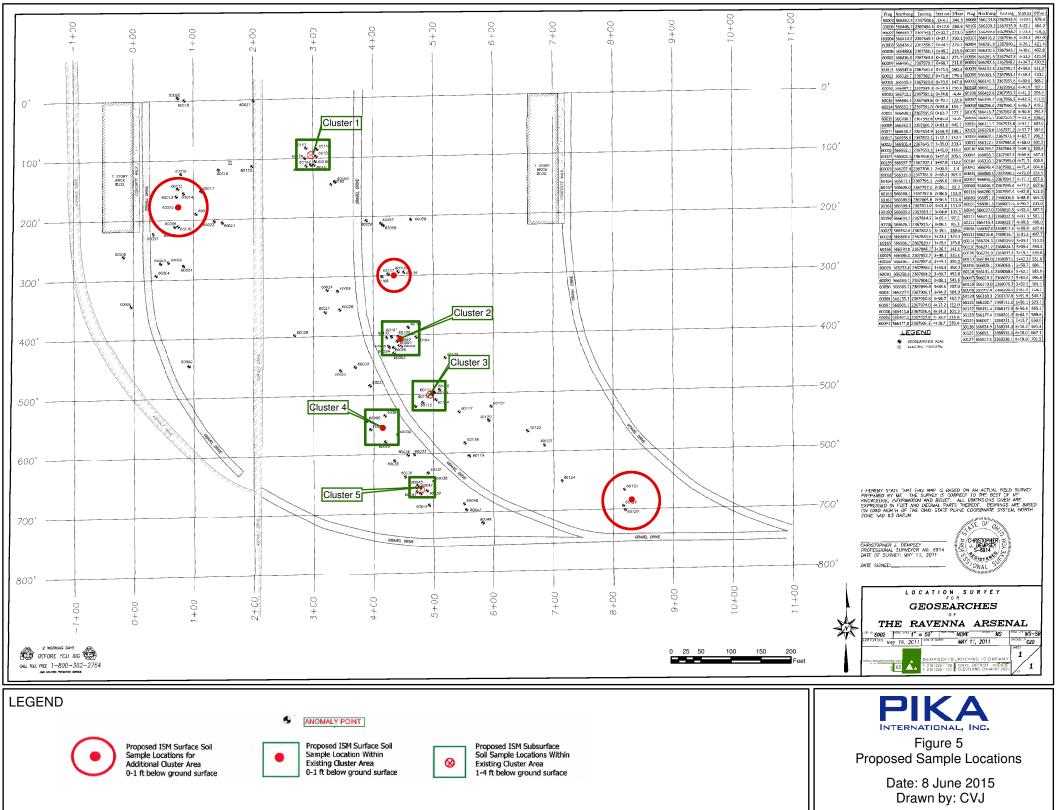
Project Name: Ravenna PO# 1208157-009
Laboratory: TestAmerica (Various)

TestAmerica Job ID: 320-18324-1

Holding Time:	Were Samples extracted within holding times?	Yes
Initial Calibration	Was the number of calibration standards required met?	Yes
ICV	Did the ICV Pass	Yes
QCMDL	Was MDL check performed?	Yes
QCMRL	Was QCMRL run at the beginning and end of every daily sequence or every 12 hours?	Yes
	Was the recovery requirements met?	Yes
Intital Calibration Verifica	ation (ICV)	
	Did the ICV met requirements?	Yes
Continuing Calibration V	erification (CCV)	
	Was the midpoint sample (CCV) conducted every ten samples	Yes
	Was the midpoint sample (CCV) conducted at the end of the day/run.	Yes
	Did the CCV meet the minimum requirements	Yes
Sample Analysis	Was all data within the calibration range or diluted within the range?	Yes
Sample Quality Control		
Method Blank	Was the blank results < 1/2 the MRL for the Method Blank	Yes
LCS	Were the % recoveries for the LCS within the limits?	Yes
MS/MSD	Were percent recovries within control limits?	Yes
	Were RPD within control limits?	Yes
Comments:		

Comments:

Signed:______William W. Purves


Wille se Pens

Draft SI Report for CR Site CC RVAAP-80 Group 2 Propellant Can Tops

696 Appendix D

697 Survey Data and Information

December 2016 Rev 0

Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset
60000	566262.5	2367606	0+91.8	445.7
60001	566430.3	2367596	0+83.7	277.7
60002	566436	2367570	0+58.1	271.7
60003	566434.2	2367557	0+44.9	273.2
60004	566414.2	2367550	0+37.5	293.1
60005	566362.4	2367509	-0+4.2	344.3
60006	566445.7	2367495	-0+17.0	260.8
60007	566483.7	2367544	0+32.7	223.6
60008	566488.6	2367560	0+49.2	218.9
60009	566496.2	2367580	0+68.7	211.6
60010	566497.1	2367585	0+74.5	210.8
60011	566518.2	2367615	1+04.4	190.2
60012	566528.7	2367582	0+71.8	179.1
60013	566547.6	2367582	0+71.5	160.3
60014	566552.3	2367594	0+83.6	155.7
60015	566559.9	2367584	0+73.9	147.9
60016	566585.1	2367589	0+79.1	122.9
60017	566555.9	2367622	1+12.1	152.5
60018	566592.1	2367651	1+41.9	116.8
60019	566708.3	2367593	0+85.0	-0.29
60020	566712.3	2367582	0+74.6	-4.44
60021	566707.4	2367708	2+00.5	2.4
60022	566505.4	2367646	1+35.0	203.4
60023	566503.1	2367659	1+47.9	205.9
60024	566388.6	2367836	3+23.1	323.1
60025	566386.8	2367853	3+40.1	325.1
60026	566356.1	2367857	3+44.1	355.9
60027	566352	2367833	3+19.4	359.6
60028	566313.3	2367782	2+68.2	397.5
60029	566253.8	2367859	3+44.4	458.2
60030	566259.6	2367884	3+69.7	452.8
60031	566227.9	2367909	3+94.2	484.9
60032	566145.3	2367956	4+39.6	568.2
60033	566112.4	2367985	4+68.0	601.5
60034	566111.7	2367974	4+57.1	602
60035	566102.4	2367952	4+34.6	611
60036	566075.1	2367970	4+52.4	638.6

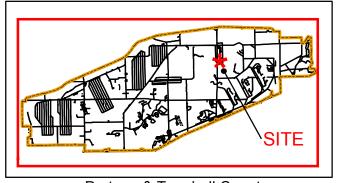
Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset
60037	566081.3	2368007	4+90.2	633
60038	566067	2368017	4+99.9	647.4
60039	566051.2	2368007	4+88.8	663
60040	566046.5	2367995	4+77.7	667.6
60041	566049.4	2367989	4+71.4	664.6
60042	566056.5	2367995	4+77.1	657.6
60043	566060.5	2367991	4+73.0	653.5
60044	566056.7	2367987	4+69.8	657.3
60045	566027	2368011	4+92.4	687.3
60046	566029.1	2368069	5+50.7	686.1
60047	566019.2	2368073	5+54.4	696
60048	565997	2368100	5+81.9	718.7
60056	566505.7	2367899	3+88.6	207
60057	566501.1	2367924	4+13.2	212
60058	566497.5	2367928	4+16.9	215.6
60059	566507.5	2367973	4+62.7	206.3
60088	566133.8	2367936	4+19.5	579.4
60089	566155.1	2367911	3+94.7	557.7
60090	566169.1	2367904	3+88.1	543.6
60091	566177.8	2367935	4+18.7	535.4
60093	566282.5	2367949	4+34.5	430.9
60094	566291.9	2367940	4+26.2	421.4
60095	566294.9	2367939	4+24.8	418.3
60096	566291.5	2367948	4+33.8	421.9
60097	566295.7	2367957	4+42.5	417.9
60098	566294.4	2367961	4+46.7	419.2
60099	566303.3	2367953	4+39.4	410.2
60100	566311.1	2367955	4+40.9	402.4
60101	566310.5	2367944	4+30.0	402.8
60102	566309.2	2367936	4+22.1	404
60103	566326	2367971	4+57.7	387.8
60104	566310.1	2367985	4+71.3	403.9
60105	566418.7	2367963	4+50.8	294.9
60106	566419.6	2367953	4+41.2	293.9
60107	566416.2	2367937	4+24.8	297
60108	566411.8	2367926	4+14.3	301.3
60109	566274.9	2368034	5+19.3	439.8

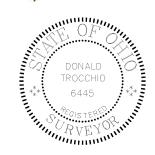
Ravenna, Ohio . Date: May 17, 2011


Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

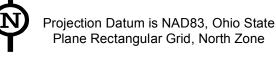
Flag	Northing	Easting	Station	Offset
60110	566221.2	2368025	5+09.4	493.4
60111	566216.8	2368017	5+01.6	497.7
60112	566216.4	2368014	4+98.6	498
60113	566213.3	2368013	4+97.3	501.1
60114	566204.5	2368019	5+03.6	510
60115	566200.3	2367997	4+82.0	513.8
60116	566193.5	2367985	4+69.3	520.4
60117	566184	2368058	5+42.2	531
60118	566131.3	2368069	5+52.1	583.9
60119	566110	2368076	5+59.5	605.3
60120	566169.3	2368108	5+91.9	546.5
60121	566192.7	2368112	5+96.1	523.1
60122	566151.4	2368173	6+56.6	565.3
60123	566127.4	2368201	6+84.7	589.8
60124	566067.1	2368231	7+13.7	650.6
60125	566052.1	2368336	8+18.0	667.1
60126	566024.9	2368334	8+16.2	694.4
60127	566017.8	2368338	8+19.8	701.5
60155	566597.7	2367707	1+97.8	112
60157	566628	2367797	2+88.1	83.2
60158	566626.1	2367815	3+06.5	85.3
60159	566614.2	2367815	3+05.4	97.2
60160	566605.8	2367813	3+04.0	105.5
60161	566599.4	2367811	3+01.8	111.9
60162	566599.9	2367806	2+96.5	111.4
60163	566598.1	2367798	2+88.5	113
60164	566611.1	2367795	2+86.0	100
60165	566566.7	2367839	3+29.6	145.1
60166	566570.8	2367846	3+36.5	141.1

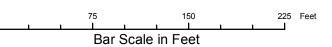
Camp Ravenna Joint Military Training Center



Portage & Trumbull County
LOCATOR MAP

Ohio Army National Guard


Produced in April 2016 for:


PIKA INTERNATIONAL, INC

GROUP 2 PROPELLANT CAN TOPS INVESTIGATION SITE CC RVAAP-80

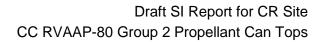
Multi Increment Sample Areas

Camp Ravenna JMTC 1438 State Route 534 SW Newton Falls, OH 44444 Don Trocchio, PS don.trocchio@vistasciences.com MGRS 17T NF01946150 (NAD83)

PROPELLANT CAN TOPS (RVAAP-80) SAMPLE AREAS COORDINATES

Prepared for PIKA Inc. by Vista Sciences Corporation

April 2016


Sample Area	Survey Point No.	·	UTM Coordin	ates, NAD83	Ohio State Plane Coordinates, NAD83		
		2000.100.0	NORTHING	EASTING	NORTHING	EASTING	
	105	NWC1	4,562,388.310	495,917.985	566,638.730	2,367,776.120	
	106	NEC1	4,562,387.996	495,936.264	566,638.730	2,367,836.120	
C1	107	SEC1	4,562,371.849	495,935.987	566,585.730	2,367,836.120	
	108	SWC1	4,562,372.164	495,917.707	566,585.730	2,367,776.120	
	109	Cent C1	4,562,380.080	495,926.986	566,612.230	2,367,806.120	
	110	NWC2	4,562,295.522	495,961.917	566,336.730	2,367,925.520	
	111	NEC2	4,562,295.182	495,981.720	566,336.730	2,367,990.520	
C2	112	SEC2	4,562,276.903	495,981.405	566,276.730	2,367,990.520	
	113	SWC2	4,562,277.243	495,961.603	566,276.730	2,367,925.520	
	114	CENT C2	4,562,286.213	495,971.661	566,306.730	2,367,958.020	
	115	NWC3	4,562,266.214	495,978.467	566,241.490	2,367,981.480	
	116	NEC3	4,562,265.900	495,996.746	566,241.490	2,368,041.480	
C3	117	SEC3	4,562,249.753	495,996.468	566,188.490	2,368,041.480	
	118	SWC3	4,562,250.068	495,978.189	566,188.490	2,367,981.480	
	119	CENT C3	4,562,257.984	495,987.467	566,214.990	2,368,011.480	
	120	NWC4	4,562,249.278	495,953.208	566,184.490	2,367,899.550	
	121	NEC4	4,562,248.964	495,971.487	566,184.490	2,367,959.550	
C4	122	SEC4	4,562,230.076	495,971.162	566,122.490	2,367,959.550	
	123	SWC4	4,562,230.390	495,952.883	566,122.490	2,367,899.550	
	124	CENT C4	4,562,239.677	495,962.185	566,153.490	2,367,929.550	
	125	NWC5	4,562,214.681	495,975.520	566,072.220	2,367,974.720	
	126	NEC5	4,562,214.451	495,988.925	566,072.220	2,368,018.720	
C5	127	SEC5	4,562,202.874	495,988.726	566,034.220	2,368,018.720	
	128	SWC5	4,562,203.104	495,975.321	566,034.220	2,367,974.720	
	129	CENT C5	4,562,208.778	495,982.123	566,053.220	2,367,996.720	

PROPELLANT CAN TOPS (RVAAP-80) SAMPLE AREAS COORDINATES

Prepared for PIKA Inc. by Vista Sciences Corporation

April 2016

Sample Area	Survey Point No.	Survey Point Description	UTM Coordin	ates, NAD83	Ohio State Plane Coordinates, NAD83		
		•	NORTHING	EASTING	NORTHING	EASTING	
	130	NWC6	4,562,208.219	496,080.450	566,056.690	2,368,318.270	
	131	NEC6	4,562,207.909	496,094.116	566,056.690	2,368,364.270	
C6	132	SEC6	4,562,193.895	496,093.875	566,010.690	2,368,364.270	
	133	SWC6	4,562,194.136	496,079.861	566,010.690	2,368,318.270	
	134	CENT C6	4,562,201.022	496,086.988	566,033.690	2,368,341.270	
	135	NWC7	4,562,324.095	495,959.057	566,430.330	2,367,914.520	
	136	NEC7	4,562,323.781	495,977.336	566,430.330	2,367,974.520	
C7	137	SEC7	4,562,314.641	495,977.179	566,400.330	2,367,974.520	
	138	SWC7	4,562,314.956	495,958.900	566,400.330	2,367,914.520	
	139	CENT C7	4,562,319.368	495,968.118	566,415.330	2,367,944.520	
	140	NWC8	4,562,366.464	495,848.677	566,563.130	2,367,549.920	
	141	NEC8	4,562,366.055	495,872.440	566,563.130	2,367,627.920	
C8	142	SEC8	4,562,344.120	495,872.062	566,491.130	2,367,627.920	
	143	SWC8	4,562,344.529	495,848.300	566,491.130	2,367,549.920	
	144	CENT C8	4,562,355.292	495,860.370	566,527.130	2,367,588.920	

698 Appendix E

699 Scrap Metal MDAS Certification and Recycling Records

December 2016 Rev 0

Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60000	566262.5	2367606	0+91.8	445.7		4 Prop can lids
60001	566430.3	2367596	0+83.7	277.7	3/28/2016	5 Prop can lids
60002	566436	2367570	0+58.1	271.7	3/28/2016	3 Prop can lids
60003	566434.2	2367557	0+44.9	273.2	3/28/2016	Scrap metal
60004	566414.2	2367550	0+37.5	293.1	3/28/2016	Scrap nuts, bolts and rod
60005	566362.4	2367509	-0+4.2	344.3	3/28/2016	3 metal plates
60006	566445.7	2367495	-0+17.0	260.8		Nothing Found
60007	566483.7	2367544	0+32.7	223.6	3/28/2016	Scrap Metal
60008	566488.6	2367560	0+49.2	218.9	3/28/2016	5 Prop can lids
60009	566496.2	2367580	0+68.7	211.6	3/28/2016	10 Prop can lids
60010	566497.1	2367585	0+74.5	210.8	3/28/2016	10 Prop can lids
60011	566518.2	2367615	1+04.4	190.2	3/28/2016	1 Prop Can Lid
60012	566528.7	2367582	0+71.8	179.1	3/28/2016	1 Prop Can Lid
60013	566547.6	2367582	0+71.5	160.3	3/28/2016	5 Prop can lids
60014	566552.3	2367594	0+83.6	155.7	3/28/2016	Metal Plate
60015	566559.9	2367584	0+73.9	147.9	3/28/2016	Metal Pipe
60016	566585.1	2367589	0+79.1	122.9	3/28/2016	Metal Plate
60017	566555.9	2367622	1+12.1	152.5	3/28/2016	1 Prop Can Lid
60018	566592.1	2367651	1+41.9	116.8	3/28/2016	Bolt
60019	566708.3	2367593	0+85.0	-0.29	3/28/2016	1 Prop Can Lid
60020	566712.3	2367582	0+74.6	-4.44		2 Prop Can Lids
60021	566707.4	2367708	2+00.5	2.4	3/28/2016	New construction (manhole) replaces previous anomoly
60022	566505.4	2367646	1+35.0	203.4	3/28/2016	1 Prop Can Lid
60023	566503.1	2367659	1+47.9	205.9		Nothing Found
60024	566388.6	2367836	3+23.1	323.1	3/28/2016	Propellant Canister Lid x 1
60025	566386.8	2367853	3+40.1	325.1	3/28/2016	Canister Rings x 2
60026	566356.1	2367857	3+44.1	355.9	3/28/2016	Propellant Canister Lids x 2
60027	566352	2367833	3+19.4	359.6	3/29/2016	Bed of nails
60028	566313.3	2367782	2+68.2	397.5	3/29/2016	Propellant Canister Lid 1
60029	566253.8	2367859	3+44.4	458.2	3/29/2016	Propellant Canister Lid 1
60030	566259.6	2367884	3+69.7	452.8	3/29/2016	Propellant Canister Lids x 38
60031	566227.9	2367909	3+94.2	484.9	3/29/2016	Metal Scrap 2"x2"x1/4"
60032	566145.3	2367956	4+39.6	568.2	3/29/2016	1 Prop Can Lid

Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60033	566112.4	2367985	4+68.0	601.5	3/29/2016	1 Prop Can Lid
60034	566111.7	2367974	4+57.1	602	3/29/2016	5 Prop can lids
60035	566102.4	2367952	4+34.6	611	3/29/2016	1 Prop Can Lid
60036	566075.1	2367970	4+52.4	638.6	3/29/2016	1 Prop Can
60037	566081.3	2368007	4+90.2	633	3/29/2016	1 Prop Can Lid, 8 Prop Cans
60038	566067	2368017	4+99.9	647.4	3/29/2016	Prop Cans and Lids
60039	566051.2	2368007	4+88.8	663	3/29/2016	Prop Can and Lid
60040	566046.5	2367995	4+77.7	667.6	3/29/2016	Prop Can and Lid
60041	566049.4	2367989	4+71.4	664.6	3/29/2016	Prop Can and Lid
60042	566056.5	2367995	4+77.1	657.6	3/29/2016	Prop Can and Lid
60043	566060.5	2367991	4+73.0	653.5	3/29/2016	Prop Can and Lid
60044	566056.7	2367987	4+69.8	657.3	3/29/2016	Prop Can and Lid
60045	566027	2368011	4+92.4	687.3	3/29/2016	T Post
60046	566029.1	2368069	5+50.7	686.1	3/29/2016	Prop Can Lid
60047	566019.2	2368073	5+54.4	696	3/29/2016	Prop Can
60048	565997	2368100	5+81.9	718.7	3/29/2016	Prop Can
60056	566505.7	2367899	3+88.6	207	3/28/2016	Metal Scrap 3"x2"x1.5", Metal Scrap 2"x2"x1", 1Railroad Spike, 1 Propellant Canister Lid
60057	566501.1	2367924	4+13.2	212	3/28/2016	Propellant Canister Lids x 12
60058	566497.5	2367928	4+16.9	215.6	3/28/2016	Propellant Canister Lids x 11
60059	566507.5	2367973	4+62.7	206.3	3/28/2016	Propellant Canister Lid x 1
60088	566133.8	2367936	4+19.5	579.4	3/29/2016	Prop Can Tube
60089	566155.1	2367911	3+94.7	557.7	3/29/2016	Prop Can and Lid
60090	566169.1	2367904	3+88.1	543.6	3/29/2016	20 prop Cans and Lids
60091	566177.8	2367935	4+18.7	535.4	3/29/2016	2 Prop Can Tubes
60093	566282.5	2367949	4+34.5	430.9	3/30/2016	3 Prop can lids and 2 tubes
60094	566291.9	2367940	4+26.2	421.4	3/29/2016	Propellant Canister Lids x 38
60095	566294.9	2367939	4+24.8	418.3	3/29/2016	Propellant Canister Lids x 2, Metal scrap 1.5"x 1.5"x 1"
60096	566291.5	2367948	4+33.8	421.9	3/29/2016	Propellant Canister Lids x 5
60097	566295.7	2367957	4+42.5	417.9	3/29/2016	Propellant Canister Lids x 3
60098	566294.4	2367961	4+46.7	419.2	3/29/2016	Propellant Canister Lids x 2
60099	566303.3	2367953	4+39.4	410.2	3/29/2016	Propellant Canister Lids x 6, 1 Canister Body

Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60100	566311.1	2367955	4+40.9	402.4	3/29/2016	Propellant Canister Lid x 1, 1 Canister Body, 4 Ring pieces
60101	566310.5	2367944	4+30.0	402.8	3/29/2016	Propellant Canister Lids x 7, 1 Canister Body
60102	566309.2	2367936	4+22.1	404	3/29/2016	Propellant Canister Lid x 1
60103	566326	2367971	4+57.7	387.8	3/29/2016	Propellant Canister Lids x 3, 1 Canister ring
60104	566310.1	2367985	4+71.3	403.9	3/30/2016	2 prop Can Lids and locking ring
60105	566418.7	2367963	4+50.8	294.9	3/28/2016	1"x18"x 1/4" Metal Strap
60106	566419.6	2367953	4+41.2	293.9	3/28/2016	1 Deteriorated Canister Lid
60107	566416.2	2367937	4+24.8	297	3/28/2016	Tri Canister Lid x 1, Canister Band
60108	566411.8	2367926	4+14.3	301.3	3/28/2016	Canister x 1, Canister Ring x 1, Propellant Canister Lids x 7
60109	566274.9	2368034	5+19.3	439.8	3/29/2016	1 Propellant Lid Locking handle
60110	566221.2	2368025	5+09.4	493.4	3/29/2016	Propellant Canister Lids x 22
60111	566216.8	2368017	5+01.6	497.7	3/29/2016	Propellant Canister Lids x 20
60112	566216.4	2368014	4+98.6	498	3/29/2016	Propellant Canister Lids x 20
60113	566213.3	2368013	4+97.3	501.1	3/29/2016	Propellant Canister Lids x 20
60114	566204.5	2368019	5+03.6	510	3/29/2016	Propellant Canister Lids x 8
60115	566200.3	2367997	4+82.0	513.8	3/29/2016	Propellant Canister Lids x 21
60116	566193.5	2367985	4+69.3	520.4	3/29/2016	Propellant Canister Lids x 1, Propellant Canister x 1
60117	566184	2368058	5+42.2	531	3/29/2016	Propellant Canister Lids x 4, Propellant Canister x 2
60118	566131.3	2368069	5+52.1	583.9	3/29/2016	6 Prop Can Lids
60119	566110	2368076	5+59.5	605.3	3/29/2016	6 Prop Can Lids
60120	566169.3	2368108	5+91.9	546.5	3/29/2016	2 T Posts
60121	566192.7	2368112	5+96.1	523.1	3/29/2016	Nothing Found
60122	566151.4	2368173	6+56.6	565.3	3/29/2016	Barbed Wire
60123	566127.4	2368201	6+84.7	589.8	3/29/2016	Prop Can Tube
60124	566067.1	2368231	7+13.7	650.6	3/29/2016	Prop Can and Lid
60125	566052.1	2368336	8+18.0	667.1	3/29/2016	Nothing Found
60126	566024.9	2368334	8+16.2	694.4	3/29/2016	Prop Can and Lid
60127	566017.8	2368338	8+19.8	701.5	3/29/2016	Nothing Found
60155	566597.7	2367707	1+97.8	112	3/28/2016	Prop Can and Lid
60157	566628	2367797	2+88.1	83.2	3/28/2016	Propellant Canister Lid
60158	566626.1	2367815	3+06.5	85.3	3/28/2016	Propellant Canister Lid

Ravenna, Ohio . Date: May 17, 2011

Coordinates are based on the Ohio State Plane Coordinate North Zone, 1983 Datum

All Anomalies < 9 inches in depth

Flag	Northing	Easting	Station	Offset	DATE Collected	Description of Finds
60159	566614.2	2367815	3+05.4	97.2	3/28/2016	Propellant Canister Lids x 38
60160	566605.8	2367813	3+04.0	105.5	3/28/2016	Propellant Canister Lids x 25
60161	566599.4	2367811	3+01.8	111.9	3/28/2016	Propellant Canister Lids x 2
60162	566599.9	2367806	2+96.5	111.4	3/28/2016	Nothing Found
60163	566598.1	2367798	2+88.5	113	3/28/2016	Nothing Found
60164	566611.1	2367795	2+86.0	100	3/30/2016	Nothing Found
60165	566566.7	2367839	3+29.6	145.1	3/28/2016	24" Pipe Wrench, 1- Canister, Propellant Canister Lids x 9
60166	566570.8	2367846	3+36.5	141.1	3/28/2016	Geo Rocks

1 2 3 4 5 6 7 23242526272829 454647484950515253545566758596061626364656667686970717273 DD FROM M S NS N	UNIT PRICE DOLLARS CTS DOLLARS CTS Portage/Trumbl 1536A 1st St. e, Ohio NewtonFails Oh
Client: Louisville District COE Contractor: PIKA International Inc.	0 00 0 00 0 00 0 00 0 00 0 00 0 0 00 0
Contract #: W912QR-12-F-0212 Contract #: W912QR-12-F-0212	17. TEM NOMENCLATURE
"This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 1) been subjected to a 100- "This certifies and verifies that the material listed has either 100- "This certifies and verifies that the material listed has either 100- "This certifies and verifies that the material listed has either 100- "This certifies and verifies that the material listed has either 100- "This certifies and verifies that the material listed has either 100-	inspection. To the best of our knowledge and belief, the material listed
1 2 3 4 5 6 7 23242526272829 45464748496061525354655665768596061626364656667686970717273 DI FROM S I'S QUANTITY S SUPPLE- S F DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	TOTAL PRICE 2. SHIP FROM 3. SHIP TO
Client: Louisville District COE Contractor: PIKA International Inc. Contract #: W912QR-12-F-0212	30 Mar16 U 10. QTY. REC'D 11.UP 12. UNIT WEIGHT 13. UNIT CUBE 14. UFC 15. SL 0 16. FREIGHT CLASSIFICATION NOMENCLATURE
Contract #: W912QR-12-F-0212 Scrap Metal Scrap Metal Load Number - RVAAP-80-001	Debris, Scrap Metal
"This certifies and verifies that the material listed has either 1) been subjected to a 100-been processed by a DDESB-approved process with an appropriate post-processing ins free of explosive hazards and is Material Documented as Safe (MDAS)" Cameron Wenzel, Senior UXO Supervisor PIKA International, Inc. Certifier's Signature Ph# (281) 543-3316 "This certifies and verifies that the material listed has either 1) been subjected to a 100-been processing ins free of explosive hazards and is Material Documented as Safe (MDAS)" Cameron Wenzel, Senior UXO Supervisor PIKA International, Inc. Verifier's signature Ph# (281) 543-3316 Ph# (540) 354-9109	pection. To the best of our knowledge and belief, the material listed is

Falls Recycling LLC.

1536A 1st street Newton Falls, OH 44444

Phone # 330-872-0402 Fax # 330-872-0595

Purchase Order

Date	P.O. No.
3/30/2016	72844

Vendor

Cameron Wenzel 1063 Overton Hills Dr Hendersonville NC 28739 Ship To

Falls Recycling LLC.
1536A 1st Street
Newton Falls, Ohio 44444
WWW.FALLSRECYCLING.COM

Item	Description	Qty	U/M	Rate	Amount	
nisc FE	miscellaneous iron	1	,760	0.044	77.44	
The second						
			25 134			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			1			
			and a			
			×			
		Account of the Control of the Contro				

Total \$77.44

11060 9300

X

By Signing, You Attest That Material Being Sold Is Not Stolen Or Of False Ownership

Draft SI Report for CR Site CC RVAAP-80 Group 2 Propellant Can Tops

700 Appendix F

701 IDW Drum Disposal Records

December 2016 Rev 0

April 28, 2016

Jay Trumble
U.S Army Corps of Engineers, Louisville District
ATTN: CELRL-PM-P-E
600 Martin Luther King Jr. Place
Louisville, KY 40202-0059

Reference: Contract No. W912QR-12-F-0212, Site Inspection At Compliance

Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops, Camp Ravenna Joint Military Training Center, Ravenna, Ohio

Subject: Contract Line Item (CLIN) 2, Task 3 – Implementation of Work Plan,

Management and Disposal of Investigation Derived Wastes

Dear Mr. Trumble:

Soil investigative activities in accordance with the Revised Final Field Sampling Plan Addendum for Site Inspection at Compliance Restoration Site CC RVAAP-80, Group 2, Propellant Can Tops Area (January 2016) (herein referred to as the SAP Addendum) were performed from April 11, 2016 through April 13, 2016 (Prop Can Area Investigation). These activities have resulted in the generation of Investigation-Derived Waste (IDW) solids including soil cuttings, plastic Geoprobe liners and PPE sampling gloves. The purpose of this letter is to characterize and classify IDW for disposal and to propose methods for disposing the IDW.

This letter report includes a summary of IDW generated, the origin of the IDW (Table 1), as well as proposed classification and recommendations for disposal of the IDW (Table 2). This letter report follows guidance established by the following:

- 1) The Facility-Wide Sampling and Analysis Plan (USACE 2011) (herein referred to at the Facility-Wide SAP); and
- 2) The SAP Addendum for this project;

One distinct IDW waste stream was sampled as part of the Prop Can Area Investigation field activities. The waste stream was composited and sampled on April 13, 2016 as per the Camp Ravenna Waste Management Guidelines (dated 30 March 2015) and the requirements outlined in Section 7.0 of the Facility-wide SAP and SAP Addendum. IDW stream generated was:

• Two (2) 55-gallon, open top drums containing soil cuttings, Geoprobe sample liners and PPE gloves.

Table 1 Summary of Sampled Investigation-Derived Wastes from Sampling Activities for the Prop Can Area Investigation.

Container Number	Container Type and Size	Contents	Generation Date	Sample ID	Sample Date
PIKA-IDW-1 and PIKA-IDW-2	55 Gallon Steel, Open Top Drum	Soil cuttings, plastic Geoprobe liners and PPE gloves	4-11-16 – 4-13-16	PCTss-WC001-SO	4-13-16

IDW Discussion

Per Section 7.0 of the Facility-wide SAP and the SAP Addendum, one composite waste sample was collected for Toxicity Characteristic Leaching Procedure (TCLP) VOC, SVOC, Metals, Pesticides, Herbicides, Total Sulfide, Total Cyanide, Corrosivity(pH) and Flashpoint and submitted for laboratory analysis to characterize the waste stream for disposal. The sample (PCTss-WC001-SO) characterized two (2), 55-gallon drums containing soil cuttings, Geoprobe sample liners and PPE gloves. Upon receipt of analytical results from the laboratory, the analytical results were reviewed to determine if the waste was potentially hazardous. This review consisted of a comparison of the analytical results against the TCLP criteria presented in Table 7-1, Maximum Concentration of Contaminants for the Toxicity Characteristic (40 CFR 261.24), presented in the Facility-Wide SAP (USACE 2011) and Resource Conservation Recovery Act (RCRA) Hazardous Waste regulations 40 CFR 261 – 265.

Attachment 1 summarizes the analytical laboratory data and compares them to the applicable RCRA TCLP Limits for the IDW sample collected during the Prop Can Areas Investigation field activities. The results are summarized below:

- 1) All analytical results were below quantitative limits:
- 2) The pH for the waste is 5.73 S. U., which is in the normal range for soils and precipitation;
- 3) The flash point was >200∘F.

Given the observed analytical results, it is recommended that IDW stream be classified as nonhazardous, non-contaminated.

Recommended Disposal Pathway for IDW

Table 2 presents the disposal pathway identified as a result of IDW characterization data. Please note that this IDW has been characterized under provisions of the Facility-Wide SAP and SAP Addendum No. 1 using TCLP analyses and process knowledge. PIKA recommends that this

IDW be transported and disposed of as non-hazardous, non-contaminated waste by Republic Services – Carbon Limestone Landfill, in Lowellville, Ohio.

Table 2 Summary of Final Waste Classification and Recommended Disposal

NON-Hazardous Waste							
Containers	Medium	Waste Criterion	Disposal Recommendation				
PIKA-IDW-1 and PIKA-IDW-2	Solid	Solid Waste	Permitted Solid Waste Facility				

Since RVAAP Restoration Program (at Camp Ravenna), under RCRA, is the generator of this material, PIKA requests concurrence or direction on the waste classification and recommended disposal pathways prior to disposal. Following your concurrence, we will proceed with the appropriate waste disposal.

If you have any questions or need clarifications, please feel free to contact us at 330-352-4822.

Sincerely,

PIKA INTERNATIONAL, INC.

Birhard C. Callahan

Richard Callahan Project Manager

Cc: Kathryn Tait – OHARNG Kevin Sedlak – ARNG

ATTACHMENT 1 ANALYTICAL RESULTS SUMMARY TABLE AND COMPARISON TO RCRA TCLP LIMITS

Attachment 1 - Waste Characterization Results PIKA IDW Sample

Contouringuit	11-24-	TCI D Limit (m/L)	Datastian Limit (m/1)	Sample Results	O alifian	
Contaminant	Units	TCLP Limit (mg/L)	Detection Limit (mg/L)	PCTss-WC001-SO	Qualifier	
VOCs Method 8260B - TCLP						
1,1-Dichloroethene	mg/L	0.7	0.025	0.025	U	
1,2-Dichloroethane	mg/L	0.5	0.025	0.025	U	
2-Butanone (MEK)	mg/L	200	0.25	0.25	U	
Benzene	mg/L	0.5	0.025	0.025	U	
Carbon Tetrachloride	mg/L	0.5	0.025	0.025	U*	
Chlorobenzene	mg/L	100.0	0.025	0.025	U	
Chloroform	mg/L	6	0.025	0.025	U	
Tetrachloroethene	mg/L	0.7	0.025	0.025	U	
Trichloroethene	mg/L	0.5	0.025	0.025	U	
Vinyl Chloride	mg/L	0.2	0.025	0.025	U	
VOCs Method 8270C - TCLP	J.					
3 & 4 Methylphenol (m & p-Cresol)	mg/L	200	0.004	0.004	U	
L,4-Dichlorobenzene	mg/L	7.5	0.004	0.004	U	
2,4-Dinitrotoluene	mg/L	0.13	0.004	0.004	U	
Hexachlorobenzene	mg/L	0.13	0.0008	0.0008	U	
Hexachlorobutadiene	mg/L	0.5	0.004	0.004	U	
Hexachloroethane	mg/L	3.0	0.004	0.004	U	
2-Methylphenol (o-Cresol)	mg/L	200	0.004	0.004	U	
Nitrobenzene	mg/L	2.0	0.004	0.004	U	
Pentachlorophenol	mg/L	100.0	0.016	0.016	U	
Pyridine	mg/L	5.0	0.010	0.010	U	
2,4,5-Trichlorophenol	mg/L	400.0	0.004	0.004	U	
2,4,6-Trichlorophenol		2.0	0.004	0.004	U	
Pesticides Method 8081A - TCLP	mg/L	2.0	0.004	0.004	U	
Chlordane	mg/L	0.03	0.005	0.005	U	
Endrin	mg/L	0.03	0.005	0.005	U	
		0.02		0.0005	U	
Lindane (gamma-BHC)	mg/L	-	0.0005			
Heptachlor	mg/L	0.008	0.0005	0.0005	U	
Heptachlor Epoxide	mg/L	0.008	0.0005	0.0005	U	
Methoxychlor	mg/L	10.0	0.001	0.001	U	
Toxaphene Toxa Toxa	mg/L	0.5	0.02	0.02	U	
Herbicides Method 8151A - TCLP	1	10.0	0.004	0.004		
2,4-D	mg/L	10.0	0.004	0.004	U	
Silvex (2,4,5-TP)	mg/L	1.0	0.001	0.001	U	
Metals 6010B - TCLP	1					
Aesenic	mg/L	5.0	0.5	0.0031	J	
Barium	mg/L	100.0	10	0.32	J B	
Cadmium	mg/L	1.0	0.1	0.0013	J	
Chromium	mg/L	5.0	0.5	0.00087	J B	
_ead	mg/L	5.0	0.5	0.0027	J	
Selenium	mg/L	1.0	0.25	0.25	U	
Silver	mg/L	5.0	0.5	0.5	U	
Mercury	mg/L	0.2	0.002	0.002	U	
General Chemistry						
Flashpoint	Deg F	<140° F	1.00	>200° F		
Н	Std Units	2 ≤ pH ≤ 12	0.100	5.73		
Corrosivity	Std Units	2 ≤ pH ≤ 12	0.100	5.73		
Cyanide, Total	mg/Kg	LF Acceptance	0.63	0.63	U	
Sulfide	mg/Kg	LF Acceptance	37	37	U	
Percent Solids	%	No Standard	0.1	82.4		
Percent Moisture	%	No Standard	0.1	17.6		

ATTACHMENT 2 SIGNED WASTE PROFILE FOR THE PROP CAN AREA INVESTIGATION IDW

Requested Disposal Facility: 5076 Carbon Limestone LF OH					Waste Profile #				
Saveable fill-in form. Restricted printing until all required (yellow) fields are completed. I. Generator Information				Sales Rep #:					
Generator Name: Former Ray		munition Plant		odioo rep	, n.				
	51 State Route 5								
City: Ravenna	County: Port	· · · · · · · · · · · · · · · · · · ·	State: Ohio			Zip: 44266			
State ID/Reg No: OH521002			·	(if applicable) NAICS # :					
Generator Mailing Address (if o			nmental C						
City: Newton Falls	County: Trui	· ·	State: C	To the second se					
Generator Contact Name: Kath				Email: kathryn.s.tait.nfg@mail.mil					
Phone Number: (614) 336-613	-	Ext:	Fax Nur						
` .			1						
II. Billing Information			Contact	Nome: D	iohard Ca	llahan			
	Bill To: PIKA International, Inc Billing Address: 12723 Capricorn Dr, Suite 500		Contact	Name: R					
<u> </u>)	7in: 774		1	@pikainc.com			
City: Stafford	State: TX		Zip: 774	7477 Phone: (281) 340-5525		(201) 340-3323			
			- [7]-0						
Type of Waste:	=	PROCESS WASTE		POLLUTION CONTROL WASTE					
			OWDER						
Method of Shipment:	BULK 🚺 DI		<u> </u>	HER:					
	7 ONE THE	Dru	ms						
	ONE TIME [ONGOING	. Da						
Disposal Consideration:	/ LANDFILL	SOLIDIFICATION	<u>и Пві</u>	OREMEDI	ATION				
		, ,	1	D					
IV. Representative Samp Is the representative sample co				PLE TAKE	<u> </u>				
collected in accordance with U.					s?	✓ YES or ☐NO			
Type of Sample: 🔽 COMPOSI	TE SAMPLE [GRAB SAMPLE							
Sample Date: 04/13/2016									
Sample ID Numbers: PCTss-W	C001-SO								

				Waste Profile #						
	l Characteristics of	10/4								
	h\A!-!-!!!									
Characteristic (% by Weight (range)								
	s/liners from drilling		49	50 49						
3. PPE - gloves	1									
4.										
5.	% Solids	11		Election Delta						
Color	Odor (describe)	· · · · · · · · · · · · · · · · · · ·		pH:		Flash Point				
Brown soil	NA	☐ YES or ☑ NO	82.4	5.73		>200 °F				
Attach Laboratory Analytical Report (and/or Material Safety Data Sheet) Including Chain of Custody and Required Parameters Provided for this Profile										
Does this waste or generating process contain regulated concentrations of the following Pesticides and/or Herbicides: Chlordane, Endrin, Heptachlor (and its epoxides), Lindane, Methoxychlor, Toxaphene, 2,4-D, or 2,4,5-TP Silvex as defined in 40 CFR 261.33?						☐Yes or ☑ No				
Does this waste contain reactive sulfides (greater than 500 ppm) or reactive cyanide (greater than 250 ppm)[reference 40 CFR 261.23(a)(5)]?						☐Yes or ☑ No				
Does this waste contain regulated concentrations of Polychlorinated Biphenyls (PCBs) as defined in 40 CFR Part 761?						☐Yes or ☑ No				
Does this waste contain concentrations of listed hazardous wastes defined in 40 CFR 261.31, 261.32, 261.33, including RCRA F-Listed Solvents?						☐Yes or ☑ No				
Does this waste	☐Yes or ☑ No									
Does this waste other dioxin as d	☐Yes or ☑ No									
Is this a regulate	☐Yes or ☑ No									
Is this a regulate	☐Yes or ✓No									
Is this waste a re	☐Yes or ☑No									
Does the waste contain sulfur or sulfur by-products?						☐Yes or ☑No				
Is this waste generated at a Federal Superfund Clean Up Site?						☑Yes or ☐No				
Is this waste from a TSD facility, TSD like facility or consolidator?						☐Yes or ☑ No				
VI. Certifica	ition									
I hereby certify that to the best of my knowledge and belief, the information contained herein is a true, complete and accurate description of the waste material being offered for disposal and all known or suspected hazards have been disclosed. All Analytical Results/Material Safety Data Sheets submitted are truthful and complete and are representative of the waste.										
I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste or infectious waste, or any other waste material this facility is prohibited from accepting by law. I shall immediately give written notice of any change or condition pertaining to the waste not provided herein. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue.										
I further certify th	at the company has not alte	ered the form or content of this profile s	sheet as provide	d by Republic	Servic	es Inc.				
	athryn S. Tait, Environme	Ohio Army National Guard								
Authorized Representative Name And Title (Type or Print) Company Na										
Kathryn 8 Tait 4/28/2018					6					
	Authorized Representation	ve Signature	Date							

ATTACHMENT 3 COMPLETE ANALYTICAL REPORT FOR THE PROP CAN AREA INVESTIGATION IDW

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-63443-1 Client Project/Site: Ravenna, OH

For:

PIKA International, Inc. 4935 South Prospect Street Suite A Ravenna, Ohio 44266

Attn: Mr. Brian Stockwell

Qui Kellmann

Authorized for release by: 4/22/2016 11:37:32 AM

Jill Kellmann, Manager of Project Management (916)374-4402

jill.kellmann@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	11
QC Sample Results	13
QC Association Summary	20
Lab Chronicle	23
Certification Summary	24
Chain of Custody	25

3

4

6

R

9

11

12

13

Definitions/Glossary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Descriptio	n
--------------------------------	---

U Indicates the analyte was analyzed for but not detected.

LCS or LCSD is outside acceptance limits.

GC/MS Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B Compound was found in the blank and sample.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Facto

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Canton

4/22/2016

Page 3 of 27

4

4

5

6

1

10

11

12

13

Case Narrative

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Job ID: 240-63443-1

Laboratory: TestAmerica Canton

Narrative

Receipt

The sample was received on 4/13/2016 4:20 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.3° C.

Receipt Exceptions

The collection time listed on the COC for sample PCTss-WC001-SO (240-63443-1) was chronologically later than the laboratory receipt time for the sample. The client was contacted, and the lab was instructed to record the collection time of15:20.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) for preparation batch 240-226135 and analytical batch 240-226198 recovered outside control limits for carbon tetrachloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: The continuing calibration verification (CCV) associated with batch 240-226986 recovered above the upper control limit for 2,4-D. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: PCTss-WC001-SO (240-63443-1) and (240-63447-O-1-K).

Method(s) 8081A: The continuing calibration verification (CCV) associated with batch 240-227093 recovered above the upper control limit for Endrin and Heptachlor. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: PCTss-WC001-SO (240-63443-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

_

9

10

12

13

Method Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
8081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
8151A	Herbicides (GC)	SW846	TAL CAN
6010B	Metals (ICP)	SW846	TAL CAN
7470A	Mercury (CVAA)	SW846	TAL CAN
1010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
9012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
9034	Sulfide, Acid soluble and Insoluble (Titrimetric)	SW846	TAL CAN
9045C	рН	SW846	TAL CAN
Moisture	Percent Moisture	EPA	TAL CAN

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

3

4

5

6

Q

9

10

13

Sample Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-63443-1	PCTss-WC001-SO	Solid	04/13/16 15:20	04/13/16 16:20

2

А

6

8

9

11

Detection Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

3

Client Sample ID: PCTss-WC001-SO

Lab Sample	ID: 240-63443-1
------------	-----------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0031	J	0.50	0.0029	mg/L	1	_	6010B	TCLP
Barium	0.32	JB	10	0.0010	mg/L	1		6010B	TCLP
Cadmium	0.0013	J	0.10	0.00014	mg/L	1		6010B	TCLP
Chromium	0.00087	JB	0.50	0.00055	mg/L	1		6010B	TCLP
Lead	0.0027	J	0.50	0.0019	mg/L	1		6010B	TCLP
Flashpoint	>200		1.00	1.00	Degrees F	1		1010	Total/NA
pH	5.73		0.100	0.100	SU	1		9045C	Total/NA
Corrosivity	5.73		0.100	0.100	SU	1		9045C	Total/NA

7

a

10

13

Client Sample Results

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Client Sample ID: PCTss-WC001-SO

Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20

Lab Sample ID: 240-63443-1 **Matrix: Solid**

Method: 8260B - Volatile Organic Compounds (GC/MS) - TCLP Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1-Dichloroethene 0.025 U 0.025 0.0095 mg/L 04/15/16 23:16 0.025 U 1,2-Dichloroethane 0.025 0.011 mg/L 04/15/16 23:16 2-Butanone (MEK) 0.25 U 0.25 0.029 mg/L 04/15/16 23:16 Benzene 0.025 U 0.025 0.0065 mg/L 04/15/16 23:16 Carbon tetrachloride 0.025 U* 0.025 0.0065 mg/L 04/15/16 23:16 Chlorobenzene 0.025 U 0.025 0.0075 mg/L 04/15/16 23:16 0.0080 mg/L Chloroform 0.025 U 0.025 04/15/16 23:16 Tetrachloroethene 0.015 mg/L 0.025 U 0.025 04/15/16 23:16 Trichloroethene 0.025 U 0.025 0.0085 mg/L 04/15/16 23:16 04/15/16 23:16 Vinyl chloride 0.025 U 0.025 0.011 mg/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 108 80 - 121 04/15/16 23:16 4-Bromofluorobenzene (Surr) 95 70 - 124 04/15/16 23:16 Toluene-d8 (Surr) 99 80 - 120 04/15/16 23:16 80 - 128 Dibromofluoromethane (Surr) 105 04/15/16 23:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.0040	U	0.0040	0.00080	mg/L		04/19/16 12:56	04/21/16 12:54	1
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4-Dinitrotoluene	0.0040	U	0.0040	0.00025	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachlorobenzene	0.00080	U	0.00080	0.000085	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachlorobutadiene	0.0040	U	0.0040	0.00027	mg/L		04/19/16 12:56	04/21/16 12:54	1
Hexachloroethane	0.0040	U	0.0040	0.00019	mg/L		04/19/16 12:56	04/21/16 12:54	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		04/19/16 12:56	04/21/16 12:54	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		04/19/16 12:56	04/21/16 12:54	1
Pentachlorophenol	0.016	U	0.016	0.00027	mg/L		04/19/16 12:56	04/21/16 12:54	1
Pyridine	0.0040	U	0.0040	0.00035	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4,5-Trichlorophenol	0.0040	U	0.0040	0.00030	mg/L		04/19/16 12:56	04/21/16 12:54	1
2,4,6-Trichlorophenol	0.0040	U	0.0040	0.00024	mg/L		04/19/16 12:56	04/21/16 12:54	1
Surrogate	%Recovery	Qualifier	l imite				Prepared	Analyzod	Dil Fac

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	90	30 - 110	04/19/16 12:56	04/21/16 12:54	1
2-Fluorophenol (Surr)	74	20 - 110	04/19/16 12:56	04/21/16 12:54	1
2,4,6-Tribromophenol (Surr)	76	23 - 110	04/19/16 12:56	04/21/16 12:54	1
Nitrobenzene-d5 (Surr)	98	28 - 110	04/19/16 12:56	04/21/16 12:54	1
Phenol-d5 (Surr)	64	21 - 110	04/19/16 12:56	04/21/16 12:54	1
Terphenyl-d14 (Surr)	106	48 - 110	04/19/16 12:56	04/21/16 12:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.00014	mg/L		04/19/16 12:58	04/22/16 10:51	1
Endrin	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
Heptachlor	0.00050	U	0.00050	0.000014	mg/L		04/19/16 12:58	04/22/16 10:51	1
Heptachlor epoxide	0.00050	U	0.00050	0.000015	mg/L		04/19/16 12:58	04/22/16 10:51	1
Methoxychlor	0.0010	U	0.0010	0.000013	mg/L		04/19/16 12:58	04/22/16 10:51	1
Toxaphene	0.020	Ü	0.020	0.00020	mg/L		04/19/16 12:58	04/22/16 10:51	1

TestAmerica Canton

Page 8 of 27

4/22/2016

Client Sample Results

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Client Sample ID: PCTss-WC001-SO

Date Collected: 04/13/16 15:20 Date Received: 04/13/16 16:20 Lab Sample ID: 240-63443-1

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	74		10 - 141				04/19/16 12:58	04/22/16 10:51	-
DCB Decachlorobiphenyl	70		10 - 141				04/19/16 12:58	04/22/16 10:51	
Tetrachloro-m-xylene	66		34 - 121				04/19/16 12:58	04/22/16 10:51	
Tetrachloro-m-xylene	69		34 - 121				04/19/16 12:58	04/22/16 10:51	• • • • • • • • • • • • • • • • • • • •
Method: 8151A - Herbicides (G	C) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.0019	mg/L		04/19/16 13:01	04/22/16 03:43	
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00027	mg/L		04/19/16 13:01	04/22/16 03:43	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	90		56 - 120				04/19/16 13:01	04/22/16 03:43	•
2,4-Dichlorophenylacetic acid	76		56 - 120				04/19/16 13:01	04/22/16 03:43	•
Method: 6010B - Metals (ICP) -	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0031	J	0.50	0.0029	mg/L		04/19/16 12:16	04/20/16 12:33	
Barium	0.32	JB	10	0.0010	mg/L		04/19/16 12:16	04/20/16 12:33	•
Cadmium	0.0013	J	0.10	0.00014	mg/L		04/19/16 12:16	04/20/16 12:33	
Chromium	0.00087	JB	0.50	0.00055	mg/L		04/19/16 12:16	04/20/16 12:33	•
Lead	0.0027	J	0.50	0.0019	mg/L		04/19/16 12:16	04/20/16 12:33	•
Selenium	0.25	U	0.25	0.0040	mg/L		04/19/16 12:16	04/20/16 12:33	•
Silver	0.50	U	0.50	0.00092	mg/L		04/19/16 12:16	04/20/16 12:33	
- Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0020	U	0.0020	0.000090	mg/L		04/19/16 12:21	04/20/16 11:43	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Flashpoint	>200		1.00	1.00	Degrees F			04/18/16 07:03	
pH	5.73		0.100	0.100	SU			04/14/16 10:25	•
Corrosivity	5.73		0.100	0.100	SU			04/14/16 10:25	•
Percent Solids	82.4		0.1	0.1	%			04/14/16 09:36	
	17.6		0.1	0.1				04/14/16 09:36	

Client Sample Results

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Date Collected: 04/13/16 15:20

Date Received: 04/13/16 16:20

Client Sample ID: PCTss-WC001-SO

TestAmerica Job ID: 240-63443-1

Lab Sample ID: 240-63443-1

Matrix: Solid

Percent Solids: 82.4

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.63	U	0.63	0.38	mg/Kg	<u></u>	04/15/16 15:14	04/15/16 19:53	1
Sulfide	37	U	37	27	mg/Kg	☼	04/18/16 11:06	04/18/16 13:38	1

5

6

8

9

11

12

Client: PIKA International, Inc.

Project/Site: Ravenna, OH

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)					
		12DCE	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)			
LCS 240-226198/18	Lab Control Sample	102	97	100	105			

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP

_		Percent Surrogate Recovery (Acceptance Limits						
		12DCE	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)			
240-63443-1	PCTss-WC001-SO	108	95	99	105			
LB 240-226135/1-A MB	Method Blank	106	98	103	108			
Surrogate Legend								
12DCE = 1,2-Dichloroe	thane-d4 (Surr)							

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
			FBP	2FP	TBP	NBZ	PHL	TPH		
Lab Sample ID Client Sample ID (30-110) (20-110) (23-110) (28-110) (21-110) (48-1	Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)		
LCS 240-226581/5-A Lab Control Sample 92 76 80 101 66 98	LCS 240-226581/5-A	Lab Control Sample	92	76	80	101	66	98		
MB 240-226581/4-A Method Blank 88 75 71 91 66 103	MB 240-226581/4-A	Method Blank	88	75	71	91	66	103		

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	TBP	NBZ	PHL	TPH		
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)		
240-63443-1	PCTss-WC001-SO	90	74	76	98	64	106		
240-63443-1 MS	PCTss-WC001-SO	90	73	82	97	74	100		

FBP = 2-Fluorobiphenyl (Surr)

Page 11 of 27

Client: PIKA International, Inc. Project/Site: Ravenna, OH

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recov				
		DCB1	DCB2	TCX1	TCX2		
Lab Sample ID	Client Sample ID	(10-141)	(10-141)	(34-121)	(34-121)		
LCS 240-226583/5-A	Lab Control Sample	72	73	71	71		
MB 240-226583/4-A	Method Blank	65	64	58	59		

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)						
		DCB1	DCB2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(10-141)	(10-141)	(34-121)	(34-121)			
240-63443-1	PCTss-WC001-SO	74	70	66	69			
240-63443-1 MS	PCTss-WC001-SO	82	84	66	71			

DCB = DCB Decachlorobiphenyl
TCX = Tetrachloro-m-xylene

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCPA1	DCPA2					
Lab Sample ID	Client Sample ID	(56-120)	(56-120)					
LCS 240-226584/5-A	Lab Control Sample	84	74					
MB 240-226584/4-A	Method Blank	78	68					

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: TCLP

			Percent Surrogate Recovery (Acceptance Limits)							
		DCPA1	DCPA2							
Lab Sample ID	Client Sample ID	(56-120)	(56-120)							
240-63443-1	PCTss-WC001-SO	90	76							
Currogata Lagand										

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

TestAmerica Canton

2

6

8

9

11

12

1/

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 240-226198/18

Matrix: Solid

Analysis Batch: 226198

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.00	1.10		mg/L		110	71 - 133	
1,2-Dichloroethane	1.00	1.08		mg/L		108	80 - 120	
2-Butanone (MEK)	2.00	1.76		mg/L		88	49 - 120	
Benzene	1.00	0.930		mg/L		93	80 - 120	
Carbon tetrachloride	1.00	1.23	*	mg/L		123	54 - 122	
Chlorobenzene	1.00	0.948		mg/L		95	80 - 120	
Chloroform	1.00	1.07		mg/L		107	80 - 123	
Tetrachloroethene	1.00	1.03		mg/L		103	79 - 134	
Trichloroethene	1.00	1.10		mg/L		110	78 - 130	
Vinyl chloride	1.00	0.864		mg/L		86	56 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 121
4-Bromofluorobenzene (Surr)	97		70 - 124
Toluene-d8 (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	105		80 - 128

Lab Sample ID: LB 240-226135/1-A MB

Matrix: Solid

Analysis Batch: 226198

Client Sample ID: Method Blank

Prep Type: TCLP

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.025	U	0.025	0.0095	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.011	mg/L			04/15/16 22:31	1
0.25	U	0.25	0.029	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.0065	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.0065	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.0075	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.0080	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.015	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.0085	mg/L			04/15/16 22:31	1
0.025	U	0.025	0.011	mg/L			04/15/16 22:31	1
	Result 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	MB MB Result Qualifier 0.025 U	Result Qualifier RL 0.025 U 0.025 0.025 U 0.025 0.25 U 0.25 0.025 U 0.025 0.025 U 0.025	Result 0.025 Qualifier RL 0.025 MDL 0.095 0.025 U 0.025 0.0095 0.025 U 0.025 0.011 0.25 U 0.25 0.029 0.025 U 0.025 0.0065 0.025 U 0.025 0.0065 0.025 U 0.025 0.0075 0.025 U 0.025 0.0080 0.025 U 0.025 0.015 0.025 U 0.025 0.0085	Result Qualifier RL MDL Unit 0.025 U 0.025 0.0095 mg/L 0.025 U 0.025 0.011 mg/L 0.025 U 0.025 0.029 mg/L 0.025 U 0.025 0.0065 mg/L 0.025 U 0.025 0.0065 mg/L 0.025 U 0.025 0.0075 mg/L 0.025 U 0.025 0.0080 mg/L 0.025 U 0.025 0.015 mg/L 0.025 U 0.025 0.0085 mg/L	Result Qualifier RL MDL Unit D 0.025 U 0.025 0.0095 mg/L 0.025 U 0.025 0.011 mg/L 0.025 U 0.025 0.029 mg/L 0.025 U 0.025 0.0065 mg/L 0.025 U 0.025 0.0065 mg/L 0.025 U 0.025 0.0075 mg/L 0.025 U 0.025 0.015 mg/L 0.025 U 0.025 0.0085 mg/L 0.025 U 0.025 0.0085 mg/L	Result Qualifier RL MDL Unit D Prepared 0.025 U 0.025 0.0095 mg/L mg/L mg/L mg/L mg/L 0.025 0.011 mg/L mg/L mg/L 0.025 0.0065 mg/L 0.025 0.0065 mg/L 0.025 0.0065 mg/L 0.025 0.0075 mg/L 0.025 0.0080 mg/L 0.025 0.015 mg/L 0.025 0.015 mg/L 0.025 0.0085 mg/L 0.0085 0.0085 mg/L	Result Qualifier RL MDL Unit D Prepared Analyzed 0.025 U 0.025 0.0095 mg/L 04/15/16 22:31 0.025 U 0.025 0.011 mg/L 04/15/16 22:31 0.025 U 0.025 0.029 mg/L 04/15/16 22:31 0.025 U 0.025 0.0065 mg/L 04/15/16 22:31 0.025 U 0.025 0.0065 mg/L 04/15/16 22:31 0.025 U 0.025 0.0075 mg/L 04/15/16 22:31 0.025 U 0.025 0.0080 mg/L 04/15/16 22:31 0.025 U 0.025 0.015 mg/L 04/15/16 22:31 0.025 U 0.025 0.015 mg/L 04/15/16 22:31 0.025 U 0.025 0.0085 mg/L 04/15/16 22:31

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 106 80 - 121 04/15/16 22:31 4-Bromofluorobenzene (Surr) 98 70 - 124 04/15/16 22:31 Toluene-d8 (Surr) 103 80 - 120 04/15/16 22:31 108 80 - 128 Dibromofluoromethane (Surr) 04/15/16 22:31

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-226581/4-A

Matrix: Solid

Analysis Batch: 226939

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.0040	U	0.0040	0.00080	mg/L		04/19/16 12:56	04/21/16 10:55	1

TestAmerica Canton

Prep Type: Total/NA

Prep Batch: 226581

Client Sample ID: Method Blank

Page 13 of 27

4/22/2016

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-226581/4-A Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 226939 Prep Batch: 226581 мв мв

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4-Dinitrotoluene	0.0040	U	0.0040	0.00025	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachlorobenzene	0.00080	U	0.00080	0.000085	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachlorobutadiene	0.0040	U	0.0040	0.00027	mg/L		04/19/16 12:56	04/21/16 10:55	1
Hexachloroethane	0.0040	U	0.0040	0.00019	mg/L		04/19/16 12:56	04/21/16 10:55	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		04/19/16 12:56	04/21/16 10:55	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		04/19/16 12:56	04/21/16 10:55	1
Pentachlorophenol	0.016	U	0.016	0.00027	mg/L		04/19/16 12:56	04/21/16 10:55	1
Pyridine	0.0040	U	0.0040	0.00035	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4,5-Trichlorophenol	0.0040	U	0.0040	0.00030	mg/L		04/19/16 12:56	04/21/16 10:55	1
2,4,6-Trichlorophenol	0.0040	U	0.0040	0.00024	mg/L		04/19/16 12:56	04/21/16 10:55	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 2-Fluorobiphenyl (Surr) 88 30 - 110 04/19/16 12:56 04/21/16 10:55 2-Fluorophenol (Surr) 75 20 - 110 04/19/16 12:56 04/21/16 10:55 2,4,6-Tribromophenol (Surr) 71 23 - 110 04/19/16 12:56 04/21/16 10:55 Nitrobenzene-d5 (Surr) 91 28 - 110 04/19/16 12:56 04/21/16 10:55 Phenol-d5 (Surr) 66 21 - 110 04/19/16 12:56 04/21/16 10:55 Terphenyl-d14 (Surr) 103 48 - 110 04/19/16 12:56 04/21/16 10:55

Lab Sample ID: LCS 240-226581/5-A

Matrix: Solid

Analysis Batch: 226939

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 226581

•	Spike	LCS LC	cs				%Rec.
Analyte	Added	Result Qu	ualifier	Unit	D	%Rec	Limits
3 & 4 Methylphenol	0.0800	0.0689		mg/L	_	86	48 - 110
1,4-Dichlorobenzene	0.0800	0.0633		mg/L		79	52 - 110
2,4-Dinitrotoluene	0.0800	0.0861		mg/L		108	54 - 110
Hexachlorobenzene	0.0800	0.0686		mg/L		86	50 - 110
Hexachlorobutadiene	0.0800	0.0642		mg/L		80	34 - 110
Hexachloroethane	0.0800	0.0711		mg/L		89	41 - 110
2-Methylphenol	0.0800	0.0756		mg/L		95	44 - 111
Nitrobenzene	0.0800	0.0865		mg/L		108	40 - 110
Pentachlorophenol	0.160	0.132		mg/L		82	12 - 110
Pyridine	0.0800	0.0594		mg/L		74	30 - 110
2,4,5-Trichlorophenol	0.0800	0.0726		mg/L		91	51 - 110
2,4,6-Trichlorophenol	0.0800	0.0734		mg/L		92	46 - 110

cs

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	92		30 - 110
2-Fluorophenol (Surr)	76		20 - 110
2,4,6-Tribromophenol (Surr)	80		23 - 110
Nitrobenzene-d5 (Surr)	101		28 - 110
Phenol-d5 (Surr)	66		21 - 110
Terphenyl-d14 (Surr)	98		48 - 110

TestAmerica Canton

Page 14 of 27

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Analysis Batch: 226939

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-63443-1 MS **Matrix: Solid**

Client Sample ID: PCTss-WC001-SO Prep Type: TCLP **Prep Batch: 226581**

%Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 3 & 4 Methylphenol 0.0800 0.0040 U 0.0676 mg/L 84 29 - 110 1,4-Dichlorobenzene 0.0800 80 0.0040 U 0.0640 mg/L 31 - 110 2,4-Dinitrotoluene 0.0800 0.0865 108 42 - 110 0.0040 U mg/L Hexachlorobenzene 0.00080 U 0.0800 0.0653 82 42 - 110 mg/L Hexachlorobutadiene 0.0040 U 0.0800 0.0641 mg/L 80 28 - 110 Hexachloroethane 0.0040 U 0.0800 0.0694 mg/L 87 26 - 110 0.0800 86 33 - 112 2-Methylphenol 0.0040 U 0.0691 mg/L Nitrobenzene 0.0040 U 0.0800 0.0856 107 32 - 110 mg/L 78 Pentachlorophenol 0.016 U 0.160 0.124 mg/L 10 - 124 Pyridine 0.0040 U 0.0800 0.0567 mg/L 71 21 - 110 2,4,5-Trichlorophenol 0.0040 U 0.0800 0.0658 82 41 - 110 mg/L

0.0707

0.0800

mg/L 88 35 - 110

MS MS

0.0040 U

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	90		30 - 110
2-Fluorophenol (Surr)	73		20 - 110
2,4,6-Tribromophenol (Surr)	82		23 - 110
Nitrobenzene-d5 (Surr)	97		28 - 110
Phenol-d5 (Surr)	74		21 - 110
Terphenyl-d14 (Surr)	100		48 - 110

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 240-226583/4-A

Matrix: Solid

2,4,6-Trichlorophenol

Analysis Batch: 227093

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 226583

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.00014	mg/L		04/19/16 12:58	04/22/16 10:05	1
Endrin	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
Heptachlor	0.00050	U	0.00050	0.000014	mg/L		04/19/16 12:58	04/22/16 10:05	1
Heptachlor epoxide	0.00050	U	0.00050	0.000015	mg/L		04/19/16 12:58	04/22/16 10:05	1
Methoxychlor	0.0010	U	0.0010	0.000013	mg/L		04/19/16 12:58	04/22/16 10:05	1
Toxaphene	0.020	U	0.020	0.00020	mg/L		04/19/16 12:58	04/22/16 10:05	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	65	10 - 141	04/19/16 12:58	04/22/16 10:05	1
DCB Decachlorobiphenyl	64	10 - 141	04/19/16 12:58	04/22/16 10:05	1
Tetrachloro-m-xylene	58	34 - 121	04/19/16 12:58	04/22/16 10:05	1
Tetrachloro-m-xylene	59	34 - 121	04/19/16 12:58	04/22/16 10:05	1

TestAmerica Canton

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 240-226583/5-A

Matrix: Solid

Analysis Batch: 227093

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 226583

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.000400	0.000320	J	mg/L		80	49 - 150	
gamma-BHC (Lindane)	0.000400	0.000309	J	mg/L		77	22 - 144	
Heptachlor	0.000400	0.000323	J	mg/L		81	40 - 129	
Heptachlor epoxide	0.000400	0.000330	j	mg/L		83	42 - 137	
Methoxychlor	0.000800	0.000606	J	mg/L		76	35 - 147	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	72		10 - 141
DCB Decachlorobiphenyl	73		10 - 141
Tetrachloro-m-xylene	71		34 - 121
Tetrachloro-m-xvlene	71		34 - 121

Client Sample ID: PCTss-WC001-SO

Prep Type: TCLP Prep Batch: 226583

Analysis Batch: 227093

Matrix: Solid

Lab Sample ID: 240-63443-1 MS

Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits Endrin 0.00050 U 0.000400 0.000309 J mg/L 77 43 - 138 gamma-BHC (Lindane) 0.00050 U 0.000400 0.000305 J mg/L 76 32 - 120 Heptachlor 0.00050 U 0.000400 0.000337 J mg/L 84 42 - 120 Heptachlor epoxide 0.00050 U 0.000400 0.000330 J mg/L 82 48 - 120 Methoxychlor 0.000800 45 - 127 0.0010 U 0.000652 J mg/L 82

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	82		10 - 141
DCB Decachlorobiphenyl	84		10 - 141
Tetrachloro-m-xylene	66		34 - 121
Tetrachloro-m-xylene	71		34 - 121

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 240-226584/4-A

Matrix: Solid

Analysis Batch: 226986

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 226584

Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040 U	0.0040	0.0019	mg/L		04/19/16 13:01	04/22/16 02:52	1
Silvex (2,4,5-TP)	0.0010 U	0.0010	0.00027	mg/L		04/19/16 13:01	04/22/16 02:52	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	78		56 - 120	04/19/16 13:01 04/	/22/16 02:52	1
2,4-Dichlorophenylacetic acid	68		56 - 120	04/19/16 13:01 04/	/22/16 02:52	1

TestAmerica Canton

LCS LCS

TestAmerica Job ID: 240-63443-1

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 240-226584/5-A

Matrix: Solid

Analysis Batch: 226986

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 226584 %Rec.

Spike Analyte Added Result Qualifier Unit D %Rec Limits 2,4-D 0.0200 mg/L 76 50 - 120 0.0152 0.00500 0.00398 80 45 - 129 Silvex (2,4,5-TP) mg/L

LCS LCS

%Recovery Qualifier Limits Surrogate 2,4-Dichlorophenylacetic acid 84 56 - 120 2,4-Dichlorophenylacetic acid 74 56 - 120

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-226553/2-A

Matrix: Solid

Analysis Batch: 226739

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 226553

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 04/19/16 12:16 04/20/16 11:47 Arsenic 0.50 U 0.50 0.0029 mg/L Barium 0.00239 J 10 0.0010 mg/L 04/19/16 12:16 04/20/16 11:47 Cadmium 0.10 U 0.10 0.00014 mg/L 04/19/16 12:16 04/20/16 11:47 Chromium 0.50 U 0.50 0.00055 mg/L 04/19/16 12:16 04/20/16 11:47 Lead 0.50 U 0.50 0.0019 mg/L 04/19/16 12:16 04/20/16 11:47 0.25 0.0040 mg/L Selenium 0.25 U 04/19/16 12:16 04/20/16 11:47 Silver 0.50 U 0.50 0.00092 mg/L 04/19/16 12:16 04/20/16 11:47

Lab Sample ID: LCS 240-226553/3-A

Matrix: Solid

Analysis Batch: 226739

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 226553**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.00	2.11		mg/L		106	50 - 150	
Barium	2.00	1.96	J	mg/L		98	50 - 150	
Cadmium	0.0500	0.0510	J	mg/L		102	50 - 150	
Chromium	0.200	0.201	J	mg/L		101	50 - 150	
Lead	0.500	0.453	J	mg/L		91	50 - 150	
Selenium	2.00	2.20		mg/L		110	50 - 150	
Silver	0.0500	0.0536	J	mg/L		107	50 - 150	

Lab Sample ID: LB 240-226432/1-B

Matrix: Solid

Analysis Batch: 226739

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 226553

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0029	mg/L		04/19/16 12:16	04/20/16 11:43	1
Barium	0.0218	J	10	0.0010	mg/L		04/19/16 12:16	04/20/16 11:43	1
Cadmium	0.10	U	0.10	0.00014	mg/L		04/19/16 12:16	04/20/16 11:43	1
Chromium	0.00112	J	0.50	0.00055	mg/L		04/19/16 12:16	04/20/16 11:43	1
Lead	0.50	U	0.50	0.0019	mg/L		04/19/16 12:16	04/20/16 11:43	1
Selenium	0.25	U	0.25	0.0040	mg/L		04/19/16 12:16	04/20/16 11:43	1
Silver	0.50	U	0.50	0.00092	mg/L		04/19/16 12:16	04/20/16 11:43	1

Page 17 of 27

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-226557/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 226851

Prep Batch: 226557

Prep Type: TCLP

Prep Batch: 226557

Prep Batch: 226196

Prep Type: Total/NA

04/15/16 15:14 04/15/16 19:47

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 0.0020 U 0.0020 04/19/16 12:21 04/20/16 11:25 0.000090 mg/L Mercury

Lab Sample ID: LCS 240-226557/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 226851 Prep Batch: 226557** Spike LCS LCS

%Rec. Added Limits Analyte Result Qualifier Unit %Rec 80 - 120 Mercury 0.00500 0.00522 mg/L 104

Lab Sample ID: LB 240-226432/1-C **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 226851 LB LB

Result Qualifier RL Prepared Analyte MDL Unit D Analyzed Dil Fac Mercury 0.0020 U 0.0020 0.000090 mg/L 04/19/16 12:21 04/20/16 11:32

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

0.51 U

Lab Sample ID: LCS 240-226381/1 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 226381

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec Flashpoint 81.0 81.00 Degrees F 100 97 - 103

Method: 9012A - Cyanide, Total and/or Amenable

Lab Sample ID: MB 240-226196/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 226212

Cyanide, Total

MB MB Result Qualifier Analyte RI **MDL** Unit Prepared Dil Fac Analyzed 0.51

0.31 mg/Kg

Client Sample ID: Method Blank Lab Sample ID: MB 240-226196/1-A

Matrix: Solid

Analysis Batch: 226212

Prep Batch: 226196 MB MB RL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac 0.51 04/15/16 15:14 04/15/16 21:27 Cyanide, Total 0.51 U 0.31 mg/Kg

Lab Sample ID: LCS 240-226196/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 226212 Prep Batch: 226196 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 3.92 4.07 mg/Kg 104

TestAmerica Canton

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

10

Method: 9012A - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: LCS 240-226196/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 226212 Prep Batch: 226196** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 3.92 68 - 123 Cyanide, Total 4.14 mg/Kg 105

Method: 9034 - Sulfide, Acid soluble and Insoluble (Titrimetric)

Lab Sample ID: MB 240-226301/8-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 226349 Prep Batch: 226301** MB MB

RL **MDL** Unit Dil Fac Analyte Result Qualifier Analyzed D Prepared Sulfide 30 U 30 22 mg/Kg 04/18/16 08:07 04/18/16 12:02

Lab Sample ID: LCS 240-226301/9-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 226349 Prep Batch: 226301** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfide 92.6 88 70 - 130 81.8 mg/Kg

Method: 9045C - pH

Lab Sample ID: LCS 240-225948/2 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 225948

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 6.15 SU рН 6.210 101 97 - 103 6.15 6.210 SU 101 97 - 103 Corrosivity

Lab Sample ID: LCS 240-225948/21 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 225948

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 6.15 SU рН 6.210 101 97 - 103 Corrosivity 6.15 6.210 SU 101 97 - 103

Client Sample ID: PCTss-WC001-SO Lab Sample ID: 240-63443-1 DU Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 225948

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	5.73		5.780		SU		 0.9	20
Corrosivity	5.73		5.780		SU		0.9	20

TestAmerica Canton

QC Association Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

GC/MS VOA

Leach Batch: 226135

١	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
	LB 240-226135/1-A MB	Method Blank	TCLP	Solid	1311	

Analysis Batch: 226198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8260B	226135
LB 240-226135/1-A MB	Method Blank	TCLP	Solid	8260B	226135
LCS 240-226198/18	Lab Control Sample	Total/NA	Solid	8260B	

GC/MS Semi VOA

Leach Batch: 226432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	1311	

Prep Batch: 226581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3510C	226432
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	3510C	226432
LCS 240-226581/5-A	Lab Control Sample	Total/NA	Solid	3510C	
MB 240-226581/4-A	Method Blank	Total/NA	Solid	3510C	

Analysis Batch: 226939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8270C	226581
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	8270C	226581
LCS 240-226581/5-A	Lab Control Sample	Total/NA	Solid	8270C	226581
MB 240-226581/4-A	Method Blank	Total/NA	Solid	8270C	226581

GC Semi VOA

Leach Batch: 226432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	1311	

Prep Batch: 226583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3520C	226432
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	3520C	226432
LCS 240-226583/5-A	Lab Control Sample	Total/NA	Solid	3520C	
MB 240-226583/4-A	Method Blank	Total/NA	Solid	3520C	

Prep Batch: 226584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8151A	226432
LCS 240-226584/5-	A Lab Control Sample	Total/NA	Solid	8151A	
MB 240-226584/4-A	Method Blank	Total/NA	Solid	8151A	

TestAmerica Canton

4/22/2016

Page 20 of 27

QC Association Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

GC Semi VOA (Continued)

Analy	ysis	Batch:	226986
-------	------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8151A	226584
LCS 240-226584/5-A	Lab Control Sample	Total/NA	Solid	8151A	226584
MB 240-226584/4-A	Method Blank	Total/NA	Solid	8151A	226584

Analysis Batch: 227093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	8081A	226583
240-63443-1 MS	PCTss-WC001-SO	TCLP	Solid	8081A	226583
LCS 240-226583/5-A	Lab Control Sample	Total/NA	Solid	8081A	226583
MB 240-226583/4-A	Method Blank	Total/NA	Solid	8081A	226583

Metals

Leach Batch: 226432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	1311	
LB 240-226432/1-B	Method Blank	TCLP	Solid	1311	
LB 240-226432/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 226553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	3010A	226432
LB 240-226432/1-B	Method Blank	TCLP	Solid	3010A	226432
LCS 240-226553/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 240-226553/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 226557

Lab Sample ID 240-63443-1	Client Sample ID PCTss-WC001-SO	Prep Type TCLP	Matrix Solid	Method 7470A	Prep Batch 226432
LB 240-226432/1-C	Method Blank	TCLP	Solid	7470A	226432
LCS 240-226557/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 240-226557/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 226739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	6010B	226553
LB 240-226432/1-B	Method Blank	TCLP	Solid	6010B	226553
LCS 240-226553/3-A	Lab Control Sample	Total/NA	Solid	6010B	226553
MB 240-226553/2-A	Method Blank	Total/NA	Solid	6010B	226553

Analysis Batch: 226851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	TCLP	Solid	7470A	226557
LB 240-226432/1-C	Method Blank	TCLP	Solid	7470A	226557
LCS 240-226557/3-A	Lab Control Sample	Total/NA	Solid	7470A	226557
MB 240-226557/2-A	Method Blank	Total/NA	Solid	7470A	226557

TestAmerica Canton

Page 21 of 27

G

3

4

6

9

4 4

12

13

QC Association Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

General Chemistry

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9045C
240-63443-1 DU	PCTss-WC001-SO	Total/NA	Solid	9045C
LCS 240-225948/2	Lab Control Sample	Total/NA	Solid	9045C
LCS 240-225948/21	Lab Control Sample	Total/NA	Solid	9045C

Analysis Batch: 225951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	Moisture	

Prep Batch: 226196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9012A	 : :
LCS 240-226196/2-A	Lab Control Sample	Total/NA	Solid	9012A	
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	

Analysis Batch: 226212

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9012A	226196
LCS 240-226196/2-A	Lab Control Sample	Total/NA	Solid	9012A	226196
LCS 240-226196/2-A	Lab Control Sample	Total/NA	Solid	9012A	226196
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	226196
MB 240-226196/1-A	Method Blank	Total/NA	Solid	9012A	226196

Prep Batch: 226301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9030B	
LCS 240-226301/9-A	Lab Control Sample	Total/NA	Solid	9030B	
MB 240-226301/8-A	Method Blank	Total/NA	Solid	9030B	

Analysis Batch: 226349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	9034	226301
LCS 240-226301/9-A	Lab Control Sample	Total/NA	Solid	9034	226301
MB 240-226301/8-A	Method Blank	Total/NA	Solid	9034	226301

Analysis Batch: 226381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-63443-1	PCTss-WC001-SO	Total/NA	Solid	1010	
LCS 240-226381/1	Lab Control Sample	Total/NA	Solid	1010	

TestAmerica Canton

3

6

8

40

11

16

Client: PIKA International, Inc. Project/Site: Ravenna, OH

Client Sample ID: PCTss-WC001-SO

Lab Sample ID: 240-63443-1

Date Collected: 04/13/16 15:20 **Matrix: Solid** Date Received: 04/13/16 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			226135	04/14/16 19:10	DRJ	TAL CAN
TCLP	Analysis	8260B		1	226198	04/15/16 23:16	TJL1	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3510C			226581	04/19/16 12:56	CS	TAL CAN
TCLP	Analysis	8270C		1	226939	04/21/16 12:54	JMG	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3520C			226583	04/19/16 12:58	JDR	TAL CAN
TCLP	Analysis	8081A		1	227093	04/22/16 10:51	BPM	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	8151A			226584	04/19/16 13:01	SDE	TAL CAN
TCLP	Analysis	8151A		1	226986	04/22/16 03:43	DEB	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	3010A			226553	04/19/16 12:16	WKD	TAL CAN
TCLP	Analysis	6010B		1	226739	04/20/16 12:33	KLC	TAL CAN
TCLP	Leach	1311			226432	04/18/16 17:50	DRJ	TAL CAN
TCLP	Prep	7470A			226557	04/19/16 12:21	WKD	TAL CAN
TCLP	Analysis	7470A		1	226851	04/20/16 11:43	DSH	TAL CAN
Total/NA	Analysis	1010		1	226381	04/18/16 07:03	TPH	TAL CAN
Total/NA	Analysis	9045C		1	225948	04/14/16 10:25	DTN	TAL CAN
Total/NA	Analysis	Moisture		1	225951	04/14/16 09:36	LCN	TAL CAN

Lab Sample ID: 240-63443-1 Client Sample ID: PCTss-WC001-SO

Date Collected: 04/13/16 15:20 **Matrix: Solid** Date Received: 04/13/16 16:20 Percent Solids: 82.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	9012A			226196	04/15/16 15:14	JWW	TAL CAN
Total/NA	Analysis	9012A		1	226212	04/15/16 19:53	JWW	TAL CAN
Total/NA	Prep	9030B			226301	04/18/16 11:06	BLW	TAL CAN
Total/NA	Analysis	9034		1	226349	04/18/16 13:38	BLW	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Canton

Certification Summary

Client: PIKA International, Inc. Project/Site: Ravenna, OH

TestAmerica Job ID: 240-63443-1

Laboratory: TestAmerica Canton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
Ohio VAP	State Pro	gram	5	CL0024	09-14-17
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
1010		Solid	Flashp	ooint	
7470A	7470A	Solid	Mercu	ry	
8081A	3520C	Solid	Chloro	dane (technical)	
9034	9030B	Solid	Sulfide	е	
9045C		Solid	Corros	sivity	
9045C		Solid	рН		
Moisture		Solid	Percei	nt Moisture	
Moisture		Solid	Percei	nt Solids	

3

4

6

8

4.6

11

13

TestAmerica Laboratories, Inc.

AND RECEIVING DOCUMENTS

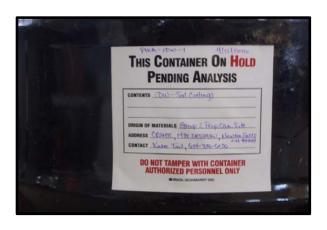
Page 25 of 27

TestAmerica Canton Sample Receipt Form/Narrative	Lógin#.403443
Client PIKA Site Name	Cooler unpacked by:
	16 Desan Burn
Cooler Received on 4/13/16 Opened on 4/13/	7.0
	merica Courier Other
	orage Location
TestAmerica Cooler # Foam Box Client Cooled Box	·
Packing material used: Bubble Wrap Foam Plastic Bag Nor	
COOLANT: Wet Ice Blue Ice Dry Ice Water No.	
	e Multiple Cooler Form
IR GUN#48 (CF -1.9 °C) Observed Cooler Temp. °C Cor	rected Cooler Temp°C
IR GUN#36 (CF -1.5 °C) Observed Cooler Temp. °C Con IR GUN#18 (CF -0.5 °C) Observed Cooler Temp. °C Con	rected Cooler Temp. °C
IR GUN# I8 (CF -0.5 °C) Observed Cooler Temp. O.8 °C Cor 2. Were custody seals on the outside of the cooler(s)? If Yes Quantity	
-Were custody seals on the outside of the cooler(s) right with the dated?	Yes No NA
-Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	Yes (No)
, ,,	Yes No
4. Did custody papers accompany the sample(s)?	
5. Were the custody papers relinquished & signed in the appropriate place?	
6. Was/were the person(s) who collected the samples clearly identified on t	
7. Did all bottles arrive in good condition (Unbroken)?	Yes No
8. Could all bottle labels be reconciled with the COC?	Yes No
9. Were correct bottle(s) used for the test(s) indicated?	Yes No
10.—Sufficient quantity-received-to-perform-indicated-analyses?	Yes No.
11. Are these work share samples?	Yes Mo
If yes, Questions 12-16 have been checked at the originating laboratory.	
12. Were sample(s) at the correct pH upon receipt?	Yes No MA) pH Strip Lot# HC559158
13. Were VOAs on the COC?	Yes No
14. Were air bubbles >6 mm in any VOA vials?	Yes No (NA)
15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot#	Yes 😘
16. Was a LL Hg or Me Hg trip blank present?	Yes (No
Contacted PM Date by	via Verbal Voice Mail Other
Concerning _	
AR CITE IN OR CITEMONY & GLANDIN DAGONIN LACTING	. Samples processed by:
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by.
Sama Que time = 1630 apter so	
Sample time = 1600 agter so	emple was read-
will lay 1660 for sample time	2
0 0	
18. SAMPLE CONDITION	
	ommended holding time had expired.
Sample(s)	were received in a broken container.
	bubble >6 mm in diameter. (Notify PM)
	onogo > 0 mm m dramerer (140mi Livi)
19. SAMPLE PRESERVATION	
Sample(s)	were further preserved in the laboratory.
Time preserved: Preservative(s) added/Lot number(s):	"Tota tatalat product ou in mo inortatory.
	· · · · · · · · · · · · · · · · · · ·

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE INSPECTION/INVENTORY SHEET

CONTRACTOR:	PIKA	Month:	April	Year:	2016	Waste Description:	Solids / Soils
_							
Container Nos.:	PIKA-IDW-1. PIK	A-IDW-2					

	WEEK 1	WEEK 2	WEEK 3	WEEK 4
	Date:	Date:	Date: 4-20-16	
	Time:	Time:	Time: 1443	Date: Time:
Point of Contact (Name/Number)			Rick Callahan	
			330-352-4822	
Project Name			Prop Can Area	
			Investigation USACE -Louisville	
Contracting Agency and POC			Jay Trumble	
contracting rigericy and rice			(502) 315-6349	
Waste Determination: Pending Analysis,			Danding Analysis	
Hazardous, Non-Hazardous			Pending Analysis	
*Location on Installation			Bldg 1036	
Date Generated			4/13/2016	
Projected Date of Disposal			5/13/2016	
Non-Haz, Satellite, 90-Day Storage Area			Non-Haz	
Waste Generation Site			Prop Can Area	
Number of Containers (size/type)			2 (55 gal open top)	
Condition of Container(s)			Excellent	
Containers closed, no loose lids, no				
loose bungs	yes / no	yes / no	yes/ no	yes / no
Waste labeled properly and visible (40CFR 262.34 (c) (1)	yes / no	yes / no	yes/ no	yes / no
Secondary Containment	yes / no	yes / no	yes no	yes / no
Incompatibles stored together?	yes / no	yes / no	yes no	yes / no
Any SpillIs?	yes / no	yes / no	yes (no	yes / no
Spill Kit Available?	yes / no	yes / no	yes/ no	yes / no
Fire extinguisher Avaialble and Charged	yes / no	yes / no	yes/ no	yes / no
Containers gounded if ignitables?	yes / no / NA	yes / no / NA	yes / no NA	yes / no / NA
Emergency notification form/info present?	yes / no	yes / no	yes/ no	yes / no
Container log binder present?	yes / no	yes / no	yes/ no	yes / no
Signs posted if required?	yes / no	yes / no	yes/ no	yes / no
Photos Submitted	yes / no	yes / no	yes/ no	yes / no
Printed Name			Richard Callahan	
Signature			Distort C. Collabor	


Photo Documentation 4-20-16 Inspection

Palleted IDW Drums in Bldfg 1036

Palleted IDW Drums Condition

PIKA-IDW-1 Drum Label

PIKA-IDW-2 Drum Label

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE INSPECTION/INVENTORY SHEET

CONTRACTOR:	PIKA	Month:	April	Year:	2016	Waste Description:	Solids / Soils
_							
Container Nos.:	PIKA-IDW-1. PIKA	A-IDW-2					

	WEEK 1	WEEK 2	WEEK 3	WEEK 4
	Date:	Date:	Date: 4-20-16	Date: 4-27-16
	Time:	Time:	Time: 1443	Time: 1450
Point of Contact (Name/Number)			Rick Callahan	Rick Callahan
			330-352-4822	330-352-4822
Project Name			Prop Can Area	Prop Can Area
			Investigation	Investigation
Contracting Agency and POC			USACE -Louisville	USACE -Louisville
Contracting Agency and POC			Jay Trumble (502) 315-6349	Jay Trumble (502) 315-6349
			(302) 313-0349	(302) 313-0349
Waste Determination: Pending Analysis,			Dandina Analosia	Danielia a Anakasia
Hazardous, Non-Hazardous			Pending Analysis	Pending Analysis
*Location on Installation			Bldg 1036	Bldg 1036
Date Generated			4/13/2016	4/13/2016
Projected Date of Disposal			5/13/2016	5/13/2016
Non-Haz, Satellite, 90-Day Storage Area			Non-Haz	Non-Haz
Waste Generation Site			Prop Can Area	Prop Can Area
Number of Containers (size/type)			2 (55 gal open top)	2 (55 gal open top)
Condition of Container(s)			Excellent	Excellent
Containers closed, no loose lids, no	,	,		
loose bungs	yes / no	yes / no	yes/ no	yes/ no
Waste labeled properly and visible (40CFR 262.34 (c) (1)	yes / no	yes / no	yes/ no	yes/ no
Secondary Containment	yes / no	yes / no	yes no	yes no
Incompatibles stored together?	yes / no	yes / no	yes no	yes no
Any Spillls?	yes / no	yes / no	yes (no	yes /no
Spill Kit Available?	yes / no	yes / no	yes/ no	yes) no
Fire extinguisher Avaialble and Charged	yes / no	yes / no	yes/ no	yes/ no
Containers gounded if ignitables?	yes / no / NA	yes / no / NA	yes / no NA	yes / no /NA
Emergency notification form/info present?	yes / no	yes / no	yes/ no	yes/ no
Container log binder present?	yes / no	yes / no	yes/ no	yes/ no
Signs posted if required?	yes / no	yes / no	yes/ no	(yes) no
Photos Submitted	yes / no	yes / no	yes/ no	yes/ no
	, 55 / 110	7007 110	103/110	703 110
Printed Name			Richard Callahan	Richard Callahan
Signature			Bishool C. Collabora	Birlow C. Collabora

Photo Documentation 4-27-16 Inspection

Palleted IDW Drums in Bldfg 1036

Palleted IDW Drums Condition

PIKA-IDW-1 Drum Label

PIKA-IDW-2 Drum Label

CAMP RAVENNA WEEKLY NON-HAZARDOUS & HAZARDOUS WASTE INSPECTION/INVENTORY SHEET

CONTRACTOR:	PIKA	Month:	May	Year:	2016	Waste Description:	Solids / Soils
·							
Container Nos.:	PIKA-IDW-1. PIKA	A-IDW-2					

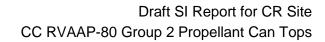
	WEEK 1	WEEK 2	WEEK 3	WEEK 4
	Date: 5-9-16	Date:	Date:	Date:
	Time: 0930	Time:	Time:	Time:
Point of Contact (Name/Number)	Rick Callahan			
	330-352-4822			
Project Name	Prop Can Area			
	Investigation USACE -Louisville			
Contracting Agency and POC	Jay Trumble			
contracting Agency and 100	(502) 315-6349			
Waste Determination: Pending Analysis, Hazardous, Non-Hazardous	Non-Hazardous			
*Location on Installation	Bldg 1036			
Date Generated	4/13/16			
Projected Date of Disposal	5/9/16			
Non-Haz, Satellite, 90-Day Storage Area	Non-Haz			
Waste Generation Site	Prop Can Area			
Number of Containers (size/type)	2 (55 gal open top)			
Condition of Container(s)	Excellent			
Containers closed, no loose lids, no loose bungs	yes/no	yes / no	yes / no	yes / no
Waste labeled properly and visible (40CFR 262.34 (c) (1)	yes/ no	yes / no	yes / no	yes / no
Secondary Containment	yes /no	yes / no	yes / no	yes / no
ncompatibles stored together?	yes /no	yes / no	yes / no	yes / no
Any Spillls?	yes /no	yes / no	yes / no	yes / no
Spill Kit Available?	yes/ no	yes / no	yes / no	yes / no
Fire extinguisher Avaialble and Charged	yes/ no	yes / no	yes / no	yes / no
Containers gounded if ignitables?	yes / no /NA	yes / no / NA	yes / no / NA	yes / no / NA
Emergency notification form/info present?	yes/ no	yes / no	yes / no	yes / no
Container log binder present?	yes) no	yes / no	yes / no	yes / no
Signs posted if required?	yes/ no	yes / no	yes / no	yes / no
Photos Submitted	yes) no	yes / no	yes / no	yes / no
Mani	fest Signed by Camp Rave	nna Environmental Off		•
Printed Name	Richard Callahan			
Signature	Bishood C. Collabora			

Photo Documentation 5-9-16 Drum Pickup

Palleted IDW Drums in Bldfg 1036

Wolfords-Trucking, Transporting for republic Services

Loading Drums


Drums Secured for Transport and Disposal

NON-HAZARDOUS SPECIAL WASTE & ASBESTOS MANIFEST

If waste is asbestos waste, complete Sections I, II, III and IV If waste is $\underline{\text{NOT}}$ asbestos waste, complete Sections I, II and III

I. GENERATOR (Generat	or completes I	a-r)					
a. Generator's US EPA ID Number NA		b. Manifest Docum		c. Page 1 of			
d. Generator's Name and Location: Former Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna Ohio 44266 f. Phone:614-336-6136 If owner of the generating facility differs fr		, provide:	e. Generator's Mailing Ad Camp Ravenna Environm 1438 State Route 534 SV Newton Falls OH 44444 g. Phone:614-366-6136	nental Offic	ee		
\$1 (20 to 10		100					
h. Owner's Name: NA j. Waste Profile #	k. Exp. Date	I. Waste Ship	i. Owner's Phone No.: NA ping Name and		ntainers	n. Total	o. Unit
* NUMBER AND	2014 2790 Too (2004)	Description		No.	Туре	Quantity	Wt∕Vol
5076 16 7002	04/28/2017	INVESTIGAT	TION DERIVED WASTE	02	DR	~ 02	DR
<u>.</u>							
	1						
GENERATOR'S CERTIFICATION: I here state law, has been properly described, c waste is a treatment residue of a previous been treated in accordance with the requ	lassified and pack sly restricted haza	aged, and is in prop rdous waste subject	er condition for transportation to the Land Disposal Restr	on accordir ictions. I c	ng to applic ertify and v	cable regulation warrant that the	s; AND, if this
Kathryn S. Tart p. Generator Authorized Agent Name (Pr	int)	KothRe g. Signature	yu STait		9 A	lay 201	6
II. TRANSPORTER (Gene			nsporter completes IIc	-e)	1. Date		
a. Transporter's Name and Address: Wolfords 175 Ohio Avenue McDonald OH 44437 b. Phone: 330-530-3200		- 1			,		
c. Driver Name (Print) d. Signature e. Date							
III. DESTINATION (Generator complete IIIa-c and Destination Site completes IIId-g)							
a. Disposal Facility and Site Address: CARBON LIMESTONE LANDFILL 8100 SOUTH STATELINE ROAD LOWELLVILLE, OH 44436 b. Phone: 330-536-8013		c. US EPA Num OHD987048212	d. Discrepancy Indic	cation Spac			2
I herby certify that the above named mate	enai nas been acc	epted and to the bes	st of my knowledge the foreg	going is tru	e and acci	urate.	,
e Name of Authorized Agent (Print)	10 G Sign	ature	1 TO VIA	g. Date	5	10-16	2
IV. ASBESTOS (Generator	N 455 - 455		complete IVg-i)				71
a. Operator's Name and Address: NA	•		c. Responsible Agency Na NA	ame and Ad	ddress:		- 10
b. Phone:	b. Phone: d. Phone:						
e. Special Handling Instructions and Add	itional Information	,					
f. Friable Non-Friable Botl	h %=	riable	% Non-Friable				
OPERATOR'S CERTIFICATION: I hereb and are classified, packed, marked and la national governmental regulations.	y declare that the	contents of this cons	signment are fully and accur	rately desc nighway ac	ribed abov cording to	e by proper shi applicable inter	pping name national and
g. Operator's Name and Title (Print)	h. Sigr			i. Date		to a managed process and the contract of the c	***
*Operator refers to the company which or	wns, leases, opera	ates, controls, or sup	ervises the facility being de	molished o	r renovate	a, or the demol	ition or

702 Appendix G

703 Cumulative Signed Documentation/Correspondence

December 2016 Rev 0

Accessibility Report

Filename: Appendix G - Signed Documentation_508.pdf

Report created by: Donald Brenneman, Vice President Bids & Proposals, dbrenneman@pikainc.com

Organization: PIKA International, Inc.

[Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

Needs manual check: 2
Passed manually: 0
Failed manually: 0

Skipped: 0Passed: 30Failed: 0

Detailed Report

Document

Rule Name	Status	Description
Accessibility permission flag	Passed	Accessibility permission flag must be set
Image-only PDF	Passed	Document is not image-only PDF
Tagged PDF	Passed	Document is tagged PDF
Logical Reading Order	Needs manual check	Document structure provides a logical reading order
Primary language	Passed	Text language is specified
<u>Title</u>	Passed	Document title is showing in title bar
<u>Bookmarks</u>	Passed	Bookmarks are present in large documents
Color contrast	Needs manual check	Document has appropriate color contrast

Page Content

Rule Name	Status	Description
Tagged content	Passed	All page content is tagged
Tagged annotations	Passed	All annotations are tagged
Tab order	Passed	Tab order is consistent with structure order
Character encoding	Passed	Reliable character encoding is provided
Tagged multimedia	Passed	All multimedia objects are tagged
Screen flicker	Passed	Page will not cause screen flicker
<u>Scripts</u>	Passed	No inaccessible scripts
<u>Timed responses</u>	Passed	Page does not require timed responses
Navigation links	Passed	Navigation links are not repetitive

Forms

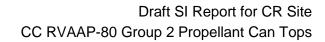
Rule Name	Status	Description
Tagged form fields	Passed	All form fields are tagged
Field descriptions	Passed	All form fields have description

Alternate Text

Rule Name	Status	Description
Figures alternate text	Passed	Figures require alternate text
Nested alternate text	Passed	Alternate text that will never be read
Associated with content	Passed	Alternate text must be associated with some content
Hides annotation	Passed	Alternate text should not hide annotation
Other elements alternate text	Passed	Other elements that require alternate text

Tables

Rule Name	Status	Description
<u>Rows</u>	Passed	TR must be a child of Table, THead, TBody, or TFoot
TH and TD	Passed	TH and TD must be children of TR
<u>Headers</u>	Passed	Tables should have headers
Regularity	Passed	Tables must contain the same number of columns in each row and rows in each column
Summary	Passed	Tables must have a summary


Lists

Rule Name	Status	Description
<u>List items</u>	Passed	LI must be a child of L
Lbl and LBody	Passed	Lbl and LBody must be children of LI

Headings

Rule Name	Status	Description
Appropriate nesting	Passed	Appropriate nesting

Back to Top

704 Appendix H

705 Comment Response Table (PLACE HOLDER)

December 2016